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ABSTRACT 
PATHOPHYSIOLOGY AND CLINICAL IMPLICATION OF LOWER RESPIRATORY 

TRACT INFECTION (LRTI) WITH RESPIRATORY ENTERIC ORPHAN VIRUS 
(REOVIRUS): BACKGROUND AND EXPERIMENTAL EVIDENCE 

BY MARET E. BERNARD 
Background. Respiratory viral infection early in life is a predominant factor in the 

inception of episodic wheezing and development of asthma amongst young children [1] and a 
serious health challenge. Previous studies of lower respiratory tract infections (LRTI) with 
respiratory syncytial virus (RSV) in animal models have indicated that early life viral exposure 
results in dysregulated neuroimmune interactions and altered synthesis/release of pro-
inflammatory neuropeptides generating increased airway reactivity and neurogenic-
inflammation. Similar to RSV, respiratory enteric orphan virus (Reovirus) is a common 
respiratory pathogen associated with pulmonary infections in children.  Also, reovirus pulmonary 
infection has been shown to induce increased collagen deposition and be associated with the 
pathogenesis of bronchiolitis obliterans with organizing pneumonia (BOOP).  In this study, we 
investigated the effects of reovirus exposure on physiological airway responses and whether 
these responses were associated with neurogenic inflammation and airway remodeling.  

Methods. Adult (12 weeks) and weanling (2 weeks) Fisher-344 (F-344) rats were 
infected with reovirus or a pathogen-free vehicle and the changes in airway vascular 
permeability, neurotrophin expression, inflammatory response and protein content were 
measured at either 5 or 30 days after infection to determine changes in neurogenic inflammation 
and airway remodeling.   

Results. Neurogenic inflammation increased in all treated animals 5 days after 
inoculation and up to 30 days in adult rats. This effect was not associated with any changes in 
nerve growth factor (NGF) and brain-derived neurotrphic factor (BDNF) expression in any 
animals at both time points. All treated animals developed acute pneumonia which resolved at 30 
days. However, weanling rats showed mild peri-alveolar fibrosis at 30 days.  

Conclusions. Reovirus potentiates neurogenic inflammation in rat airways. This effect is 
not associated with changes in neurotrophin expression. In weanling rats, reovirus infection 
induced peri-alveolar fibrosis suggesting that early exposure may carry long-term effects which 
may be clinically relevant. 
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CHAPTER 1 

Respiratory Enteric Orphan Virus  
IInnttrroodduuccttiioonn  

Respiratory enteric orphan viruses (Reoviruses) [2] are commonly found in the airways 

of exposed infants early in life [3-5] and are associated with pulmonary infections and the 

common cold [6].  Reovirus has been extensively studied as an ideal experimental model of viral 

pneumonia [7], however little is known about the pathologic mechanisms of reovirus-induced 

pulmonary infection. 

Reoviruses were first isolated from healthy children’s stool in 1954 and classified as a 

member of the ECHO type 10 viruses.  It was later determined that the virus had distinctive 

characteristics from other members of the ECHO type 10 group and was officially identified by 

Sabin as a respiratory enteric orphan  on the basis of its repeated isolation from respiratory and 

enteric tracts of asymptomatic and symptomatic children [5].  Common symptoms associated 

with reovirus infection are mild, cold-like respiratory difficulties such as a cough or 

gastrointestinal problems, specifically diarrhea.  Current evidence of other clinical manifestations 

are incomplete and patchy, but have demonstrated that reovirus has a wide range of infectivity, 

but predominantly infects the respiratory and gastrointestinal tract [8].  Long term effects of 

clinical sequelae following viral infection have not been fully elucidated. 

SSttrruuccttuurree  aanndd  RReepplliiccaattiioonn  
Mammalian reoviruses are nonenveloped, cytoplasmically replicating viruses.  The viral 

structure consists of an outer casing and an internal core.  The outer casing is comprised of two 

concentric protein capsids interspersed with fibrous protein spike extensions that generate an 
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appearance described as icosahedral geometry (Figure 1-C).  The outer capsid surrounds the viral 

core that contains the virus’s genome.  The genome consists of 10 segments of double stranded 

ribonucleic acid (dsRNA) that are grouped into three categories corresponding to their size: L 

(large), M (medium) and S (small) (Figure 1-A). Segments range from 3.9 kbp to 1kbp and each 

segment encodes 1-3 proteins with the S1 gene segment being the only bicistronic gene [9] 

(Figure 2-A).  The S1 gene encodes the viral attachment proteins σ1, σ2 and σ3 that form the 

fibrous spikes that extend from the µ1 protein outer capsid which is encoded by the M2 gene 

[10].  The inner capsid is made up of the µ2 protein encoded on the M2 gene and is the site of 

origin for the viral spikes [11] (Figure 1-C).  The viral core consists of the proteins λ1, λ2 and λ3 

that are responsible for producing the necessary tools for viral replication [12]. 

 

Figure 1 Structure and Maturation of Reovirus 
A) Is a schematic representation of reovirus structure showing the three main components: inner capsid, outer capsid and dsRNA 
genome. (adapted from ViralZone reference [13]).    B) An illustration of the different stages of reovirus disassembly starting 
with the nonenveloped, icosahedaral virion (80nm) composed of an outer protein capsid (σ3 and µ1), an inner protein capsid (σ1) 
and the attachment proteins ( σ 1 and λ2). The outer capsid has an icosahedral T=13 symmetry and the inner capsid has an 
icosahedral T=2.  Removal of σ3/VP7 results in the second viral stage known as infectious subviral particles (ISVPs).  ISVPs are 
then further disassembled to form the core particle (λ1, λ2 and λ3) that produces the tools for viral replication.(adapted from 
ViralZone reference [13]).   
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Reovirus infection is a step wise process where the virion first attaches to the host cell via 

an interaction between the σ1 viral protein and the host cell’s sialic acid and junction adhesion 

molecules (JAM) (Figure 2-B).  Following attachment, the virus undergoes endocytosis and is 

transported in endosomes.  Once inside the endosome virions undergo partial cleavage or are 

progressively uncoated through an acidic pH and cysteine-protease dependent process.  This 

results in virions being converted into infectious sub-viral particles (ISVP) (Figure 1-B & C).  

Conversion to ISVPs requires the removal of the major capsid protein σ3, cleavage of the major 

outer capsid protein μ1 into smaller virion-associated fragments and conformational changes to 

the attachment protein σ1.  Conversion to ISVPs can also occur extracellularly through the action 

of proteolytic enzymes, such as those found in the intestines, and act as the primary infectious 

particle.  In this situation the ISVPs infect cells via endocytosis, but they no longer require 

endosomal acidification for processing (Figure 2-B).  Regardless of their site of initial 

generation, ISVPs are processed further within endosomes to form the non-infectious but 

transcriptionally active core particle.  This transformation requires the removal of the σ1 and 

virion-associated μ1 fragments and is associated with the process of penetration through the 

endosomal membrane by the core particle.  The decisive event in the process is the exposure of 

μ1 residues that interact and initiate fusion of the ISVP with the endosomal membrane, providing 

a method of delivery of core particles into the cytoplasm.  At this point conservative transcription 

of the genome occurs.  The virion RNA is copied by the viral RNA polymerase while still in the 

core.  The dsRNA genome does not function as a messenger RNA (mRNA), making the 

production of mRNA the first initial step of the process.  The mRNA is copied from the negative 

strand template found in the dsRNA within the parental cores during primary transcription.  This 

results in production of numerous capped transcripts of positive strand RNA that are not 
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polyadenylated. Capped mRNAs leave the core and enter into cytoplasm through channels in the 

λ2 core spike.  The extruded capped mRNAs have two different fates.  Some of the mRNAs are 

translated to form viral proteins and are self-assembled to form the viral capsid and cores 

through a process still not completely understood.  mRNAs that are not transcribed are packaged 

into virions where they act as a template for the negative strand to form a complete dsRNA.  

Progeny virus particles assemble in the cytoplasm 6-7h after infection, forming inclusion bodies 

that can be seen in the infected cell.  Nascent virus particles are released when the infected cell 

undergoes apoptosis and/or  lysis [14]. 
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Figure 2 Genome and Pathogenesis of Reovirus 
A) Reovirus has a segmented dsRNA linear genome that contains 10 segments: L1, L2, L3, M1, M2, M3, S1, S2, S3, S4, coding 
for 12-13 proteins. Segment size is 1,189-3,916 nt and total genome size is 23.5 Kb. (Adapted from ViralZone reference [13]).  
B) Reovirus life cycle: (1) attachment via the interactions between the viral s1 protein and host cell sialic acid and/or JAM 
receptors; (2) receptor-mediated endocytosis induces shedding of σ1 and σ3 proteins; (3) µ1 is cleaved by endocytic proteases 
and exits the endosome; (4) primary transcription occurs within reovirus cores and capped mRNAs are released; (5) primary 
translation of all 10 mRNAs by host ribosomes; (6) viral proteins accumulate in viral factories produced by viral nonstructural 
proteins; (7) new cores assemble; (8) synthesis of minus-strand of viral RNA; (9) secondary transcription occurs within new viral 
cores; (10) secondary translation amplifies viral proteins; (11) complete assembly of outer capsid; (12) release follows cells lysis 
or apoptosis.  An alternate route is the endocytosis of ISVPs.  Reprinted by permission from Macmillan Publishers Ltd: 
Oncogene [15], Copyright 2005, Nature Publishing Group (2010) http://dx.doi.org/10.1038/sj.onc.1209041   

SSeerroottyyppeess  
Currently there are three distinct reovirus serotypes that can be differentiated by testing 

hemagglutination (HA) doses [16] and clinical symptoms.  The original prototype of reovirus is 

the type 1 Lang strain (T1L) that was recovered from healthy children or those suffering from 

mild febrile illness [5].  Type 2 reovirus, referred to as the Jones strain, was isolated from 

children suffering from diarrhea, steatorrheic enteritis or that were healthy subjects [8].  The 

http://dx.doi.org/10.1038/sj.onc.1209041
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virus was also isolated from chimpanzees with rhinitis and monkeys suffering from pneumonia. 

Type 3 Dearing strain (T3D) was recovered from children suffering from diarrhea or upper 

respiratory infections [8].  Combined, all three reoviruses demonstrate specific cytopathogenic 

effects that can directly infect all mammals, including humans, and can be found in any area of 

the world.  The vast dispersal and general ease of viral infection make reovirus an important and 

common virus. 

EEppiiddeemmiioollooggyy  
Investigations of the prevalence of reovirus exposure and/or infection have revealed a 

high incidence level of viral contact amongst children as well as adults.  The seroprevalence of 

antibodies against reovirus has revealed a high occurrence of seropositivity demonstrating a 

considerable frequency of reovirus exposure.  Further evidence of the frequency of reovirus 

exposure is demonstrated by the fact that 50% of adult sera and 25% of childhood sera from 

patients with respiratory infection are positive for reovirus antibodies [17-18].  In 1962, the 

earliest study of reovirus seroprevalence was conducted by Lerner et al. [19] where 235 sera 

samples were collected randomly from patients whose ages ranged from premature infants to 60 

year old adults.  Results from mothers and their newborn infants demonstrated that antibodies to 

all reovirus serotypes pass freely through the placenta and provided passive immunity to infants 

up until 6 months of age, after which anti-reovirus antibodies dissipate.  Anti-reovirus antibodies 

did not begin to appear again until early childhood with 50% of sera being positive by the age of 

10 years old.  The highest amount of sero-positive sera was found in the age group of 41-60 

years old with more than 80% of the patients testing positive for antibodies to reovirus.  This 

demonstrated that the increase of anti-reovirus antibodies in children after loss of passive 

immunity was gained through reovirus exposure early in childhood.  Collectively, this indicates 
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that reovirus is a common infective agent affecting children.  Additionally, a study done by Leers 

and Rozee [17] looked at the incidence of antibodies to all three reovirus serotypes in children 

ages 1 month to 10 years in an urban setting.  They determined that serotypes 2 and 3 

demonstrated the decline of maternal antibodies described by Lerner et al., but found something 

completely different with the serotype T1L.  They determined that the “pattern for T1L 

antibodies demonstrated a process of active infantile infection during the time of collection.”  

T1L antibodies showed a gradual increase during the first year of life that was then followed by a 

more rapid increase during the early school years, which then plateaus by the age of 10.  Once 

again, this demonstrates that active reovirus infections occur very commonly amongst young 

children. 

In a more recent study, Tai et al [20] collected 273 serum specimens from healthy full-

term infants that were followed until 5 years of age.  Serum was tested for anti-reovirus 

Immunoglobulin (Ig), specifically IgA, IgG and IgM antibodies via indirect enzyme-linked 

immunosorbent assay (ELISA).  They found that 75% of infants 0-3 months of age were positive 

for anti-reovirus antibodies which decreased to 11.1% in 3-6 month old infants and totally 

disappeared to 0% in children 6-12 months old.  Seroprevalence began to rise again with 8.2% of 

children 1-2 years of age being positive for anti-reovirus antibodies.  This percentage increased 

to 32.8% in children ages 4-5 years old and grew to 50% in children ages 5-6 years of age.  

These findings mimicked those of the earlier studies and demonstrated that reovirus infections 

are common during early childhood following the loss of passive immunity.  The high rate of 

reovirus infection among young children, adults and elderly, consistently indicated by 

epidemiological evidence, makes this type of infection even more important regarding its 
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potential relevant impact on the public.  However, the mechanisms behind reovirus pathogenesis 

and their long term effects on airway responses are still not fully elucidated.  

RReeoovviirruuss  &&  PPuullmmoonnaarryy  IInnffeeccttiioonnss  
 Reovirus pulmonary infection has been documented by numerous studies that have 

clarified the entry, pathogenesis and clearance of reovirus from pulmonary tissue and lymph 

nodes (LN) [6, 21].  Reovirus enters the respiratory tract through pulmonary M cells and spreads 

through the airway and into regional lymph nodes resulting in viral pneumonia [22]. Studies by 

Morin et al. characterized reovirus infection as an ideal model of viral pneumonia [7].  They 

demonstrated that intratracheal inoculation with T1L resulted in a pneumonia characterized by an 

influx of inflammatory cells into the alveolar spaces, resulting in epithelial damage as indicated 

by type II alveolar epithelial cell hyperplasia [7].  The inflammatory cells in the alveolar spaces 

were comprised of neutrophils, mononuclear cells and lymphocytes [23].  Both CD4 and CD8 T 

cells, as well as B cells, make up the lymphocyte population present in both the alveoli and 

interstitium of the lungs [24].  It was determined by Morin and colleagues [7] that reovirus 

replication is necessary for the development of pulmonary inflammation and the development of 

pneumonia.  Viral particles have been isolated from type I alveolar epithelial cells and in 

macrophages suggesting that within these cell types viral replication was occurring.  Viral 

replication in alveolar type I epithelial cells is the primary factor responsible for inducing 

epithelial cell damage and loss resulting in type II cell hyperplasia and increased inflammation 

[7].  Alveolar macrophages are responsible for removing apoptotic tissue and other foreign 

material from alveolar spaces.  Macrophage function provides an ideal means for viral entry into 

the cell and a key factor in reovirus pathogenesis.  Reovirus replication in macrophages could 

alter the host response by interfering with chemokine and cytokine production and lymphocyte 
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activation.  For example, neutrophil chemotactic factors keratinocyte-derived cytokine (KC) and 

macrophage inflammatory protein-2 (MIP-2) produced by macrophages can be altered by 

reovirus exposure, indicating the potential for reovirus influence [25].  This effect is serotype 

specific according to viral protein expression and needs to be further studied.  Therefore, 

inflammation in response to reovirus infection of the lungs is characterized by inflammatory cell 

influx and viral replication in alveolar cells that results in type II cell hyperplasia. 

The immune response to primary infection is associated with the development of both a 

type 1 helper T cell (Th1) and type 2 helper T cell (Th2) response, resulting in the production of a 

humoral and cell mediated immune response.  The Th1 immune response is dependent upon the 

activation of both CD4 and CD8 T cells [26] to produce antiviral cytokines such as interferon-γ 

(IFN-γ) and interleukin-12 (IL-12) inducing cell mediated immunity.  The expression of Th1 

cytokines also affects the humoral immune response by inducing antibody class switching to 

IgG2a [27].  The Th2 immune is characterized by the production of IL-6 and IL-10 that results in 

a humoral immune response resulting in IgG1 antibody production [27]. Therefore, viral 

clearance and immunity is dependent upon both humoral and cell mediated immunity.    

RReeoovviirruuss  aanndd  BBrroonncchhiioolliittiiss  OObblliitteerraannss  OOrrggaanniizziinngg  
PPnneeuummoonniiaa  ((BBOOOOPP))    
Background 

Bronchiolitic obliterans organizing pneumonia (BOOP) is a term that became prevalent 

in the 1980’s to describe a distinct clinical and pathological airway disorder [28].  BOOP is 

characterized by the presence of connective tissue masses that form plugs within the lumen of 

small airways and can extend in a continuous fashion into alveolar ducts and alveoli, indicative 

of organizing pneumonia [28-29].  The polypoid endobronchial connective tissue masses consist 
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of myxoid fibroblastic tissue as well as granulation tissue [30-31].  The intraluminal polyps have 

a central collection of inflammatory cells made up of histocytes, lymphocytes and plasma cells 

[28].  Analysis of polyp cross sections reveal the prominence of fibroblasts as well as fibrinous 

exudates [32].  Other major features include interstitial mononuclear cell infiltrate that are 

variable in density, chronic inflammation of the alveolar walls indicated by type II cell 

hyperplasia and reactivity, increased presence of foamy cells or macrophages in the alveolar 

spaces and the absence of honeycombing [33-34].  The general architecture of the lung is 

maintained with the polyps representing BOOP lesions.  The BOOP lesions begin as focal 

lesions within the alveoli and terminal bronchioles of the lung and progress bilaterally over time 

[34].  The resulting fibrosis can be described as patchy in appearance.  The alveoli appear normal 

except for the slight thickening of the septa resulting from inflammatory infiltrate and 

prominence of type II cells.  Generally speaking, BOOP results in interstitial scarring as a result 

of inflammatory damage to airway epithelia resulting in fibroblastic interstitial thickening [35].     

The development of BOOP is associated with lung injury due to environmental toxins, 

bacterial infections, viral infections and lung or bone marrow transplantation [29].  BOOP 

development can also be due to unknown etiology or more commonly known as idiopathic 

BOOP.  Treatment for BOOP normally involves the administration of corticosteroids which have 

proven to be effective.  However, some patients experience spontaneous remission of BOOP and 

over one third of patients who have completed corticosteroid treatment still have symptoms and 

evidence of BOOP lesions [36].  This demonstrates that not all BOOP cases respond to steroids 

and can be severe to fatal in some clinical cases [37].  Currently, the cellular and molecular 

mechanisms that mediate the formation and resolution of BOOP lesions have not been fully 

clarified.   
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Animal Model of BOOP 
Respiratory reovirus infection was demonstrated by Bellum et al. [38] as a model of 

BOOP.  They found that CBA/J mice inoculated intranasally with 1×107 pfu of T 1/L reovirus 

demonstrated fibrous cellular plugs of the alveolar ducts characteristic of BOOP.  The formation 

of BOOP lesions was preceded by patchy inflammation of the lungs, with focal inflammation 

consisting of mononuclear cell infiltrate that progressed into condensed fibrous polyps or 

collagenous tissue and foamy macrophages.  These became well developed 3 weeks post 

infection.  This indicated the respiratory reovirus infection can serve as an ideal model for BOOP 

pathogenesis and provide a means to determine the cellular and molecular mechanisms 

mediating disease development.    

