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Abstract 
 

The Extrinsic Apoptotic Pathway in Aged Skeletal Muscle:  

Roles of TNF-α and IL-15 

Emidio E. Pistilli 
 

 
Apoptosis is implicated in the loss of skeletal muscle mass following periods of reduced 

activity (i.e.-disuse) as well as during the normal aging process (i.e.-sarcopenia).  Aging 

is also characterized by elevations in circulating cytokines, specifically TNF-α, which has 

been associated with the sarcopenic process.  The specific signaling components that 

participate in the pro-apoptotic pathway downstream of the type I TNF receptor (i.e.-

extrinsic apoptotic pathway) within skeletal muscle have not been clarified.  

Additionally, few studies have been performed with the aim of disrupting this apoptotic 

pathway, and thereby sparing muscle mass in the aged.  Therefore, the purposes of this 

dissertation were to characterize the extrinsic apoptotic pathway within aged skeletal 

muscles and to test the effectiveness of another cytokine, IL-15, at disrupting this 

apoptotic pathway. Apoptotic signaling markers involved in the extrinsic pathway, 

including tumor necrosis factor-alpha (TNF-α), TNF receptor (TNFR), fas-associated 

death domain protein (FADD), TNFR-associated death domain protein (TRADD), 

caspase-8, caspase-3, BCL-3 interacting domain protein (Bid), and FLICE-inhibiting 

protein (FLIP), as well as the cytokine interleukin-15 (IL-15), were accessed in skeletal 

muscles from aged rodents and compared to muscles from young adult rodents.  Muscles 

from aged animals were smaller and the incidence of apoptosis was greater when 

compared to muscles from young adult rodents.  Additionally, aged muscles expressed 

greater mRNA and protein contents for the apoptotic markers involved in the extrinsic 

 



 

pathway, thereby suggesting the extrinsic pathway is active in skeletal muscles.  

Furthermore, IL-15 mRNA concentrations were, in general, greater in aged muscles and 

following periods of muscle unloading.  However, over-expression of IL-15 was unable 

to disrupt this apoptotic pathway in either aged rodents or in myoblast cultures stimulated 

with TNF-α.  These data suggest that while the extrinsic apoptotic pathway is active 

within aged skeletal muscles, and that TNF-α is able to promote these apoptotic changes 

in myoblast cultures, IL-15 is not an effective agent at disrupting this pathway and 

preserving muscle mass.    
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Specific Aims 

 A natural and unavoidable consequence of advanced age is a reduction in skeletal 

muscle mass and strength, known as sarcopenia.  Although the causes of sarcopenia are 

multifactorial, the systemic elevation of circulating cytokines is one of the recognized 

risk factors for sarcopenia.  Epidemiological studies have consistently reported 

associations between signs of sarcopenia and elevated concentrations of cytokines, such 

as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6).  Mechanistic studies 

have also revealed that TNF-α can initiate not only increases in protein degradation 

though the ubiquitin-dependent proteolytic pathway, but also DNA fragmentation within 

skeletal muscle, which is a characteristic indicator of apoptosis.  Given that aging results 

in elevated circulating concentrations of TNF-α and in characteristic signs of apoptosis 

within skeletal muscle, the objective of this dissertation is to determine if the extrinsic 

pathway of apoptosis, initiated by binding of TNF-α to the type-I TNF receptor (TNFR) 

and subsequent activation of downstream caspases, is an active process within aged 

skeletal muscle.  In addition, experiments will be performed to determine if the basal 

expression of IL-15 within skeletal muscles is altered during periods of muscle unloading 

and as a result of aging.  Lastly, experiments will be performed to determine if the 

extrinsic apoptotic pathway can be suppressed by the systemic elevation of IL-15 in aged 

rodents in vivo, and in myoblast cultures stimulated with TNF-α in vitro.      

 

Central Hypothesis 

 Increased circulating concentrations of TNF-α will initiate a pro-apoptotic 

signaling pathway involving: its binding to the type-I TNFR, formation of a death 
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inducing signaling complex (DISC) at the TNFR composed of Fas-associated death 

domain containing protein (FADD) and procaspase-8, and cleavage and activation of 

downstream caspases.  Elevation of IL-15 protein, both in vitro and in vivo, will attenuate 

this pro-apoptotic signaling downstream of the type-I TNFR.     

 

Specific Aim 1:  To characterize the signaling pathway from the type-I TNFR through 

caspase-3 activation, leading to nuclear apoptosis in aged skeletal muscle. 

• Method: Compare fast plantaris and slow soleus muscles from young adult and 

aged Fischer344 x Brown Norway (FBN) rats (in vivo). 

• Hypothesis 1.1: Young adult skeletal muscles will not have marked 

elevations in the components of this signaling pathway. 

• Hypothesis 1.2:  Aged skeletal muscles will have marked elevations in the 

components of this signaling pathway, specifically TNFR, FADD, caspase-8, 

and caspase-3. 

• Hypothesis 1.3:  Aged skeletal muscle will express higher protein levels of 

pro-apoptotic Bid, which connects the pro-apoptotic signal from caspase-8 to 

the mitochondrial-associated apoptotic pathway. 

Specific Aim 2:  To determine if increases in IL-15 levels can attenuate TNF-α-

associated apoptotic signaling in vitro.  

• Method 1: Stimulate C2C12 myoblasts with rTNF-α.   

• Method 2:  Stimulate C2C12 myoblasts with rTNF-α and rIL-15. 

• Hypothesis 2.1:  Stimulation of C2C12 myoblasts with rTNF-α will promote 

apoptosis. 



Specific Aims 3

• Hypothesis 2.2:  Stimulation of C2C12 myoblasts with rIL-15 alone will not 

promote apoptosis. 

• Hypothesis 2.3:  Recombinant IL-15 will attenuate the rTNF-α induced pro-

apoptotic signaling in C2C12 myoblast cultures. 

Specific Aim 3:  To determine if systemic elevation of IL-15 protein in vivo can 

attenuate TNF-α-associated apoptosis within aged skeletal muscle.  

• Method:  Osmotic mini-pumps containing rIL-15 protein will be implanted into 

young adult and aged FBN rats for a period of 14-days.   

• Hypothesis 3.1:  The systemic elevation of IL-15 protein within aged rodents 

will reduce signs of apoptosis within skeletal muscle and specifically attenuate 

the pro-apoptotic TNF-α signaling pathway. 

• Hypothesis 3.2:  The systemic elevation of IL-15 protein within young adult 

FBN rats will provide an anabolic stimulus resulting in increases in muscle 

mass of plantar flexor muscles.   
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Background and Significance 

The aging associated loss of muscle mass and strength, known as sarcopenia, is a 

normal consequence of advanced age.  Reductions in muscle strength are directly 

correlated with decreases in muscle mass (3; 24; 54).  In a recent review, Doherty (27) 

reported that muscle strength declined an average of 20-40% in healthy men and women 

by the seventh and eighth decades of life.  Muscle mass, determined by cross sectional 

area (CSA), is also reduced an average of 40% between the ages of 20 and 60 (27).  

Sarcopenia contributes to the loss of independence and frailty often observed in older 

adults (88).  There are multiple contributing mechanisms leading to sarcopenia, 

including: denervation and reinnervation of myofibers, especially within skeletal muscles 

composed of a high degree of type II muscle fibers (4; 28); an alteration in the hormonal 

environment in which anabolic hormone concentrations progressively decline (84; 85); 

elevated concentrations of inflammatory mediators that are not only associated with 

disease states, but also occur in healthy older adults (10-14; 68; 78; 86); and muscle 

nuclei and fiber loss through apoptotic mechanisms (25; 56; 79-81).   

Apoptotic signaling has previously been shown to be an active process in skeletal 

muscle during periods of reduced muscle activity (hindlimb suspension, denervation) as 

well as during aging (reviewed in (26; 32; 55).  The hindlimb suspension (HS) model has 

been used to investigate the mechanisms of muscle atrophy during periods of reduced 

activity, and is the preferred model to simulate the effects of microgravity on skeletal 

muscle (64).  Allen et al. (2) utilized the HS model to investigate the role of apoptosis in 

muscle remodeling.  The soleus muscles of HS rats atrophied beginning at 7-days of HS, 

with a further reduction in mass at 14-days.  However, TdT-mediated dUTP nick end 
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labeling (TUNEL) positive nuclei, indicative of apoptosis, were visualized beginning at 

3-days of HS.  The number of apoptotic nuclei was increased further at 7-days of HS and 

remained elevated at 14-days of HS.  Thus, apoptosis appeared to be an early occurring 

event that can contribute to muscle atrophy at later time points.  Data from Hikida et al. 

(50) supported these results.  Myonuclear loss was evident in atrophic soleus muscles of 

space-flown rats, providing data to support the hypothesis that the nuclear domain is 

under strict control and myonuclear loss occurs in an attempt to maintain the myonuclear 

domain.   

Apoptosis has been shown to be a contributing mechanism to muscle mass losses 

with aging.  Dirks and Leeuwenburgh (25) first examined the effect of aging on the 

incidence of apoptosis in the gastrocnemius muscles of young and aged rats.  Apoptosis, 

as measured by mono- and oligonucleosome fragmentation, was elevated 50% in aged 

muscles compared to young adult.  The HS model was subsequently utilized to examine 

the effect of superimposing disuse in aged skeletal muscle (56; 72; 80).  A common 

finding is that aged skeletal muscle responds differently than young adult skeletal muscle 

during periods of HS.  Increases in apoptotic nuclei, as well as in molecular markers of 

the intrinsic mitochondrial apoptotic pathway (Bax, Apaf-1, AIF, caspase-9, and caspase-

3) were evident in aged muscles (Figure 1), supporting the hypothesis that an intracellular 

environment exits in aged skeletal muscle that favors apoptosis.  In addition, the changes 

in specific apoptotic markers were elevated and/or exacerbated in aged skeletal muscle 

following HS (AIF, EndoG, Bax).  Thus, the apoptotic signaling pathways in aged 

skeletal muscle are distinct when compared to young adult muscle.        
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  The concentration of the pro-inflammatory cytokine, TNF-α, increases in the 

circulation with age (10-14; 68; 78; 86).  This increased concentration has the potential to 

not only increase protein degradation through a ubiquitin-dependent pathway (40), but 

also to initiate an apoptotic pathway that can contribute to muscle mass reductions via 

loss of muscle nuclei (20; 71).  In defining a molecular marker of sarcopenia, Giresi et al. 

(44) reported that the forkhead box 3A (FOXO3A) transcription factor is up-regulated in 

aged skeletal muscle compared to young muscle, as determined through microarray 

analysis.  The FOXO3A gene product has been shown to promote apoptosis via the 

activation of proteins involved in the TNF-related apoptosis inducing ligand (TRAIL) 

pathway as well as by inhibiting expression of FLICE-inhibiting protein (FLIP), which 

serves to inhibit caspase-8 (42; 82).  Thus, the changes in gene expression within aged 

skeletal muscle combined with the increase in circulating TNF- with aging, suggest that 

the apoptotic pathway initiated by this cytokine is active within aged muscle and can 

contribute to muscle mass reductions in aged animals and humans.  

  

Effects of TNF-α in skeletal muscle.  The circulating concentrations of specific 

cytokines have been shown to be elevated in the serum as a result of aging.  Serum levels 

of TNF-α (11; 13; 78) and IL-6 (10; 36; 68) are increased in healthy elderly compared to 

young  adults.  Serum concentrations of TNF-α have been proposed as a prognostic 

marker of all cause-mortality in centenarians (11).  Additionally, in a cross-sectional 

study composed of 362 Danish elderly, Bruunsgaard et al. (13) implicated low-grade 

elevations of TNF-α and IL-6 with age-associated pathology and mortality in 80-year old 

adults.  Studies have also drawn associations between the increases in circulating 
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cytokines and the sarcopenic process (68; 86).  Specifically, elevated circulating levels of 

TNF-α are associated with lower appendicular skeletal muscle mass, as measured by 

dual-energy x-ray absorptiometry (DEXA), in healthy elderly adults (68).  Additionally, 

elevated levels of TNF-α and IL-6 in aged humans have been associated with smaller 

muscle area, less appendicular skeletal muscle mass, and reduced knee extensor and grip 

strength (86).  Thus, one potential mechanism contributing to the onset of sarcopenia may 

be the increase in circulating cytokines.     

 Increased protein degradation within skeletal muscle initiated by TNF-α has been 

previously demonstrated.  Incubation of C2C12 myoblasts (57) and L6 myotubes (33) with 

recombinant TNF-α resulted in decreases in total protein content.  Intravenous injection 

of rTNF-α also resulted in increased protein degradation in rat skeletal muscles that was 

associated with activity of the ubiquitin-dependent proteolytic pathway (39; 41; 59-61).  

Protein degradation was increased in isolated rat soleus muscles incubated in the presence 

of TNF-α and this was associated with increased expression of components of the 

ubiquitin-dependent proteolytic pathway (58).  In addition to the increases in protein 

degradation, elevated TNF-α concentrations can increase signs of apoptosis within 

skeletal muscle through the extrinsic apoptotic pathway (Figure 2).   Cultured myoblasts 

incubated in rTNF-α had elevated levels of apoptosis, as determined by fragmented 

DNA, at 24h and 48h of culture (37; 63).  A reduction of procaspase-8 was measured 

within 6h of incubation with rTNF-α, indicating the cleavage and activation of this 

initiator caspase in these myoblast cultures (83).  A systemic elevation of TNF-α in vivo 

induced an increase in the incidence of DNA fragmentation within rodent skeletal muscle 

(20).  Muscle from aged rats also had elevations of molecular markers involved in the 
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TNF-α associated apoptotic pathway, when compared to muscle from young adult rats 

(71).  These data demonstrate that elevations in TNF-α result in a catabolic state within 

skeletal muscle and may contribute to age-associated muscle loss via increases in 

apoptotic signaling.   

 

The Pleiotropic Cytokine Interleukin-15.  Interleukin-15 is a recently 

discovered cytokine (19; 48) that belongs to the four α-helix bundle family of cytokines, 

that also include IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, and IL-9 (for in-depth reviews on IL-

15, see(34; 87).  First identified as a T-lymphocyte growth factor, the roles of IL-15 

within the immune system have been shown to also include the activation of natural killer 

(NK) cells (22), and proliferation of B cells (6).  Redundancy in response between IL-15 

and IL-2 is due to the similarity in the receptor composition for these two cytokines.  The 

IL-15 and IL-2 receptors are trimeric structures composed of two identical chains, the IL-

2R beta-chain and the common gamma (γc) chain, along with specific alpha-chains (45; 

46).  The IL-15R alpha chain exhibits a high affinity of binding for IL-15 protein, with a 

Kd of 10 pM (31). In addition to paracrine actions, IL-15 can be expressed in trans, in 

which the cytokine is either bound to cell surface IL-15Rα or anchored to the cell 

membrane and presented to neighboring cells that express IL-2Rβ and γc (15; 16).  

Although both IL-15 (66) and IL-15Rα (47) mRNA is expressed in skeletal muscle, it is 

not known if the mRNA for a functional trimeric IL-15R is also expressed in skeletal 

muscle, which would allow for trans presentation of IL-15 by muscle cells.  
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 Despite similar effects of IL-15 and IL-2 within the immune system, the two 

cytokines share no sequence homology and the tissue distribution of these two cytokines 

differs dramatically (48).  Interleukin-2 mRNA is expressed exclusively in activated T-

lymphocytes, where it promotes proliferation.  Interleukin-15 mRNA is widely 

distributed among tissue and cell types, including heart, brain, lung, liver, kidney, 

pancreas, and skeletal muscle (48).  Among cytokine mRNAs expressed within skeletal 

muscle, IL-15 mRNA has been reported to be the highest (65; 66).  Despite this high 

concentration of IL-15 mRNA within skeletal muscle, there seems to be no effect of 

aerobic or anaerobic muscular contractions on its expression levels (23; 65; 66).   

 In contrast to the wide expression of IL-15 mRNA, mature IL-15 protein has been 

difficult to measure (87).  In a recent study, plasma IL-15 concentrations were 

determined by ELISA in response to an acute resistance training session and following a 

10-week resistance training program (76).  Interleukin-15 protein was elevated 

immediately following the acute exercise session, but was not significantly different as a 

result of the 10-week training intervention.  The IL-15 protein concentrations determined 

in the study by ELISA ranged from 1.65 pg. ml-1 to 1.75 pg. ml-1, displaying the 

extremely low concentration of this cytokine.  The low concentration of mature IL-15 

protein is due to multiple levels of regulation that include:  the composition of the 5’ 

UTR; the unusually long signal peptide; and the C-terminus of the mature protein.  First, 

the 5’ UTR of human IL-15 is long and contains 12 AUGs upstream of the initiation 

AUG codon (7; 87). These multiple upstream AUGs may represent an attempt to reduce 

translation efficiency of proteins whose expression may be detrimental (7).  Indeed, the 

ability of IL-15 to stimulate non-specific T-cell proliferation would necessitate a 

 



Background and Significance 10

regulation of protein expression.   Second, IL-15 protein contains an unusually long 48 

amino acid signal peptide (53).  This is in contrast to other proteins that demonstrate 

highly efficient translation.  The effect of this signal peptide on protein translation was 

demonstrated by Bamford and co-workers (7), who replaced the peptide coding sequence 

of IL-15 with that of IL-2 and vise versa.  When these chimeras were transfected into 

COS cells, the total amount of IL-15 protein generated was increased 17- to 20-fold.  

Additionally, the amount of IL-2 produced was reduced 40- to 50- fold.  Third, the C-

terminus region contains a structure that negatively regulates IL-15 protein production 

(7).  In an effort to measure IL-15 protein, an epitope tag FLAG was added to the 3’end 

of the IL-15 protein.  This modification increased IL-15 protein production alone by 5- to 

10-fold.  When these three negative elements noted above were eliminated and the 

resulting construct was transfected into COS cells, 250-fold more IL-15 protein was 

produced, demonstrating the extremely tight regulation of protein production (7).   

Initial experiments utilizing rIL-15 protein in vitro provided data suggesting IL-15 

was an anabolic factor for skeletal muscle.  The anabolic effects of rIL-15 were first 

demonstrated in differentiated myotubes in vitro (38; 74).  Myotubes incubated in rIL-15 

protein (10ng . ml-1) displayed a hypertrophic morphology as well as increased myosin 

heavy chain protein content in culture.  These results were supported upon myotube 

infection with a retroviral expression vector expressing murine IL-15 (73).  The anabolic 

effect of IL-15 in vivo has been demonstrated in diaphragm muscle from young mice (8 

weeks), following systemic elevation of rIL-15 for 28 days through use of an osmotic 

mini-pump which controlled the rate of protein delivery (0.125μl . h-1) (49).  Muscle cross 

sectional area (CSA) and specific force (Po . CSA-1) were elevated in the diaphragm 
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muscles of mdx mice treated with IL-15, compared to control mdx mice.  The controlled 

release of recombinant protein and/or duration of the treatment period may be critical 

factors for muscle hypertrophy, as rats provided once daily bolus injections of rIL-15 

(100μg . kg bw-1) for 7-days showed no hypertrophy of gastrocnemius, soleus, or tibialis 

muscles (21; 35).   

 Recent data have also shown effects of IL-15 within bone (67) and adipose tissue 

(5; 75), illustrating tissue specific roles for this cytokine.  The growth-promoting ability 

of IL-15 within skeletal muscle is in contrast to the proposed role of IL-15 in bone 

resorption (67).  IL-15 concentrations are increased within joints in patients with 

rheumatoid arthritis, and studies have attempted to use IL-15 levels as a clinical marker 

of disease progression.  In vitro studies have shown that IL-15 can stimulate the 

formation of multinucleated osteoclast-like cells in rat bone marrow cultures, as well as 

stimulate differentiation of osteoclast progenitors into preosteoclasts.  The increase in 

osteoclasts, bone resorbing cells, can lead to bone loss within the affected joints.  

Increases in IL-15 can also promote lipogenesis (5) and adipokine secretion (75) from 

adipose cells, such as adiponectin.  Additional research is required to decipher the multi-

faceted roles of IL-15 within individual tissues.   

    

IL-15 and Apoptosis.  Numerous cytokines have been implicated in attenuating 

apoptosis (reviewed in (62)).  Manipulation of the IL-15/IL-15R system has been shown 

to inhibit apoptosis in numerous cell types, including T-lymphocytes (1; 8; 29; 30; 70), 

neutrophils (9; 43; 69), skeletal muscle fibers (35), keratinocytes (77), and fibroblasts 

(17).  Multisystem apoptosis initiated in mice via treatment with an anti-Fas antibody was 
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suppressed with injection of a long-lasting IL-15-IgG2b fusion protein (18).  In addition, 

IL-15 transgenic (Tg) mice were resistant to a lethal dose of Escherichia coli (E. coli).  

Administration of 10µg of IL-15 intraperitonally (i.p.) into control mice also minimized 

the death rate from a lethal challenge of E. coli.  These authors also demonstrated that IL-

15 administration into isolated peritoneal cells in vitro, prevented TNF-α induced 

apoptosis (51).  

 The well-characterized cell death pathway initiated by the binding of TNF-α to 

the type I TNFR is altered with increases in IL-15 protein (17; 21).  Specifically, in a 

rodent model of cancer, daily injections of IL-15 protein (100µg . bw-1) for 7-days 

resulted in significant decreases in the gene expression of both the type I and type II 

TNFR (21).  Although gene expression of TNF-α was not altered with IL-15 

administration, the authors speculated that this signaling pathway could be affected by 

reducing the presence of TNR receptors.  A more precise mechanism for this anti-

apoptotic effect was demonstrated in fibroblasts in vitro (17).  When fibroblast cultures 

contained TNF-α protein in the media, significant apoptosis occurred.  However, when 

IL-15 protein (10ng . ml-1) was included in the media with TNF-α (10ng . ml-1), apoptosis 

was attenuated.  Co-immunoprecipitation experiments revealed that upon IL-15 binding 

to the IL-15Rα, the cytoplasmic signaling molecule, TRAF2, was recruited to the 

cytoplasmic side of the IL-15Rα and away from the TNFR.  Interestingly, this 

recruitment of TRAF2 to IL-15Rα was only observed when both TNF-α and IL-15 

protein were present in the culture media.  Thus, IL-15 seems to possess the ability to 

inhibit apoptosis by blocking the apoptotic signaling downstream of the TNFR.   
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 An association between IL-15 and the anti-apoptotic protein, Bcl-2, has also been 

demonstrated previously (52; 70; 89).  In IL-15Rα-/- mice, a reduction in the percentage 

of CD8+ T cells has been reported.  The reduced percentage of these cells was due in part 

to a reduction of Bcl-2 expression.  Exogenous IL-15 up-regulated Bcl-2 levels in these 

cells and contributed to a reduction in cell death upon cell activation, in a dose dependent 

manner (10-1000 ng . ml-1) (89).  Additionally, HIV-specific CD8+ T cells were shown to 

exhibit reduced levels of Bcl-2.  When these cells were cultured with IL-15, Bcl-2 

expression increased and this was associated with an attenuation of apoptosis in CD8+ T 

cell cultures (70).  Lastly, in synovial cell cultures from rheumatoid arthritis patients, 

blocking of IL-15 activity caused a reduction in the expression Bcl-2 and Bcl-xl (52).  

