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A B S T R A C T  

PARASITIC DRAG ANALYSIS OF A HIGH INERTIA FLYWHEEL ROTATING 
IN AN ENCLOSURE  

by Chad Panther 

There are currently millions of people throughout the world who live in isolated, rural 
communities without electricity.  An ongoing effort has been initiated to provide reliable 
power to such communities.  These efforts are being made to utilize renewable energy 
sources such as wind and solar power to solve this problem.  Renewable energy sources 
can be both intermittent and unpredictable.  Thus, an effective energy storage system is 
sought to store excess energy when available to disperse during times of scarcity.   

The use of a high-inertia flywheel was proposed as a means of energy storage due to its 
simplicity, low cost, and reliability.  A previously proposed design integrated a flywheel with 
a windmill and grid system to effectively distribute consistent power for a village of 
approximately 200 residents.  The flywheel was designed to store enough energy for the 
residents for up to two days without input.  The proposed design consists of a cylindrical 
flywheel with a diameter of 5.9 meters, a thickness of almost 0.9 meters, and a mass of 
152 tons.  A rotating disk with these proportions creates a large amount of parasitic drag at 
its maximum angular velocity.  The amount of drag created causes major losses to the 
overall power output of the wind energy storage system.   

Parasitic drag is predominantly caused by the skin friction an object moving through a 
viscous fluid experiences.  This skin friction is strongly influenced by the viscosity of the 
surrounding fluid.  Viscosity is a function of pressure and temperature and can be greatly 
reduced as the atmospheric pressure surrounding the concerned object is lowered.  A 
drag analysis was completed to asses the benefits of reducing the air pressure within the 
chamber created between the flywheel and its enclosing walls.  It was found that placing 
the flywheel within a housing alone reduces the frictional losses by approximately 15 
percent; this reduction is governed by proper spacing based on boundary layer 
interactions.  As the chamber pressure is reduced, the friction moment of the flywheel can 
be diminished even further. It was found that at one-twentieth of an atmosphere, the 
parasitic drag was reduced by an additional 80 percent.  Several design methods are 
considered in order to reduce the pressure around the flywheel to a target of 1/20 of an 
atmosphere.  With the help of a reduced pressure chamber tightly fit around the flywheel, 
the overall viscous torque of the flywheel can be reduced by over ninety percent when 
compared to the same flywheel operating in free space at atmospheric conditions.  Using 
CFD methods (FLUENT) as a simulated design tool, the optimum gap spacing for the 
housing was analyzed; a variety of casing geometries were considered in an attempt to 
determine optimal clearance.  A central low pressure drag reduction system can be 
created by enclosing the rotating flywheel, leaving an optimal spacing of 0.0826 meters in 
the axial direction and 0.0826 meters in the radial direction (optimization based on 
comparison between specific geometries modeled using FLUENT) using a vacuum pump 



to evacuate the region between the spinning flywheel and stationary housing down to a 
target of 1/20 of an atmosphere. 
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C H A P T E R  1 :  I N T R O D U C T I O N  

          There are currently millions of people who live in remote communities throughout 

the world where electricity is either unreliable or unavailable.  Technology, funding, and 

secluding proximities are all contributing factors to the lack of available electricity for these 

rural villages.  Renewable energy sources are on the rise as they continue to evolve into 

inexpensive and efficient alternative power sources.  However, the resources being 

utilized (i.e. wind and solar energy) are often sporadic and unpredictable.  Due to the 

intermittency of the wind for instance, a windmill alone is not always a solution to energy 

shortages. Thus, a need is recognized to devise an energy storage system to be 

incorporated into existing windmill systems.  A high inertia flywheel, in connection with a 

windmill, is one possible means of energy storage.   

The flywheel will receive an electrical input (converted from energy collected by the 

windmill) and accelerate up to speed by using a built in motor which can later redistribute 

the electrical energy by using the same motor as a generator when necessary.  While the 

flywheel is rotating, it stores the input AC power as rotational, kinetic energy which can be 

reconverted and rectified back to AC power for distribution.  Overall, the flywheel will store 

energy collected by the windmill during times of excess availability and disperse the 

energy during periods of wind scarcity.  This storage system will effectively stabilize the 

irregular power to the community, providing a continuous and reliable power source as 

well as offering auxiliary power for certain times of high energy needs of the community. 

          A flywheel is a reasonable addition to windmill systems due to their simplicity, low 

maintenance, and overall reliability. Flywheels have been used for many decades and are 

one of the most common, basic mechanical devices still used today.  The key to efficient 

flywheel energy storage is rotating the largest amount of mass possible at large angular 

speeds, without compromising the yield strength of any system components such as the 

flywheel, bearings, or shaft.  This leads to a major concern of the flywheel storage system.         

In order to effectively stockpile enough energy to provide the community with a 

continual and reliable source of power, the physical proportions and necessary rotational 

speeds of the flywheel are both very large, which could lead to various complications.    

Rapidly rotating objects, particularly those with large masses, are subject to extreme 

centrifugal forces that can lead to mechanical failures.  However, the foremost concerns 

are the viscous forces and imposed pressure gradients that work to retard the positive, 
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rotational motion of the high speed flywheel.  Any object moving through a viscous 

medium (in this case air), especially one with vast surface area moving at rapid speeds, 

experiences skin friction and pressure resistance.  The effects of viscosity are to produce 

two mechanisms of drag: (1) skin friction drag and (2) pressure drag [1].  The sum of these 

two drag components is called the profile drag of a two-dimensional body and is referred 

to as parasite drag when applied to a three-dimensional body [1].    The motion of the air 

particles around the flywheel produces forces that may be viewed as a normal component 

(pressure force) and a tangential component (shear force) [2].   

Viscosity is a function of both temperature and pressure.  The major contributing 

factors which increase the parasitic drag experienced by a moving object are its surface 

area, speed, and the viscosity of the medium the object is traveling through. The 

combination of the flywheel’s immense surface area with high rotational speeds could lead 

to a detrimental amount of parasitic drag, on the order of the losses due to bearing friction.  

Immense forces of this magnitude severely limit the storage system’s efficiency.  An initial 

evaluation of the flywheel’s drag moment, a calculation involving a disk rotating in free 

space, was completed which determined a flywheel of these proportions would experience 

detrimental amounts of viscous forces.  The flywheel rotating at a maximum angular speed 

of 1,000 revolutions per minute would experience a resistive moment of approximately 

6,000 Newton-meters.  This viscous moment is of the same order of magnitude as the 

friction experienced by the heavily worked bearings that allow the flywheel to rotate.  

These excessive amounts of drag are costly as they require energy to overcome, 

diminishing the power supply available to the villages. 

          Therefore, any method of reducing the parasitic drag is advantageous.  When a 

cylinder immersed in a viscous fluid is rotated about a stationary axis, the rotation will drag 

some of the fluid around, producing circulation about the cylinder [3].  It is known that as a 

rotating disk gains speed, centrifugal forces push fluid elements within the boundary layer 

from the rotational axis towards the outer radius of the disk.  Fluid elements above the 

boundary layer compensate this action by replacing the centrifuged elements with a 

rotational axial flow toward the disk.  The thickness of the boundary layer of fluid which 

rotates with the disk, owing to friction, decreases with viscosity [4]. Therefore, if the 

viscosity can be reduced, the resulting drag caused by the frictional boundary layer will be 

reduced as well.   
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As previously mentioned, viscosity is a function of both temperature and pressure.  

Thus, one proposed method is to create an evacuated pressure chamber around the 

revolving flywheel.  Pressure is directly related to viscosity, a key factor of parasitic drag.  

The flywheel will be placed in a tightly fit housing that will be sealed and evacuated with a 

mechanical, vacuum pump.   Ultimately, if the rotor can operate in a very low pressure 

environment (at a target pressure of one-twentieth of an atmosphere, 5,000 Pa.), it is 

expected that the viscous drag will be significantly limited.   

If the flywheel rotates inside an enclosure, in close proximity to a facing stationary 

wall parallel to the disc surface, then the flow becomes more complex.  One advantage of 

the housing is that the frictional moment of a disc rotating within a housing (proper gap 

spacing is required) is less when compared to the moment experienced by a “free” disk.  

The enclosure will also serve a secondary, safety function as it will help prevent disaster in 

the event that someone should come into contact with the flywheel.  A complete analysis 

of parasitic drag imparted on the flywheel rotating in a housing will be necessary to 

determine the effectiveness of the proposed low pressure drag reduction enclosure.   

This study will ultimately conclude whether or not the flywheel component will 

serve as an effective and efficient means of energy storage for the windmill system.  The 

need for a parasitic drag analysis presents a problem in itself.  After extensive searches, 

there is currently no material available to aid in drag calculations of a high inertia flywheel 

rotating within a housing.  Detailed research has been conducted based on spinning disks 

in several, correlating engineering applications, such as motors, pumps, viscometry, 

turbomachinery, and journal bearings [5].  von Kármán [23] and Cochran [24] have utilized 

complex mathematical principles to derive theoretical moment coefficients for a disk 

rotating in “free space”.  Kempf [17], Schmidt [17], Theodorsen [19], Regier [19], Schultz-

Grunow [31], and the team of Daily and Nece [40] have all completed experimental 

research to determine the moment coefficient of a spinning disk in various conditions; 

unbound disks rotating in free space and disks rotating within tightly fitted enclosures. 

These past examples of varying research methods have provided a clear picture of 

flow characteristics associated with a spinning disk. However, these studies have revealed 

results that are of a small order of magnitude when compared to the large proportions of 

the flywheel.  It may be pointed out that many of the earlier tests on revolving disks and, in 

particular, on revolving cylinders were conducted on a rather small scale and in a limited 
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range of Reynolds numbers [19].  A large range of Reynolds number is necessary in order 

to consistently support a particular design.   

Thus, it will be important to distinguish between the various types of formulas used 

in the past and determine each technique’s applicability to this flywheel study.  In addition, 

the experimental results and theoretical solutions of past investigators have dissimilarities 

when compared to the flywheel analysis, such as rarely addressing compressible flow or 

only investigating low Reynolds number flows (laminar).  However, some experiments 

from the past utilized dimensionless techniques, providing dynamic similarity between their 

small scale laboratory work and the present flywheel problem.  The work of past 

researchers will be thoroughly analyzed to determine its relevance, if any, to the parasitic 

drag analysis of the current flywheel application. 

          The main objective of this thesis is to provide a complete and detailed parasitic drag 

analysis of a high inertia flywheel rotating within an enclosure.  This could prove useful in 

the future, as renewable energy sources continue to grow in popularity due to rising gas 

prices and shortages of fossil fuels.  The largest amounts of viscous torque will be induced 

on the flywheel at maximum angular speeds, in this case 1,000 revolutions per minute.  

This will be the base number used in the theoretical drag analysis to determine the 

retarding forces at the worst case scenario. The analysis will be completed at varying 

pressures, from a maximum value of one atmosphere to a minimum value of one-twentieth 

of an atmosphere, to conclude whether or not the reduced pressure system will impact the 

overall frictional drag.   

A second problem becomes evident while examining the viscous drag.  The gap 

spacing between the revolving flywheel and its housing has an impact on the overall drag 

imparted on the rotor.  Based on gap sizes, boundary layers can form on both the flywheel 

and the housing walls and their interaction has a major influence on the flow pattern in the 

gaps.  Thus, computational fluid dynamics will be utilized as both a visual aid tool and a 

design instrument.  Two CFD programs, GAMBIT 2.4.6 and FLUENT 6.3.26 (of ANSYS, 

Inc.), will be employed to model the three flow regimes which will be present in this 

problem.  Based on the radial location from the axis of rotation, the rotating disc will 

experience a laminar flow region, a transitional region, and a turbulent flow region near the 

outer edge of the disc.  Fluent will serve as a reference to visualize such things as 

boundary layer interactions and other flow phenomena such as Taylor vortices.  More 
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importantly, CFD will effectively serve as a design tool to examine the overall trends the 

varying gap sizes have on the parasitic drag experienced by the flywheel. 
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C H A P T E R  2 :  L I T E R A T U R E  R E V I E W  

This chapter provides pertinent background information and previous research 

related to this project.  It should be noted that to the author’s knowledge, a detailed drag 

analysis of a flywheel rotating in a housing does not currently exist.  Many small scale 

studies have been conducted, such as an infinite disk rotating in free space and a finite 

disk rotating near a stationary disk or inside a larger, stationary cylinder.  However, no 

specific application to a high-inertia flywheel rotating inside a housing seems to exist.  

Previous research performed involving apparatus closely related to this project will be 

presented in this chapter.   

To better comprehend the entirety of this research, there must first be an 

understanding of the foundation principles involved.  A good starting point for the 

appropriate background information involved in this investigation begins with the 

fundamentals of fluid mechanics.  The following section offers a brief summary of topics 

along with some historical background information on how these theories came into 

practice.   

The historical background is believed to be important to let the reader grasp how 

these concepts and underlying theories of fluid dynamics were first introduced and how 

they have evolved over time.  The majority of section (2.1) discusses fundamental 

concepts and ideas studied from the literature.  Before reading this section, it should be 

realized that a thorough discussion of viscous flow theory is beyond the scope and 

objectives of this document.  The equations listed in section (2.1) are more generalized, 

non-simplified equations of fluid flow.  Chapter three will provide more in depth analysis, 

simplified equations that directly apply to the application of a finite disk rotating in a 

housing.  Therefore, after reading section (2.1), if any particular topics remain unclear, it is 

recommended that the reader further explores any of the literature listed in the reference 

section of this thesis.  Once the fundamentals are covered, section (2.2) will present 

various experimental, theoretical, and numerical studies from past investigators that 

pertain to the research topics covered in this effort; namely, the parasitic drag of a rotating 

disk (preferably revolving within an enclosure).   
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2.1 Fundamentals of Fluid Mechanics 

2.1.1    Boundary Layer Theory; Viscous Flow 
Prandtl was the first to define the phenomena known as the boundary layer in a 

paper he presented at the third International Congress of Mathematicians in Heidelberg, 

Germany in 1904. He revolutionized fluid dynamics with his notion that the effects of 

friction are experienced only very near an object moving through a fluid.  “Prandtl 

theorized that an effect of friction was to cause the fluid immediately adjacent to the 

surface to stick to the surface.  In other words, he assumed what is known today as the 

“no-slip” condition at the surface and that frictional effects were experienced only in a 

boundary layer, a thin region near the surface “[6].  In physical terms, the no slip condition 

says that the velocity of a fluid equals zero ( smV 0= ) at, and very near, the solid surface 

of the object.  Prandtl’s ideas and theories ultimately introduced a new type of fluid 

movement known as viscous flow.  Viscous flow, versus inviscid fluid flow, is the primary 

type of fluid movement being addressed in this study.   

In basic terms, viscous flow is simply fluid flow with friction.  Many people 

commonly associate viscosity as the ability of a fluid to flow freely such as “heavy” oil 

pouring slowly out of a jug.  A rough definition states it is a measure of the internal friction 

of a gas or liquid.  In more complex terms, viscosity relates a flux or transport of 

momentum to the gradient of a velocity (or rate of strain).  Viscosity is a fundamental 

concept of boundary layer theory as it is one of the three transport properties (viscosity, 

thermal conductivity, and diffusion) [7].  A transport property is named so because of the 

relation they bear to movement, or transport, of momentum, heat, and mass, respectively 

[7].  Thus, viscosity relates momentum flux to the velocity gradient of a given flow [7].   

There are two types of viscosities to understand, dynamic (or absolute) and 

kinematic viscosity.   Dynamic viscosity, μ , is a physical property which is unique to 

different liquids and gasses and has the dimensions 2msN ⋅ .  Equation (2.1) is known as 

Newton’s law of friction and can be regarded as the definition of viscosity [4 
 

dz
duμτ =  (2.1)

The coefficient μ  is a thermodynamic property, known as the dynamic viscosity, and 

varies with temperature and pressure [7].  In accordance with equation (2.1), plots of τ  

versus dzdu / should be linear (when the viscosity is constant) with the slope equal to the 
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viscosity [3].  Fluids for which the shearing stress is linearly related to the rate of shearing 

strain are designated as Newtonian fluids [3].  White [7] examined past experiments 

completed by Uyehera and Watson [49] to make the following general statements [6]: 

1. The viscosity of liquids decreases rapidly with temperature. 

2. The viscosity of low-pressure (dilute) gases increases with temperature. 

3. The viscosity always increases with pressure. 

Statements number two and three, above, are of particular importance to this flywheel 

study.   To reduce the drag experienced by the flywheel, the chamber between the 

enclosure and flywheel need to be at the lowest attainable pressure and temperature.  In 

all fluid motions where inertia and frictional forces interact, it is important to consider a ratio 

known as the kinematic viscosity.  Kinematic viscosity, υ , is simply the ratio of dynamic 

viscosity over the liquid or gasses’ density, as seen in equation (2.2).   

 
ρ
μν =  (2.2)

It can be seen that in this ratio, the units of force ( N ) cancel giving kinematic viscosity the 

dimensions of length squared over time ( sm2 )[2].  The kinematic viscosity for liquids has 

the same type of temperature dependence as μ , because the density, ρ , changes only 

slightly with temperature.  However, in the case of gases, ρ  decreases considerably with 

increasing temperature while ν  increases rapidly with temperature [4].  Overall, the effects 

of viscosity produce two types of drag (discussed later in more detail):  (1) skin friction 

drag and (2) pressure drag.   

To reemphasize Prandtl’s theory, a viscous boundary layer is the region of flow 

immediately adjacent to a solid surface, where friction is particularly dominant [1]. To give 

a better visual description of a two-dimensional boundary layer, figure one displays a 

growing viscous layer forming over a semi-infinite flat plate [8].    

 
                     Figure 1. Boundary Layer on a Flat Plate [8]. 
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The normal distance from the surface where the velocity is 99 percent of the free-stream 

velocity ( ∞U ) is termed the boundary layer thickness ( )( xδ ) [8].  The dashed line in 

Figure 1 represents )( xδ and splits the flow field into two regions: (1) a viscous or 

frictional layer neighboring the flat plate (below dashed line, Figure 1) and (2) the inviscid 

flow region outside of the boundary layer (free-stream above dashed line, Figure 1).  The 

velocity of the fluid exhibits the no-slip condition on the flat plate and continues to increase 

along the length of the plate.   

Figure 1 is a basic description of a two-dimensional boundary layer over a 

stationary, flat plate in Cartesian coordinates ( yx, ).  However, the current project involves 

a more complex flow around a disk rotating about an axis, adding an angular velocity 

component (ω ) to the analysis.  The resulting case is fully three-dimensional in a 

cylindrical coordinate system ( zr ,,φ ).  Therefore, there exists velocity components in the 

radial direction ( r ), the circumferential (tangential) direction (φ ), and the axial (vertical) 

direction ( z ).  Each of these velocity components will be labeled as  rv  , φv , and zv , 

respectively.  The three-dimensional boundary layer associated with the flow in the 

neighborhood of a disk rotating in a fluid can be seen in Figure 2. 

 

 
Figure 2.  Boundary Layer Flow on a Disc Rotating in a Viscous 

Fluid [4]. 

From Figure 2, it can be seen that the layer near the disk is carried by it through friction 

(no-slip) and is thrown radially outwards owing to the actions of centrifugal forces.  This is 

compensated by particles which flow in an axial direction towards the disk to be in turn 
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carried and ejected centrifugally [3].  It should be noted that this is not the exact flow that 

will be studied in this project, only one with similar characteristics.  This is representing the 

flow of a disk rotating in free space.   

This project is concerned with the rotation of a large disk rotating within a housing, 

which will experience a different flow pattern.  Figure 2 is provided to familiarize the reader 

with a three-dimensional boundary layer represented in cylindrical coordinates which 

displays common characteristics of a viscous, rotational flow with respect to a revolving 

disk. 

2.1.2 Reynolds Number 

            Since even the basic equations of fluid motion are extremely difficult to evaluate in 

general, methods exist which can help recast them into more efficient forms, ultimately 

increasing the usefulness of any resulting solutions.  This is accomplished with the 

introduction of dimensionless parameters which combines physical quantities related to 

the flow into dimensionless groups.  The Reynolds number, named after Osborne 

Reynolds, a British scientist/mathematician, is a common dimensionless variable used in 

most fluids calculations.   

The Reynolds number is the most commonly used dimensionless parameter in 

fluid mechanics [3].  Almost all viscous-flow relations include the Reynolds number [7].  

Reynolds was the first to demonstrate that this particular combination of variables could be 

used as a criterion to characterize flow as laminar or turbulent  

In most fluid flow problems there will be a characteristic length, l  and a velocity,V , 

as well as the fluid properties of density, ρ , and viscosity, μ  [3].  Applying the Reynolds 

similarity principle to the case of a rotating disk in cylindrical coordinates, the Reynolds 

number is altered slightly, as seen in equation (2.3).    

 

forcesviscous
forcesinertiaRRe ⋅

⋅
=

⋅
=

ν
ω 2

(2.3)

In this case study of the flywheel, the characteristic velocity will be the tangential velocity 

of the flywheel ( ωRVt = ), the characteristic length will be represented by the radius of the 

flywheel ( R ), and the fluid property will be kinematic viscosity (υ ) [3].  As mentioned in 

the previous excerpt and deduced from equation (2.3), the Reynolds number is a measure 

of the ratio of the inertia forces to the viscous forces, all experienced on an element of 
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fluid.  A high value of Reynolds number denotes a flow with dominating inertia forces while 

a low Reynolds number value describes a flow dominated by viscous forces.  