PPuullmmoonnaarryy  FFiibbrroossiiss  
Pulmonary fibrosis (PF) is an unremitting and progressive interstitial and diffuse 

parenchymal lung disease that affects 128,100 people in the United States and 5 million people 

worldwide [39]. The incidence is on the rise as indicated by the number of diagnoses having 

doubled over the past decade [39].  Roughly 40,000 people die each year due to PF, which is the 

same as that for breast cancer.  With no effective treatments the prognosis for patients with PF is 

grim, with an average life span of 3-5 year after diagnosis [39].  Even though PF is extremely 

prevalent there are no FDA approved treatments or cures, making it one of the few remaining 

untreatable diseases.  Advances in research and unsuccessful therapies over the past decade have 

revealed differing explanations of the pathogenesis of PF.  Early ideas focused on the influence 

of chronic inflammation but immunosuppressive therapies have had limited success.  

Subsequently, the focus has shifted to a mechanism that involves both inflammation and repair, 

stating that the pathogenesis of fibrotic lung disease involves the dysregulation of normal tissue 
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repair mechanisms.  The loss of regulation allows for rampant fibroproliferative responses to 

injury and progressive development of fibrosis. 

Fibrosis is an end result of a series of events that occur after damage to the epithelium 

and/or endothelium that results in abnormal tissue repair [40-42].  Under normal circumstances, 

epithelial repair in the lungs proceeds as demonstrated in figure 3 [43].  At the outset of repair, 

inflammatory mediators are released that activate platelet aggregation, clot formation and the 

formation of a provisional extracellular matrix.  Subsequently, inflammatory processes ensue 

with the production of growth factors, cytokines and chemokines, resulting in the recruitment 

and proliferation of leukocytes that are responsible for the removal of dead tissue and promotion 

of angiogenesis.  Fibroblasts transform into their active form, myofibroblasts, known for their 

expression of α-smooth muscle actin (α-SMA) and their ability to contract.  Myofibroblasts are 

responsible for wound contraction and closure.  The final steps include epithelial and/or 

endothelial cell division and migration to the site in order to replace the damaged tissue.  The 

loss of regulation in these processes results in detrimental accumulation of extracellular matrix 

(ECM) components, specifically the over production of collagen resulting in fibrosis.   
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Figure 3 Epithelial Repair Process and Remodeling 
(1) injury initiates activation of macrophages (M) to activated macrophages (AM) and the subsequent recruitment of immune 
cells, (2) mesenchymal stem cells (MSC), or niche stem cells (NSC).  Soluble factors (S) secreted by immune and non immune 
cells (3) act on epithelial cells and fibroblasts which spread and migrate (4) closing of the wound and re-establishing intact barrier 
function.  TGF-β signalling results in trans-differentiation of epithelial cells to myofibroblasts (MY), the EMT, and the initiation 
of a chronic inflammatory response (5) with further elaboration of ECM.  During resolution (6), immune cells disappear from the 
site of injury, macrophages are deacitivated, cells differentiate, and hyperproliferation is reduced through apoptosis, allowing 
tissue remodelling (7).   American Journal of Physiology. Lung cellular and molecular physiology by Lynn M. Crosby & 
Christopher M. Waters. Copyright 2010 by AMERICAN PHYSIOLOGICAL SOCIETY. Reproduced with permission of 
AMERICAN PHYSIOLOGICAL SOCIETY in the format of a Thesis via Copyright Clearance Center.   

Variation in the amount and profile of cytokines and growth factors secreted during 

injury or inflammation serve as the primary determinants in whether or not repair is abnormal.  

The initiation of abnormal repair and development into fibrosis has been attributed to the 

mediator transforming growth factor -β (TGF-β) [44-46].  It has been shown that TGF-β is able 

to control the ECM transcription via a variety of signaling molecules to induce fibrosis (Figure 

4) [46-48].  Specifically, TGF-β signaling through its receptor and smad-2/3 induces increased α-

SMA expression [40, 49-51].  Alternatively, the extracellular signal-regulated kinase (ERK) 

signaling pathway induces collagen type 1 expression and the c-Jun-N-terminal kinase (JNK) 
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pathway induces fibronectin expression [45].  Therefore, regulation of TGF-β signaling is key in 

controlling the fibrotic process. 

 

Figure 4 Altered Repair Results in Fibrosis 
Epithelial-mesenchymal communication is dysregulated in progressive pulmonary fibrosis with aberrant bidirectional signaling 
between tissue compartments. Inflammatory cells that modulate this process are recruited and activated by secreted products 
from these “resident” cells. Resultant effects on alveolar epithelial cells include increased apoptosis, dysregulated proliferation, 
and ineffective migration. Effects on mesenchymal cells include myofibroblast differentiation, resistance to apoptosis, and 
enhanced extracellular matrix (ECM) secretion. Dysregulation of the repair process leads to persistent mesenchymal cell 
activation that culminates in pulmonary fibrosis. Abbreviations: TGF, transforming growth factor; TNF, tumor necrosis factor; 
PGE2,prostaglandin E2; PDGF, platelet-derived growth factor; reactive oxygen/nitrogen species, ROS/RNS; HGF, hepatocyte 
growth factor; TIMP, tissue inhibitors of matrix metalloproteinases; MMP, matrix metalloproteinase; PAI-1, plasminogen 
activator inhibitor-1; uPA, urokinase-type plasminogen activator.  ANNUAL REVIEW OF MEDICINE by Victor J. Thannickal, 
Galen B. Toews, Eric S.White, Joseph P. Lynch III, and Fernando J. Martinez. Copyright 2001 by ANNUAL REVIEWS, INC.. 
Reproduced with permission of ANNUAL REVIEWS, INC. in the format Dissertation via Copyright Clearance Center. 

There are many different possible and relevant mediators that are involved in repair 

processes that could be responsible for the development of fibrosis.  The key features of airway 

remodeling include: the accumulation and activation of inflammatory cells, a Th2 cell immune 

response phenotype, mesenchymal cell hyperplasia and increased matrix protein deposition as 

shown in figure 4.  This review focuses on the role of caveolin-1 (cav-1) and the eicosanoids in 

the development of fibrosis in relation to airway reovirus infection. 
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CHAPTER 2        

Caveolae: Caveolin-1 (cav-1) 
IInnttrroodduuccttiioonn  

Caveolae (Latin for “little caves”) are a subset of lipid rafts, which are described as 

highly-ordered microdomains within the plasma membrane [52-53].  They were first identified 

by electron microscopy (EM) examination in the 1950’s by Palade and Yamada, who described 

them as 50-100nm “flask shaped” membrane invaginations or flat pits that are anchored by the 

actin cytoskeleton [54-55] (Figure 5-A).  Other distinguishable features of caveolae include their 

unique lipid profile that are rich in glycosphingolipids, sphingomyelin and cholesterol and by 

their principal protein components known as caveolin [56-59].  Caveolae are found in a vast 

array of terminally differentiated cell types, including endothelial cells, pneumocytes, fibroblasts, 

adipocytes and muscle cells [60-61].   
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Figure 5 Membrane Topology, Domains and Signaling 
A) The electoron micrograph show caveolae in adipocytes that have been surface-labeled with an electron-dense marker. B) (top) 
Schematic demonstrating caveolin inserted into the caveolar membrane, with the N and C termini facing the cytoplasm and the 
‘hairpin’ intramembrane domain embedded within the membrane bilayer. The scaffolding domain has a conserved basic (+) and 
bulky hydrophobic residues (red circles) and the C-terminal domain, which is close to the intramembrane domain, is modified by 
palmitoyl groups that insert into the lipid bilayer. (bottom) The predicted membrane topology of Cav-1 as a dimer and a 
schematic of the cav-1 domains.  Macmillan Publishers Ltd.. Reproduced with permission from Nature Publishing Group in the 
format of a Thesis (2010) via Copyright Clearence center.  C) Regulation of signaling via caveolae microdomains. G-protein–
coupled receptors (GPCR), G-proteins (  and ß ), and receptor tyrosine kinases can reside in or translocate in and out of 
caveolae. Cav-1 directly regulates protein function or indirectly regulates Ras-Stat, extracellular signal-regulated kinases (Erk), 
and Janus kinases (Jak)-Stat signaling pathways. Lipid-modified proteins such as endothelial nitric oxide synthase (eNOS) and 
the Src family of kinases can target to caveolae and interact with caveolin-1. Reproduced with permission from Wolters Kluwer 
Health: Circulation Research [62], copyright 2004. 
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The earliest function of caveolae was deduced based on its membrane location and the 

protein components present in each, which indicated that caveolae, were primarily involved in 

vesicle trafficking [61, 63].  For example, caveolae play a role in clathrin-independent 

endocytosis, transcytosis, potocytosis, cholesterol transportation and calcium metabolism [64-

69].  The early description of caveolae function only describes one of the two purposes of 

caveolae.  The second function of caveolae is to regulate signal transduction, allowing them to be 

regarded as signalosomes [60, 70-71].  More specifically, caveolae serve as signaling platforms 

by compartmentalizing and concentrating various classes of signaling molecules, including G-

protein subunits, receptor and non-receptor tyrosine kinases and other protein components 

(Figure 5-C) [72-76].  In summary, caveolae are involved in a variety of cellular processes 

including endocytosis, lipid homeostasis and signal transduction.  The multifunctional nature of 

caveolae provides a paradigm by which numerous disease processes may be affected, indicating 

the importance of caveolae [77-81]. 

CCaavv--11  PPrrootteeiinn  
The integral membrane proteins, called caveolin, are the principal and indicative protein 

components of caveolar membranes [60].  They are predominantly located at the plasma 

membrane and serve as protein markers of caveolae, but are also found in the Golgi, 

endoplasmic reticulum (ER), in vesicles and at cytosolic locations [52, 82-83].  The caveolin 

gene family consists of three members in vertebrates: caveolin-1, caveolin-2 and caveolin-3, 

which encode four protein isoforms (caveolin-1α, caveoline-1β, caveolin-2 and caveolin-3) [60].   

Caveolin-1, also known as Cav-1 or VIP21, is a 21 to 24 kDa protein that associates with 

the cytoplasmic surface of caveolae.  It was the original member of this family and serves as the 

primary structural component of caveolae [84] (Figure 5-A).  In fact, along with cholesterol and 
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sphingolipids, cav-1 appears to play a direct role in caveolar biogenesis [57, 60, 85].  The two 

other members of the caveolin family, caveolin-2 (cav-2) and caveolin-3 (cav-3), also target 

exclusively the caveolar microdomains [60].  The expression levels of cav-1, -2, and -3 fully 

correlate with the presence of caveolae in those tissues. Interestingly, the expression patterns of 

cav-1 and -2 are largely distinct from that of cav-3; whereas adipocytes, endothelial cells, 

pneumocytes, and fibroblasts have the highest expression levels of cav-1 and -2, cav-3 

expression is limited to muscle cells of all types (cardiac, skeletal, and smooth muscle cells) [52, 

86-87].  The three proteins overlap in their expression in a few cell types, including smooth 

muscle cells. Since their discovery, the caveolin proteins have been shown to be intimately 

involved in all aspects of caveolar function. 

The many functions of caveolae can be attributed to its major protein component, cav-1.  

Cav-1 is able to interact with signaling molecules, scaffolding proteins and different membrane 

components through the different domains found along its structure (Figure 5-B).  The 3 distinct 

structural regions of cav-1 are the hydrophilic cytosolic N-terminal (1-101 residues) and C-

terminal (135-178 residues) regions which flank the central hydrophobic domain(102-134 

residues) creating a hairpin-like structure that spans the plasma membrane [60].  The N-terminal 

and C-terminal are oriented towards the cytosol with the central region located in the membrane.  

The membrane attachment domains are located at the N- and C-termini and are designated as N-

MAD (residues 82-101) and C-MAD (residues 135-150) [88-89].  Located along the c-terminal 

are palmitoylation sites on cysteine (Cys) 133, 143 and 156, that are involved in membrane 

anchorage [90-91]. The central region (residues 102-134) was first suggested to be a 

transmembrane domain (TMD), but after predicting its beta-sheet rather than alpha-helix 

conformation, it was suggested that it was a protein binding domain.  Further analysis indicated 
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that the domain was involved in hetero-oligomerization of cav-1 with cav-2 and in specific 

interactions with other proteins [92]. The caveolin scaffolding domain (CSD), located at the N-

terminus (amino acids 82-101), is involved in the binding and inhibition of proteins containing a 

defined caveolin binding motif, such as ωxxxxωxxω or ωxωxxxxω - where ω is an aromatic 

amino acid (Trp, Phe or Tyr) [93]. The oligomerization domain (amino acids 61-101) contains 

CSD and directs the formation of homooligomers (14-16 cav-1 molecules), which interact with 

cholesterol and signaling molecules [89]. 

The organization of the individual cav-1 domains provides a structural platform for 

recruiting and compartmentalizing signaling proteins (Figure 5-C).  Several signaling proteins 

have been reported to assemble in caveolae and interact with cav-1 such as: receptor tyrosine 

kinases and their downstream associates (Epidermal Growth Factor Receptor (EGFR), Platelet 

Derived Growth Factor Receptor (PDGFR), v-Ha-ras Harvey rat sarcoma viral oncogene 

homolog (H-Ras), V-raf-1 murine leukemia viral oncogene homolog 1 (Raf-1), ERK, 

Phosphatidylinositol 3-kinases (PI3K)) [94-100], non-receptor tyrosine kinases (Src family, Fak) 

[99, 101], receptor serine/threonine kinases (TGF-β receptor type I) [102-103], G-protein 

coupled receptors and their downstream associates (G-protein alpha subunits, adenylyl cyclase, 

Protein Kinase-A (PKA), PKC isoforms) [104-108], steroid hormone receptors (Androgen 

Receptors (AR) and Estrogen Receptors (EstR)) [109-111], Endothelial nitric oxide synthase 

(eNOS) [112-114] and numerous others.  Cav-1 binding acts as a negative regulator upon most 

signaling molecules.   For example, as a tumor suppressor, cav-1 binds to EGFR and inhibits 

phosphorylation and activation of the receptor.  Cav-1 also is able inhibit activation by binding 

directly to signaling molecules and stopping signaling cascades.   
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CCaavv--11  aanndd  IInnffllaammmmaattiioonn  
The involvement of cav-1 in the processes of inflammation is multifaceted and is 

indicative of its varied functions as a membrane protein.  The expression of cav-1 by immune 

cells is not well defined due to varying results from different cell lines.  Previous research 

suggests that it is expressed by myeloid, but not lymphoid cells, but due to more specific and 

elaborate detection methods, recent evidence suggests that it is present in all immune cells.  Cav-

1 has been identified in murine macrophages [115] and mast cells [116], human dendritic cells 

[117], mast cells (MCs) [116], lymphocytes [85] and neutrophils (PMNs) [118] and bovine 

monocytes, macrophages and dendritic cells (DCs) [119].  Cav-1 expression in these cells is not 

isolated to the cell surface, but can be present intracellularly as in the case of bovine DCs where 

cav-1 is focally isolated to the perinuclear region.   Expression may also not be constitutive but 

inducible by different signals, making it difficult to determine the expression.  This is the case 

with peritoneal macrophages, which demonstrate sparse caveolin staining concentrated in 

vesicles in the golgi region.  Subsequent stimulation with Freund’s adjuvant results in increased 

caveolin staining that is no longer restricted to the golgi, but dispersed throughout the 

macrophage.  Murine macrophages demonstrated similar increases in cav-1 post exposure to 

lipopolysaccharide (LPS).  Therefore, cav-1 expression may not be constitutive, but rather 

transient and stimulus specific.  The nature of cav-1 expression amongst immune cells is 

dependent on different factors including cell type and state of activation, indicating that cav-1 

could be an important component in mediating specific immune cell functions.  It has been 

demonstrated that cav-1 plays a part in regulating PMN, macrophage, antigen presenting cell 

(APC), B cell and T cell functions.   
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The presence and function of cav-1 in PMNs is incompletely understood.  Studies have 

indicated that cav-1 is important in the mechanism of PMN activation, adhesion and 

transmigration [120].  PMN activation induces the formation of the primary source of oxygen 

derived reactive species, superoxide.  Hu et al. [120] observed that the production of superoxide 

in response to stimulus with PMN activating factors formyl-Met-Leu-Phe (fMLP) plus platelet-

activating factor (PAF) is reduced by 50-80% in cav-1-/- PMNs compared to control, indicating 

cav-1 mediates PMN activation.  Furthermore, cav-1-/- PMN migration and adhesion to 

fibrinogen in response fMLP is reduced compared to controls.  Similarly, both Hu et al. [120] 

and Garrean et al. [121] observed that activated cav-1-/- PMNs exhibited deficient adherence and 

migration to and across pulmonary micro vascular endothelial cell monolayers compared to 

controls.  Combined, this indicates that cav-1 is essential for PMN adhesion and migration. 

Macrophages are one of the primary host immune defense cells, playing an essential role 

in phagocytosis, cytokine production and antigen presentation.  Cav-1 has been shown to be an 

important regulator of macrophages during inflammation, regulating macrophage apoptosis 

[122], lipid metabolism [123], endocytosis [124] and immunomodulatory effects [125].  The role 

of cav-1 in macrophage apoptosis was elucidated by studies using thioglycollate-elicited mouse 

peritoneal macrophages (tg-MPM).  tgMPMs treated with different apoptotic agents, including 

simvastatin, camptothecin or glucose deprivation, resulted in large increases of cav-1 expression 

[122].  Cav-1 increase was determined to be a specific marker of apoptosis that is closely 

associated with the externalization of phosphatidylserine (PS) [122].  Cav-2 did not show similar 

changes in response to the apoptotic agents, indicating this was specific to cav-1.   

Cav-1 is important in mediating macrophage lipid metabolism [123].  Specific 

characteristics of cav-1, such as its ability to bind to cholesterol and it location in cholesterol rich 
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lipid rafts, imply its involvement in the maintenance of cellular cholesterol homeostasis or 

cholesterol efflux.  Specifically, caveolae and cav-1 are associated with the proteins CD36 and 

SR-BI, two members of the B scavenger receptor family that are responsible for high density 

lipid (HDL) transfer.  Studies have shown that cav-1 regulates the activity of both receptors, 

altering cholesterol efflux [123].   

The relationship between cav-1 and macrophages is mainly focused on uptake of antigen 

since cav-1 is essential for non-clathrin coated endocytosis [126-127].  Cav-1 deficient 

macrophages demonstrated impaired phagocytosis that was determined to be dependent upon 

cav-1 expression [124].  Also, treatment with the caveolae inhibitor filipin decreased the speed of 

fluid phase and receptor mediated endocytosis by macrophages[127].  Combined, these two 

studies indicate the importance of cav-1 in phagocytosis by macrophages.       

Cav-1 has been shown to be a potent immunomodulatory molecule in macrophages.  

Macrophage expression of cav-1 is not consistent for all subtypes, but is dependent upon their 

location, environmental signals and function.  Recently, it was verified that cav-1 is expressed by 

peritoneal macrophages (PMs) by Kiss et al. [128].  It was also reported that cav-1 expression by 

PMs is intimately involved in the processes of inflammation and pathogenesis of atherosclerosis 

[123].  Similar to PM, the expression of cav-1 in alveolar macrophages (AMs) was undetermined 

until recently when Wang et al [125] observed cav-1 expression in murine AMs by western 

blotting and immunofluoresence microscopy.  The importance of cav-1 expression by AMs and 

PMs was determined by loss of function analysis using small interfering RNA (siRNA) to down 

regulate cav-1 expression.  Down regulation of cav-1 increased PM and AM inflammatory 

response to LPS stimulation, with increased tumor necrosis factor-α (TNF-α) and IL-6 

production.  However, it also decreased the production of the anti-inflammatory mediator IL-10.  
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Furthermore, over expression of cav-1 in a murine macrophage cell line demonstrated a 

significant attenuation of the proinflammatory cytokine TNF-α and IL-6, and increased IL-10 

production in response to LPS stimulus.  Combined, these results indicate that cav-1 has a 

protective role in inflammation by suppression of proinflammatory cytokine (TNF-α and IL-6) 

production and augmentation of anti-inflammatory cytokine (IL-10) production in response to 

LPS. 