The ability of IL-15 to attenuate TNF-α associated apoptotic signaling coupled with its 

association with Bcl-2, suggest IL-15 is an anti-apoptotic molecule that requires further 

investigation. 
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Figure 1: The intrinsic-mitochondrial apoptotic pathway 
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Figure 2:  The extrinsic apoptotic pathway 
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CHAPTER 1 

Pistilli EE, Siu PM, and Alway SE.  Molecular regulation of apoptosis in atrophied fast plantaris 
muscles of young and aged rats.  Journal of Gerontology: Biological Sciences, 61(3): 245-255, 
2006. 
 

 

ABSTRACT 

This study tested the hypothesis that aging exacerbates apoptotic signaling in rat fast plantaris 

muscle during muscle unloading. Plantaris muscle mass was 22% less in aged animals and the 

apoptotic index was 600% greater, when compared to young adult animals. Following 14-days of 

hindlimb unloading, absolute plantaris muscle mass was 20% less in young adult animals with a 

corresponding 200% greater elevation of the apoptotic index. Unloading had no affect on muscle 

weight or apoptotic index of aged plantaris muscles. The changes in pro-apoptotic mRNA for 

Apaf-1, Bax, and Id2 were exacerbated with aging. Bax and Bcl-2 protein levels were also 

altered differently in aged muscle, compared to young. Significant positive correlations were 

observed between the changes in Id2 and Bax mRNA, and Id2 and caspase-9 mRNA. These data 

suggest that a pro-apoptotic environment may contribute to aging-associated atrophy in fast 

skeletal muscle but apoptotic signaling differs by age.   

 

   KEY WORDS: sarcopenia, muscle atrophy, transcription factors, aging, unloading 
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INTRODUCTION 

Muscle mass and strength are reduced as a result of aging, a condition know as 

sarcopenia (1-5).   Sarcopenia contributes to a loss of independence with advanced age and 

increases the risk of falling in the elderly (5).  This is an important problem because hypokinesia 

is profound in older populations and aging increases the sensitivity of muscle fibers to inactivity-

induced atrophy (6-9).  Thus, it appears possible that superimposing disuse or immobility with 

sarcopenia (e.g., recovery from surgery or a fall) may further exacerbate the loss of muscle mass 

and strength. 

Limb unloading is a common means to induce atrophy in skeletal muscles.  In rodents, 

this is usually achieved by hindlimb suspension (10-15) or immobilization (16).  Hindlimb 

suspension (HS) is a model of simulated microgravity that has been used to investigate skeletal 

muscle adaptations during non-weight-bearing conditions (17).  The rapid loss of muscle fiber 

cross-sectional area during unloading indicates that the atrophying myofibers have activated 

pathways leading to decreased rates of protein synthesis and increased degradation of 

myofibrillar proteins (18, 19). The atrophy of antigravity hindlimb muscles, especially the soleus, 

is quite severe (11, 20-22) and this is associated with a down regulation of slow myosin heavy 

chain expression (23) and a decrease in the number of nuclei per muscle fiber (22). Furthermore, 

an increase in TUNEL (Terminal deoxynucleotidyl Transferase Biotin-dUTP Nick End 

Labeling) positive nuclei in slow rat skeletal muscle have been reported after HS leading to 

muscle atrophy as compared to control muscles (11). Recent reports have also demonstrated 

increases in pro-apoptotic proteins involved in the mitochondrial-associated apoptotic pathway in 

the soleus muscle (24), and the mixed fiber medial gastrocnemius muscle, as a result of both 

aging and limb unloading (25).  These data suggest that some of the nuclei were lost via 
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apoptosis. Nevertheless, much less is known about the predominately fast fiber containing 

plantaris muscle, where muscle mass losses are less severe as a result of aging and unloading 

(10, 12, 16, 26).  

The degree of apoptosis depends on the balance between the activation of pro- and anti-

apoptotic genes.  In general, shifts in this balance toward increasing pro-apoptotic genes are 

believed to promote muscle atrophy (27).  Pro-apoptotic markers involved in the mitochondrial-

associated apoptotic pathway in skeletal muscle can take part in a caspase-dependent or a 

caspase-independent pathway.  The caspase-dependent pathway is initiated by the release of 

cytochrome-c from the mitochondrial intermembrane space which then forms a complex with 

apoptotic protease activating factor-1 (Apaf-1), dATP, and pro-caspase-9 (27-29), leading to the 

activation of caspase-9 and other downstream caspases.  In contrast, the caspase-independent 

pathway involves apoptosis inducing factor (AIF), which can translocate to the nucleus and 

initiate chromatin condensation and DNA fragmentation (30, 31).   The release of these pro-

apoptotic molecules is controlled by the BCL-2 family of proteins, with Bax and Bak promoting 

apoptosis and Bcl-2 inhibiting apoptosis (27). We have recently proposed a role for inhibitor of 

differentiation (Id) repressors in skeletal muscle apoptosis and sarcopenia (32).  Id levels are 

correlated with muscle wasting (33), and we and others have shown increases in markers of 

apoptosis in muscles of aged animals (32, 34, 35).  Because we have found high levels of 

inhibitor of differentiation protein-2 (Id2) in the atrophic muscles of aged rodents (32, 33), we 

were interested in determining if Id2 might be involved in general pathways leading to apoptosis 

in muscle during periods of unloading, especially in aged animals.   

  The biochemical signals regulating apoptosis during aging and unloading, especially in 

fast skeletal muscles, have not been well studied. Therefore, in the current study we examined 
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Id2 and molecular markers of apoptosis in experimentally unloaded muscles of young adult and 

aged Fischer 344 x Brown Norway (FBN) rats, to determine if these conditions influence the 

degree of muscle atrophy via apoptotic pathways.  We hypothesized that plantaris muscles from 

aged animals would exhibit increases in markers for apoptosis and that these changes would be 

exacerbated following HS.  We therefore tested the hypothesis that plantaris muscles from young 

adult rats would not have marked elevations in mRNA levels for Id2 and pro-apoptotic genes, 

whereas, muscles from aged rats would have increased mRNA levels of Id2 and pro-apoptotic 

genes that would be further altered following hindlimb unloading. 

METHODS 
 
Animal care and HS. All procedures followed the guidelines of the National Institutes of 

Health, and were approved by the Institutional Animal Care and Use Committee of the West 

Virginia University School of Medicine. Sixteen young adult (9 mo) and sixteen senescent 

(33 mo) male Fischer 344 × Brown Norway rats were obtained from the National Institute on 

Aging barrier-raised colony that is housed at Harlan Animal Colonies (Indianapolis, IN). The 

animals were housed at 20-22°C in barrier-controlled conditions under a 12:12-h light-dark cycle. 

They were provided rat chow and water ad libitum.  

The rats in each age group were randomly assigned to a hindlimb suspension (HS) group 

(n = 8) or a control group (n = 8). The HS animals were unloaded using the methods described 

previously (17) with modifications.  Briefly, an adhesive (tincture of benzoin) was applied to the 

tail and allowed to dry.  Orthopedic tape was applied along the proximal one-third of the tail, 

which distributed the load evenly and avoided excessive tension on a small area.  The tape was 

placed through a wire harness that was attached to a fish line swivel at the top of a specially 

designed hindlimb suspension cage.  This provided the rats with 360˚ of movement around the 
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cage.  Sterile gauze was wrapped around the orthopedic tape and was subsequently covered with 

a thermoplastic material, which formed a hardened cast (Vet-Lite, Veterinary Specialty Products, 

Boca Raton, FL).  The exposed tip of the tail remained pink, indicating that HS did not interfere 

with blood flow to the tail. The suspension height was monitored daily and adjusted to prevent 

the hindlimbs from touching any supportive surface, with care taken to maintain a suspension 

angle of approximately 30˚ (17). The forelimbs maintained contact with a grid floor, which 

allowed the animals to move, groom themselves, and obtain food and water freely. Hindlimb 

suspension was maintained for a total of 14 days. Control rats maintained normal mobility and 

they moved unconstrained around their cages.  Following 14 days of HS, rats were sacrificed 

with an overdose of xylazine and the plantaris muscles from the hindlimb were excised. 

 

RT-PCR Estimates of mRNA. Semi-quantitative RT-PCR analysis was conducted as described 

in detail elsewhere (25). Frozen muscle samples (~50 mg) were homogenized in 1 ml of 

TriReagent (Molecular Research Center, Cincinnati, OH) with a mechanical homogenizer. Total 

RNA was isolated by centrifugation and washed in ethanol according to the manufacturer's 

instructions. RNA was solubilized in 20 µl of RNase-free H2O.  RNA was treated with Dnase I 

(Ambion, Austin TX) and reverse transcribed (RT) with random primers (Invitrogen/Life 

Technologies, Bethesda MD).  

Primers were constructed from published sequences (Table 1). Primer pairs for the gene 

of interest were co-amplified with 18S primer pairs and competimers to the 18S primers, as an 

internal control, according to the manufacture’s protocols (Ambion, TX). The number of PCR 

cycles was determined for each gene to insure analyses were done in the linear range of 

amplification.  The signal from the gene of interest was expressed as a ratio to the 18S signal 
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from the same PCR product in order to eliminate any loading errors.  The cDNA from all muscle 

samples were amplified simultaneously for a given gene. Following amplification, 20μl of each 

reaction was electrophoresed on 1.5% agarose gels.  Gels were stained with ethidium bromide. 

PCR signals were captured with a digital camera (Kodak 290) and the signals were quantified in 

arbitrary units as optical density x band area, using Kodak image analysis software (Eastman 

Kodak Company, Rochester, NY). 

 

Protein measures.  Frozen muscle samples were used to obtain cytoplasmic protein to be used 

in western-blots.  Muscle samples, approximately 50-75 mg, were homogenized in 1 ml ice-cold 

lysis buffer (10 mM NaCl, 1.5 mM MgCl2, 20mM HEPES at pH 7.4, 20% glycerol, 0.1% Triton 

X-100, and 1mM dithioreitol) to obtain cytoplasmic protein extracts according to the methods of 

Rothermel et al (36).  Muscle homogenates were centrifuged at 3,000 rpm for 5-minutes at 4°C.  

The supernatants were collected that contained the cytoplasmic protein fraction.  The protein 

concentration of the total muscle homogenate was assayed spectrophotometrically at 562 nm 

(BioRad, SmartSpec 3000) using a commercial bicinchoninic acid (BCA) method as recommended 

by the manufacturer (Pierce, Rockford, IL) with bovine serum albumin used as standards.   Fifty 

micrograms of cytoplasmic protein was loaded into each lane of a 12% polyacrylamide gel and 

separated by routine SDS-polyacrylamide gel electrophoresis (PAGE) for 1.5 hours at 20°C.  

Separated proteins were transferred to nitrocellulose membranes and verification of equivalent 

protein loading and transfer was verified by Ponceau S red (Sigma).  The membranes were 

blocked at room temperature for 1h in 5% non-fat milk (NFM) in tris-buffered saline containing 

0.05% Tween (TBS-T).  Membranes were probed with anti-Bcl-2 mouse monoclonal antibody 

(1:200 dilution, sc-7382; Santa Cruz Biotechnology), and anti-Bax rabbit polyclonal antibody 
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(1:200 dilution, sc-6236; Santa Cruz Biotechnology) diluted in TBS-T with 2% NFM.  

Secondary antibodies were conjugated to horseradish peroxidase (HRP; Chemicon) and signals 

were developed using a chemiluminescent substrate (ECL Advanced, Amersham Biosciences, 

Germany).  Signals were visualized by exposing the membranes to X-ray films (BioMax MS-1; 

Eastman Kodak).  Digital records were captured by a Kodak 290 camera and protein bands were 

quantified using 1-D imager analysis software (Eastman Kodak).  Bands were quantified as 

optical density (OD) X band area and expressed as arbitrary units.       

 

Cell death ELISA and calculation of apoptotic index.  Cytoplasmic protein extracts were used 

to quantify DNA fragmentation in all muscle samples using a commercially available ELISA kit 

(Cell Death Detection ELISA, Roche Diagnostics, Mannheim, Germany).  Briefly, the wells of a 

96-well plate were coated with a primary anti-histone mouse monoclonal antibody.  Following 

the addition of 100 µl of each sample, a secondary anti-DNA mouse monoclonal antibody 

coupled to peroxidase was added to each well.  The substrate, 2,2’-azino-di-(3-

ethylbenzthiazoline sulfonate) (ABST) was used to photometrically determine the amount of 

peroxidase retained in the immunocomplex.  The color change of each well was determined at a 

wavelength of 405nm using a Dynex MRX plate reader and computer software (Revelation, 

Dynatech Laboratories, CA).  The resulting OD was normalized to the protein concentration of 

each sample and recorded as the apoptotic index (OD405 . mg protein-1).   

 

In situ TdT-Mediated dUTP Nick End Labeling (TUNEL).  Apoptotic nuclei of myogenic 

origin were assessed using a fluorometric TdT-mediated dUTP nick end labeling (TUNEL) 

detection kit according to the manufacture’s instructions (Roche Applied Science, Indianapolis, 
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IN). Frozen 10-μm-thick muscle cross-sections of the medial gastrocnemius muscle from control 

young and aged rats were cut in a cryostat at -22° and placed on the same glass slide to control 

for differences in tissue processing.  Muscle characteristics and apoptotic data from the medial 

gastrocnemius muscle have been described previously(25).  Slides were air dried, fixed in 4% 

paraformaldehyde in PBS at room temperature, permeabilized in 0.2% Triton X-100 in 0.1% 

sodium citrate at 4°C for 2-minutes, and incubated in TUNEL reaction mixture in a humidified 

chamber at 37°C for 1h in the dark.  Negative control experiments were performed in which the 

TdT enzyme was not added to the TUNEL reaction mixture.  Sections were then incubated in an 

anti-laminin mouse monoclonal antibody followed by an anti-mouse IgG Cy3 conjugate F(ab’)2 

fragment incubation (1:200 dilution, C2182, Sigma).  Sections were mounted with 4’,6-

diamidino-2-phenylindole (DAPI) mounting medium (Vectashield mounting medium, Vector 

Laboratories).    Images were visualized under a fluorescent microscope at an objective 

magnification of 40X and at the following excitation wavelengths:  330-380nm for DAPI blue 

fluorescence, 450-490nm for green fluorescence, and 485-585nm for Cy3 red fluorescence.  

Images were obtained using a SPOT RT camera (Diagnostic Instruments, Sterling Heights, MI) 

and SPOT RT software (Universal Imaging, Downingtown, PA) was used to superimpose the 

images.   

 

Immunofluorescent Staining.  Frozen 10-μm-think muscle cross-sections of the medial 

gastrocnemius muscle from control young and aged rats were cut in a cryostat at -22° and placed 

on the same glass slide to control for differences in tissue processing.  Slides were air dried at 

room temperature and fixed in ice-cold acetone:methanol (50:50), permeabilized in 0.2% Triton 

X-100 in 0.1% sodium citrate at 4°C for 5-minutes, and blocked in 1.5% normal goat serum at 
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room temperature for 15-minutes in a humidified chamber.  A double-label protocol was utilized 

to visualize pro-apoptotic Bax protein as well as the basal lamina of individual muscle fibers.  

After washing in PBS, sections were incubated in an anti-Bax rabbit polyclonal antibody (1:20 

dilution, SC-, Santa Cruz Biotechnology) followed by addition of an anti-rabbit fluorescent 

antibody.   The tissue sections were washed in PBS and then incubated in anti-laminin mouse 

monoclonal antibody (2E8, Hybridoma Bank, IA) followed by an anti-mouse IgG Cy3 conjugate 

F(ab’)2 fragment incubation (1:200 dilution, C2182, Sigma).  Sections were mounted with 4’,6-

diamidino-2-phenylindole (DAPI) mounting medium (Vectashield mounting medium, Vector 

Laboratories).  Images were visualized under a Nikon SE800 fluorescent microscope at an 

objective magnification of 40X and at the following excitation wavelengths:  330-380nm for 

DAPI blue fluorescence, 450-490nm for green fluorescence, and 485-585nm for Cy3 red 

fluorescence.  Images were obtained using a SPOT RT camera (Diagnostic Instruments, Sterling 

Heights, MI) and SPOT RT software (Universal Imaging, Downingtown, PA) was used to merge 

all images.   

 

Statistical analysis.   Statistical analyses were performed using the SPSS software package, 

version 10.0.  Data were examined using a two-way ANOVA to analyze the main effects of age 

and unloading and the age x unloading interaction with significance set at p<0.05.  Group 

differences were examined using a one-way ANOVA and Tukey’s post-hoc test.  Data are 

presented as MEANS ± SE.  Relationships between given variables were examined by 

computing the Pearson correlation coefficient. 
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RESULTS 

Body weight. Body weight was greater in aged rats compared with young adult rats (aged 

control, 539 ± 16 g; young adult control, 374 ± 25 g). Two weeks of HS significantly reduced 

body weights by 21% and 15% in young adult rats (295 ± 13) and in aged rats (457 ± 11 g), 

respectively. 

 

Muscle characteristics.  In aged rats, the absolute plantaris muscle wet weight was 22% less 

when compared to young adult rats (Figure 1A).  When muscles were normalized to 

bodyweight, plantaris muscles from aged rats were 47% less than muscles from young adult rats, 

suggesting a preferential loss of muscle mass with aging (Figure 1B).  Following 2-weeks of 

HS, the absolute wet weight of plantaris muscles from young adult rats was 20% lower  than 

young adult control rats.  In contrast, 2-weeks of HS had no effect on the absolute wet weight of 

plantaris muscles from aged rats, when compared to aged controls (Figure 1A).  Muscle protein 

content was 29% less in aged plantaris muscles compared to young adult plantaris muscles, 

suggesting increases in protein degradation and/or decreases in protein synthesis as a result of 

advanced age.  Two weeks of HS did not significantly affect muscle protein content in the 

plantaris muscles in either young adult or aged rats (Figure 1C). 

 

Apoptotic Index and Fluorescent TUNEL Assay.  The cell death ELISA assay showed  a 

greater apoptotic index  (600%) in  plantaris muscles  from aged rats when compared to young 

adult rats.  Following 2-weeks of HS, the apoptotic index was 200% greater in plantaris muscles 

from young adult rats compared to muscles from young adult control rats.  In contrast, 2-weeks 

of HS did not affect the apoptotic index in aged plantaris muscles, when compared to aged 
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control muscles (Figure 2A).  Fluorescent images demonstrated the presence of apoptotic 

TUNEL-positive nuclei under the basal lamina in aged muscles, while young adult muscles 

showed very few TUNEL-positive nuclei (Figure 2B and 2C). 

   

mRNA and protein alterations in the BCL-2 family markers.    In the current study, the 

mRNA and protein contents of Bax and Bcl-2 were measured as markers promoting and 

attenuating apoptosis, respectively (Figure 3).  As a result of aging, Bax mRNA and protein 

content, and Bcl-2 protein content were greater in aged plantaris muscles when compared to 

young adult control muscles.   Following 2-weeks of HS, Bax mRNA was 120% and 25% 

greater in young adult and aged plantaris muscles, respectively (Figure 3A).  Bcl-2 mRNA and 

protein content were 44% less and 200% greater in young adult plantaris muscles following HS 

and 61% and 110% greater in aged plantaris muscles following HS (Figure 3C and 3D).   

Fluorescent images also demonstrated intense cytoplasmic staining for pro-apoptotic Bax protein 

in muscle fibers from aged animals, while staining was very faint and often not detectable in 

fibers from young adult muscles (Figure 4A and 4B). 

 

mRNA alterations of apoptotic genes.   Specific pro-apoptotic markers involved in the 

mitochondrial-associated apoptotic pathway were examined for their contribution to changes 

observed in young and aged plantaris muscles (Figure 5).  As a result of aging, Id2 mRNA was 

100% greater in aged plantaris muscles when compared to young adult control muscles.  When 

normalized to control muscles, Id2 mRNA was unchanged in young adult plantaris muscles 

following HS, but was 110% greater in aged plantaris muscles following HS compared to aged 

control muscle (Figure 5A).  Following 2-weeks of HS, AIF mRNA was greater in young adult 
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and aged plantaris muscles, compared to control muscles (Figure 5B).  The pro-apoptotic 

marker, Apaf-1 was 120% greater in aged plantaris muscles following HS (Figure 5C).    

Caspase-9 mRNA was not affected by 2-weeks of HS in young adult or aged muscles (Figure 

5D).   

 

Relationships between markers of apoptosis.  The relationships of these apoptotic markers 

were analyzed by computing the Pearson correlation coefficient.  Significant positive 

correlations were observed between Id2 and Bax mRNA (r = 0.716, p=0.002) (Figure 6A), and 

Id2 and caspase-9 mRNA (r = 0.500, p=0.049) (Figure 6B).  

 

DISCUSSION 

The aging process is associated with a reduction in muscle mass and strength 

(sarcopenia) (1-5) which can be exacerbated with reduced activity patterns (6-8, 14).  In this 

study, we sought to determine if apoptosis contributed to the muscle atrophy observed in fast 

fiber containing muscles as a result of aging, and if reduced activity (HS) influenced these 

apoptotic changes.  The present study demonstrates that muscle atrophy of the plantaris muscle is 

partly mediated by increases in the presence of apoptosis in muscles from aged rats, and that 

inactivity can exacerbate the alterations in some of the markers examined, specifically Id2 and 

Apaf-1.  Further, young adult plantaris muscles show elevations in the mitochondrial apoptotic 

pathway following HS, and these changes are similar to those observed in aged control plantaris 

muscles.  To our surprise, superimposing HS with aging did not stimulate further losses of 

muscle mass in the plantaris muscle, as has been shown previously in the soleus muscle (24) and 

the medial gastrocnemius muscle (25).  These results in the fast fiber plantaris muscle warrant 
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further investigation, as muscle loss via unloading and via sarcopenia involve differing processes 

that may affect the degree of atrophy observed.     