There are two basic types of viscous flow: (1) Laminar flow and (2) Turbulent flow.  

The Reynolds number is best known as the standard criterion to decipher between laminar 

and turbulent flow.  Schultz-Grunow [31] investigated the problem of a thin, rotating disk in 

a housing both theoretically and experimentally (detailed more in Chapter Three).  Figure 

16 gives a visual depiction and explanation of the symbols and geometry of a disk rotating 

in a housing.  Table 1, provided below, describes his experimental results for the Reynolds 

number for each type of flow regime. 
Table 1.  Flow Regime Criterion Based on Re Number [4]. 

Flow Type Reynolds Criterion 

Laminar Re < (2x105) 

Transitional (2X105) ≤ Re ≤ (3X105) 

Turbulent Re > (3X105) 

 

The Reynolds number will be used to estimate the flow regimes present in the chamber 

around the flywheel.  The values in table one can be used, along with a manipulated 

version of equation (2.3) in order to determine the transition radius.   

 

ω
νe

tr
RR =  (2.4)

Equation (2.4) can be used to determine the flow regions and their radial locations from 

the axis of rotation on the top and bottom of the flywheel.  The transitional flow mentioned 

in table one can be described as an irregular and mixed-up flow, exhibiting the 

characteristics of both laminar and turbulent flows.  The transition from laminar to turbulent 

flow does not occur instantaneously but rather over a region, which can be seen in the 

following figure. 



  12

 
Figure 3. Boundary Layer Transition Zones on a Flat Plate [4]. 

The partitions in Figure 3 can be described as: (1) stable flow (2) unstable Tollmien-

Schlichting waves (3) three-dimensional waves and vortex formation (4) bursting of 

vortices (5) formation of turbulent spots and (6) fully developed turbulent flow.  Laminar 

and turbulent flow have dramatically different flow characteristics, and they have a strong 

influence on aerodynamics.   

In the case of steady flow (no dependence on time), a moving fluid element is seen 

to trace out a fixed path in space.  The path taken by a moving fluid element is called a 

streamline of the flow [9].  The streamlines within a laminar flow are smooth and regular 

while turbulent streamlines break-up and become irregular and random.  Therefore, the 

movement of a fluid element in a steady flow can be predicted and calculated while a fluid 

element in a turbulent flow can not be accurately predicted which ultimately presents more 

complex calculations when analyzing fluid flows.   

Because of the agitated motion in turbulent flow, the higher-energy fluid elements 

from the outer regions of the flow are pumped close to the surface [9].  Therefore, the 

average flow velocity near a solid surface is larger for a turbulent flow in comparison to a 

laminar flow.  The higher concentration of flow velocity near the surface can be better 

recognized when comparing the velocity profiles of laminar and turbulent velocity profiles 

[Figure 4].    
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Figure 4. Laminar and Turbulent Velocity Profiles [12]. 

As seen in Figure 4, the velocity gradient at the wall (y=0) between the two flow 

regimes are considerably different.  It can be seen that immediately above the surface, the 

velocity of the turbulent flow is much greater than for the laminar flow velocity; more 

specifically, the profile of the turbulent boundary layer has a steeper slope.  Equation (2.5) 

gives a consistent relation of the velocity profiles at the wall, ( ) 0=∂∂ nnV .  Also, the n seen 

in equation (2.5) represents the coordinate normal to the solid surface under investigation. 
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Therefore, the frictional effects experienced by a turbulent flow are more severe because 

of this difference.  This leads to another relation, equation (2.6), comparing the shear 

stresses of turbulent and laminar flows.  

 ( ) ( )TurbwLamw ττ <  (2.6)

It should be noted that turbulent flow has a substantial redeeming value.  Due to the higher 

concentration of energy of fluid elements close to the surface, a turbulent flow does not 

separate from the surface of an object as easily as in the case of laminar flow.  As a result, 

the pressure drag due to flow separation will be smaller for turbulent flow.   

A good, daily life example to put this idea into perspective is the dimples on a golf 

ball.  The circular indentations covering the surface of a golf ball are designed to actually 

induce turbulence.  The turbulence acts to decrease the pressure drag to a minimum, 

allowing the ball to travel a greater distance compared to a perfectly smooth golf ball.  The 

discussion of laminar versus turbulent flow leads to a common compromise in 

aerodynamics: is laminar or turbulent flow preferable?  The answer to this depends on 

many factors, including the shape of the body and the flow parameters.  For any given 

body, the aerodynamic virtues of laminar versus turbulent flow must always be assessed 

[1].      
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2.1.3      The Prandtl Number 
A well known principle of thermodynamics is that a temperature variation (gradient) 

results in heat flow.  This can be formally expressed proportionally between heat flux and 

temperature gradient, i.e., Fourier’s Law [7]. 

 
dx
dTkTkq −=∇−=  ( 2.7)

Fourier’s law defines q as the heat flux, or vector rate of heat flow per unit area [27].  The 

quantity k is the second of the aforementioned three transport properties known as thermal 

conductivity [7].  The negative sign signifies that the heat flux is reckoned as positive in the 

direction of the temperature gradient [4].  From equation (2.7) it can be deduced that 

thermal conductivity has the metric units ( KmW ⋅ ).  Thus, k has the dimensions of 

viscosity times specific heat, so that the ratio of these is a fundamental parameter called 

the Prandtl number [7].   

The Prandtl number is a measure of the relative importance of heat conduction 

and viscosity of a fluid [10].  More specifically, during laminar flow, the magnitude of the 

dimensionless Prandtl number is a measure of the relative growth of the velocity and 

thermal boundary layers [12].  For fluids, as the parameter approaches unity, such as for 

gases, the two boundary layers essentially coincide with each other [12].  Finally, since for 

a gas the Prandtl number is of the order of unity, whenever the effect of viscosity is 

considered the influence of thermal conductivity of the gas must also be considered [10]. 

 

ydiffusivitthermal
ydiffusivitmomentum

k
cp

⋅
⋅

===
α
νμ

Pr  ( 2.8)

As seen in equation (2.8), this parameter involves fluid properties only, rather than length 

and velocity scales of the flow [7].  The convective heat transfer characteristics of a fluid 

are very much dependent on its Prandtl number [27]. 
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2.1.4      Equations of Viscous Flow 

The intent of this section is to provide the reader with a physical background of 

how previously described concepts are combined and applied to fluid mechanics 

problems.  Three original principles of physics will be described and manipulated into 

useful and applicable forms for fluid-flow purposes.  In fluids studies, it is desired to find 

the velocity distributions and the physical state of the fluid, over a designated space, at all 

times.  The particular region of concern for this study is the boundary layer, described in 

previous sections.  von Kármán devoted much of his research to the momentum theory 

and the boundary layer theory.  To further bring out the physical sense of the said 

boundary layer theory, von Kármán listed the following supporting evidence to follow when 

formulating the governing equations [23]:   

1.  A boundary layer thickness, ( )xδ , is to exist such that for δ≥y , no perceptible 

deviation occurs in the flow pattern relative to the potential flow; especially the x-

component of velocity, u , can be put equal to the wall velocity of the potential flow, 

ou , for ( )xy δ=  [23]. 

2.  Within the boundary layer itself, the pressure is only dependent on x  and equal 

to the pressure that corresponds to the potential flow along the wall [23]. 

3.  For δ=y , the flow changes into frictionless (inviscid) potential flow [23]. 

In order to maintain consistency within this section, a coordinate system that the 

various equations will be represented in must first be define.  The coordinate system that 

best suits the flywheel analysis is the cylindrical coordinate system ( zr ,,φ ).  These 

coordinates are related to the common Cartesian system ( zyx ,, ) by equations (2.9a)-

(2.9c). 

 θcosrx =  ( 2.9a)

 θsinry =  ( 2.9b)

 zz =  ( 2.9c)

From the relations in these equations, a new set of vector relations can be adapted.  

These basic equations can be used to convert the necessary equations from the 

standard zyx ,,  coordinate system into a more complex system: cylindrical coordinates 

( zr ,,φ ).  First, it will be helpful to introduce the del operator (∇ ), also referred to as the 

gradient operator, which describes a value in three-dimensional, vector form 
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( zyx ∂∂+∂∂+∂∂=∇  in Cartesian coordinates).  Thus, the new vector relations are 

given in equations (2.10). 

Gradient (del) 
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Equation (2.10a) defines the previously mentioned del operator (∇ ) in cylindrical 

coordinates.  The del operator is often referred to as a gradient operator as well.  Equation 

(2.10b) shows the application of the del operator to the tangential velocity component 

( ωRVt = ), while equation (2.10c) provides a definition of the convective time derivative.   

Finally, equation (2.10d) squares the gradient operator and is known as the 

Laplace operator.  The coordinates have been chosen so that 0=z is the plane of the 

rotating disk, 0=R is the axis of rotation, and a positive value of φ indicates a motion in 

the direction of rotation.  Finally, it should be recognized that the content of this thesis will 

perform an analysis on a macroscopic level.  A macroscopic, versus microscopic, level of 

observation relies on phenomenological laws such as conduction and convection [27].  On 

the other hand, a microscopic study involves more complex, varied phenomena such as 

molecular collisions in gas, lattice vibrations in crystals, and flow of free electrons in metals 

[27].  A microscopic approach exceeds the scope and intentions of this effort. 

In the study of fluid flow, it desired to find the velocity distributions, along with the 

physical state of the fluid, over a designated space at all times.  In most cases, if the 

concerning fluid is a single gas, a knowledge of the three velocity components ( zr vvv ,, φ ), 

the density of the fluid ( ρ ), the pressure ( P ), and the temperature of the fluid (T ) is 

required.  The previously described flow parameters are all functions of four independent 

variables; spatial coordinates ( zr ,,φ ) and time ( )t .  Since there are six unknowns, six 

different relations are needed to fully connect and solve the flow parameters.  Before the 
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fundamental equations are discussed, it is first necessary to describe what method will be 

used to analyze the motion of the fluid.  A reference system must first be defined in order 

to properly analyze a desired problem.  There are two systems used to describe fluid 

motion: (1) the Lagrangian method and (2) the Eulerian method.   

            In the Lagrangian method, the focus is set on the history of individual fluid particles.  

More specifically, emphasis is placed on the velocities and acceleration of fluid particles.  If 

at any given time  ott =  a fluid particle has cylindrical coordinates ( ooo zr ,,φ ), at time 

tt = it will have new coordinates, ( zr ,,φ ).  Equations (2.11) follow the position of fluid 

particles, over a designated space at all times.  It is evident that the coordinates ( zr ,,φ ) 

are functions of ( ooo zr ,,φ ) and time t [10].  These position relations can be better 

understood after referring to the equations listed below, (2.11). 

 ( )tzrFr ooo ,,,1 φ=  ( 2.11a)

 ( )tzrF ooo ,,,2 φφ =  ( 2.11b)

 ( )tzrFz ooo ,,,3 φ=  ( 2.11c)

In the Eulerian method, the focus of the system is what is happening at a given time t  at 

various points ( zr ,,φ ) in the flow. The velocity relations can be verified in the following 

equations: 

 ( )tzrfvr ,,,1 φ=  ( 2.12a)

 ( )tzrfv ,,,2 φφ =  ( 2.12b)

 ( )tzrfvz ,,,3 φ=  ( 2.12c)

In the Eulerian method, the independent variables are zr ,,φ .  It should be noted that in 

principle, the Langrangian method of description can always be derived from the Eulerian 

method.  In simple terms, the Langrangian method can be metaphorically described as an 

observer sitting in a canoe, traveling down a river concerned with the history of one tiny 

section of fluid as it travels down the river.  In contrast, the Eulerian method can be 

described as an observer sitting on shore, watching the entire river pass by concerned 

with what is happening at various points of one specific region of the fluid flow.  The 

Lagrangian method uses mean velocity components versus the Eularian method that uses 

displacement components.  Displacements are of little use in fluids problems, making the 

Eulerian, or velocity-field system, the proper choice for fluid mechanics analysis [7].  It 

should be known that one definite conflict exists when using Euler’s system.  The three 
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fundamental laws of mechanics: (1) conservation of mass, (2) conservation of momentum, 

and (3) conservation of energy – are formulated for particles of fixed identity, i.e. they are 

Lagrangian in nature [7].  It should be recognized that all three of these essential laws 

relate to the time rate of change of some property of a fixed particle. 

          The control-volume approach will be applied to determine the pertinent equations.  

A control volume must first be designated to cover the relevant regions of concern based 

on the problem’s requirements.  Through this volume, the rate of change dtdB of any 

gross property B  (mass, kinetic energy, enthalpy, etc.) can be calculated for the system at 

that instant of time, t  [7].  The Reynolds transport theorem gives a relation of the outflow 

and inflow of a control volume ( ∀C ).  The fundamental structure of the Reynolds transport 

equation can be seen in equation (2.13). 

 0
CV CS

dB d dBd dA
dt dt dm

ρ ρ= = ∀ + ⋅∫ ∫  ( 2.13)

 The laws of fluids and aerodynamics can all be derived from basic principles of 

physics.  One of the most important physical principles is Newton’s second law of motion.  

This well known law of physics offers a relation between applied force and the resulting 

acceleration of a fluid particle, equation (2.14).  According to Newton’s second law, the net 

force acting on the fluid particle under consideration must equal its mass times its 

acceleration (the total momentum in the interior of a control volume is ∫∫∫
∀

∀∀dρ ) [3].   

 
am

dt
dVmF ⋅==  ( 2.14)

Newton’s second law is a vital contributor to fluid dynamics as many other pertinent 

equations have been derived from it, such as Bernoulli’s equation and the mass 

conservation equation.  

  For liquids the changes in density are normally negligible and it is possible to treat 

the flow as incompressible.  An incompressible flow can be defined as one where the 

variation of density due to the variation of velocity of the flow field is negligibly small [10].  

In short, the density of a fluid element is assumed constant through the entire flow process 

under consideration.  Thus, Newton’s second law leads to the equation for steady 

frictionless flow along a stream line is given by equation (2.15) [10]. 

 
0=+

ρ
dPVdV  ( 2.15)
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Equation (2.15) can be integrated directly, assuming the density is constant 

(incompressible fluid), to give Bernoulli’s equation (2.16) [25].  Bernoulli’s equation is one 

of the oldest in fluid mechanics and although the assumptions involved in its derivation are 

numerous, it can be used effectively to predict and analyze a variety of flow situations [3]. 

 
.

2
1 2

constPPV o ==+
ρρ

 ( 2.16)

In the (2.16), oP  is the stagnation or total pressure and corresponds to the pressure 

obtained when the flow is brought to rest in a frictionless or loss-free manner [25].  The 

term 2

2
1 Vρ is known as the dynamic pressure (also, dynamic head) [25].  The pressure 

head represents the height of a column of the fluid that is needed to produce the pressure, 

P  [3].  It is to be noted that Bernoulli’s equation is applicable only to the low speed flow of 

gases where the density can be assumed constant.  When analyzing compressible flows, 

a different approach must be followed that will be detailed in a later section.  For simplicity, 

this section will describe fluid-flow equations that describe the motion of an incompressible 

fluid.   

A fundamental standard principle of physics is that mass can neither be created 

nor destroyed.  This principle leads to the definition of mass flow, seen below in equation 

(2.17).  

 ( )RAA
dt
dmm ωρρ =∀==  (2.17)

Based on the physical principle previously mentioned, the fundamental form of the 

continuity equation can be found.  The continuity equation, which exhibits the conservation 

of mass, relates the values of density, area, and velocity at one point in the flow to any 

other point in the same flow.  More specifically, the equation states the fact that for a 

specified control-volume there is a balance between the masses entering and leaving the 

system as well as the change in density ( 21 mm = ).  

 
222111 ∀=∀ AA ρρ  ( 2.18)

The independent variables in these equations will be the spatial coordinates zr ,,φ along 

with time, t .  In the case of a non-steady, compressible flow, equation (2.14) can be 

written out in three-dimensional notation, listed below.      
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Equation (2.19) introduces the term DtD , known as the substantial derivative 

( ∇⋅+∂∂≡ VtDtD ) and represents differentiation as a fluid particle is followed.  The 

Reynolds transport theory can be applied to the conservation of mass as well.  The 

relevant property, B ,  from equation (2.13), will be equivalent to the mass of a fluid 

element in this case. 

 

CV CS

dm d d dA
dt dt

ρ ρ= ∀ + ∀⋅∫ ∫  ( 2.20)

The continuity equation (conservation of mass), is summarized in its most useful form 

below in equation (2.21).    
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           Newton’s second law, equation (2.22),   is the starting point for the next type of 

equation, the conservation of momentum equations.  Dividing each term by the volume of 

the particle and separating the applied force into components, the momentum equation 

can be rearranged as equation (2.22). 

 
SurfaceBody FF

Dt
D

+=
∀ρ  ( 2.22)

Body forces can be described as those that apply to the entire mass of the fluid element.  

These forces are generally a result of external fields such as gravity or an electromagnetic 

potential [7].   Surface forces are those applied by external stresses acting on the surface 

of the fluid element.  Body forces are important only in cases when there is a free surface 

or when the density distribution is non-homogeneous [4].   

In this study, the body forces will be ignored and the surface forces will be a result 

of skin friction and pressure gradients.  The desired momentum equation for a viscous 

fluid is obtained by including stress relations into equation (2.22).  The result is the 

fundamental set of equations for viscous fluid flow known as the Navier-Stokes equations.  

These equations of fluid motion were first derived by Navier in 1827 as well as Poisson in 

1831, on the basis of the argument which involved the consideration of intermolecular 

forces [4].  The same equations were later independently derived by de Saint Venant in 

1843 and Stokes [26] in 1845 [4].   

It is obvious whom the equations were named after, leaving two contributors, 

Poisson and de Saint Venant without credit.  Their derivations were based on the same 

assumption that the normal and shearing are linear functions of the rate of deformation 
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and that the thermodynamic pressure is equal to one-third of the sum of the normal 

stresses taken with an opposite sign [4].  It should be noted that the enormous 

mathematical difficulties encountered when solving the Navier-Stokes equations have so 

far prevented a single analytic solution in which the convective terms interact in a general 

way with the friction terms [4].  However, known solutions, such as boundary-layer flows, 

agree so well with experiment that the general validity of the Navier-Stokes equations can 

hardly be doubted [4].  Equation (2.23) displays these famous equations in vector notation. 

 
VPF

Dt
DV 2∇+∇−= μρρ  ( 2.23)

The viscous terms in the above equation are represented by V2∇μ .  The terms F  and P  

represent the body forces (for example, gravitational forces) and the pressure gradients 

components.  The Reynolds transport theorem can once again be applied, this time 

making the relevant property, B , equal to linear momentum ( ∀m ).  The result can be seen 

below as equation (2.24), where ( )d m dm∨ = ∀ .  It should be recognized that (2.24) is 

applicable only to inertial control volumes.   
 ( ) ( )

CV CS

d dF m d dA
dt dt

ρ ρ= ∀ = ∨ ∀ + ∨ ∨ ⋅∫ ∫ ( 2.24)

Finally, the Navier-Stokes equations for an incompressible Newtonian fluid which can be 

represented in the r ,φ , and z directions are listed in equations (2.25a) through (2.25c), 

respectively.  The following equations fully employ the conservation of momentum 

principle for viscous flows. 
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The terms on the left-hand side of equations (2.25) describe the present inertia forces, 

while the right-hand terms negate the pressure and friction forces.  The expansion of the 

various terms in equations (2.25) can be found in equations (2.10a) through (2.10c).  The 

appropriate assumptions and corresponding boundary conditions will be applied to the 

momentum equations (Chapter Three), simplifying them by neglecting several terms in 
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each directional equation.  For example, the flow in the current study is considered 

axisymmetric flow.  That is, the flow is independent of φ .  Therefore, the various terms in 

the governing equations containing changes with respect to the azimuthal coordinate can 

be neglected ( 0φ∂ ∂ = ), significantly simplifying the lengthy equations.   In 1908, Blasius, 

one of Prandtl’s students, was able to solve simplified versions of the continuity and 

Navier-Stokes equations for the boundary layer flow past a flat plate parallel to the flow [2]. 

           The next valuable equation to help solve for the six unknown flow parameters is 

based on the first law of thermodynamics.  The idea of conservation of energy was first 

published by du Châtelet (1706-1749), a French physicist and mathematician [11].  The 

conservation of energy principal (first law of thermodynamics) in its rate form states that 

the rate of change of energy of the system is equal to the rate of heat addition to the 

system due to conduction from the surroundings, radiation, and internal reactions plus the 

rate at which work is done on the system (2.26) [11].    
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+=  ( 2.26)

The quantity E represents the total energy of the system.  More specifically, the quantity 

E  is not limited to internal energy but can include kinetic and potential energy as well.  