Results from studies of cav-1 and the adaptive immune response has provided evidence 

that cav-1 regulates both T cell and B cell activity.  A study by Ohnumua et al. [129] showed that 

cav-1 is the co stimulatory ligand for CD26, and that interaction/ligation by cav-1 results in T 

cell proliferation and activation with co stimulation from T cell Receptor (TCR)/CD3.  Similarly, 

cav-1 has been shown to influence B cell development of thymus independent immune responses 

[130].  Studies of cav-1-/- mice’s humoral response to thymus dependent and independent 

antigens demonstrated decreased immunoglobulin production in response to thymus independent 

antigen.  This demonstrated that cav-1 deficient mice are unable to develop a normal thymus 

independent immune response, implicating that B cell thymus independent immunity is regulated 

by cav-1.  Therefore, cav-1 plays an integral part in regulating aspects of the adaptive immune 

response. 

Cav-1 serves as a central molecule in signaling cascades allowing it to regulate multiple 

signaling pathways.  Functioning as a scaffolding protein, cav-1 organizes and concentrates 

various classes of signaling molecules, including G protein subunits, receptor and non-receptor 

tyrosine kinases and small GTPases within caveolae.  Moreover, cav-1 also inhibits the 

activation of downstream signaling events of many proteins, including c-Src, H-Ras, mitogen 

activated protein (MAP) kinases.  The primary example of cav-1 regulation of inflammatory 
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signaling is the interaction between cav-1 and nitric oxide (NO) production.  Cav-1 inhibition of 

eNOS regulates inflammatory signaling by decreasing NO production which inhibits the 

activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and 

synthesis of proinflammatory proteins [121].   Another important inflammatory signaling 

mediator, cyclooxygenase-2 (Cox-2), has recently been reported to be regulated by cav-1, but by 

a different molecular mechanism [131].  In the ER, soluble cav-1 binds to Cox-2 and facilitates 

its degradation, suppressing Cox-2 mediated proinflammatory activation.  Combined these two 

examples demonstrate that cav-1 is a critical regulator of inflammatory signaling cascades and 

key in the processes of inflammation. 

CCaavv--11  aanndd  FFiibbrroossiiss  
There is extensive evidence associating cav-1 with the regulation of collagen expression 

in vitro and in vivo.  Experimental models of fibrosis show evidence of decreased cav-1 

expression compared to controls.  A good example is the decrease of cav-1 expression in 

bleomycin-induced fibrosis tissue as well as in cell cultures [132].  Wang et al. observed a 

twofold reduction in cav-1 mRNA in IPF lung tissues compared to control [133].  Cav-1 protein 

expression in idiopathic pulmonary fibrosis (IPF) lung tissue was decreased by 73% when 

compared to controls [133].  The association between reduced cav-1 expression and collagen 

over expression in fibrotic tissue is further substantiated by the fibrotic phenotype seen in cav-1 

knockout mice [134-135].  It is apparent that cav-1 and collagen expression are inversely related 

indicating that cav-1 works in opposition of profibrogenic processes.  Profibrogenic processes 

are regulated by several mediators, such as Th2 cytokines and TGF-β, and different cell types, 

specifically myofibroblasts.  Each of these mediators and cell types are regulated by cav-1 and 

are fundamental in understanding the pathogenesis of fibrosis. 



25 
 

Cav-1 serves as a signaling platform for numerous signaling molecules.  The interaction 

of kinases with cav-1 inhibits their activity and therefore prevents profibrotic signaling.  A 

primary example is cav-1 suppression of TGF-β profibrotic signaling (Figure 6).  The regulation 

of TGF-β signaling involves numerous signaling pathways allowing for different methods to 

inhibit activation.  TGF-β SMAD2/3 phosphorylation and nuclear translocation is responsible for 

activating fibroblast α-SMA expression, fibronectin production and collagen type I production.  

The TGF-β receptors (TGF-βRs) I and II are localized in cav-1 enriched fractions of human 

endothelial cells and have been reported to interact by immunopercipitation.  The interaction 

between cav-1 and TGF-βRI was reported by Razani et al. to inhibit smad-2 phosphorylation, 

preventing the smad complex formation and nuclear translocation in fibroblasts [102].  TGF-β 

induced ERK1/2 signaling regulates collagen type I production [45].  ERK1/2 have been 

demonstrated by Mineo et al. [136] to localize to caveolae and directly interact with cav-1.  

Interaction between cav-1 and ERK1/2 inhibits collagen type 1 production.  JNK activation is 

pivotal for TGF-β induced fibronectin production and is regulated by cav-1 via modulation of 

SMAD2 phosphorylation and nuclear translocation.  Therefore, cav-1 regulates TGF-β 

profibrotic signaling by suppressing each signaling cascade and preventing profibrotic signals.   
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Figure 6 TGF-β Profibrogenic Signaling 
A) Diagram that illustrates fibrogenic TGF-β signaling pathways.   After TGF-β binding, Type II receptors (TβR-II), which are 
constitutively active serine–threonine kinases, recruit and dimerize with type I receptors (TβR-I).  Subsequently, TβR-II 
phosphorylates the TβR-I, resulting in their activation. Active TβR-I specifically phosphorylates receptor-regulated Smad2 and 
Smad3 via the protein kinase ALK-5. Phosphorylated Smad 2 and Smad 3 then complex with co-Smad4, resulting in their 
transport to the nucleus.   In the nucleus, they cooperate with other factors to regulate transcription of critical genes, here 
represented by genes encoding CTGF and α1 and α2 type I collagens. B) After TGF-β binding, Type II receptors (TβR-II), which 
are constitutively active serine–threonine kinases, recruit and dimerize with type I receptors (TβR-I).  Subsequently, TβR-II 
phosphorylates the TβR-I, resulting in their activation. TβR-I results in activation of the Ras-Raf-Erk signaling pathway which 
culminates in the production of type-1 collagen.     
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CHAPTER 3 

Eicosanoids 
IInnttrroodduuccttiioonn  

The eicosanoid family of lipids are integral mediators of inflammation and homeostasis 

that are derived from a single membrane released 20 carbon fatty acid, arachidonic acid [137].  

These lipid mediators have numerous functions that include roles in inflammation, fever, 

regulation of blood pressure, blood clotting, immune system modulation, control of reproductive 

processes, tissue growth and regulation of sleep/wake cycle [138].  Members of the eicosanoid 

family include prostaglandins (PGs), leukotrienes (LTs), prostacyclins, thromboxanes (TXA2) 

and epoxyeicosatrienoic acids (EETs).  They can be classified by their biological activity into 

two categories; those that promote inflammation (pro-inflammatory) and tissue destruction and 

those that stop inflammation (anti-inflammatory) and promote tissue repair [137].  The synthesis 

and degradation of the eicosanoids is tightly regulated to allow the proper balance of damage and 

repair and to prevent an imbalance or disease resulting from either chronic inflammation or 

abnormal fibropriliferation [139].  Therefore, the interaction and balance between eicosanoids is 

critical to homeostasis and could provide insight into the pathology of inflammatory and fibrotic 

disease.  

The pathobiology of pulmonary fibrosis can be attributed to the aberrant 

fibroproliferative response to lung injury resulting from the loss of regulation over tissue repair 

processes.  This results in the remodeling of the airway that is characterized by the loss of 

alveolar epithelial cells that are replaced by excessive deposition of matrix proteins such as 

collagen.  Eicosanoids regulate the cells and pathways involved in the inflammatory response 

and tissue repair and play a significant role in the pathology of lung fibrosis.  PGS and LTs are 
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the two eicosanoid metabolites whose biological activity has been implicated in the pathology of 

lung fibrosis [140].  Increased levels of LTs and decreased levels of PGs are a characteristic of 

profibrotic milieus.  Studies have indicated that LTs , specifically cysteinyl leukotrienes 

(cysLTs), promote predominantly proinflammatory and fibroproliferative activity, while PGs 

predominantly do the opposite [139].  This review will focus on PGs and LTs and their role in 

pulmonary fibrosis. 

IInniittiiaattiioonn  ooff  SSyynntthheessiiss::    
The initiating step in the synthesis of eicosanoids is the release of arachidonic acid from 

membrane phospholipids by cytosolic phospholipase A2 (cPLA2).  Arachidonic acid is stored in 

abundance as an esterfied component of the phospholipid bilayer  and whose release is tightly 

regulated by the activity of type IV cPLA2 [141].  Optimal functional activation of this enzyme 

requires intracellular calcium flux and phosphorylation by mitogen-activated protein kinases 

(MAPKs) which is inhibited by anti-inflammatory signaling such as corticosteroids and Aspirin 

[142].  Thus, the onset of an inflammatory response is associated with a surge in production of 

these lipid mediators.  Cells are activated by mechanical trauma or by specific cytokines, growth 

factors or other stimuli such as the inflammatory signal platelet activating factor or bradykinin.  

Stimulus results in the activation and translocation of cPLA2 to the nuclear envelope, ER and 

golgi apparatus [143].  Once activated cPLA2 hydrolyzes the ester linkage between a fatty acid 

and the OH at the C2 of the glycerol backbone, releasing inositol trisphosphate (IP3) and 

diacylglycerol which is then catalyzed by diacylglycerol lipase into arachidonic acid.  Free 

arachidonic acid can then be metabolized into any eicosanoid lipid mediators based on the 

abundance and activity of the specific synthetic enzymes. 
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PPrroossttaaggllaannddiinnss  ((PPGGss))  SSyynntthheessiiss    
Cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2), more correctly termed 

prostaglandin endoperoxide H synthases-1 and -2 (PGHS-1 and PGHS-2), are key enzymes that 

catalyze the first committed step in the synthesis of PGS from fatty acid precursors [144] (Figure 

7). COX-1 is always present in tissues and is responsible for basal and constitutive PG synthesis, 

while COX-2 is induced by appropriate physiological stimuli (cytokines, tumor promoters and 

growth factors) in various inflammatory or “induced” settings [145-146].  At the ER and nuclear 

membrane arachidonic acid is presented to COX-1/COX-2 and is metabolized to the intermediate 

prostaglandin H2 ( PGH2).   A range of PGs are generated by conversion of PGH2 by specific 

terminal synthases that are cell- and tissue-specific.    

 

Figure 7 Eicosanoid Synthesis 
Cytosolic phospholipase A2 (cPLA2) releases arachidonic acid from the membrane phospholipids that is metabolized by either 5-
lipoxygenase (5-LO) to initiate the production of the leukotrienes or by cycloxygenase -1 /-2 to initiate the production of the 
prostaglandins.  The synthesis of specific eicoasnoids is carried out by terminal synthases. 
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The pairing of PGH2 synthesis and production of downstream PGs by downstream 

enzymes and specific cell types is the primary means of regulating the production of each 

mediator.  PGE2, PGI2, PGD2, PGF2α and TXA2 are synthesized by both leukocytes and 

structural cells and effect these cells and local tissue.  Generally speaking, PGF2α synthase is 

mainly found in the uterus, prostacyclin synthase is dominantly located in endothelial cells and 

two types of PGD synthase are found in the brain and mast cells.  Looking more specifically at 

the lungs, there are two PGs that are dominantly involved: PGE2 and PGI2.  PGE2 is the most 

ubiquitous and abundant PG with both proinflammatory and anti-inflammatory functions 

dependent on context.   PGE2 can be produced by most cell types that express cytosolic PGE2 

synthase.  More specialized cells, such as macrophages and bronchial epithelial cells express 

microsomal PGE synthase-1 (mPGES-1) and microsomal PGE synthase -2 (mPGES-2) [147].  

mPGES are members of the microsome-assocaited proteins involved in eicosanoid and 

glutathione metabolism (MAPEG)  that also include other enzymes involved in eicosanoid 

synthesis [148].  The expression of mPGES-1 and -2 is up regulated by the same signals 

associated with up regulation of COX-2, indicating their activity is associated with increases in 

inflammation.   PGI2 is synthesized from PGH2 by PGI synthase (PGIS) which is expressed by 

endothelial cells as well as vascular and smooth muscle cells of the airway.  It is highly 

transcribed in the heart, lungs, smooth muscle, kidneys and ovaries.  It is easy to see that 

coordinate induction of multiple enzymes in the prostanoid pathway, in particular mPGES and 

COX-2, can be modified in accordance with the requirements of context to produce the 

appropriate PG response.  The intricate interaction between these mediators is complex and can 

lead to the amplification or dampening of an inflammatory response and the nature of subsequent 

responses.   
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MMeecchhaanniissmm  ooff  PPGG  SSiiggnnaalliinngg::  RReecceeppttoorrss  aanndd  CCeelllluullaarr  
EEffffeeccttss  

PGs are mainly released through facilitated transport via the PG transporter (PGT) to 

interact with local cell types and tissues expressing the appropriate 7 transmembrane G protein 

coupled receptors (GPCR).  There are at least 9 known PG receptors found in both mouse and 

man, along with numerous splice variants (Figure 8).  To be more specific there are four specific 

GPCRs: EP1, EP2, EP3 and EP4 that bind PGE2, two bind PGD: DP1 and DP2 [149-152].  The PG 

receptors are classified into three groups among the GPCR super family based on homology and 

signaling attributes, with DP2 being the only exception.  DP1, EP2, and EP4 are considered “the 

relaxant” receptors.  This group signals through Gs mediated increases in cyclic adenosine 

monophosphate (cAMP) and induce muscle relaxation and vasodilation [137].  Another group, 

known as the “contractile” receptors includes EP1 and signal through Gq mediated increases in 

intracellular calcium leading muscle contraction and vasoconstriction [137].  The EP3 receptor is 

considered an “inhibitory” receptor and signals through Gi mediated decreases in cAMP and has 

been known to induce fever [137].    These receptors are predominantly located at the plasma 

membrane in sites adjacent to PG synthesis where they can induce specific biological effects 

shown in figure 9.   
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Figure 8 LT and PG Receptors 
A) Schematic representation of  a 7-transmembrane g protein coupled receptor. B) Table describing the Leukotriene receptors’ 
ligand specificity and biological effects. C)Table describing the Prostaglandin receptors’ biological effects and signaling 
mechanisms. 
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Figure 9 PG Activity 
A schematic presentation of prostaglandin synthesis, secretion, receptor binding and biological activity.  Upon synthesis 
prostaglandins can undergo facilitated transport from the cell through the prostaglandin transporter (PGT) or other carrier to exert 
autocrine or paracrine actions on a family of prostaglandin receptors EP1, EP2, EP3, EP4, DP1, DP2, and TPα, on the cell types 
indicated. Only a few of the diverse activities of prostaglandins are shown here.   

TThhee  RRoollee  ooff  PPGGss  iinn  LLuunngg  IInnffllaammmmaattiioonn  
PGE2 and Its Receptors 

PGE2 is one of the best known and well studied PG, whose diverse regulatory actions 

demonstrate the dual nature of this group.  PGE2 influences almost every cell type involved in 

inflammation by acting through specific EP receptors to induce a particular response.  The 

response to PGE2 is dependent upon which receptor is predominantly expressed; indicating that 

the diverse effects of PGE2 are not specific to the mediator itself, but rather is determined by the 

receptor.  This allows for a single mediator to induce numerous sundry responses in one local 

area in order to produce a specific inflammatory context.   
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The effects of PGE2 on individual cells of the immune system are distinct and contingent 

upon the function and location of the immune cell and its context, whether it is involved in the 

innate or adaptive wing of the immune response.  This can be demonstrated by the varied effects 

of PGE2 signaling on different innate inflammatory cells such as mast cells (MCs).  MCs have 

been shown to be crucial for optimal immune responses during infection because of their ability 

to instantly release several pro-inflammatory mediators from intracellular stores and their 

location at the host–environment interface during the innate response.   They exert these effects 

by altering the inflammatory environment after detection of a pathogen and by mobilizing 

various immune cells to the site of infection and to draining lymph nodes. Studies have 

demonstrated that PGE2 acts as both an inducer and suppressor of MC activation by blocking the 

high affinity Fc receptor for IgE (FcεRI) [153-154].  FcεRI is a member of the multi chain 

immune recognition receptor family that is expressed on the cell surface of macrophages, as well 

as basophils, eosinophils and MCs.  Cross-linking of FcεRI via IgE bound multivalent antigens 

leads to the induction of a signaling cascade that regulates the rapid release of preformed 

mediators such as histamine and heparin (‘degranulation’), the rapid synthesis of arachidonic 

acid metabolites, such as prostaglandins and leukotrienes, and the expression of cytokines (e.g. 

IL-3, IL-4, IL-5, IL-6, IL-10, IL-13, TNF-α) and chemokines [155-157].  Inhibition of FcεRI by 

PGE2 in MCs is attributed to high levels of cAMP and has been shown to stop exocytosis of 

granules, inhibit LTC4 and PGD2 generation and suppress TNF-α.  Specifically, signaling by 

PGE2 through the cAMP mediated EP2 receptor has been shown to block the activity of the high 

affinity FcεRI [158-160].  This results in the suppression of FcεRI mediated exocytosis and 

eicosanoid production.  In contrast, PGE2 signaling through EP3 induces exocytosis and 

eicosanoid generation [159].   The suppressive effects of PGE2 on FcεRI also effects MC 
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transcription of TNF-α by inhibiting FcεRI mediated production through the expression of the 

protein inducible cAMP early repressor (ICER), that can then inhibit cytokine transcription 

[161].  Therefore, PGE2 has the ability to regulate the activation and function of MCs, which in 

turn can directly determine the outcome of an inflammatory response.   

PGE2 is involved in the adaptive immune response as implicated by the expression of the 

EP receptors on T cell, B cells and DCs.  The initiation of the adaptive immune response is 

dependent upon the activation of APCs, specifically DCs.  DCs serve as the source of stimulus 

for other inflammatory cells as a producer of cytokines and as a source of antigenic material for 

lymphocyte activation.  In order to fulfill their function, DCs must be able to take up antigenic 

material and migrate to local lymph nodes to present it to lymphocytes for proper activation and 

response.  PGE2 has been shown to affect all aspects of DC function including activation, 

migration and co-stimulation of lymphocytes.  The activation of DCs is augmented by PGE2 via 

the EP receptors.  The secretion of the cytokines IL-12, CCL3, CCL4, tumor necrosis factor and 

IL-1 is abated in the presence of PGE2 during DC activation [162-165].  Under these same 

circumstances, DCs showed enhanced expression of chemokine receptors, such as CCR7 

necessary for migration to lymph nodes [166].  The presence of PGE2 during DC maturation is 

essential for the acquirement of a migratory phenotype, as demonstrated by a lack of migration 

when PGE2 is not present from the onset of maturation [166].  Early in vivo studies using a 

transgenic mouse lacking the EP4 receptor demonstrated deficient recruitment of Langerhans 

cells [167].  In addition, the inhibition of EP2 and EP4 receptor signaling by antagonists 

demonstrated similar deficiencies in migration [167].  Consequently, agonists for EP2 or EP4 

receptors are able to trigger DC migration, with both receptors being equally apt at facilitating 

migration [162, 166].  Upon migrating to the lymph node, DCs are responsible for activating 
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naïve and memory T cells, and therefore initiate the adaptive immune response.  Studies using 

monocytes derived DCs (MoDCs) isolated from human blood demonstrated that PGE2 matured 

MoDCs have an enhanced potential to induced antigen-specific T cell proliferation.  The co 

stimulatory molecules OX40L and CD70 expression on MoDCs is dependent on PGE2 

stimulation [168].  These co stimulatory molecules induce proliferation of antigen-specific T 

cells when expressed by activated DCs during the adaptive immune response.  Therefore, PGE2 

enhances the proliferation of antigen specific T cells during the adaptive immune response by up 

regulation the co stimulatory molecules OX40L and CD70 [168].   

