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ABSTRACT

Foodborne pathogens in poultry production and post-harvest control

Rajesh R. Nayak

A comprehensive ecological survey was conducted from April 1997 to June 1999 on four
turkey flocks (F5-F8) to identify the preharvest sources of Salmonella colonization.  Generic E.
coli and total coliforms were enumerated as indicators of fecal contamination in F7 and F8.
Turkey cecal and crop contents, litter, drinkers, air, feed, feeder contents, and environmental
swabs were sampled and tested for Salmonella and E. coli.  Salmonella was isolated from 13% of
litter, 11% of turkey ceca, 10% of drinkers, and 5% of swabs.  Escherichia coli and total
coliforms were detected in 45 and 53% of samples, respectively.  Salmonella heidelberg was the
major serotype isolated from the sampled flocks.  About 25% of the Salmonella isolates were
resistant to antibiotic(s).  Identifying preharvest sources of Salmonella and E. coli colonization
would assist integrators and producers in designing hazard analysis and critical control point
(HACCP) protocols.  On-farm reduction of these pathogens will assist processors in reducing
positive carcasses at the plant.

A skin attachment model was used to examine the ability of ZnCl2 to reverse or inhibit
Salmonella attachment to broiler skin.  In reversal experiments, skin samples were first treated
with 1 mL of S. typhimurium culture (108 CFU/mL) for 30 min, followed by the addition of 1 mL
of 25 or 50 mM ZnCl2 for 5 or 15 min.  For inhibition experiments, this order was reversed.
“Firmly” and “loosely” attached salmonellae were enumerated on the skin.  Treated skin samples
were observed under a scanning electron microscope.  In reversal experiments, 25 and 50 mM
ZnCl2 reduced (p<0.01) “firmly” attached cells by 77 and 89%, respectively, when compared to
the control (water).  At 25 and 50 mM concentration, ZnCl2 reduced (p<0.0001) cells in the
“discard” by 99.4 and 99.9%, respectively.  Micrographs indicated that 25 and 50 mM ZnCl2
reduced (p<0.1) Salmonella attachment by 69 and 99.9%, respectively, in the reversal
experiments.  In the inhibition experiments, 25 and 50 mM ZnCl2 reduced (p<0.01) “firmly”
attached cells by 82 and 91%, respectively.  Reduction of Salmonella may be attributed, in part,
to the bactericidal activity of ZnCl2 in addition to detachment of the bacterial cells on skin.
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INTRODUCTION

Fresh and processed foods have been implicated in transmitting more than 200 diseases

among humans (Mead et al., 1999).  The Center for Disease Control (CDC) and Prevention

estimates that foodborne diseases cause approximately 76 million illnesses, 325,000

hospitalizations, and 5,000 deaths in the United States each year (Mead et al., 1999).  Of these,

nearly 14 million illnesses, 60,000 hospitalizations, and 1,800 deaths are caused by known

pathogens.  Bacteria such as Campylobacter, Salmonella (non-typhoid), Escherichia coli

O157:H7, Listeria monocytogenes, and Vibrio spp. have been implicated in several foodborne

outbreaks.  In addition, parasites such as Cryptosporidium parvum, Cyclospora, Giardia lambia,

Toxoplasma gondii, and Trichinella spiralis, and viruses such as Hepatitis A and Norwalk-like

viruses have been implicated in food-related outbreaks (Mead et al., 1999).

Foodborne diseases cause more illnesses but fewer deaths than previously estimated.

Outbreaks have been attributed to factors such as demographics and lifestyles, human behavior,

changes in industry and technology, changes in travel and commerce, the shift towards global

economy, microbial adaptation, breakdown in the public health infrastructure, and the lack of

knowledge on food safety and handling practices (Knabel, 1995; Altekruse et al., 1997; Hall,

1997).  Foodborne illnesses have incurred medical and productivity costs of $8 to 23 billion/year

to the U.S. economy (Hedberg et al., 1994).  Addressing emerging foodborne diseases will

require sensitive and rapid surveillance, enhanced laboratory methods of identification and

subtyping, and effective prevention and control of pathogens.