 

Apoptotic pathways contribute to sarcopenia.  This study attempted to simulate sarcopenia and 

hypokinesia that is commonly observed in elderly humans by using a rodent model of unloading 

in young adult and aged animals.  The contribution of apoptotic processes to the myonuclear and 

myofiber loss observed with aging is actively being investigated and still remains to be fully 

elucidated.  This study provides evidence that aging-related muscle loss is associated with an 

increase in pro-apoptotic processes.  The main effect of aging on muscle atrophy (p<0.001) and 

the incidence of apoptosis (p<0.001) were both highly significant, as the aged control plantaris 

muscles were less than young control muscles when expressed either as absolute muscle weight 

(22%) or normalized to body weight (47%) and the apoptotic index was 500% greater in aged 

plantaris muscles.  Apoptotic nuclei, identified through TUNEL staining, were also visualized 

under the basal lamina indicating significant nuclear apoptosis in aged skeletal muscle.  These 

data support previous findings of elevated apoptosis in the predominately slow-fiber containing 

soleus muscle (24) and the mixed fiber containing gastrocnemius muscle (25) with aging, and 

suggest that an apoptotic program is conserved across muscles of differing fiber type and activity 

patterns. 

 Although the role of apoptosis in mature skeletal muscle remains poorly understood, it 

has been suggested that aged skeletal muscle has a greater potential to undergo apoptotic 

processes (24).  Leeuwenburgh et al. (24) demonstrated specific elevations of EndoG, a caspase-

independent marker, in aged soleus muscles.  In the present study, the basal levels of pro-

apoptotic Bax mRNA and protein in aged plantaris muscles was more than double that of young 
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adult plantaris muscles, supporting previous findings from our laboratory in the medial 

gastrocnemius muscle (25).  Additionally, fluorescent images revealed a widespread cytoplasmic 

localization of Bax protein in aged skeletal muscle, compared to young muscle.  These increases 

in pro-apoptotic markers within aged skeletal muscle could potentially enhance muscle loss 

following a further apoptotic stimulus.  Interestingly, aged skeletal muscle also seems to undergo 

adaptations to counteract this increased apoptotic potential by upregulating anti-apoptotic 

proteins, such as Bcl-2.  Although this attempt is largely overruled, it highlights the differences 

inherent in aged skeletal muscle when compared to young adult. 

 

Differences in unloading-induced apoptosis with age.  The results of this study show that in 

response to unloading, aged plantaris muscles induce a molecular program favoring apoptosis 

that differs from young adult plantaris muscle.  Aged plantaris muscles initiated an up-regulation 

of Apaf-1 mRNA in response to HS with no increases observed in the young tissue.  Pro-

apoptotic Bax mRNA and protein were increased to a greater extent in plantaris muscles from 

young adult rats following HS, when compared to aged rats.  However, this effect was due to a 

greater basal level of Bax in the aged control plantaris muscle.  Thus, an increase in apoptosis via 

the caspase-dependent pathway and that components of the mitochondrial-associated apoptotic 

pathway are regulated at the pre-translational level differently with age.  An interesting finding 

of this study was the increase in anti-apoptotic Bcl-2 mRNA and protein in the aged plantaris 

muscle following HS, supporting previous findings in our laboratory in the medial gastrocnemius 

muscle (25) and when using an avian model of unloading (37).  Bcl-2, a member of the BCL-2 

family, opposes mitochondrial-mediated apoptosis by inhibiting cytochrome c release from the 

mitochondria (27).  Young adult plantaris muscle showed a reduced expression of Bcl-2 mRNA 
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following unloading, suggestive of a pro-apoptotic environment.  However, Bcl-2 mRNA and 

protein were 61% and 100% greater in aged plantaris muscles , respectively, following HS when 

compared to aged control muscles.  This response is suggestive of an adaptation in aged skeletal 

muscle at the molecular level, possibly as an attempt to counteract unloading induced apoptosis.   

The lack of muscle atrophy in the aged plantaris muscle following HS was surprising and 

warrants further investigation.  Although these data conflict with previous data from our lab (10, 

12), they are consistent with data published by Thompson et al (14).  Following 1-week of HS in 

30-month old FBN rats, Thompson and colleagues (14) reported non-significant reductions in 

both absolute and relative plantaris muscle mass.  Animal to animal variability, environmental 

disturbances, and differences in unloading techniques could potentially alter the physiological 

response to HS (16).  The 22% lower muscle weight in control muscles of the old rats in our 

current study as compared to the young adult rats represented sarcopenia, rather than any change 

over the 14 days of the study. The loss in muscle due to HS was not statistically significant (-

12%) in the aged rats but the HS-induced muscle loss was significant (-20%) in the plantaris of 

young adult rats. These HS-associated losses in muscle mass represent “real” losses of muscle, 

rather than a failure to grow during 14 days of the experimental manipulation. We base these 

conclusions on observations made in another pilot study (unpublished data) in rats that were 6 

months and 33 months of age. In this cohort, bodyweight increased by 6.3 ± 1.3% and -0.8 ±0.2 

% over 14 days in caged control young adult and old rats, respectively. In this pilot study  we 

found that plantaris muscle weight did not change  (increase of 1.6%) in young adult rats (6 mo 

of age) confined to their cages for 14 days as compared to rats that were sacrificed 14 days 

earlier (i.e. at day 0). We would not expect that the 9 mo old rats in our current study would 

grow more rapidly than 6 mo old rats evaluated in this pilot study, so it is unlikely that 
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significant muscle growth occurred in the 9 mo old rats used in the present study over the 14 

days of the study. In a similar pattern, the plantaris wet weight of aged animals (33 mo of age) 

was not different in animals sacrificed at day 0 (n=4) from those sacrificed after 14 days (n=4) of 

caged activity (-0.4% decrease).  

Although we cannot rule out the possibility that a small reduction in the muscle mass of 

HS vs. control animals was due to suppressed growth over 14 days, our data would suggest that 

this possibility is insufficient to explain our data. We make this conclusion because: (i) our pilot 

data show that the oldest animals do not grow significantly over 14 days (i.e., no muscle or body 

weight increases), and (ii) the increases in the muscle weight of the youngest animals in our pilot 

study were likely very modest and well below the 20% decrease in muscle mass due to HS in the 

young rats in the current study. Furthermore, our current data support the idea that muscle loss 

was due in part from increasing apoptotic signaling because there would be no reason to 

anticipate elevated apoptosis during a time of muscle growth. In fact, we have recently shown 

evidence that pro-apoptotic signaling decreases during periods of rapid muscle growth induced 

by overload (38, 39). Thus, we interpret the data from our current study to indicate that HS 

induced “true” losses in muscle mass and not just a suppression of normal growth.  

It was unexpected that the pro-apoptotic markers Apaf-1, AIF and Id2, were greater in the 

aged plantaris muscle following HS even though the apoptotic index was not elevated.  We favor 

the explanation that the increase in pro-apoptotic markers results in an intracellular 

“environment” which is poised for apoptosis to occur, although this final step was not fully 

engaged during HS in aged plantaris muscles. One possible explanation for this discrepancy 

would be elevations in apoptotic inhibitor proteins, such as X-linked inhibitor of apoptosis 

protein (XIAP), which has been shown to increase to a greater extent in unloaded muscles of 
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aged vs. young adult birds, presumably as a means to offset apoptosis (38). An alternate 

explanation is that some of these pro-apoptotic markers may not always induce apoptosis just 

because they are present. For example, in addition to the subsequent cleavage and activation of 

pro-caspase-9 upon apoptosome formation with Apaf-1, caspase-9 can also be activated via an 

additional pathway independent of Apaf-1 in muscle cells (40, 41). Furthermore, Apaf-1 is 

dispensable for apoptosis induced by cytotoxic drugs or overexpression of the transcription 

factor, E2F1, in primary myoblasts but not fibroblasts, whereas caspase-9 is required in both cell 

types (40).  Finally, although cytoplasmic but not nuclear localization of Id2 is linked to 

apoptosis (42), Id2 also increases during periods of loading (39), and is associated with 

activation of satellite cells (43) to stimulate the anti-apoptotic event of muscle hypertrophy. 

Further work is needed to determine if unloading in aging muscles results in changes in the 

levels, compartmentalization, localization or configuration of Id2 and/or other pro-apoptotic 

markers, which may result in these markers having anti-apoptotic effects and offsetting the pro-

apoptotic environment imposed by aging.  

 

Id2 and apoptosis.  Id2 is a negative regulator of basic helix-loop-helix proteins, including the 

myogenic regulatory factors MyoD and myogenin (32, 33).  The Id proteins bind to and 

sequester E-proteins, inhibiting MRF binding and subsequent muscle-specific transcription.  

Data from our laboratory have led to the hypothesis of a dual role for Id2, based on the 

compartmentalization of Id2 within myocytes.  In general, cytoplasmic Id2 appears to promote 

apoptotic processes and nuclear Id2 promotes proliferation and inhibits apoptosis through 

interactions with genes specific to these processes (32, 42).   
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Increases in mRNA and protein levels of the Id proteins correlate with aging associated 

muscle loss in the hindlimb muscles of aged rats (32, 33).  Furthermore, Id2 has been studied in a 

model of unloading following stretch-overload induced muscle hypertrophy (42).  Cytoplasmic 

Id2 protein levels were greater in young unloaded patagialis (PAT) muscles compared to 

contralateral control muscles.  Additionally, these increases in Id2 were positively correlated 

with other pro-apoptotic markers, such as Bax, AIF, p53 and the TUNEL index and negatively 

correlated with anti-apoptotic Bcl-2 (42).  Thus, the subcellular partitioning of Id2 into the 

nucleus or the cytoplasm can lead to differential effects within skeletal muscle (42).  Although 

these are correlational data and therefore do not show a cause-and-effect relationship between 

cytoplasmic Id2 and apoptosis, they do support previous data showing an association of Id2 and 

Bax associated apoptosis (44).  Indeed, the changes in Id2 mRNA observed in the current study 

were significantly correlated with changes in the pro-apoptotic markers Bax and caspase-9.  

These data add to the proposed ability of Id2 to promote apoptosis during aging and unloading, 

possibly through the caspase-dependent pathway.    

 

Summary. The results of the present study support the hypothesis that sarcopenia is associated 

with increases in markers of apoptosis and that nuclei of aged myocytes are susceptible to 

apoptosis.  Additionally, we show that the fast plantaris muscles of aged rats responded 

differently to 2-weeks of HS when compared to young adult rats.  Increases in Id2 mRNA were 

also noted in aged plantaris muscle following HS, supporting previous results (32, 33), with 

positive correlations observed between Id2 and Bax and caspase-9.  These results are consistent 

with the hypothesis that an increase in Id2 transcript levels, as observed with aging, may 

contribute to muscle mass losses in the aged plantaris muscle.  In addition to these changes, an 
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aging adaptation of skeletal muscle was identified in which anti-apoptotic Bcl-2 was up-

regulated during unloading.  These changes highlight the inherent differences between young 

and aged skeletal muscle and provide further evidence that apoptotic mechanisms are distinct 

with aging.  
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Legend for Figure 1.  Plantaris muscle characteristics.  A) Absolute plantaris muscle wet 

weight.  Plantaris muscles from young and aged animals expressed as mg of tissue.  B) 

Normalized plantaris muscle weight (mg . g -1).  Plantaris muscles from young and aged 

animals were normalized to the animal body weight in grams.  C) Plantaris muscle protein 

content (mg . g -1).  Plantaris protein content was determined in young and aged plantaris 

muscles following HS.  ** Significant effect of aging (p<0.05).  Data are presented as means ± 

SE. 
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Figure 2 
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Legend for Figure 2.  Incidence of apoptosis.  A) Apoptotic Index (OD405 . mg protein-1).  

The extent of DNA fragmentation was assayed using a cell death ELISA kit.  * Significant effect 

of HS (p<0.05).  ** Significant effect of aging (p<0.05).  Data are presented as means ± SE.  B) 

Fluorescent TUNEL stain in young control muscle.  TUNEL staining was utilized to 

determine the extent of nuclear apoptosis in gastrocnemius muscles from young animals.  Muscle 

fiber borders were visualized using a rat laminin antibody and non-apoptotic nuclei were 

visualized using DAPI.  The image was obtained at an objective magnification of 40X.  Bar, 

10μm.  C) Fluorescent TUNEL stain in aged control muscle.  TUNEL staining was utilized to 

determine the extent of nuclear apoptosis in gastrocnemius muscles from old animals.  Muscle 

fiber borders were visualized using a rat laminin antibody. All nuclei were stained with DAPI. 

Arrows highlight TUNEL positive nuclei.  Non-apoptotic nuclei were TUNEL negative.  The 

image was obtained at an objective magnification of 40X.  Bar, 10μm. 
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Figure 3 
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Legend for Figure 3.  Bax and Bcl-2 mRNA and protein content.  A) Bax mRNA.  The 

mRNA content for pro-apoptotic Bax was determined by RT-PCR, with PCR products 

normalized to the 18S gene.  Representative agarose gel images following electrophoresis are 

displayed for each group.  B) Bax protein content.  The protein content of pro-apoptotic Bax 

was determined by western immunoblot.  Representative blots following antibody incubation are 

displayed.  C) Bcl-2 mRNA.  The mRNA content for anti-apoptotic Bcl-2 was determined by 

RT-PCR, with PCR products normalized to the 18S gene.  Representative agarose gel images 

following electrophoresis are displayed for each group.  D) Bcl-2 protein content.  The protein 

content of anti-apoptotic Bcl-2 was determined by western immunoblot.  Representative blots 

following antibody incubation are displayed.  * Significant effect of HS (p<0.05).  ** Significant 

effect of aging (p<0.05).  Data are presented as means ± SE. 
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Figure 4 
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Legend for Figure 4. Bax protein localization.  A) Fluorescent image of Bax protein in 

young control muscle.  The extent of cytoplasmic Bax protein was determined using 

fluorescence microscopy.  A faint Bax stain was visualized in gastrocnemius muscles from 

young animals. Muscle fiber borders were visualized using a rat laminin antibody and non-

apoptotic nuclei were visualized using DAPI.  The image was obtained at an objective 

magnification of 40X.  Bar, 10μm.  B) Fluorescent image of Bax protein in aged control 

muscle.   The extent of cytoplasmic Bax protein was determined using fluorescence microscopy.  

Bax protein was visualized throughout the cytoplasm of aged muscle fibers.  Muscle fiber 

borders were visualized using a rat laminin antibody and non-apoptotic nuclei were visualized 

using DAPI.  The image was obtained at an objective magnification of 40X.  Bar, 10μm. 
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Figure 5 
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Legend for Figure 5.  mRNA expression of selected apoptotic markers.  A) Id2 mRNA.  The 

mRNA content for Id2 was determined by RT-PCR, with PCR products normalized to the 18S 

gene.  Representative agarose gel images following electrophoresis are displayed for each group.  

B) AIF mRNA.  The mRNA content for AIF was determined by RT-PCR, with PCR products 

normalized to the 18S gene.  Representative agarose gel images following electrophoresis are 

displayed for each group.  C) Apaf-1 mRNA.  The mRNA content for Apaf-1 was determined 

by RT-PCR, with PCR products normalized to the 18S gene.  Representative agarose gel images 

following electrophoresis are displayed for each group.  D) Caspase-9 mRNA.  The mRNA 

content for caspase-9 was determined by RT-PCR, with PCR products normalized to the 18S 

gene.  Representative agarose gel images following electrophoresis are displayed for each group.  

* Significant effect of HS (p<0.05).  ** Significant effect of aging (p<0.05). Data are presented 

as means ± SE. 
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Figure 6 
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Legend for Figure 6.  Correlational analyses.  A) Correlational analysis of Bax and Id2 

mRNA.  The relationship between the changes in Bax mRNA and Id2 mRNA were determined 

by calculating the Pearson correlation coefficient.  B) Correlational analysis of Caspase-9 and 

Id2 mRNA.  The relationship between the changes in Caspase-9 mRNA and Id2 mRNA were 

determined by calculating the Pearson correlation coefficient.   
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Table 1.  Primers used for PCR amplifications of cDNA 
 
Product Accession  

No. 

Sequence Position TA ºC PCR 

Length 

(bp) 

Restriction  

Enzyme 

Restriction  

Products 

(bp) 

Id2 

 

 

NM_013060 

F: 5'-GAATTCTCAGCATGAAAGCTTTCAGCC-3’  

R: 5'-CTCGAGATTCAGCCACAGAGCGCT-3’  

365-385 

664-684 

 

52.7 

 

320 

 

AluI 

262, 68 

Apaf-1 

 AF218388 

F: 5'-CGGCCCTGCGCATCTGATTCAT-3’ 

R: 5'-GGGCGAACGACTAAGCGGGACAG-3’  

1623-1644 

1888-1910 57.8 288 

 

AluI 

193, 95 

AIF 

 AF375656 

F: 5'-CCGGCTTCCAGGCAACTTGTTCC-3’  

R: 5'-CCCGGATGGATCTAGCTGCTGCA-3’  

93-115 

429-451 58.1 359 

 

KpnI 

290, 69 

Caspase 9 

 NM_031632 

F: 5'-GGCCGGTGGACATTGGTTCTGG-3’  

R: 5'-CCATGAAGCGCAGCCAGCAGAA-3’  

543-564 

743-764 60.1 222 

 

BamHI 

130, 92 

Bax 

 

AF235993 F: 5’-GCACCCCTTTCCTCCTCTCTCCACCAG-3’ 

R: 5’-TGCCTTTCCCCGTTCCCCATTCATC-3’ 

462-488 

1091-1115 

55 654 BamHI 

BstXI 

445, 209 

521, 133 

Bcl-2 U34964 F: 5’-CGGGCTGGGGATGACTTCTCTC-3’ 

R: 5’-GCCGGTTCAGGTACTCAGTCAT-3’ 

286-307 

520-541 

59.1 256 AluI 

 

196, 60 

 

 
TA, annealing temperature; Id2, inhibitor of differentiation protein 2; Apaf-1, apoptotic protease activating factor 1; AIF, apoptosis inducing factor. 
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CHAPTER 2 

Pistilli EE, Jackson JR, and Alway SE.  Death receptor-associated pro-apoptotic signaling 
in aged skeletal muscle.  Apoptosis, 11(12), 2115-2126, 2006. 
 

ABSTRACT 

Tumor necrosis factor-alpha (TNF-α) is elevated in the serum as a result of aging and it 

promotes pro-apoptotic signaling upon binding to the type I TNF receptor.  It is not 

known if activation of this apoptotic pathway contributes to the well-documented age-

associated decline in muscle mass (i.e. sarcopenia).  We tested the hypothesis that 

skeletal muscles from aged rodents would exhibit elevations in markers involved in the 

extrinsic apoptotic pathway when compared to muscles from young adult rodents, 

thereby contributing to an increased incidence of nuclear apoptosis in these muscles.  The 

plantaris (fast) and soleus (slow) muscles were studied in young adult (5-7 mo, n=8) and 

aged (33 mo, n=8) Fischer344 x Brown Norway rats.  Muscles from aged rats were 

significantly smaller while exhibiting a greater incidence of apoptosis.  Furthermore, 

muscles from aged rats had higher type I TNF receptor and Fas associated death domain 

protein (FADD) mRNA, protein contents for FADD, BCL-2 Interacting Domain (Bid), 

FLICE-inhibitory protein (FLIP), and enzymatic activities of caspase-8 and caspase-3 

than muscles from young adult rats.  Significant correlations were observed in the 

plantaris muscle between caspase activity and muscle weight and the apoptotic index, 

while similar relationships were not found in the soleus.  These data demonstrate that 

pro-apoptotic signaling downstream of the TNF receptor is active in aged muscles.  

Furthermore, our data extend the previous demonstration that type II fibers are 

preferentially affected by aging and support the hypothesis that type II fiber containing 
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skeletal muscles may be more susceptible to muscle mass loses via the extrinsic apoptotic 

pathway. 
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INTRODUCTION 

The aging-associated loss of muscle mass and strength (i.e., sarcopenia), is an 

unavoidable consequence of advanced age.   Although this phenomenon is well 

documented in animal and human studies, the underlying mechanisms leading to 

sarcopenia remain to be fully elucidated.  The contributing mechanism(s)  leading to 

sarcopenia are multi-factorial and may include: denervation and reinnervation of motor 

units, especially within skeletal muscles composed of a high degree of type II muscle 

fibers1-3; an alteration in the hormonal milieu in which anabolic hormone concentrations 

progressively decline4,5; elevated concentrations of inflammatory mediators that are not 

only associated with disease states, but also occur in healthy older adults6-13; and 

myonuclear loss through apoptotic mechanisms 14-19.   

 The process of  nuclear apoptosis has been shown to contribute to skeletal muscle 

mass losses during disease states20, periods of inactivity15,17,21, and as a result of aging14.  

The presence of apoptotic nuclei within skeletal myofibers has been well-

documented18,22,23, although the precise signaling mechanisms that result in these nuclear 

losses are just beginning to be fully understood.  Pro-apoptotic signaling has been shown 

to arise from mitochondria in aged skeletal muscles14,15,17 and this has been termed the 

intrinsic apoptotic pathway.  Pro-apoptotic members of the BCL-2 family of proteins, 

such as Bax and Bak, can promote cytochrome-c release from the mitochondrial 

intermembrane space initiating a caspase cascade resulting in apoptotic myonuclear loss 

24.  Although it appears that this intrinsic apoptotic program is well-conserved across 

muscles of differing fiber type and contractile activity, a pro-apoptotic environment 
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appears to exist in aged skeletal muscles that can exacerbate myonuclear loss following 

apoptotic stimuli 15,17.   

 The contribution of the extrinsic apoptotic pathway to skeletal muscle mass 

losses, especially during aging, has been less studied 25.  The increase in circulating 

concentrations of the cytokine, tumor necrosis factor-alpha (TNF-α), may initiate pro-

apoptotic signaling upon binding to the type I TNF receptor (TNFR). Upon binding, a 

death inducing signaling complex (DISC) is formed at the cytoplasmic portion of the 

TNFR, composed of adaptor proteins such as Fas associated death domain protein 

(FADD), TNFR associated death domain protein (TRADD) and procaspase-8 (reviewed 

in 26).  Formation of the DISC stimulates cleavage of procaspase-8 into the functional 

initiator caspase-8.  Once cleaved, caspase-8 stimulates cleavage and activation of the 

executioner caspase-3, which is directly linked to pro-apoptotic changes.  Thus, this 

pathway represents an extrinsic pathway of apoptosis activated by binding of a ligand 

(TNF-α) to a cell surface death receptor (type-I TNFR).   

 The purpose of this study was to determine if the extrinsic apoptotic pathway is an 

active process in aged skeletal muscle and would thus be a contributing mechanism of 

sarcopenia.  Using an accepted rodent model of aging, the plantaris and soleus muscles 

from young adult (5-7mo.) and aged (33mo.) Fischer344 x Brown Norway rats (FBN) 

were examined for the incidence of apoptosis as well as mRNA expression and protein 

content of markers downstream of the type I TNFR.  We hypothesized that skeletal 

muscles from aged rodents would exhibit elevations in markers involved in the extrinsic 

apoptotic pathway when compared to muscles from young adult rodents, which would 

contribute to an increased incidence of apoptosis in these muscles.  As such, these data 
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demonstrate that not only is the extrinsic apoptotic pathway an active process within aged 

skeletal muscle, but our data support the hypothesis that cross-talk between this pathway 

and the mitochondrial intrinsic pathway may occur through the pro-apoptotic protein 

BCL-2 Interacting Domain (Bid).  