Each of the three quantities described in (2.26) will now be expanded to give a more in 

depth look at each term, (2.27a)-(2.27c).  The energy terms are given here in Cartesian 

coordinates for a simpler understanding of each component.  The quantities will be 

described later in their more complex form based on cylindrical coordinates. 
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 ( 2.27c)

In equation (2.27a), the term e is considered to be the total stored energy per unit mass for 

each fluid particle in the system and is related to the internal energy per unit mass ( û ), the 

kinetic energy per unit mass ( 22V ), and the potential energy per unit mass ( gz ) [2].          

The final equation that aids in the calculation of the six unknown flow parameters is 

the ideal gas law.  Gases are extremely compressible when compared to liquids, where 
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changes in density are directly correlated to fluctuations in pressure and temperature.  The 

relation of gas properties is described in equation (2.28). 

 RTP ρ=  ( 2.28)

It the above equation, P represents the absolute pressure, p is the density, T is the 

absolute temperature and R is a gas constant.  The ideal gas law is also referred to as the 

equation of state for an ideal gas. 

The fundamental equations of fluid mechanics have now been identified 

throughout this section.  There are various procedures that incorporate an assortment of 

physical laws, namely the three conservation principles.  It was discussed earlier in this 

section that six equations were needed to successfully solve for the six unknown flow 

parameters ( TPvvv zr ,,,,, ρφ ).  These are: (1) equation of state which connects the 

temperature, the pressure, and the density of the fluid (2) equation of continuity which 

expresses the conservation of mass in the fluid (3) equations of motion which are 

generally three in number and express the relations of conservation of momentum in the 

fluid and (4) equation of energy which expresses the conservation of energy in the fluid 

[10].   

2.1.5   Compressibility 
One of the most important properties of a gas is its compressibility, i.e. the capacity 

to change density under the action of pressure [28].   Thus, compressibility is a measure of 

the change of volume of a liquid or gas under the action of external forces.  It should be 

noted that while there is a change in volume of an element, the mass stays constant 

leading to a change in the density of the liquid or gas ( volume
massdensity = ).  For liquids 

the changes in density are normally negligible and it is possible to treat the flow as 

incompressible [25].   

An analysis involving a gas flow can be characterized by its pressure variation and, 

consequently, to some extent by the compressibility effects present in the flow.  Compared 

with incompressible flow there are at least four additional quantities which must be taken 

into account in the calculation of compressible boundary layers: (1) Mach number, (2) 

Prandtl number, (3) viscosity function ( )Tμ , and (4) boundary condition for temperature 

distribution (heat transfer or adiabatic wall) [4].   

Past experimental research has shown that variations in density resulting from 

small changes in pressure are insignificant at low speeds and the compressibility effects 
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can all together be ignored [40].  However, flow interactions, air-solid in the flywheel study, 

associated with a significant change in pressure, experience considerable variations in 

density and temperature.   

The most common, and perhaps the easiest method of determining whether or not 

a flow is compressible is using the speed of sound, c , as a reference speed. Equation 

(2.29) defines another dimensionless number, the Mach number, which plays an important 

role in determining whether or not there will be a compressible flow in the chamber 

between the flywheel and housing. 

 
c
R

c
vM ω

==  (2.29)

As previously mentioned, the speed of sound is used as an index of the compressibility of 

a gas.  Thus, the Mach number will be an indication of the extent to which density changes 

may be important in the flow.  As mentioned earlier, when analyzing gases at low speed 

(more precisely, at low Mach number) the density changes little and it is possible to use 

Bernoulli’s equation as a reasonable approximation to describe characteristics of the said 

flow [25].  However, when the Mach number exceeds approximately 0.3, the change in 

density arising from the difference in stagnation pressure and dynamic pressure becomes 

significant and can not be neglected [25].  Thus, when the Mach number is greater that 

0.3, the flow is considered to be compressible. 

     The Mach number has a further interesting physical significance.  The term 2v ,  

from ( ) 2222 cvcvM == , is proportional to the local kinetic energy of the flow, whereas 

2c  is proportional to the temperature T  and therefore to the local thermal energy of the 

flow [10].  Thus, 2M is proportional to the ratio between local kinetic and thermal energies 

in the gas.  During flow scenarios when the variation of density is very small, especially for 

very low-speed flow of air, the flow can be assumed to be incompressible ( 21 ρρ = ) which 

greatly simplifies the analysis.  However, it should be done with extreme caution as all 

matter in real life is compressible to some greater or lesser extent [9]. 

Now that the criteria to decipher between incompressible and compressible flow 

has been established, a few equations related to compressible flow can be described.  

Again, it is important to understand that Bernoulli’s equation is invalid for compressible 

flow situations and must not be used.  First, the concentration will be set on the viscous 

flow of gases.  Although analysis involving non-perfect gases is possible, this section will 
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work under the assumption of a perfect gas.  Equations (2.30a) – (2.30c), along with the 

previously defined equation of state (2.28) give the general description of a perfect gas. 

 ( )∀= ccT Pγ  (2.30a)

 dTcdh P=  (2.30b)

 ( ) ( ) RTcTcP += ∀  (2.30c)

The constant R is known as the gas constant, and is approximately ( )KkgJ ⋅287 for air. 

The static temperature, static pressure, and static density are defined as the properties 

which a gas would attain if brought to rest without work and heat transfer and are denoted 

by oT , oP , and oρ , respectively [25].  These properties can be visualized in equations 

(2.33a) through (2.33b).  In equation (2.33a), the flow is assumed to be adiabatic.  Thus, 

for adiabatic flow, as the Mach number and kinetic energy increase, the free-stream 

temperature and speed of sound decrease, as seen in (2.33a) [7]. 
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Also, if the flow is assumed to be isentropic, the static pressure equation (2.33b) and static 

density equation (2.33c) follow similar relations [7]. In the above equations, γ is defined as 

the ratio of specific heats.  When analyzing incompressible flow it is often possible to use 

gauge pressures, but in all work with compressible flow it is important to remember to use 

absolute pressures and temperatures [25]. 

2.1.6    Aerodynamic Drag  
Now that a detailed overview of the fundamentals of fluid mechanics has been 

offered, the major focus of this study will be addressed.  The primary objective of this 

research is to examine the drag experienced by a high inertia flywheel spinning inside an 

enclosure.  The principles detailed in the previous sections can now be pulled together to 

address predictions of aerodynamic drag and aerodynamic heating. 

As previously discussed, when a viscous fluid flows over a solid surface, it is 

subjected to frictional forces which act to retard the relative motion of the fluid.  The solid 
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surface experiences a tangential force which has been defined as the shear stress (τ ).  

The stress imparted by viscosity acts in the opposing direction of the fluid flow.  The result 

is a retarding force known as drag.  The effects of viscosity produce two types of drag as 

follows: (1) skin friction drag, fD , the component in the drag direction of the integral of the 

shear stress τ over the body and (2) pressure drag, pD ,  caused by separation, that is, 

the component in the drag direction of the integral of the pressure distribution over the 

body [1].   

Separation regions are most commonly a result of a free stream of fluid flowing 

over a solid object, such as an airfoil moving through the air or a current moving past an 

object placed in the test section of a wind tunnel.  When separation occurs, the pressure 

distribution across the surface of an object is greatly altered.  The alteration of the 

pressure distribution often leads to flow reversal.  In the case study of the flywheel 

revolving within an enclosure, the flow is confined to the small gap between the wheel and 

the enclosure minimizing the presence of any free stream flow.  Also, when the flywheel 

rotates at maximum speed (1,000 rpm), the majority of the flow within the enclosure is 

turbulent.  Based on experimental data, the flow around a rotating disk within an enclosure 

becomes turbulent when it reaches a Reynolds number greater than 3x105 [4], [40].  Thus, 

equation (2.3) can be rearranged to give a transition radius between laminar and turbulent 

flows; that is, the manipulated Reynolds number equation will give a radial distance from 

the rotational axis at which the flow transitions from laminar into turbulent flow.  

Transition Radius 
5(3 10 )

tr
xR ν

ω
=  (2.34)

At maximum angular velocity, large portions of the circular faces of the flywheel will be 

dedicated to turbulent flow, as will be demonstrated in a later section of this report. 

 Based on equation (2.6), the energy of the fluid elements nearest the solid surface 

is higher in a turbulent flow.  Thus, a turbulent flow does not separate from an object as 

easily as a laminar flow.  Therefore, pressure drag will offer only a minimal component to 

the overall drag experienced by the flywheel.  The combination of these two drag forces 

amounts to the main topic of analysis, parasitic drag.  The sum fD + pD  is called the 

profile drag of a two-dimensional body.  For a three-dimensional body, the sum fD + pD is 

frequently called parasite drag [1].   
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The study of drag introduces a new dimensionless quantity: the drag coefficient, 

DC .  In the analysis incompressible fluids, the dimensionless drag coefficient is a function 

of only one variable, the Reynolds number (previously defined).  However, when the fluid 

is compressible, the coefficient depends on two dimensionless parameters: (1) Reynolds 

number and (2) Mach number [4].  The relation can be seen in equation (2.35): 

 ),( MRfC eD =  ( 2.35)

Prandtl conducted studies on a flat disk which rotates about an axis perpendicular 

to its plane with a uniform angular velocityω .  As the disk increases speed, centrifugal 

forces push the fluid elements near the rotation axis towards the outer radius of the disk.  

This is countered by downward axial flow toward the disk which replaces the centrifuged 

fluid elements.  In order for a boundary layer to form and remain on the disk, the radial 

component of the shearing stress must be equal to the centrifugal force that pushes fluid 

particles towards the outer radius, as seen in relation (2.36) 

 dsdrrdsdrw ⋅⋅=⋅⋅ 2sin ωρθτ  ( 2.36)

On the other hand, the circumferential component of the shearing stress must be 

proportional to the velocity gradient of the circumferential velocity at the wall [4], relation 

(2.37): 

 δωμθτ rw =cos  ( 2.37 )

Eliminating the shear stress component from equations (2.36) and (2.37) proves the 

boundary layer thickness to be proportional to the square root of kinematic viscosity over 

the disk’s rotational speed (δ ~ ων ).  Torque is defined as the product of a shearing 

stress, the surface area the shear acts on, and a moment arm.  Thus, a moment equation 

can be found by combing these three elements, as in equation (2.38): 

 M ~ 3Rwτ ~ νωωρ 4R  ( 2.38)

From here, a dimensionless distance is introduced in order to ease the process of 

integrating the simplified Navier-Stokes equations.  The dimensionless distance is listed 

below as equation (2.39a).   Along with the dimensionless distance, four assumptions are 

made to further simplify the system of equations, listed as equations (2.39b) – (2.39e): 

dimensionless distance above disk νωζ z=  ( 2.39a)

radial velocity as a function of 

dimensionless distance 
( )ζωFRu =  ( 2.39b)

azimuthal velocity as a function of ( )ζωGRv =  ( 2.39c)
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dimensionless distance 
axial velocity as a function of 

dimensionless distance ( )ζνωHw =  ( 2.39d)

axial pressure as a function of 

dimensionless distance  ( ) ( )ζρνωPzPP ==  ( 2.39e)

The assumptions made in equations (2.39) are made to help simplify the Navier-Stokes 

equations; the equations will then be integrated in attempt to reach a solution. 

   The new expressions for distance, velocities, and pressure are then substituted 

into the Navier-Stokes equations and the continuity equation to give a simplified system of 

equations seen below as equations (2.40a) through (2.40d). 

 02 =′+ HF  ( 2.40a)

 022 =′′−−′+ FGHFF  ( 2.40b)

 02 =′′−′+ GGHFG  ( 2.40c)

 0=′′−′+′ HHHP  ( 2.40d)

The values of the functions needed for the description of the flow of a disk rotating in a 

fluid at rest were calculated by Sparrow and Gregg (details in later section) [32].  Finally, 

the boundary conditions are applied and a numerical integration method is applied.  The 

moment for a disk wetted on one side becomes equation (2.41): 

 
∫−=
R

z drrM
0

22 φτπ  ( 2.41)

A dimensionless moment coefficient, Mk , is defined by von Kármán for both sides of the 

disk as equation (2.42) [23]: 
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A frequently used alternative moment coefficient, MC , is defined below as equation (2.43) 

[39]:  
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Equation (2.43) is the standard for calculating the dimensionless torque coefficient, 

derived as an exact equation from the Navier-Stokes equations [4].  The relation between 

von Kármán’s defined coefficient and the standard used today is thus obvious: MM kC 2= .  

Careful attention needs to be given to this discrepancy when comparing the viscous torque 

of a rotating disk.  Plugging in the solutions obtained from the previously defined equations 
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(2.40a) – (2.40d) deduces a numerical value for the moment coefficient of a disk rotating in 

free space. 

                   

e
M R

C 87.3
=                                   ( 2.44) 

Now the moment coefficient has been successfully reduced to being a function of only 

Reynolds number.  This short overview, summarized from reference [4], pertaining to the 

studies of von Karman, along with many others, conducted on a rotating disk in free space 

was provided as a means to show the process of reaching a moment coefficient, a major 

objective of this effort.  More importantly, this process details an approach of an exact 

solution of the conservation equations for the laminar case.  With the exception of a small 

number of cases, including the aforementioned laminar case, the great mathematical 

difficulties connected to these equations often lead to lengthy and extremely tedious 

theoretical calculations. 

2.1.7    Computational Fluid Dynamics (CFD) 
Computational fluid dynamics is essentially based on various principles of fluid 

mechanics and heat transfer.  CFD ultimately fuses disciplines of engineering fluid 

dynamics, computer science, and mathematics [12].  As technology continues to advance, 

CFD has become one of three methods currently used to solve problems concerning fluid 

dynamics and even heat transfer [13].  In the seventeenth century, the foundations for 

experimental fluid dynamics were laid in France and England [14].  The eighteenth and 

nineteenth centuries saw the gradual development of theoretical fluid dynamics, again 

primarily in Europe [14].  Until quite recently, say 1960, researchers have been operating 

in the “two-approach world” of theory and experiment [14].   

CFD is a powerful numerical tool that can be employed as a third approach to fluid 

analysis, on top of experimental and analytical methods.  As technology progresses, CFD 

techniques are beginning to prove themselves as worthy methods employed to solve fluid 

dynamics problems of all nature.    All of the theoretical and computational fluid dynamics 

used in CFD programs are based on the six governing equations of flow previously 

mentioned in section (2.1.4).  Two computational fluid dynamics programs, GAMBIT2.4.6 

and FLUENT 6.3.26, will be used in this study to complement the analytical drag analysis 

of the rotating flywheel (GAMBIT and FLUENT are licensed CFD software from ANSYS, 

Inc.).  GAMBIT is used to create a geometry and mesh of the flow domain while FLUENT 

executes the computations needed to simulate the desired problem. 
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In practice, CFD permits alternative designs to be evaluated over a range of 

dimensionless parameters such as Reynolds number and Mach number [12].  Also, the 

programs will be utilized as a design tool to look at optimal gap sizes between the flywheel 

and enclosure.  The purpose of this section is to describe the basic theories and principles 

employed by CFD.  A concise discussion of grids and the calculation processes utilized 

around them is presented.  References [12] and [14] are both good introductory books that 

can be studied to further answer any remaining uncertainties.  Chapter three will go into 

more depth as far as describing the actual models used in this study.  

The basic pre-process and problem solution steps will be briefly discussed along 

with the steps for reaching a numerical solution, as described by [12].  It is critical to 

understand that the actual process involved in each step below will be unique for any 

given problem, based largely on the geometry, boundary conditions, and initial conditions.  

Thus, only a concise summary is offered. 

1.  Define and Create the Geometry of the flow region (i.e. the computational      

domain) within GAMBIT. 

2. Mesh Generation: the sub-division of the domain into a number of smaller,     

nonoverlapping subdomains in order to solve the flow physics with the domain 

geometry that has been created (GAMBIT). 

3. Selection of Physics and Fluid Properties:  imperative that the appropriate flow 

physics are applied to the particular fluid flow system (FLUENT). 

4. Specification of Boundary Conditions: define appropriate conditions prescribed 

for the flow problem (FLUENT). 

5. Initialization and Solution Control: proper initial conditions are crucial to the 

iterative procedure (i.e., accurate I.C.’s lead to quicker solution convergence). 

Also, specify a suitable discretization (interpolation) scheme (FLUENT). 

6. Monitor Convergence: two aspects that characterize a successful computational 

solution are convergence of the iterative process and grid independence 

(FLUENT). 

7. Result Report and Visualization (post-process): the ability to present the 

computational results effectively is an invaluable design tool (X-Y plots, vector 

plots, contour plots, etc.-FLUENT). 

Again, this is just a brief summary of the steps involved in effectively reaching applicable 

results from a CFD program (FLUENT).   
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Some of the fundamental computational techniques that are required to solve the 

governing equations of fluid dynamics will also be briefly discussed.  CFD utilizes two 

common discretization methods to solve for the desired flow parameters ( .,,, , etcPvvv zr φ ): 

(1) finite difference method (fdm) and (2) finite volume method (fvm).  Two different 

methods which are less commonly used but still available in CFD programs are the finite-

element method and the spectral method.  The two main discretization methods will be 

defined to describe how a CFD program utilizes either a node-reference system or a 

volume-reference system to generate mathematically exact expressions for the respective 

variables at desired locations.   

The finite-difference method (fdm) will be briefly described first.  It is believed that 

the fdm was developed by Euler in 1768, which was used to obtain numerical solutions to 

differential equations by hand calculation [12].  Figure 5 represents both a one-

dimensional and a two-dimensional uniformly distributed Cartesian grid for the fdm.   

 
Figure 5.  Nomenclature for a Uniformly Distributed Grid 

for FDM [12] 

The open nodes in Figure 5 denote computational nodes while the filled in nodes 

represent boundary nodes.  This grid will be used to describe forward, backward, and 

central differencing of a generic flow field variable Φ .  The fdm utilizes a Taylor series 

expansion about a point (i,j).  The first order derivatives of Φ can then be obtained, as 

seen in equations (2.45a) through (2.45c). 
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Backward Difference ( )x
xx

jiji ΔΟ+
Δ

Φ−Φ
=

∂
Φ∂ − ,1,  ( 2.45c)

The term ( )nxΔΟ  signifies the truncation error of the finite difference approximation, which 

measures the accuracy of the approximation and determines the rate at which the error 

decreases as the spacing between the points is reduced [12].  The central difference, as 

its name implies, depends equally on values to both sides of the node at location x (the 

forward and backward differences reflect their respective node biases as their names 

imply as well).  It should be noted that the differences for the y derivatives are obtained in 

exactly the same fashion. 

The finite volume method (fvm) discretizes the integral form of the conservation 

equations (mass, momentum, and energy) directly in the physical space [12].  This 

method effectively subdivides the computational domain (designated flow area) into a 

number of control volumes, where the resulting statements express the exact conservation 

of relevant properties for each of the control volumes [12].  The desired flow parameters 

are calculated at the centroid of each designated control volume and then interpolation is 

used to translate these calculated values to the surfaces of the control volume.  This is 

where the significant variance comes between the two methods; fvm works within a 

designated region while the finite-difference method provides values at grid intersection 

points (nodes).  Working within control volumes gives the fvm the freedom to 

accommodate any type of grid as it deals with volumes versus grid intersection points.    A 

representation of structured and unstructured mesh for the finite-volume method is 

provided in Figure 6. 

 
Figure 6.  Comparison of Structured and Unstructured Meshes (FVM) [12] 
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Figure 7.  Nomenclature for a Two-dimensional Control 

Volume (FVM) [12] 

2.1.8    Flywheel Overview 

This section will be relatively basic as the underlying physical principles behind a 

flywheel are extremely simple.  The simplicity, lack of maintenance, and reliability are what 

make it such a desirable means of energy storage.  A flywheel is an inertial storage device 

[45].  It absorbs mechanical energy by increasing its angular velocity and delivers energy 

by decreasing its velocity [45].  An input torque will cause the flywheel speed to increase 

while a load (output) torque will absorb energy from the flywheel, causing it to slow down 

[45].  In the current study, a flywheel will receive the said input torque via a motor.  More 

specifically, a windmill will collect wind energy and direct it to the said motor which will 

convert the energy into rotational, kinetic energy by increasing the speed of the flywheel.  

The flywheel can then be decelerated at any time, turning the load torque into AC power 

which can be distributed as needed.  The flywheel is an invaluable addition to a wind 

energy system, allowing for the storage of energy in times of excessive wind and the 

distribution of the stored energy during periods of need.  The major force of concern when 

designing a flywheel is inertia, I . 
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         Figure 8. Flywheel Geometry 

The equations of motion for the flywheel, based on Figure 8, are listed below. 

 ( ) ( ) 0,, 0 =−−=∑ θθθθθ ITTM ooiii  ( 2.49)

Referring to figure four, iT  is considered positive and oT  negative, and whereθ andθ  are 

the first and second time derivatives ofθ , respectively [45].  Assuming the flywheel rotates 

on a rigid shaft, equation (2.49) can be recast as shown: 

 ( ) ( )ωθωθθ ,, oi TTI −=  ( 2.50)

The kinetic energy of the flywheel is a fundamental relation between its moment of inertia 

and its angular speed.  The moment of inertia is given be equation (2.51b). 