The CDC report estimates 1.3 million cases of non-typhoidal Salmonella-related

illnessness (9.7% of the total foodborne illnesses), 15,600 hospitalizations (25.6% of the total),

and 553 deaths (30.6% of the total) in the U.S. each year (Mead et al., 1999).  Food vehicles
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associated with these outbreaks include chicken, turkey, beef, pork, eggs, milk, and dairy

products, (Tietjen and Fung, 1995).  Poultry consumption has increased dramatically in the U.S.

over last the two decades.  In 1993, over 7.5 billion fertile eggs were hatched and about 6.5

billion broilers were produced in the U.S. (NACMCF, 1997).  In 1991, broiler consumption per

person was 29 kg and turkey and ready-to-cook chicken was 9 kg, a total of 38 kg of poultry

consumed per person.  Increased poultry consumption has increased poultry-associated

foodborne diseases, particularly salmonellosis, caused by Salmonella.

Contamination of poultry with Salmonella occurs prior to entry into the processing

facility and by cross-contamination in the processing plants.  It is difficult to improve the

microbiological quality of chickens in the processing areas.  Several physical and chemical

decontamination procedures have been applied to poultry carcasses in an attempt to reduce

and/or eliminate Salmonella contamination.  However, these procedures have not been

completely successful in eliminating Salmonella.  Hence, it is necessary to develop new methods

to eliminate the pathogen from poultry carcasses.  In order to achieve this objective, a clearer

understanding of the mechanism of Salmonella attachment to poultry skin/tissue is necessary.

To achieve a significant reduction in the level of Salmonella contamination among broiler

carcasses, Salmonella-free chickens must be delivered at the processing plants.  A reduction of

Salmonella on poultry carcasses necessitates comprehensive control at the farm where birds are

brooded and raised before shipment to processing plants.  Breeder flocks, hatcheries,

contaminated feed and water, and environmental sources/vectors such as litter, humans, and

insects are potential pre-harvest sources of Salmonella contamination in poultry (Jones et al.,

1991; Bailey, 1993; Hoover et al., 1997).
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Knowledge of key preharvest factors responsible for Salmonella colonization would help

integrators and poultry producers in defining critical, preharvest control points on the farm.

Intervention at these points could reduce or eliminate horizontal transmission and Salmonella-

positive birds arriving at the processing plants.  Treatment of carcasses with novel chemicals can

be useful in reducing the level and frequency of Salmonella on poultry carcasses at the

processing plants.  A combination of pre- and post-harvest intervention strategies can ultimately

deliver Salmonella-free, fresh poultry to consumers, thereby significantly reducing the medical

and productivity costs associated with salmonellosis.



4

REFERENCES

Altekruse, S.F., Cohen, M.L. and Swerdlow, D.L.  1997.  Emerging foodborne diseases.  Emerg.
Inf. Dis.  3:285-293.

Bailey, J.S.  1993. Control of Salmonella and Campylobacter in poultry production: A summary
of work at Russell Research Center. Poultry Sci.  72:1169-1173.

Hall, R.L.  1997. Foodborne illnesses: Implications for the future.  Emerg. Inf. Dis.  3:555-559.

Hedberg, C.W., MacDonald, K.L. and Osterholm, M.T.  1994.  Changing epidemiology of
foodborne disease: A Minnesota perspective.  Clin. Infect. Dis. 18:671-682.

Hoover, N.J., Kenney, P.B., Amick, J-A. and Hypes, W.A.  1997. Preharvest sources of
Salmonella colonization in turkey production.  Poultry Sci.  76:1232-1238.

Jones, F.T., Axtell, R.C., Rives, R.V., Scheideler, S.E., Tarver, Jr. F.R., Walker, R.L. and
Wineland, M.J.  1991.  A survey of Salmonella contamination in modern broiler production.  J.
Food Prot. 54:502-507.

Knabel, S.J.  1995.  Foodborne Illness: Role of home food handling practices.  Food Technol.
49:119-131.

