
Graduate Theses, Dissertations, and Problem Reports

2012

Robust Real-Time Recognition of Action Sequences Using a Multi-Robust Real-Time Recognition of Action Sequences Using a Multi-

Camera Network Camera Network

Rahul Ratnakar Kavi
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Kavi, Rahul Ratnakar, "Robust Real-Time Recognition of Action Sequences Using a Multi-Camera Network"
(2012). Graduate Theses, Dissertations, and Problem Reports. 151.
https://researchrepository.wvu.edu/etd/151

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/151?utm_source=researchrepository.wvu.edu%2Fetd%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Robust Real-Time Recognition of Action

Sequences Using a Multi-Camera Network

by

Rahul Ratnakar Kavi

Thesis submitted to the
Benjamin M. Statler College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Computer Science

Arun A. Ross, Ph.D.
Xin Li, Ph.D.

Vinod K. Kulathumani, Ph.D., Chair

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2012

Keywords: Camera Networks, Machine Learning, Action Recognition, Video Surveillance,
Computer Vision

Copyright 2012 Rahul Ratnakar Kavi

Abstract

Robust Real-Time Recognition of Action Sequences Using a Multi-Camera Network

by

Rahul Ratnakar Kavi
Master of Science in Computer Science

West Virginia University

Vinod K. Kulathumani, Ph.D., Chair

Real-time identification of human activities in urban environments is increasingly be-
coming important in the context of public safety and national security. Distributed camera
networks that provide multiple views of a scene are ideally suited for real-time action recog-
nition. However, deployments of multi-camera based real-time action recognition systems
have thus far been inhibited because of several practical issues and restrictive assumptions
that are typically made such as the knowledge of a subjects orientation with respect to
the cameras, the duration of each action and the conformation of a network deployment
during the testing phase to that of a training deployment. In reality, action recognition
involves classification of continuously streaming data from multiple views which consists of
an interleaved sequence of various human actions. While there has been extensive research
on machine learning techniques for action recognition from a single view, the issues arising
in the fusion of data from multiple views for reliable action recognition have not received
as much attention. In this thesis, I have developed a fusion framework for human action
recognition using a multi-camera network that addresses these practical issues of unknown
subject orientation, unknown view configurations, action interleaving and variable duration
actions.

The proposed framework consists of two components: (1) a score-fusion technique that
utilizes underlying view-specific supervised learning classifiers to classify an action within a
given set of frames and (2) a sliding window technique that is used to parse a sequence of
frames into multiple actions. The use of a score-fusion technique as opposed to a feature-level
fusion of data from multiple views allows us to robustly classify actions even when camera
configurations are arbitrary and different from training phase and at the same time reduces
the required network bandwidth for data transmission permitting wireless deployments.
Moreover, the proposed framework is independent of the underlying classifier that is used to
generate scores for each action snippet and thus offers more flexibility compared to sequential
approaches like Hidden Markov Models. The amount of training and parameterization is also
significantly lower compared to HMM-based approaches. This Real-Time recognition system
has been tested on 4 classifiers which are Linear Discriminant Analysis, Multinomial Naive
Bayes, Logistic Regression and Support Vector Machines. Over 90% accuracy has been
achieved by this system in Real-Time recognizing variable duration actions performed by
the subject. The performance of the system is also shown to be robust to camera failures.

iii

Acknowledgements

First, I want to thank my committee chair and advisor, Dr. Vinod K. Kulathumani,

for guiding me in the my research and providing me the opportunity to work with him and

his other graduate students. This thesis work has been made possible with his constant

support and guidance. I also want to thank Dr. Arun A. Ross and Dr. Xin Li for being a

part of the my committee. I have had discussions with them which were important in my

understanding of identifying and soliving certain research oriented problems in my Thesis.

I would like to thank my current co-workers for helping me out in collecting the data-

set for this work. I want to thank my previous co-workers Sriram Sankar and Sree Cha-

ran with whom I’ve had the pleasure of working with. They have been extremely helpful,

supprotive in buidling my understanding of the subject. I’ve learnt loads from them in

discussions with them and also the valuable code debugging sessions we’ve had together.

Last but not the least, I want to express my gratitude to my family. My parents have been

very encouraging on my decision to go to grad school. Their support has been relentless and

a constant motivation to my desire of pursuing Computer Science in school.

iv

Contents

Acknowledgements iii

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Overview . 1
1.2 Summary of Contributions . 5
1.3 Organization of rest of the thesis . 7

2 Background work and existing literature 8
2.1 Approaches to feature extraction from videos 8

2.1.1 Volumetric methods . 8
2.1.2 Non-Parametric methods . 10
2.1.3 Parametric methods . 11

2.2 Approaches to process streaming data . 11
2.2.1 Sliding window techniques . 12
2.2.2 Graphical models based techniques 12

2.3 Related work . 13

3 Overview of the system and description 16
3.1 System Model . 16
3.2 System description . 19

3.2.1 Collection of training and test data 19
3.2.2 Extraction of feature descriptors from data 20

3.3 Classification Algorithms . 21
3.3.1 Linear Discriminant Analysis (LDA) 22
3.3.2 Multinomial Naive Bayes (MNB) . 24
3.3.3 Logistic Regression (LR) . 25
3.3.4 Support Vector Machines (SVM) . 27

3.4 Score Fusion . 28
3.4.1 Score Fusion with known window sizes 28
3.4.2 Score Fusion with unknown window size 30

CONTENTS v

4 Implementation and performance evaluation 34
4.1 Implementation details . 34
4.2 Results in Training Phase . 35
4.3 Recognition results on streaming data . 38

5 Conclusion and Future work 44
5.1 Conclusion . 44
5.2 Future work . 45

References 46

vi

List of Figures

3.1 The 8 camera layout used in the experiment. The subject is shown at location
Z and Subject can be at the center of the square region. 17

3.2 The view-angle of camera C with respect to action being performed. A subject
is standing at point Z and performing an action Aa while facing direction
shown by ray ZB. 18

3.3 Depicts 8 view-angle sets for camera Ci with respect to the action being
performed. The subject is located at point Z and could be facing any direction.
View-angles of camera Ci are grouped into 8 sets as shown in the Figure. . . 19

3.4 Extracting local feature descriptors. A bounding box that encloses all back-
ground subtracted silhouette is drawn around each silhouette. Only binary
information is retained for each block in a grid of 7 x 7. For each block in
motion energy of image of the video sequence, sum of pixels in each block is
stored. 20

3.5 LDA project vectors plotted on a graph. On the left (in yellow) is 1 hand
waving feature vectors projected in 1 dimension. On the right is rest of the
actions projected in 1 dimension. 23

4.1 Subject performing a 2 hand waving action in the scene as seen from Camera 1 35
4.2 performance of the system with known window sizes against number of views

removed . 38
4.3 Effect of thresholds on performance with all views intact 40
4.4 Effect of thresholds on performance with 1 view removed 41
4.5 Effect of thresholds on performance with 2 views removed 42
4.6 Effect of thresholds on performance with 3 views removed 42
4.7 Effect of thresholds on performance with 4 views removed 43

vii

List of Tables

3.1 Action List . 21

4.1 Confusion Matrix for LDA classifier with all views intact 36
4.2 Confusion Matrix for MNB classifier with all views intact 36
4.3 Confusion Matrix for LR classifier with all views intact 37
4.4 Confusion Matrix for SVM classifier with all views intact 37

1

Chapter 1

Introduction

In this chapter a brief overview of real-time action recognition is presented. The issues

encountered in single-camera based surveillance and how they can be solved using multiple

cameras is presented. A brief overview of challenges in realizing an automated multi-camera

real-time action recognition system is discussed. Then the contributions made to solve

certain challenges posed in multi-camera network are presented.

1.1 Overview

Automated human action recognition is a widely studied topic. It has got wide range of

applications from surveillance, gaming, monitoring parking lots, sign language learning, aug-

mented reality and applications in smart home environments.

Its a widely studied area where ideas from computer vision, machine learning and distributed

systems congregate. One can categorize human actions into three categories i.e., gestures,

actions and activities [1]. Gestures can be considered as a very short duration actions. Exam-

ple of a gesture can be signs in American Sign Language (ASL). Activities can be considered

as complex actions and long interleaved actions. Example of an activity would be opening a

door, entering a room, pulling out a chair, sitting on the chair in an interleaving manner. Rec-

ognizing human actions can be done using motion sensors, cameras, infrared sensors, pressure

sensors, etc. However in this study, we deal with human action recognition using a camera

network.

Rahul R. Kavi Chapter 1. Introduction 2

Single camera based surveillance systems have been very popular in the past. Researchers

have extensively worked on single camera based human action recognition for the past two

decades. However, they completely fail in certain cases where hardware malfunction of

the camera occurs or in case of an occlusion in the scene. The occlusion can be due

to an object in between the sight of the camera and a subject or due to self-occlusion

by the subject. In order to solve this problem multiple camera systems have been pro-

posed. However, these cameras have to be monitored by a human operator for effective use.

Multiple views of a scene provide a better representation of a scene. It solves the problem of

failure of cameras, incomplete view of an action (self-occlusion by the subject for certain ac-

tions), and other occlusions in the view. At the same time, it presents a very complex scenario

where the approach to handle the problem has to process more data than in a single view.

Action recognition systems that use a single camera based approach can be prone to failure.

Multiple cameras can definitely help. An efficient and automated real-time visual surveil-

lance can be realized through a network of cameras monitoring a scene. But, one doesnt get

a chance to see many working applications in the real world. One cannot design a camera

network with same set of principles that apply to traditional single camera based surveillance

system. One of the reasons for this is that, there are many challenges that need to be ad-

dressed before deploying a highly efficient multi-view automated real-time action recognition

system.