PGE2 has been shown to regulate the proliferation, apoptosis and cytokine secretion of T-

cells [169].  Studies have mainly focused on CD4+ T-cells and have implicated that PGE2 has 

varied effects on their function and activation.  The inhibition of T-cell proliferation by PGE2 is 

well established, but the mechanism of inhibition is still up for debate.  PGE2 has been found to 

inhibit intracellular calcium release and the activity of p59 (fyn) protein tyrosine kinase; both 

could be the reason for decreased proliferation.  EP receptors are also capable of inhibiting T-cell 

proliferation [170].  Studies have demonstrated that up regulation of certain EP receptors, EP4, 

induce a decrease in the secretion of IL-2 and therefore suppress T-cell proliferation [171]. 

PGE2 not only controls the proliferation of T-cells, it also regulates their survival, directly 

controlling the number and population of T cells present.  PGE2’s modulation of apoptosis is 

dependent upon the age and activation of the T cells.  Naïve CD4+CD8+ double positive 

thymocytes undergo apoptosis in vitro and in vivo when in the presence of PGE2 [172], as do 

resting mature T-cells by increased expression of the protein c-myc [173].  On the contrary, 

PGE2 is able to prevent T cell receptor (TCR)-mediated activation-induced cell death by 

augmenting Fas ligand (FasL) expression on the T-cell surface[174].  Inhibition of T cell 
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apoptosis by PGE2 is also mediated by decreased FasL mRNA and protein expression [174].  

Therefore, PGE2 is selectively induces apoptosis in immature thymocytes, allowing it to play a 

role in the shaping of the T-cell repertoire. Furthermore, PGE2 regulates the activities of mature 

resting and activated T cells respectively, by inducing and inhibiting apoptosis,. 

The influence of PGE2 on the adaptive immune response begins at the point of initiation 

with its ability to regulate dendritic cells whose activity controls the T cell adaptive immune 

response.  The adaptive response can be type 1 or type 2 and is determined by the type of antigen 

present.  The three effector Th subsets involved are Th1, Th2 and T helper 17 cells (Th17) with 

specific cytokines inducing the differentiation of each.  Th1 cell differentiation is induced by IL-

12, Th2 cell differentiation requires IL-4 and Th17 differentiation is induced by TGF-β and IL-6 

and is expanded by IL-23.  PGE2 modulates both DC and T cell cytokine secretion that is 

involved in T helper cell differentiation [168], indicating PGE2 as a plausible regulator of the T 

cell phenotype in the adaptive immune response .  Studies have shown that PGE2 decreases IFN-

γ and IL-2 secretion by T cells, as well as DC secretion of IL-12, TNF and IL-1 [169].  However, 

PGE2 facilitates the expression of IL-23 by activated DCs [175].  Notably, IL-12 and IL-23 share 

the common p40 subunit as well as being responsible for Thcell differentiation.  Combined, the 

ability of PGE2 to abate IL-12 production, while enhancing IL-23 production by DCs, directs the 

adaptive immune response towards a Th17cell phenotype [176].   

PGD2 and Its Receptors 
PGD2 is the major PG produced by the COX pathway in activated mast cells which 

initiates IgE-mediated Type I acute allergic response [177-179].  It is released into the airway 

following antigen challenge by its major cellular source, mast cells, but is also produced by 

inflammatory cells, such as antigen presenting dendritic cells and Th2 cells, as well as 
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fibroblasts, bronchial smooth muscle cells and airway epithelial cells [180-181].  Secretion of 

PGD2 elicits key components of allergic asthma such as bronchoconstriction and airway 

eosinophil infiltration by inducing vasodilatation and increased permeability in order to facilitate 

transendothelial migration of inflammatory cells [182-183].  Other function of this lipid mediator 

includes regulating the activation and chemotaxis of eosinophils, basophils and Th2 cells [149-

150, 184-185].  

In order to exert its biological effects, PGD2 must bind and activate two distinct GPCRs, 

the D prostanoid (DP) receptor and the recently discovered CRTH2 receptor (“DP2”).  The DP 

receptor is a member of prostanoid GPCR super family and signals to Gs-mediated increases in 

intracellular cAMP.  This promotes relaxation of both vascular and airway smooth muscle, 

inducing vasodilation and vascular permeability, promoting extravasation and infiltration of 

inflammatory cells.  Despite avid interest there has not been an established connection between 

DP receptor activation and PGD2 –stimulated eosinophil activation and migration [186-187]. The 

identification of the novel receptor, CRTH2, has provided clarification of the mechanism behind 

PGD2 biological activity [149, 188].  CRTH2 is considered an orphan receptor that is 

predominantly expressed on type 2 polarized lymphocytes [149].  Though DP and CRTH2 

receptors exhibit equivalent binding affinity for PGD2, they share no similarities and are not 

structurally related.  Rather, CRTH2 is most closely related to other chemoattractant receptors.  

The effects of CRTH2 are mediated through Gi-dependent increases in intracellular calcium 

levels and reduction in intracellular cAMP levels, indicative of proinflammatory signaling [149, 

189].  These pathways have been shown to mediate eosinophil activation by regulating the cells 

shape change, actin polymerization and CD11b up regulation [150, 190].  Therefore, the 
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combination of these two receptors help to create an inflammatory environment that contributes 

to allergic disease.   

The pro-inflammatory effects of PGD2 are mediated by both receptors via multiple 

signaling pathways whose activity is dependent on local receptor expression.  DP receptors are 

predominantly expressed on bronchial epithelium indicating that receptor activation mediates 

production of cytokines and lipid mediators that recruit DP receptor expressing cells such as: 

platelets, fibroblasts, DCs, T cells, basophils, eosinophils and mast cells [191].  Currently there 

are several experimental models that support and demonstrate DP receptor mediated airway 

inflammation and hyper-reactivity.  DP antagonists promote anti-inflammatory properties in 

experimental models that include the inhibition of antigen-induced conjunctivial micro vascular 

permeability in guinea pigs [192] and attenuated ovalbumin (OVA)-induced hyper-reactivity in 

mice [193].  The pro-inflammatory effect of DP signaling is further exemplified by the 

observation that mice deficient in the DP receptor have diminished airway hyper-sensitivity 

[194].  Therefore, DP receptor signaling is key in mediating the effects of mast cells released 

PGD2 on the airway epithelium inducing the release of specific cytokines and chemokines, such 

as IL-8 and GM-CSF, creating airway inflammation, obstruction and hyper-reactivity [194].   

PGD2 released by mast cells also mediates the activation, chemotaxis and infiltration of 

inflammatory cells that express the CRTH2 receptor.  This high affinity PGD2 receptor is 

expressed in type 2 polarized lymphocytes [195], basophils, eosinophils [196] and monocytes 

[197].  Signaling via CRTH2 is responsible for the activation and recruitment of Th2 cells, 

eosinophils, basophils and monocytes, initiating and driving eosinophilic and inflammatory cell 

infiltration [149, 197].  The chemotactic response to PGD2 by eosinophils, basophils and Th2 

cells is mediated by CRTH2.  This is substantiated by in vitro and in vivo studies that confirm 
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the chemotaxis of these cell types is in response to PGD2 signaling through the CRTH2 receptor 

not DP.  Specifically the, antagonism of CRTH2 receptor exhibited greatly decreased 

eosinophilic infiltration post antigen exposure in ramatroban-treated animals [198-199].  This 

was further validated by studies of a PDG2 double knockout model by Gervais et al.[200].  

Treatment with a CRTH2 agonist stimulated chemokine release and eosinophil degranulation, 

where as treatment with the DP agonist BW245C did not elicit these effects.  In this same study 

CRTH2 activation also lead to eosinophil shape changes, chemotaxis, enhancement of 

chemotactic responsiveness to other chemoattractants and degranulation, where as stimulation 

through DP activation induced eosinophil apoptosis.  Blocking DP activation using a selective 

antagonist BW A868C significantly enhances CRTH2-mediated activation indicated by 

increased CD11b expression post PGD2 stimulation [149-150].  Therefore, PGD2 activation and 

recruitment of eosinophils is controlled by a dual receptor system that requires collaboration 

between the two high affinity receptors, DP and CRTH2. 

PGD2 can act not only as a pro-inflammatory mediator during allergic inflammation, but 

also has the ability to act as an inhibitor of inflammation in specific contexts via DP receptor 

signaling.  The DP receptor is expressed by DCs that are responsible for initiating adaptive 

immune response when they come into contact with possible antigens.  Studies done by Hammad 

et al. [201] using a FITC-OVA mouse model of inflammation to observe dendritic cell activation 

and migration.  They show that the intratracheal instillation of FITC-OVA together with PGD2 

inhibits the migration of FITC+ lung DC to draining LNs [201].  Decreased DC migration 

decreases antigen specific T cell activation, proliferation and the production of antigen specific 

cytokines.  Under steady state conditions, macrophages might secrete PGD2 to suppress DC and 

T cell activation [202]. During inflammation, PGE2 and LTC4 are produced and induce 
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differentiation and maturation of tissue-resident DCs [167, 203]. Under these conditions, the 

anti-inflammatory effects of PGD2 are overridden by the pro-inflammatory effects of PGE2, 

LTC4, and pro-inflammatory cytokines. Also, at the resolution of inflammation, COX-2 enzyme 

mainly generates PGD2, rather than PGE2 [204]. The release of PGD2 might suppress DC 

migration to prevent further immune stimulation, thus contributing to the resolution of 

inflammation.  

The biological activity of PGD2 signaling is not restricted to the inflammatory effects of 

asthma alone, but is pertinent in the progression from chronic unresolved inflammation into 

permanent remodeling of the airway.  When airway inflammation is not adequately treated, it can 

result in permanent structural changes in the airways. such as increased airway wall thickness 

that involves both smooth muscle and collagen tissue and increased mucous production due to 

proliferation of airway epithelial goblet cells resulting in mucus hypersecretion.  Antigen 

induced expression of the high affinity DP receptor has been observed in both mouse bronchiole 

epithelial cells and human nasal epithelial goblet cells.  DP receptor expression combined with 

the ability of DP signaling to induce mucus secretion by colonic goblet cells insinuates the 

possibility that DP receptors may provoke mucus secretion in response to PGD2 in asthma and 

allergic rhinitis. 

PPGGss  aanndd  AAiirrwwaayy  RReemmooddeelliinngg  
PGs play an important role in maintaining airway homeostasis, by inhibiting remodeling 

processes.  This is best exemplified under the normal condition of the airway.  Under normal 

circumstances, the epithelium releases mediators, specifically PGE2, that restrict mesenchymal 

cell proliferation and activation [205].  Upon injury to the epithelium PGE2 production is 

diminished resulting in the induction of repair responses that promote remodeling.  
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Subsequently, the various mediators and growth factors that support the proliferation and 

survival of mesenchymal cells are released.  Specifically, fibroblast growth factor (FGF), insulin 

growth factor (IGF), platelet-derived growth factor (PDGF), endothelin-1 (ET-1) and TGF-β 

[206].  These factors induce inflammation and activation of cells involved in the repair response, 

specifically fibroblasts.  Therefore, PGE2 suppresses remodeling as demonstrated by the 

maintenance of homeostasis when it is present in the airway under normal conditions. 

Fibroblasts are the critical cells type involved in normal wound healing and whose 

apoptosis is required to prevent excessive matrix deposition or scarring.  They also produce 

numerous mediators that induce proliferation and activation of remodeling processes.  A critical 

feature of fibrotic lung disease is increased transition of fibroblasts into myofibroblasts or 

fibroblast like cells expressing α-SMA [207].  Furthermore, in areas of active fibrosis there are 

increased numbers of myofibroblasts that are associated with promoting fibrotic processes [50, 

208].  Myofibroblasts are the predominant source of increased collagen gene expression and 

production as demonstrated by the correlation between decreased lung compliance and their 

presence [209].  Not only do myofibroblasts alter tissue contractility and increase ECM 

synthesis, they also secrete mediators of fibrogenesis.  Myofibroblasts secrete two specific 

substances: monocyte chemotractant protein-1 (MCP-1) and TGF-β1 that induce inflammatory 

and fibrogenic processes [210-211].  These characteristics of myofibroblasts establish this cells 

type as a key catalytic factor in fibrosis [212].  PGE2 is a potent mediator of fibroblast activity, 

inhibiting their proliferation [213-214], survival [215], differentiation [216], growth factor 

expression [217], migration [218] and collagen synthesis [219-220].  By augmenting 

fibroblast/myofibroblast activity, PGE2 can regulate the fibrotic processes involved in the 
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development of disease and could be a relevant factor involved in avoiding pathological 

processes.   

Regulation of fibroblast proliferation involves two sides: an inducer of proliferation and a 

suppressor of proliferation, that act in opposition to maintain homeostasis.   Induction of 

proliferation occurs during injury and inflammation due to both decreased suppression and 

increased pro-proliferative signals.  For example, during inflammation AMs play a key role in 

initiating fibroblast proliferation by secreting fibronectin and macrophage-derived growth factor 

(AMDGF) [213]. In situations of injury and inflammation numerous secreted mediators such as 

TGF-β, FGF and IGF-1 increase due to infiltrating inflammatory cells or injured epithelium.  At 

the conclusion of inflammation or when repair has occurred suppression of profibrogenic 

mediators returns and the processes of repair cease.  Recently, it has been suggested that alveolar 

epithelial cells (AECs) are the primary producers of suppressive signals and that PGE2 is the key 

mediator.  This is supported by early studies by Bitterman et al. [213] that determined that PGE2 

inhibits fibroblast proliferative response to fibronectin and AMDGF in a dose dependent manner.  

This demonstrated for the first time that PGE2 is an inhibitor of fibroblast proliferation.  Further 

studies determined that PGE2 is a relevant endogenous anti-proliferative mediator of fibroblasts 

because mice deficient in PGE2 demonstrate exaggerated fibroblast proliferation [221-222].  

Therefore, it was determined that AECs suppressed fibroblast proliferation by secreting PGE2 

and loss of AEC suppression results in repair.  The importance of PGE2 suppression of 

profibrogenic processes is key in avoiding fibroproliferative diseases and may be relevant in 

understanding the processes involved.      

Fibroblast differentiation into myofibroblasts is necessary for wound healing or 

remodeling to occur [223].  The main function of myofibroblasts is to form adhesions between 
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the wound edge and the ECM.  These adhesions allow them to pull the ECM when they contract, 

reducing the wound size by pulling the wound edges together.  Fibroblasts lay down collagen to 

reinforce the wound as myofibroblasts contract to allow for complete repair [40].  α-SMA 

provides the contractile ability to fibrocytes and is the main identifying marker of myofibroblasts 

[51, 208-209].  At least three local events are needed to generate α-SMA-positive differentiated 

myofibroblasts: 1) accumulation of biologically active TGF-ß1, 2) the presence of specialized 

ECM proteins like the ED-A splice variant of fibronectin, and 3) high extracellular stress, arising 

from the mechanical properties of the ECM and cell remodeling activity [40, 208].  IL-1β and 

IFN-γ have been shown to down regulate the expression of α-SMA mRNA and protein as well as 

decrease fibroblast proliferation and collagen synthesis [209, 224-225] .  More importantly, 

PGE2 was shown by Kolodsick et al. [216] to inhibit TGF-β1 induced α-SMA expression 

through the EP2 receptor.  PGE2 is able to limit synthesis of matrix collagen and prevent 

fibroblast transition, two prominent components of remodeling [216].  It also induces fibroblast 

apoptosis, preventing excessive matrix deposition or remodeling [215].  Huang et al. [215] 

demonstrated that PGE2 signaling via EP2 or EP4 induced fibroblast apoptosis.  Apoptosis was 

modulated by different survival pathways such as activation of both caspase 8 and 9 [215], Fas 

ligand [215] and enhanced phosphatase and tensin homolog (PTEN) activity [218, 226]. 

Signaling through EP2 also prevents fibroblast chemotaxis and migration as well as its 

production of collagen [218-219].  Therefore, PGE2 is a key regulator of fibroblast activity [227]. 

PGE2 not only regulates the fibroproliferative aspects of remodeling, it also suppresses 

the inflammatory component.  Inflammation is a key component in remodeling, where the 

inflammatory response provides the cells and mediators responsible for repair.  PGE2 opposes 

leukocyte accumulation through numerous different mechanisms.  It inhibits myelopoiesis, 
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diminishing the available cells who could participate.  It also inhibits the recruitment and 

chemotaxis of inflammatory cells deterring their accumulation.  The activation of cells and 

secretion of inflammatory mediators that are involved in remodeling is also effected by PGE2.  

PGE2 negates the production of a variety of inflammatory mediators, including reactive oxygen 

species, IL-8, TNF-α, FGF, ET-1 and LTs.  It also up-regulates the expression of the suppressive 

mediator IL-10, which also induces anti-inflammatory aspects.  This demonstrates that PGE2 is 

paramount in suppressing aspects of the inflammatory response that could lead to remodeling. 

LLeeuukkoottrriieenneess  ((LLTTss))  SSyynntthheessiiss  
The synthesis of LTs is initiated by 5-lipoxygenas (5-LO) with the assistance of 5-

lipoxygenase activating protein (FLAP) [228] as shown in Figure 7.  FLAP serves as a 

membrane anchor for 5-LO and acts as an amine bind protein to enhance its ability to interact 

with its substrate [229].  More importantly it is necessary for the activation of 5-LO’s enzymatic 

activity and therefore essential for LT synthesis [230-231].  FLAP and 5-LO oxygenate 

arachidonic acid to produce leukotriene A4 (LTA4), the unstable precursor of all LTs [232].  

LTA4 is either conjugated with reduced glutathione by leukotriene C4 synthase making 

leukotriene C4 (LTC4) or hydrolyzed by leukotriene A4 hydrolase to form leukotriene B4 (LTB4) 

[233].  Both LTB4 and LTC4 are then transported out of the source cell by specific transporter 

proteins [233].  Exported LTC4 undergoes sequential peptide cleavage events to produce 

leukotriene D4 (LTD4) and finally leukotriene E4 (LTE4).  LTC4, LTD4 and LTE4 are known as 

the cysteinyl leukotrienes (cysLTs).   

Leukocytes are the primary producers of LTs because they are the only cells that express 

sufficient 5-LO and FLAP to synthesize appreciable amounts [138].  Incidentally, non leukocyte 

cells that express distal LTA4 metabolizing enzymes can take up leukocyte derived LTA4 and 
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produce LTs by a process called transcellular biosynthesis [234].  The primary example of this 

process is the interaction between neutrophils and endothelial cells.  In this case, neutrophils 

produce and release LTA4 that endothelial cells take up and metabolize into LTC4 using their 

LTC4 synthase, demonstrating another source of LTs.  