Mead, P.S., Slutsker, L., Dietz, V., McCaig, L.F., Bresee, J.S., Shapiro, C., Griffin, P.M. and
R.V. Tauxe. 1999.  Food-related illness and death in the United States.  Emerg. Inf. Dis.  5:607-
625.

National Advisory Committee on Microbiological Criteria for Foods.  1997.  Generic HACCP
application in broiler slaughter and processing.   J. Food Prot.  60:579-604.

Tietjen, M. and Fung, D.Y.C.  1995.  Salmonellae and food safety.  Crit. Rev. Microbiol.  21:53-
83.



5

REVIEW OF LITERATURE

Salmonella Profile

Characteristics

Salmonella spp. are facultative anaerobic, gram-negative rods belonging to the family

Enterobacteriaceae (D’Aoust, 1997).  Most members of this genus are motile with peritrichous

flagella, except S. pullorum, S. gallinarum, and S. singapore which possess dysfunctional

flagella.  Salmonellae are chemoorgantotrophic and can metabolize nutrients by respiratory and

fermentative pathways.  These organisms grow optimally at 37oC (range 2 to 54oC), pH 6.7 to

7.5 (range 4.5 to 9.5), and water activity ≥ 0.93.  They can catabolize D-glucose and other

carbohydrates producing acid and gas.  Salmonellae are oxidase negative and catalase positive,

grow on citrate as the sole carbon source, produce hydrogen sulfide, decarboxylates lysine and

ornithine, and do not hydrolyze urea.  These traits have been useful in the biochemical

identification of this organism. Salmonella produces acid and gas from glucose in triple sugar

iron (TSI) agar medium and does not utilize lactose or sucrose in TSI or in different plating

media such as brilliant green, xylose lysine deoxycholate, xylose lysine tergitol, and Hektoen

enteric agars.  In addition, typical salmonellae produce an alkaline reaction from decarboxylation

of lysine to cadaverine in lysine iron agar (LIA) and generate hydrogen sulfide gas in TSI and

LIA media.

Over 2,000 serotypes of Salmonella have been identified (D’Aoust, 1997).  Prevalence of

Salmonella species as a biochemically homogeneous group of microorganisms has been rapidly

diminishing.  Biochemical identification of Salmonella isolates is coupled with serological

confirmation involving agglutination of bacterial surface antigens with Salmonella-specific

antibodies.  These include O lipopolysaccharides (LPS) on the external surface of the bacterial
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outer membrane, H antigens associated with the peritrichous flagella, and the capsular (Vi)

antigens found only in S. typhi, S. paratyphi C, and S. dublin (Le Minor, 1981).

Reservoirs

Salmonella is ubiquitous in the natural environment, residing mostly in the

gastrointestinal tract of warm and cold-blooded animals.  Sources of infection include

contaminated soil, vegetation, water, and components of animal feeds such as bone, meat and

fish meal, particularly those containing milk-, meat-, or egg-derived constituents.  Egg and

poultry products remain the principal reservoir of Salmonella.  In addition, beef, pork, and

mutton are potential vehicles of Salmonella transmission (D’Aoust, 1997).  Persistence of

Salmonella in the poultry, beef, and pork industries originates from exposure of livestock to

environmental sources of contamination, contaminated feeds, and by parental transmission.

Disease characteristics and treatment

Salmonella infections among humans can lead to several clinical symptoms such as

enteric (typhoid) fever, uncomplicated enterocolitis, and systemic infections by non-typhoid

microorganisms.  The disease is usually self-limiting but may become systemic in young

children and immunocompromised adults.  Enteric fever can range from 7 to 28 days and may

include diarrhea, prolonged or spiking fever, abdominal pain, and headache (D’Aoust, 1991).

Treatments include supportive therapy and/or use of chloramphenicol, ampicillin or

trimethoprim-sulfamethoxazole to eliminate the systemic infection.  Non-typhoidal Salmonella

results in enterocolitis that appears 8 to 72 h after contact with the invasive pathogen.  Symptoms

include abdominal pain and non-bloody diarrhea.  Supportive therapy (fluid and electrolyte

replacement) has been recommended for clinical cases of enterocolitis.  Salmonella-induced

chronic conditions such as aseptic reactive arthritis, Reiter’s syndrome, and spondylitis have
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been reported (D’Aoust, 1997).  Live attenuated vaccines induce strong and durable humoral and

cell-mediated immunity.