A few of the challenges posed in deploying multi-camera network for real-time surveillance of

human activities is presented. In a camera network, in order to retain maximum information

about a scene, one cannot overloadthe network by transferring raw data to be monitored at

the central server or the base-station. One has to extract relevant information in an image of

the scene from a view and only transfer this information to the base-station. Only relevant

information from a video stream must be exchanged in order to come to a collective decision

across multiple cameras. To solve this problem, the system will need some kind of local pro-

cessing power at the camera nodes. One cannot deploy powerful servers at every camera, so

Rahul R. Kavi Chapter 1. Introduction 3

low power processors need to be used and they should be able to handle automated real-time

surveillance. The information processing module at local camera nodes need to be highly

efficient, at the same time consume less processing power in order to retain high frame rate.

We need to avoid computational overload of data by information processing module as it

will lead to low frame capture rate and during this phase, the subject may have left the scene.

One cannot assume to have access to a large buffer while processing data, which can be used

by the underlying classification system to recognize human actions in a camera network. This

is because; we have to handle a large stream of image data at each of the camera. Our classifi-

cation technique has to be a light weight approach that has access to a small buffer of data col-

lected in real-time. The classification strategy has to take advantage of all cameras effectively.

The surveillance system cannot assume the pose of the subject in the scene. The real-

time action recognition framework has to deal with subjects facing arbitrary directions.

Symmetry between training and testing phases should not be assumed as in a real-time

scenario it may not be possible to deploy cameras in such manner. Multiple cameras sam-

ple data at different rates making it tougher to generate a consistent feature vector in

order to identify an action performed by the subject. The information processing strat-

egy chosen at the camera node must be able to handle variable number of frames. The

information extraction strategy and classification algorithm must go hand in hand in or-

der to solve this problem. The classification algorithm plays a vital role in determining

the performance of the system. We need to choose an algorithm that is computation-

ally feasible at the camera nodes (with low processing power) and the algorithm must

be able to clearly distinguish between various actions that a subject may be performing

the scene. The system needs to be independent of the underlying classification strat-

egy used or at least provide a very wide range of classification algorithms at disposal.

In the real-time scenario, the system doesnt know the exact starting and ending points of

an action. Thus, feature vector extracted from the video stream of unknown length has an im-

pact on the manner in which images are captured and classified. Some strategies to solve this

Rahul R. Kavi Chapter 1. Introduction 4

problem require extracting feature vectors from each frame; others extract features from a

short video sequence. This remains an important decision that needs to be made while build-

ing a real-time action recognition system. The real-time multi-view action recognition system

should also be able to easily plug-in into other software modules that are primarily dependent

on visual surveillance. For example, activity recognition (longer duration actions) would be

dependent on making decisions on series of interleaved actions and making sense out of them.

This work presents strategies to solve certain challenges posed by the automation of real-

time multi-view action recognition. Before we attempt to solve these problems, we make

following assumptions to make the problem easier to solve and present a clear picture of

how our system works. Our work assumes that a single subject is present in the center

of 8 cameras and only moving in a restricted area to perform an action. Currently, the

system only supports actions performed by a single subject in a scene. We focus on devel-

oping a framework that can perform interleaved action recognition in real-time where the

subject performs an action in a controlled environment of multiple cameras connected over

a network. This application can be deployed on a thin client or on an embedded platform.

In this work, a setup of 8 cameras is used which were synchronized over the network

using NTP protocol. These cameras are setup in the along the walls facing the center of

the room where the subject is performing an action. This software framework developed

using above described setup and configuration can be used for real-time action recognition.

With appropriate changes made to this framework, it can be extended to activity recogni-

tion in a controlled environment. Extension of this work to activity recognition will require

an abstract layer, which will keep a track of series of action being performed and recog-

nizes an activity based on classified actions. Context free grammars can be used [2] to

model subject to subject interactions, series of actions performed by a subject in a scene.

Rahul R. Kavi Chapter 1. Introduction 5

1.2 Summary of Contributions

This section primarily discusses about main contributions of this work. There is a lot of

research conducted in the area of action recognition however; a lot of these are in the area

of single view action recognition. Also, most of existing techniques ignore or make a lot of

assumptions that are not trivial while deploying the system in a multi-view scenario in real-

time. The main contribution of this work is to identify actions performed in a scene with high

accuracy.

This framework developed can be deployed in real-time and identify variable duration ac-

tions. This work can be extended into an activity recognition system by making minimal

changes to existing architecture. The framework can distinguish between actions with high

accuracy as well as determine if an action performed is not one of the actions on which it

was trained. The system was trained in an offline manner using view-specific classifiers. The

recognition is done by using classification scores from multiple cameras. The system can be

deployed in a real-time setting where the subject is performing an action and the system is

simultaneously classifying the actions performed in real-time. The system was trained on

9 sets of unit actions. Each subject has performed the action 10 times in a sequential and

interleaved manner. 4 such sets of data were collected. The system was trained offline with

20 sets of unit samples per action. The real-time testing of the system was performed offline

by providing the algorithm with originally collected continuous stream of data. The cameras

were synchronized using the NTP protocol while collecting the data.

1. Real-time action recognition framework: the framework developed with this work can

be used in real-time multi-view action recognition. We have previously demonstrated

that this framework can be deployed in real-time [3] with high accuracy. The cur-

rent framework can handle continuous stream of data with the help of sliding window

technique [4] by sampling the stream of data with pre-defined window sizes. Previous

system [3] was not able to handle this case. The highest likelihood action is then se-

lected from the set of samples after the classification algorithm has been applied. The

highest likelihood action is the action classified at the local node. This information can

Rahul R. Kavi Chapter 1. Introduction 6

then be fused using the fusion rule to make a unanimous decision across the network.

Then the window moves to the next set of frames and this process is continued.

2. Efficient local processing: supervised learning techniques were employed along with a

sliding window technique [4] to make a decision on captured data. A series of frames

are captured at each of the local nodes and the feature descriptor is built. The feature

descriptor is a weighted motion energy image [5]. The weighted motion history image

is divided into an arbitrary grid of size 7 x 7 and sum of pixels is calculated at each

block. The grid size was selected in a heuristic manner. This yields a 49 length feature

vector that captures most of the information that is needed to make a classification on

the captured data. This process is done using OPENCV framework [6]. Our previous

work [3] only handled a constant length feature vector (of length 70 frames). In this

work, we demonstrate that variable length frame duration doesnt primarily affect the

feature vector generation process and still give high accuracy without usage of graphical

modelling techniques such as Hidden Markov Models [7].

3. Information fusion from multiple cameras: in our previous work [3], we have demon-

strated this information fusion strategy works for real-time deployment. Each camera

node makes its own decision regarding the captured data. The captured data has its

own time stamp. The local decision made at the camera node consists of the maximum

likely action and its associated probability. This information can be exchanged over the

network with its respective time stamp information. The central server then receives

information from 8 cameras regarding the captured frames maximum likely action and

its associated probability. This strategy was used in an offline mode and information

is fused over multiple cameras (summed up) and a collective decision is made.

4. Diverse options of machine learning algorithms: this framework has been tested with

four machine learning algorithms. Theoretically, any machine learning algorithm

whose output can be represented in form of a probability/likelihood can be used. This

framework was tested with Linear Discriminant Analysis, Multinomial Naive Bayes,

Logistic Regression and Support Vector Machines. This has been made possible with

Rahul R. Kavi Chapter 1. Introduction 7

the usage of sliding window technique [4]. This works extends our previous work [3]

which was tested only with Linear Discriminant Analysis with Nearest Neighbors.

5. Recognize untrained actions: We define untrained actions as Standing or other ac-

tions that are performed by a subject, but are not used in training of the system.

This framework has successfully demonstrated that it can negatively identify actions.

The system was trained using 9 actions (bowling, clapping, jogging, jumping, kick-

ing, pickup, standing, throwing, 1 hand waving and 2 hand waving). The system was

successfully able to recognize standing action (on which it was not trained).

1.3 Organization of rest of the thesis

The remaining part of this document is arranged as follows. Background information

and existing literature is covered in the 2nd chapter. Overview and system description is

provided in the 3rd chapter. In 4th chapter implementation details, offline recognition results,

recognition results on streaming data are provided. In the 5th chapter (final chapter) a brief

analysis and possibility of extension of this work to activity recognition and future work is

discussed.

8

Chapter 2

Background work and existing

literature

This chapter discusses the existing research work in the area of machine learning, dis-

tributed systems and computer vision applied to human action recognition. The popular

approaches to applying machine learning techniques to streaming data are then discussed.

After the discussion on existing research, the important aspects that differentiate this work

from others are discussed.

2.1 Approaches to feature extraction from videos

Feature vectors contain vital information of a scene which needs to be monitored. There-

fore, it is very important on how we choose feature vectors for a given scenario. Depending

on various assumptions of the scene to be monitored, researchers have considered modeling

the feature vectors based on the following methods [8].

2.1.1 Volumetric methods

Spatio-Temporal filtering approaches: In these approaches, spatio-temporal filter

banks are applied on the video sequence. These methods consider entire video or a partial

video as a single data entity [8]. Then, information is extracted on pixel by pixel basis on

the entire video. For a given video, features are extracted from V(x,y,t) where V is the

Rahul R. Kavi Chapter 2. Background work and existing literature 9

video (set of frames) of time duration t and x, y are pixel coordinates (on a frame by frame

basis). Local appearance models using Gabor Filter banks (in many orientations) can be

computed for a given video V(x,y,t) to identify actions [9]. Researchers have also considered

local histograms of normalized space-time gradients at many temporal scales [10]. It is

interesting to note that filtering approaches are easy to implement as efficient algorithms for

convolutional are available [8].