 

METHODS 

Experimental Animals. All procedures followed the guidelines of the National Institutes 

of Health, and were approved by the Institutional Animal Care and Use Committee of the 

West Virginia University School of Medicine. Eight young adult (5-7 mo.) and eight 

senescent (33 mo.) male Fischer344 x Brown Norway  (FBN) rats were obtained from the 

National Institute on Aging barrier-raised colony that is housed at Harlan Animal 

Colonies (Indianapolis, IN). The animals were housed at 20-22°C in barrier-controlled 

conditions under a 12:12-h light-dark cycle. They were provided rat chow and water ad 

libitum.   

 Experimental animals were sacrificed with an overdose of a xylazine (100 mg . 

ml-1) and ketamine (50mg . ml-1) 1:1 mixture diluted in sterile PBS. The plantaris and 

soleus muscles were removed from each hindlimb and trimmed of visible connective 

tissue.  Immediately upon dissection, muscles were flash frozen in isopentane cooled to 

the temperature of liquid nitrogen and subsequently stored at -80°C until biochemical 

analyses were performed.     

 

Semi-quantitative estimates of mRNA. Semi-quantitative reverse transcription-

polymerase chain reaction (RT-PCR) analysis was conducted to examine transcriptional 
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changes in markers of the extrinsic pathway.  Briefly, frozen muscle samples (~50 mg) 

were homogenized in 1 ml of TriReagent (Molecular Research Center, Cincinnati, OH) 

with a mechanical homogenizer. Total RNA was isolated by centrifugation and washed in 

ethanol according to the manufacturer's instructions. RNA was solubilized in 20 µl of 

RNase-free H2O.  RNA was treated with Dnase I (Ambion, Austin, TX) and reverse 

transcribed (RT) with random primers (Invitrogen/Life Technologies, Bethesda MD) to 

make complimentary DNA (cDNA).  

Primers were constructed from published sequences (Table 1). Primer pairs for 

the genes of interest were co-amplified in the same reaction tube with 18S primer pairs 

and competimers to the 18S primers (Ambion, Austin, TX).  Two different 18S primer 

pairs that produced either 324 base pair (bp) or 489bp bands following PCR amplification 

were utilized, depending on the bp size of the gene of interest.  The number of PCR 

cycles was determined for each gene to ensure analyses were done in the linear range of 

amplification.  The signal from the gene of interest was expressed as a ratio to the 18S 

signal from the same PCR reaction in order to eliminate any loading or amplification 

errors.  Previous studies from our laboratory have shown that ribosomal 18S RNA is 

suitable as an internal control for RT-PCR and does not change as a result of aging or 

following muscular atrophic stimuli 17.  Following amplification, 20μl of each reaction 

was electrophoresed on 1.5% agarose gels.  Gels were stained with ethidium bromide. 

PCR signals were captured with a digital camera (Kodak 290) and the signals were 

quantified in arbitrary units as optical density x band area, using Kodak image analysis 

software (Eastman Kodak Company, Rochester, NY). 
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Quantitative Real-Time PCR Verification of RT-PCR.  Real-time quantitative PCR 

was utilized as another approach to examine transcript levels in muscles of aged rats.  All 

experiments were performed using the Applied Biosystems 7500 Real-Time PCR system 

which utilizes TaqMan gene expression assays.  Each well of a 96-well optical reaction 

plate contained: 12.5µl TaqMan Universal PCR Master Mix (Applied Biosystems, Foster 

City, CA), 1.8µl TaqMan Gene Expression Assays, 9.7µl sterile H2O, and 1.0µl cDNA.  

In addition to test samples, each plate contained no template controls and no primer 

controls.  All samples were examined in duplicate and 18S ribosomal RNA (Applied 

Biosystems, Foster City, CA) was used as an endogenous control.  Data were analyzed 

using the ∆CT method that has been shown to produce comparable results to an absolute 

quantification procedure 27 and has been previously used to examine cytokine mRNA 

levels in skeletal muscle  28,29.  Two different fluorescent dyes were utilized to examine 

the genes of interest (FAM) and the 18S RNA control (VIC).  The ∆CT was calculated 

for each sample using the following equation: (CT FAM – CTVIC).  The ∆∆CT was then 

calculated using the following equation: (∆CTCalibrator - ∆CTSample).   The ∆∆CT was then 

calculated using the following equation: (∆CTSample - ∆CTCalibrator).  In this study, the 

young samples served as the calibrator to determine mRNA expression in aged samples 

relative to young.  The fold-induction or relative quantification (RQ) was calculated 

using the formula: 2-(∆∆CT).  Using this calculation, the young samples had an RQ value of 

1.0 with all aged samples expressed relative to this value.       

 

Protein measures.  The cytoplasmic protein fragment was isolated from frozen muscle 

samples according to procedures reported previously in our laboratory 16,21.  Briefly, 
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muscle samples (~50-75 mg), were homogenized in 1 ml of ice-cold lysis buffer (10 mM 

NaCl, 1.5 mM MgCl2, 20mM HEPES at pH 7.4, 20% glycerol, 0.1% Triton X-100, and 

1mM dithioreitol) to obtain cytoplasmic protein   extracts according to the methods of 

Rothermel et al 30.  Muscle homogenates were centrifuged at 3,000 rpm for 5-minutes at 

4°C.  The supernatants were collected that contained the cytoplasmic protein fraction.  

The protein concentration of the total muscle homogenate was assayed 

spectrophotometrically at 562 nm (BioRad, SmartSpec 3000) using a commercial 

bicinchoninic acid (BCA) method as recommended by the manufacturer (Pierce, 

Rockford, IL) with bovine serum albumin used as standards.   Thirty micrograms of 

cytoplasmic protein was loaded into each lane of a pre-cast 4-12% NuPAGE Bis-Tris gel 

(Invitrogen, Carlsbad, CA) and separated by routine SDS-polyacrylamide gel 

electrophoresis (PAGE) for 1.5 hours at 20°C.  The proteins were transferred to 

nitrocellulose membranes and verification of equivalent protein loading and transfer was 

verified by Ponceau S red (Sigma).  The membranes were blocked at room temperature 

for 1h in 5% non-fat milk (NFM) in tris-buffered saline containing 0.05% Tween (TBS-

T).  Membranes were probed with the following primary antibodies overnight at 4°C:  

TNFR rabbit polyclonal antibody (1:1000 dilution, sc-7895, Santa Cruz Biotechnology, 

Santa Cruz, CA), Bid rabbit polyclonal antibody (1:750 dilution, sc-11423, Santa Cruz), 

FADD rabbit polyclonal antibody (1:1000 dilution, ab19891, AbCam Inc., Cambridge, 

MA), and FLICE-inhibitory protein (FLIP) polyclonal antibody (1:500 dilution, ab4042, 

AbCam Inc.) diluted in TBS-T with 5% NFM.  A cytoskeletal β-tubulin antibody (1:500 

dilution, ab6160, AbCam) was used as a loading control.  Secondary antibodies were 

conjugated to horseradish peroxidase (HRP; Chemicon) and signals were developed 
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using a chemiluminescent substrate (ECL Advanced, Amersham Biosciences/ GE 

Healthcare Bio-Sciences Corp, Piscataway, NJ).  Signals were visualized by exposing the 

membranes to X-ray films (BioMax MS-1; Eastman Kodak, Rochester, NY).  Digital 

records were captured by a Kodak 290 camera and protein bands were quantified using 1-

D imager analysis software (Eastman Kodak).  Bands were quantified as optical density 

(OD) X band area, normalized to β-tubulin bands, and expressed as arbitrary units.       

 

Cell death ELISA and calculation of apoptotic index.  Cytoplasmic protein extracts 

were used to quantify DNA fragmentation in all muscle samples using a commercially 

available ELISA kit (Cell Death Detection ELISA, Roche Diagnostics, Mannheim, 

Germany).  Briefly, the wells of a 96-well plate were coated with a primary anti-histone 

mouse monoclonal antibody.  Following the addition of 100 µl of each sample, a 

secondary anti-DNA mouse monoclonal antibody coupled to peroxidase was added to 

each well.  The substrate, 2,2’-azino-di-(3-ethylbenzthiazoline sulfonate) (ABST) was 

used to photometrically determine the amount of peroxidase retained in the 

immunocomplex.  The color change of each well was determined at a wavelength of 

405nm using a Dynex MRX plate reader and computer software (Revelation, Dynatech 

Laboratories, CA).  The resulting optical density (OD) was normalized to the protein 

concentration of each sample and recorded as the apoptotic index (OD405 . mg protein-1).  

  

Fluorometric Caspase-Activity Assay.  The activity of caspase-8 and caspase-3 was 

examined using commercially available fluorogenic substrates (caspase-8/10 AC-IETD-

AMC, caspase-3 AC-DEVD-AFC, Alexis Biochemical, San Diego, CA).  Previous 
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research has demonstrated that embryonic, but not adult skeletal muscle, contains 

detectable levels of caspase-10, thus allowing the assumption that the caspase-8/10 

substrate is specific to the activity of caspase-8 in this study 31.  To each well of a 96-well 

fluorescent microplate (Nalgene Nunc Int., Rochester, NY) was added 50μl of caspase 

activity buffer, 50μl of cytoplasmic protein without protease inhibitor from each muscle, 

and 10μl of substrate (1mM).  Samples were incubated at 37°C for 2-hours with caspase 

activity accessed using a fluorescent microplate reader at the following wavelengths: 

caspase-8 excitation 380nm and emission 460nm; caspase-3 excitation 400nm and 

emission 505nm.  Caspase activity was quantified by subtracting OD readings at time 2-

hour from the initial reading at time 0-hour.  The resulting optical density was normalized 

to the protein concentration of each muscle sample to provide a caspase activity index 

(OD . mg protein-1).   

 

Statistics.  Statistical analyses were performed using the SPSS software package, version 

10.0.  Data are presented as MEANS ± SE.  Mean values from young adult and aged 

muscles were compared using independent t-tests with significance set a p<0.05.  

Relationships between given variables were examined by computing the Pearson 

correlation coefficient. 

 

RESULTS 

Bodyweight and Muscle Characteristics.  Bodyweight was 47% greater in aged rats 

compared to young adult rats (Figure 1A).  Absolute plantaris and soleus muscle wet 

weights from aged animals were 21% and 15% less, respectively, than muscles from 
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young adult animals (Figure 1B).  When expressed relative to bodyweight, plantaris and 

soleus muscle weights from aged animals were 47% and 41% less, respectively, than 

muscles from young adult animals (Figure 1C).   

 

Apoptotic Index.  A cell death ELISA kit was used to quantify the incidence of DNA 

fragmentation in plantaris and soleus muscle homogenates.  The apoptotic index was 

600% greater in aged plantaris muscles and 300% greater in aged soleus muscles, when 

compared to muscles from young adult animals (Figure 1D). 

 

mRNA Alterations in Components of the Death Receptor Pathway.  The mRNA 

changes for TNF-α and the type I TNFR, as well as components known to be involved in 

the apoptotic signaling downstream of the TNFR, were analyzed in hindlimb muscles 

from young adult and aged rats to determine whether they were regulated at a 

transcriptional level.  No differences in the mRNA concentration of TNF-α were 

observed when comparing plantaris and soleus muscles from young adult and aged 

rodents (Figure 2A).  However, mRNA for the type I TNFR was 43% and 60% greater in 

aged plantaris and soleus muscles, respectively, when compared to young adult muscles 

(Figure 2B).  The mRNA signal for TRADD was unchanged in young adult and aged 

plantaris and soleus muscles (Figure 2C).  In contrast, the mRNA for FADD was 50% 

and 94% greater in aged plantaris and soleus muscles, respectively, when compared to 

young adult muscles (Figure 2D).   
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 As a second approach, mRNA was measured by real-time semi-quantitative PCR.  

Generally, there was greater variability in the genes of interest when assessed by the real-

time method than in the semi-quantitative approach. In all cases, the changes in mRNA 

expression as assessed by  2-(∆∆CT) did not reach significance. Specifically, the RQ values 

for each gene of interest were: TNF-α (young PL = 1.0±0.19; aged PL = 0.23 ± 0.27; 

young SOL = 1.0 ± 0.17; aged SOL = 0.69 ± 0.34), TNFR (young PL = 1.0 ± 0.13; aged 

PL = 0.35 ± 0.32; young SOL = 1.0 ± 0.13; aged SOL = 1.0 ± 0.24), FADD (young PL = 

1.0 ± 0.19; aged PL = 0.24 ± 0.23; young SOL = 1.0 ± 0.11; aged SOL = 0.47 ± 0.30), 

TRADD (young PL = 1.0 ± 0.11; aged PL = 0.39 ± 0.24; young SOL = 1.0 ± 0.15; aged 

SOL = 0.67 ± 0.27).  

 

Protein Alterations in Components of the Death Receptor Pathway.  Based on the 

observed alterations in mRNA concentrations, western immunoblot analyses were 

performed for the TNFR and FADD as well as pro-apoptotic Bid and anti-apoptotic FLIP 

proteins.  No differences were observed in the protein content for the soluble TNFR when 

comparing young adult and aged plantaris and soleus muscles (Figure 3A). Consistent 

with mRNA changes as assessed by the RT-PCR method, the protein content of FADD 

was greater in aged plantaris and soleus muscles when compared to young adult muscles 

(Figure 3B).  In a similar fashion, plantaris and soleus muscles from aged rodents had a 

higher protein content full-length Bid, when compared to young adult muscles (Figure 

3C).  The anti-apoptotic protein, FLIP, was also greater in aged plantaris and soleus 

muscles when compared to young adult muscles (Figure 3D).   
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Caspase Enzymatic Activity. Caspase-8 and caspase-3 specific fluorogenic substrates 

were utilized to quantify the enzymatic activity in plantaris and soleus muscle 

homogenates.  Caspase-8 activity was 72% and 33% greater in aged plantaris and soleus 

muscles, respectively, when compared to young adult muscles (Figure 4A).  Similarly, 

caspase-3 activity was 27% and 20% greater in aged plantaris and soleus muscles, 

respectively, when compared to young adult muscles (Figure 4B).  

 

Correlation Analyses.  The changes in measures of apoptosis were examined for their 

correlation with the degree of plantaris and soleus muscle mass loses by calculating the 

Pearson correlation coefficient.  The plantaris muscle weight was highly negatively 

correlated with the apoptotic index (Figure 5A), especially when muscle weight was 

normalized to the rodent bodyweight (Figure 5B).  In contrast, only the normalized 

soleus weight was negatively correlated with the apoptotic index (Figure 5F).  The 

changes in caspase activity of the plantaris muscle were also highly correlated with the 

apoptotic index (Figures 5C and 5D), especially the changes in caspase-8 activity.  In 

contrast, there were no significant correlations between the changes in caspase activity of 

the soleus muscle and the apoptotic index (Figures 5G and 5H).  

 

DISCUSSION 

Apoptotic signaling downstream of the type I TNFR (i.e., extrinsic apoptotic 

pathway) has been shown in a variety of tissues, but it has not been studied in detail in 

skeletal muscle.  Based on the well-documented increase in circulating TNF-α levels with 

aging 6-13 and  increases in apoptosis of myonuclei in aged skeletal muscles 18,22, we 
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examined whether apoptotic signaling via the extrinsic pathway contributed to 

sarcopenia.  Our data demonstrate that pro- and anti-apoptotic proteins in the extrinsic 

apoptotic pathway were altered in fast (plantaris) and slow (soleus) skeletal muscles from 

aged rats.   

Muscles from aged rats were significantly smaller and exhibited a larger 

incidence in fragmented DNA, which would indicate a higher level of nuclear apoptosis 

in these muscles.  In addition, muscles from aged rodents had higher TNFR and FADD 

mRNA content (measured by semi-quantitative RT-PCR) and protein contents for 

FADD, Bid, and FLIP, and enzymatic activities of caspase-8 and caspase-3, when 

compared to muscles from young adult rodents.  Although we observed an increase in 

mRNA expression for the TNFR as measured by the semi-quantitative approach, the 

protein content for the TNFR was unchanged in this study.  This may be explained by the 

fact that the TNFR antibody utilized in western immunoblots recognizes the soluble form 

of the receptor.  Thus, the changes in the membrane bound form of the receptor, 

measured by PCR, and the amount of the soluble TNFR may not be equivalent.  

It was surprising that the data obtained using semi-quantitative RT-PCR to 

measure apoptotic transcripts were not completely consistent with those obtained by the 

real-time method we utilized in this study.  It is possible that the changes in mRNA 

expression may have been below the detectable limit of the real-time PCR method, based 

on the fact that the percent changes in mRNA obtained by semi-quantitative PCR were all 

less than 1-fold (40%-95%).   Nevertheless, the changes in protein content as determined 

from western blots and changes in enzyme activity clearly show that extrinsic apoptotic 

signaling was activated in muscles from old rats. 
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 The pro-apoptotic changes observed in this study occurred in a similar fashion in 

both plantaris and soleus muscles, although strong relationships were observed between 

markers of apoptosis and muscle loss in the fast plantaris muscle that were not observed 

in the soleus.  These data extend the previous demonstration that type II fibers are 

preferentially affected by aging and suggest that type II fiber containing skeletal muscles 

may be more susceptible to muscle mass loses via the extrinsic apoptotic pathway.   

 

Effects of TNF-α in skeletal muscle.   One potential mechanism contributing to the 

onset of sarcopenia may be the increase in circulating cytokines, some of which may 

activate the extrinsic apoptotic pathway.   The circulating concentrations of specific 

cytokines have been shown to be elevated in the serum as a result of aging.  In humans, 

serum levels of catabolic cytokines, such as TNF-α 7,9,12 and IL-6 6,11,32, are increased in 

healthy elderly compared to young adults.  Serum concentrations of TNF-α have been 

proposed as a prognostic marker of all cause-mortality in centenarians 7 and with age-

associated pathology and mortality in 80-year old adults9.  Several studies have also 

drawn associations between the increases in circulating cytokines and the sarcopenic 

process 11,13.  Specifically, elevated circulating levels of TNF-α are associated with lower 

appendicular skeletal muscle mass 11 and reduced knee extensor and grip strength 13.   

Because we have found activation of the extrinsic apoptotic signaling pathway in muscles 

of old rats, we speculate that circulating TNF-α may be the initiator of this pathway in 

skeletal muscle. Nevertheless, we cannot rule out the possibility that other pathways that 

we did not examine may have been activated by circulating TNF-α  in aging muscles. For 

example, TNF-α has been shown to directly promote protein degradation 33 and 
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apoptosis34 within skeletal muscle.  Furthermore, intravenous injection of recombinant 

TNF-α increases protein degradation in rat skeletal muscles and this is associated with the 

increased activity of the ubiquitin-dependent proteolytic pathway 35-38.  In addition, 

elevated TNF-α concentrations in cell culture for 24-48h increases apoptosis in skeletal 

myoblasts as determined by DNA fragmentation39,40.  A reduction of procaspase-8 occurs 

within 6h of incubating myoblasts in vitro with recombinant TNF-α, suggesting a TNF-α 

mediated cleavage and activation of this initiator caspase in myoblast cultures 41.   

The effects of TNF-α on apoptosis are not limited to in vitro conditions, because a 

systemic elevation of TNF-α in vivo increases DNA fragmentation within rodent skeletal 

muscle 34. Based on the observation in the current study that TNF-α mRNA was not 

different between muscles from young adult and aged rats, it is reasonable to assume that 

muscle-derived TNF-α does not act in an autocrine manner to stimulate the pro-apoptotic 

signaling observed in this study.  Thus, the well-documented systemic elevation of TNF-

α with age, may increase the likelihood of ligand binding to the TNFR and stimulate 

apoptotic signaling of the extrinsic pathway downstream of the TNFR and contribute to 

sarcopenia in skeletal muscle of old rats. Although this hypothesis was not directly 

examined in this study our data show that pro-apoptotic proteins associated with the 

extrinsic apoptotic pathway were increased in muscles of old animals as compared to 

muscles in young adult animals.  

 

Apoptotic Changes in Aged Skeletal Muscle.  Pro-apoptotic signaling is an active 

process in skeletal muscle during periods of reduced muscle activity (hindlimb 

suspension, denervation).  Apoptosis is an early occurring event that can contribute to 
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muscle atrophy at later time points22.  Furthermore, nuclear apoptosis is a part of the 

normal aging process (reviewed in 42-44) and is a contributing mechanism of muscle mass 

losses with aging.  Dirks and Leeuwenburgh 14 measured mono- and oligonucleosome 

fragmentation and reported that apoptosis was elevated 50% in aged muscles compared to 

young adult.  Hindlimb suspension (HS) in rodents has also been used to examine the 

effect of superimposing a muscle atrophic stimulus (i.e. – disuse) in aged skeletal muscle 

15,17.  A common finding is that apoptotic signaling differs when comparing muscles from 

aged rodents to muscles from young adult rodents following periods of HS.  Increases in 

apoptotic nuclei, as well as in molecular markers of the intrinsic apoptotic pathway (Bax, 

Bcl-2, Apaf-1, AIF, caspase-9, and caspase-3) were evident in aged muscles, supporting 

the hypothesis that an environment exits in aged skeletal muscle that favors apoptosis.  

The current study extends these results by showing that apoptotic signaling via the 

extrinsic pathway is active in aged skeletal muscles but not in muscles from young adult 

animals.   

Muscles from aged animals also up-regulate anti-apoptotic proteins.  Data from 

our lab17 and others45 have consistently shown an increase in the protein content for Bcl-2 

following disuse and in aged muscles, with further increases when disuse is 

superimposed with aging.  This led to our hypothesis that aged muscles attempt to 

counteract pro-apoptotic stimuli by up-regulating anti-apoptotic proteins.  The data from 

the current study is consistent with this hypothesis by showing that muscles from aged 

rodents up-regulate the anti-apoptotic protein, FLIP.  FLIP protein can attenuate 

apoptotic signaling downstream of death receptors by inhibiting the cleavage of 

procaspase-846-49.  However, despite these aging-related adaptations, the up-regulation of 
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FLIP and Bcl-2 proteins appears to be ineffective in attenuating myonuclear loss in aged 

muscles.     

 

Type II Muscle Fibers and Aging.   Analyses from human muscle biopsy 

samples have consistently demonstrated that type II fibers are more susceptible to aging-

related atrophy when compared to type I fibers 50.   Doherty 51 reported that the loss of 

type II fiber area was 20%-50%, whereas type I area loss was much less (1%-25%).  Part 

of the loss of type II fiber size and number has been attributed to 

denervation/reinnervation which is a contributing factor of sarcopenia51.  An alternative 

mechanism as suggested by the current data is that type II fibers (i.e., the plantaris 

muscle) may be more susceptible to age-associated atrophy and nuclear loss as a result of 

pro-apoptotic signaling via the extrinsic pathway.  Nevertheless, we cannot rule out the 

possibility that apoptotic signaling may be muscle and not fiber-type specific.  