LLTT  RReecceeppttoorrss  
LTs exert their biological activity by binding to specific heptahelical receptors of the 

rhodopsin class that are expressed on the outer plasma membrane of structural and inflammatory 

cells [235-236].  These receptors signal through G proteins in the cytoplasm that induce 

increases in intracellular calcium and reductions in intracellular cAMP.  Changes in intracellular 

cAMP and Ca2+ activates different downstream kinase cascades that can then alter cellular 

activity [233].  Resulting changes in cellular activity is dependent upon the LT and cell types 

involved as shown in figure 10.   
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Figure 10 LT Activity 
Leukotrienes synthesis, secretion, receptor binding and biological action.   LTA4 and LTB4 can potentially be formed on either 
side of the nuclear envelope by nuclear- or cytosolic-localized pools of 5-LO and LTA4 hydrolase in macrophages and mast cells.   
The LTB4 transporter can facilitate transfer of LTB4 out of the cell, where it can act on neutrophils through the BLT1 receptor, 
inducing chemotaxis and recruitment.  LTA4 can also be converted to LTC4 by LTC4 synthase, a FLAP-like protein found in the 
nuclear envelope. The multidrug resistance-associated protein-1 (MRP1) can transport LTC4 out of the cell, where it is 
metabolized by extracellular-localized g-glutamyl transpeptidase (GGT) or g-glutamyl leukotrienase (GGLT) to LTD4.  LTD4 
can bind to the cysLT1 receptor on both endothelial cells and airway smooth muscle cells or be further metabolized to make 
LTE4. 

LT receptors were originally divided into two classes known as B leukotriene receptors 

(BLT) and CysLT receptors based on ligand preference.  There are two BLT receptors, BLT1 and 

BLT2 that preferentially bind LTB4 (Figure 8).  BLT1 is the high affinity receptor for LTB4 that 

mediates almost all of its signaling, whereas the role of the lower affinity BLT2 receptor is not 

well known.  There are two cysLT receptors: type 1 and type 2 cysteinyl leukotriene receptor 

(cysLT1 and cysLT2).  CysLT1 ,mediates sustained bronchoconstriction, mucus secretion and 

edema in the airways [237].  CysLT2 is responsible for mediating inflammation, vascular 
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permeability and tissue fibrosis [237].  Combined these receptors induce the different biological 

effects of LTA4 and the cysLTs. 

LLTTss  aanndd  AAiirrwwaayy  IInnffllaammmmaattiioonn  
LTB4 

LTB4 is a potent lipid inflammatory mediator involved in regulating aspects of allergic 

airway inflammation and the pathogenesis of asthma.  LTB4 is a prominent chemoattractant for 

PMNs [238], but it also influences the chemotaxis of monocytes, macrophages and eosinophils 

[239-240].  In addition to its potency as a chemoattractant, LTB4 serves as an activator of PMNs 

through BLT1 receptor signaling [241].  PMN BLT1 receptor signaling promotes two functions 

that are key components of PMN inflammatory responses.  BLT1 receptor ligation encourages 

cPLA2 cleavage of membrane phospholipids releasing arachidonic acid that is converted into 

LTs [242].  Also, LTB4 signaling induces PMN degranulation resulting in release of 

inflammatory mediators that can dictate the local inflammatory response [243].  Therefore, LTB4 

is an important mediator of the early phases of inflammation that include the recruitment and 

activation of inflammatory cells that create the inflammatory environment. 

MCs play a central role in inflammatory and immediate allergic reactions.  Studies by 

Weller et al. [244] revealed that LTB4 acts as an autocrine mediator of MCs.  In this study, MC 

progenitor cells derived from either BALB/C bone marrow or heparin treated human umbilical 

cord blood were shown to express the BLT1 receptor, indicating LTB4 involvement in early mast 

cell activation.  Result of an in vitro chemotaxis assay demonstrated that LTB4 released by 

activated MC is an effective chemotractant for MC progenitors.  In addition, in vivo studies 

demonstrated the accumulation of adoptively transferred fluorescent labeled c-Kit+ MC 

progenitor to the site of subcutaneous injection of LTB4.  Weller et al.’s results indicate that 
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LTB4 is a potent chemoattractant for MC progenitor cells, but not for mature MCs.  The response 

to LTB4 is temporal, dissipating with the maturing of MCs which corresponds with the decrease 

in BLT1 receptor mRNA expression and chemotaxis by mature MCs.  This temporal shift of 

LTB4 sensitivity allows for immature MCs to be recruited to sites of inflammation and prevents 

concentration of mature MCs to the site of focal allergen stimulus, depleting mature MCs from 

the periphery.     

It was more recently determined that LTB4 signaling through BLT1 is an important 

mediator of T cell recruitment and activation in allergic inflammation [245].  Miyahara et al. 

[246]  found that during the course of naive CD4+ T cell differentiation, the LTB4 receptor BLT1 

is expressed and functional on Th1 and Th2 effector cells. In addition, antigen-specific effector 

CD4+ T cells generated in vivo up-regulated BLT1 when they migrated out of the lymphoid 

compartment and were recruited into tissue. BLT1 mediated LTB4-induced Th1 and Th2 cell 

chemotaxis and firm adhesion to endothelial cells under flow. Furthermore, BLT1 mediated early 

CD4+ and CD8+ T cell recruitment into the airway in a model of allergic pulmonary 

inflammation.  This indicates that the LTB4-BLT1 pathway is involved in linking early immune 

system activation and early effector T cell recruitment.   

In conjunction with LTB4 and BLT1 ability to recruit effector T cells, it can also play an 

important role in initiating and developing a Th2-type immune response that is focal in airway 

hyper responsiveness (AHR) [245, 247].  In the absence of BLT1 expression, development of 

AHR was attenuated, but not completely abrogated in mice in an OVA-induced bronchial asthma 

model [246].   BLT1
-/- mice developed significantly lower airway responsiveness to inhaled 

methacholine, lower goblet cell hyperplasia, decreased IgE expression and decreased Th2 

cytokine expression, specifically IL-13 production in vivo and in vitro as well as IL-5 in vivo 
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[246].  It was also determined that the development of Th2 cells was also impaired in the absence 

of BLT1 [247].  When BLT1
-/- mice received allergen sensitized BLT1

+/+ T cells through adoptive 

transfer the development of AHR was fully restored as well as Th2 cytokine production and Th2 

cell development [246].  Thus LTB4 and BLT1 interaction plays an important role in initiating 

and developing Th2 type immune response and the full development of AHR. 

Cysteinyl Leukotrienes (cysLTs) 

CysLTs are recognized as potent inflammatory mediators that initiate and propagate a 

diverse array of biological responses in the airway.  They are best known for their contractile 

effects on the smooth muscle and endothelium [248-249].  For example, in the airway cysLTs 

bind to cysLT1 receptors expressed on airway smooth muscle resulting in bronchoconstriction 

[237].  CysLT regulation of muscle tone is intimately associated with the regulation of vascular 

permeability and vasoconstriction [249].  Changes in vascular permeability are key in allowing 

for inflammatory cell extravasation and migration to different sites of inflammation.  Changes in 

permeability also control plasma protein leakage which can develop into edema.  Therefore, 

cysLTs signaling through cysLT1 plays an important role in the muscle tone of the airway and 

vasculature.   

CysLTs serve as a chemotactic mediator and activation stimulus for effector leukocytes 

such as macrophages, monocytes and eosinophils.  CysLTs have been shown to influence both 

progenitor and differentiated immune cells through both receptors.  It was observed that the 

cysLT1 receptor, but not cysLT2 receptor, are expressed on CD34+ peripheral blood derived 

progenitor cells [250].  In vitro treatment of these cells with cysLTs induced transendothelial 

migration, which was inhibited by pretreatment with Monteleukast (cysLT1 receptor antagonist) 

[250].  Monteleukast inhibition was not present in mature peripheral blood leukocytes, indicating 
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that the cysLT1 receptor is no longer the primary means of leukocyte signaling, with the cysLT2 

receptor taking its place.  CysLT2 receptor expression occurs during development and may be 

important in differentiating progenitor cell and mature cell cysLT signaling.  CysLT signaling is 

a stimulus for activation of peripheral leukocytes and is dependent upon the expression of cysLT 

receptors which is regulated by cytokines.  For example, treatment of peripheral blood 

monocytes or macrophages with IL-4 or IL-13 induces increased cysLT1 receptor expression 

[251].  Enhanced receptor expression results in amplified cysLT chemotaxis.        

CysLTs pro-inflammatory characteristics have long been associated with the activity of 

eosinophils in allergic inflammation. The migration of eosinophils into the airway involves 

several steps; including eosinophilopoesis and release from the bone marrow, up regulation of 

adhesion molecules on eosinophils as well as on the vascular endothelium and the increase in 

chemoattractant molecules released into the airways.  CysLTs have been associated with each 

aspect of increased airway eosinophilia.  The increase in the number of eosinophils through 

eosinophilopoesis is regulated by cysLT1 receptor signaling in combination with IL-13 and 

eotaxin [252].  In addition, the proliferation of eosinophils that occurs during allergic reactions is 

controlled by LTD4 in combination with the growth factors, granulocyte-macrophage colony-

stimulating factor (GM-CSF) and IL-5 [253].  Therefore, cysLT signaling increases the number 

of eosinophils present in the airway.  Eosinophil recruitment is facilitated by cysLT regulation of 

adhesion molecules on both the endothelium and on eosinophils.   P-selectin, an adhesion 

molecule that is expressed on activated endothelial cells, function to recruit eosinophils and other 

leukocytes to the site of inflammation.  CysLTs LTC4 and LTD4 induce surface expression of 

endothelial P-selectin [254], and further assist in the accumulation of eosinophils.  To increase 

eosinophil migration, cysLTs also up regulate β2-integrin expression on eosinophils, stimulate 
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vascular endothelial cells to produce PAF and increase adhesion of leukocytes [255-256].  The 

Combined efforts of cysLT signaling are meant to increase eosinophil chemotaxis to sites of 

inflammation.  Once they arrive, cysLT signaling is able to induce survival of eosinophils in 

order to maintain the inflammatory reaction [257].  Therefore, cysLT activity is prominently 

involved in controlling eosinophil differentiation, proliferation, chemotaxis, migration and 

survival.  

CysLTs influence the adaptive immune response through their ability to mediate the 

maturation and migration of DCs [203].  In vivo studies using multidrug-resistance associated 

protein-1 deficient mice, which have impaired responses to arachidonic acid stimulated 

inflammation because this protein is the major transporter for LTC4, exhibited significantly 

suppressed DC migration compared with wild type controls [203].  Injection of LTC4 or LTD4 

reversed the suppression of DC migration [203].  DCs produce endogenous LTC4 when initially 

exposed to antigen which serves as a critical determinant for homing to regional lymph nodes, 

indicating why disruption of LTC4 synthesis suppressed DC migration.  

DC migration is an important step in the activation of an adaptive immune response, but 

not the only important function of DCs in regulating the adaptive response.  DCs also play an 

important part in controlling the type of T cell response based on the type of antigen and 

chemical mediators present.  CysLTs play an important part in directing DC immunomodulatory 

functions.  In order to determine the effect of cysLTs on airway inflammation Machida et al. 

[258] used murine bone marrow derived DCs pulsed with mite allergens, Dermatophagoides 

farinea (Der-f) and then analyzed for production of in vitro cytokines with or without exogenous 

cysLT treatment.  Preliminary findings demonstrated that DCs produce cysLTs in response to 

aeroallergens and express the cysLT1 receptor.  Analysis of cytokine production showed Der f 
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induced increased production of IL-10 and IL-12 compared to controls.  Der f and cysLT pulsed 

DCs produced significantly higher levels of IL-10 compared to Der f alone but with similar IL-

12 levels.  Treatment of DC with Der f and the cysLT1 antagonist LTRA demonstrated increased 

levels of IL-12 and decreased levels of IL-10.  This is important because higher levels of IL-12 

and low levels of IL-10 are associated with the development of a Th1 response [259-262], while 

higher levels of IL-10 and lower levels of IL-12 are associated with a Th2 response [263].  

Therefore, these results demonstrate that cysLTs induce the production of a cytokine profile 

promoting a Th2 response, with higher levels of IL-10 and lower levels of IL-12.  The pulsed 

DCs were then subsequently instilled into the airways of naïve mice that were then exposed to 

Der f to determine in vitro effects of cysLTs on DCs.  They analyzed the pathology and BAL 

cytokine profiles of the mice to find that instillation with Der f DCs induced allergic airway 

inflammation characterized by increased eosinophilia and IL-5 production.  The addition of the 

cysLT, LTD4, leads to an even greater number of eosinophils in the airway and increased 

production of IL-5.  In contrast, mice instilled with DCs pulsed with Der f and LRTA showed 

reduced eosinophilia and IL-5 production in the airway, but demonstrated increased IFN-γ.  

Therefore, in vivo and in vitro studies demonstrated that cysLT treatment influences airway DCs 

to initiate a Th2 response, directly affecting the adaptive immune response.         

CysLTs influence over the adaptive immune response not only involves the regulation of 

DC immunomodulatory functions, but also involves regulating the initiation and amplification of 

Th2 cell dependent inflammatory responses.  Th2 cell dominant inflammatory responses are a 

prominent component of asthma and the development of AHR [264-265].  LTB4 and BLT1 

signaling have been established as key factors in the regulation AHR mechanisms [247, 266].  

These mediators are known as inducers of AHR by their ability to recruit and activate IL-13 
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producing effector/memory T cells, but they also work in concert with cysLTs [267].  Kim et al. 

[268] used mice with a targeted disruption of LTC4 synthase to determine the role of cysLTs in 

the development of Th2 cell dependent inflammation in the airways.  They found that LTC4Snull 

mice diminished manifestations of Th2 cell dependent pulmonary inflammation.  More 

specifically, accumulation of eosinophils and lymphocytes, goblet cell hyperplasia and mucus 

production, IL-4, IL-5 and IL-13 transcription and secretion and serum IgE and IgG1 were all 

diminished in LTC4Snull mice.  This demonstrates that cysLTs are key in regulating the adaptive 

immune response in their ability to initiate or amplify Th2 dependent inflammation.   

LLeeuukkoottrriieenneess  aanndd  AAiirrwwaayy  RReemmooddeelliinngg  
The key features of airway remodeling include: the accumulation and activation of 

inflammatory cells, a Th2 cell immune response phenotype, mesenchymal cell hyperplasia and 

increased matrix protein deposition.  Looking at theses hallmarks of airway remodeling it is 

apparent that LTs play an important role in the process.  LTs increase the number of 

inflammatory cells present in the airway through various modes of action.  LTB4, as stated 

above, is known to be a potent chemoattractant for neutrophils, eosinophils, macrophages and 

lymphocytes (effector T cells).  CysLTs provide increased means of inflammatory cell 

extravasation by up regulating endothelial cell adhesion molecule expression.  Additionally, LT 

signaling can inhibit apoptosis of recruited cells, such as neutrophils and eosinophils.  When the 

activity of LTs is blocked either through inhibition of synthesis or receptor antagonism 

inflammatory cell accumulation is attenuated.  Therefore it is apparent that LTs play an 

important role in the first part of airway remodeling. 

Th2 cell dominated inflammatory responses are associated with the development of AHR 

and remodeling.  cysLTs and LTB4 have been shown to regulate the initiation and amplification 
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of a Th2 dominant immune response.   LTB4 BLT1 interaction is mandatory for the recruitment 

of T cells and the initiation and development of a Th2-type immune response [246] as 

exemplified by reduced AHR associated with decreased IL-5, IL-4 and IL-13 production in 

BLT1null mice.  Specifically, LTB4 – BLT1 roles include: influencing DC migration to lymph 

nodes for T cell activation [246], attracting and activating lymphocytes (CD4 and CD8 T cells) 

[266], recruiting and activating IL-13 producing T cells [269] and stimulating T cell production 

of IL-4 and IL-5 [247].   Similarly, cysLTs regulate the initiation and amplification of Th2 cell-

dependent inflammation.  They influence airway DCs to initiate a Th2 response [258] and induce 

the production of Th2 cytokines IL-4 and IL-5 [268].  Combined, the cysLTs and LTB4 are 

prominent mediators involved in the initiation, activation and development of Th2 immune 

responses and are therefore relevant to the process of airway remodeling.    

Mesenchymal cell hyperplasia results in airway smooth muscle cell and fibroblast 

proliferation.  Studies have implicated that LTs augment both cell types and are key in inducing 

proliferation.  Studies by Vannella et al [270] demonstrated that cysLTs regulate fibrocyte 

function via autocrine and paracrine signaling.  They found that LTD4 induces fibrocyte 

proliferation to greater extent than LTC4 [270].  The mitogenic properties of LTD4 are solely 

mediated by the cysLT1 receptor as demonstrated by augmented fibrocyte proliferative response 

to LTD4 when treated with cytLT1 antagonists [271].  LTD4 along with LTB4 has also been 

shown to augment airway smooth muscle cell (ASM) proliferation when combined with 

epidermal growth factor (EGF) or IGF [272].  However, LT signaling combined with growth 

factors has no implication in altering collagen or ECM proteins. 

CysLTs may modulate extracellular matrix remodeling during pulmonary inflammation.  

Primarily, cysLTs are able to influence fibroblast activity, specifically they induce the secretion 
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of FGF which can induce increased collagen synthesis.  Studies have implicated that collagen 

synthesis can be induced by LTC4, and LTE4 as demonstrated in rat lung fibroblasts.  The role of 

cysLTs in collagen deposition is further verified by the dramatic reduction of airway collagen 

deposition by Monteleukast treatment in a chronic mouse asthma model, indicating a potent anti 

fibrotic pathway through cysLT1.  

EEiiccoossaannooiiddss  &&  FFiibbrroossiiss  
LTs and PGs work in opposition of one another to create a balance resulting in 

homeostasis.  The overproduction of profibrotic and proinflammatory LTs and diminished PGE2 

is associated with the development of fibrotic disorders.  Evidence supporting the pivotal role for 

eicosanoids in fibrotic lung disease derives from observations that human and animal models of 

pulmonary fibrosis exhibit a synthetic imbalance favoring profibrotic LTs.  The amount of LTB4 

in bronchoalveolar lavage fluid (BAL) isolated from patients with IPF was greater than the 

amounts isolated from normal volunteer’s samples [273-274].  Similarly, lung homogenates from 

IPF patients contained 15 fold greater LTB4 and 5 fold higher cysLTs that did normal controls 

[275].  Interestingly, the increased levels of LTs correlated directly with the histological severity 

of fibrosis, indicating a possible link between LTs and the progression of fibrosis.  The source of 

LT overproduction are the AMs and is believed to be caused by constitutive activation of the 5-

LO enzyme.  The observation of increased LT levels in the lung gathered from IPF patients 

correlated with the results of bleomycin induced fibrosis in both mice and hamsters, indicating 

the importance of LT expression in fibrotic disease. 

The cause of increased LT synthesis in fibrotic lungs has not been identified, but a 

number of possible mediators are relevant candidates due to their elevated expression in the 

fibrotic lung and their ability to stimulate constitutive 5-LO activity.  Candidates include 
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cytokines, such as IL-8 [276], IL-4 [277] and IL-5 [278], immune complexes [279], MCP-1 

[280], endothelin-1 [281] and TGF-β [282-283].  Further studies are necessary to determine the 

stimulus and mechanism responsible for increased LT levels. 

The underproduction of PGE2 diminishes any suppression of profibrotic signaling.  This 

seems to be the case as determined from IPF patients and different animal models of fibrosis.  

BAL fluid from patients with IPF contains lower levels of PGE2 than BAL from controls.  

Fibroblasts isolate from IPF patient lung tissue demonstrate a reduced ability for PGE2 synthesis.  