Part based approaches: Video can be considered as a collection of local parts. These

local parts may follow a distinctive motion pattern. These patterns can be tracked over space-

time to recognize actions. Laptev and Lindeberg have applied Harris interest point detector

on video to recognize actions [11]. In this work [12], Neibles used space time interest points

along with bag of word model to recognize actions in an unsupervised manner. Interest points

in a video can be used along with Support Vector Machines (SVM). Laptev and Schuldt[13]

have used space-time features along with SVM to classify human actions such as walking,

jogging, running, etc. These approaches are sensitive to noise, view variance and occlusion.

Also in some cases finding these interest points may be harder due to similarity between

background and human subject. Certain actions and smooth human actions which are hard

to perceive will not give rise to distinctive features in the video sequence which are required

to classify the human actions[14].

Sub-Volume based approaches: Haar-Features have been successfully applied in ob-

ject detection in still images. Researchers have also used 3D Haar type features (volumetric

features) to analyze video [15]. Responses obtained from these filters have been used along

with ensemble machine learning techniques such as boosting to improve recognition perfor-

mance of the system. In the work done by Shechtman et al [16], it was shown that correlation

in space-time motion can be used to match actions with a template. Simple actions like walk-

ing, waving, jumping, etc. were recognized. It should be noted that this technique is not

scale invariant and rotation invariant. Variations in intensity due to changing background

can affect performance of sub-volume based approaches. These techniques however, can be

extended to be invariant to changes in appearance over time with use of other techniques

such as optical flow [15].

Tensor based approaches: Tensors can be considered to be generalization of matrices

Rahul R. Kavi Chapter 2. Background work and existing literature 10

to multiple dimensions. In tensors, space-time volume i.e. V(x,y,t) can be considered as

tensors with 3 independent dimensions. Other information such as identity of a subject

can also be encoded. Vasilescu [17] modeled human action, subject identity and joint angle

trajectories as independent dimensions of a tensor. A dimensionality reduction technique

was then applied to extract relevant data and it was used for recognition.

2.1.2 Non-Parametric methods

These types of methods work on a frame by frame basis and extract features from them.

These features are matched to a stored template. Bobick and Davis [18] were one of the first

to introduce the concept of motion energy images (MEI) and motion history images (MHI)

by observing a video sequence for a short amount of time. MHI and MEI capture the region

in the video sequence which was active in the video sequence by looking the video on frame

by frame basis. They can be obtained by using a simple threshold technique and obtain series

of blobs. An entire video sequence can be reduced to a single image using MHI and MEI.

They are really good in discriminating smaller actions such as sitting, standing, etc. but not

so good in handling longer duration complex activities. From the given MHI and MEI, scale

invariant, translation invariant features such as Hu-moments [19] can be calculated and be

used along with other algorithms to match a specific video sequence.

A video sequence containing an action can be considered as an object/subject performing

an action. This data is represented in form of 2d in an image over series of images. The

outer contour of the object can be projected onto 2d over time giving rise to a volume in

spatio-temporal space (x,y,t). These features are called as spatio-temporal volume (STV)

[20]. Geometric properties of the surfaces are studied and feature descriptors are calculated.

These feature descriptors can be used for action recognition. Simple actions such as falling,

running, kicking, standing, sit-down, etc. can be recognized.

In many cases, the techniques used to better represent the features in a video sequence

are of very high dimensions. Dimensionality reduction techniques such as Principal Com-

ponent Analysis (PCA) and Linear Discriminant Analysis (LDA) are often used to reduce

dimensionality of the feature descriptors.

Rahul R. Kavi Chapter 2. Background work and existing literature 11

2.1.3 Parametric methods

Parametric methods impose a specific model on the temporal dynamic on the motion in

the video. These methods have been successful in modeling the actions and activities in a

scene to a large extent.

Hidden Markov Models have been widely used and are one of the most popular paramet-

ric methods. Hidden Markov Models are composed of states (which are hidden and cannot

be seen) and these states output observation symbols (which can be seen). Transition prob-

abilities (which model state to state transitions) and observation probabilities have to be

estimated initially.

Baum-Welch algorithm is used to train parameters of an HMM. Then one can use Viterbi

Decoding algorithm to estimate state transitions. An HMM is trained per action and maxi-

mum likely HMM (which can be chosen by using forward-backward technique) can be chosen

as most likely action. Yamato [7] has demonstrated that states can be considered analogous

to frames. It was demonstrated that in certain cases recognition accuracy was as high as

96%. HMMs have quite been successful in recognizing actions with varying duration. Hid-

den Markov Models and its variants have also been used for gesture recognition [21] [22] and

complex action (using coupled HMMs) recognition [23].

Conditional Random Fields can be considered an extension of Hidden Markov Models

and have received considerable attention recently. Conditional random fields solve some of

the problems like label bias problem. However, they are computationally expensive to train

[4].

2.2 Approaches to process streaming data

Processing streaming data is a different challenge altogether as the algorithms have to

handle video of arbitrary length. Traditional methods do not always address this issue. This

aspect is discussed in the following techniques.

Rahul R. Kavi Chapter 2. Background work and existing literature 12

2.2.1 Sliding window techniques

Sliding window techniques employ a moving window of static or a dynamic sized which

contains a series of frames (video sequence of certain length). The data contained in this

window is transformed to a feature vector using traditional techniques to extract feature

vectors from the video sequence. In cases of windows of arbitrary length (or dynamic) the

feature vectors may be of very different value compared to the ones with static length on

the same video sequence. One needs to be careful in choosing the feature vector that can

be computed in time varying window. The technique to match these feature vectors also is

very vital in lassification of the given video sequence. The prime advantage of this technique

is that given a feature vector, any machine learning algorithm can be used for classification

of the video sequence [4]. A series of frames gives rise to a single feature vector. This

feature vector is classified as an action. However, relationship between different consecutive

classifications is not exploited.

2.2.2 Graphical models based techniques

Hidden Markov Model is a popular statistical technique that can classify sequential/streaming

data. In order to use them, one needs to properly define the structure of the model, estimate

transition probabilities, estimate observation probabilities then train and test the designed

Hidden Markov Model on given parameters. Different initial parameters make HMM con-

verge to local minima, thus we obtain different accuracies [24].

Yamato [7] has demonstrated that image frames can be considered as states and the

series of observations in a HMM can be mapped to a specific action. A HMM can be trained

for each of the actions. Then for a given observation sequence O, P (O|λi) is predicted where

i is the set of parameters for ith HMM. Then for the given observation sequence, maximum

likely HMM predicts the given action. i.e., Action = argmaxP (O|λi).

Representation and inclusion of diverse data belonging to same class of data has profound

effect on performance of Hidden Markov Model to use it for action recognition [7]. The

process of representing the states of a Hidden Markov Model is affected by inclusion of

diverse data (by use of standard vector quantization). Conditional random fields are yet

Rahul R. Kavi Chapter 2. Background work and existing literature 13

another way to classify sequential data which address some limitations posed by Hidden

Markov Models but, they are expensive to train [4].

2.3 Related work

This section describes on how this work is different from the existing research work. Lots

of research has been conducted in the area of action recognition. Most popular methods

being non-parametric methods and graphical model based methods.

Through this work it is demonstrated, how a non-parametric approach based spatio-

temporal technique can be used with multiple views of a scene in a camera network to

perform lightweight but highly accurate action recognition. Extensive research has been

carried out in Single Layered Approaches to human action recognition [25]. Single layered

approaches directly use the data to make decisions on the action classification. Spatio-

Temporal approaches have been very popular way of classification of human actions [26][11].

This work demonstrates multiple views of the same action in a scene add to better

performance of the action recognition system. A weighted motion energy image captures

the regions in a human blob silhouette which contain most activity. This feature can be

calculated easily and can be used for classification of human actions. For a given video

sequence, the algorithm has access to blob-silhouette of the subject in the scene. Frame

differencing is applied to these images and the resultant image is added over time. The

resultant feature descriptor now contains the regions of the blob-silhouette that covers the

entire region of the image where change was observed as well as the magnitude of change in

each pixel.

Many researchers have worked on multiple view action recognition lately [27][28][29][30].

Work presented in [29] [30] generate feature vectors that can be invariant to any point. We

believe that addition or removal of a view may affect the feature vector as different actions

are portrayed differently in different views. Also a case may arise, where one has retrained

the system if a view is removed. This work doesnt suffer from the above mentioned pitfalls.

Graphical model based methods have received a lot of attention lately due to their in-

herent property of handling video sequences of arbitrary length and their ability to model

Rahul R. Kavi Chapter 2. Background work and existing literature 14

complex relationships between multiple variables . HMMs treat each frame individually to

represent a state. Series of states are mapped to series of observations. Classifications are

made based on correlation between observations. This work captures correlation at the point

of generation of feature descriptor. Our feature descriptor captures regions in an image that

have been changed over time as well the frequency of change of pixels over time. Structure

of the graphical model is vital in performance of the system. Hidden Markov Models perfor-

mance is dependent on initialization parameters, structure, direction of traversing, etc. and

the model converges to local minima [31]. Unlike Hidden Markov Models, this system does

not lay high emphasis on the structure of the underlying classifier. Once a feature descriptor

is generated, rest is taken care by the classifier.