Infectious dose (ID)

The ID varies with the immune status of an individual.  Newborns, infants, elderly, and

immunocompromised individuals are more susceptible to Salmonella infections than are healthy

adults.  Generally, a large number of cells (106-1011) are required to cause an infection.

However, studies have shown that 1-10 cells in cheddar cheese and chocolate can constitute a

human ID (D’Aoust et al., 1985; Kapperud et al., 1990).  High fat content has been the common

denominator associated with low ID.  Entrapment of Salmonella within hydrophobic lipid

micelles may protect against bactericidal action of gastric acids (D’Aoust, 1997).

Pathogenicity and virulence factors

The ability of Salmonella to cause human infection depends on the ability of the

organism to attach (colonize) and enter (invade) intestinal columnar epithelial cells (enterocytes)

and specialized M cells overlying Peyer’s patches.  Salmonella competes with the indigenous gut

microflora for suitable attachment sites on the luminal surface of the intestinal cell wall and

evades capture by secretory immunoglobin A present on the surface of epithelial cells (D’Aoust,

1997).  Salmonella attaches to the enterocytes by type 1 (mannose-sensitive) or type 3 (mannose-

resistant) fimbriae, surface adhesions, nonfimbriate (mannose-resistant) hemagglutinins or

enterocyte-induced polypeptides with host (human) glycoprotein receptors located on the

microvilli or glycocalyx of the intestinal surface (D’Aoust, 1991; Polotsky et al., 1994).

Following attachment, Salmonella can produce one or more virulence factors that cause infection

(Table 1).
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Colonization of Salmonella in Poultry

Avian salmonellosis

Salmonella pullorum and S. gallinarum are responsible for pullorum disease and fowl

typhoid, respectively.  Both diseases are widespread, and unless precautionary measures are

implemented to control the spread, mortality is high.  Pullorum disease infects the ova of turkey

and chickens and can be responsible for the vertical transmission of Salmonella.  The embryo is

infected when the egg is hatched, and the disease can spread by horizontal transmission in the

hatchery.  An acute septicemia may be responsible for high mortality.  Treatment with

antimicrobial agents (sulfonamides) reduces mortality in infected birds.  Fowl typhoid is a

septicemic or chronic disease similar to pullorum, except that mortality from typhoid occurs at

any age (North and Bell, 1990).  Although both diseases have been successfully eradicated in the

U.S., other Salmonella serotypes have been responsible for causing salmonellosis in humans.  A

commensal relationship between Salmonella, excluding S. pullorum and S. gallinarum, and host

(bird) makes it difficult to prevent colonization of this organism in the gastrointestinal tract

(Bailey, 1988).  Because the bird’s health is not compromised by the organism, it would be

accurate to report that chickens or turkeys are colonized, and not infected, with Salmonella.

Sources and transmission

There are several potential sources of Salmonella contamination in an integrated poultry

operation (Hoover et al., 1997; Holder, 1998).  Bird ceca, large intestine, and crop are the

primary sites of Salmonella colonization (Fanelli et al., 1971; Snoeyenbos et al., 1982;

McMeekin et al., 1984; Corrier et al., 1991; Bryan and Doyle, 1995; Hargis et al., 1995).

Several factors affect the susceptibility of poultry to Salmonella colonization (Bailey, 1987).

These factors include: (1) age of birds; (2) Salmonella serotype and initial challenge dose level;
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(3) stress – environmental, transport, and overt or subclinical disease; (4) feed additives –

antimicrobial and anticoccidials; (5) survival through gastric barrier; (6) competition with gut

microflora; (7) location of a hospitable colonization site; and (8) host genetic background.