The synthetic capacity by IPF fibroblasts is impaired under normal basal condition as well as in 

response to stimuli, such as LPS, IL-1, TNF-α and TGF-β.  Impaired COX-2 mRNA and protein 

is responsible for the diminished synthetic activity.  COX-2 is important in different 

inflammatory and induced settings; loss or diminished activity of this enzyme leaves cells unable 

to respond to their environment.  Since PGE2 serves as an important counter signal to fibroblast 

proliferation and activation, the loss of its activity is a relevant and important component in 

fibrosis. 
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CHAPTER 4    

Effects of Reovirus Exposure on Airway 
Reponses in an Experimental Model of Lower 
Respiratory Tract Infection (LRTI) 
RRaattiioonnaall  

Viral LRTI early in life has been reported as a potent initiating factor for the subsequent 

development of childhood asthma [1, 284-285].  Furthermore, LRTIs, such as viral bronchiolitis, 

are the leading cause of child and infant hospitalization, with an estimated 120,000 hospital 

admissions annually [286].  RSV is the predominant cause of severe bronchiolitis and pneumonia 

in infants worldwide [287]. In addition, there is growing evidence that early RSV infection is an 

important risk factor for the development of recurrent wheezing during the first decade of life 

[1].  Other common early life viral pathogens such as rhinovirus, influenza, parainfluenza (PIV), 

adenovirus, human metapneumovirus (hMPV), and human boca virus (hBoV) are known 

etiological agent of viral bronchiolitis [288-291].  Similarly, reoviruses are commonly found in 

the airways of exposed infants early in life [3-5] and are associated with pulmonary infections 

and the common cold [6].  The increased rate of reovirus infection during early childhood 

combined with the lack of information regarding the mechanisms behind its pathogenesis 

suggests that reovirus could be relevant in the development of childhood asthma.      

Previous studies in animal models have shown that RSV infection results in dysregulated 

neuroimmune interactions and altered synthesis/release of pro-inflammatory neuropeptides 

generating amplified airway reactivity and neurogenic-mediated inflammation [284].  The 

essential and pivotal result of RSV infection is increased expression of Nerve Growth Factor 

(NGF) and its high affinity receptor tyrosine kinase A (TrKa) in the lungs [292].  NGF is the 
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central regulatory factor controlling development, responsiveness and the level of 

neurotransmitter expression and transcription [293-294].  NGF increased expression and 

signaling results in augmented synthesis and release of the proinflammatory neurotransmitter 

substance P(SP) by nociceptive fibers of the lower respiratory tract [295].  Concomitantly, 

augmented NGF induces the over expression of SP’s high-affinity receptor, neurokinin 1 (NK-1), 

by inflammatory cells and on the airway epithelium and vascular endothelium, resulting in 

exaggerated neurogenic inflammation [295].  Therefore, RSV-induced release of NGF primes 

different cellular effectors of the immune system (e.g., lymphocytes, monocytes, MCs), 

rendering them susceptible to the modulatory influence of the increased abundance of SP.  The 

alterations to the airway sensory innervations induced by RSV infection early in life could 

predispose infants and children to the development of asthma. 

The results of different studies indicate that the development of neurogenic inflammation 

is exceedingly dependent upon viral LRTI occurring early in life.  Although to a lesser extent 

than RSV, reovirus exposure has been shown to be relevant within a critical time frame for the 

developing lung. Very little is known about the neurogenic-mediated airway responses following 

exposure to reovirus and their potential impact on the development of asthma later in life.  

Therefore, we wished to investigate the neurogenic inflammatory response to reovirus infection 

in an animal model of lung infection.    

In addition, reovirus respiratory infection has been previously reported to generate 

increased collagen deposition and fibroblast proliferation.  Specifically, Bellum et al. [38] 

reported that CBA/J mice infected with reovirus T1/L demonstrate a pathology of increased 

collagen deposition and fibroblast proliferation, making it an ideal animal model for BOOP.  

However, the processes and underlying mechanisms of fibrosis have not been clearly elucidated.  
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Cav-1 and the eicosanoids, PGE2 and cysLTs, have been reported as principal mediators of 

fibrotic disease and may be important in the pathogenesis of reovirus induced fibrosis.  

Therefore, we investigated the effect of reovirus on airway remodeling and the relevance of cav-

1 and the eicosanoids reovirus pathogenesis.      

Specific Aim 1:  To investigate the effects of reovirus exposure on 
physiological airway responses and whether these responses were 
associated with neurogenic inflammation. 

Specific Aim 2: To investigate the effects of reovirus exposure on 
expression neurotrophins and their receptors.    

Specific Aim 3: To investigate the effects of reovirus exposure on 
airway remodeling. 

MMaatteerriiaall  aanndd  MMeetthhooddss  
AAnniimmaallss  

Adult rats (12 week-old) of both sexes and weanling rats (2 week-old) born to pathogen-

free timed pregnant dams of Fischer 344 (F-344) strain were obtained from Harlan Sprague 

Dawley Inc. (Indianapolis, IN). Due to the profound effects of respiratory infections on 

neurosensory airway regulation [296], the animals were kept in polycarbonate micro-isolator 

cages in a strictly controlled pathogen-free environment to prevent any microbial cross-

contamination. These cages were placed on racks that provided positive individual ventilation 

with class 100 air to each cage at the rate of approximately one cage change of air per minute 

(Maxi-Miser; Thoren Caging System, Hazleton, PA). We used separate rooms for housing 

reovirus-infected and pathogen-free rats, serviced by trained husbandry technicians. All 

manipulations, inoculation and cage maintenance, were conducted inside class 100 laminar flow 

hoods. Bedding, water and food were autoclaved prior to use and unpacked only under laminar 
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flow. Cages and water bottles were run through a tunnel washer after every use and disinfected 

with both chemical and heat. The West Virginia University Animal Care and Use Committee 

(WVU-ACUC) approved all experimental procedures followed in this study. 

VViirruuss  PPrreeppaarraattiioonn  aanndd  TTiittrraattiioonn  
Reovirus was prepared according to a previously published method [297]. Briefly, 

reovirus serotype 1, strain Lang (T1L) stock, was originally obtained from Dr. Donald H. Rubin 

(Nashville, TN) and amplified in mouse L929 cells. Third-passage reovirus was purified by 

extraction with 1,1,2-trichloro-1,2,2-trifluoroethane followed by CsCl gradient centrifugation. 

The concentration of virions in the purified preparation was determined by measuring the optical 

density at 260nm according to the method of Smith et al. [297]. The infectious viral dose was 

determined by plaque assay. Before inoculation, the virus stock was diluted for a final 

concentration of 2.5x106 PFU/µl (High dose) and 7.5x102 PFU/µl (Low dose). Virus-free media 

was used as a negative control. 

IInnooccuullaattiioonn  
Adult rats were anesthetized with pentobarbital sodium (50 mg/kg i.p.). The trachea was 

carefully intubated with a 16-gauge cannula and 100 µl of a suspension containing reovirus at 

either high dose or low dose or virus-free media was injected over the airway mucosa using 1 ml 

syringe.  

Weanling rats were anesthetized with pentobarbital sodium (25 mg/kg i.p.). 40µl of 

suspension containing reovirus at either high dose, low dose or virus-free media was carefully 

pipetted into the back of the weanling’s throat and aspirated into the lungs. 
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VVaassccuullaarr  EExxttrraavvaassaattiioonn  
The extravasation of Evans Blue-labeled albumin from the tracheobronchial circulation 

was used as a marker of neurogenic-mediated inflammatory responses [298-299] following 

reovirus infection. Rats were anesthetized with pentobarbital sodium (adults: 50 mg/kg i.p.; 

weanlings: 25 mg/kg i.p.).  The tracer, Evans blue dye (30mg/kg given i.v. over 5 sec.) was 

injected into the left femoral artery.  Immediately after the injection of the tracer, virus infected 

and control rats were intravenously injected with 75 µg/kg of capsaicin (8-methyl-N-vanillyl-6-

nonenamide; Sigma-Aldrich, St. Louis MO) dissolved in a vehicle with a final concentration of 

0.75% ethanol, 0.375% Tween 80, and 0.85% NaCl in aqueous solution over 2 min through the 

right femoral artery.  The chemical was delivered in a volume of 1 ml/kg of body weight.  Five 

minutes after injection of the tracer, the chest was opened and a 22-gauge cannula was inserted 

into the ascending aorta through the left ventricle.  After incision of the left atrium, the 

circulation was perfused with 100 ml of PBS (adult rats) or 50 ml of PBS (weanling rats) over 2 

min using a syringe pump.  The extra pulmonary airways (from the first tracheal ring to the end 

of the main stem bronchi) and the left lung were dissected and prepared for Evans blue 

extraction. The connective tissue was carefully removed and the trachea was cut along the 

ventral side. The specimens were blotted dry, weighed and incubated in formamide for 18 hours 

at 50°C to allow the tracer to diffuse into the formamide. The extravasation of Evans blue-

labeled albumin from the tracheobronchial circulation was quantified by measuring the optical 

density of the formamide extracts at a wavelength of 620 nm. The quantity of Evans blue dye 

extravasated into the airway tissues, expressed in nanograms per milligram of wet-tissue weight, 

was interpolated from a standard curve of Evans blue concentrations (0.5–10 µg/ml). 
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NNeeuurroottrroopphhiinn  IImmmmuunnooaassssaayy  
 NGF and BDNF protein expression in the lungs were measured with a commercial kit 

(Promega, Madison, WI) using the antibody-sandwich technique.  In brief, 100 mg of lung-tissue 

samples were homogenized in 5 volumes of lysis buffer that contained 20 mM Tris ·  HCl, 

150 mM NaCl, 1% Nonidet P-40, 10% glycerol, 1 mM phenylmethylsulfonyl fluoride, 10 µg/ml 

aprotinin, 1 µg/ml leupeptin, and 0.5 mM sodium vanadate. The supernatants of homogenized 

tissue samples were incubated for 18 h at 4°C in 96-well plates coated with 100 µl of either anti-

NGF or anti-BDNF polyclonal antibodies (1.5 µg/ml in 100 mM carbonate coating buffer; pH 

9.7) to bind NGF or BDNF from the homogenates. After washing, a specific rat monoclonal 

antibody was applied (0.6 µg/ml in buffer, 100 µl/well) and incubated for 18 h at 4°C to bind the 

captured NGF or BDNF. The plates were again thoroughly washed, and horseradish peroxidase-

conjugated antibody to rat IgG was added to each well and incubated for 3 h at room temperature 

to detect the amount of specifically bound monoclonal antibody. After final washing to remove 

unbound antibody conjugate, the chromogenic substrate was added, and the color change 

generated by the reaction was read at a 450-nm wavelength. Test samples and NGF or BDNF 

standards (100 µl/well) were measured in duplicate. With this assay, NGF and BDNF can be 

quantified with a lower detection limit of 15.6 pg/ml and <2% cross reactivity with other 

neurotrophic factors.  

 

RReevveerrssee  TTrraannssccrriippttiioonn--PPoollyymmeerraassee  CChhaaiinn  RReeaaccttiioonn  ((RRTT--PPCCRR))  
The presence of RNA in lung tissue was detected by RT-PCR in lung tissue specimens. 

The lungs were collected from the animals upon euthanasia with an i.p. dose of pentobarbital 

sodium followed by exsanguination. The tissue specimens were immediately flash frozen in 

liquid nitrogen and stored at -80°C. The frozen specimens were then placed in RLT disruption 
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buffer and homogenized using a conventional rotor-stator homogenizer (Brinkmann Instruments, 

Westbury, NY) for 45-60sec until each sample was uniformly homogenous. Total RNA was 

extracted from lung homogenates using RNEasy Midi-Kits (Qiagen GmbH, Hilden, Germany) 

according to the manufacturer’s specifications. RNA samples (1pg-2mg) were added to a 50µl 

master mix consisting of 400uM each of deoxynucleotide triphosphates (dNTPs), 10 units of 

RNAse inhibitor, 2µl of an enzyme mix containing Taq DNA Polymerase (one-step RT-PCR 

Promega, Madison, WI) and 50 pmol each of primers flanking the nucleotide sequence for NGF, 

BDNF, p75, TrKa, TrKb, and the housekeeping gene β-Actin. The same master mix without the 

RNA sample was used as a negative control. The primer pairs were designed on the basis of 

previously published protocols [300] and were used to differentiate cDNA-generated PCR 

products from genomic DNA contamination. The specific primer sequences (sense and 

antisense) are illustrated in table 1. Amplification was performed using a Gene-Amp PCR 

System 9600 thermal cycler (Perkin-Elmer, Waltham, MA). The process was started with an 

initial step of 50°/30 min then 95°/15 min followed by 25-35 cycles with a denaturing step 

followed by an annealing step, an extension step, and then one final extension step at 68-72° for 

10 min. All programs included a 4° hold step at the end. Amplified PCR products were size-

fractionated by electrophoresis through a 2% agarose gel and stained with ethidium bromide. The 

gels were then photographed using an imaging system (FOTO/Analyst Luminary Workstation, 

Fotodyne, Hartland, WI). The intensity of DNA bands were analyzed by computerized 

densitometry (TotalLab TL-101 Image Analysis Software) and expressed as the ratio of the 

densitometric score measured for each target normalized by the β-actin control. The primer 

sequence (sense and antisense) for all gene targets and their expected size is shown in Table 1. 
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HHiissttooppaatthhoollooggyy  
The right lung from each animal was fixed in 10% buffered formalin, embedded in 

paraffin, and cut in 3-mm-thick sections. Hematoxylin and Eosin (H&E) and Masons Trichrome 

staining was performed for histopathologic analysis. All slides were coded and interpreted by 

two independent pathologists who were blinded to whether the specimens were coming from an 

infected animal or a control. Histopathologic changes were graded as mild (5-10 inflammatory 

cells in 3 or more adjacent alveoli), moderate (10-20 inflammatory cells per alveolus), or severe 

(> 20 inflammatory cells per alveolus).  

Morphometric analysis was conducted on Trichrome-stained slides to quantitate the 

presence of collagen. Regions of interest for each slide were identified based on the presence of 

the same pulmonary structures. The quantity of collagen within the selected field was determined 

by computerized analysis of the intensity of blue-stained structures and expressed as a 

percentage of tissue area. 

CCaavv--11  WWeesstteerrnn  BBlloott  
The lungs were collected from the animals upon euthanasia with an i.p. dose of 

pentobarbital sodium followed by exsanguination. The tissue specimens were immediately flash 

frozen in liquid nitrogen and stored at -80°C. The frozen specimens were then placed in 

homogenization buffer (0.1M Phosphate (PO4) pH 7.4 contained 1mM EDTA and 10µM 

indomethacin) and homogenized using a conventional rotor-stator homogenizer (Brinkmann 

Instruments, Westbury, NY) for 45-60sec until each sample was uniformly homogenous.  Sample 

protein concentration was determined using a BCA protein assay kit purchased from Pierce 

(Rockford, IL).  Based on protein concentration, homogenates were diluted to 20µg of 

protein/sample.  Each sample received SDS sample buffer containing 1M Tris-HCl (pH 6.8), 5% 
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(w/v) SDS, 2.5% (v/v) β-mercaptoethanol, 5% glycerol in double-distilled water and boiled to 

solubilize sample proteins. Boiled samples were subjected to SDS/PAGE, electrotransferred to a 

nitrocellulose membrane, and immunoblotted with Cav-1 and β-actin monoclonal antibodies 

from BD Biosciences (San Diego California). Bands were visualized using Super Signal West 

Pico Stable Peroxide and Luminol/Enhancer solutions (Pierce).  Densitometry analysis of blots 

and corresponding β-actin controls was performed using an imaging system (FOTO/Analyst 

Luminary Workstation, Fotodyne, Hartland, WI). The intensity of protein bands was analyzed by 

computerized densitometry (TotalLab TL-101 Image Analysis Software) and expressed as the 

ratio of the densitometric score measured for each target normalized by the β-actin control.   

QQuuaannttiiffiiccaattiioonn  ooff  PPGGEE22  bbyy  eennzzyymmee  iimmmmuunnooaassssaayy  ((EEIIAA))  
PGE2 was extracted from lung homogenates by solid phase extraction with C18 solid 

phase extraction cartridges (SPE Cartridges/C-18) purchased from Caymen Chemical (Ann 

Arbor, MI).  Post removal, lung tissue samples were flash frozen in liquid nitrogen and stored at 

-80°C. The frozen specimens were then placed in homogenization buffer (0.1M Phosphate (PO4) 

pH 7.4 contained 1mM EDTA and 10µM indomethacin) and homogenized using a bead beater.  

Homogenized samples were diluted 1:4 in homogenization buffer and the pH of samples was 

measured and adjusted to 4.0 using HCl.  pH adjusted samples were applied to the C18 cartridge 

(pretreated with methanol followed by HPLC grade water).  PGE2 was eluted from the cartridge 

with ethyl acetate containing 1% methanol.  Eluted samples in methanol were dried with a 

speedvac concentrator under vacuum and reconstituted with enzyme immunoassay (EIA) buffer 

from Caymen Chemicals (Ann Arbor, MI) for EIA measurement.  The concentration of PGE2 in 

lung homogenate samples were analyzed using a specific EIA kit from Caymen Chemicals (Ann 

Arbor, MI) according to manufacturer’s instructions.        
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QQuuaannttiiffiiccaattiioonn  ooff  CCyyssLLTT  bbyy  eennzzyymmee  iimmmmuunnooaassssaayy  ((EEIIAA))  
cysLTs were isolated from long homogenates using  a cysLT Affinity Purification Kit 

from Caymen Chemicals (Ann Arbor, MI) per manufacturer’s instructions.  The concentrations 

of CysLTs in lung homogenates were evaluated using a specific EIA kit from Caymen 

Chemicals (Ann Arbor, MI) according to manufacturer’s instructions.    

SSttaattiissttiiccaall  AAnnaallyyssiiss  
All data were analyzed using a multivariate analysis of variance (ANOVA) for repeated 

measures. If a significant effect was found, a post-hoc t-test with Bonferroni correction was used 

to identify significant pairs. Individual comparisons were made using paired and unpaired t-test 

when appropriate (Sigmastat 2.0 for Windows, SPSS Inc., Chicago, IL). Values in the text and 

figures are presented as mean ± SE. Differences having a P value < 0.05 were considered 

significant. 

 

EExxppeerriimmeennttaall  PPrroottooccoollss  
Specific Aim 1 & 2 

a) 5-Day Protocol. Adult rats (12 week-old) were infected with 100 µl of a suspension 

containing either high dose reovirus (2.5x106 PFU/µl; n=6) or low dose reovirus (7.5x102 

PFU/µl; n=6). Control animals (n=5) were inoculated with an equal volume of virus-free media. 

Weanling rats (2 week-old) were infected with 40 µl of a suspension containing either high dose 

reovirus (2.5x106 PFU/µl; n=5) or low dose reovirus (7.5x102 PFU/µl; n=6). Control animals 

(n=5) were inoculated with an equal volume of virus-free media. Five days after inoculation, the 

Evans Blue procedure was performed as previously described. The extra pulmonary airways 

(from the first tracheal ring to the end of the main stem bronchi) and the left lung were dissected 
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and prepared for Evans blue extraction. The right lung was removed for RNA extraction and 

histopathologic analysis. All animals were weighed before inoculation and after the 5-day 

incubation period. 

b) 30-Day Protocol. Adult rats (12 week-old) were infected with 100 µl of a suspension 

containing either high dose reovirus (2.5x106 PFU/µl; n=6) or low dose reovirus (7.5x102 

PFU/µl; n=6). Control animals (n=6) were inoculated with an equal volume of virus-free media. 