View specific probabilistic classifiers were chosen (i.e. Classifiers whose output can be

determined in terms of probability of belonging to a certain class) in this work. It has

also been demonstrated that by placing a threshold on the probability, one could easily

distinguish a non-action from the set of actions with which the system was trained. In this

work, the computational complexity of generating the feature vector is low and classification

is low. The prototype system takes about 0.8 seconds to generate a feature vector (which is

fairly high) and about 0.015 seconds to fuse and classify the feature descriptor. We strongly

believe that this will further decrease once the system is implemented in C/C++ giving rise

to faster action classification system.

Detecting events/abnormalities in a scene based on pixel intensities were performed in

[32] which performed fairly on surveillance videos. This technique captures events at pixel

level. In a weighted motion energy image, highly active pixels in a video sequence are given

higher weight than the other parts. This pixel level activity is fairly unique for the given

actions in the dataset. In a way, the weighted motion energy image from which feature

descriptor is extracted captures the shape of the blob silhouette, magnitude of change at

pixel level. Clapping can be distinguished from 2 hand waving, etc. However, this system

may not distinguish between rubbing of hands and performing gestures with 2 hands.

Using a probabilistic classifier along with this feature descriptor at each camera node,

this system has successfully demonstrated that non-actions can be clearly distinguished from

actions with high level of accuracy. The dataset consists of 4 sets of data, in each of which 2

Rahul R. Kavi Chapter 2. Background work and existing literature 15

subjects are performing 10 actions each. The system was able to distinguish in real-time if

the action perfectly overlaps the sliding window of certain size from the same action partially

overlapping the sliding window with an indication on likelihood (fused probabilities from 8

cameras).

In our technique there is no need for symmetric deployment of the cameras in training

and testing phase. We are essentially applying 8 classifiers in a circular manner (from which

8 possible configurations arise). We need to pick the configuration which has the highest

likelihood (highest fused score among 8 possible ways). This was previously demonstrated in

[3]. Since we are identifying actions performed at atomic level, this framework naturally lends

itself to activity recognition system which can recognize longer term activities by making

minimal change to existing architecture.

16

Chapter 3

Overview of the system and

description

In this chapter, overview of the system is provided. Description of experiment setup,

feature descriptor extraction from multiple views, fusion of information to make a classifi-

cation is provided. This chapter also includes a brief overview of underlying classification

algorithms used in building the system.

3.1 System Model

In this subsection, an overview of the implemented system model is provided. A total of

Nc = 8 cameras are taken in this current setup. These Nc cameras provide an view of a area

of R from different viewing angles. Any two consecutive cameras when chosen provides an

overlapping view of a scene. We assume that the relative orientations between the cameras

are known in the system. For the sake of simplicity we assume the cameras are deployed in

a symmetric manner as shown in Figure 3.1. However, in the real-time scenario, the camera

setup doesnt have to be the symmetric.

The subject is assumed to be standing in the center of the region R. The subject is

then assumed to be performing one of the Na = 9 actions. The Na actions are mentioned

in the Table 3.1. It is also assumed that there is only 1 subject in the Region R. This

limitation is brought is discussed in Future Work in Section 5. It can be relaxed if one uses

Rahul R. Kavi Chapter 3. Overview of the system and description 17

C 1
C

C

C C

C

C2

3

4

C 5

6

7

8

45
o

Z

A B

3V

V
1

Figure 3.1: The 8 camera layout used in the experiment. The subject is shown at location
Z and Subject can be at the center of the square region.

better segmentation algorithm or technique to isolate subjects in a given area. The subject

performs series of interleaved actions of certain duration. The subject performs an action

in a small area Z, which is roughly at the center of the Region R. For a given Action Ni it

is assumed that all unit actions belonging to it, need not be of same duration. It also may

vary from camera to camera. It is important to notice this fact as different cameras process

frames at different rates.

In the training phase, the subject performs series of interleaved unit actions. The duration

of these actions is in the range of 3 to 5 seconds. Any two unit actions need not be exactly

the same duration. Actions such as Jumping or Jogging usually last about 5 seconds and

smaller actions such as clapping last about 3 seconds. The Nc cameras were setup along

the boundary of a Region R of size 50 feet x 50 feet in a closed environment. Each of the

cameras are setup at height of 8 feet from the ground. The cameras are denoted by Ci where

1 ≤ i ≤ 8. The cameras are setup in a manner that the actions performed by the subject

are captured properly in all of the 8 cameras.

Figure 3.1 depicts the camera deployment used in the Training phase. The cameras are

assumed to be symmetric arrangement. The experiments are carried out using Logitech

Rahul R. Kavi Chapter 3. Overview of the system and description 18

θ

Z

B

C

Figure 3.2: The view-angle of camera C with respect to action being performed. A subject
is standing at point Z and performing an action Aa while facing direction shown by ray ZB.

9000 USB cameras. The cameras capture frames ranging from 15 fps (frames per second)

to 20 fps. The frame size was set to 960 x 720. A camera node consists of a PC (based on

Intel Atom processor) connected with the Logitech 9000 USB camera. These camera node

also consist of a wireless card (802.11 Wi-Fi) which is used for transmitting data over the

network.

The view-angle of a camera Ci is defined as the angle made by optical axis of the camera

with direction along which subject performs the action sequence [3]. The view-angle of

camera Ci is measured in a clock-wise manner from the ray originating from location of

subject performing the action parallel to optical axis of the camera [3]. A camera view angle

is depicted Figure 3.2 For the sake of simplicity, we have Nv sets of view angles. A Nv =

8 is used in this experiment. During the training phase, the subject is expected to perform

series of interleaved unit actions facing a certain camera. The view-angle sets are denoted

with Vj (1 ≤ j ≤ 8) which is depicted in Figure 3.3. A view Vj of the subject performing an

action in Region R, is provided by the camera Ci.

In a real-time deployment of the system, one can vary the number of Cameras and the

position of the cameras depending on the requirement. Not all cameras are required to be

active; some may be switched off or may fail during operation. The performance with some

cameras switched off is provided in Section 4. If two cameras are placed very close to each

other facing the subject, it can be assumed that the cameras provide the same view Vj.

Rahul R. Kavi Chapter 3. Overview of the system and description 19

V
V

V

V
45

o V

V

V

2

3

4
5

6

7

8

V1

Z

C 1C

C

C

C

C

C

C2

3

4

5

6

8

7

Figure 3.3: Depicts 8 view-angle sets for camera Ci with respect to the action being per-
formed. The subject is located at point Z and could be facing any direction. View-angles of
camera Ci are grouped into 8 sets as shown in the Figure.

3.2 System description

This section describes the system setup that has can be used to design a real-time action

recognition system. This section can be broadly categorized as Collection of training and

testing data, Extraction of feature descriptors from data.

3.2.1 Collection of training and test data

A series of image frames are collected for the training phase with the subject standing in

the location Z in Region R. The subject can face any camera in the given camera network.

Camera C1 is taken as a reference. The subject performs a series of interleaved actions facing

camera C1. Training data for each unit action is collected at a given view-angle belonging

to V1 with respect to camera C1. Each of the camera Ci (∀i : 1 ≤ i ≤ 8) provides a view

corresponding to view Vj (∀j : 1 ≤ j ≤ 8). A video sequence called unit action is extracted

per action, which exactly contains the action performed (starting point of the action to the

ending point of the action only). A subject performs a total of 10 unit actions per Action in

Rahul R. Kavi Chapter 3. Overview of the system and description 20

Figure 3.4: Extracting local feature descriptors. A bounding box that encloses all background
subtracted silhouette is drawn around each silhouette. Only binary information is retained
for each block in a grid of 7 x 7. For each block in motion energy of image of the video
sequence, sum of pixels in each block is stored.

a given set. These actions are interleaved with a gap of 2-3 seconds each. Once the training

data is collected, a short sequence of frames belonging to an unit action is extracted. Four

sets of data are extracted from two subjects. Each set contains 9 unique actions and each

of them has 10 unit actions. So we have about 40 unit actions per action performed by

subjects on which system could be trained and tested. This system is trained offline with

4 classifiers namely 2-Class Linear Discriminant Analysis, Logistic Regression, Multinomial

Naive Bayes and Support Vector Machine. The training and testing set each contain about

20 feature vectors extracted from 20 unit actions.

3.2.2 Extraction of feature descriptors from data

In this section, we first discuss the extraction of feature descriptors from training data,

testing data and then we discuss extraction of feature descriptors from streaming data.

Training data consists of lots of unit action samples. It should be noted that duration

of each action varies from action to action, subject to subject and sample to sample. It

should be assumed that no two samples of unit action performed by a subject are of exact

same duration. Therefore, we should choose a feature descriptor along with a suitable

classification technique that can uniquely identify the action sequence performed which is of

variable window size.

Rahul R. Kavi Chapter 3. Overview of the system and description 21

Figure 3.4 shows a partial video sequence of blob silhouette obtained from camera C1.

For a unit action video sequence of length L, a maximum bounding box is drawn. These

blob silhouettes are added with each other (being of same size now) resulting in a weighted

motion energy image. Each weighted motion energy image is then divided into a grid of 7 x

7 sized boxes. Sum of pixels in each grid box is computed and a 49 length feature vector is

obtained. Similarly all unit action video sequences are transformed into a 49 length feature

vector. Now our training and testing set consists of 20 feature vectors for each of the 9

actions. It was observed that different actions perfomed varied in length. Also for subjects

performing the same action twice, it was observed that lengths may not be equal. Table 3.1

consists of Actions with which system was trained and their associated symbols.

Symbol Action

A1 Waving 1 arm (right)
A2 Waving 2 arms
A3 Jogging
A4 Kicking
A5 Pickup
A6 Jumping
A7 Clapping
A8 Bowling
A9 Throwing

Table 3.1: Action List

In the real-time streaming mode, for a given video stream of indefinite length, we capture

the frames with above mentioned window sizes in an incremental manner. Feature vector

for each of those windows is computed and classified. Then starting frame is incremented

by a size of average duration of classified action. We describe the classification approaches

in the next subsection.