Our observations of potential muscle and/or fiber type specific differences in 

TNF-α associated apoptotic signaling  differs from data reported by Phillips and 

Leeuwenburgh25, who did not find differences in the expression of apoptotic markers 

between the soleus (primarily a type I fibered muscle) and the superficial vastus lateralis 

muscles (primarily a type II fibered muscle) of aged rats.  These disparate findings may 

be due to the different strains and ages of rodents utilized in our study and the previous 

study25.  Despite these differences, the data from our study and that of Phillips and 

Leeuwenburgh25 suggest that the extrinsic apoptotic pathway is active in skeletal muscle 

of aged rodents and this may contribute to age-associated muscle loss via increases in 

apoptotic signaling.   
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 Skeletal muscle function is reduced and the extent of hypertrophy to loading is 

reduced with aging.  However we do not know the extent to which nuclear apoptosis 

initiated through the extrinsic pathway, might contribute to a reduction in muscle force or 

an attenuation of hypertrophic adaptations in aging. Our laboratory has previously 

reported the reduced force production and prolonged contractile properties in muscles of 

aged animals 52-54 .  Maximal tetanic muscle force is reduced by more than 30% between 

the ages of 9 and 26 months of age in Fischer344 x Brown Norway rats as used in the 

present study54. Aging also attenuates the hypertrophic response of the plantaris muscle 

in these rats54,55.  Recent evidence suggests that muscle function is impaired when 

circulating TNF-α levels are elevated.  When extensor digitorum longus (EDL) muscles  

from guinea pigs were exposed to recombinant TNF-α (5 and 10 ng . ml-1), the force-

frequency relationship was shifted down and to the right indicating a reduced force 

output at specific frequencies of activation56.  Furthermore, when coronary heart failure is 

induced in experimental animals, circulating TNF-α is elevated above control levels, and 

this is associated with reduced absolute force output as well as an increase in the 

incidence of apoptosis in the tibialis anterior muscle.  These data demonstrate that not 

only is muscle function impaired with aging, but that TNF-α may also impair muscle 

function when circulating levels are elevated20.  

 

Pro-Apoptotic Signaling Cross-Talk.  Cross-talk between extrinsic and intrinsic 

apoptotic pathways was recently reviewed26.  Cross-talk between these pathways is the 

result of the cleavage of the pro-apoptotic BCL-2 family member Bid.  Cleaved and 

activated caspase-8 cannot only serve to activate caspase 3, which is the executioner 
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caspase,  but also cleave full-length Bid into a truncated version (tBid)57.  tBid then 

interacts with  pro-apoptotic Bax, to stimulate apoptotic signaling from the 

mitochondria58.  As has been previously shown, apoptotic signaling from the 

mitochondria stimulates cleavage of procaspase-9, which then serves to activate caspase-

359.  Thus, both the extrinsic and intrinsic apoptotic pathways converge on caspase-3, 

which then fully engages pro-apoptotic signaling. 

 Certain cell types seem to be more susceptible to pro-apoptotic signaling via the 

extrinsic pathway without involving the mitochondria.  These cell types, termed type I 

cells, differ from type II cells based on the accumulation of DISC following ligand 

binding60.  Upon ligand binding, type I cells accumulate a larger amount of DISC on the 

cytoplasmic side of the death receptor, and do not require additional pro-apoptotic 

signaling arising from the mitochondria, to fully activate apoptosis.  In contrast, type II 

cells accumulate considerably less DISC and require mitochondrial signaling to fully 

activate an apoptotic program.  Skeletal muscle cells may act as type II cells 49, in that 

apoptotic signaling arising from the death receptor can include subsequent mitochondrial 

apoptotic signaling through Bid activation.  Future studies should directly address the 

ability of truncated Bid to mediate messages from the death receptor to the mitochondria. 

Nevertheless, in the current study, skeletal muscles from aged rodents contained a greater 

protein expression of full-length Bid, which raises the possibility that cross talk between 

the extrinsic pathway and the intrinsic pathway may occur in aged skeletal muscles 

(Figure 6). 
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Conclusions.  The results of the current study demonstrate that pro-apoptotic signaling 

downstream of the type I TNFR resulting in caspase-8 and caspase-3 activation, is active 

in aged skeletal muscles and is a contributing mechanism of sarcopenia.  Secondly, 

although no differences were observed in the pattern of expression of apoptotic markers 

between the plantaris and soleus muscles, the changes in these markers and muscle loss 

were highly correlated in the plantaris muscle only.  Thus, type II fiber containing 

muscles may be more susceptible to apoptotic signaling via the extrinsic pathway.  Third, 

aged skeletal muscles undergo an adaptation in which anti-apoptotic proteins such as 

FLIP and Bcl-2 are increased, possibly in an effort to counteract pro-apoptotic signaling.  

Lastly, because skeletal muscles from aged rodents contained a greater protein content of 

full-length Bid than muscles of young adult rats, it is possible that that cross talk between 

the extrinsic pathway and the intrinsic pathway may occur in aged skeletal muscles 

(Figure 6).  Collectively, these data indicate that a pro-apoptotic intracellular 

environment may exist in aged skeletal muscles that can contribute to sarcopenia.  
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Legend for Figure 1: Rodent and Skeletal Muscle Characteristics.  Rodent 

bodyweight (A), as well as absolute (B) and normalized (C) muscles weights and 

incidence of apoptosis (D) was determined for plantaris and soleus muscles.  Data 

presented as means ± SE.  *Significant effect of age (p<0.05).  PL-plantaris, SOL-soleus. 
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Legend for Figure 2:  RT-PCR Analysis of Muscle mRNA.  The mRNA content for 

TNF-α (A), TNFR (B), TRADD (C), and FADD (D) was determined by RT-PCR, with 

PCR products normalized to the 18S gene.  Representative agarose gel images following 

electrophoresis are displayed for each group.  Data are presented as means ± SE.  * 

Significant effect of age (p<0.05). 
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Legend for Figure 3:  Western-Immunoblot Analyses.  The protein content for the 

soluble TNFR (A), FLIP (B), Bid (C), and FADD (D) was determined by western 

immunoblot.  Representative immunoblots for TNFR, FADD, BID, and FLIP are 

displayed for each graph.  * Significant effect of age (p<0.05).  PL-plantaris, SOL-soleus. 
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Legend for Figure 4:  Caspase Enzymatic Activities.  The caspase activity of caspase-8 

(A) and caspase-3 (B) was measured using specific fluoremetric substrates.  Caspase 

activity is expressed in fluoremetric units normalized to the protein concentration 

(caspase-8: 460nm.mg protein-1; caspase-3: 400nm.mg protein-1).  Data are presented as 

means ± SE.* Significant effect of age (p<0.05).   
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Legend for Figure 5:  Correlational analyses in plantaris and soleus muscles. 
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Legend for Figure 6:  Cross-talk between apoptotic pathways.  The extrinsic 

apoptotic pathway, downstream of the type I TNFR, is active in aged skeletal muscle and 

consists of FADD, caspase-8, and caspase-3.  Cleaved caspase-8 can activate BID, which 

can interact with Bax and promote further pro-apoptotic signaling arising from the 

mitochondria.   
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Table 1.  Primers used for Semi-Quantitative RT-PCR amplification of cDNA 
 
Product Accession  

No. 

Sequence Position TA ºC PCR 

Length 

(bp) 

Restriction  

Enzyme 

Restriction  

Products 

(bp) 

TNF-α NM_012675 F: 5’-CGGGGGCCACCACGCTCTTCTGT-3’ 

R: 5’-TCGGCTGACGGTGTGGGTGAGGA-3’ 

125-147 

458-480 

 

62.0 

 

356 

XhoI 

BglI 

222, 134 

222, 134 

TNFR M63122 

 

F: 5’-CCACCTGGTCCGATCGTCTTAC-3’ 

R: 5’-CACGGTGTCCATGTCAGCTTTG-3’ 

138-159 

588-609 58.5 472 

DraIII 282, 190 

FADD NM_152937 

 

F: 5’-TGGCCTGGACCTGTTCTCG-3’ 

R: 5’-CGGGCTTGTCAGGGTGTTTC-3’ 

186-204 

679-698 59.5 513 

BglII 

PstI 

350, 163 

405, 108 

TRADD AF517017 

 

F: 5’-TGAGCTCTGCAAACTGACGTGT-3’ 

R: 5’-CCATCACGGCTCATACTCATAGG-3’ 

12-33 

292-314 59.1 303 

PstI 237, 66 

 
TA, annealing temperature; bp, base pair; TNF-α, tumor necrosis factor-alpha; TNFR, tumor necrosis factor receptor; FADD, Fas-associated death 
domain protein; TRADD, TNF receptor associated death domain protein 
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CHAPTER 3 
 
Pistilli EE, Siu PM, and Alway SE.  Interleukin-15 responses to aging and unloading-induced 
skeletal muscle atrophy.  American Journal Physiology: Cell Physiology, In Press, Dec 2006. 

 

ABSTRACT  

Interleukin-15 (IL-15) mRNA is constitutively expressed in skeletal muscle.  Although IL-15 has 

proposed hypertrophic and anti-apoptotic roles in vitro, its role in skeletal muscle cells in vivo is 

less clear.  The purpose of this study was to determine if skeletal muscle aging and unloading, 

two conditions known to promote muscle atrophy, would alter basal IL-15 expression in skeletal 

muscle.  We hypothesized that IL-15 mRNA expression would increase as a result of both aging 

and muscle unloading and that muscle would express the mRNA for a functional trimeric IL-15 

receptor (IL-15R).  Two models of unloading were utilized in this study: hindlimb suspension 

(HS) in rats and wing unloading in quail.  The absolute muscle wet weight of plantaris and soleus 

muscles from aged rats was significantly less when compared to muscles from young adult rats.  

Although 14 days of HS resulted in reduced muscle mass of plantaris and soleus muscles from 

young adult animals, this effect was not observed in muscles from aged animals.  A significant 

aging times unloading interaction on IL-15 mRNA expression was observed in both the soleus 

and plantaris muscles.  Patagalis (PAT) muscles from aged quail retained a significant 12% and 

6% of stretch-induced hypertrophy after 7 and 14 days of unloading, respectively.  PAT muscles 

from young quail retained 15% hypertrophy at 7days of unloading but regressed to control levels 

following 14days of unloading.  A main effect of age was observed on IL-15 mRNA expression 

in PAT muscles at the three time points examined (14 day overload, 7 day unload, 14 day 

unload).  Skeletal muscle also expressed the mRNAs for a functional IL-15R, composed of IL-

15Rα, IL-2/15R-β, and γc.  Based on these data, we speculate that increases in IL-15 mRNA in 

response to atrophic stimuli may be an attempt to counteract muscle mass loss in skeletal 
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muscles of old animals.  Additional research is warranted to determine the utility of manipulating 

the IL-15/IL-15R system to counter muscle wasting. 

 

Key words: atrophy; interleukins; sarcopenia; gene signaling 
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INTRODUCTION 

 Interleukin-15 (IL-15) is a recently discovered cytokine (20) that belongs to the four α-

helix bundle family of cytokines, that also include IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, and IL-9.  

The roles of IL-15 within the immune system have been shown to include proliferation and 

survival of CD8+ T-cells (6), the activation of natural killer (NK) cells (11), and proliferation of 

B cells (5).   

IL-15 mRNA is constitutively expressed in a wide variety of cell and tissue types 

including placenta, skeletal muscle, liver, epithelial cells, and activated macrophages (20).  IL-15 

and IL-2 have redundant roles as a result of similar receptor composition for these two cytokines.  

The IL-15 and IL-2 receptors (IL-15R, IL-2R, respectively) are trimeric structures composed of 

two identical chains, the IL-2R/IL-15R beta-chain (IL-2Rβ) and the common gamma (γc) chain, 

along with specific alpha-chains (18).  The IL-15R alpha (IL-15Rα) exhibits a high affinity of 

binding for IL-15 protein, with a Kd of 10 pM (14).  In addition to paracrine actions, IL-15 can 

be expressed in trans, in which the cytokine is either bound to cell surface IL-15Rα or anchored 

to the cell membrane.  In this manner, mature IL-15 can be presented to neighboring cells that 

express IL-2Rβ and γc (7).  Although both IL-15 (27) and IL-15Rα (19) mRNA is expressed in 

skeletal muscle, it is not known if the mRNA for a functional trimeric IL-15R is also expressed 

in skeletal muscle, which would allow for trans presentation of IL-15 by muscle cells.  

 Within skeletal muscle, IL-15 can stimulate myosin heavy chain (MHC) protein 

expression in differentiated myotubes (17; 34).  Myotube cultures also exhibited a hypertrophic 

morphology when compared to control cultures that did not contain IL-15.  Additionally, daily 

injections of IL-15 protein reduced DNA fragmentation of gastrocnemius muscles in a rodent 

model of cancer (15).  These daily IL-15 protein injections also attenuated cancer associated 

skeletal muscle loss (cachexia) as well as reduced the gene expression of the type I TNF 
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receptor.  Although these results demonstrate a positive effect of exogenous IL-15 protein in 

myocytes, the response of endogenous intramuscular IL-15 has not been examined.  

Furthermore, the response of IL-15 to muscle loss that results from conditions such as aging or 

muscle unloading is not known. 

 The purpose of this study was to determine the basal responses of IL-15 mRNA 

expression as a result of aging and to skeletal muscle unloading, two conditions known to 

promote muscular atrophy.  A secondary aim of this study was to determine if skeletal muscle 

expresses the mRNAs for a functional trimeric IL-15R.  We hypothesized that skeletal muscle 

would respond to unloading by increasing IL-15 mRNA, with further increases as a result of age 

in an attempt to counter muscle loss.  We used two different models of unloading to test this 

hypothesis.  In the first approach, we induced atrophy in soleus and plantaris muscles via 

hindlimb suspension (HS) in rats.  This model reduces plantar flexor muscle mass below control 

levels.  In the second approach, we first induced hypertrophy via wing weighting in quail and 

this was followed by wing unweighting.  This approach reduces muscle mass from a 

hypertrophied state back to control levels, but not below control muscle mass levels.  Our results 

demonstrate that aging results in significant increases in IL-15 mRNA with further increases as a 

result of muscle unloading, although this response may be fiber type and/or muscle specific.  

Additionally, skeletal muscle expresses mRNA for a functional trimeric IL-15R.  These data 

demonstrate that the IL-15 gene is quite responsive to the two pro-atrophic stimuli utilized in this 

study, limb unloading and muscle aging.  This response may represent a molecular (i.e. 

transcriptional) adaptation of aged skeletal muscle to counteract pro-atrophic stimuli.  In 

addition, the expression of a trimeric IL-15R in skeletal muscle raises the possibility that muscle 

cells can respond to secreted IL-15 as well as present the cytokine in trans to neighboring cells, 

although this requires more direct experimentation.   
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METHODS 
 
 All experimental procedures carried approval from the Institutional Animal Use and Care 

Committee from the West Virginia University School of Medicine. The animal care standards 

were followed by adhering to the recommendations for the care of laboratory animals as 

advocated by the American Association for Accreditation of Laboratory Animal Care 

(AAALAC) and following the policies and procedures detailed in the Guide for the Care and Use 

of Laboratory Animals as published by the U.S. Dept. of Health and Human Services and 

proclaimed in the Animals Welfare Act.   

 

Rodent Hindlimb Suspension.  Twenty young adult (5-7 mo) and eighteen senescent (33 mo) 

male Fischer 344 × Brown Norway (FBN) rats were obtained from the National Institute on 

Aging barrier-raised colony that is housed at Harlan Animal Colonies (Indianapolis, IN). The 

animals were housed at 20-22°C in barrier-controlled conditions under a 12:12-h light-dark cycle. 

They were provided rat chow and water ad libitum. The rats in each age group were randomly 

assigned to a HS group (n = 10 young adult; n=10 aged) or a control group (n = 10 young adult; 

n=8 aged). The HS animals were unloaded using methods described previously (26).  Briefly, an 

adhesive (tincture of benzoin) was applied to the tail and allowed to dry.  Orthopedic tape was 

applied along the proximal one-third of the tail, which distributed the load evenly and avoided 

excessive tension on a small area.  The tape was placed through a wire harness that was attached 

to a fishlike swivel at the top of a specially designed hindlimb suspension cage.  This provided 

the rats with 360˚ of movement around the cage.  Sterile gauze was wrapped around the 

orthopedic tape and was subsequently covered with a thermoplastic material, which formed a 

hardened cast (Vet-Lite, Veterinary Specialty Products, Boca Raton, FL).  The exposed tip of the 

tail remained pink, indicating that HS did not interfere with blood flow to the tail. The 
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suspension height was monitored daily and adjusted to prevent the hindlimbs from touching any 

supportive surface, with care taken to maintain a suspension angle of approximately 30˚. The 

forelimbs maintained contact with a grid floor, which allowed the animals to move, groom 

themselves, and obtain food and water freely. Hindlimb suspension was maintained for a total of 

14 days. Control rats maintained normal mobility and they moved unconstrained around their 

cages.  Following 14 days of HS, rats were sacrificed with an overdose of xylazine and the 

soleus and plantaris muscles from the hindlimbs were excised.  

 

Wing Loading/Unloading.  In a second approach to study muscle loss, Japanese Coturnix quails 

were hatched and raised in pathogen-free conditions in the central animal care center at the West 

Virginia University School of Medicine. The birds were housed at a room temperature of 22°C 

with a 12:12-h light:dark cycle and were provided with food and water ad libitum. Twenty-four 

young adult birds (2 mo) and twenty-four aged birds (24 mo) were examined in the present 

study. The lifespan of Japanese quails is ~26−28 mo and they are both physically and sexually 

mature by 1.5 mo of age (25; 28).  The patagialis (PAT) muscle is flexed with the wing on the 

birds back at rest, but it is stretched when the wing is extended. In our experimental stretch-

overloading model, a tube containing 10-12% of the bird’s body weight was placed over the left 

humeral-ulnar joint (4). This maintains the joint in extension throughout the period of stretch and 

induces stretch at the origin of the PAT muscle. Previous studies have shown this stretch-

overloading protocol results in moderate hypertrophy of the PAT muscles (i.e., 14-day stretch-

loading induces ~35% and ~15% increases in muscle mass of young adult and aged birds, 

respectively (4). Following 14 days of stretch overload of the left wing, eight young and eight 

aged birds were sacrificed with an overdose of xylazine.  Eight young and eight aged birds were 

maintained for a period of 7 days, in which the overloaded left wing was unloaded.  The 
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remaining young and aged animals were sacrificed 14 days after the weight removal. The 

unstretched right PAT muscle served as the intra-animal control muscle for each bird. PAT 

muscles were dissected from the surrounding connective tissue, removed, weighed, and frozen in 

isopentane cooled to the temperature of liquid nitrogen and then stored at -80°C until used for 

analyses. 

 

RT-PCR Estimates of mRNA. Semi-quantitative RT-PCR analysis was conducted as described 

in detail elsewhere (36). Frozen muscle samples (~50 mg) were homogenized in 1 ml of 

TriReagent (Molecular Research Center, Cincinnati, OH) with a mechanical homogenizer. Total 

RNA was isolated by centrifugation and washed in ethanol according to the manufacturer's 

instructions. RNA was solubilized in 20 µl of RNase-free H2O.  RNA was treated with Dnase I 

(Ambion, Austin TX) and reverse transcribed (RT) with random primers (Invitrogen/Life 

Technologies, Bethesda MD). PCR primers were constructed from published sequences for the 

rat and chicken IL-15 genes (Table 1). Primer pairs for the gene of interest were co-amplified 

with 18S primer pairs and competimers to the 18S primers, as an internal control, according to 

the manufacture’s protocols (Ambion, TX). The number of PCR cycles was determined for each 

gene to insure analyses were done in the linear range of amplification.  The signal from the gene 

of interest was expressed as a ratio to the 18S signal from the same PCR product in order to 

eliminate any loading errors.  The cDNA from all muscle samples were amplified simultaneously 

for a given gene. Following amplification, 20μl of each reaction was electrophoresed on 1.5% 

agarose gels.  Gels were stained with ethidium bromide. PCR signals were captured with a 

digital camera (Kodak 290) and the signals were quantified in arbitrary units as optical density x 

band area, using Kodak image analysis software (Eastman Kodak Company, Rochester, NY).  

As a positive control for IL-15 PCR, spleen and liver tissue were harvested from FBN rats and 
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included in PCR analyses for IL-15 (Figure 1A) (13).  Restriction digestion of IL-15 PCR 

products was performed for both rat and quail IL-15 to determine primer specificity (Figure 1B).  

The rat IL-15 product was cut with the AluI restriction enzyme producing bands of 466bp, and 

128bp.  The quail IL-15 PCR product was cut with the AluI restriction enzyme, producing bands 

of 321bp and 187bp.   

 

IL-15Rα Sequencing.  PCR amplification of the IL-15Rα rattus sequence produced a PCR 

product approximately 100 base pairs larger than expected.  The corresponding PCR products 

were gel purified using a commercially available gel extraction kit according to manufacture’s 

instructions (QIAquick Gel Extraction Kit, Qiagen Sciences, MD), and sent for direct sequencing 

(SeqWright DNA Technology Services, Houston, TX).  The newly acquired cDNA sequence 

information was then compared to the computer predicted sequence originally used for the 

design of PCR primers (XM_577598). 

       

Statistical analysis.   Statistical analyses were performed using the SPSS software package, 

version 10.0.  Data were analyzed using a 2x2 ANOVA to examine the main effects of aging and 

unloading and the age x unload interaction.  Data are presented as means ± SE with significance 

set at p<0.05.  Relationships between given variables were examined by computing the Pearson 

correlation coefficient.   

 

RESULTS  

Body weight – Rodent HS.  There were significant main effects of age (F=91.7, p<0.001) and 

unloading (F=22.6, p<0.001) on rodent bodyweight, although the aging x unloading interaction 

was not significant (F=0.006, p=0.941).  Fourteen days of HS significantly reduced body weights 
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in both young adult (control: 374.7g ± 25.2; HS: 295.2g ± 13.3; -80%) and aged (control: 538.8g 

± 15.9; aged: 456.7g ± 11.4; -15%) rats.  The bodyweight of the aged rats was 44% greater than 

the young adult rats (young adult: 374.7g ± 25.2; aged: 538.8g ± 15.9).  

 

Muscle Characteristics  – Rodent HS.  Muscle wet weights have been reported previously (32) 

and absolute muscle wet weight and the muscle weight normalized to bodyweight are presented 

in Table 2. Following 14 days of HS, the soleus muscle wet weight was 43% less in young adult 

rats when compared to controls.  In contrast, the wet weight of aged soleus was unchanged 

following HS.  Control soleus wet weight was 17% less in aged vs. young rats.  The aging x 

unloading interaction was significant in the soleus (F=15.0, p<0.001).  Following 14 days of HS, 

the plantaris wet weight was 20% less in young adult rats compared to controls.  In contrast, the 

wet weight of the aged plantaris was unchanged following HS.  Plantaris muscle wet weight was 

22% less in aged as compared to control plantaris muscles.   