Weanling rats (2 week-old) were infected with 40 µl of a suspension containing either high dose 

reovirus (2.5x106 PFU/µl; n=6) or low dose reovirus (7.5x102 PFU/µl; n=6). Control animals 

(n=6) were inoculated with an equal volume of virus-free media. Thirty days after inoculation, 

the Evans Blue procedure was performed as previously described. The extra pulmonary airways 

(from the first tracheal ring to the end of the main stem bronchi) and the left lung were dissected 

and prepared for Evans blue extraction. The right lung was removed for RNA extraction and 

histopathologic analysis. All animals were weighed before inoculation and after the 30-day 

incubation period. 

Specific Aim 3 
5-Day protocol: Weanling rats (2 week-old) were infected with 40 µl of a suspension 

containing either high dose reovirus (2.5x106 PFU/µl; n=2) or low dose reovirus (7.5x102 

PFU/µl; n=2) and control animals (n=2) were inoculated with an equal volume of virus-free 

media.  At 5 days post inoculation rats were anesthetized with Pentobarbital sodium (25mg/kg 

i.p.).  Blood samples were taken prior to sacrifice.  Lungs were inflated with .5 to 1.5 ml of 

formalin using a 16 gauge cannula attached to a syringe and allowed to sit for 5 minutes prior to 

removal.  The right lung was dissected and prepared for histopathologic analysis.  The left lung 

was removed for RNA, protein  and hormone analysis.   
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60-Day protocol: Weanling rats (2 week-old) were infected with 40 µl of a suspension 

containing either high dose reovirus (2.5x106 PFU/µl; n=2) or low dose reovirus (7.5x102 

PFU/µl; n=3).  Control animals (n=3) were inoculated with an equal volume of virus-free media.  

At 60 days post inoculation rats were anesthetized with Pentobarbital Sodium (25mg/kg i.p.).  

Blood samples were taken prior to sacrifice.  Lungs were inflated with .5 to 1.5 ml of formalin 

using a 16 gauge cannula attached to a syringe and allowed to sit for 5 minutes prior to removal.  

The right lung was dissected and prepared for histopathologic analysis.  The right lung was 

removed for RNA, protein and hormone analysis.  

90-Day protocol: Weanling rats (2 week-old) were infected with 40 µl of a suspension 

containing either high dose reovirus (2.5x106 PFU/µl; n=2) or low dose reovirus (7.5x102 

PFU/µl; n=3).  Control animals (n=2) were inoculated with an equal volume of virus-free media.  

At 90 days post inoculation rats were anesthetized with Pentobarbital Sodium (50mg/kg i.p.).  

Blood samples were taken prior to sacrifice.  Lungs were inflated with .5 to 1.5 ml of formalin 

using a 16 gauge cannula attached to a syringe and allowed to sit for 5 minutes prior to removal.  

The right lung was dissected and prepared for histopathologic analysis.  The right lung was 

removed for RNA, protein and hormone analysis.  

120-Day protocol: Weanling rats (2 week-old) were infected with 40 µl of a suspension 

containing either high dose reovirus (2.5x106 PFU/µl; n=2) or low dose reovirus (7.5x102 

PFU/µl; n=3).  Control animals (n=2) were inoculated with an equal volume of virus-free media.  

At 120 days post inoculation rats were anesthetized with Pentobarbital Sodium (50mg/kg i.p.).  

Blood samples were taken prior to sacrifice.  Lungs were inflated with .5 to 1.5 ml of formalin 

using a 16 gauge cannula attached to a syringe and allowed to sit for 5 minutes prior to removal.  
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The right lung was dissected and prepared for histopathologic analysis.  The right lung was 

removed for RNA, protein and hormone analysis.  

RReessuullttss  
HHIISSTTOOPPAATTHHOOLLOOGGYY  AANNDD  MMOORRPPHHOOMMEETTRRIICC  AANNAALLYYSSIISS   
Weanlings  

H&E stained microscopic lung sections from weanling rats sacrificed 5 days post 

inoculation were analyzed to determine the inflammatory response to reovirus and how it is 

augmented by virus dose.  Rats infected with high dose reovirus developed multifocal and 

coalescent, acute, suppurative and lymphocytic bronchopneumonia.  The grade of 

bronchopneumonia was described as moderate to acute.  Features of the pneumonia included the 

accumulation of neutrophils in the alveolar region, intraluminal accumulation of mucus in 

bronchioles, and peribronchiolar and perivascular accumulation of mononuclear inflammatory 

cells (Figure 11-A & Figure 12-A).  In comparison, the Low dose reovirus resulted in a milder 

multifocal, lymphocytic, bronchopneumonia.  Features of the pneumonia included the 

peribronchiolar and perivascular accumulation of mononuclear inflammatory cells that were 

predominantly lymphocytes (Figure 11-B Figure 12-A).  Control animals demonstrated no 

significant findings. 
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Figure 11 Histological features of reovirus induced pneumonia at 5 and 30 days post infection 
Electron micrographs of H&E stained lung sections from weanling rats infected with either 2.5x106 PFU/µl (High dose) or 
7.5x102 PFU/µl (Low dose) of reovirus T1/L at 40 x magnifications. A) The accumulation of polymorphonuclear cells (PMNs) 
in the alveolar spaces (yellow arrows), perivascular accumulation of mononuclear inflammatory cells, intralumenal accumulation 
of mucous in bronchioles, and peribronchiolar influx of neutrophils was apparent in lung sections from rats  5 days post infection 
with high dose reovirus. B)Low dose virus infection resulted in peribronchiolar and perivascular accumulation of mononuclear 
inflammatory cells (yellow arrows) at 5 days post infection. C) PMNs (yellow arrows) and chronic inflammatory cells were seen 
within the bronchioles and the interstitium at 30 days post infection with high dose virus.  Mucus and necrotic cellular debris was 
also noted in bronchiole spaces as well as foamy macrophages (red arrows). D)Low dose reovirus infection resulted in mild 
chronic peribronchiolar inflammation.  Features included mild, multifocal, mucous metaplasia, presence of chronic inflammatory 
cells in the interstitium and around respiratory bronchioles, with foamy macrophages being seen as well (red arrow). 

At 30 days post inoculation rats infected with high dose virus exhibited moderate chronic 

inflammation that was focused around respiratory bronchioles.  Inflammatory features included 

the presence of PMNs and chronic inflammatory cells within the bronchioles and the interstitium 

(Figure 12-A).  Mucus and necrotic cellular debris was also found in bronchiole spaces along 

with foamy macrophages (Figure 11-C).  In a few samples, occasional bronchioles contained 

detached epithelial cells associated with faint cytoplasmic vacuoles and basophilic foci, which 

could be representative of viral inclusions.  Low dose reovirus infection resulted in mild chronic 
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peribronchiolar inflammation.  Features included mild, multifocal, mucus metaplasia, presence 

of chronic inflammatory cells in the interstitium and around respiratory bronchioles (Figure 12-

A).    Moderate, multifocal, medial hypertrophy of pulmonary arterioles was also identified and 

specific to low dose virus infection.     

 

Figure 12 Histological features of reovirus induced pneumonia in adult and weanling rats 
Electron micrographs of H&E stained lung sections from weanling rats infected with either 2.5x106 PFU/µl (High dose) or 
7.5x102 PFU/µl (Low dose) of reovirus T1/L at 40 x magnifications. A) H&E-stained microscopic sections of weanling rat lungs 
obtained 5 and 30 days following inoculation with either low or high dose reovirus or pathogen-free vehicle. At 5 days post-
infection, lung sections from rats infected with either dose of reovirus, show acute cellular infiltrates consisting mainly of 
neutrophils, monocytes and mast cells consistent with moderate to severe interstitial and peribronchial inflammation compared to 
control animals. At 30 days the acute histopathologic changes were completely resolved and no significant differences were 
observable between treated and virus-free animals. Images are representative of 6 animals. B) H&E-stained microscopic sections 
of adult rat lungs obtained 5 and 30 days post inoculation. Five days following infection with either dose of reovirus, the animals 
developed an acute inflammatory response characterized by the presence of moderate to severe acute peribronchial and interstitial 
cellular infiltrates comprised of neutrophils and monocytes which was associated with mild hyperplasia of bronchus-associated 
lymphoid tissue (BALT). These changes were lost at 30 days post inoculation as shown by the lack of any inflammatory cells in 
either virus-infected or pathogen-free animals. Images are representative of 6 animals. 
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Trichrome stained microscopic lung sections from weanling rats 30 days post reovirus 

infection were analyzed for changes in collagen deposition in response to reovirus infection.  

Overall, reovirus infected weanlings exhibited signs of increased collagen accumulation 

associated with the early stages of fibrosis development at 30 days post infection.  High dose 

reovirus infection resulted in focal, mild fibrosis (Figure 13-A).  Fibrotic regions demonstrated 

decreased vascular perfusion in conjunction with increases in epithelial cells.  Areas 

demonstrating intensified blue staining exhibited augmented collagen accumulation associated 

with increased numbers of fibroblasts in terminal respiratory bronchioles and alveolar spaces of 

the interstitium suggestive of interstitial fibrosis.  Low dose reovirus infection resulted in a 

similar pathology of focal, mild fibrosis (Figure 13-A).  Overall, the Trichrome-stained 

microscopic sections of weanling rat lungs 30 days after infection, showed signs of collagen 

accumulation which was graded as mild fibrosis. 

 Computerized morphometric analysis of lung sections showed a small, yet significant 

increase of collagen content in the lungs of low dose treated rats compared to controls (Figure 

13-B) with a p value < 0.05.  A more robust increase in collagen was seen in response to high 

dose virus infection as demonstrated by a more significant increase in collagen content in 

infected rats compared to controls with a p value < 0.001.  These changes were not observed in 

any of the animals 5 days after infection. 
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Figure 13 Trichrome Staining and Morphometric Analysis 
A) Masson’s Trichrome-stained weanling rat lung sections obtained 30 days after inoculation with either dose of reovirus or 
virus-free vehicle. An increased degree of collagen deposition was observed in infected rats compared to age-matched pathogen-
free controls as indicated by a more significant blue staining Images are magnified 20x and are each representative of 6 animals.  
B) The computerized morphometric analysis of the same lung sections showed a significantly higher collagen deposition in 
treated animals compared to controls. This effect appears to be dose-dependent. Data are expressed as %collagen/ tissue area and 
are mean +/- SE (n=6; ***p<0.001; *p<0.05; ANOVA with Fisher LSD post-hoc analysis). 

At 60 days post inoculation rats infected with either reovirus dose exhibited mild focal 

chronic inflammation (Figure 14).  Chronic inflammation was mainly focused on respiratory 

bronchioles.  Germinal centers around airway spaces were observed.  No acute inflammatory 

cells were observed, but a few foamy macrophages were seen in the lumen of terminal 

respiratory bronchioles.  Trichrome staining revealed focal increases in collagen deposition as 
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well as a thickening of alveoli septa.  Increased number of fibroblasts associated with respiratory 

bronchioles was noted. 

 

 
Figure 14 Histology at 60 days post infection 
Electron micrographs of lung sections from weanling rats infected with either 2.5x106 PFU/µl or 7.5x102 PFU/µl of reovirus 
T1/L at 20× magnification.H&E and Trichrome stained microscopic sections of rat lungs obtained 60 days post inoculation.  
Chronic inflammation was mainly focused on respiratory bronchioles.  Germinal centers around airway spaces are observed.  No 
acute inflammatory cells were observed, but a few foamy macrophages were seen in the lumen of terminal respiratory 
bronchioles.  
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Adults  
Five days post reovirus infection, H&E-stained microscopic sections demonstrated acute 

peribronchial and interstitial cellular infiltrates made of neutrophils and monocytes which were 

graded moderate to severe (Figure 12). In addition, the presence of locally extensive, mild 

hyperplasia of bronchus-associated lymphoid tissue (BALT) was noted (Figure 15). These 

inflammatory cellular infiltrates were minimal or absent 30 days post reovirus infection (Figure 

12). The lungs of control rats showed minimal or no pathologic changes. No significant 

differences were observed in the severity of pathologic changes between rats infected with high 

or low dose reovirus.  

 

Figure 15 Adult Rat Bronchus-associated Lymphoid Tissue (BALT) 
H&E stained microscopic sections of adult rat lungs 5 days post reovirus infection.  Locally extensive, mild hyperplasia of BALT 
was associated with reovirus infection.  Low dose infection results in the expansion of BALT as demonstrated by the increased 
infiltration by inflammatory cells into the bronchiole epithelium and interstitium.  High dose induced a similar hyperplasia with 
accumulations of lymphoid cells and formation of lymphoid follicles in the interstitium that expanded into the bronchiole lumen.  
Both low and high dose showed active germinal centers. 

BBooddyy  WWeeiigghhtt  
In order to further document the pathologic effect of the virus, we measured the average 

weight gain between inoculation and the end of incubation time, immediately before performing 

the vascular extravasation procedure. Weight gain was significantly reduced in weanling rats five 
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days after infection compared to controls. Weight gain was unaffected at 30 days post infection 

as well as in treated and control adult rats at 5 and 30 days (Figure 16).  

 

Figure 16 Acute Changes in Body Weight Demonstrate Reovirus Pathology 
A) Weanlings failed to gain weight during the 5 days following infection with either low or high reovirus dose compared to their 
age-matched pathogen-free controls. Data are expressed as the average weight gain (% compared to pre-treatment value) and are 
indicated as mean ± SE (n=6; ***p<0.001; ANOVA with Fisher LSD post-hoc analysis). B) The growth rate was restored during 
the 30 days after reovirus infection and was comparable to pathogen-free controls. Data are expressed as the average weight gain 
(% compared to pre-treatment value) and are indicated as mean ± SE (n=6; ***p<0.001; ANOVA with Fisher LSD post-hoc 
analysis). C) In adult rats, at 5 days post infection, no significant changes in weight gain were observed in infected rats compared 
to pathogen-free controls. Data are expressed as the average weight gain (% compared to pre-treatment value) and are indicated 
as mean ± SE (n=6; p=ns; ANOVA).  D) In adult rats, at 30 days post infection, no significant changes in weight gain were 
observed in infected rats compared to pathogen-free controls. Data are expressed as the average weight gain (% compared to pre-
treatment value) and are indicated as mean ± SE (n=6; p=ns; ANOVA).  

VVaassccuullaarr  PPeerrmmeeaabbiilliittyy  
In adult rats, Evans blue-labeled albumin extravasation from extra pulmonary and intra 

pulmonary airways was significantly increased 5 days after inoculation compared to age-

matched controls (Figure 17-C). The magnitude of the increase was not significantly different 
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between high and low dose reovirus-treated animals.  This effect was still significant 30 days 

after infection in the animals treated with the higher dose only (Figure 17-D).  

In weanling rats, vascular extravasation from the lung was significantly larger in low 

dose infected rats compared to controls (Figure 17-A).  Evans-blue labeled extravasation from 

the trachea was unaffected at 5 days. These effects were lost 30 days after reovirus infection 

(Figure 17-B).  

 

Figure 17 Changes in Vascular Permeability indicative of Neurogenic Inflammation 
A) Extravasation of Evans blue-labeled albumin from the airway microvasculature in weanling rats following inoculation with 
either low or high dose reovirus or pathogen-free vehicle. In the intrapulmonary airways, vascular extravasation was significantly 
higher in infected animals compared to pathogen-free controls. This effect appears to be dose-related and is lost 30 days after 
inoculation. The extrapulmonary airway vessels were unaffected. Data are expressed as mean ± SE (n=5-6; ***p<0.001 vs 
controls and low dose; #p<0.001 vs controls and high dose; ANOVA with Fisher LSD post-hoc analysis). B) Vascular 
extravasation in the intrapulmonary and extrapulmonary airway microcirculation of adult rats 5 and 30 days after treatment with 
either dose of reovirus or pathogen-free vehicle. At 5 days post inoculation the quantity of Evans blue-labeled albumin recovered 
from the extrapulmonary airway micro vessels was significantly higher in infected rats compared to pathogen-free controls. No 
differential effects were observed between low and high reovirus dose. In animals infected with high dose reovirus, the increased 
vascular permeability was still significantly higher in treated animals compared to controls 30 days post reovirus infection. Data 
are expressed as mean ± SE (n=5-6; ***p<0.001; ANOVA with Fisher LSD post-hoc analysis).  
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NNeeuurroottrroopphhiinn  EExxpprreessssiioonn  
Protein Expression 

In order to determine if the changes in vascular extravasation seen in response to reovirus 

infection were mediated by neurogenic mechanisms we analyzed the protein expression of 

BDNF and NGF.  In weanling rats NGF protein expression (Figure 18-B) was increased in 

control and low dose animal at 5 days post infections when compared to high dose animals 

which showed diminished NGF.  These differences were not significant.  The amount of NGF 

protein decreased at 30 days and was not affected by virus infection with all experimental groups 

showing similar expression.  BDNF in weanling rats showed no significant changes at 5 and 30 

days post infection, though there were higher levels of BDNF post viral clearance (Figure 18-A).  

In adult rats the amount of NGF (Figure 18-D) and BDNF (Figure 18-C) protein was unaffected 

by reovirus infection at both 5 and 30 days.  
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Figure 18 Neurotrophin Protein Expression at 5 & 30 days 
The amount of NGF and BDNF protein in rat lung homogenates were analyzed by ELISA at 5 and 30 days post infection.  A) 
BDNF protein in weanling rats showed no significant changes at 5 and 30 days post infection. B) NGF protein expression in 
weanling rats at 5 days post infection with low and high dose reovirus demonstrated increased amounts of NGF protein.  The 
amount of NGF protein decreased at 30 days and was not affected by virus infection. C) Expression of BDNF protein in adult rats 
was unaffected at 5 and 30 days post infection in all experimental groups. D) Expression of NGF protein in adult rats was 
unaffected at 5 and 30 days post infection in all experimental groups.  Data are expressed as mean ± SE (n=5-6; ANOVA with 
Fisher LSD post-hoc analysis).  

mRNA Expression 
The expression of the neurotrophins NGF, BDNF and the receptors TrKb and p75 in lung 

homogenates as measured by mRNA levels (RT-PCR) did not reveal any significant changes in 

response to reovirus infection at 5 (Figure 19-A) and 30 days (Figure 19-B) in weanling rats.  

The expression of NGF and BDNF was significantly decreased in reovirus treated adult rats at 5 

days post infection, while receptor expression was not affected (Figure 19-C).  The changes in 

NGF and BDNF were no longer present at 30 days post infection and receptor expression 

continued to be unaffected (Figure 19-D).      
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Figure 19 mRNA Expression of Neurotrophins and their Receptors 
A) The semiquantitative RT-PCR analysis of NGF, BDNF, NGF high affinity receptor (TrKa), NGF low affinity receptor (p75), 
and BDNF receptor (TrKb) mRNA products in lung tissues of weanling rats 5 and 30 days after inoculation with either low or 
high reovirus dose or virus-free vehicle did not reveal any significant changes. The amplified RT-PCR products were analyzed 
by electrophoresis on an ethidium bromide-stained 2% agarose gel. The gel was photographed and the intensity of the DNA 
bands was analyzed by computerized densitometry. Data are expressed as the ratio of the densitometric score measured for each 
target normalized by the β-actin control and are mean +/- SE (n=5-6; p=ns; ANOVA).  B) The same analysis performed on adult 
rats lung homogenates 5 days after reovirus infection revealed a decreased expression of NGF and BDNF in infected rats 
compared to pathogen-free controls, whereas NGF high affinity receptor (TrKa) and low affinity receptor (p75) and BDNF 
receptor (TrKb) were unaffected. These changes were lost 30 days post reovirus infection. The amplified RT-PCR products were 
analyzed by electrophoresis on an ethidium bromide-stained 2% agarose gel. The gel was photographed and the intensity of the 
DNA bands was analyzed by computerized densitometry. Data are expressed as the ratio of the densitometric score measured for 
each target normalized by the β-actin control and are mean +/- SE (n=5-6; *p<0.05; ANOVA with Fisher LSD post-hoc analysis). 