3.3 Classification Algorithms

This subsection briefly describes each of the classifiers used in this system and then how

a collective decision is made for a given video sequence. After obtaining a feature vector

Rahul R. Kavi Chapter 3. Overview of the system and description 22

from the weighted motion energy image, it is then fed into the view specific classification

algorithm at each camera. The classification algorithm outputs the classified action and its

associated probability. We look at Linear Discriminant Analysis, Multinomial Naive Bayes,

Logistic Regression and Support Vector Machine classifiers in respective order as follows:

3.3.1 Linear Discriminant Analysis (LDA)

It is a statistical dimensionality reduction technique. The goal of LDA classification

technique is to represent data in lower dimensions where different classes of data can be

clearly separable (in Euclidean space). For a given data of N classes of data, inter-class or

in-between class scatter (Sb) and intra-class or within-class scatter (Sw) is calculated. For

the data to be differentiable clearly, we need Sb/Sw as large as possible. Then a projected

vector y = wT x is obtained which is of reduced dimensionality (N-1 dimensions). Projected

vectors in reduced dimensionality for sample data are illustrated in Figure 3.4. So, the goal

of LDA training phase is to find weight vector w for each class (in a 2-class LDA).

Training a 2-class LDA classifier (where N=2) for a given class of data is performed as

follows:

1. Calculate Sb.

2. Calculate Sw.

3. Calculate Eigenvectors of (Sw
−1 Sb) and arrange eigenvectors in descending order.

4. Weight vector w = first N-1 eigenvectors.

5. Project training data for a given class into lower dimensions. Projected data = dot

product (wT , training data).

6. Calculate positive class cluster center (PCi) and negative class cluster center (NCi)

for the given class Ci.

Now classification for a feature vector belonging to an unknown class can be classi-

fied using the weight vectors obtained in training phase. The feature vector is projected

Rahul R. Kavi Chapter 3. Overview of the system and description 23

Figure 3.5: LDA project vectors plotted on a graph. On the left (in yellow) is 1 hand waving
feature vectors projected in 1 dimension. On the right is rest of the actions projected in 1
dimension.

Rahul R. Kavi Chapter 3. Overview of the system and description 24

into lower dimensions and Euclidean distance to cluster centers (PCi and NCi) is calcu-

lated. The data is classified to belong to certain class to whose Euclidean distance is the

least (i.e., Nearest Neighbor). The Euclidean distance can be normalized to [0, 1] to rep-

resent it as a probability where 0 represents least likely and 1 represents most likely. In

our case, for each action class Aa in each view, a two-class Linear Discriminant Analysis

based projection vector is obtained by grouping together data belonging to that particular

action against data from all other actions corresponding to the respective view. During the

process of training 2-class LDA classifier for a given action Aa, the weight vector wa is ob-

tained. The dot product of 49 length feature (of dimension 49 x 1) vector and transpose of

weight vector wa (wa is of dimension 49 x 1) will give rise to projected vector of dimension 1.

Cluster centers are calculated for each class (PCa and NAa for positive and negative clusters

repsectively) for a given action Aa is calculated in reduced dimensions. Let λa,j correspond

to the LDA projection vector corresponding to Aa (∀1 ≤ a ≤ Na) using data from view Vj

(∀1 ≤ j ≤ 8). In the testing phase at each camera node, for the unknown feature vector

of length 49, feature vector is projected to lower dimensions assigned to the class (Aa) to

whose Euclidean distance is the least in reduced dimensionality. This is done by computing

a dot product of the feature vector and λa,j. Then the classified action and its associated

probability (normalized Euclidean distance) are obtained.

3.3.2 Multinomial Naive Bayes (MNB)

It is a Bayesian classifier which is quite popular in natural language processing [33]

domain (in classifying documents, spam filtering, etc.). From a natural language pro-

cessing perspective, Multinomial Naive Bayes (MNB) works by calculating relative word

frequency (number of times a certain word xi appears) in a document d (or in a text)

and using this information to classify an unknown document into one of the classes Ci.

Let P (Cj) represents prior probability of a class Cj. Then P(xi|Cj) represents the likeli-

hood of certain word xi belonging to the class Cj. In the training phase, P(Cj) is obtained

Rahul R. Kavi Chapter 3. Overview of the system and description 25

for each class and P(xi|Cj) is obtained for each word xi. Let frequency of word xi in a

given class be Fxi. Let frequency of all words in the given class be Tc. Let Uw be the total

number of unique words. Now for a given document di (feature vector) whose classification

is unknown, we can say the document belongs to the maximum a posteriori class:

Cmap = argmaxCj∈CP (Cj) ∗
∏n

i=1 P (xi|Cj)

where

P (xi|Cj) =
N(xi,C=Cj)

N(C=Cj)
= Fxi

TC
.

In certain cases, we may observe that a word xi may not appear in the document. In

such a case P(xi|Cj) = 0 and this makes the likelihood to be zero. We can solve this problem

by using Laplacian smoothing. We can modify the definition of P(xi|Cj) from frequency of

word xi in class Cj as follows:

P (xi|Cj) = Fxi+1
TC+Uw

.

In our action classification problem, document is analogous to the feature vector and

class is analogous to action Aa. In the training phase we obtain prior probabilities of each

action Aa and likelihood of each unit of the feature vector belonging to certain class Aa.

Using this information, at each camera node a feature vector of length 49 is passed to MNB

classifier. The classification output at each camera node and its associated probability is

obtained. MNB is can be used as a multi-class classifier naturally. So, in our case we train

a MNB classifier for all the actions (classes) at a specific camera/view. So let MNBj be the

Multinomial Naive Bayes classifier trained at view j. We would have 8 classifiers trained in

8 views in the current implementation.

3.3.3 Logistic Regression (LR)

Logistic Regression is a classification technique that is quite similar to linear regression

(line fitting). The goal of Logistic Regression is to learn a hypothesis hθ(x) for the given data.

Where we have hθ(x) = g(θTx) and g(z) = 1
1+e−z and x ∈ X and (0 ≤ hθ(x) ≤ 1).

Rahul R. Kavi Chapter 3. Overview of the system and description 26

In a machine learning problem, a cost function defines the degree of dissimilarity between

a predicted value and original value. The goal of a classification or regression technique in

machine learning is to minimize the cost function. The process of finding the vector is an

optimization problem and can be solved by minimizing the cost function using gradient de-

scent or other advanced optimization algorithm like BFGS, L-BFGS, etc. The cost function

for which we need to optimize the value of in Logistic Regression classification is defined as:

J(θ) =
m∑
i=1

[(−yi ∗ log(hθ(x
i))) − ((1 − yi) ∗ log(1 − hθ(x

i)))]

Where m is the total number of training examples, y is target label that needs to be learnt.

Let represent the learnt hypothesis. The value of is optimized by minimizing the above cost

function. Then classification is performed by setting a threshold thresh, where if hθ(x) ≤

thresh then xi is classified as 0(if negative) and if hθ(x) ≤ thresh then xi is classified as 1(

if positive). It should be noted that Logistic Regression is a binary classification technique.

Therefore to solve a N class problem, we need to group data as one vs rest of the classes in

training phase and train a Logistic Regression classifier per class.

In the testing phase, we pick the classifier that maximizes the probability: argmaxi h
(i)θ(x).

In our problem of action classification we train a classifier per action Aa in the above men-

tioned technique. At each camera node for the feature vector of length 49 (which is of

unknown action), we pick the action that maximizes the probability argmaxa h(a)θ(x).

Finally, the classified action and its associated probability are obtained. Logistic Regres-

sion classifier available in Sklearn [34] was used. Logistic Regression classifier can be used

as a multiclass classifier (using one versus all strategy). We train a single classifier for

all the actions at a specific camera/view. So, let LRj be the Logistic Regression clas-

sifier trained at view j. We then have 8 classifiers for all actions LRj (1 ≤ j ≤ 8).

Rahul R. Kavi Chapter 3. Overview of the system and description 27

3.3.4 Support Vector Machines (SVM)

Support Vector Machine (SVM) based approach is a popular classification technique,

which have received much attention in past decade [35]. SVM attempts maximize the sepa-

ration between two classes of data in higher dimensions by drawing a hyperplane. The hyper

plane can be a linear or polynomial hyper plane. The data points in higher dimensions that

lay close to the hyper plane the best separates 2 classes of data are called support vectors.

The goal of the classifier (linear SVM) can be re-stated as finding weight vector w such that

Y = w.x+ b

Where x is the feature vector to be classified and b is a constant. We can then classify using

the following statement:

If w.x+ b >= +1 then y = +1.

If w.x+ b <= −1 then y = −1.

The value of weight vector w is found using advanced optimization algorithms. For our

case of action recognition, in the training phase the weight vector w is obtained. In the test

phase, the classification is made using above mentioned equations. It should be noted that

SVM only work for 2 class classification. So during training, we obtain a classifier for each

class. SVMs are a classification technique which output class of the input feature vector

and dont output the probability. One can obtain probability in this case by fitting a linear

regression classifier internally to learned linear hyper plane. This is taken care by Sklearn [34]

toolkit using which SVM was implemented in python.

At each camera node, for the feature vector of unknown class (and of length 49), the

classification output and its associated probability is obtained. Support Vector Machine

classifier available in Sklearn [34] was used. A SVM classifier can be used as a multi-

class classifier (using one versus all strategy). We train a single classifier for all the ac-

tions at a specific camera/view. So, let SVMj be the SVM classifier trained at view j.