 21
2i iE Iω=  ( 2.51a)

 2kmRI =  ( 2.51b)

The variable k  is known as the inertia constant and is equal to 21  for a solid cylinder or 

disk [45].  Thus, it can be seen by equation (2.51a) that the change in kinetic energy over 

given rotation ( 21 θθ → ).  The corresponding change in kinetic energy is 

( )1
1

2
212 2

1 ωω −=− IEE . A coefficient of speed fluctuation is also given as equation (2.52): 

 
ω

ωω 12 −
=sC  ( 2.52)

In the above equation, ω  is simply the nominal average between the two angular 

velocities.  Finally, combining the previously defined elements, a final equation can be 

reached to determine the change in energy from 21 θθ → . 

 2
12 ωICEE s=−  ( 2.53)
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Equation (2.53) is used to obtain the appropriate flywheel inertia corresponding to the 

energy change 12 EE −  [45].  Thus, it can be seen that the sizing of a flywheel is based on 

a desired change in energy, the radius, angular speed, and the mass.  

2.1.9      Pertinent Viscous Flows  

The focus of this section is to describe a couple of common examples of viscous 

flows having similar characteristics as a spinning disk.  Two particular types of flow 

systems, the plane Couette flow and Taylor-Couette flow, have been extensively studied 

to examine laminar and turbulent patterns in fluids.  The first type of viscous flow to 

understand is known as Couette flow.  In theory, the plane Couette system is arguably the 

most straightforward fluid dynamical modeling system; experimentally, however, it often 

presents the greatest challenge [52].  This particular type of flow is named in honor of 

Couette (1890), who performed experiments on the flow between a fixed and moving 

concentric cylinder to determine the viscosity of liquids [7], [11].  The most known 

configuration of Couette flow is a theoretical set-up, consisting of two infinite parallel plates 

(one moving and one stationary), and a zero pressure gradient.  The two-dimensional, 

Cartesian geometry of this particular flow along with the resulting velocity profile can be 

seen in Figure 9.   

 
Figure 9. Couette flow velocity distribution; bottom plat at rest, top 

plate moving in x-direction at velocity = U [4]. 

This general problem allows the nature of viscosity and the no-slip condition to be 

visualized.  As mentioned in a previous section, no general analytic methods have 

become available for the integration of the Navier-Stokes equations.  However, the said 

Couette flow is one specific case of a small group having valid solutions for all values of 

viscosity.  An important feature of Couette flow, with zero pressure gradients, is the linear 

velocity distribution due to the no-slip condition present at both the stationary wall and the 

moving wall.  Going one step further, Couette flow with a pressure gradient has 
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importance in the hydrodynamic theory of lubrication [4] (as well as application to the 

spinning flywheel).  The flow in the narrow clearance between journal and bearing is, by 

and large, identical with Couette flow with a pressure gradient [4].  In this case, the velocity 

profile loses its linearity with the presence of a pressure gradient, adding complexity to the 

flow by the appearance of vortices.  In this case, a Fourier series can be implemented to 

reach an exact solution.  Thus, when analyzing the optimal design of gap spacing between 

the flywheel and stationary walls, simplified Couette flow theory can be utilized for small 

gaps; when the radius ratio approaches unity (discussed later in greater detail).   

Now that two-dimensional Couette flow has been discussed, a progression in 

complexity must be made to describe flow between concentric rotating cylinders.  This will 

require the Cartesian coordinates to be translated into cylindrical polar coordinates.  In this 

case where the inner cylinder is in motion and the outer cylinder is at rest affords an 

example of an unstable stratification caused by centrifugal forces [4].  The fluid elements 

nearest the rotating cylinder experience a greater centrifugal force and are propelled 

outwards toward the stationary walls.  This interaction of boundaries and forces on the 

fluid particles result in a flow phenomena known as Taylor vortices, pictured in Figure 10 

[4].  Figure 11 offers an enlarged, more detailed depiction of these toroidal vortices.  In 

figure eleven, it can be seen that counter-flowing groups of vortices exist stacked on top of 

each other.  

 
                 Figure 10.  Taylor Vortices; inner cylinder rotating, outer 

cylinder at rest [4]. 
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                     Figure 11. Enlarged View: Taylor Vortices [30] 

The stability of an inviscid fluid moving in concentric layers was initially studied by 

the late Lord Rayleigh [21].  He made a very critical assumption that perfect slipping takes 

place at the both the inner and outer cylindrical walls.  He concluded that the flow is stable 

if the liquid (confined between the cylinders) is initially flowing steadily with the same 

distribution of velocity which a viscous liquid would have if confined between the two 

concentric rotating cylinders (boundary layer flow).  One set-back of his theoretical 

deductions is that they applied only to flows when the motion is confined to two 

dimensions (actual flow above/below a disk is represented by three-dimensional flow).  

However, Rayleigh did create an analogy with the stability of a fluid with changing density 

(compressible fluid) under the influence of gravitational forces.  His analogy led to a further 

conclusion that if the initial flow of the inviscid fluid is the same as that of a viscous fluid in 

steady motion, the flow will be unstable when the two cylinders are rotating in opposite 

directions [21].  In the case that they rotate in the same direction, then the motion is stable 

or unstable based on whether 2
22Rω   is greater or less than 2

11Rω , respectively. The 

subscripts 1 and 2  represent the inner and outer cylinders, respectively.  Rayleigh’s 

criterion, shown below in equation (2.40), is applicable for determining inviscid rotational 

instability [21].  Rayleigh stated, “an inviscid rotating flow is unstable if the square of its 

circulation decreases outward” [21].  In other words, a given rotational flow is ensured if 

equation (2.54a) holds true.  Applying Rayleigh’s criterion to Couette flow between 

cylinders, it can be reduced further to equation (2.54b) [7]. 

 ( )2
0d Rv

dr φ >  ( 2.54a)
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 2
11

2
22 RR ωω >  ( 2.54b)

Taylor improved a pre-existing stability criterion that Lord Rayleigh established in 1916 for 

the scenario of both cylinders rotating.  A criterion has been established to determine the 

stability of this flow, known as the Taylor number, equations (2.55).  Taylor simplified the 

problem so that stability is dependent only on 12 ωω and a single parameter, now called 

the Taylor number.  For small clearance, ( )( )112 RRR <<− , the critical value for instability 

is given by equation (2.55a) [20].  A classic paper by Taylor in 1923 showed that laminar 

profiles are valid until a critical rotation rate is achieved, shown by equations (2.55) [20].  

When this limit is exceeded, there appear stacked rows of toroidal vortices, now known as 

the aforementioned Taylor vortices [4].  For the standard case where the inner cylinder 

rotates and the outer cylinder remains at rest, the Taylor number can be calculated by 

equation (2.41b).  

 

 
( ) 17002

2
3

121 ≈−=
ν
ωRRRTa  ( 2.55a)

 

 
3.412 ≥=

ν
ωRdRT ea  ( 2.55b)

An interesting note to this criterion is that the first appearance of these ring-like vortices at 

the limit of stability (≥41.3) and the initial growth in amplitude of these waves does not 

imply that the flow has become turbulent.  The flow may surpass the Taylor criterion by a 

large margin while remaining well-ordered and laminar, based on the system’s geometry 

and angular velocity of the inner cylinder.  In all, the Taylor number can be used to discern 

three regimes of flow [4]. 
Table 2.  Flow Regime Criterion base on Ta Number [4]. 

Flow Regime Taylor # Criterion 
laminar Couette flow Ta < 41.3 

laminar flow with Taylor vortices 41.3 < Ta < 40 
turbulent flow Ta > 400 

  A more in depth look at prior research of this flow type will be described in the following 

section. 
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2.2 Previous Investigations 
The objective of section (2.2) is to explore previously conducted research in areas 

pertaining to the parasitic drag analysis of a high-inertia flywheel rotating within a housing.  

The flywheel rotating in an enclosure can essentially be thought of as a spinning disk 

located co-axially within a stationary cylindrical housing (i.e. a rotating inner cylinder and a 

stationary outer cylinder).  Thus, the major emphasis of this project can be correlated to 

past studies of a spinning disk.  Rotating disks may be classified in two broad categories: 

(1) “free disk,” a disk which rotates in a fluid mass of infinite extent and initially at rest; (2) 

“enclosed disk,” a disk which rotates within a chamber of finite dimensions; the chamber is 

considered to be fully closed so that only a finite volume of fluid is affected by the disk 

notion [40].   

More importantly, past skin friction and drag moment studies of a spinning disk will 

be of particular value to help predict what will happen when the flywheel spins in an 

enclosure.  Any investigations that will improve the understanding of the flow involved in 

this research will be advantageous.  The reviewed research studies from the past have 

both insightful aspects and imperfections.  Each previous analysis will be closely detailed 

in order to effectively determine which theories and methods correspond to the parasitic 

drag study for an enclosed flywheel.  Also, the majority of the reviewed studies in this 

thesis are all correlated with one another; the most current workers have closely analyzed 

the work of those before them to make necessary corrections to old solutions or to create 

new, innovative solutions.  As previously defined, the flow between a rotating inner 

cylinder and a fixed outer cylinder is known as Taylor-Couette flow [16].  The historical 

research presented in section (2.2) will be subdivided into three categories, based on the 

method or approach utilized in each study: (1) experimental research, (2) theoretical 

research, and (3) numerical research.     

2.2.1    Experimental Research 

The foundations of experimental research in fluid dynamics started in France and 

England as early as the seventeenth century [14].  Thus, it seems logical to begin the 

description of earlier research with what came first; experimental testing.  Experimental 

studies involving the analysis of flow imparted by a spinning disk have been completed by 

many researchers.  A variety of experimental apparatus and techniques have been utilized 
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over the years in attempts to better understand the effects of a disk rotating within a 

viscous fluid.  Although the objectives of this effort are not to complete experimental tests, 

the results of others’ work might prove to be useful as a means of comparison of results 

for both the theoretical and analytical drag analyses to be completed for the flywheel.  

Dynamic similarity must be insured between past experimental models and the current 

flywheel in order to compare results. 

One of the earliest research trials was completed by Kempf in 1922 [17].  Kempf 

measured the torque experienced by a disk rotating freely in air.  The main emphasis of 

his studies was the effects of surface roughness on the spinning disk.  He tested various 

surfaces (a fine paraffin surface, wood with a fine lacquer finish, and polished brass) at 

Reynolds numbers between 1x104 and 2x106.  The apparatus consisted of a disk which 

was driven by a weight and pulley and torsion springs that measured the resulting torque 

experienced by the disk.  The experimental moment coefficients from Kempf’s 

experiments can be seen in Figure 12 [18].  The three solid lines labeled numerically in 

Figure 12 can be found as equations (2.44), (2.61b), and (2.65), respectively.  

 
Figure 12. Turning moment on a rotating disk: curve (1) laminar, Sparrow and 
Gregg (2.44), (2) turbulent, von Karman (2.61b), (3) turbulent, Goldstein (2.65) [4] 

Theodorsen and Regier [19] used experimental techniques to determine the 

moment coefficient as a function of Reynolds number.  They analyzed flow with Reynolds 

numbers between 3.96x103 and 1.58x106 for a rotating disk [19].   They made a significant 

discovery of extreme importance to the flywheel study that the skin friction does not 

depend on the Mach number [40]. They ran tests with gases of different densities, 

particularly air and freon in order to extend the range of the tested Mach numbers [19].   

The research pair performed various experiments up to a Mach number of 2.7, giving 
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validity that compressibility issues are not a factor on the friction moment experienced by a 

revolving disk [40].   

They determined the moment on the disk at various angular speeds by linking the 

horsepower required to revolve the disk at a specified rotational rate. The results of their 

experimental work can be seen in Figure 12 of the next section.  Theodorsen and Regier’s 

measured results are also represented in Figure 17, as the “unfilled” circular, diamond, 

and triangular data points.  They are also the only pair of researchers described who 

strictly evaluated compressible flow around a spinning disk.  

Daily and Nece built a test rig with the option of interchangeable disks, to study a 

variety of flow schemes around an enclosed disk.  More specifically, they investigated the 

usual disk-friction-torque measurements at different speeds, as well as pressure, 

temperature, and velocity traverses in the liquid-filled spaces surrounding the disk [40].  

They collected torque data over a range of Reynolds numbers from 103 to 107 for axial 

clearance ratios as from 0.0127 to 0.217 for a constant small radial tip clearance 

( ac =0.00637).  Torque was measured by means of four strain gages bonded to the 

rotating shaft driving the disk.  Four SR-4 strain gages were placed at 45 degree angles 

from the shaft’s centerline; the resulting bridge circuit registered torsional stresses only 

[40].  Velocity and pressure data were obtained for both laminar and turbulent flows [40].    

The team studied both edge effects and the viscous torque of the top and bottom of the 

disk.  When the flow in the thin annular gap between the cylindrical wall and the disk tip 

was considered to be laminar, they assumed the presence of plane Couette flow, resulting 

with a tip-friction torque coefficient given by equation (2.56) [40]. 

disk edge 
ω
νπ

ca
bCM 2

4
=′  ( 2.56)

They calculated the final value of MC , as used in the equations and plots, as the difference 

between MC (gross), based on the total measured torque, and ′
MC [40].   

For turbulent flow, the annulus between the disk tip and the sleeve was treated as 

a two-dimensional duct with no side-wall friction (an analogous circular pipe), leading to 

the tip-friction torque coefficient labeled as equation (2.57) [40]: 

disk edge 
a
bfCM 8

π
=′  ( 2.57)
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In the above equation, the value f is determined from the smooth-pipe curve from the 

Moody diagram [40].  The theoretical coefficients for the disk’s edge will be discussed later 

in this section.   

A second innovative approach Daily and Nece utilized was to analyze the 

interaction between the viscous moment experienced by both the spinning disk and the 

stationary wall of the enclosure.  The two researchers determined a set of moment 

coefficients based strictly on empirical relations, shown below in equations (2.58a) through 

(2.58d).  These relations agreed with their entire range of experimental work to about 1 

percent [40].    

 

Regime I ( ) e
M Ras

C π2
=  ( 2.58a)

 

Regime II 
( )

21

10170.3

e
M R

asC =  ( 2.58b)

 

Regime III ( ) 4161
080.0

e
M Ras

C =  ( 2.58c)

Regime IV 
( )
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1010102.0

e
M R

asC =  ( 2.58d)

The results of Daly and Nece’s experimental tests can be seen below in Figure 13. 

 
Figure 13.  Viscous torque on a disk rotating in an enclosure: Daily and Nece [40]. 
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Nelka used a rotating disk apparatus in an attempt to simulate the high shear 

stresses experienced by the hull of a full-scale ship [8].   He studied a disk diameter of two 

feet, varying the surface roughness.  He evaluated the performance of the rotating disk in 

a tank (housing), in both mediums of air and water.  He attached a dynamometer to the 

shaft of the rotating disk and used a magnetic pickup-toothed gear configuration to 

determine the angular velocity of the disk.  He calculated the torque of the rotating disk as 

a function of angular velocity.  He fabricated the experimental test apparatus in such a way 

that the disk could be tested both as a free disk and as a disk rotating in an enclosure [8].    

A comparison of Nelka’s experimental moment coefficients of both an unbound and 

enclosed disk can be seen in Figure 14. 

 
                Figure 14. Effect of Steel Housing on Torque due to a 

Disk Rotating in Air: Nelka [8]. 

As originally expected, the disk rotating within a cylindrical enclosure experienced 

less viscous torque when compared to a disk in unlimited space.  
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2.2.2    Theoretical Research 

Many years after the first successful experimental procedures were conducted, 

theoretical methods were introduced with hopes of reaching a more complete 

understanding of fluid dynamics problems.  In 1922, Taylor noted the following: 
All experiments so far carried out seem to indicate that in all cases steady motion is possible if 

the motion be sufficiently slow, but that if the velocity of the fluid exceeded a certain limit, 

depending on the viscosity of the fluid and the configuration of the boundaries, the steady 

motion breaks down and eddying flow sets in.  A great many attempts have been made to 

discover some mathematical representation of fluid instability, but so far they have been 

unsuccessful in every case [20].  

 In summary, Taylor observed the lack of correlation between theory and experiment.  It 

has been a consistent struggle over the years to provide mathematical representations of 

fluid motion.  Kelvin, Rayleigh, Sommerfeld, Orr, Mises, and Hopf (et al.) all investigated 

the case in which the fluid is contained between two infinite parallel plates which move 

with a uniform relative velocity (Couette flow).  However, none of these researchers 

extended their work into cylindrical coordinates to investigate Taylor-Couette flow.  

However, in 1921, W.J. Harrison extended a method Orr previously used to determine (in 

two cases) the highest speed of flow at which all small disturbances initially decrease.  

Harrison found the maximum relative speed which two cylinders maintain in order that the 

energy of all possible types of initial disturbances may initially decrease [20].  Harrison 

assumed the motion of the flow to be only two-dimensional and his calculated value for 

Reynolds criterion therefore contains only the relative speeds of the two cylinders [20].  (It 

should be noted that at this point in time, it is denoted as Reynolds criterion because it had 

not been successfully utilized to calculate the upper limit to the speed of flow that becomes 

unstable i.e. the Reynolds number was not yet fully discovered and utilized as a means of 

predicting laminar and turbulent flow)  To summarize, the criterion is unaltered if the whole 

system is uniformly rotated.  Thus, his criterion is equivalent whether the inner cylinder is 

fixed while the outer cylinder rotates, or vice versa [21]. 

von Kármán analyzed the flow about a disk rotating in a fluid initially at rest, for 

both laminar and turbulent flow regimes [23]. von Kármán utilized an approximation 

method based on the momentum equation [23].  He noticed that the peripheral velocity 

falls from ωφ Rv =  at the disk ( 0=z ) to zero at the edge of the boundary layer ( δ=z ) 
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[23].  Thus, he assumed the variation of the tangential velocity component through the 

boundary layer obeyed the th
7
1

power law [23].   
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( 2.59a)

On the other hand, he also noticed that the radial velocity component rises from 0=rv  at 

the disk ( 0=z ) to a positive value 0>rv , and falls again to zero at the edge of the 

boundary layer ( δ=z ) [23].  von Kármán’s resulting equation for the radial velocity can be 

seen as equation (2.59b).  
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 ( 2.59b)

In equation (2.59b), the term α refers to the ratio of the radial shear stress components to 

the azimuthal shear stress component.  He based this assumption on previous results he 

found while studying the characteristics of turbulent flow in smooth pipes [23].  von 

Kármán, like many others, neglected the effect of the edge of the disk and focused solely 

on the top and bottom sides.  His resulting moment equations and moment coefficients for 

both flow regimes can be seen in equations (2.60) and (2.61). 

Laminar 2321484.12 ωρνRM =  ( 2.60a)

Laminar 21
68.3

e
M R

C =  ( 2.60b)

Turbulent ( ) 512250728.02 ωνρω ⋅= eRRM  ( 2.61a)

Turbulent 51
146.0
e

M R
C =  ( 2.61b)

Figure 15 shows his theoretical viscous moment coefficients compared to the 

corresponding Reynolds number (both are on logarithmic scales).  The data points in 

Figure 15 are from von von Kármán’s own experimental tests.  The graph shows good 

agreement between theoretical and experimental values for turbulent flow.  
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   Figure 15. Viscous drag of a free disk: von Karman’s  

theoretical calculations; laminar (2.46b), turbulent (2.47b)  

However, there appears to be a discrepancy between theoretical and experimental values 

for laminar flow.  The results of von Kármán’s theoretical calculations can also be seen 

compared to other researcher’s work in Figure 15.  One limiting factor of von Kármán’s 

theories however, is the neglect of the effect of friction on the cylindrical walls.  Depending 

on gap spacing, boundary layers are known to form on the housing walls, altering the flow 

characteristics.  Simply ignoring this fact could produce skewed results when determining 

the moment coefficients.  

Cochran [24] also investigated the laminar flow about a disk rotating in a fluid 

initially at rest.  A resulting moment equation and drag coefficient were also reached via a 

power series.  However, Cochran only used the power series to calculate solutions very 

near the disk [24].  To obtain solutions as the vertical distance above the disk increases, 

Cochran used an asymptotic series.  He used matching principles to determine solutions 

at intermediate distances above the disk’s surface.  His results for laminar flow can be 

seen below as equations (2.62a) and (2.62b) [24]. 

Laminar 23214616.02 ωνπρRM =  ( 2.62a)

Laminar 21
87.3

e
M R

C =  ( 2.62b)

Cochran also found an error in the von Kármán integration.  His correction to the said 

solution can be seen below in equations (2.63) [24]: 

Laminar 2321469.12 ωνρRM =  ( 2.63a)
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Laminar 21
38.3

e
M R

C =
 

( 2.63b)

Cochran’s results, compared to the work of many other researchers, can also be seen in 

Figure 18 of this section.  Cochran completed his calculations under the assumption that a 

radial pressure gradient was negligible.  Past experimental research has proven the 

existence of such a gradient which could leave room for error in Cochran’s solution.   

Goldstein [35], [36] also analyzed the turbulent boundary layer of an unbound, 

rotating disk.  He manufactured an approximate moment coefficient based on the 

logarithmic velocity-distribution law, listed below.  The term *v is the friction velocity 

( ρτ wv =* ), η is the axial distance from the surface of the disk, and u represents a free-

stream velocity ( ( )21 αω += RU ) [35]. 