 

PAT muscle – Quail wing unloading.  The changes in PAT muscle mass following stretch 

overload and subsequent unloading have been reported previously (37).   Fourteen days of 

stretch overload increased PAT wet weight approximately 35% in young quail and 

approximately 15% in aged quail.  Young PAT muscles retained 15% hypertrophy and aged 

PAT muscles retained 12% hypertrophy after 7 days of unloading, compared to intra-animal 

control muscles.  Following 14 days of unloading, young PAT muscles returned to baseline.  

However, aged PAT muscles retained 6% of stretch-induced hypertrophy after 14 days of 

unloading when compared to intra-animal control muscles.   
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IL-15 Transcriptional Responses.  Following 14 days of HS in rodents, a significant aging x 

unloading interaction was observed in both the soleus (F=8.2, p=0.05) and plantaris (F=13.2, 

p=0.011) muscles.  IL-15 mRNA was 81% greater in soleus muscles from young adult rodents 

relative to control muscles following HS.  In contrast, IL-15 mRNA was unchanged in soleus 

muscles of aged rats following HS.  IL-15 mRNA was 20% greater in the soleus of aged rats 

compared to young adult rats (Figure 2A).  IL-15 mRNA was unchanged in young adult 

plantaris muscles following HS and when comparing control plantaris muscles from young adult 

and aged animals.  In contrast, plantaris muscle IL-15 mRNA was 71% greater in aged rats 

following HS, relative to age-matched controls (Figure 2B).   

A significant aging x loading/unloading interaction was not observed in the quail model 

at any analyzed time point, although there was a significant main effect of aging, with IL-15 

mRNA an average of 53% greater in aged PAT muscles, relative to muscles from young adult 

birds.  This main effect of age on IL-15 expression was significant for all conditions: 14 day 

overload (F=5.8, p=0.024), 7 day unload (F=97.8, p<0.001), and 14 day unload (F=61.9, 

p<0.001).  IL-15 mRNA was not affected by 14-days of stretch overload in either young or aged 

birds (Figure 3).  In contrast, IL-15 mRNA was 25% and 19% greater in unloaded young and 

aged PAT muscles, respectively, relative to the intra-animal control muscles following 7-days of 

unloading (Figure 3).  Following 14-days of unloading, IL-15 mRNA returned to baseline in 

PAT muscles of young and aged birds (Figure 3). 

 

Sequencing of Rattus IL-15Rα.  A computer predicted mRNA sequence from GeneBank for the 

rattus IL-15Rα chain was utilized to construct PCR primers (XM_577598). The PCR product 

had a predicted size of 325bp following amplification.  However, following PCR amplification 

and subsequent gel electrophoresis, the PCR product was closer to 400bp, with no multiple bands 
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observed (Figure 4A).  The PCR product was gel purified, sequenced, and compared to the 

computer predicted sequence from GeneBank.  The newly sequenced cDNA was identical to the 

predicted sequence at the 5’- and 3’- ends, with a unique sequence of 103 bases contained in the 

middle (Figure 4B).  Following verification by DNA sequencing and restriction digestion with 

HindIII (Figure 4A), the new sequence was submitted to GeneBank (Accession No: DQ157696).          

 

IL-15R Expression in Skeletal Muscle.  Primers specific for the three IL-15R chains (α, β, γ) as 

well as the IL-2Rα chain were constructed to examine mRNA expression in rat skeletal muscle.  

Messenger RNA isolated from rodent spleen tissue was used as a positive control for each of 

these primers (Figure 5A).    As shown in Figure 5B, rat skeletal muscle expresses mRNA for 

each of the IL-15R chains.  Additionally, mRNA for the IL-2R specific alpha chain was detected 

in the spleen as well as in skeletal muscle.   

 

DISCUSSION 

 The data from this study demonstrate that the IL-15 gene is responsive to skeletal muscle 

aging and unloading, two conditions known to promote muscle atrophy.  IL-15 mRNA increased 

as a result of both unloading and aging in the predominantly slow-myosin containing soleus 

muscle, supporting previous microarray studies in skeletal muscle (29; 38).  In contrast, the fast-

myosin containing plantaris muscle had increases in IL-15 mRNA only in the aged unloaded 

samples.  The quail model of unloading utilized in this study differed from the HS model, in that 

wing unloading allowed regression of previously hypertrophied muscle, whereas during HS, the 

plantar flexor muscles atrophy relative to control muscles.  The interaction of aging and 

loading/unloading on IL-15 mRNA expression was not significant in the quail model, indicating 

the age of the quail did not influence the adaptive response.  Despite this difference, the main 
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effect of age on IL-15 mRNA expression was evident in PAT muscles, as was the case in the 

soleus and plantaris muscles following HS.  These data indicate that aging is a significant 

stimulus for increases in IL-15 mRNA in skeletal muscles, as IL-15 expression was greater in 

aged muscles of differing fiber type composition (i.e.- soleus vs. plantaris) and in the state of the 

muscle before unloading was initiated (i.e.- previously hypertrophied PAT vs. basal soleus and 

plantaris).  The differences in IL-15 expression observed in this study support the observations 

from previous studies demonstrating that skeletal muscles from aged animals respond to atrophic 

conditions differently than muscles from young animals (24; 32).   

  

IL-15 and Skeletal Muscle.  The first report on the effects of IL-15 in skeletal muscle 

demonstrated its ability to increase the myosin heavy chain protein content in differentiated 

mouse C2C12 myotubes in vitro (34).  These results were subsequently supported by data in 

primary human skeletal muscle cell cultures (17).  This effect of IL-15 was independent of the 

hypertrophic effects of IGF-1 (33), which may become important with aging when anabolic 

hormone levels typically decrease (40).  In this study, IL-15 mRNA was greater in all aged 

skeletal muscles examined and, in general, increased as a result of unloading.  We propose that 

this is an age-related adaptation of skeletal muscle to counter muscle loss in response to atrophic 

stimuli.  Future studies should address the efficacy of IL-15 in sparing muscle mass in aged 

animals and in response to conditions that promote muscle atrophy. 

The greatest effects of IL-15 may be seen under conditions of stress, such as that invoked 

by aging and disease. This is suggested in part, because the changes in IL-15 mRNA in the 

current study, were less dramatic in the muscles from young animals than in the aged. 

Furthermore, an increase in systemic IL-15 levels in vivo increases the force output of diaphragm 

muscles from mdx mice (21), which, is a model for muscular dystrophy that has a high turnover 
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of contractile protein as a result of degeneration/regeneration.   In this same study, IL-15 

promoted muscle regeneration within the first 6 days after a myotoxic injury as evidenced by an 

increase in fiber cross-sectional area (21).  Elevated IL-15 also spares muscle mass and decreases 

the rate of protein degradation in young tumor-bearing rats (10).  Collectively, these data suggest 

that IL-15 can act as an anabolic agent for skeletal muscle during periods of injury and/or periods 

of muscle wasting.  This may explain, in part, why a significant interaction of aging and 

loading/unloading was not observed in the quail model utilized in this study.  As noted, the quail 

model of unloading allows hypertrophied muscle to atrophy but muscle mass does not go below 

that of control contralateral muscles.  The underlying mechanisms leading to atrophy of 

previously hypertrophied muscles to basal levels, compared to atrophy below control levels as 

observed in the HS model, may be less severe in nature.  Our laboratory has previously 

demonstrated that previously hypertrophied PAT muscles from aged quail retain the loading-

induced increase of the anti-apoptotic molecule XIAP during periods of subsequent unloading 

(37).  Additionally, other anti-apoptotic changes were noted in 14d unloaded PAT muscles of 

aged quails, such as increased Bcl-2 and decreased Bax protein levels (36).  This is in contrast to 

the increased Bax mRNA expression and protein content our laboratory observed following 14d 

of HS in the aged plantaris (32) and medial gastrocnemius muscles (35).  We suggested that an 

anti-apoptotic adaptation of previously hypertrophied muscle may take place in aged quail during 

extended periods of unloading as muscle returned to basal levels.  Similar adaptations may not 

take place during periods of HS-induced muscle atrophy where muscle mass can be considerably 

less when compared to muscles from control animals.     

     

IL-15 and Apoptosis.  A role for IL-15 in the attenuation of apoptosis is suggested by data 

showing that exogenous IL-15 protein inhibits death pathway associated apoptotic signaling.  
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Multisystem apoptosis initiated in mice via treatment with an anti-Fas antibody was suppressed 

with injection of a long-lasting IL-15-IgG2b fusion protein (9).  In addition, IL-15 transgenic 

(Tg) mice are resistant to a lethal dose of Escherichia coli (E. coli) (23).  IL-15 administration 

into control mice also reduces the death rate from a lethal challenge of E. coli.  The data further 

show that administration of IL-15 to isolated peritoneal cells in vitro, prevented TNF-α induced 

apoptosis (23).  

 The well-characterized cell death pathway initiated by the binding of TNF-α to the type I 

TNFR (i.e., extrinsic apoptotic pathway) can be altered with increases in IL-15 protein.  For 

example, daily injections of IL-15 protein for 7-days in a rodent model of cancer, resulted in 

significant decreases in the gene expression of both the type I and type II TNFR (15).  

Furthermore, incubation of fibroblasts with IL-15  in vitro attenuates apoptosis induced by TNF-

α  (8). The TNF-α  apoptotic pathway was disrupted when the cytoplasmic signaling molecule 

TRAF2, which normally mediates the downstream apoptotic signal from the TNFR, was 

recruited to the cytoplasmic side of the IL-15Rα.  Interestingly, this recruitment of TRAF2 to IL-

15Rα was only observed when both TNF-α and IL-15 protein were present in the culture media 

(8).  Thus, IL-15 seems to function, at least in part,  to inhibit apoptosis by blocking the signaling 

downstream of the TNFR.  This is relevant in aging muscle because the extrinsic apoptotic 

pathway is very active in aged skeletal muscle (31).  We speculate that the changes in IL-15 

mRNA observed in the current study may represent an attempt to counter the pro-apoptotic 

environment typically observed in aged skeletal muscle.      

 Another potential means for IL-15 to function in an anti-apoptotic role may be as a result 

of its association with  the anti-apoptotic protein, Bcl-2 (30; 41). There is a reduction in the 

percentage of  CD8+ T cells in IL-15Rα-/- mice and this is due in part to a reduction of Bcl-2 

expression (41).  Exogenous IL-15 up-regulates Bcl-2 levels in these cells and contributes to a 
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reduction in cell death upon activation (41).  Additionally, HIV-specific CD8+ T cells were 

shown to exhibit reduced levels of Bcl-2.  When these cells were cultured with IL-15, Bcl-2 

expression increased and this was associated with an attenuation of apoptosis of CD8+ T cell 

cultures (30).  The mRNA expression and protein content of Bcl-2 has been shown to increase in 

aged skeletal muscles and in response to atrophic stimuli (32; 35).  Although these results do not 

show  a direct Bcl-2 mediated anti-apoptotic role for IL-15,  this possibility warrants  further 

investigation.   

 

Hindlimb Suspension in Rodents.  The HS model of unloading has been widely utilized in 

rodents to study the effects of unloading on bone (22), and muscle (2; 3; 16; 38).  In the current 

study and others (3; 24; 32),  HS has been used to examine the interaction of aging and 

unloading.  The aging associated loss of muscle mass and strength, (i.e. sarcopenia), is 

exacerbated with inactivity (39).  Muscle mass declines by approximately 40% between the ages 

of 20 and 60, with strength declining by 20-40% [reviewed in (12)].  The current study is 

consistent with previous findings showing that aged skeletal muscle responds differently to 

unloading when compared to young adult skeletal muscle (24; 32; 35).   

The results of this study differ from previous reports from our lab which, have shown 

greater muscle loss in aged FBN rats than in young adult rats after HS (3).  Variability in animal 

responses to HS can occur, even in the same laboratory (16).  For example,  Fitts et al. (16) 

reported variability in soleus atrophy and peak isometric tetanic tension (Po) in response to 1- 

and 2-weeks of HS.  The authors speculated that variability in these data may be induced by 

diverse responses in animal movements or environmental disturbances that result in random 

muscular contractions.  The HS technique results in limb unloading with muscular innervation 

left intact, which allows the hindlimbs to move freely in space.  Initially, EMG activity 
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decreases. but it returns to baseline levels as soon as 3 days after HS initiation (1).  In our study,  

animals were checked twice daily after the induction of HS, and random hindlimb muscular 

contractions were observed, and this may have contributed to our current results.     

  

Conclusions.  IL-15 mRNA is constitutively expressed in skeletal muscle and it is responsive to 

both muscle aging and limb unloading.  Our data indicate that aging is a significant stimulus for 

increased IL-15 mRNA expression, as main effects of age were observed in all muscles 

examined using two models of aging and in two different animal species.  Additionally, skeletal 

muscle expresses mRNA for a functional trimeric IL-15R, which would allow for trans 

presentation of IL-15 by muscle cells.  It is possible that skeletal muscle responds to atrophic 

stimuli by increasing IL-15 levels to be secreted as a traditional cytokine or by presenting IL-15 

on the sarcolemma bound to the IL-15R.  Future experiments should examine the direct effects 

of modulating IL-15/IL-15R system in response to atrophic stimuli as a means to spare muscle 

mass with aging and during periods of disuse or muscle injury/disease.    
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Legend for Figure 1.  IL-15 primer specificity.  A.  RT-PCR was performed for IL-15 in 

cDNA from rat skeletal muscle (SM), with cDNA from rat spleen (SP) and liver (LV) 

tissue used as positive controls.  Thirty four PCR cycles at a calculated TA of 56.6°C 

produced bands of 594bp in all three tissue types.  B.  Restriction digestion of IL-15 PCR 

products from rat and quail skeletal muscle with the AluI restriction enzyme.  Incubation 

of PCR products at 37°C for 1hr produced the predicted fragments.  SM – skeletal 

muscle, SP – spleen, LV – liver, PCR – full PCR product, RD – restriction enzyme 

digested PCR products. 
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Figure 2 
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Legend for Figure 2.  IL-15 Transcriptional Changes Following HS.  A. IL-15 mRNA 

expression in soleus muscles following HS.  B.  IL-15 mRNA expression in plantaris 

muscles following HS.  A significant aging x unloading interaction was observed in both 

skeletal muscles, indicating age influenced the response of IL-15 mRNA.  Data are 

expressed as MEAN ± SE with significance set at p<0.05;  *, significant unloading effect; 

**  significant age effect. 
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Figure 3 
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Legend for Figure 3:  IL-15 Transcriptional Changes in Response to Wing Overload and 

Subsequent Unloading.  IL-15 mRNA expression in patagalis muscles following 14 

days of stretch overload, 14 days of loading followed by 7 days of subsequent unloading, 

and 14 days of loading followed by 14 days of unloading.  Data are expressed as MEAN 

± SE with significance set at p<0.05. YC, young control; YS, young stretched; AC, aged 

control; AS, aged stretched.  *  significant unloading effect; ** , significant age effect. 
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Figure 4 
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Legend for Figure 4.  Unique IL-15Rα Sequence in Rattus Skeletal Muscle.  A.  

Representative gel image of IL-15Rα following PCR amplification and restriction 

digestion with HindIII.  Incubation of PCR products at 37°C for 1hr produced the 

predicted fragments of 260bp and 131bp.  The HindIII restriction site was unique to the 

new IL-15Rα sequence, DQ157696.  B. Rattus IL-15Rα sequence comparison following 

DNA sequencing.  The new sequence information was compared to a computer predicted 

mRNA sequence (XM_577598).  Both sequences were identical at the 5’ and 3’ ends, but 

the newly sequenced cDNA contained 103 unique bases.   
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Legend for Figure 5.  mRNA Expression of the Trimeric IL-15R in Skeletal Muscle.  A.  As 

a positive control, PCR amplification of the individual components of the IL-15R and IL-

2R was performed in cDNA produced from spleen tissue and compared to PCR reactions 

performed in skeletal muscle cDNA.  Both spleen tissue (A) and skeletal muscle tissue 

(B) contained mRNA for all components of the IL-15R and IL-2R.   
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a positive control, PCR amplification of the individual components of the IL-15R and IL-

2R was performed in cDNA produced from spleen tissue and compared to PCR reactions 

performed in skeletal muscle cDNA.  Both spleen tissue (A) and skeletal muscle tissue 

(B) contained mRNA for all components of the IL-15R and IL-2R.   
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Table 1: PCR Primer Information 
 
Gene Name Accession No.  Sequence     Position       TA, °C     Cycles Product Length 
 
                  
 
IL-15 (rattus) NM_013129  F: 5’-CGCCATAGCCCGCTCTTCTTCAAC 494-517        56.6          34    594bp 
 
     R: 5’-TGGGCAGGCGGAGGTGTCTTAATAAC 1062-1087    
 
Il-15 (gallus) AF139097  F: 5’ –GCCGGAGAGTCAGAAAACACATGT 176-199         53.0          36               508bp 
 
     R: 5’ –AGCGTATTTTTTGCATTCCCTCTG 660-683      
 
IL-15Rα (rattus) DQ157696  F: 5’ – TGCCCAACGCCCATATCTATT  1-21         57.3          35 391bp 
 
     R: 5’ – CTGGGGAGGACTTGTGTCT               373-391                   
 
IL-2Rα (rattus) NM_013163  F: 5’ – CAGGGAGATGGAGCCACACTTG 111-132         57.8         40  526bp 
 
     R: 5’ – CGTCCACCTTATCTCCCCACACA 614-636          
 
IL-2Rβ (rattus) NM_013195  F: 5’ – CAGCTCTGCCTCTCGGATGTGAT 91-113           58.8         38  534bp 
 
     R: 5’ – ACGGGCCTCAAATTCCAAGTATG 602-624          
 
γc (rattus)  NM_080889  F: 5’ – GCCTCAGCCGACCAACCTCAC  251-271          56.7        36  440bp 
 
     R: 5’ – GGCTCCGAACCCGAAATGTGT  670-690      
 
                  
 
TA – annealing temperature, bp = base pair 
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Table 2: Rodent Muscle Characteristics 
 

  Young adult animals Aged animals 
Muscle Young 

Control 

(n=10) 

Young HS 

(n=10) 

% Difference 

HS vs. 

Control 

Aged Control 

(n=8) 

Aged HS 

(n=10) 

% Difference 

HS vs. Control 

Age induced 

difference in 

control muscles  

 (Young vs. Aged) 

Soleus (mg) 171.2 ± 9.8 97.9 ± 6.0 -43%* 142.6 ± 4.2 127.5 ± 7.6 -11% ns 17%* 

Soleus/BM  

(mg . g-1) 

0.46 ± 0.006 0.33 ± 0.012 -28%* 0.27 ± 0.009 0.28 ± 0.014 +3% ns -41%* 

Plantaris (mg) 400.8 ± 22.2 319.2 ± 17.5 -20%* 312.0 ± 9.6 275.7 ± 7.7 -12% ns -22%* 

Plantaris/BM 

(mg . g-1) 

1.09 ± 0.017 1.08 ± 0.014 1% ns 0.58 ± 0.011 0.60 ± 0.014 +3% ns -47%* 

 
Characteristics of young 20 young adult (5-7 mo) and 18 senescent (33 mo) male Fischer 344 × Brown Norway rats. Hindlimb suspension, 

HS; BM, Body mass; mg; milligrams, g, grams; ns, not significant, * , p<0.05 
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CHAPTER 4 

Interleukin-15 does not attenuate TNF-α and/or aging induced pro-apoptotic signaling in 
skeletal muscles. 
 
ABSTRACT 

An anti-apoptotic role for interleukin-15 (IL-15) has been proposed from data in cell 

culture and whole animal experiments.  In this study, we tested the hypothesis that 

apoptosis induced by tumor necrosis factor-α (TNF-α) in vitro and/or aging in vivo would 

be attenuated, specifically in skeletal muscles.  As expected, treatment of C2C12 

myoblasts with 20ng.ml-1 of TNF-α decreased overall cell viability and reduced 

mitochondrial integrity.  However, treatment with 20ng.ml-1 of recombinant IL-15 (rIL-

15) did not attenuate the TNF-α induced decrease in cell viability and mitochondrial 

integrity in vitro.  This indicates that IL-15 failed to protect against TNF-α induced 

apoptosis in myoblasts in vitro.  To test the effects of IL-15 on muscle in vivo, rIL-15 

(100μg.kg-1 per day) was administered via osmotic pumps, to young adult (n=6) and aged 

(n=6) Fischer 344 x Brown Norway rodents for 14d.  Apoptosis, as measured by  DNA 

fragmentation, was greater in plantaris, soleus, and medial gastrocnemius muscles from 

aged animals and in all muscles from IL-15 treated animals compared to muscles from 

control animals.  DNA fragmentation was slightly greater in left ventricles from IL-15 

treated aged rodents with no changes in young adult rodents.  Signs of apoptosis in the 

liver were attenuated in all IL-15 treated animals compared to control, while no effects of 

age or IL-15 treatment were evident in the spleen.  The data from these studies do not 

support our initial hypothesis and suggest that IL-15 does not prevent apoptotic signaling 

in skeletal myogenic cultures induced by TNF-α and in muscle tissue from aged rodents.  



Chapter 4 140

The proposed anti-apoptotic property of IL-15 may be tissue specific; however, 

additional research is required to more clearly decipher this role.   

KEYWORDS:  apoptosis, IL-15, TNF-α, aging, skeletal muscle 
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INTRODUCTION 

Interleukin-15 (IL-15) is a pleiotropic cytokine with numerous proposed roles in 

both lymphoid and non-lymphoid tissues (reviewed in (13; 38)).  Cell and tissue types 

that have been shown to express IL-15 mRNA include placenta, skeletal muscle, liver, 

epithelial cells, activated macrophages (10; 16), and muscle satellite cells (22).  In 

addition to this widespread expression, IL-15 associated signaling can be initiated in a 

number of different ways (7).  For example, secreted IL-15 protein can bind to its 

trimeric receptor, and to the individual IL-15Rα chain at the cell surface.  Additionally, 

IL-15 can be presented at the cell surface in a form bound to the IL-15Rα chain (i.e. - 

trans presentation) in which it can interact with cells expressing the IL-2/IL-15R β and γ 

chains as well as cause reverse signaling through soluble IL-15Rα (6; 7).  Furthermore, 

two isoforms of mature human IL-15 have been identified, based on alternative splicing 

in the 5’region of the gene (19; 24).  The total amount of mature IL-15 protein is tightly 

regulated at the levels of translation and vesicle trafficking (1), possibly due to the 

widespread tissue expression of both IL-15 and IL-15Rα transcripts as well as the diverse 

signaling pathways that can be initiated.   