Rahul R. Kavi Chapter 3. Overview of the system and description 28

3.4 Score Fusion

The fusion technique presented in this work plays an important role in combining the

feature vectors generated from multiple cameras and produce a classification result. In this

subsection the concept behind score fusion based classification is explained. Score Fusion

strategy is dependent on existent knowledge of the window size. We explain this in more

detail by examining the score fusion strategy when window size is known and the other case

where the window is not known. In the first case, we assume the window size is known. The

system has the knowledge of the window size. It knows exactly where the action starts, ends

and its duration. Since all the cameras in the network are time synchronized using NTP

protocol, at a given time stamp we can extract data with the given start and end time across

all cameras.

3.4.1 Score Fusion with known window sizes

In training phase, the window size for a given unit action is known. A subject is per-

forming an action at the center of the Region R at a point Z. We consider the camera C ref

as the reference camera which provides a view Vj when an action is being performed by a

subject in the Region R at the position Z. It is assumed that the angles between principal

axes of pair of cameras ref,s is known. We cannot assume in real-time scenario that camera

orientation is symmetric. However, we can confidently say that 1,j belongs to one of the 8

possible view-angle sets. Therefore, we determine other views of other cameras using relative

orientations between the cameras. This gives rise to a set of φNv possible configurations.

Let set φ denote Nv possible configurations possible for each test action being performed

and

φ = {{φ1}, {φ2}, .., {φNv}} (3.1)

If we retain the cameras with the symmetric deployment during the test phase, we get

Nv possible cyclic configurations. In this case Nv = 8 possible configurations where,

φ = {{V 1, V 2, .., V 8}, {V 2, V 3, .., V 1}, ..., {V 8, V 1, .., V 7}} (3.2)

In the equation 3.2, two views may provide similar views in case the deployment is not

Rahul R. Kavi Chapter 3. Overview of the system and description 29

similar. In case Cameras C2 and C3 are deployed very closely to each other, these two

cameras provide same views of the subject performing an action in the Region R at point

Z. In this case, the 8 possible configurations will be defined as

φ = {{V 1, V 2, V 2, ..V 8}, {V 2, V 2, V 3.., V 8}, ...} (3.3)

If a camera fails or is completely absent, it will result in Nc ≤ 8. Therefore, each set

in φ consists of fewer elements. In order to fuse scores, one has to determine the configura-

tion set. Since we are unaware of the subjects orientation in Region R, we try each of the

possible configurations and pick the best one as the most likely configuration. Let feature

vector generated at camera Ci be denoted as FVi. Now we have 2 separate cases (for 4

different classifiers) where we need to classify an action and its associated score/likelihood.

Score generation in case of a LDA classifier: it should be noted that a 2-class LDA was

used in this work. The basic idea behind this classification scheme is to compute lower dimen-

sional feature vector and use Nearest Neighbor for classification. For a specific configuration

k at a camera i, a product of FVi and λa,j is performed and this score is normalized to [0,1] (as

described in section 3.1.1). Let Sa be the most likely score generated for a given feature vector

FVi.

Score generation in case of MNB, LR and SVM classifiers: MNB, LR and SVM clas-

sifiers were implemented as multi-class classifiers (internally using Sklearn [34]). So, there

arises no need for designing a classifier per action per view as in case of LDA. In case of a

MNB classifier, we determine the maximum a posteriori class/action (as described in section

3.1.2) and its associated likelihood for a feature vector FVi. In case of a LR classifier, we

determine dot product hθ,j and FVi is obtained at each camera/view j. This will determine

the classification and its associated probability at each view j (as described in section 3.1.3).

In case of a SVM classifier, we determine y = w.x ± b where w is the weight vector learnt

by the SVM classifier. This gives rise to classification and its associated probability at each

camera (as described in section 3.1.4). Let Sa be the score for most likely classified action for

Rahul R. Kavi Chapter 3. Overview of the system and description 30

the given feature vector FVi. Let Sa,k be the score generated for the most likely action after

applying LDA, MNB, LR and SVM classifiers in each of configurations {φ{k}}. For a given

Action Aa, a matching score Sa,k is obtained. The score Sa,k represents the likelihood that

the test action belongs to the Aa in the given configuration of {φ{k}}. One can compute

Sa,k as follows:

Sa,k =
Nc=8∑
i=1

Sa,k,i (3.4)

The above score Sa,k corresponds to score in a configuration k. In the real-time scenario,

the configuration is unknown. Therefore, we compute score Sa,k for each of the configurations

k. Then the highest score Sa is picked as the best score of all the configurations. We define

Sa as follows:

Sa = max(Sa,k)k=1,2,..,8 (3.5)

Equation 3.6 determines the classification output and its score (likelihood) obtained after

applying view-specific classifiers on given feature vector FVi. We can determine the final

action as AF (1 ≤ F ≤ Na) which has been classified as for the corresponding Feature Vector

FVi as follows:

F = argmax(Sa)a=1..Na (3.6)

3.4.2 Score Fusion with unknown window size

In this case, it is assumed that the size of the window is unknown. Window size directly

affects the feature vector and thus affects the classification accuracy. Therefore, it is vital

that an efficient feature extraction technique should be used in order to generate appropri-

ate feature vectors for classification in real-time mode. In this subsection, the process of

generation of the feature vector (a weighted motion energy image) in the streaming mode

(real-time) is discussed in the proposed Sliding Window algorithm. In the process of gen-

eration of feature vector (in a streaming mode), the duration of action performed nor the

starting point of an action is known. In such a scenario, Bobick and Davis [18] have used

a heuristic algorithm to capture motion energy images in real-time. Our sliding window

Rahul R. Kavi Chapter 3. Overview of the system and description 31

algorithm has been based on this idea. Sliding window method has ability to perform on-

line, however we have chosen to implement this offline for the sake of simplicity. Processes

of matching the starting and ending points of an action performed in real-time is a hard

problem to solve. This problem is overcome in 3 steps which are defined as follows:

1. Obtain feature vectors from all cameras for a specific window size at base station.

2. Obtain classification and probability for a given window sizes using appropriate clas-

sification technique.

3. If fused scores are above a certain threshold accept the classification or else reject the

classification.

In a realtime scenario, we dont know the exact starting point of an action. So, for

simplicity one can traverse the dynamically growing frame sequences using an array or list.

This array or list can be accessed to obtain the video sequence as data[i, i+l]. Let FD be

the extracted frame data for a respective value of start variable and let w be the picked

window size. Once FD is extracted for a specific window size, one can easily compute the

feature vector FV. Using one of the classification schemes one can compute the classification

output and its associated probability. Consider classifiedoutputw be the classified output

for a specific value of w and let probabilityw be the probability of the classifiedoutputw.

The idea behind sliding window algorithm is to process a list of data frames for all window

sizes and accept the classification for which maximum probability is assigned. Let data be

the array of frames that camera has captured whose length D where, D is proportional to

the duration of the camera remained turned on in the scene. The Sliding Window algorithm

is depicted in Algorithm 1

Rahul R. Kavi Chapter 3. Overview of the system and description 32

D := Length of FD;

start := 0;

Windows := [List of Window sizes];

while start ≤ D do

for Windows w do
FD = data[start : start+ w];

FV = getWeightedMotionEnergyImage(FD);

classifiedoutputw, probabilityw = Classify(FV);

end

ClassifiedAction, Probability = max(classifiedoutputw, probabilityw);

if Probability ≥ Threshold then
Accept;

start = start+ w;

end

else
Reject;

start = start+Nmin;

end

end

Algorithm 1: Heuristic Sliding Window Algorithm

Using algorithm described in Figure 3.6, one can approximately estimate the start and

end times in a given stream of video sequence. The value of the Threshold and Nmin can

be set arbitrarily. The variable Nmin helps to recapture the frames again from a different

starting point. Then the feature vector is extracted with the estimated start and end time

of the action. Then, for each of the window sizes a feature vector is generated and classified

according to the technique presented in section 3.4.1. Then we obtain the window size and

classified action for which the maximum probability was assigned. The above algorithm is

executed at each camera in a camera network where all cameras are synchronized over NTP.

It is also assumed that the buffers (data variable in above algorithm) contain frames of

the scene which are approximately associated with the same time stamp across all cam-

eras. The classified action and its associated probability are retained and can be sent

Rahul R. Kavi Chapter 3. Overview of the system and description 33

to the score fusion server. Equation 3.6 determines the fused maximum likely action AF

and its associated score Sa in all the possible configurations. Let Fstream,a be the score

generated for the most likely action A in streaming mode (the testing phase where start-

ing and ending of an action is not known). We can use the calculated fused score F to

set thresholds on Fstream,a to reject or recognize untrained actions that were not trained

as a part of the system. In the training phase, we calculate Favg,a which determines the

average fused score for action A when the window sizes are known (as in section 3.4.1).

Fthresh,a ≤ Favg,a (3.7)

In order to identify untrained actions or reject a classified action in the streaming mode,

we determine Fthresh,a = m ∗ Fstream,a , where m can be arbitrarily set. Equation 3.7 at-

tempts to determine if a classified fused score in streaming mode is to be trusted or not.

The effect of m i.e., Threshold on average recognition rate has been discussed in Section 4.

The score fusion strategy developed in this work can be deployed on a server. To recognize

an untrained action or reject a classification made on FVi, we check the following condition:

34

Chapter 4

Implementation and performance

evaluation

In this section, we discuss the implementation details of this work and systematically

evaluate the performance of the system. With the heuristic sliding window algorithm and

score fusion scheme, it is shown that the system can handle failure of cameras and still

perform with high recognition accuracy. The system was tested in offline mode (where

start and end of an action was already known) and in streaming/real-time mode where the

data was available as a continuous stream (where starting and ending of the action was not

known). Results in both modes are included in this section.