Turbulent .log *
* constvAvu e +=

ν
η

 ( 2.64)

Goldstein used the logarithmic velocity profile since von Kármán’s one-seventh-power law 

method was only suitable for values of 600* ≤νηv .  Through rigorous calculations, 

Goldstein obtained the formula seen below, equation (2.65), to determine the torque 

imparted on a rotating disk in turbulent flow [23]. 

Turbulent ( ) 3.0log97.11
+= Me

M

CR
C

 ( 2.65)

It is noteworthy that this equation has the same form as the universal pipe-resistance 

formula.  The numerical factors have been adjusted to obtain the best possible agreement 

with experimental results.  Equation (2.65) can be seen plotted, as curve three, versus 

various theoretical and experimental data in Figure 16.  Thus, von Kármán utilized a 

power-law similarity formula, while Goldstein assumed a more general logarithmic 

similarity law.  A comparison of the power-law approach to the logarithmic approach can 

be seen in Figure 16 (logarithmic scales for both the moment coefficient and the Reynolds 

number). 
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Figure 16. Viscous drag of a disk rotating in unlimited space 

(experimental data points: Schmidt and Kempf) [35]. 

Referring to Figure 16, for logarithmic values of the Reynolds number between 

approximately 4.8 and 6.0, von Kármán’s theoretical method undershoots the 

experimental data (data from experiments completed by Schmidt and Kempf) while 

Goldstein’s calculated method undershoots the same experimental data points. 

Concerning related topics, Granville derived a general logarithmic relation for the 

resisting torque in an unbound fluid as a function of Reynolds number for arbitrary surface 

roughness [39].   He obtained unique formulas for smooth surfaces, fully rough surfaces, 

polymer solutions with a linear logarithmic drag-reduction characterization, and polymer 

solutions with maximum drag reduction [39].  The previously documented analyses of von 

Kármán and Goldstein are limited to smooth surfaces only.  Also, Granville chose the 

circumferential wall shearing stress as the reference shear stress in contrast to the 

selection of the resultant wall shearing stress as chosen by both von Kármán and 

Goldstein.  Certain inconsistencies are thus avoided with this alternate reference selection 

[39].  Equation (2.66) gives the resultant resisting moment coefficient for laminar flow [39].   

Laminar  1 2

1.935 2M M
e

k C
R

= =  ( 2.66)

Physically, the flow in the boundary layer is laminar starting at 0=R and undergoes 

transition to turbulent flow at trRR = , specified by a Reynolds number of transition 

treR [39].  Since Granville originally derived the logarithmic moment formulas for complete 
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turbulence over the entire disk, he developed a correction for the presence of laminar flow 

in the central part of the disk [39]. 
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Granville’s resisting moment coefficient as a function of Reynolds number is given by 

equation (2.68a).  Equation (2.68b) gives the same relation for the case of maximum drag 

reduction with a polymer solution.  
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The result of P.S. Granville’s moment coefficient calculation is plotted in Figure17. 

 
Figure 17. Viscous drag of a disk rotating in unlimited space 

(theoretical: von Karman, Granville, Goldstein;  experimental values: 
Theodorsen/Regier, Hoyt/Fabula, Smallman/Wade) [39]. 

Figure 17 is important as it shows Granville’s results fall in between the theoretical values 

determined by previous investigators.  As previously mentioned, von Kármán’s method 

overestimates the drag coefficient while Goldstein’s technique underestimates the same 

value, when compared to experimental results.  Thus, it can be seen in figure seventeen 
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that Granville’s logarithmic formula falls in between the two aforementioned moment 

coefficients, ultimately giving better agreement to experimental measurements.  

Dorfman [37], [38] studied the turbulent flow around an unbound, rotating disk.  In 

his work, he first presented a detailed compilation of past researchers’ work such as von 

Kármán, Cochran, and Goldstein.  Dorfman compared the effects of smooth and rough 

surfaces on the resulting viscous torque of the disk [38].  He also conducted studies of air 

cooling of gas turbine rotors by a radial flow [37].  More specifically, he looked at the effect 

of friction resistance of a radial flow between a rotating disk and housing, also utilizing heat 

transfer methods to study the cooling properties of said disk [37].  Dorfman, in the same 

manner as Goldstein, used a logarithmic velocity distribution to find a moment coefficient.  

Essentially, Dorfman extended Goldstein’s analysis to the special case of a disk with a 

fully rough surface.  His calculated moment coefficient for the smooth and rough surfaces 

is represented by equations (2.69a) and (2.69b). 

Turbulent: 
Smooth 
Surface 

58.2)(log982.0 −= eM RC  ( 2.69a)

Turbulent: 
Fully Rough 

Surface 
( ) 272.0108.0 RkC sM =  ( 2.69b)

The constant sk in the previous equation is a friction factor based on the surface 

roughness of the object under investigation.  Figure 18 displays a collaborative 

comparison between the studies of von Kármán, Cochran, Goldstein, and Dorfman [8].   
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Figure 18. Nelka's experimental results of moment coefficients as a 
function of Reynolds number for a disk rotating in a viscous fluid 
initially at rest (theoretical data; von Karman, Cochran, Goldstein, 
Dorfman) [8]. 

As viewed from Figure 18, Nelka’s results for a smooth disk in air show the closest 

agreement to Goldstein’s theoretical work, for Reynolds numbers of approximately 106.  

This particular experiment has similarities when compared to the rotating flywheel, 

indicating that Goldstein’s method desirable to use as a drag calculation method. 

Sparrow and Gregg were another party to investigate the turning moment on a disk 

spinning in free space.  The two researchers followed the basic approach detailed in 

section (2.1.6).  They solved the system of equations listed as (2.40a) through (2.40d).  

The calculated values for the functions needed for the description of the flow of a disk 

rotating in infinite space at the wall and at an infinite distance from the wall.  Their results 

can be seen below in Table 3 and Figure 19.    
Table 3. Flow description functions of a disk rotating in a fluid at 

rest; calculated by Sparrow and Gregg [34]. 

ζ=z(ω/ν)1/2  F'  –G'  –H  P 

0  0.51  0.6159  0  0 
∞  0  0  0.8845  0.3912 
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           Figure 19. Velocity distribution near a disk rotating in 

a fluid at rest; calculated by Sparrow and Gregg [34]. 

Sparrow and Gregg’s theoretical calculations for the laminar case led to confirmation of 

equation (2.62b), which is in agreement with the work of Cochran and Granville.  The 

theoretical drag moment calculated by the pair can be seen in Figure 21, labeled as curve 

one.  Their results show very close agreement when compared with experimental 

measurements. 

Schultz-Grunow noticed that research to date focused solely on the rotation of 

disks in unlimited space and a lack of sufficient documents existed pertaining to the 

rotation of disks within a housing [31].  Schultz-Grunow’s inspiration for studying this topic 

arose when he discovered the presences of disk friction in turbo-machinery and rotary 

machines [31].  He noticed that the rotating disks (he referred to them as wheels) were 

narrow, and that the column expanse, s , (see Figure 20)  was small in relation to the disk’s 

radius [31]. 

 
Figure 20.  Rotating disk in housing geometry: as used by F. Schultz Grunow [31]. 
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 Also, Shultz-Grunow, like many others, was not concerned with friction contributions from 

the thin edge of the disk.  He proposed the existence of three separate regions between 

the rotating inner cylinder and the stationary outer cylinder: two boundary layers localized 

on each wall and a core flow between them, as seen above in Figure 20 [31].  He 

theorized that the core flow possessed an angular speed of approximately half of the 

angular speed of the rotating disk.  More specifically, he calculated a theoretical value of 

512.0== RvK ωφ  and measured the same ratio to be equal to 0.357 [31].  He 

interpreted the discrepancy in values as a shear stress in the small radial gap between the 

rotating disk and the housing wall, i.e., a small amount of torque produced by edge effects 

of the disk [31].  The resulting theoretical laminar and turbulent moment coefficients from 

Schultz-Grunow’s analysis are listed below as equations (2.70a) and (2.70b). 
 

Laminar 21
67.2

e
M R

C =  ( 2.70a)

Turbulent 51

0622.0

e
M R

C =  ( 2.70b)

Schultz-Grunow also completed experimental studies of a disk rotating within an 

enclosure, discussed in more detail in the following section.  Schultz-Grunow determined 

momentum equations for the disk as well as the cylindrical housing.  However, he 

assumed a core flow existed between the two boundary regions which rotated at angular 

velocity β .  Thus, he too neglected the effects of friction caused by the housing walls 

which could lead to discrepancies in his final solutions. 

Schlichting attempted a moment coefficient for laminar flow in the case of small 

axial gap spacing [4].  More specifically, for the case when the axial gap, s , is smaller than 

the boundary layer thickness.  He assumed in this case, the variation of the tangential 

velocity across the gap becomes linear in the manner of Couette flow.  Hence, the 

shearing stress at a radial distance from the axis ( r ) is equal to srωμτ = [4].  Using this 

relation for the shear stress, Schlichting determined the moment coefficient for the said 

case, equations (2.71): 

Laminar (small 

axial gaps; s) e
M Rs

RC 12π=  ( 2.71a)

laminar (disk): 

both sides 
42M R sπω μ=  ( 2.71b)
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Equation (2.71a) is plotted as curve one in Figure 21, and shows good agreement with 

past experimental values. 

 
            Figure 21. Viscous drag of disk rotating in a housing: curve  (1) equation (2.71a), curve (2)    

equation (2.70a),  curve (3) equation (2.70b) [4]. 

Daily and Nece also fabricated theoretical expressions to verify their experimental 

solutions.  Their goal was to obtain equations to predict torque on an enclosed disk based 

on the geometry of the system.  Up until this point, all known researchers have considered 

two regimes of flow (laminar and turbulent).  Daily and Nece deciphered and classified four 

different flow regimes within the enclosure.  For the geometries 

investigated ( )( )0.0127 0.217s
a ∈ − , they determined that the mode of flow in the casing 

depends only upon the Reynolds number and the geometry ( as ratio) [40]: 

1.  Regime I: Laminar Flow, Close Clearance.  Boundary layers on the rotor and 

stator are merged so that a continuous variation in velocity exists across the 

axial gap, s . 

2. Regime II: Laminar Flow, Separate Boundary Layers.  The combined 

thickness of the boundary layers on the rotor and stator is less than the axial 

gap, s ; between the boundary layers is a core region in which no change in 

velocity is expected to occur. 

3. Regime III:  Turbulent Flow, Close Clearance.  The turbulent counterpart of 

Regime I, for higher Reynolds numbers and turbulent flow on the circular 

surfaces. 
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4. Region IV:  Turbulent Flow, Separate Boundary Layers.   

For a given as and a reasonable eR values, all four regimes may be possible over 

a time period.  In the past, various investigators have pointed out the existence of one or 

more of these modes of flow; no single writer, however, has explicitly emphasized the 

presence of all four and their limits of occurrence [40].   

Their calculations provided additional verification for the simple close clearance, 

laminar flow theory for friction torque in regime I, verifying the original value’s accuracy.  

For regimes II, they chose a simple parabolic velocity distribution to represent relative 

tangential velocities.  A momentum analysis was performed of the von Karman type 

refined to include cylindrical wall-friction effects to solve for the torque coefficients [40].  

For regime III, the form of the variation of torque coefficient with eR was found to agree 

with theoretical values, but the variation with as  deviated slightly when compared to 

theoretical predictions [40].   In the mode of regime IV, they used a one-seventh power-law 

tangential-velocity distribution versus a logarithmic distribution to ease the numerical 

process [40]. The resulting theoretical moment coefficients from past investigations of 

Daily and Nece for all four flow modes can be viewed in equations (2.72a) through (2.72d). 

Regime I 
 ( ) e

M Ras
C π2

=  ( 2.72a)

Regime II ( )1 2 ,M
e

CC where C f s a
R

= =  ( 2.72b)

Regime III ( ) 4141
0622.0

e
M Ras

C =  ( 2.72c)

Regime IV ( )1 5 ,M
e

CC where C f s a
R

= =  ( 2.72d)

Figure 22 offers a summary plot of these values at various as ratios.  The plot covers the 

as range of 0.01 – 0.20, and extends to values of eR which are experienced by all but the 

most unusual applications [40].  The data of Figure 22 is represented by a logarithmic 

scale;  Daily and Nece deem the intersections of line segments for each geometry as an 

indication of the existence of various regimes.  This theory will be used to examine 

influence of gap spacing for this flywheel study. 
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Figure 22.  Delineation of flow regimes as studied by Daily and Nece [40]. 

Compared to experimental data, Daily and Nece deemed their theoretical MC -values for 

Regime IV by approximately 17 percent for Reynolds number flows greater than 107, as 

the 1
7 -power law (assumed for the velocity profiles) is no longer applicable [40].  It can 

be seen that regime I exists for all as ratios as long as eR  is kept sufficiently small.  For 

small values of as , regime II may never exist while at large values of as , regime III may 

never exist.  The experimental and theoretical investigations of Daily and Nece have been 

explained in great detail in the previous two sections as their previous studies will prove to 

be very useful when applied to the actual case of the rotating flywheel.     

To this point, the previously mentioned theoretical studies have been concerned 

with the flow above and below the rotating disk.  These researchers all investigated thin 

disk scenarios where edge effects were assumed negligible.  The actual flywheel, having a 

thickness of 0.9 meters, does not comply with the thin disk assumption.  The viscous 

forces experienced by the flywheel’s edge are predicted to be far too substantial to 

neglect.   

A major researcher of edge effects experienced by a rotating disk was Stuart [29] 

in 1958.  Stuart was successful in theoretically computing the flow pattern of the unstable 

laminar flow in the presence of Taylor vortices while retaining the non-linear terms in the 
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equation of motion [4].  Stuart noticed that equilibrium exists between the transport of 

energy from the base flow to the secondary flow as well as an existing equilibrium 

between the viscous energy dissipation in the secondary flow [29].  The transfer of energy 

from the base flow to the secondary flow causes a large increase in the torque required to 

rotate the inner cylinder [29].  Thus, Stuart’s discovery has direct pertinence to the current 

flywheel research.  Figure 23 displays a comparison between Stuart’s theoretical moment 

coefficient, Mc , to an experimental torque coefficient defined by equations (2.73). 

Laminar (edge) 2 41 2M
MC

R hπρω
=  ( 2.73a)

Laminar (edge): 

small relative gaps 

1
1

M a
Rd dc A A T

R
ω

ν

−
−⎛ ⎞= =⎜ ⎟

⎝ ⎠
 ( 2.73b)

Turbulent (edge) Mc ~ 0.2
aT −  ( 2.73c)

In (2.45), the variable h represents the thickness, or height of the cylinder under 

consideration. 

 
Figure 23. Flow between two concentric cylinders; torque coefficient for 

inner cylinder in terms of the Taylor number, Ta , from Stuart [4] 

In Figure 23, Stuart’s results are compared to experimental results obtained by 

Taylor [16].  It can be seen that good agreement exists between the theoretical and 

experimental moment coefficients, indicating that the two sources can be considered 

reliable for this study.  The resulting moment coefficient derived by Stuart can be seen 

below in equation (2.46), for gap spacing 028.0=Rd . 
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Schmeiden also studied the edge effects of a disk rotating in a housing.  He made 

an attempt to understand the influence of the radial gap between a rotating disk and 

enclosure.  However, his results only apply to low Re flows.  He assumed creeping motion 

(low Re flow) in order to significantly simplify the Navier-Stokes equations.  Thus, his 

theoretical efforts will only be applicable to the lower rotational velocities of this flywheel 

study.  His moment coefficient is dependent upon both the axial and radial gap sizes. 

Laminar (edge) M
e

KC
R

=           where   2K R sπ=  ( 2.74)

The constant K depends on the two dimensionless ratios Rσ and s R (σ is the radial 

gap dimension and s is the axial gap distance). 

Dorfman also inspected the edge effects of a rotating cylinder.  He reached an 

equation that relates the moment coefficient of the top and bottom of the disk to that of the 

edge [39]: 

Laminar (edge) ( )( )1 2.5
M

M
CC

h
R

′
=

+
 ( 2.75)

The term MC ′ represents the moment coefficient due to the disk and its edge, while 

MC represents the moment experienced by the disk alone [39].  Substituting the 

appropriate dimensions of the current flywheel gives the following 

relation: 0.567M MC C ′= .  According to Dorfman, the moment due to the disk faces is 

approximately 57 percent of the total torque experienced by the said faces and the edge.  

This presents a major divergence from many past theoretical and experimental studies; 

much of the previous work focused on the rotation of thin disks.  According to Dorfman’s 

theories, the edge of the flywheel will produce 43 percent of the total torque experienced 

by the flywheel.  If Dorfman’s calculations are accurate, the drag due to the edge of the 

flywheel will be as detrimental as the circular faces. 
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2.2.3    Numerical Research 
 

As technology progresses, iterative solution techniques are being used more and 

more via computational fluid dynamics.  To analyze the flow of complex models, the math 

can become too complicated.  It is common to turn to numerical methods to help alleviate 

some of the complexity involved in the solution procedure.  For intricate differential 

equations, the numerical method begins with an initial condition of a given variable and 

then uses pertinent equations to determine the alterations of the said variable over a 

period of time.  This iterative procedure of recognizing variable changes over time is often 

a good approximation method.  This section is not restricted to the analytical research of a 

revolving disk.  Some of the literature reviewed was to broaden the knowledge of the 

solution procedure for the drag analysis of a cylinder using computational fluid dynamics, 

determining the criteria and resulting best choice for a turbulence model to analyze the 

flow around a circulating flywheel.   

Maleque and Sattar used numerical analysis to study the laminar convective flow 

over a porous rotating disk.  They studied the effects of variable properties (density, 

viscosity, and thermal conductivity) on steady laminar flow and heat transfer for a viscous 

fluid due to an impulsively started rotating infinite disk [41].  They implemented similarity 

parameters to reduce the applicable system of governing equations to steady equations.  

The resulting steady equations were solved using the Runge-Kutta and Shooting methods 

[41].  Runge-Kutta methods are the most popular methods used in engineering 

applications because of their simplicity and accuracy [42].  This method is used when 

moving between node points on a grid system.  The goal of the R-K method is to compute 

an average slope (between current nodal position and desired nodal position) which will 

make the aiming correct in order to get (shoot) to the target point along a straight line; the 

most efficient path possible [42].  Due to the tedious and often numerous iterations, they 

devised a computer program to reach the desired set of solutions.  Maleque and Sattar 

used a sixth-order R-K and Shooting method with step sizes of 0.001 to satisfy a 

convergence criterion of 10-6 [41].    They determined the following radial and tangential 

skin friction coefficients: 

Tangential 
 

( )
( ) 211

0

e
af R

GC −+

′
=

γ
 ( 2.76a)
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Radial 

 

( )
( ) 211

0

e
af R

FC −+

′
=

γ
 ( 2.76a)

The numerical results, along with a comparison of previously calculated results 

(Kelson and Desseaux) are shown below in Table 4. 
Table 4. . Numerical values of the radial and tangential 

skin friction coefficients (Maleque and Sattar) [41]. 

 

As seen in Table 4, their results show very close agreement to previous work. 

He-yuan and Kai-tai numerically simulated axisymmetric, Couette-Taylor flow 

between rotating cylinders for flow stability analysis [43].  To get to the desired system of 

equations, they first introduced a stream function form of the Navier-Stokes equations for 

simple Couette flow.  Second, they determined the appropriate analytical expressions of 

the eigenfunction of the Stokes operator in the cylindrical gap region and then proved the 

said expressions orthogonal [43].  The spectral Galerkin approximation of Couette-Taylor 

flow was then analyzed by introducing eigenfunctions of Stokes operator as the basis of 

their dimensional approximation of subspaces.  The results of their numerical simulation 

indicated that when a small Reynolds number is used, the basic Couette flow is unique 

and stable.  They determined a critical Reynolds number of approximately 118, at which 

the flow loses stability and initial Taylor vortices appear [43].  The appearance of Taylor 

vortices at the corresponding eR can be seen in Figure 24. 
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                   Figure 24.  Numerical simulation of Taylor Vortices (He-

yuan and Kai-tai) [43]. 

Their numerical simulation of flow instabilities show close agreement with experimental 

results previously measured by Taylor [43]. 
Srinivasan, Jayanti, and Kannan investigated a computational fluid dynamics 

based solution of the governing equations for the case of a rotating cylinder inside a 

stationary cylindrical outer vessel filled with a fluid to determine the effect of Taylor vortices 

on the flow field and heat transfer [44].  Their results confirm that the circumferential 

velocity profile is a strong function of the Reynolds number and varies from a nearly 

Couette-type flow at very low eR to a boundary layer like profile at high eR .  All of the 

research group’s numerical calculations were carried out using the commercially available 

CFX 4.4 computer code.  This program utilizes a finite volume method-based 

discretization of the governing partial-differential equations on a non-staggered, structured, 

body fitted grid [44] (all things to consider for modeling the flywheel in CFD).  They utilized 

the Rhie-Chow interpolation scheme, which ultimately eliminates the chequer-board type 

oscillations of both pressure and velocity, often associated with the use of a non-staggered 

grid [44].  They also used the SIMPLE method (Semi-Implicit Method for Pressure Linkage 

Equations [12]) to couple the pressure and velocity.  The discretization schemes for the 

convection terms, diffusion terms, and the mass-fraction equation were solved using the 

QUICK scheme, second-order central differencing scheme, and the SUPERBEE scheme, 

respectively [44].  For the QUICK scheme, a quadratic approximation is introduced across 

two variable points at the upstream and one at the downstream depending on the flow 

direction [12] (see Appendix B of reference [12] for a detailed example of the QUICK 

scheme).  The SUPERBEE scheme incorporates the total variation diminishing (TVD) 

property which eliminates oscillations commonly associated with higher order differencing 
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schemes [44].  The aforementioned discretization schemes will all be valid selections 

applicable to the flywheel study. 