Day-old birds: Day-old chicks and poults are more susceptible to Salmonella

colonization than are older birds.  Milner and Shaffer (1952) demonstrated that 50% of day-old

chicks were infected with an oral challenge of 10 cells of S. typhimurium.  By day 14, however, a

challenge dose of a million cells infected only 10% birds, indicating a marked increase in

resistance with age.  Mortality is normally high among chickens and turkeys during the first two

weeks of the grow-out period (Williams, 1984).  As birds age (2 weeks post-hatch), they offer

greater resistance to natural Salmonella challenge due to development of a complex gut

microflora (Barnes et al., 1972; 1980).  Once the birds are colonized with Salmonella they

become carriers and are capable of horizontally and vertically transmitting the organism within

the flock and to other flocks as well.  The severity of transmission will depend on the duration of

exposure, sanitary conditions, and presence of other infectious agents in the breeding houses,

hatcheries, and grow-out facilities.

Hatcheries and breeder flocks: In an integrated poultry operation, the hatchery takes eggs

from broiler-breeder and distributes chicks to grow-out facilities.  Thus, if one Salmonella-

positive breeding flock exists, it could spread easily throughout the entire operation.  Salmonella

transmission may be compounded within the operation if poor hatchery management allows the

organism to backtrack and colonize other breeding farms that supply eggs.  Studies have shown

that Salmonella serotypes found on fully processed broiler carcasses originate predominately

from hatcheries and breeder flocks (Bhatia and McNabb, 1980; Lahellec and Colin, 1985).
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The U.S. poultry industry processes over 8 billion broiler-hatching eggs each year

through commercial hatcheries (Cox, 1998).  Salmonella rapidly penetrates the shell and

membranes of a freshly laid egg and enters the interior of the egg via pores (Mayes and

Takeballi, 1983).  Existing conditions during incubation tend to favor the proliferation of these

bacteria.  Invading Salmonella do not cause extensive decomposition of the fertile egg and the

chick hatches (Cason et al., 1994), resulting in the establishment of salmonellae reservoirs in

commercial broiler operations and breeder hatcheries (Cox et al., 1990; 1991; Blankenship et al.,

1993).  Transmission of Salmonella has also been reported through direct ovarian shedding of

the organism into the egg prior to addition of the cell membrane (Mayes and Takeballi, 1983).

Ovarian contamination occurs when Salmonella passes from the alimentary canal to the ovaries

via blood (Gordon and Tucker, 1965).  Once Salmonella gets past the egg membranes, there are

no effective means to eliminate or prevent further invasion into the egg and developing embryo

(Cason et al., 1994).  Entrapped Salmonella can be ingested by the chick as it emerges from the

egg, and during hatching, can horizontally transmit Salmonella to other chicks.  Bailey and

coworkers (1992) demonstrated that a single egg contaminated with Salmonella may

contaminate all eggs and newly hatched birds within a hatching cabinet.

Feed: Feed is a major source of Salmonella contamination in poultry flocks (Snoeyenbos

et al., 1970; Dougherty, 1976; Cox et al., 1983; Hoover et al., 1997; McIlroy, 1998).  Feed and

feed ingredients such as animal proteins/by-products and vegetable proteins can provide an

environment of suitable nutrients, moisture, pH, and temperature for survival of Salmonella.

Feed ingredients of animal (red meat) and vegetable origin, fishmeal, and poultry by-product

meal are the major sources of feed contamination (Morris et al., 1969; Simmons and Byrnes,

1972; Cox et al., 1983; Rouse et al., 1988; Smith et al., 1989; Jones et al., 1991).  Inadequate
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time-temperature control during pelleting, improper storage, and contamination during

transportation can contribute to feed contamination with Salmonella prior to entering poultry

houses (McCapes and Riemann, 1998).  Feeder contents are also responsible for horizontal

transmission of Salmonella within the poultry facilities (Dougherty, 1976; Hacking et al., 1978;

Lahellec and Colin, 1985; Hoover et al., 1997).

Salmonella contamination of poultry feed can be controlled by consistently and

effectively decontaminating feed and preventing recontamination at the production facilities.