4.1 Implementation details

This chapter discusses the implementation details of the action recognition system de-

scribed above. We have collected the training data in a controlled environment with 20

samples for each action class with reference to a single camera as shown in the Figure 4.1.

Note that the subject remains at the center of network while collecting the training data in

order to gain the advantage of symmetry with respect to all the other cameras. The test

actions are also then collected in the same setting. Using this data, feature descriptors are

then extracted and classification performance is evaluated systematically. This fusion tech-

nique can be modified to handle these cases when only partial data from cameras (missing

Rahul R. Kavi Chapter 4. Implementation and performance evaluation 35

Figure 4.1: Subject performing a 2 hand waving action in the scene as seen from Camera 1

camera data) is available for action recognition. In this implementation, the actions are

continuously evaluated as they are being performed.

4.2 Results in Training Phase

We first analyze the performance of recognition system in offline mode where the size of

the window is known, (with known starting and ending point of an action is known) with

all the views intact (8 views). Then, each of these views is systematically removed and the

performance of the system is evaluated. The results are presented in the following tables. In

the offline mode, the ground truth is noted down and compared with the classified action to

determine the classification accuracy of the system.

Rahul R. Kavi Chapter 4. Implementation and performance evaluation 36

It should be noted that in the offline mode, the exact duration of action is known (the

starting and ending point of the action are known). In the training phase we provide the

system with 20 unit actions per action per view. In the testing phase, the trained classifiers

are tested against 20 unit actions. Performance in offline mode gives us an idea of how well

the feature vectors and score fusion rule performs for the collected training and testing data.

A1 A2 A3 A4 A5 A6 A7 A8 A9

A1 19
A2 19
A3 19
A4 19
A5 19
A6 19
A7 19
A8 19
A9 19

Table 4.1: Confusion Matrix for LDA classifier with all views intact

A1 A2 A3 A4 A5 A6 A7 A8 A9

A1 19
A2 19
A3 19
A4 19
A5 19
A6 18 1
A7 19
A8 2 17
A9 19

Table 4.2: Confusion Matrix for MNB classifier with all views intact

One may observe in the above tables, see that all (the four classifiers) are good classifi-

cation techniques. However, Multinomial Nave Bayes was seen to perform least of all these

techniques for the given data. Now, we see the impact of loss of camera views (or camera

failures) on performance of the system. The above plot was observed by removing random

Rahul R. Kavi Chapter 4. Implementation and performance evaluation 37

A1 A2 A3 A4 A5 A6 A7 A8 A9

A1 19
A2 19
A3 19
A4 19
A5 19
A6 19
A7 19
A8 19
A9 19

Table 4.3: Confusion Matrix for LR classifier with all views intact

A1 A2 A3 A4 A5 A6 A7 A8 A9

A1 19
A2 19
A3 19
A4 19
A5 19
A6 19
A7 19
A8 19
A9 19

Table 4.4: Confusion Matrix for SVM classifier with all views intact

views in the order of view1, view2, ..., view8. In Figure 4.2m one can see that the system

performs fairly well even with 4 views removed (except for MNB classifier). You can get an

average performance of about 80% with 4 views removed. However the effect of removal of

views can be seen after removing 5 views, the performance of the system drops steeply.

Now we look at the performance of the system in streaming mode. In the streaming

mode, we dont know the exact duration nor the starting and ending point of a unit action

being performed nor do we know the starting and ending point of the action. To solve

this problem we have described a heuristic sliding window algorithm in section 3.4.2. We

use this algorithm to generate the feature vectors in the streaming/real-time mode. Then

classification is performed and scores are generated and fused across views. We believe that

Rahul R. Kavi Chapter 4. Implementation and performance evaluation 38

Figure 4.2: performance of the system with known window sizes against number of views
removed

MNB is performing poorly compared to other classifiers as Nave Bayes is known to be a

good classifier but a bad estimator (where output probabilities are close to 0 or 1).

4.3 Recognition results on streaming data

In this sub-section, we observe the performance of the system in streaming mode. The

performance of the system depends on the how the feature vectors are obtained in the

streaming mode. The stream of classifications performed by the Sliding Window Algorithm

can be considered as series of strings. We are interested in knowing if all the input strings

are matched with the respective output strings or not. Hence we use the following technique

to calculate the performance:

1. For each input string, compare result with output string.

2. If there is a match, increment correct counter else increment wrong counter.

3. Calculate correct/total to get the Accuracy.

Rahul R. Kavi Chapter 4. Implementation and performance evaluation 39

Let us assume that the input sequence of unit Actions are represented as in Equa-

tion 4.1 A1, A2, X,A3, A3, A4, X,X,A4, A4, Where Ai (∀1 ≤ i ≤ 9)andX represents

an Non-Action or an action that is not trained as a part of the system. On applying

the Heuristic Sliding Window Algorithm, we obtain a sequence of actions classified by

the system as described in Equation 4.2 A1, A2, X,A9, X,X,A4, X,X,A4, A4, We ob-

tain a classification for the streaming data by using Heuristic Sliding Window Algorithm

described in Algorithm 1 in Section 3.4.2. We need to match the input string repre-

sented in Equation 4.1 to output string represented in Equation 4.2. In Algorithm 2,

’==’ represents a Match and which is true. A ’ !=’ represents a Non-Match which is true.

Since we have performed the analysis offline, we can determine the performance as follows:

Ai := input string/unit action;

Aj := output string/action classified;

for Action Ai do

if (Ai == Aj) then
true positive ++;

end

if (Ai! = Aj) AND (Aj is not a neighboring action of given sequence) then
false positive ++;

end

end

for Input X do

if (X matches Aj) AND (Aj is not a neighbor of X) then
false positive ++;

end

end

Algorithm 2: Heuristic Sliding Window Algorithm

We obtain percetage accuracy as truepositive
Total

∗ 100. The false positives represents the error

in the system. First, results with all views intact are presented and the performance of

the system with random views removed is shown. We have obtained the following plot

in Figure 4.3 after generating the feature vectors and using the classification algorithm on

the dynamically generated feature vectors. From the training data it was found that for

Rahul R. Kavi Chapter 4. Implementation and performance evaluation 40

Figure 4.3: Effect of thresholds on performance with all views intact

maximum duration of an action across all cameras was 34 and least was 10. Therefore, we

chose W = [10, 13, 16, 19, 22, 25, 28, 31, 34] in the heuristic sliding window technique.

The system was tested with zero views removed then with view 1, view 3, view 5, view 7

removed in that order. The threshold used in the Figures 4.3, 4.4, 4.5, 4.6, 4.7 is same as m

described in the equation 3.7. In Figure 4.3 one can observe that for most of the thresholds

the accuracy remains unchanged from 0.1 to 0.7 and then gradually decrease. So, one can

infer that fused score of an action in Streaming mode is quite close to the average threshold

of an Action (obtained in Training mode). The performance of the system in streaming

mode is fairly good. In many cases, it was found that the sliding window algorithm was not

able to completely overlap the exact duration of the action in streaming mode. But, the

system was able to recognize these actions quite successfully with high accuracy.

The data used in streaming mode belongs to same data used in offline mode (training data

+ testing data) across all views among different subjects. However, it should be noted that

the feature vectors generated in streaming mode are quite different from the feature vectors

used training and testing. The feature vectors in streaming mode depend on starting and

ending frame of the unit video sequence. Since, we dont know the starting and ending point

Rahul R. Kavi Chapter 4. Implementation and performance evaluation 41

Figure 4.4: Effect of thresholds on performance with 1 view removed

of the unit video sequence in streaming mode the feature vectors were found to be different.

In Figure 4.4 the performance of the system when 4 views are removed is presented. We plot

the accuracy of the system versus the varying Threshold. It is observed the performance of

certain classification algorithms dropped (Logistic Regression and Support Vector Machines

dropped below 50%) when threshold was close to the Average Threshold. Even with 4 views

removed, the system has continued to perform well for different thresholds. Similar trend

can be observed in Figure 4.5, 4.6, 4.7, 4.8 where for certain threhold values, the performance

remains fairly constant then goes down. It is demonstrated that this system has perfomed

excellent with upto 4 views removed from the system. The average recognition rate has been

in the range of 80-90% for most threshold values.

Rahul R. Kavi Chapter 4. Implementation and performance evaluation 42

Figure 4.5: Effect of thresholds on performance with 2 views removed

Figure 4.6: Effect of thresholds on performance with 3 views removed

Rahul R. Kavi Chapter 4. Implementation and performance evaluation 43

Figure 4.7: Effect of thresholds on performance with 4 views removed

44

Chapter 5

Conclusion and Future work

This section concludes the thesis by providing conclusions and indicates directions for

future work.

5.1 Conclusion

The important contribution made in this thesis is design of highly accurate human action

recognition system using multiple cameras. The system was able to recognize (with high

accuracy) 9 actions with which it was trained. Standing action was not trained but it was

recognized with high accuracy by setting thresholds on fused score. This system was designed

using view specific classifiers trained on 8 different views of the scene. Score fusion strategy

was found to be more useful rather than relying on voting to fuse multiple decisions at

different cameras. Feature vector described in this work was efficient enough to recognize

and discriminate actions in the given database. It is expressive enough to capture region

of change and magnitude of change in a given human silhouette which is further used to

recognize actions. The feature vector used was found to be computationally easy to be

computable across different cameras.