Srinivasan, Jayanti, and Kannan used a structured, orthogonal grid for the two-

dimensional flow domain which contained a total of 9,600 cells.  Since they did not know 

the precise location of the Taylor vortices a priorí, they implemented uniform grid spacing 

in the axial location [44].  In order to compensate for strong velocity and mass fraction 

gradients in the radial direction, they used an expanding grid [44].  Once they tested for 

grid independence, they computed velocity profiles near the inner cylinder to compare 

three radial geometries in which the grid spacing near the wall was successively reduced 

by a factor of two [44].  The main goal of their work was to determine the mass-transfer 

coefficient, which is not entirely applicable to the current flywheel study.  However, they did 

model and simulate the same type of flow as in the flywheel investigation, offering some 

useful insight on discretization schemes and grid structure.  Also, they examined the effect 

of the radius ratio (gap spacing) by plotting the dimensionless tangential velocity in terms 

of the dimensionless radial distance for different radius ratios.  They determined that for 

small gap widths, the radial profile of the circumferential velocity is nearly linear (Couette 

flow) while for increasing gap widths, the non-linearity characteristics begin to appear 

(Taylor vortices).  

Miyazoe et al. used CFD to establish an efficient design process for a centrifugal 

blood pump [13].  In order to achieve their goals, they implemented flow visualization 

experiments to validate known flow patterns and hemolysis tests to prove the analysis is 

necessary [13].  They utilized the ε−k method, a widely used turbulence model and 

logarithmic velocity functions at the locations very near the wall [13].  They divided the flow 

domain into three sections: inlet passage, pump part, and diffuser having 1,600 nodes, 

127,920 nodes, and 4,800 nodes, respectively [13].  Since shear stress is considered as 

one of the major causes for destruction of red blood cells, the main concern of their study 

was to locate regions of high shear stress [13].  They used various particle tracking and 

velocity vector options in CFD to obtain a visual depiction of the flow in the centrifugal 

pump.  CFD analysis indicated that a change to a smaller radial gap greatly affected the 

shear stress of the fluid, locating high concentrations near the cylindrical wall as the radial 

gap spacing decreases.  

These numerical studies from past investigators will be considered when using 

CFD techniques to analyze the flow around the flywheel.  Maleque and Sattar’s numerical 

results can be used as a different method in which the skin friction of the flywheel can be 
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calculated.  Srinivasan, Jayanti, and Kanna’s methods will be considered when utilizing 

CFD to analyze the drag experienced by the flywheel.  In particular, the specific 

discretization and grid generation techniques used in their studies will be considered and 

applied when necessary to the current flywheel study.  Finally, Myazoe et al. CFD study 

will also be regarded when employing computational methods to the current flywheel drag 

analysis.  
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C H A P T E R  3 :  M E T H O D O L O G Y  

The main objective of this effort is to provide a complete parasitic drag analysis 

experienced by a high inertia flywheel rotating in a housing.  When solving any type of 

problem, especially a complex engineering problem, it is advantageous to develop a 

systematic approach to reach a solution.  Following a systematic approach promotes 

organization and can provide a better overall understanding of the task at hand.  Moran 

and Shapiro [28] offer a five step problem solution method that will be followed in this 

section in order to effectively outline the procedures followed, guiding the reader through 

the flywheel drag analysis. 

A general synopsis of the five steps, fully documented in reference [28], is listed as: 

1. Known: State briefly what is known 

2. Find: State concisely what is to be determined 

3. Schematic and Given Data 

4. Assumptions: Form a record of how you model the problem and list all 

simplifying assumptions and idealizations 

5. Analysis:  Reduce appropriate governing equations and relationships to forms 

that will produce the desired results  

Thus, this chapter will first illustrate the steps that will be taken to complete a parasitic drag 

analysis of the revolving flywheel.  Next, the chapter will provide a section that describes 

the methodology used to effectively model the problem using computational fluid 

dynamics. Also, CFD techniques will be utilized to explore the effects of gap sizing 

between the rotating flywheel and stationary enclosure. 

3.1 Theoretical Drag Methods  
This section will document the procedures used to analyze the parasitic drag of a 

flywheel with both theoretical and computational methods.  The rotating flywheel problem 

will be solved in various fashions, computing the drag of an unbound flywheel and a 

flywheel rotating within an enclosure.  This comparison will be used as evidence that 

locating a rotating flywheel inside a right cylindrical enclosure will be beneficial as it 

reduces the overall drag experienced by the flywheel; as well as improving the energy 

system’s factor of safety by preventing direct human interaction.  Various theoretical 

methods from past researchers will be utilized for each scenario (unbound versus 
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enclosed) in an attempt to obtain an accurate viscous drag moment of the flywheel.  The 

five step solution method previously mentioned will be followed to strictly document each 

drag analysis.  The parasitic drag of an enclosed flywheel will calculated at a range of 

pressures from one atmosphere down to one-twentieth of an atmosphere.  The lowering of 

the pressure will be used to simulate the evacuation of the cavity between the flywheel 

and housing as a vacuum pump could.  This calculation will be used to determine the 

feasibility of a low-pressure, drag-reduction system.  Finally, CFD will be used to offer 

visual support of the flow phenomena around an enclosed flywheel as well as a design 

tool to determine optimum gap spacing between the flywheel and housing. 

As a starting point, the problem will be solved initially as a “free disk”.  The 

terminology “free disk” infers that the disk will rotate in open space, free of any boundaries.  

This simplified form of the drag analysis is expected to produce a viscous moment that is 

of the same order of magnitude as with a disk rotating within a housing would expect.  The 

moment calculated in this preliminary study will be used to rationalize the initial prediction 

that a disk rotating in a housing will experience less frictional drag when compared to a 

disk spinning without boundaries.  This prediction is based solely on the comparison of 

moment coefficients between of a disk rotating in different environments.  More 

importantly, it will justify the prediction that locating the working flywheel within an 

enclosure will be the first effort to reduce the drag moment, increasing the energy system’s 

overall efficiency.  Following the five step solution method [28], the known data for 

concerning the flywheel can be found in the following tables. The approximate physical 

properties of air are given below in Table 5 [3].   
Table 5.  Physical properties of Air at Standard Atmospheric Pressure [3] 

P  T  ρ μ υ R  γ  

kg/m2 = Pa   K  kg/m3  N‐s/m2  m2/s    KkgJ ⋅   ‐‐‐ 

101325  288.15  1.223  1.79E‐05  1.46E‐05  2.87E+02  1.4 

Table 6 specifies the geometrical parameters of the flywheel.  The listed angular speed of 

the flywheel corresponds to its maximum operating speed, an equivalent of 1,000 

revolutions per minute; the rotational speed at which the maximum viscous torque will be 

produced.  The friction moment will be calculated for the flywheel at rest up to said 

maximum angular speed to determine the approximate angular velocity at which the 

viscous moment becomes detrimental to the operating efficiency of the system. 
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Table 6. Flywheel Parameters 
Description  Symbol  Value  Units 

 diameter  d  5.9  m 

radius  R  2.95  m 

thickness  t  0.9  m 

angular velocity range  ω [0 ‐ 104.72]  rad/s 

A schematic of the unbound rotating disk can be seen in Figure 2 of section (2.1.1).  The 

flow pattern, as a result of the rotation of the disk, can also be visualized in the same 

figure.  Due to the size of the flywheel, all three flow regimes (laminar, transition, turbulent) 

will be present at angular speeds greater than five radians per second.  At the current 

time, the moment coefficients determined by past investigators are unique only to laminar 

and turbulent flow; the transition zone is treated as a demarcation line rather than an 

actual region.  Thus, for the scope of this study, the transition region will be ignored, 

focusing specifically on a laminar region and a turbulent region.  Unless otherwise noted, 

the flow will be assumed to transition from laminar to turbulent flow at a Reynolds number 

of 3x105 [4].  Therefore, equation (2.4) can be used to determine the transition radius on 

the disk, deciphering between the two regions present on the circular top and bottom 

surfaces of the disk.  This calculated transition radius will be used for all scenarios in this 

theoretical drag analysis.  The total turning moment on the flywheel will be found by 

subtracting the critical turbulent moment (acting from 0R = to the critical radius trR R= ) 

from the total turbulent moment and then adding the laminar moment that occurs over the 

said critical area: 

 ( 2.95 ) ( ) ( )tr trTotal turb R m turb R R lam R RM M M M= = == − +  ( 3.1)

The final moment equation listed above is based on the theoretical methodology of 

Granville [39].  The viscous moment coefficient to be used in equation (3.1) will be 

determined using various methods.  The theoretical equations determined by past 

investigators will be one scheme for determining drag coefficients.  Some methods of past 

investigators will have to be combined in order to fully analyze the friction resistance of the 

entire flywheel.  For example, von Karman only determined a moment coefficient for the 

circular top and bottom surfaces on a rotating disk.  Therefore, his efforts will have to be 

combined with other’s to include parasitic drag contributions due to edge effects.   

Experimental data from earlier studies will be another technique to determine the 

said coefficients.  Finally, a combination of the two methods will be a third scheme to 
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determine frictional losses.  More specifically, experimental data will be input into the 

logarithmic equations derived by Goldstein and Granville to predict friction coefficients.  

Implementing diverse methods as mentioned should offer an accurate portrayal of the 

aerodynamic forces experienced by the flywheel.  

Microsoft EXCEL will be utilized in order to make the aforementioned calculations 

at a range of angular speeds and pressures.  Basic “if” statements will be used in EXCEL 

to apply the appropriate conditions and determine the resulting friction moment.  Iterations 

will be made at various angular speeds of the flywheel, with a step size of one radian per 

second.  The results can then be compared to experimental data of earlier studies.  

3.2 Numerical Drag Methods / Optimal Gap Design 
The prediction of skin friction on the surface of a body in an attached flow is nicely 

accomplished by means of a boundary layer solution coupled with an inviscid flow 

analyses to define the flow conditions at the edge of the boundary layer [1].  This well-

developed approach is often too complex and tedious to carry out by hand.  However, 

many commercial CFD programs have the ability to rapidly carry out the desired 

calculations.  Although these advanced computer programs can quickly produce results, 

an important consideration is the accuracy of the said results.  More specific to the 

flywheel problem, the accuracy of the CFD Navier-Stokes equations used to determine 

skin-friction and heat transfer must be investigated.  The need to have a very closely 

spaced grid in the vicinity of the wall, uncertainty in the accuracy of turbulence models 

when turbulent flow is being calculated, and the lack of ability of most turbulent models to 

predict transition (from laminar to turbulent) are three definite aspects that tend to diminish 

the accuracy of Navier-Stokes solutions [12].   

However, since the present flow about a rotating flywheel does not experience 

separation at any point, the use of boundary layer solutions for skin friction and 

aerodynamic heating is an advantageous approach that will be used.  Also, the following 

CFD procedures will only be used for the scenario of the flywheel rotating within a housing 

to help visually depict the flow phenomena and characteristics involved in this study.  It 

should be noted that CFD will be used only to seek trends in the flow; the computational 

simulations do not exactly imitate and thus, actual flow parameters will not be obtained 

from the flow.    The unbound flywheel is a more trivial problem and will not be analyzed 

with CFD methods.  The following geometries of the flywheel and enclosure combination 

will be investigated.  The terms s and c denoted the axial and radial distances from the 
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flywheel to the housing, respectively.  These dimensions were determined considering two 

parameters: (1) boundary layer thickness and (2) staying within the s/a ratio range tested 

by Daily/Nece so that their results could be used as a means of comparison.  The 

boundary layer thickness on the top and bottom face of the flywheel, at maximum angular 

velocity, was calculated to be approximately 4.1 centimeters ( 1 50.522( )δ ν ω= by von 

Karman and 2 1 50.526( )Rδ ν ω=  by Goldstein).  Thus, the spacing of 0.0826 meters is 

used to leave a gap between the boundary layers expected to form on the flywheel and 

the ceiling/floor of the enclosure.  Housings one and two are designed to have separated 

boundary layers in the axial direction.  Housing numbers 3 and 4 are intended to provide 

separated boundary layers with a much greater “core” region.  Housing numbers 5 and 6 

are implemented to have merged boundary layers in an attempt to analyze changes in 

velocity and pressure as the flywheel rotates. 
Table 7. Gap spacing schemes examined using CFD 

Housing # Axial Gap: s (m.) Radial Gap: c (m.) 
1 0.0826 0.0826 
2 0.0826 0.018792 

3 0.64015 0.64015 

4 0.64015 0.018792 

5 0.037465 0.037465 

6 0.037465 0.018792 

The angular speed of the flywheel will be manipulated along with the scenarios in the 

above table in an attempt to achieve the four flow regimes discussed by Daily and Nece in 

a previous section of this report.  The gap spacing chosen are based on the experimental 

studies of the previously mentioned research team.  The as / ratio range of 0.0127 to 

0.217 was applied to the flywheel dimensions ( mR 95.2= ) so that proper comparison to 

the experimental results of Daily and Nece could be achieved.  The velocity profiles and 

pressure distributions through the varying gap spaces will be examined to determine the 

effect, if any, the axial and radial gaps have on the flow around the flywheel. 

A legitimate starting point is to discuss the pre-process setup of the flywheel CFD 

analysis. The flywheel simulation will first be modeled in GAMBIT, version 2.4.6.  The flow 

about a rotating flywheel in an enclosure can be considered axisymmetric flow.  More 

specifically, the azimuthal flow about the z-axis does not change at any given radial 

distance ( 0φ∂ ∂ = ).  Thus, the flow can be modeled as two-dimensional which will greatly 

simplify matters and ultimately shorten computation time by reducing the extent of the 
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computation model to a symmetric subsection of the overall physical system [47].  For two-

dimensional axisymmetric problems, the rotation does not need to be defined; the rotation 

will always be about the x-axis by default, with the origin at (0,0) [47].  The flow will be 

modeled as two-dimensional, axisymmetric swirl flow (setting found in the Solver panel).  

This setting effectively activates the solution of the momentum equation in the 

circumferential direction [48].  Remember, the axisymmetric assumption only implies the 

absence of circumferential gradients; non-zero circumferential velocities can and will 

appear in this flywheel study.  Despite the fact that this study concerns a flywheel rotating 

about a vertical axis, it will appear to be revolving around the horizontal x-axis when first 

modeled.  However, this orientation will not in any way skew the results; gravitational 

effects will still be oriented in the proper direction.  Once the outline of the figure is drawn, 

a mesh will be applied to divide the computational domain into cells (elements).  This 

constitutes one of the most important steps during the pre-process stage [12].  For each 

geometry, a structured mesh will be applied, using sub-mapping, mapping, quad-element, 

and tri-element variances.  Also, a boundary layer mesh will be applied to the surfaces of 

the flywheel as well as on the enclosing walls.  This places a heavy concentration of nodes 

in locations where viscosity has the greatest effect.  By increasing the number of cells (i.e., 

with decreasing mesh spacing) in the computational domain geometry, the accuracy of the 

solution is usually enhanced [12].  The order of the mesh generation goes as follows: (1) 

boundary layer mesh, (2) edge mesh, (3) face mesh. The geometry and mesh of housing 

number 1 (see Table 6) can be seen below in figure 25.  The flywheel, chamber, and 

housing will be meshed using different methods to assist in checking for accuracy.  For the 

first method, the geometry will be divided into three separate faces (Figure 25), meshing 

each face individually.  Also, the entire region will be kept as a single, open face and then 

meshed appropriately.  A zoomed in view of the mesh using the first of the aforementioned 

methods can be seen in Figure 26.  The coarser grid near the wall represents the 

approximate region where the boundary layer is expected to inhabit.  From experience, 

anywhere from five to ten nodes need to be placed across the boundary layer mesh to get 

optimum simulation results.  



  70

 
Figure 25.  Geometry of flywheel, computational    

domain, and enclosing walls (3 faces) 

 
Figure 26.  Structured, boundary layer mesh 

The flow being modeled will be considered steady, viscous flow.  This will eliminate any 

time-dependence variables in the governing equations.  The flow will be simulated with 

various turbulence models for a compressible gas.  Setting the fluid type to ‘ideal gas’ will 

include compressibility effects into the calculations; for compressible flows, the ideal gas 

law is the appropriate density relationship [47].  The input of the operating pressure is of 

great importance when you are computing density with the ideal gas law.  Equation (3.2) 

notes that the operating pressure is added to the relative pressure field computed by the 

solver, yielding the absolute static pressure.   
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The appropriate density and viscosity (materials menu) will be set under material 

properties corresponding to the operating temperature.  The boundary conditions are set 

so that the designated flywheel section of the two-dimensional geometry is a rotational 

surface.  Simulations will be executed at a range of angular velocities, with a maximum 

speed of 104.72 radians per second (the default units used by FLUENT for angular 

speed). The outer walls of the geometry will be set to stationary walls while the two small 

lines connected to the x-axis will be set as an ‘axis of symmetry’.  Taking advantage of the 

symmetric geometry of this problem will greatly reduce computation time. 

Now that the pre-process steps have been identified, the CFD solver procedures 

will be outlined.  There are many difficulties associated with solving compressible flows; 

mainly, complexity arises as a result of the high degree of coupling between the velocity, 

density, pressure, and energy [12].  The said coupling leads to instabilities in the solution 

process and often needs unique techniques to reach the desired, converged solution.  In 

all cases, the initial solution will be found at a reduced angular velocity as a laminar flow 

model.  This will give a good initial guess with the intent that will ultimately allow for 

turbulence model solutions to converge at a more rapid pace. 

Each scenario will be modeled at a specific angular speed which will remain 

constant until a solution is reached.  Since the modeled flows will not be time dependent, 

an operating pressure will be used versus a floating-point pressure function.  However, the 

operating pressure is less significant for higher-Mach number compressible flows [47].  

The pressure changes in said flows are much larger, eliminating the need to use gauge 

pressures.  Since FLUENT always uses gauge, the operating pressure can be set to zero, 

making gauge and absolute pressures equivalent ( gaugeoperatingabs PPP += ) [47]. 

For scenarios one and two (housing one and housing two), a variation of 

turbulence models will be used to visualize the flow and examine the spacing of the 

enclosing walls.  Once grid independence has been established amongst the various 

enclosure geometries, a normalized viscous moment will be graphed versus the number of 

cells used in the mesh to prove grid independence has been reached.  It should again be 

noted that the CFD simulations are not intended to strictly imitate the exact flow around 

the flywheel.  Instead, it will be used to provide a means to visualize the flow around the 

flywheel amongst the varying gap sizes.  The turbulence model which produces the most 
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comparable results when compared to experimental and numerical results of the past will 

be deemed the most beneficial for the purpose of viewing images of previously mentioned 

flow phenomena.  Once a beneficial turbulence model has been selected, the said model 

will be used to simulate the flow in the remaining four housing geometries: housing 

numbers 3 through 6; Table 6).  

No single turbulence model is universally effective at reaching solutions for all 

types of problems.  The choice of turbulence model will depend on considerations such as 

the physics encompassed in the flow, the established practice for a specific class of 

problem, the level of accuracy required, the available computational resources, and the 

amount of time available for the simulation [48].  Thus, both the abilities and limitations of 

each model must be factored in the decision of which model will best suit the simulation of 

flow around the flywheel.   

There are two computational methods to consider when picking a turbulence 

model: (1) RANS – Reynolds Averaged Navier-Stokes and (2) RSM – Reynolds Stress 

Model.  The Reynolds-averaged Navier-Stokes equations govern the transport of the 

averaged flow quantities, with the whole range of the scales of turbulence being modeled. 

The RANS-based modeling approach therefore greatly reduces the required 

computational effort and resources, making it a desirable approach for the flywheel 

analysis [48].  In Reynolds averaging, the variables in the Navier-Stokes equations are 

classified into mean and fluctuating elements: 

 i i iu u u′= +  ( 3.3)

In equation (3.3), the terms iu  and iu′  represent the mean and fluctuating velocity 

components, respectively.  The same principle is applied to all scalar properties such as 

pressure ( i i iφ φ φ′= + ) and these manipulated variables are substituted into the Navier-

Stokes equations accordingly.  When applying RANS, there are three turbulence models 

to choose from: (1) Spalart-Allmaras (SA), (2) k ε− , and (3) k ω− .  In the case of the 

Spalart-Allmaras model, an additional equation is added to the existing governing 

equations which represent the turbulent viscosity.  The SA model is thus known as a ‘one-

equation’ turbulence approach. The k ε−  and k ω−  turbulence models are known as 

‘two-equation’ models, as they invoke two additional transport equations.  The additional 

variables introduced by these models are turbulent kinetic energy ( k ), turbulence 

dissipation rate (ε ), and the specific dissipation rate (ω ). 
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The alternative approach to Reynolds-averaging is the full Reynolds stress model 

(RSM).  The RSM is the most elaborate turbulence model that FLUENT provides [48].  