In an effort to decipher the specific roles of IL-15, cytokine concentrations have 

been experimentally modulated both in vitro and in vivo (8; 9; 11; 14; 15; 17).  One 

consistent finding is that IL-15 can act as an apoptosis-inhibitor in response to 

inflammatory conditions and/or pathological states in lymphoid cells such as CD8+ T-

cells (2), non-lymphoid cells such as fibroblasts (8), and tissues such as skeletal muscle 

(14), spleen (9), and liver (9; 36).  This anti-apoptotic role seems to be protective against 

the pro-apoptotic property of another cytokine, TNF-α, as well as FasL (8; 18).  These 
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pro-apoptotic proteins initiate signaling upon ligation to their cell surface death receptors 

(i.e. – TNFR, Fas/CD95, respectively), resulting in activation of caspase-8 and caspase-3 

(34).  

Apoptotic nuclei have been previously demonstrated in skeletal muscle following 

muscle denervation (30; 31), muscle unloading (20; 27; 32; 33), and aging (12), with 

signaling arising from the mitochondrial intrinsic apoptotic pathway.  Recently, our 

laboratory has provided evidence that the extrinsic apoptotic pathway is also active in 

aged skeletal muscles (26).  This may be in response to an age-related increase in 

circulating TNF-α concentrations (3-5).  Specifically, skeletal muscles from aged animals 

exhibited greater mRNA and protein expression of FADD, greater protein content of pro-

apoptotic Bid, and greater enzymatic activity of both caspase-8 and caspase-3, when 

compared to muscles from young adult animals.  Although systemic TNF-α 

concentrations were not measured in this study, the data suggest the pathway, 

downstream of the type I TNFR, is active in aged muscles.  Interestingly, experiments 

have shown that IL-15 protein can attenuate this signaling pathway in vitro in a fibroblast 

cell line stimulated with TNF-α by disrupting the activation of caspase-8 at the 

cytoplasmic portion of the type I TNFR(8).  Similar observations have been made in vivo 

in tumor-bearing rodents (14).   

Our laboratory has previously observed that IL-15 mRNA is elevated in skeletal 

muscles in response to aging and muscle unloading and we speculated that this is a 

molecular attempt to counter pro-atrophic and/or pro-apoptotic stimuli (manuscript in 

review).  In the current experiments, we hypothesized that recombinant IL-15 (rIL-15) 

would have a similar anti-apoptotic property and attenuate apoptotic signaling in aged 
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muscles.  This hypothesis was tested in vitro using murine rIL-15 and rTNF-α in the 

mouse C2C12 myogenic cell line and in vivo by increasing the systemic levels of IL-15 in 

young adult and aged rodents.  In addition to skeletal muscle, other tissues were analyzed 

from rodents to examine tissue specific effects of IL-15.  The results of these experiments 

do not support the ability of IL-15 to attenuate pro-apoptotic signaling downstream of the 

type I TNFR within skeletal muscle.  rIL-15 failed to attenuate pro-apoptotic signaling 

induced by rTNF-α in myoblasts in vitro.  Although rIL-15 did not increase apoptosis in 

vitro, rIL-15 delivered to rodents systemically, increased DNA fragmentation in muscles 

from both young adult and aged animals.  In contrast, in vivo administration of rIL-15 

had an anti-apoptotic effect in liver, but it had minimal effects in the left ventricle and 

spleen of rodents.  We speculate that the proposed anti-apoptotic property of IL-15 may 

be cell-type specific as well as specific to the degree of pathology present (i.e. – tumor 

burden vs. normal aging).  Additional research is required to more precisely determine 

the roles of IL-15 in vivo.  

 

METHODS  

Experiment 1 - Myogenic Cell Culture.  C2C12 mouse myoblasts were obtained from 

the American Type Culture Collection (Manassas, VA).  Myoblasts were cultured in 

Dulbecco’s modified Eagle’s medium (DMEM, Gibco, Carlsbad, CA) supplemented with 

10% fetal bovine serum (FBS) and antibiotic-antimycotic (Gibco, Carlsbad, CA) at 37° C 

and 5% CO2.  Myoblasts were plated in 10cm2 cell culture dishes at a density of 2.5 x 105 

cells and allowed to adhere to the bottom of the culture plate for a period of 4-6 hours.  

Following adherence, culture medium was changed to DMEM containing 2% FBS with 
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no antibiotic.  Recombinant cytokines were added in the following groups: CON (no 

cytokines), TNF-α (20 ng.ml-1 recombinant mouse TNF-α, R&D Systems, Minneapolis, 

MN), IL-15 (20 ng.ml-1 recombinant mouse IL-15, R&D Systems, Minneapolis, MN), 

and COMBO (20 ng.ml-1 of TNF-α and IL-15).  Myoblast cultures were maintained for 

72h with recombinant cytokines replaced every 24h.  At 72h of culture, myoblasts were 

harvested using trypsin and prepared for flow cytometric analyses.  Preliminary 

experiments were performed to determine optimal concentrations of recombinant 

cytokines and duration of myoblast culture (data not shown).  To verify the biological 

activity of recombinant IL-15, the CTLL-2 lymphocyte cell line was utilized in a 

proliferation experiment (data not shown) because previous data has shown IL-15 has the 

ability to stimulate proliferation of this IL-2 dependent cell line (35).   

 

Flow Cytometric Analysis of Apoptosis.  Following 72h of cytokine stimulation, both 

floating myoblasts and adherent myoblasts were harvested.  Culture media was collected 

and centrifuged at 200rpm for 5-minutes to obtain the cell pellet.  Adherent cells were 

washed twice with sterile PBS and incubated in 0.5% trypsin at 37°C for 5-minutes.  

These myoblasts were collected, added to the cell pellet, and centrifuged at 2000rpm for 

5-minutes.  The combined cell pellet was washed once in PBS before being resuspended 

in 500µl of 1X PBS.  A cell viability probe (Pharmingen, San Diego, CA, containing the 

DNA dye 7-amino-actinomycin D (7AAD), was used to assess overall cell survival and 

viability following treatments.  As a secondary measure of cell apoptosis, a fluorescent 

dye that binds intact mitochondria (MitoTracker, Molecular Probes, Carlsbad, CA) was 

used following cytokine treatments.  Ten microliters of Via-Probe and 10µl of 
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MitoTracker was added to the cell suspension and incubated for 10-minutes at 4°C in the 

dark.   

 

Statistics.  Statistical analyses were performed using the SPSS software package, version 

10.0.  Data are presented as MEANS ± SE.  Data were analyzed using a one-way analysis 

of variance (ANOVA) to examine the effects in the four treatment groups.  The Scheffe 

post-hoc test was utilized to determine differences between groups, with significance set 

a p<0.05.   

 

Experiment 2 – In vivo Experiments in Rodents. All procedures followed the 

guidelines of the National Institutes of Health, and were approved by the Institutional 

Animal Care and Use Committee of the West Virginia University School of Medicine. 

Twelve young adult (3 mo.) and twelve senescent (30 mo.) male Fischer344xBrown 

Norway rats were obtained from the National Institute on Aging barrier-raised colony that 

is housed at Harlan Animal Colonies (Indianapolis, IN). The animals were housed at 20-

22°C in barrier-controlled conditions under a 12:12-h light-dark cycle. They were 

provided rat chow and water ad libitum.   

 Experimental animals were randomly divided into four groups: young adult 

control (YC, n=6), young adult IL-15 (Y15, n=6), aged control (AC, n=6), and aged IL-

15 (A15, n=6).  Mini-osmotic pumps (Model #2002, Alzet, Cupertino, CA) were used to 

deliver rIL-15 systemically at a rate of 0.51µl.hr-1 over a 14d period.  Recombinant 

human IL-15 was generously provided by Amgen Corporation (Thousand Oaks, CA) at a 

stock concentration of 4.41 mg.ml-1.  The total amount of rIL-15 administered 
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exogenously was based on the average bodyweight of young and aged animals, to 

maintain a constant release of 100µg.kg-1.d-1.  A total volume of 200µl of either sterile 

PBS or IL-15 was loaded into the mini-pumps and the pumps were subsequently 

incubated in sterile PBS at 37°C for 12h to fully prime the pumps.  Using sterile 

techniques, an incision was made along the mid-line of the dorsal surface of each animal 

and mini-pumps were implanted subcutaneously (sc).  Incisions were closed using wound 

clips and animals were monitored daily for signs of infection and weighed at 7d and 14d 

of intervention.      

The animals were deeply anesthetized with 5% isoflurane and the heart was 

exposed. Blood samples were obtained via cardiac puncture of the left ventricle.  Blood 

was collected into EGTA containing collection tubes (Vacutainer, BD, Franklin Lakes, 

NJ) and allowed to sit at room temperature for 15-minutes.  Samples were centrifuged for 

5-minutes at 2000rpm and plasma was aliquoted and stored at -80°C until assayed.  

Following blood collection, the animals were sacrificed by removing the heart.  The heart 

was flushed in phosphate buffered saline to remove excess blood, weighed and flash 

frozen in liquid nitrogen.  The entire spleen as well as a section of the liver were removed 

along with the plantarflexor and dorsiflexor skeletal muscles from both legs.  The 

hamstring muscles were first removed to expose the plantar flexor muscles of the 

hindlimb.  The entire gastrocnemius muscle was removed and subsequently separated 

into medial and lateral heads by visual inspection of muscle fiber orientation.  The 

plantaris and soleus were then removed from each hindlimb and trimmed of visible 

connective tissue.  The dorsiflexor muscles (tibialis anterior and extensor digitorum 

longus) were then removed, and trimmed of visible connective tissue.  Immediately upon 
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dissection, all tissue samples were flash frozen in isopentane cooled to the temperature of 

liquid nitrogen.  All tissues were stored at -80°C until biochemical analyses were 

performed.   

 

Enzyme-Linked Immunosorbant Assay (ELISA).  Plasma samples were used to verify 

a systemic elevation of human IL-15 using a sensitive ELISA kit (R&D Systems, 

Minneapolis, MN) according to manufacture’s instructions.  A subset of tissue 

homogenates was also assayed with this kit to verify a tissue-specific elevation of human 

IL-15.  Human IL-15 was detected in homogenates from the plantaris and soleus muscles 

as well as the left ventricle and spleen (data not shown).  Systemic TNF-α levels were 

also assayed using a sensitive ELISA kit (R&D Systems, Minneapolis, MN) according to 

manufacture’s instructions. 

   

Cytoplasmic protein extraction and quantification.  Tissue samples, approximately 

50-75 mg, were homogenized in 1 ml of ice-cold lysis buffer (10 mM NaCl, 1.5 mM 

MgCl2, 20mM HEPES at pH 7.4, 20% glycerol, 0.1% Triton X-100, and 1mM 

dithioreitol) to obtain cytoplasmic protein extracts according to the methods of Rothermel 

et al (29).  Homogenates were centrifuged at 3,000 rpm for 5-minutes at 4°C.  The 

supernatants were collected that contained the cytoplasmic protein fraction.  The protein 

concentration of the total homogenate was assayed spectrophotometrically at 562 nm 

(BioRad, SmartSpec 3000) using a commercial bicinchoninic acid (BCA) method as 

recommended by the manufacturer (Pierce, Rockford, IL) with bovine serum albumin 

used as standards.  To verify the BCA protein quantification method, samples were also 
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assayed using a DC Protein Assay kit (BioRad, Hercules, CA), which is similar to the 

Lowry method (21).  Briefly, this kit is a colometric assay that utilizes reducing agents 

and detergents for the determination of protein concentrations in tissue homogenates at a 

wavelength of 650-750nm.     

 

Cell death ELISA and calculation of apoptotic index.  Cytoplasmic protein extracts 

were used to quantify DNA fragmentation in all muscle samples using a commercially 

available ELISA kit (Cell Death Detection ELISA, Roche Diagnostics, Mannheim, 

Germany).  Briefly, the wells of a 96-well plate were coated with a primary anti-histone 

mouse monoclonal antibody.  Following the addition of 100 µl of each sample, a 

secondary anti-DNA mouse monoclonal antibody coupled to peroxidase was added to 

each well.  The substrate, 2,2’-azino-di-(3-ethylbenzthiazoline sulfonate) (ABST) was 

used to photometrically determine the amount of peroxidase retained in the 

immunocomplex.  The color change of each well was determined at a wavelength of 

405nm using a Dynex MRX plate reader and computer software (Revelation, Dynatech 

Laboratories, CA).  The resulting optical density (OD) was normalized to the protein 

concentration of each sample and recorded as the apoptotic index (OD405
.mg protein-1).  

  

Fluorometric Caspase-Activity Assay.  Caspase-8 and caspase-3 activity were 

examined using commercially available fluoremetric substrates (caspase-8/10 AC-IETD-

AMC, caspase-3 AC-DEVD-AFC, Alexis Biochemical, San Diego, CA).  Previous 

research has demonstrated that embryonic, but not adult skeletal muscle, contains 

detectable levels of caspase-10, thus allowing the assumption that the caspase-8/10 
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substrate is specific to the activity of caspase-8 in this study (23).  To each well of a 96-

well fluorescent microplate (Nalgene Nunc Int., Rochester, NY) was added 50μl of 

caspase activity buffer, 50μl of cytoplasmic protein without protease inhibitor from each 

muscle, and 10μl of substrate (1mM).  Samples were incubated at 37°C for 2-hours with 

caspase activity accessed using a fluorescent microplate reader at the following 

wavelengths: caspase-8 excitation 380nm and emission 460nm; caspase-3 excitation 

400nm and emission 505nm.  Caspase activity was quantified by subtracting OD readings 

at time 2-hour from the initial reading at time 0-hour.  The resulting optical density was 

normalized to the protein concentration of each muscle sample to provide a caspase 

activity index (OD.mg protein-1).   

 

Statistics.  Statistical analyses were performed using the SPSS software package, version 

10.0.  Data are presented as MEANS ± SE.  Data were analyzed using a 2x2 ANOVA to 

examine the main effects of age and IL-15 treatment as well as the age x treatment 

interaction, with significance set a p<0.05.   

 

RESULTS  

EXPERIMENT 1 

Cell Viability Accessed by Flow Cytometry.  A cell viability probe, containing 7AAD, 

which binds to DNA, was used to first examine overall cell death in response to rTNF-α, 

rIL-15, and rTNF-α+rIL-15.  This experiment was performed in duplicate, with 

representative results presented in Figure 1.  Positive staining for 7AAD, indicative of an 

overall decrease of cell viability, was increased 28% following treatment with rTNF-α, 
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compared to unstimulated myoblasts, although this change did not reach significance 

(p=0.487; Figure 1B).  Cell viability was unchanged when myoblasts were treated with 

rIL-15 alone (p=0.744; Figure 1C).  Positive 7AAD staining was increased ~10% when 

myoblast cultures contained both rTNF-α, rIL-15, although this change did not reach 

significance (p=0.971; Figure 1D).  Visual inspection of myoblasts at day 3 of 

stimulation supported the changes in TNF-α containing cultures, as a significant number 

of myoblasts were unattached and floating in the culture media, while myoblasts 

remained healthy and attached in unstimulated cultures and in cultures containing rIL-15 

only. 

 

Mitochondrial Integrity Accessed by Flow Cytometry.  As an additional marker of 

apoptosis, a fluorescent dye that specifically recognizes mitochondria was utilized.  This 

experiment was performed in duplicated and repeated twice.  The data are presented in 

Table 1, with representative graphs presented in Figure 2.  When myoblasts were 

exposed to rTNF-α, mitochondrial staining was reduced by 37% and 32%.  Incubation of 

myoblasts with rIL-15 did not change mitochondrial integrity from control values as 

assessed with this dye.  However, when myoblast cultures contained both rTNF-α and 

rIL-15, mitochondrial staining was again reduced 33% and 30%, indicating no protective 

role of IL-15 in these cultures. 

 

EXPERIMENT 2 

Systemic Elevation of Human IL-15.  As a means to verify proper osmotic pump 

operation, plasma samples were used to measure human IL-15 in experimental animals.  
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Human IL-15 was detected in the IL-15 treated experimental animals (Figure 4), 

although differences were observed when comparing values from Y15 and A15.  Values 

for all control animals (YC and AC) were below the lowest standard used in the 

microplate assay, indicating specificity for human IL-15 with this assay.  

 

TNF-α ELISA.  Plasma samples were used to assay systemic levels of TNF-α in an 

effort to support an age-related elevation of this cytokine.  Surprisingly, TNF-α levels 

were below the detectable limit of the assay in all experimental animals (data not shown). 

 

Bodyweight.  The changes in bodyweight for all groups at 7d and 14d of intervention are 

presented in Table 2.  The bodyweight of YC animals increased 12.3% after the 14d 

intervention, while the bodyweight of AC animals was unchanged.  The bodyweight of 

YIL-15 animals increased 9.1% after the 14d intervention.  In contrast, the bodyweight of 

AIL-15 animals decreased 4.1% following the 14d intervention.  When comparing 

groups, all aged animals were significantly heavier than all young animals. 

 

Skeletal Muscle and Organ Weights.  The individual muscle and organ weights for all 

experimental animals are presented in Table 3 and presented as absolute weights as well 

as weights normalized to the rodent bodyweight to account for the changes observed in 

all groups during the 14d intervention.  The pattern of change was similar for all 5 

skeletal muscles analyzed.  Specifically, normalized muscle weights from all aged 

animals were significantly less when compared to normalized muscle weights from 

young adult animals.  Additionally, normalized muscle weights from animals receiving 
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IL-15 were significantly less when compared to age-matched controls.  The absolute 

weights of hearts from aged animals were greater than those from young adult animals, 

but were less when normalized to bodyweight.  There was no effect of IL-15 treatment in 

hearts from experimental animals.   The absolute weight of the spleen was greater in aged 

animals than in young adult and also greater in both groups with IL-15 treatment.  

Normalization of the spleen weight to the bodyweight abolished the effect of age in this 

tissue, but the effect of IL-15 treatment remained. 

 

Cell-Death ELISA.  Homogenates from three skeletal muscles (plantaris, soleus, medial 

gastrocnemius) as well as the left ventricle, liver, and spleen were used to measure any 

changes in apoptosis using a cell death ELISA kit to quantify fragmented DNA and 

calculate the apoptotic index.  The presence of fragmented DNA followed a similar 

pattern of change in all skeletal muscles examined.  Specifically, control muscles from 

aged rodents exhibited greater levels of DNA fragmentation compared to control muscles 

from young adult, while IL-15 treatment exacerbated the apoptotic index in muscles from 

young adult and aged rodents (Figures 4A-C).  In contrast, although aging itself had no 

effect on the apoptotic index in the left ventricle, the apoptotic index was slightly greater 

in muscles from IL-15 treated aged rodents (Figure 4D).  Similarly, aging had no effect 

on the apoptotic index in liver homogenates, but systemic elevation of IL-15 had a 

positive effect on this parameter in both young adult and aged animals (Figure 4E).  No 

differences in the presence of fragmented DNA were observed in the spleen homogenates 

(Figure 6F).   
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Fluorometric Caspase Activity.  The activity of caspase-8 and caspase-3 was assessed 

in tissue homogenates from three skeletal muscles (plantaris, soleus, medial 

gastrocnemius) as well as the left ventricle and spleen.  Despite measurable changes in 

the presence of fragmented DNA, no changes were observed in the activity of either 

caspases in all tissues assayed (data not shown). 

 

DISCUSSION 

 In this study, we sought to determine if IL-15 protein could attenuate pro-

apoptotic signaling within skeletal muscle downstream of the type I TNFR (i.e. – 

extrinsic apoptotic pathway), through both in vitro and in vivo experimentation.  Previous 

work has shown IL-15 can disrupt the extrinsic apoptotic pathway in skeletal muscle in a 

rodent model of cancer as well as within other tissue types.  Our laboratory has proposed 

that skeletal muscle increases IL-15 mRNA concentrations in response to pro-atrophic 

stimuli as a molecular attempt to counter muscle loss (manuscript in review) and previous 

work has shown IL-15 can inhibit apoptotic signaling via the extrinsic pathway.  The 

results of the current studies, however, do not support a protective role of IL-15 in 

skeletal muscle in aged rodents or in myogenic cultures stimulated with rTNF-α.  In fact, 

when recombinant human IL-15 was elevated systemically for 14 days in experimental 

animals, muscles from young adult and aged rodents displayed increases in fragmented 

DNA.   

 The systemic elevation of IL-15 within experimental animals has been performed 

previously, either by daily subcutaneous (s.c.) bolus injections (11; 14) or through similar 

osmotic mini-pumps as used in this study (17).  Daily s.c. injections of 100µg.kg-1 of rIL-
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15 over a 7 day period into young male tumor-bearing Wistar rats decreased the rate of 

protein degradation, while also inhibiting components of the ubiquitin-dependent 

proteolytic pathway (11).  In a related study, daily IL-15 injections reduced the incidence 

of DNA fragmentation in skeletal muscles from tumor bearing rats and this was 

associated with an alteration of the mRNA expression of the type I and type II TNFRs 

(14).  In vitro data also provided evidence that IL-15 had positive effects in myogenic 

cultures when IGF-I levels were experimentally reduced (28).  Based on these data, we 

hypothesized that IL-15 would exert similar anti-apoptotic effects in aged animals where 

circulating TNF-α levels are also reported to be elevated (25) and anabolic hormone 

levels are typically reduced (37).  However, despite measurable increases in systemic IL-

15, especially in aged rodents, the incidence of DNA fragmentation was increased in all 

muscle types analyzed.   

The overexpression of IL-15 has previously been shown to protect host animals 

against a lethal challenge.  Specifically, IL-15 transgenic mice were resistant to a lethal 

dose of E. coli that killed 85% of non-transgenic mice within 12 hours of delivery.  In 

this same study, wild-type mice that received a one time intraperitoneal injection of either 

1µg or 10µg of recombinant IL-15 were also resistant to the same dose of E. coli.  When 

peritoneal cells from IL-15 transgenic mice and IL-15 treated wild-type mice were 

isolated, these cells were resistant to apoptosis induced by TNF-α stimulation in vitro.  

Serum TNF-α levels, measured by ELISA, were greater than 600 pg.ml-1 following E. 

coli injection (18).  Injection of 100µg of a mouse Fas monoclonal antibody induced 

massive hepatocyte apoptosis and death within a few hours.  However, injection of a 

long-lasting IL-15 fusion protein prevented organ failure and death following Fas 
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antibody injection.  IL-15 also prevented apoptosis of human T- and B-cells induced by 

anti-Fas antibody, anti-CD3, dexamethasone, and anti-IgM in vitro (9).  These data 

demonstrate that IL-15 has the ability to inhibit death resulting from large-scale 

apoptosis, induced by either TNF-α or anti-Fas antibody.   