The score fusion strategy was proven to work with different probabilistic classifiers and

different feature vectors compared to similar work done in [3]. Any probabilistic or likelihood

based classifiers can be used with this technique as we are using a score fusion strategy to

combine scores across different views. The performance of the heuristic sliding window

Rahul R. Kavi Chapter 4. Implementation and performance evaluation 45

algorithm indicates that sliding window technique can be used in a camera network with

streaming data. This work also shows that symmetric deployment is not needed in training

and testing phases when using the score fusion strategy and view specific classifiers. The

idea that, no low level view-invariant feature descriptor generation is necessary and view-

specific classifiers perform fairly well with streaming data is demonstrated. The system could

achieve a performance of over 95% in offline mode and over 85% in streaming mode. The

performance in streaming mode was show to be high (an average of 80% accuracy) with 4

views removed from the 8 views. It was shown that it is fairly resilient to failure of cameras.

5.2 Future work

Action recognition is an exciting field right now. Congregations of research ideas from

computer vision, distributed computing and machine learning make it very interesting area

to pursue research. The current system was proven to be successful in a controlled environ-

ment where training and testing were performed. For ease of implementation, the system

was implemented in python (due to availability of various machine learning toolkits and

frameworks). The system took about 0.15 to 0.3 seconds on an average across different

classification algorithms to make a decision at each camera node. This could be improved

by providing an implementation in C/C++. In the current prototype, most of the time

was spent in io activity and this could be improved by using a limited size buffer and by

managing the buffer according to the rate at which data is being captured.

The current system only works when the subject is at the center of the scene, to improve

this we need a scale invariant feature vector with high discriminative power. This problem

could be further explored. The current system can be extended to identify complex activities,

which can be a combination of interleaved actions recognized by the system. In order to solve

the problem of involving multiple subjects in the scene, one could introduce powerful yet

cheap cameras such as Kinect. However, isolating a subject in an un-controlled environment

is a difficult problem to solve [36]. These cameras can be used to detect multiple subjects

and current system could be integrated to perform activity recognition.

46

References

[1] Eunju Kim, Sumi Helal, and D. Cook, “Human activity recognition and pattern dis-
covery,” Pervasive Computing, IEEE, vol. 9, no. 1, pp. 48 –53, jan.-march 2010.

[2] M.S. Ryoo and J.K. Aggarwal, “Recognition of composite human activities through
context-free grammar based representation,” in Computer Vision and Pattern Recogni-
tion, 2006 IEEE Computer Society Conference on, 2006, vol. 2, pp. 1709 – 1718.

[3] S. Ramagiri, R. Kavi, and V. Kulathumani, “Real-time multi-view human action recog-
nition using a wireless camera network,” in Distributed Smart Cameras (ICDSC), 2011
Fifth ACM/IEEE International Conference on, aug. 2011, pp. 1 –6.

[4] ThomasG. Dietterich, “Machine learning for sequential data: A review,” in Structural,
Syntactic, and Statistical Pattern Recognition, vol. 2396 of Lecture Notes in Computer
Science, pp. 15–30. Springer Berlin Heidelberg, 2002.

[5] A. Bobick and J. Davis, “Real-time recognition of activity using temporal templates,” in
Applications of Computer Vision, 1996. WACV ’96., Proceedings 3rd IEEE Workshop
on, dec 1996, pp. 39 –42.

[6] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[7] J. Yamato, J. Ohya, and K. Ishii, “Recognizing human action in time-sequential images
using hidden markov model,” in Computer Vision and Pattern Recognition, 1992.
Proceedings CVPR ’92., 1992 IEEE Computer Society Conference on, jun 1992, pp.
379 –385.

[8] P. Turaga, R. Chellappa, V.S. Subrahmanian, and O. Udrea, “Machine recognition
of human activities: A survey,” Circuits and Systems for Video Technology, IEEE
Transactions on, vol. 18, no. 11, pp. 1473 –1488, nov. 2008.

[9] O. Chomat and J.L. Crowley, “Probabilistic recognition of activity using local appear-
ance,” in Computer Vision and Pattern Recognition, 1999. IEEE Computer Society
Conference on., 1999, vol. 2, pp. 2 vol. (xxiii+637+663).

[10] L. Zelnik-Manor and M. Irani, “Event-based analysis of video,” in Computer Vision
and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer
Society Conference on, 2001, vol. 2, pp. II–123 – II–130 vol.2.

REFERENCES 47

[11] Ivan Laptev, “On space-time interest points,” Int. J. Comput. Vision, vol. 64, no. 2-3,
pp. 107–123, Sept. 2005.

[12] Juan Carlos Niebles, Hongcheng Wang, and Li Fei-Fei, “Unsupervised learning of human
action categories using spatial-temporal words,” Int. J. Comput. Vision, vol. 79, no. 3,
pp. 299–318, Sept. 2008.

[13] C. Schuldt, I. Laptev, and B. Caputo, “Recognizing human actions: a local svm ap-
proach,” in Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International
Conference on, aug. 2004, vol. 3, pp. 32 – 36 Vol.3.

[14] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie, “Behavior recognition via sparse
spatio-temporal features,” in Visual Surveillance and Performance Evaluation of Track-
ing and Surveillance, 2005. 2nd Joint IEEE International Workshop on, oct. 2005, pp.
65 – 72.

[15] Yan Ke, Rahul Sukthankar, and Martial Hebert, “Efficient visual event detection using
volumetric features,” in Proceedings of the Tenth IEEE International Conference on
Computer Vision (ICCV’05) Volume 1 - Volume 01, Washington, DC, USA, 2005,
ICCV ’05, pp. 166–173, IEEE Computer Society.

[16] E. Shechtman and M. Irani, “Space-time behavior-based correlation-or-how to tell if
two underlying motion fields are similar without computing them?,” Pattern Analysis
and Machine Intelligence, IEEE Transactions on, vol. 29, no. 11, pp. 2045 –2056, nov.
2007.

[17] M.A.O. Vasilescu, “Human motion signatures: analysis, synthesis, recognition,” in
Pattern Recognition, 2002. Proceedings. 16th International Conference on, 2002, vol. 3,
pp. 456 – 460 vol.3.

[18] Aaron F. Bobick and James W. Davis, “The recognition of human movement using
temporal templates,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 3, pp.
257–267, Mar. 2001.

[19] Ming-Kuei Hu, “Visual pattern recognition by moment invariants,” Information Theory,
IRE Transactions on, vol. 8, no. 2, pp. 179 –187, february 1962.

[20] Alper Yilmaz and Mubarak Shah, “Actions sketch: a novel action representation,” in
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, june 2005, vol. 1, pp. 984 – 989 vol. 1.

[21] J. Schlenzig, E. Hunter, and R. Jain, “Recursive identification of gesture inputs using
hidden markov models,” in Applications of Computer Vision, 1994., Proceedings of the
Second IEEE Workshop on, dec 1994, pp. 187 –194.

[22] A.D. Wilson and A.F. Bobick, “Learning visual behavior for gesture analysis,” in
Computer Vision, 1995. Proceedings., International Symposium on, nov 1995, pp. 229
–234.

REFERENCES 48

[23] M. Brand, N. Oliver, and A. Pentland, “Coupled hidden markov models for complex
action recognition,” in Computer Vision and Pattern Recognition, 1997. Proceedings.,
1997 IEEE Computer Society Conference on, jun 1997, pp. 994 –999.

[24] L.R. Rabiner, “” on application of vector quantization and hidden markov models to
speaker- independent, isolated word recognition”,” ”Bell Labs Journal.”, 1982.

[25] J.K. Aggarwal and M.S. Ryoo, “Human activity analysis: A review,” ACM Comput.
Surv., vol. 43, no. 3, pp. 16:1–16:43, Apr. 2011.

[26] Yan Ke, Rahul Sukthankar, and Martial Hebert, “Spatio-temporal shape and flow
correlation for action recognition,” in In 7th Int. Workshop on Visual Surveillance,
2007.

[27] H. Aghajan and Chen Wu, “Layered and collaborative gesture analysis in multi-camera
networks,” in Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE
International Conference on, april 2007, vol. 4, pp. IV–1377 –IV–1380.

[28] Oytun Akman, A. Aydin Alatan, and Tolga iloglu, “Multi-camera visual surveillance
for motion detection, occlusion handling, tracking and event recognition,” 2008.

[29] P. Natarajan and R. Nevatia, “View and scale invariant action recognition using mul-
tiview shape-flow models,” in Computer Vision and Pattern Recognition, 2008. CVPR
2008. IEEE Conference on, june 2008, pp. 1 –8.

[30] Vasu Parameswaran and Rama Chellappa, “View invariance for human action recogni-
tion,” Int. J. Comput. Vision, vol. 66, no. 1, pp. 83–101, Jan. 2006.

[31] L.R. Rabiner, “A tutorial on hidden markov models and selected applications in speech
recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257 –286, feb 1989.

[32] Tao Xiang and Shaogang Gong, “Activity based surveillance video content modelling,”
Pattern Recogn., vol. 41, no. 7, pp. 2309–2326, July 2008.

[33] Andrew Mccallum and Kamal Nigam, “A comparison of event models for naive bayes
text classification,” 1998.

[34] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine Learning in Python
,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[35] Corinna Cortes and Vladimir Vapnik, “Support-vector networks,” Mach. Learn., vol.
20, no. 3, pp. 273–297, Sept. 1995.

[36] Shuiwang Ji” ”Ming Yang, “”detecting human actions in surveillance videos”,” ”TREC
Video Retreival evaluation workshop”, 2009.

	Robust Real-Time Recognition of Action Sequences Using a Multi-Camera Network
	Recommended Citation

	Robust Real-Time Recognition of Action Sequences Using a Multi-Camera Network