The RSM accounts for the effects of streamline curvature, swirl, rotation, and rapid 

changes in strain rate in a more rigorous manner than one-equation and two-equation 

models, and has greater potential to give accurate predictions for complex flows [48].  The 

Reynolds stress method closes the Reynolds-averaged Navier-Stokes equations by 

solving transport equations for the Reynolds stresses, together with an equation for the 

dissipation rate.  To prove the complexity of the model, the additional variables require the 

addition of five transport equations (seven additional equations for three-dimensional flow), 

making it otherwise known as a ‘five-equation’ model.   

Once an efficient turbulence model is selected, further tests must be completed to 

establish grid independence; more specifically, an evaluation of the numerical uncertainty 

(i.e., accuracy) within the simulation is necessary.  It is important to recognize the fact that 

a converged solution does not necessarily indicate an accurate solution [12].  

Convergence of a numerical process can be stated as the solution of the system of 

algebraic equations approaching the true solution of the partial differential equations 

having the same initial and boundary conditions as the refined grid system; this type of 

convergence is more formally known as grid convergence or grid independence [12].  

Some prevalent sources of error when dealing with numerical solutions include: 

discretization error, round-off error, iteration/convergence error, physical-modeling error, 

and human error [12].  

A second type of convergence is known as iterative convergence.  There are three 

important aspects to abide by to reach iterative convergence: (1) the discretized equations 

(momentum, energy, etc.) are deemed to converge when they reach a specified tolerance, 

(2) the numerical solution no longer changes with iterations, and (3) overall mass, 

momentum, energy, and scalar balances are obtained [12]. 

The recommended procedure that will be used for estimation and reporting of 

discretization error is the Richardson Extrapolation (RE) method [53].  The first step is to 

identify a single cell, mesh, or grid size (h) that can be followed through the error 

estimation procedure.   
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Equation (3.4) gives the area of concerned cell ( iAΔ ) and the total cell count of the 

corresponding refined mesh ( N ).  This equation is to be used when integral quantities are 

considered [53].  Thus, in this flywheel study, the appropriate integral quantity that will be 

followed is the viscous moment.  For this method, the grid being inspected must be refined 

a minimum of two times, giving a total of three different meshes to compare.  It is critical to 

refine the grid in a structured manner; the use of geometrically similar cells is preferable 

[53].  Next, the order ( p ) of the concerned property must be determined; as mentioned, 

the property to be tracked in this study will be the overall moment about the flywheel’s axis 

of rotation.  The following equations will be used to determine the order [53]: 
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  32 211*sin( )s ε ε=           where  ij i jε ϕ ϕ= −  ( 3.5c)

Equations (3.5) can be solved by using fixed-point iteration, with the initial guess being 

equal to the first term of equation (3.5a) [53].  It should be noted that the term ϕ denotes 

the solution of each grid; ( 1ϕ is the moment solution of grid one, etc.).  Next, the 

extrapolated values, approximate relative error, and the extrapolated relative errors will all 

be calculated [53]: 
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Finally, the previously calculated values from equations (3.5) and (3.6) are summoned to 

determine the fine grid convergence index: 
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For this study, a convergence criteria of three percent was chosen as the determining 

factor whether a grid had reached independence.   
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Now that grid independence has been established, the mesh can be used for each 

simulation as the turbulence model is changed.  Once the grid has reached independence, 

the model must be checked for iterative convergence.  To assess iterative convergence, 

converged solutions will be obtained when the absolute convergence criteria is set to both 

103 and 104.    The approximate relative error will be checked between the two solutions, 

making sure no significant change in solution has occurred (again, a criterion of around 

three percent was used for comparison).  If there exists more than a three percent 

difference between iterations, the order of convergence will be continually increased by an 

order of one until the criteria is satisfied. Also, to seek further accuracy, each solution will 

be obtained using first and second order discretization techniques.   

The results of the CFD simulations will have multiple applications.  The major 

purpose for the computational drag analysis was to be used as a means of comparison for 

the theoretical parasitic drag analysis completed on the enclosed flywheel.  In the best 

case scenario, the numerical calculations will show close agreement to theoretical results.  

As in the analytical portion, the effects of the viscous moment as a result of pressure 

reduction will be examined.  Finally, CFD will be used to examine the effects, if any, of 

varying the gap size between the flywheel and housing in the axial and radial directions.  If 

the said spacing has a noticeable effect on the drag-moment, the optimal housing design 

for the designed flywheel will be sought.  Plots from the CFD solutions will be examined in 

an effort to look at boundary layer reactions as a function of gap size; the interaction of the 

viscous layer formed on the flywheel with an opposing layer formed on the enclosure.     
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C H A P T E R  4 :  R E S U L T S  

The theories and methodology described in previous section was applied to the 

current flywheel study.  The main objective of this study was to conduct a theoretical, 

parasitic drag analysis of a current flywheel.  Thus, the first section in this chapter will 

present the calculated drag moments based on past theoretical research.  The resulting 

friction moment is shown for both an unbound and enclosed flywheel for comparison.  The 

said drag moments will then be presented as a function of varying pressure to determine if 

a reduced pressure system is worth investigating.  The computational results will then be 

compared to theoretical work.  Finally, the CFD simulations will be analyzed and 

compared to theoretical values in an attempt to determine optimal gap spacing in both the 

axial and radial directions between the flywheel and housing.  The CFD simulations will 

also serve as a means to depict various flow phenomena around the flywheel such as 

boundary layers and Taylor Vortices. 

4.1 Theoretical Results 
As described in the methodology section, the drag of the specified flywheel was 

first calculated at atmospheric pressure for two scenarios: (1) rotation in free space and (1) 

rotation inside an enclosure.  The moment coefficient at corresponding Reynolds numbers 

was found using various theoretical approaches from earlier researchers; theories from the 

past were applied to the current flywheel study in an attempt to accurately predict the 

viscous moment it will experience at maximum rotational speed.  The results, compared to 

experimental data from past work, can be seen in the figures (27-30).  The experimental 

values used in this thesis were collected from past studies of spinning disks and rotating 

cylinders.  Compressibility effects appear to be limited as was first discovered by 

Theodorsen and Regier; this can be verified in Figure 12 (Chapter 2) as the different 

theoretical methods (based on incompressible assumptions) closely agree with test data 

collected at a Mach number range of 0.29 to 1.69.  These Mach numbers correspond to 

approximate, flywheel operating speeds between 30 and 200 radians per second (rps), 

respectively. The maximum rotational speed of the flywheel is 105 rps.  Thus, based on 

experimental and theoretical comparison, the maximum operating speed of the flywheel 

falls in a range where compressibility effects can be ignored for this preliminary drag 

analysis.  Past experimental values determined by Kempf, Schmidt, Daily and Nece, and 

Zumbush are also used as a means of comparison for various scenarios and can be seen 
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in Figure 27 through Figure 34.  It should be noted that Figures 27 through 32 represent 

the moment coefficient for the top and bottom surface of the flywheel only.  The 

experimental values in the same figures strictly correspond to these surfaces as well.  

Additional viscous friction will be present as a result of edge effects. 

4.1.1      Unbound Flywheel 

This section examines the friction moment experienced by the flywheel while 

rotating in free space.  This calculation approximates the viscous moment of the flywheel 

as if it were operating above ground, open to the atmosphere (neglecting atmospheric 

influences).  The moment coefficient was calculated as a function of the Reynolds number; 

the coefficients plotted in Figure 27 represent the laminar flow regime.  All methods 

described in Chapter 2 were applied to this flywheel analysis.  The theoretical methods 

included in this section were selected based on agreement to past experimental data.  

Also, this section pertains to the calculation of the viscous moment coefficient of the top 

and bottom surfaces of the flywheel only; the contribution to the total friction drag by the 

edge of the flywheel will be discussed in a following section.  
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Figure 27. Theoretical Moment Coefficients for Laminar Flow around an Unbound Flywheel 
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It should be noted that the theoretical methods of Cochran and Granville are represented 

by the same line due close agreement between each person’s laminar moment coefficient 

equations.  Comparing the experimental and theoretical data of Figure 27, close 

agreement is found up to Reynolds numbers nearing 3x105.  This discrepancy can most 

likely be attributed to the transition from laminar to turbulent flow.  From past experimental 

work, a critical Reynolds number for an unbound rotating disk was found to be 3x105 [4].   

Figure 28 compares the moment coefficient to Reynolds number for the turbulent 

regime.  Unfortunately, for a disk rotating in free space, there is a limited range of 

experimental data.  Most tests of the past have been completed at low Reynolds number 

flows.  From Figure 28, it appears that Goldstein and Granville’s theoretical methods 

would also be best suited for turbulent flow.  It appears that the theory of Goldstein shows 

the best agreement to turbulent flows having a Reynolds number of the magnitude of 106.  

Granville’s turbulent theory shows the closest agreement to experimental values when the 

Reynolds number nears 107. 
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Figure 28. Theoretical Moment Coefficients for Turbulent Flow around an Unbound Flywheel 

Referring to Figure 28, divergence between theoretical and experimental values is noticed 

for flows governed by Reynolds numbers less than 106.  The disagreement is again most 

likely caused by transition regions in the flow.  As the Reynolds number increases, 
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Goldstein’s theoretical methods show agreement with the experimental work of Kempf.  

For higher values of Reynolds number, approaching 107, Granville’s method produces 

similar values to the measurements of Theodorsen and Regier.  Based on this 

comparison, the methods of Granville initially appear the best choice, due to the high 

Reynolds number flow experienced by the flywheel.  There is a lack of experimental data 

for rotating disks and cylinders above Reynolds numbers of 107.  This becomes a problem 

as the 1 7 -power law, a basis of many theories considered in this study, is only valid up 

until this critical range.  Thus, the logarithmic methods utilized by Goldstein and Granville 

are expected to provide more accurate results, when calculating the viscous torque.  

According to Figure 28, the moment coefficient found at maximum operating speed for the 

flywheel can be estimated to be between 0.005 and 0.0058. 

 Enclosed Flywheel 

This section shows the calculated results for the friction moment experienced by 

the flywheel while rotating within an enclosure.  Figure 29 displays the theoretical values 

for the laminar flow regime.  
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Figure 29.  Theoretical Moment Coefficients for Laminar Flow around an Enclosed Flywheel 
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From Figure 29, it appears that all three theoretical considered show agreement to 

experimental values up to approximately 2.8x105.  As with the unbound condition, this can 

most likely be attributed to transition in the flow from the laminar to the turbulent regime.  

There is one stray data point that shows complete divergence from theory.  One possible 

explanation for this could be due to experimental error, as the nearest points all show 

agreement to theory. 

Figure 30 displays the moment coefficient calculated for the scenario of the 

flywheel operating within an enclosure. 
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Figure 30.  Theoretical Moment Coefficients for Turbulent Flow around an Enclosed Flywheel 

The theoretical methods of Schultz-Grunow appear to be considerably lower than 

experimental values.  For a small range of eR , near 107, his method does show agreement 

to measured values.  Ippen’s theoretical methods show more agreement to experimental 

methods, but are also generally lower than measured values.  This again can be attributed 

to the fact that the power-law in only applicable up to 710eR = .  A comparison between the 

free and enclosed disk conditions for laminar flow is included in Figure 31.  According to 

Figure 30, the moment coefficient found at maximum operating speed for the encased 

flywheel can be estimated to be between 0.0022 and 0.0025; this is approximately a 50% 

reduction when compared to the value for the flywheel operating in open space.. 
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Figure 31.  Unbound Flywheel versus Enclosed Flywheel: Laminar Flow 

Figure 31 shows that placing the flywheel within a housing significantly reduces the 

moment coefficient.  The moment coefficient curves all follow the same trends as the 

Reynolds number is increased.  The biggest difference between the flywheel rotating in 

free space versus within a housing occurs at the lowest values of Reynolds numbers 

(approximately a 37% decrease between the free and enclosed average flywheel 

coefficients).  As the flow approaches transition to turbulence, the difference between the 

moment coefficients representing the two flywheel operating scenarios decreases 

(approximately a 31% decrease in average flywheel coefficients).   

The difference between the moment coefficients for each flywheel scenario is 

given in Figure 32 for the turbulent regime. 
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Figure 32. Unbound Flywheel versus Enclosed Flywheel: Turbulent Flow  

The reduction in the drag coefficient between the free operating and enclosed flywheel is 

more drastic for the turbulent flow regime.  According to past theoretical methods, the 

flywheel moment coefficient can be reduced by approximately 50 to 55% by including a 

casing around the revolving flywheel. 

 Flywheel Edge Effects 

Up until this point, only the circular top and bottom surfaces of the flywheel have 

been examined.  This section describes the contribution of the flywheel’s edge surface to 

the total friction moment experienced by the flywheel.  Dorfman deducted a theoretical 

relation to determine impact of a disk’s edge surface on the total moment of the disk.  His 

theory predicts that the edge of the current flywheel will account for approximately 40% of 

the overall friction torque ( 0.567M MC C ′= ).  Thus, the top and bottom surfaces of the 

flywheel will each contribute roughly 30% to the viscous torque.   

The flywheel was modeled in FLUENT to further investigate the influence of the edge of 

the flywheel, compared to the total torque of the disk.  Each configuration (varying axial 

and radial gap clearance) listed in Table 7 was modeled in FLUENT to analyze the gap 
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clearance.  The results can be seen below in Tables 8 through 13.  Also included in the 

tables is proof of grid convergence of each model.  Each simulation was completed using 

the k-Omega SST turbulence model, carried out to second order convergence.  The first 

column of Table 8 displays the convergence criteria used for each model.  Convergence 

was first established at 10-3, and then increased by an order of magnitude to 10-4, to prove 

the model had achieved iterative convergence.  Columns 2 through 6 were used to 

establish grid independence.  The ‘Adapt’ column indicates the number of adaptations that 

have been completed.  The mesh was continually refined until the resulting total moment 

stayed true to within 3 percent of the previous grid adaption.  Once a variation between the 

concerned value was no longer noticeable, grid independence had been established (CGI 

method).  Both grid and region refinements were used in this process.  As mentioned in 

the methodology section, the faces of the flywheel were all created separately.  Thus, the 

contribution of the total viscous torque caused by the top surface, the bottom surface, and 

the edge could be determined.  A sample of the resulting moment, as calculated by 

FLUENT, can be seen below in Figure 33. 

 
Figure 33. Sample Force Summary Calculated by FLUENT 

 

Table 8. Housing 1: Impact of Flywheel Edge on Total Moment (FLUENT) 
Continuity Adapt Cells Faces Nodes MTotal CGI MTop MBottom Medge MTop/Bottom/MTotal MEdge/MTotal

--- --- --- --- --- N-m % N-m N-m N-m --- ---
--- 18750 38275 19526 -813.91 --- -242.41 -242.41 -329.10 0.60 0.40
1 37098 76505 39408 -751.12 7.71 -227.21 -227.21 -296.71 0.60 0.40
2 74046 153485 79440 -795.78 5.95 -244.88 -244.88 -306.02 0.62 0.38
3 148392 301402 153011 -804.75 1.13 -242.91 -242.91 -318.94 0.60 0.40
3 148392 301402 153011 -803.84 0.11 -242.66 -242.66 -318.52 0.60 0.40

1x10-4 3 148392 301402 153011 -805.84 0.25 -242.83 -242.83 -320.17 0.60 0.40

1x10-3
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It can be seen in Table 8 that the results from FLUENT show very close agreement 

to Dorfman’s prediction of the overall influence a rotating disk’s edge has, based on its 

geometry.  Table 9 includes the same information for the geometry configuration labeled 

as housing 2 in Table 7 of this thesis. 

Table 9. Housing 2: Impact of Flywheel Edge on Total Moment (FLUENT) 
Continuity Adapt Cells Faces Nodes MTotal CGI MTop MBottom Medge MTop/Bottom/MTotal MEdge/MTotal

--- --- --- --- --- N-m % N-m N-m N-m --- ---
--- 18760 38358 19599 -9206.69 --- -2781.42 -2781.42 -3642.75 60.42 39.57
1 38620 79738 41119 -534.12 94.20 -140.02 -140.02 -254.08 52.43 47.57
2 88150 182850 53222 -613.16 14.80 -171.93 -171.93 -269.29 56.08 43.92
3 154480 313956 159477 -612.79 0.06 -172.77 -172.77 -267.24 56.39 43.61
3 154480 313956 159477 -610.36 0.40 -172.23 -172.23 -265.90 56.44 43.56

1x10-4 3 154480 313956 159477 -609.67 0.11 -171.69 -171.69 -266.29 56.32 43.68

1x10-3

 

The FLUENT results for housing 2 also show very comparable results when compared to 

Dorfman’s theoretical work.  The results for housing 2 show near exact agreement with 

Dorfman’s equation.  Since close agreement is found between the theoretical and 

numerical data, Dorfman’s equation will be used as a good approximation to calculate the 

contribution of the flywheel’s edge to the total viscous moment. 

4.1.4     Theoretical Gap Design 

The previous section presented an investigation of the influence of the radial 

clearance between the flywheel and enclosure to determine the impact on the viscous 

torque.  This section offers a similar investigation involving the axial spacing between the 

top and bottom surfaces of the flywheel to the ceiling and floor of the enclosure.  Daily and 

Nece’s process for determining the chamber dimension effects on the frictional resistance 

of an enclosed rotating disk were closely followed [40].  The same geometries analyzed in 

FLUENT (Table 7) were used in this section ( ( )0.0127, 0.028, 0.217s a s a s a= = = .  

The breakdown of the four flow regimes they outlined is given for each housing geometry 

from Table 7.  The presence of each flow regime (refer to Chapter 2 for a thorough 

description) is theoretically determined by the intersection of the lines describing each 

regime in a logarithmic scaled plot; refer to Figure 13.  The theoretical moment coefficients 

are compared to empirical relations obtained from rigorous experimental data obtained by 

Daily and Nece.  They found their empirical relations to be accurate to within one percent 

when compared to their test data [40].  Regimes I through IV would most likely occur in 

numerical progression.  Thus, the intersection points of each regime curve must be 

predicted to understand what type of flow is occurring within the given geometry. 
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Figure 34. [ s/a = 0.0127];  Delineation of Flow Regimes based on Theory of Daily & Nece [40]. 

After applying the theory of Daily and Nece to the current flywheel, the calculated moment 

coefficients closely agree with the empirical curves which ultimately represent 

experimental values.  There is a large difference between the Regime IV curves when 

comparing theoretical and experimental data.  One possible cause for this difference is 

again the use of the power law, which is not applicable to the turbulent flow at Reynolds 

numbers greater than 107. 

Based on the range of Reynolds number present in this flywheel study, for 

0.0127s a = , Regime I does not seem to exist.  If lower Reynolds numbers could be 

obtained, a linear extension of the line representing Regime I would indicate where it 

would interact and transition into other regimes.  Based on the predicted intersection of 

each regime curve in Figure 34, it appears that Regime III type flow (turbulent flow with 

merged boundary layers) is dominant across most of the Reynolds numbers covered.  The 

flow appears to be turning into Regime IV type flow as 810eR = is approached (based on 

the the theoretical coefficient; it should be noted, however, that Daily and Nece found an 

error of 17% when comparing Regime IV experimental and theoretical data).  For this 

geometry, Regime II active flow type for the laminar region and Regime III dominates the 
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majority of the turbulent regime over the entire range of eR covered.  Thus, for this 

geometry, the governing relations for the aforementioned regimes will be used to calculate 

the total moment for the top and bottom of the disk. 
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Figure 35.  [ s/a = 0.028];  Delineation of Flow Regimes based on Theory of Daily & Nece [40]. 

The same procedure was followed for the geometry ratio of 0.028s a = and can be 

reviewed as Figure 35.  Again, the range of eR does not reach low enough values for 

Regime I to exist in this particular geometry.  From Figure 34, Regime III appears between 

eR = 3x105 and eR = 2x106 (approximately).  From here, it appears that Regime IV then 

takes over and dominates the flow pattern up through eR = 5x107.  The boundary layers 

are expected to be separated for this geometry due to the larger axial gap between the 

flywheel and housing.  The governing equations for Regime II and Regime IV will be used 

for this geometry.   

The same procedure was followed once again for the geometry ratio 

of 0.217s a = and can be reviewed as Figure 36.  Based on the eR range, Regime I was 

yet again not obtained.  As seen in Figure 36, Regime IV flow becomes the dominant 

regime around Reynolds number range of 3x104 to 4x104.  The moment coefficient 

equations representative of Regime II and IV will again be used on this geometry, due 
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another increase in the axial clearance dimension which further promotes the formation of 

separated boundary layers on the circular surfaces of the casing and flywheel. 
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Figure 36.  [ s/a = 0.217];  Delineation of Flow Regimes based on Theory of Daily & Nece [40]. 