CCaavveeoolliinn--11  PPrrootteeiinn  EExxpprreessssiioonn  
The effect of reovirus pulmonary infection on the expression of cav-1 was determined by 

western blot analysis.  The expression of cav-1 protein at 5 days post infection was decreased in 

reovirus samples compared to controls (Figure 20-A).  Statistical analysis determined that this 

decrease was not significant.  At 30 days post infection Cav-1 protein expression was 

inconsistent, showing decreased and increased expression in response to reovirus infection 
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(Figure 20-B).   The magnitude of change in cav-1 expression was not dependent on the virus 

dose, but rather it was dependent upon the presence of fibrosis.  Statistical analysis of samples 

exhibiting mild fibrosis as determined by a pathologist demonstrated significant decreases in 

cav-1 expression compared to controls (figure 20-D).  In comparison, statistical analysis of 

samples exhibiting minimal to no signs of fibrosis in response to reovirus showed insignificant 

increased cav-1 expression compared to controls (Figure 20-E).  At 60 days post infection, cav-1 

expression appeared to decrease in response to virus infection when compared to controls 

(Figure 20-C), but was not significant.  At 120 days cav-1 expression was not altered in 

comparison to controls (Figure 20-C).  
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Figure 20 Analysis of Cav-1 Protein Expression post reovirus infection 
A) Cav-1 protein expression at 5 days post infection was decreased in reovirus infected samples (indicated by +) compared to 
controls (as indicated by -) as determined by immunoblot analysis of lung homogenates.  Β-actin serves as a loading control.  
B)Cav-1 expression at 30 days post infection was varied  , with some samples showing decreased expression and othesr 
demonstrating increased expression in response to reovirus infection (indicated by +) compared to controls (indicated by -).  C) 
Cav-1 expression over the full time course, 5-120 days post infection as determined by immunoblot analysis using β-actin as a 
loading control.  D) The expression of cav-1 in homogenates from rats lungs that were determined by hitological analysis to have 
significant fibrosis showed a significant decrease in cav-1 protein expression when compared to controls.  Data are expressed as 
the ratio of the densitometric score measured for each target normalized by the β-actin control and are mean +/- SE (n=6; 
*p<0.05; ANOVA with Fisher LSD post-hoc analysis).  E) Expression of cav-1 in samples from rats demonstrating less 
pronounced fibrosis in response to reovirus infection showed insignificant differencse in expression between reovirus infected 
samples and controls.  The intensity of the protein bands was analyzed by computerized densitometry. Data are expressed as the 
ratio of the densitometric score measured for each target normalized by the β-actin control and are mean +/- SE (n=6; *p<0.05; 
ANOVA with Fisher LSD post-hoc analysis). 
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CCoonncceennttrraattiioonn  ooff  PPGGss  aanndd  LLTTss    
In order to determine the effect of reovirus infection on the synthesis of PGE2 and LTs in 

the airway we measured the concentration of each by enzyme immunoassay (EIA) at each time 

point (Figure 21-A).  At 5 days post infection, the concentration of PGE2 was similar in the lungs 

of control and reovirus infected rats.  PGE2 concentration diminished in response to reovirus 

infection compared to controls at 30 days.  The difference in the median lung PGE2 

concentrations between virus doses was minimal.  At 60 days post infection the concentration of 

PGE2 in virus infected rats was diminished in response to both low and high dose infection when 

compared to controls, with high dose infected rats exhibiting the largest decrease in 

concentration.  At 90 days post infection the amount of PGE2 was increased in reovirus infected 

rats, with high dose infection showing the greatest increase.  At 120 days post infection PGE2 

was decreased in control and low dose reovirus infected rats.  In comparison rats infected with 

high dose demonstrated greater PGE2 levels.  Statistical analysis revealed that all changes in 

concentration were not significant.   

Reovirus infected rats’ demonstrated increased amounts of LTs in the airway compared 

to controls at 5 days post infection (Figure 21-B).  Changes in the concentration of airway LTs 

were no longer present at 30 days.  LT concentration continued to be similar between the three 

experimental groups at 60 days post infection.  At 90 days post infection the amount of LTs in 

the airway increased in high dose infected animals compared to both control and low dose.  

Increased LT synthesis in both low and high dose reovirus infected rats continued at 120 days 

post infection when compared to controls.  Though there were apparent differences between 

experimental groups, there were no significant differences between groups.     



85 
 

 

Figure 21 Expression of the hormones PGE2 and LT in response to reovirus infection 
A) Concentration of LTs in lung homogenates from control and reovirus infected rats at 5, 30, 60, 90 and 120 days post infection 
were analyzed by using a specific enzyme immunoassay technique.  Changes in LT concentration were not significant between 
experimental groups.  Data represents the mean +/- SE (n=5-6; ANOVA with Fisher LSD post-hoc analysis).  B) Expression of 
PGE2 in lung homogenates from control and reovirus infected rats at 5, 30, 60, 90 and 120 days post infection were analyzed by 
using a specific enzyme immunoassay technique.  Changes in PGE2 expression were not significant between experimental 
groups.  Data represents the mean +/- SE (n=5-6; ANOVA with Fisher LSD post-hoc analysis). 
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CHAPTER 5 

Discussion 
Reovirus and Neurogenic Inflammation 

Viral respiratory infections early in life have a significant impact on the developing 

airway resulting in pathogenic long term effects such as asthma and fibrosis.  Viral induced 

dysregulation of the airway’s neuroimmune interactions by RSV have been shown to result in 

airway hyper reactivity from potentiated neurogenic inflammation in response to augmented 

NGF and trkA expression.  In this study, we used another common early life pathogen, reovirus, 

in a rat model of airway inflammation to reveal its effects on the airway’s physiological 

responses.  Our data show that acute reovirus LRTI in adult (12 week-old) and weanling (2 

week-old) rats results in short term potentiation of neurogenic-mediated inflammation that 

coincides with acute inflammatory responses.  This was indicated by the increased microvascular 

permeability following stimulation of capsaicin-sensitive sensory nerves 5 days after virus 

inoculation. This effect is lost in weanling rats 30 days after infection, but is still present in adult 

rats treated with high dose reovirus. The intrapulmonary and extra pulmonary airway responses 

were differentially affected in the two age groups as demonstrated by the differences in Evans-

blue labeled albumin extravasation in response to capsaicin.  In weanling rats, the potentiation of 

capsaicin-induced neurogenic inflammation was significant in the lung or intrapulmonary 

airways, but not in the extra pulmonary airways of infected animals at only the 5 day time point. 

In adult rats, this effect was significant in both the extra pulmonary and intrapulmonary airways 

and was present at both 5 and 30 days. The age-related differential sensitivity of intra- and extra 

pulmonary airways to viral infection is consistent with previous observations in rats infected 

with RSV [295, 301] and reflects the developmental modification in the anatomic distribution of 
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sensory nerve fibers across the respiratory tract [298, 302]. However, unlike RSV, reovirus did 

not result in potentiation of neurogenic inflammation at 30 days in weanling rats.  Nonetheless, 

our data are the first to document such a physiological response in the airways of rats following 

lower respiratory tract infection with reovirus, suggesting that other viral pathogens can cause 

neurogenic inflammation.  

Potentiation of neurogenic inflammation was observed in adult rats that received high 

dose virus leading to the hypothesis that viral dose may be a critical factor in potentiating 

neurogenic inflammation. More specifically, increasing severity of infection in response to 

higher doses of reovirus may directly correlate with increases in remodeling to airway 

innervations.  In order to determine if higher doses of reovirus could induce potentiated 

neurogenic inflammation further studies infecting rats with a titer of reovirus greater then 

2.5x106 PFU/µl would have to be done.  This may be difficult in weanling rats since both high 

and low dose reovirus resulted in significant weight loss indicative of a severe infection, but may 

be possible in adult rats.  Measuring the Evans-blue labeled albumin extravasation in response to 

a higher dose of reovirus could indicate whether or not potentiation of neurogenic inflammation 

is dose dependent.  Furthermore, infection severity as determined by histolopathologic analysis 

and measurement of body weight in response to a higher dose of reovirus could provide a 

correlation between severity and changes in airway innervations. 

Another important component that could be involved in reovirus induced changes to 

neurogenic inflammatory responses is neutral endopeptidase (NEP).  NEP is a membrane bound 

metalloproteinase that exists at the surface of AECs, SMCs, sub mucosal gland cells and 

fibroblasts.  The key role of NEP is to limit the actions of the sensory peptides known as 

tachykinins, such as SP, that provoke neurogenic inflammation.  It preferentially cleaves SP into 
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inactive fragments that lack the carboxyl terminal region that is necessary for the binding to NK-

1.  Therefore, NEP activity is responsible for preventing SP induced exaggerated neurogenic 

inflammation.  Studies have shown viral infection, and exposure to air pollutants and allergens 

are able to reduce NEP activity [303]. We speculate that reovirus infection destabilizes the 

integrity of the airway epithelium by either directly affecting epithelial cells or indirectly by 

inducing the production of detrimental inflammatory factors resulting in reduced NEP activity.  

As a result of reduced NEP, SP is able to induce exaggerated neurogenic inflammation during 

acute infection (5 days).  At the cessation of acute inflammation (30 days) the detrimental factors 

are no longer present and the integrity of the airway epithelium returns as does the normal level 

of NEP activity.  Reinstated NEP activity removes any excess SP, preventing an exaggerated 

neurogenic inflammatory response.  The severity of infection is important in controlling the 

amount of damage or injury to the epithelium and could be the determining factor in whether or 

not changes in NEP can be returned to normal or become a chronic condition.  Higher doses of 

reovirus could produce a more severe LRTI characterized by more significant injury to the 

airway epithelium, resulting in chronic reduced NEP activity.  Persistent decreased NEP explains 

the potentiation of neurogenic inflammation in adult rats 30 days post infection with high dose 

reovirus.  Therefore, higher doses of virus produce more severe LRTIs that can permanently 

switch the neurogenic airway responses from protective to detrimental, resulting in perpetuated 

and augmented airway inflammation.   

Previous work has shown that the potentiation of neurogenic inflammation observed 

during acute infection with RSV is associated with up regulation of the neurotrophin NGF and its 

high and low affinity receptors (TrKa, and p75) which, in turn, controls the expression of the 

gene encoding the peptide neurotransmitter SP  resulting in the increased release of this 
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neuropeptide from airway sensory nerves [292].  It also induces increased expression of the SP 

high affinity receptor NK-1 in the airway, further contributing to exacerbating the neurogenic 

inflammatory response.   In our study, we did not observe any significant changes in the 

expression of the neurotrophins NGF and BDNF as well as their receptors in weanling rats 

following reovirus infection, but we did observe a significant decrease in NGF and BDNF 

expression in adult rats at 5 days but not 30 days.   Our findings, therefore, suggest a different 

mechanism that is not associated with NGF-driven up regulation of SP and NK-1 expression is 

responsible for reovirus induced neurogenic inflammation.  Therefore, our results demonstrate 

that reovirus produces augmented neurogenic inflammation that is mediated by SP and NK-1 but 

the mechanism responsible for the change is not clear.   

SP is one of the most effective and versatile inflammatory mediators known. It greatly 

increases endothelial permeability and blood flow in post capillary venules, causing airway 

edema; stimulates the proliferation and activation of T and B lymphocytes; attracts leukocytes to 

the vascular endothelium; causes degranulation of MCs with release of other mediators of 

inflammation; and primes and activates monocytes and macrophages to release a variety of 

cytokines such as TNF-α and IL-6 [304-310].  Receptors for SP have been identified in all these 

and various other cell types in humans.  Although SP has been described as a peptide of neuronal 

origin, research has shown it is also produced by inflammatory cells such as macrophages, DCs 

and lymphocytes, during inflammation [308, 310-311]. In addition, augmented neurogenic 

inflammation that is mediated by SP was mainly associated with acute infection and 

inflammation, indicating that components of the inflammatory response to reovirus may act as 

regulatory mediators.  Therefore, one possible hypothesis is that reovirus infection induces 

increased SP production and NK-1 expression by inflammatory cells resulting in augmented 
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acute neurogenic inflammation.  These changes are not potentiated because of the decreased 

presence of inflammatory cells at the chronic stage (30 days) of infection.  Our results indicate 

that the acute inflammatory response to reovirus infection results in increased infiltration of the 

alveolar interstitium by inflammatory cells, specifically macrophages, PMNs and lymphocytes.  

The infiltrating inflammatory cells present at 5 days could serve as the source of increased SP 

that exacerbates the inflammatory processes and enhances neurogenic inflammation.   At 30 days 

the population and number of inflammatory cells present in the alveolar interstitium is altered, 

with a decreased number of infiltrating cells that consist of lymphocytes and few to no acute 

inflammatory cells resulting in a less robust SP response to capsaicin and no potentiation of 

neurogenic inflammation at 30 days.  However, in the present study, the capacities of infiltrating 

inflammatory cells in reovirus-induced airway responses were not investigated.  

Reovirus and Inflammation 
The acute changes in vascular permeability coincided with increased inflammatory cell 

infiltration into the respiratory bronchioles and alveolar spaces of rat lungs 5 days post infection.  

The peribronchiolar and perivascular accumulation of inflammatory cells such as lymphocytes 

and neutrophils was consistent with previous observations in rodents [7].  At 30 days post 

infection, chronic inflammatory cells were observed in the bronchiole spaces and the interstitium 

of virus infected rats. The presence of neutrophils and faint cytoplasmic vacuoles and basophilic 

foci associated with viral inclusion was observed in and specific to high dose reovirus infection.  

This indicated that the virus dose may have an effect on the long term inflammatory responses.  

However, there were no observed histological differences between the two virus doses at 60 days 

post infection.  Both doses resulted in continued chronic inflammation around respiratory 
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bronchioles along with a few foamy macrophages in the lumen of terminal respiratory 

bronchioles.   

Reovirus and Fibrosis  
The early signs of fibrosis development were observed in reovirus weanling rats 30 days 

post reovirus infection as demonstrated by increased collagen accumulation and increased 

fibroblast localization to respiratory bronchioles and alveolar spaces.  Reovirus infection resulted 

in focal, mild fibrosis.  Fibrotic regions demonstrated decreased vascular perfusion in 

conjunction with increases in epithelial cells and fibroblasts.  These regions were located in the 

interstitial spaces and were associated with increases in collagen and number of fibroblasts being 

found, specifically at terminal respiratory bronchioles and alveolar spaces, suggesting interstitial 

fibrosis.  These results are unique to reovirus and have not been observed in response to other 

early life pathogens such as RSV.  This demonstrates that early life reovirus infection may be a 

potential risk or initiating factor for remodeling of the airway.   

Our preliminary results demonstrated that cav-1 may be a relevant influential factor in the 

pathogenesis of reovirus induced airway remodeling.  The expression of cav-1 protein was not 

consistent, but varied between rats and time points, providing contradictory results.  Samples 

from rats that demonstrated significant fibrosis at 30 days exhibited decreased cav-1 protein 

expression, while samples from rats demonstrating less pronounced fibrosis showed cav-1 

expression that was either equivalent to or greater than controls.  This correlates with previous in 

vitro and in vivo studies of bleomycin induced fibrosis as well as observations of IPF lung 

samples where cav-1 expression is decreased, indicating cav-1 is anti-fibrogenic.  Previous 

studies did not look at time points past 30 days, but we observed at 60 days post infection, cav-1 

expression appeared to decrease in response to virus infection when compared to controls, but 
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this observation is based on a limited sample size of 2.  Such a limited sample size does not 

depict a realistic or significant collection for analysis.  Increasing the number of samples would 

provide a more comprehensive representation of the changes induced by reovirus infection and 

would allow us to determine whether the changes observed could be statistically significant.  

Interestingly, at 120 days cav-1 expression was not altered in comparison to controls, but again 

we had a very small sample size of 1 control and 2 reovirus infected rats.  Therefore, repeating 

this experiment would provide a larger samples size that would allow for more useful and 

informative analysis.  However, this experiment did provide the important observation that cav-1 

expression at 30 days is significantly decreased in fibrotic samples. We speculate that reovirus 

LRTI decreases airway cav-1 expression, reversing the inhibition of profibrogenic processes 

resulting in the development of fibrosis.  It has been well documented in previous studies that 

TGF-β signaling can serve as a primary stimulus for fibrogenic processes such as fibroblast 

activation and synthesis of ECM [46-48].  More importantly, it has also been determined that the 

cav-1 is a key regulator in TGF-β profibrogenic signaling (Figure 6), inhibiting the activation of 

key signaling cascades and therefore preventing fibrogenic processes [102].  Based on this, we 

suppose a mechanism for reovirus induced fibrosis where decreased cav-1 expression results in 

increased TGF-β profibrogenic signaling and the development of fibrosis.  Further investigation 

is needed in order to determine if TGF-β is influential in the pathogenesis of reovirus induced 

fibrosis.  Primarily, it would be necessary to look at TGF-β expression at both the protein and 

transcriptional level to determine if its activity is altered by reovirus LRTI.  Nonetheless, our 

results demonstrate that cav-1 expression is altered post reovirus infection and could be relevant 

in the mechanisms responsible for reovirus induced fibrosis.   
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Eicosanoids have been implicated as key mediators in the development of 

fibropriliferation in other fibrotic diseases.   Our results demonstrate that neither PGE2 nor LTs 

are involved in the pathogenesis of reovirus induced fibrosis, as implicated by no changes in the 

synthesis of either hormone in response to reovirus LRTI.  The method used for the 

quantification of both PGE2 and the LTs was imprecise, as demonstrated by the large significant 

error between samples. Increasing the number of samples would allow for more precise 

calculations of PGE2 and LT sample concentration.  Further investigation using other methods of 

analysis could demonstrate whether or not PGs and/or LTs are influential in reovirus induced 

fibrosis.  One means of investigating this would be to observe the activity of the enzymes 

involved in their synthesis.  Analysis of COX-2 transcription would indicate changes in the level 

of PGE2 synthesis, based on the fact that COX-1 is constitutively expressed and COX-2 

expression is only present during periods of increased PG synthesis.  Therefore, changes in 

COX-2 transcription would be indicative of increased PGE2.  Analysis of 5-LO transcription 

would provide similar information about the level of LT synthesis.  A second means of 

investigating the involvement of both hormones would be to inhibit their synthesis or receptor 

binding and observe if changes in fibrotic development occur.  Nonetheless, we concluded from 

our data that eicosanoids do not play an influential role in the pathogenesis of reovirus induced 

fibrosis.      

Conclusion 
In conclusion, our data show that reovirus, a commonly occurring airway pathogen, 

causes acute neurogenic-mediated airway inflammation which, unlike RSV, is not associated 

with the NGF-mediated disruption of neurosensory airway innervations. In weanling rats these 

physiological responses are associated with the development of mild pulmonary fibrosis and, 
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therefore indicate the potential for long-lasting sequelae.   Regulation of reovirus induced 

fibrosis may be influenced by cav-1 expression, but does not involve the eicosanoids.  Additional 

studies are necessary to investigate the mechanisms involved in the reovirus-induced airway 

responses and whether they represent potential risk factors for the development of airway 

diseases.  Taken together this reports that early life reovirus LRTI has both acute and long term 

effects on airway physiology that results in acute augmentation of airway neurogenic 

inflammation and subsequent development of fibrosis that is mediated by unique mechanisms 

specific to reovirus.  Our study suggests that the mediators involved may provide novel insight 

into the processes involved in airway remodeling disease and provide possible therapeutic 

answers. 
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