Control measures would include purchasing Salmonella-free feed ingredients and implementing

stringent sanitary measures during feed production and transportation (Hoover, 1996).  Organic

acids (propionic and formic) and other chemicals (aldehydes, natural terpenes, and surfactants)

control Salmonella recontamination in poultry feed (McIlroy, 1998).  Feed pasteurization (65-

70oC) can be effective, but recontamination must be prevented in the post-heat manufacturing

environment of the production facility.  Irradiation of finished feed would be a promising

decontamination technology for future consideration.

Litter: Poultry litter is a vector of Salmonella transmission in the grow-out facilities.

Frequency and Salmonella serotype information on chicken carcasses can be assessed by

examination of litter within poultry houses (Simmons and Byrnes, 1972).  Litter can be

contaminated by droppings of infected birds.  Once the bird sheds Salmonella, litter can harbor

the organism from a few days to several weeks.  Litter, contaminated with Salmonella, can serve

as a reliable indicator of flock contamination (Snoeyenbos et al., 1967; 1969; Olesiuk et al.,

1969; Bhatia et al., 1979).  Salmonella populations in litter are transient and heavy contamination

would depend on recontamination from the intestine of the colonized bird.  Fanelli and
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coworkers (1970) reported that recycling of Salmonella between litter and birds appears to

maintain intestinal colonization.

Eventually, litter develops a Salmonella inhibitory effect (Tucker, 1967; Fanelli et al.,

1970; Bhatia et al., 1979).  Bactericidal activity of old litter was associated with a rapid increase

in pH and ammonia compared to fresh litter (Snoeyenbos et al., 1967; Turnbull and Snoeyenbos,

1973; Opara et al., 1992).  Older litter may assist young birds in development of complex gut

microflora, excluding Salmonella by competition (Fanelli et al., 1970; Hoover, 1996).  Several

serotypes such as S. pullorum, S. gallinarum, S. typhimurium, and S. infantis were susceptible to

the bactericidal effects of used litter (Botts et al., 1952; Snoeyenbos et al., 1967; Tucker, 1967;

Fanelli et al., 1970; Olesiuk et al., 1971).

Water:  Water is an important source/vector of Salmonella transmission (Gauger and

Greaves, 1946; Bryan et al., 1968; Higgins et al., 1982; Morris et al., 1969; Stersky et al., 1981).

Fecal contamination of drinking water by Salmonella-infected birds could result in rapid

contamination of the poultry house.  Water can be initially contaminated with Salmonella by bird

feces, litter, feed, and dust or by residual contamination associated with drinkers (Poppe et al.,

1986; Morgan-Jones, 1980).  High levels of Salmonella (104 CFU/mL) have been found in the

drinking water of young (< 1 week of age) poults and chicks (Poppe et al., 1986).  Birds could

consume 105 salmonellae per day re-infecting themselves continuously.  Lahellec and Colin

(1985) found that 18% of drinker samples were contaminated with Salmonella in broiler flocks,

and Hoover and coworkers (1997) reported that 64% of drinkers were Salmonella-positive in

turkey flocks.  Addition of chlorine and sanitizer to drinking water reduced Salmonella in

broilers (Al-Chalaby et al., 1985; Poppe et al., 1986).  Type of drinkers used in broiler
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production influenced the level of free available chlorine in chlorinated water and thus, the levels

of Salmonella (Poppe et al., 1986).

Pests: Rodents, insects, birds, and wild animals have been implicated as sources and

vectors of Salmonella in poultry houses (Jones and Twigg, 1976; Keymer et al., 1991; Nagaraja

et al., 1991; Henzler and Opitz, 1992; Hoover, 1996; Amick-Morris, 1998; Wray and Davies,

1998).  Rats and mice are the major sources/vectors of Salmonella, and they can act as carriers

after consuming infected chicken manure.  Mice can transmit paratyphoid infections in poultry

(Nagaraja et al., 1991).  Mice usually stay within close proximity to feed and nesting places and

can carry Salmonella within the poultry facility.  Rats, on the other hand, travel long distances

and may transmit Salmonella from farm to farm.  Salmonella transmission may be amplified by

mice or rats defecation in feed troughs and floor beds and on egg collection belts.