Finally, based on the dominant flow regime present for each geometry, the viscous 

moments were calculated to determine if variation of the axial clearance had an impact on 

the overall torque.  The frictional torque is plotted as a function of the flywheel’s angular 

speed in Figure 36. 
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Figure 37. Viscous Moment of Flywheel; Effect of Axial Clearance (s/a) 

 A summary table of the maximum viscous torque experienced by the top and 

bottom surfaces of the flywheel is collected in Table 1.  The final column of the table is a 

percent difference compared to the maximum moment experienced by any of the three 

cases. 
Table 10. Moment Summary: Influence of Varying s/a 

s/a Flow Regimes Viscous Moment (N-m) Difference %
0.0127 II and III 3120.5 13.21
0.028 II and IV 3099.4 13.79
0.217 II and IV 3595.32 ---  

It can be seen in Table 8 that the two scenarios with reduced gap clearance in the axial 

direction experience a reduction of the skin-friction moment by approximately 13%, when 

compared to a large gap.  The large axial gap (s = 0.64015 m) does not experience the 

core flow achieved by close clearance chambers.  The core reduces transverses in the 

tangential velocity, ultimately reducing the torque of the flywheel. 
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4.1.5     Total Viscous Moment; Effects of Pressure Reduction  

Figures 38 shows the total viscous moment experienced by the flywheel during 

maximum operating speed; this torque includes the resistance created by both sides of the 

flywheel, as well as the edge surface. 
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Figure 38. Total Viscous Moment of Flywheel; Unbound- solid lines, Enclosed- dotted lines 

 
The viscous moment of the flywheel has now been determined over a range of angular 

speeds using various theoretical methods.  The said friction moment has been analyzed at 

atmospheric pressure.  The effect of reduced pressure on the friction torque of the 

flywheel will now be analyzed.  Following Theodorsen and Rigier’s discovery that the 

Mach number had no impact on the moment coefficient of a disk revolving in an enclosure, 

the viscosity at reduced pressure will be determined using the basic equation of state 

( P RTρ= ).  They performed experiments at Mach numbers up to 1.69; they found that 

compressibility effects were negligible.  More specifically, they discovered that the 

aforementioned theoretical theories from Chapter 2 closely agreed with experimental data.    

Since similar results were found using various methods, an average for the unbound and 

an average for the enclosed flywheel will be analyzed versus varying pressure. 
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When analyzing processes involving the reduction of pressure or temperature, 

critical values for each ( c cP and T ) must be considered from a compressibility chart 

( Z chart ).  The compressibility factor, Z , is a function of both the critical pressure and 

temperature.  As verified by the “ Z chart ”, the value of Z tends to unity for all 

temperatures as pressure tends to zero [28].  Thus, the more the pressure is reduced, the 

more applicable the ideal gas law becomes, giving validity to its use as a means to 

calculate pressure drop. 
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Figure 39. Effect of Pressure Reduction on Viscous Moment of Flywheel 

It can be seen in Figure 34 that a reduction in pressure has a significant impact on the 

overall friction moment of the flywheel.  If the chamber between the flywheel and 

enclosure can be evacuated down to one-twentieth of an atmosphere, the maximum 

friction moment of the flywheel drops from approximately 3,000 Newton-meters (at 

atmospheric conditions) down below 300 Newton-meters; a reduction of ninety percent.  

This proves that a reduced pressure system would have a significant, positive effect on the 

operation of the flywheel if the target chamber pressure of 1
20 of an atmosphere could be 

obtained. 
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4.2  Numerical Results 
This section presents a collection of visual flow phenomena collected using CFD 

techniques.  CFD was used to calculate flow patterns around the flywheel as it operates 

within a housing.  Included in this section are the visual results obtained for housing one 

(s= 0.0826 meters and c= 0.0826 meters); any results of the remaining five housing 

geometries not included in this section can be seen in Appendix D.  It should be noted that 

CFD was not used to calculate specific numerical results of the flow around the flywheel. 

The radial velocity profiles at various locations across the top surface of the 

flywheel are presented in Figure 35.  The radial location from the axis of rotation is given in 

the legend.  The velocity profiles produce expected results; near the rotation axis, the 

velocity profile is near linear as in plane Couette flow.  These profiles are considered to be 

laminar.  As the distance from the center axis to the end radius of the flywheel is 

approached, the slope continues to increase.  This represents a transition from laminar to 

turbulent flow, proving both regimes exist on the disk.  

 
Figure 40. Housing 1: Axial Velocity Profiles 

 

The profiles also depict boundary layer separation out until the very end of the flywheel.  

The profiles near the axis have large “core” regions with little radial velocity.  Near the 

outer radius of the flywheel, the “core” almost completely diminishes, showing regions 

where the boundary layers are almost merging.  Also, the radial velocity within the 

boundary layer attached to the flywheel moves from the axis of rotation towards the outer 
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radius of the flywheel.  This is attributed to centrifugal forces operating within the boundary 

layer.  Due to continuity, the reverse of this process occurs on the ceiling/floor of the 

enclosure, causing flow to compensate within the boundary layer attached to the ceiling 

and move in the opposite direction.  These compare to similar profiles obtained from 

experimental results of Daily and Nece, Figure 36: 

 
Figure 41. Experimental Data: Laminar and Turbulent Veloicty Profiles [40]. 
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Swirl velocity profiles in the axial direction also follow expected trends, Figure 37: 

 
Figure 42.  Housing 1: Swirl Velocity Profiles 

The final flow phenomena captured using CFD techniques are Taylor vortices between the 

edge of the flywheel and the housing walls, Figure 38: 

 
Figure 43. Taylor Vortices in Radial Gap 

 
 
 
These vortices compare very closely to the numerical Taylor vortices computed by He-

yuan and Kai-tai [43]. 



  94

 
Figure 44. Numerical simulation of Taylor Vortices (He-yuan and 

Kai-tai) [43]. 

CFD was effectively used as a means to model the flow phenomena around the flywheel 

as it operates within a housing.  A screen shot was taken at the radial gap between the 

flywheel and enclosure to examine the Taylor Vortices that form in various manners based 

on the geometry of the casing.  As seen in Figure 45, the formed vortices vary from one 

housing to the next. 
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C O N C L U S I O N S  

A theoretical study was conducted in order to determine the feasibility of, and if possible, 

the optimum design of a high inertia flywheel and casing to be implemented as a wind 

energy storage system.  A theoretical parasitic drag analysis was completed to determine 

the viscous moment of the current flywheel when rotating within an enclosure.  The 

flywheel, when operating in free space, will experience a viscous moment range between 

6,000 and 8,000 Newton-meters, depending on which theoretical method is employed.  

Four different flow regimes were considered to help predict the flow pattern around the 

flywheel, based on the geometry of the casing. Delineating the type of flow present in the 

chamber is advantageous as a more specific coefficient equation can be utilized based on 

the boundary layer interactions.  An initial procedure was to determine the viscous torque 

of the flywheel operating in unbound, free space (i.e., if operating on level ground at 

atmospheric conditions).  When placed in an enclosure, the moment coefficient for the 

turbulent regime is effectively reduced from a range of [0.005-0.006] down to a range of 

[0.0025-0.0035] (using various theoretical methods).  The flywheel experiences a 15 

percent decrease in drag by being placed within a tightly spaced enclosure.  The optimal 

spacing for the range of operation of the flywheel under investigation was found to be 

0.0826 meters in the axial and radial directions (note: this is based on a specific list of 

casing geometries modeled in FLUENT).  When the chamber pressure around the 

flywheel was reduced to the target of 1
20 of an atmosphere, the parasitic drag was 

reduced an additional 75 percent, compared to the friction moment experienced while 

revolving in free space.  

The initial reduction in friction torque experienced when the flywheel operates in an 

enclosure can be attributed to the existence of “core flow” when boundary layers remain 

very close, but separated.  This core has been found to rotate at approximately half the 

angular velocity of the flywheel.  The decrease in torque is most likely caused by a 

reduction in the transverse gradient of the tangential velocity to approximately half of what 

it would on a free disk.  Radial velocity gradients are only present in the boundary layers 

attached to the flywheel and enclosure.  The space in between them lacks this radial 

velocity, enabling the core to experience solid body rotation.   

In closing, It is particularly noteworthy that, apart from the case of very small gaps 

the moment of viscous forces is almost completely independent of the width of the gap, as 
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seen from the moment coefficient calculated. Comparing coefficients of free disk versus 

housing, it is seen that the moment on a free disk is greater than that on a disk in a 

housing.  This fact can be explained by the existence of the core which moves at half the 

angular velocity.  This decreases the transverse gradient of the tangential velocity to 

approximately one half of what it would be on a free disk and, consequently, the drag is 

also smaller than on a free disk.   

The resulting viscous moment calculated in FLUENT for the flywheel was 

considerably lower than the theoretical solutions obtained.  Further investigation of the 

current flywheel needs to be completed within FLUENT.  The flow characteristics around 

the flywheel resembled expected results, as Taylor vortices formed in the radial gap as the 

Reynolds number was increased.  Also, the formation of boundary layers can be seen on 

both the flywheel and housing walls, depending on the gap clearance. 
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F U T U R E  W O R K / R E C O M M E N D A T I O N S   

There are various aspects of this flywheel to study that can be improved 

and/or changed in an attempt to amplify the results.  The first recommendation is 

to broaden this study by designing an experimental apparatus.  A range of 

theoretical values of parasitic drag of the flywheel were obtained.  Thus, it is 

necessary to design a scale model of the flywheel and enclosure combination to 

get more specific results.  Schultz-Grunow [31] and Daily and Nece [40] both 

provide a detailed summary of the apparatus’ used in their respective studies.  

Their techniques can be correlated to the flywheel and housing dimensions in an 

attempt to obtain exact drag measurements for a flywheel operating in an 

enclosure; to this point, no information exists of this manner, pertaining to flywheel 

operation.  This experimental design will need to have the capabilities to cover a 

higher range of Reynolds numbers; the experimental data can then be used as a 

means of comparison for the theoretically determined moment coefficients from 

this study.  Also of particular importance for the future experimental apparatus is 

the ability to change the system’s geometry to further examine optimal gap 

clearance.  Thus, it is recommended that an interchangeable disk system with a 

rigid cylindrical housing be designed so that disks of various diameters and 

thicknesses can be tested.    

Also, a more in depth CFD analysis is in order to use as a supplement to 

the theoretical calculations contained in this thesis.  Heat transfer (i.e., viscous 

heating) is a major emphasis to include in future CFD work.  If an excess of 

heating occurs, a further means to cool the flywheel might need to be employed as 

well.  A three-dimensional model would also serve as a means to further verify the 

current theoretical and numerical data included in this effort. 

Finally, experimental data exists concerning surface roughness and 

polymer solutions exists which could be beneficial.  This data could be useful to 

determine improved surfaces to be placed on the flywheel and enclosing walls 

which could help further reduce parasitic drag.  It must also be determined what 

the machining capabilities are on an application such as this; more specifically, 
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what is the smallest possible gap obtained such that the enclosure can safely and 

effectively be built around the flywheel. 
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A P P E N D I X  A :  M A T L A B  C O D E  

This appendix contains a code written within the MATLAB systems tool box.  The two 
codes are used to calculate the derivative of the circumferential velocity component with 
respect to the axis of rotation.  This will be used in equation (2.1) to calculate shear stress 

(
du
dz

τ μ= ).  The circumferential velocity components are given by White [7].  In the 

following code, the subscripts one and two denote the radius of the inner cylinder and the 
radius of the enclosing walls, respectively.  This equation is applicable to small radial 
clearances between the flywheel and cylindrical housing walls ( innerinnerouter RRR <<− ). 
 
 
Moderate Gap  
%MATLAB Systems Tool Box: Differentiation of Velocity with respect to 
%Flywheel Radius 
%MODERATE Gap: Peripheral Velocity Component 
  
%r1 = inner cylinder radius (disk) 
%r2 = outer cylinder radius (Housing) 
%r = radius at any point between the disk and housing 
%w1 = angular velocity of inner cylinder 
  
syms r r1 r2 w1 
%define peripheral velocity between disk and housing 
u_theta=r1*w1*(((r2/r)-(r/r2))/((r2/r1)-(r1/r2))); 
%take derivative of u_theta with respect or 'r' 
dudr=diff(u_theta,r) 
 
dudr =  
r1*w1*(-r2/r^2-1/r2)/(r2/r1-r1/r2) 
   
>> pretty (dudr) 
  
                                   /   r2     1  \ 
                             r1 w1 |- ---- - ----| 
                                   |    2     r2 | 
                                   \   r         / 
                             --------------------- 
                                   r2     r1 
                                  ---- - ---- 
                                   r1     r2 
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Small Gap  
%MATLAB Systems Tool Box: Differentiation of Velocity with respect to 
%Flywheel Radius 
%SMALL Gap: Peripheral Velocity Component 
  
%r = radius at any point between the disk and housing 
%r1 = inner cylinder radius (disk) 
%r2 = outer cylinder radius (housing) 
%w1 = angular velocity of inner cylinder 
  
syms r r1 r2 w1  
%defibe peripheral velocity between disk and housing 
u_theta=r1*w1*(1-((r-r1)/(r2-r1))); 
%take derivative of u_theta with respect or 'r' 
dudr=diff(u_theta,r) 
 
dudr =  
-r1*w1/(r2-r1) 
   
>> pretty (dudr) 
  
                                      r1 w1 
                                   - ------- 
                                     r2 - r1 
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A P P E N D I X  B :  M O M E N T  C O E F F I C I E N T  S U M M A R Y  
T A B L E S  

This appendix offers a summary of the moment coefficients discussed and utilized in this 
study.  The tables offer credit to the deserved party, the applicable flow regime, and the 
section of the disk the coefficient is concerned; the term ‘disk’ refers to the circular top and 
bottom faces of the flywheel.   

Table B1. Theoretical Moment Coefficient Summary of Past Researchers (disk faces) 

Researcher Flow Regime Moment Coefficient 
Surroundings/

Area 

von Kármán Laminar 1 2

3.68
M

e

C
R

=  unbound disk 
(both sides) 

von Kármán Turbulent 51
146.0

e
M R

C =  unbound disk 
(both sides) 

Cochran Laminar 21

87.3

e
M R

C =  unbound disk 
(both sides) 

Cochran Laminar (v. Karman 
Correction) 21

38.3

e
M R

C =
 

unbound disk 
(both sides) 

Goldstein Turbulent ( ) 3.0log97.11
+= Me

M

CR
C

 unbound disk 
(both sides) 

Granville Turbulent 
(agrees w/ Cochran) 1 2

3.87
M

e

C
R

=  unbound disk 
(both sides) 

Granville 
Laminar 

& 
Turbulent 

( ) ( ) ( )
5 2

2 tr

tr tr

e
M M M Mturb turb lam

e

R
C C C C

R
⎛ ⎞ ⎡ ⎤= − −⎜ ⎟ ⎣ ⎦⎝ ⎠

 

unbound disk 
(both sides) 

Dorfman Turbulent 58.2)(log982.0 −= eM RC  unbound disk 
(both sides) 

Schultz-
Grunow Laminar 21

67.2

e
M R

C =  enclosed disk 
(both sides) 

Schultz-
Grunow Turbulent 51

0622.0

e
M R

C =  enclosed disk 
(both sides) 

Schlicthing Laminar 
12M

e

RC
s R

π=  enclosed disk 
(both sides) 

Ippen Laminar 1 2

2.600
M

e

C
R

=  enclosed disk 
(both sides) 

Ippen Turbulent 1 5

0.0836
M

e

C
R

=  enclosed disk 
(both sides) 
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Table B2. Theoretical Moment Coefficient Summary of Past Researchers (disk edge) 
Researcher Flow Regime Moment Coefficient Surroundings/Area 

Schlichting Laminar 
12M

e

RC
s R

π′ =  enclosed disk/edge 

Schmieden Laminar M
e

KC
R

′ =     where 2K R sπ=  enclosed disk/edge 

Dorfman Laminar ( )( )1 2.5M M
hC C R

′ = +  
unbound or enclosed 

disk/edge 

Daily/Nece Laminar 
ω
νπ

ca
bCM 2

4
=′  enclosed disk/edge 

Daily/Nece Turbulent 
a
bfCM 8

π
=′  enclosed disk/edge 

Daily/Nece  
Laminar ( ) e

M Ras
C π2

=  enclosed disk/ 
faces and edge 

Daily/Nece  
Laminar 

( )
21

10170.3

e
M R

asC =  
enclosed disk/ 
faces and edge 

Daily/Nece  
Turbulent ( ) 4161

080.0

e
M Ras

C =  
enclosed disk/ 
faces and edge 

Daily/Nece Turbulent 
( )

51

1010102.0

e
M R

asC =  enclosed disk/ 
faces and edge 
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A P P E N D I X  C :  M O O D Y  D I A G R A M  

This appendix includes the Moody diagram to determine the friction factor of a pipe ( f ).  
This factor is used to determine the moment coefficient for the edge of a rotating disk 
within a housing; from the experiments of Daily and Nece.  The friction factor, f , is used in 
equation (2.57) of this report.  The roughness coefficient, K, will be estimated to compare 
to commercial steel (K= 0.046). 
 
 

 
Figure C1. Moody Diagram [45]. 
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A P P E N D I X  D :  C F D  D A T A  T A B L E S  

This appendix includes the data collected from CFD simulations from FLUENT.  The main 
purpose of the provided data tables is to prove both grid independence and iterative 
convergence. 
 

Table 11. Housing 3: Impact of Flywheel Edge on Total Moment (FLUENT) 
Continuity Adapt Cells Faces Nodes MTotal CGI MTop MBottom Medge MTop/Bottom/MTotal MEdge/MTotal

--- --- --- --- --- N-m % N-m N-m N-m --- ---
--- 18750 38275 19526 -813.91 --- -242.41 -242.41 -329.10 0.60 0.40
1 37098 76505 39408 -751.12 7.71 -227.21 -227.21 -296.71 0.60 0.40
2 79346 168202 89562 -722.23 3.85 -216.21 -216.21 -289.82 0.60 0.40
3 136543 279043 140289 -721.98 0.03 -208.21 -208.21 -305.57 0.58 0.42
3 136543 279043 140289 -721.98 0.00 -208.21 -208.21 -305.57 0.58 0.42

1x10-4 3 136543 279043 140289 -721.98 0.00 -208.21 -208.21 -305.57 0.58 0.42

1x10-3

 
 
 

 Table 12. Housing 4: Impact of Flywheel Edge on Total Moment (FLUENT) 
Continuity Adapt Cells Faces Nodes MTotal CGI MTop MBottom Medge MTop/Bottom/MTotal MEdge/MTotal

--- --- --- --- --- N-m % N-m N-m N-m --- ---
--- 57600 116225 58626 -853.88 --- -309.84 -309.84 -234.20 0.73 0.27
1 80850 164630 83781 -801.68 6.11 -293.18 -293.18 -215.32 0.73 0.27
2 129798 266610 136813 -781.20 2.55 -272.71 -272.71 -235.78 0.70 0.30
3 323400 652660 329261 -779.12 0.27 -271.18 -271.18 -236.76 0.70 0.30
3 323400 652660 329261 -798.73 2.52 -269.26 -269.26 -260.21 0.67 0.33

1x10-4 3 323400 652660 329261 -797.29 0.18 -272.36 -272.24 -252.69 0.68 0.32

1x10-3

 
 

 
Table 13. Housing 5: Impact of Flywheel Edge on Total Moment (FLUENT) 

Continuity Adapt Cells Faces Nodes MTotal CGI MTop MBottom Medge MTop/Bottom/MTotal MEdge/MTotal

--- --- --- --- --- N-m % N-m N-m N-m --- ---
--- 11760 24748 12989 -1420.27 --- -411.23 -411.23 -597.81 0.58 0.42
1 40980 85428 44449 -1228.95 13.47 -338.43 -338.43 -552.09 0.55 0.45
2 114270 236900 122631 -1065.33 13.31 -302.39 -302.39 -460.55 0.57 0.43
3 163920 334776 170857 -1066.36 0.10 -301.93 -303.88 -460.55 0.57 0.43
3 163920 334776 170857 -1070.69 0.41 -305.01 -303.05 -462.63 0.57 0.43

1x10-4 3 163920 334776 170857 -1067.77 0.27 -304.89 -302.91 -459.97 0.57 0.43

1x10-3

 
 

 
Table 14. Housing 6: Impact of Flywheel Edge on Total Moment (FLUENT) 

Continuity Adapt Cells Faces Nodes MTotal CGI MTop MBottom Medge MTop/Bottom/MTotal MEdge/MTotal

--- --- --- --- --- N-m % N-m N-m N-m --- ---
--- 10752 22456 11705 -1377.76 --- -448.31 -448.31 -481.14 0.65 0.35
1 33348 69416 36069 -1232.41 10.55 -395.90 -395.90 -440.61 0.64 0.36
2 78792 164096 85305 -1112.32 9.74 -345.37 -345.37 -421.58 0.62 0.38
3 133392 272224 138833 -1116.13 0.34 -346.69 -345.81 -423.63 0.62 0.38
3 133392 272224 138833 -1119.24 0.28 -344.61 -345.50 -429.13 0.62 0.38

1x10-4 3 133392 272224 138833 -1119.30 0.01 -344.61 -345.50 -429.19 0.62 0.38

1x10-3
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