In the current study, we attempted to measure plasma TNF-α to support an age-

related increase of this cytokine.  An increase in systemic TNF-α would have supported 

the assumption that this cytokine could initiate the extrinsic apoptotic pathway in our 

rodent model.  However, TNF-α was not detectable in the plasma collected from either 

young adult or aged animals.  It is possible that the age of the rodents utilized in this 

study (i.e. 30 mo.) was not old enough to elicit an increase in TNF-α levels.  

Additionally, the aging stimulus may not have as dramatic an effect as a cancer stimulus 

for eliciting elevations in this cytokine.   

In summary, our data suggest that IL-15 does not attenuate apoptotic signaling 

induced by TNF-α in myogenic cultures or in the skeletal muscles of aged animals.  

These data conflict with other data showing a protective effect of IL-15.  However, this 

protective effect may take place in response to acute and dramatic increases in apoptosis, 

as observed following E. coli or anti-Fas injections, and not during the chronic stimulus 

of aging.  Additionally, variability in the delivery methods of IL-15 and/or the type of IL-

15 utilized may contribute to our conflicting data, as well as ages and strains of 

experimental animals.  Future studies should address the efficacy of IL-15 treatment to 

spare muscle mass in response to muscle wasting disorders and in very old animals, as 

IL-15 has shown promise as an apoptotic inhibitor in conditions with more extreme 

stresses than imposed in this study.    
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Legend for Figure 1: Flow cytometric analysis of cell viability using 7AAD.  

Myoblasts cultures were maintained for 72h with the following treatment 

conditions: A, control cultures with no cytokines; B, 20ng.ml-1 of TNF-α; C, 

20ng.ml-1 of IL-15; and D, 20ng.ml-1 of TNF-α + IL-15.  Cytokines were 

replenished every 24h.  Both adherent and non-adherent cells were harvested after 

72h and analyzed for cell viability using the DNA marker, 7AAD.  This experiment 

was performed in duplicate, with the graphs representing one set of data. 
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Figure 2 

A: Control 

B: TNF-α 

C: IL-15 

D: TNF-α + IL-15 
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Legend for Figure 2: Flow cytometric analysis of mitochondrial integrity using 

MitoTracker.  Myoblasts cultures were maintained for 72h with the following 

treatment conditions: A, control cultures with no cytokines; B, 20ng.ml-1 of TNF-α; 

C, 20ng.ml-1 of IL-15; and D, 20ng.ml-1 of TNF-α + IL-15.  Cytokines were 

replenished every 24h.  Both adherent and non-adherent cells were harvested after 

72h and analyzed for mitochondrial integrity using the Mito Tracker.  This 

experiment was performed in duplicate and repeated twice, with the graphs 

representing one set of data.  The green line in B, C, and D represents control data 

from A. 

 



Figure 3:  Verification of systemic elevation of human IL-15.  An ELISA assay was 

utilized to verify a systemic elevation of human IL-15 via mini-osmotic pumps.  

Data are presented as MEANS±SE with significance set at p<0.05.  *, significant 

effect of IL-15 treatment; **, significant effect of aging. 
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Legend for Figure 4:  Incidence of apoptosis assessed by DNA fragmentation.  An ELISA assay was utilized to examine the 

incidence of DNA fragmentation in tissue homogenates from: A, plantaris muscle (PL); B, soleus muscle (SOL); C, medial 

gastrocnemius muscle (MG); D, left ventricle (LV); E, liver; and F, spleen.  Data are presented as MEANS±SE with significance 

set at p<0.05.  *, significant effect of IL-15 treatment; **, significant effect of aging. 
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Table 1: Analysis of Mitochondrial Integrity in Myoblast Cultures 
 
Experiment 1 (Performed in Duplicate) 
 

Group 
 

Repetition 
1 

Repetition 
2 

Mean±SD %Change p-Value 

Control 
 

1186.8 1052.8 1119.8± ---  

rTNF-α 
 

792.0 617.7 704.9± -37%* 0.005 

rIL-15 
 

1285.5 1188.4 1236.9± --- 0.311 

rTNF-α + 
 

rIL-15 

689.8 820.3 755.1± -33%* 0.004 

 
Experiment 2 (Performed in Duplicate) 
 

Group 
 

Repetition 
1 

Repetition 
2 

Mean±SD %Change p-Value 

Control 
 

2391.2 2733.9 2562.6± ---  

rTNF-α 
 

1909.8 1561.2 1735.5± -32%* 0.036 

rIL-15 
 

2443.7 2273.3 2358.5± --- 0.848 

rTNF-α + 
 

rIL-15 

1896.8 1668.9 1782.9± -30%* 0.029 
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Table 2: Bodyweight Changes During 14d IL-15 Intervention 
 

 Initial 
 

7d %Change 14d %Change 

YC 
 

293.8±9.5 305.9±9.3 +4.1% 329.4±9.3 +12.1%*, **

Y15 
 

289.2±9.7 300.7±11.6 +4.0% 315.0±9.7 +8.9%*, ** 

AC 
 

607.6±20.0 603.5±19.8 -0.7% 598.0±20.2 -1.6% 

A15 
 

620.8±10.6 619.6±9.6 -0.2% 595.4±8.6 -4.1%* 

 
Legend: YC – young control rodents, Y15 – young IL-15 treated rodents, AC – aged control rodents, A15 – aged IL-15 treated 

rodents, * - significant change from baseline (p<0.05), ** - significant change with aging (p<0.05)  
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Table 3: Organ and Skeletal Muscle Weights From Experimental Rodents 
 
Tissue 
 

Young 
 
Con 

Young 
 
IL15 

% Change 
 
Con vs. IL15 

Aged  
 
Con 

Aged  
 
IL15 

% Change 
 
Con vs. IL15 

%Change 
 

Aged vs. Young Con 

%Change 
 

Aged vs. Young IL15 
Heart 
 

914.0 866.6 -5.2% ns 1333.3 1414.3 +6.1% ns +45.9%** +63.2%** 

Norm Heart 
 

2.8 2.8 0 2.3 2.4 0 -21.7** -14.3%** 

Spleen (SPL) 
 

629.1 871.7 +38.6* 1066.7 1243.9 +17.6%* +69.6%** +42.7%** 

Norm SPL 
 

1.94 2.78 +43.3%* 1.78 2.09 +17.4%* -8.2% ns -24.8% 

Plantaris (PL) 
 

336.8 304.8 -9.5%* 375 341.3 -9.0%* +11.3%** +12% ** 

Norm PL 
 

1.02 .97 -5% .63 .57 -9.5% -38.2%** -41.2%** 

Soleus (SOL) 
 

140.4 123.1 -12.3%* 171.7 156.3 -9%* +22.3%** +27%** 

Norm SOL 
 

.43 .39 -9.3%* .29 .26 -10.3%* -32.6%** -33.3%** 

Med Gastroc  
 
(MG) 

785.5 703.2 -10.5%* 787.5 731 -7.2%* +0.3% ns +4%ns 

Norm MG 
 

2.39 2.24 -6.3%* 1.32 1.23 -6.8%* -44.8%** -45.1%** 

Lat Gastroc (LG) 
 

1029.1 994.1 -3.4%ns 964.2 962.5 -0.2%ns -6.3%ns -3.2%ns 
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Norm LG 
 

3.13 3.16 -1.0%ns 1.62 1.62 0ns -48.2%** -48.7%** 

Gastrocnemius 
 
(Gastr) 

1814.6 1697.3 -6.5%ns 1751.7 1693.5 -3.3%ns -3.5%ns -0.2%ns 

Norm Gastr 
 

5.5 5.4 -1.8%ns 2.9 2.8 -3/4%ns -47.3%** -48.1%** 

Tibialis Anterior 
 
(TA) 

624.6 573.4 -8.2%* 701.7 646.6 -7.9%* +12.3%** +12.8%** 

Norm TA 
 

1.90 1.82 -4.2%* 1.18 1.09 -7.6%* -37.9%** -40.1%** 

Extensor  
 
Digitorum  
 
Longus (EDL) 

157.0 144.2 -8.2%* 175.8 164.5 -6.4%* +12.0%** +14.1%** 

Norm EDL 
 

.48 .46 -4.2%ns .29 .28 -3.4%ns -39.6%** -39.1%** 
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General Discussion 

Aging is characterized by a gradual loss of skeletal muscle mass and strength, 

which has been termed sarcopenia (reviewed in (36)).  There are multiple contributing 

mechanisms leading to the onset of sarcopenia, including: denervation and reinnervation 

of motor units, especially within skeletal muscles composed of a high degree of type II 

muscle fibers (1; 45); an alteration in the hormonal milieu in which anabolic hormone 

concentrations progressively decline (43; 44); elevated concentrations of inflammatory 

mediators that are not only associated with disease states, but also occur in healthy older 

adults (4-8; 32; 37; 46); and muscle nuclei and fiber loss through apoptotic mechanisms 

(16; 30; 38-40).  Regardless of which of these factors predominates, the result is the 

same.  Muscle strength declines an average of 20-40% in healthy men and women during 

the seventh and eighth decades of life, and muscle mass, determined by cross sectional 

area (CSA), is reduced an average of 40% between the ages of 20 and 60 (17).  

Sarcopenia represents an important public health issue, effecting the independence and 

ability of the elderly to perform activities of daily living (28; 35).  Thus, determining the 

signaling pathways that contribute to the onset of sarcopenia will greatly aid in 

developing treatment options that can offset and/or delay the loss of muscle mass and 

strength.   

Pro-Inflammatory Factors are Elevated Systemically with Aging 

 A well-characterized increase in the circulating concentrations of inflammatory 

factors has been observed with advanced age.  Specifically, increases in the 

concentrations of circulating cytokines occur as a result of the aging process (8; 27).  

Systemic levels of tumor necrosis factor-alpha (TNF-α) (5; 7; 37) and interleukin-6 (IL-6, 
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(4; 20; 32) increase when comparing young adult, and elderly healthy adults.  Elevated 

circulating levels of TNF-α are associated with lower appendicular skeletal muscle mass 

as measured by dual-energy x-ray absorptiometry (DEXA) (32).  Additionally, elevated 

levels of TNF-α and IL-6 in aged humans have been associated with smaller muscle area, 

less appendicular skeletal muscle mass, and lower knee extensor and grip strength (46).  

Circulating TNF-α levels are also a predictor of all cause mortality in centenarians.  Thus, 

one potential mechanism contributing to the onset of sarcopenia may be the increase in 

circulating pro- and anti-inflammatory cytokines.    

 Animal studies have demonstrated negative effects of TNF-α and IL-6 on muscle 

protein synthesis, muscle mass, and incidence of apoptosis.  Injection of recombinant TNF-α 

and IL-6 into rats increased muscle proteolysis and decreased the rate of protein synthesis in 

rodent skeletal muscles (15; 22; 23).  Additionally, Garcia-Martinez et al (21) showed 

increased ubiquitinization of skeletal muscle proteins and Carbo et al (13) reported increased 

DNA fragmentation, characteristic of apoptosis, in gastrocnemius muscles in animals 

injected with recombinant TNF-α.  These studies suggest that increases in TNF-α and IL-6 

can not only increase protein degradation through ubiquitin directed proteolysis, but also 

may initiate a program of apoptosis within skeletal muscle.  Treatments aimed at negating 

the effects of these cytokines may help to spare muscle mass in the elderly. 

The Extrinsic Apoptotic Pathway is an Active Process in Aged Skeletal Muscle 

 The increased incidence of apoptosis in skeletal muscles from aged animals has 

provided convincing evidence that apoptotic signaling contributes to the loss of 

myonuclei with age.  Most reports have focused on the pro-apoptotic signaling that arises 

from the mitochondria and its impact on myonuclear loss.  The contribution of the 
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extrinsic apoptotic pathway to skeletal muscle mass losses, especially during aging, has 

been less studied (34).  The increase in circulating concentrations of TNF-α may initiate 

pro-apoptotic signaling upon binding to the type I TNF receptor. Upon binding, a death 

inducing signaling complex (DISC) is formed at the cytoplasmic portion of the TNFR, 

composed of adaptor proteins such as Fas associated death domain protein (FADD), 

TNFR associated death domain protein (TRADD) and procaspase-8 (reviewed in (41)).  

Formation of the DISC stimulates cleavage of procaspase-8 into the functional initiator 

caspase-8.  Once cleaved, caspase-8 stimulates cleavage and activation of the executioner 

caspase-3, which is directly linked to pro-apoptotic changes.  Thus, an extrinsic pathway 

of apoptosis is activated by binding of a ligand (TNF-α) to a cell surface death receptor 

(type-I TNFR).   

A novel finding of this dissertation is that the extrinsic apoptotic pathway, 

downstream of the type I TNFR, is an active process within aged skeletal muscles and 

may contribute to the onset of sarcopenia.  Plantaris and soleus muscles from aged 

rodents were smaller than muscles from young adult rodents, whether expressed in 

absolute terms or relative to the rodent bodyweight, while also having a greater apoptotic 

index.  When analyzing the components of the signaling pathway and comparing aged 

plantaris and soleus muscles to young adult muscles, a greater mRNA expression for the 

type I TNFR, greater mRNA expression and protein content for the adaptor protein 

FADD, greater protein content of pro-apoptotic Bid, and greater caspase activities of 

caspase-8 and caspase-3 was observed.  The changes in these signaling molecules are 

consistent with an activation of this apoptotic pathway in aged muscles and were 

associated with the phenotypic changes in the skeletal muscles, especially the plantaris.  
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Analyses from human muscle biopsy samples have consistently demonstrated that type II 

fibers are more susceptible to aging-related atrophy when compared to type I fibers (18; 

29).   Type II fibers (i.e., the plantaris muscle) may be more susceptible to age associated 

atrophy and nuclear loss as a result of pro-apoptotic signaling via the extrinsic pathway.  

Nevertheless, the possibility that apoptotic signaling may be muscle and not fiber-type 

specific cannot be rules out.  

 Another novel finding of this dissertation is the greater protein content of the full-

length pro-apoptotic molecule, Bid, in aged skeletal muscles.  Bid has been previously 

shown to mediate cross-talk between the extrinsic apoptotic pathway and the intrinsic 

apoptotic pathway.  Specifically, cleaved caspase-8 can cleave full-length Bid, producing 

truncated or tBid, which can interact with another pro-apoptotic protein, Bax, and initiate 

cytochrome-c release from the mitochondria.  In addition, myoblasts stimulated with 

rTNF-α, in vitro displayed decreases in mitochondrial content, further suggesting cross-

talk between the extrinsic and intrinsic apoptotic pathways.  The current study as well as 

data from Nagaraju et al. (31) reveal that skeletal muscle cells may act as type II cells, in 

that apoptotic signaling arising from the death receptor can include subsequent 

mitochondrial apoptotic signaling through Bid activation.  Type II cells accumulate 

considerably less DISC following ligand binding to the death receptor and, therefore, 

require mitochondrial signaling to fully activate an apoptotic program.  Future studies 

should directly address the ability of tBid to mediate messages from the death receptor to 

the mitochondria and contribute to apoptosis in aged skeletal muscles. Nevertheless, 

skeletal muscles from aged rodents contained a greater protein expression of full-length 

Bid, and TNF-α can decrease mitochondrial integrity in myoblast cultures, which raises 
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the possibility that cross talk between the extrinsic pathway and the intrinsic pathway 

may occur in aged skeletal muscles. 

The IL-15/IL-15R System in Skeletal Muscle 

Interleukin-15 (IL-15) is a recently discovered cytokine (12; 24) that belongs to 

the four α-helix bundle family of cytokines, that also include IL-2, IL-3, IL-4, IL-5, IL-6, 

IL-7, and IL-9 (for in-depth reviews on IL-15, see(9; 10; 19; 47).  The roles of IL-15 

within the immune system have been shown to include proliferation and survival of 

CD8+ T-cells (3), the activation of natural killer (NK) cells(14), and proliferation of B 

cells(2).  Both IL-15 and its high affinity receptor, IL-15Rα, are expressed in skeletal 

muscle.  Furthermore, roles for IL-15 in stimulating myosin heavy chain protein content 

in myogenic cultures and in attenuating muscle wasting and apoptosis during disease 

states have been demonstrated.  Based on these data, I wanted to determine if muscle 

unloading and aging, two conditions that promote muscle atrophy, would alter the basal 

expression of IL-15.   

 The IL-15 gene is responsive to skeletal muscle aging and unloading, two conditions 

known to promote muscle atrophy.  The responses of IL-15 mRNA may however, be fiber 

type and/or muscle specific.  This response of IL-15 was observed in two different models 

of unloading using young and aged experimental animals; the hindlimb suspension model in 

rodents and the wing unloading following stretch overload model in quail.  These two 

models differ in that the HS model causes muscle atophy of the plantar flexor muscles 

below control levels, while the wing unloading model allows regression of previously 

hypertrophied muscle to control levels but not below control.  Despite the differences in the 

models and the different species of experimental animals utilized, the response of IL-15 was 
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consistent.  In addition, skeletal muscles express the mRNA for the functional trimeric IL-

15R.  Thus, skeletal muscle cells may not only respond to secreted IL-15, but also respond 

to and present IL-15 in trans, bound to the sarcolemma.  Future studies should address how 

skeletal muscles functionally respond to IL-15, as this cytokine has promise as a muscle 

sparing agent during muscle wasting conditions. 

Overexpression of IL-15 Does Not Attenuate Apoptotic Signaling in Skeletal Muscle  

 Based on the changes in IL-15 expression in skeletal muscles following periods of 

unloading and especially during aging, the efficacy of increasing IL-15 levels to spare 

muscle mass and attenuate apoptotic signaling was tested using cell culture experiments 

to specifically examine the effects of IL-15 on TNF-α-induced apoptosis in myoblasts, as 

well as in vivo to examine the effects of IL-5 in aged rodents.  The following hypotheses 

were tested: murine rIL-15 would attenuate rTNF-α-induced apoptosis in the mouse 

C2C12 myogenic cell line, and the incidence of apoptosis in muscles from aged rodents 

would be reduced with systemic elevation of IL-15.  In addition to skeletal muscle, other 

tissues were analyzed from rodents to examine tissue specific effects of IL-15.   

  The results of these studies, however, do not support a protective role of IL-15 in 

skeletal muscle in aged rodents or in myogenic cultures stimulated with rTNF-α.  In fact, 

when recombinant human IL-15 was elevated systemically for 14 days in experimental 

animals, muscles from young adult and aged rodents displayed increases in the presence 

of fragmented DNA.  Based on these data, I rejected my working hypotheses, with the 

following caveats: 1) it is possible that the age of the rodents utilized in this study (i.e. 30 

mo.) was not old enough to elicit an increase in systemic TNF-α levels; and 2) the 

chronic aging stimulus may not have as dramatic an effect as an acute cancer stimulus for 
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eliciting elevations in this cytokine; and 3) the anti-apoptotic effects of IL-15 may be 

tissue specific.  In these experiments, I specifically hypothsized that IL-15 would exert 

positive effects in aged animals where circulating TNF-α levels were reported to be 

elevated (34) and anabolic hormone levels are typically reduced (43).  However, despite 

measurable increases in systemic human IL-15, especially in aged rodents, the incidence 

of DNA fragmentation was increased in all muscle types analyzed.   

The overexpression of IL-15 has previously been shown to protect host animals 

against a lethal challenge.  Specifically, IL-15 transgenic mice were resistant to a lethal 

dose of Escherichia coli (E. coli)  that killed 85% of non-transgenic mice within 12 hours 

of delivery.  In this same study, non-transgenic mice that received a one time 

intraperitoneal injection of either 1µg or 10µg of recombinant IL-15 were also resistant to 

the same dose of E. coli.  When peritoneal cells from IL-15 transgenic mice and IL-15 

treated non-transgenic mice were isolated, these cells were resistant to apoptosis induced 

by TNF-α stimulation in vitro.  Serum TNF-α levels, measured by ELISA, were greater 

than 600 pg.ml-1 following E. coli injection (26).  Injection of 100µg of a mouse Fas 

monoclonal antibody induced massive hepatocyte apoptosis and death within a few 

hours.  However, injection of a long-lasting IL-15 fusion protein prevented organ failure 

and death following Fas antibody injection.  IL-15 also prevented apoptosis of human T- 

and B-cells induced by anti-Fas antibody, anti-CD3, dexamethasone, and anti-IgM in 

vitro (11).  These data demonstrate that IL-15 has the ability to inhibit death resulting 

from large-scale apoptosis, induced by either TNF-α or anti-Fas antibody.  In the current 

study, I attempted to measure and quantify plasma TNF-α to support an age-related 

increase of this cytokine.  An increase in systemic TNF-α would have allowed the 
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assumption that this cytokine could initiate the extrinsic apoptotic pathway in our rodent 

model.  However, TNF-α was not detectable in the plasma collected from either young 

adult or aged animals.  It is possible that the age of the rodents utilized in this study (i.e. 

30 mo.) was not old enough to elicit an increase in TNF-α levels.  Additionally, the aging 

stimulus may not have as dramatic an effect as a cancer stimulus for eliciting elevations 

in this cytokine.   

A possible limitation of this study was the delivery method of rIL-15 (i.e.- 

osmotic mini-pumps).  As noted previously (33), results can often conflict when 

comparing data from among studies utilizing different methods.  For example, direct 

injections of rTNF has been shown to promote signs of apoptosis within skeletal 

muscles(13).  However, in a recent study that utilized mini-osmotic pumps to deliver 

rTNF, apoptosis was not increased in skeletal muscles, contradicting the previous study 

interpretations (33).  Although this study was not the first to utilize mini-pumps to deliver 

rIL-15 (25), it was the first to use them in aged rodents.  The circulating levels of rIL-15 

in aged rodents in this study were more than 20-fold higher than in young adult rodents.  

It cannot be ruled out that this supra-physiological level of IL-15 may have negatively 

affected the aged rodents more so than the young adult rodents.  In addition, recent 

evidence suggests that the biological activity of IL-15 is enhanced when bound in a 

complex with the IL-15Rα (i.e.-trans presentation, (42)).  This study suggested that the 

soluble levels of IL-15Rα may be limiting and the total effects of IL-15 may not be 

observed by increasing systemic levels of IL-15 protein alone.     

In summary, IL-15 does not appear to attenuate apoptotic signaling induced by 

TNF-α in myogenic cultures or in the skeletal muscles of aged animals.  These data 
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conflict with other data showing a protective effect of IL-15.  However, this protective 

effect may take place in response to acute and dramatic increases in apoptosis, as 

observed following E. coli or anti-Fas injections, and not during the chronic stimulus of 

aging.  Additionally, variability in the delivery methods of IL-15 and/or the type of IL-15 

utilized may contribute to our conflicting data, as well as ages and strains of experimental 

animals utilized in these studies.  Future studies should address the efficacy of IL-15 

treatment to spare muscle mass in response to muscle wasting disorders, as IL-15 has 

shown promise as an apoptotic inhibitor.    
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