Contamination can spread throughout the poultry house by automated feeding, egg conveyors,

and manure removal equipment (Wray and Davies, 1998).  Infected wild birds spread Salmonella

on farms and pastures where domestic animals may acquire infections.  Infected seagulls

transmit Salmonella to poultry houses (Reilly et al., 1981).  Davies and Wray (1994) detected

Salmonella in several species of wild birds near hatcheries and poultry processing units, and

these birds could contaminate equipment left outside buildings.  Darkling beetles, maggots,

blowfly larvae, cockroaches, flies, and mealworm beetles have been implicated in mechanical

transport of Salmonella in poultry houses (Greenburg et al., 1970; Jones et al., 1991; Baggessen

et al., 1992; Bennett, 1993; Rivault et al., 1993; Davies and Wray, 1995; Amick-Morris, 1998;

Wray and Davies, 1998).

Environmental sources: Transmission of Salmonella within poultry houses may result

from air and dust particles (Baskerville et al., 1992).  Movement of personnel and birds, flapping
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of wings, and improper ventilation can spread Salmonella and other microorganisms in poultry

houses (Jones et al., 1984).  Wathes and coworkers (1988) reported that transmission occurs by

inhalation and ingestion of contaminated airborne particles.  Reports indicate that Salmonella can

be isolated from organs of chicks, hens, mice, and calves after exposing them to aerosols

containing the organism (Clemmer et al., 1960; Wathes et al., 1988; Baskerville et al., 1992).

Dust in the poultry houses originates from feed, litter, feces, and birds.  Wray and Davies (1998)

reported that dust particles within selected poultry houses were contaminated (8.5 to 220.4x102

CFU/L air) with microorganisms such as species of Streptococcus, Staphylococcus, and

Salmonella.

Other parameters: Management and husbandry practices, transportation, and

uncontrollable environmental conditions such as temperature may stress poultry.  This stress, in

turn, could increase the potential for bird colonization (Bailey, 1988).  Thaxton and coworkers

(1971) found that day-old chicks reared at 29, 24, and 21oC increased mortality by 0, 28, and

78%, respectively when infected with S. paratyphi.  Soerjadi and coworkers (1979) found that

day-old chicks held at 18 to 22oC were more susceptible to low and moderate challenges of S.

typhimurim than chicks challenged and held at 32 to 36oC.  Broilers withdrawn from feed for

several hours before slaughter, crowded into transport coups, deprived of water, and subjected to

hot and cold environmental temperatures during transportation could shed Salmonella and thus,

cross-contaminate birds prior to entry at the slaughter facility (Bailey, 1988).

Control of Salmonella During Live Production

The complexity of Salmonella colonization of poultry will require a multi-faceted,

integrated approach to successfully reduce the incidences of this pathogen.  An overview of the
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movement of Salmonella through the poultry chain and possible means of control during each

step of production is illustrated in Fig. 1 (McCapes et al., 1991).

Biosecurity and disinfection

A comprehensive biosecurity program should consist of guidelines for location of farms

and facilities (conceptual biosecurity), farm and fence layout (structural biosecurity), and

movement of personnel and equipment, manufacture and distribution of feed, water sanitation,

rodent and pest control, cleaning and disinfection procedures, monitoring procedures and disease

surveillance (operational biosecurity) (Rosales and Jensen, 1998).  These guidelines should be

simple, cost effective, and reviewed periodically.  Protocols should include (1) procedures for

poultry house cleaning and disinfection (Appendix, Chapter 1); (2) requirements for

decontamination of buildings before and after placement of each flock; (3) requirements for

employment and contract growing; (4) restrictions to avoid contact with avian and animal

species; (5) requirements for personnel hygiene and health status; (6) disposal procedures for

dead birds and manure; (7) source verification of litter suppliers; and (8) steps for

decontamination of transport vehicles.

Salmonellosis is a “management” disease since its control depends on controlling sources

of Salmonella contamination and transmission.  Producers must purchase day-old breeding stock

from companies with stringent biosecurity practices and participation in programs approved by

the National Poultry Improvement Program (NPIP).  Poultry feed should be purchased from

companies that can deliver Salmonella-free feed.  Feed mills must implement effective control

programs for raw material receipt, storage, grinding and mixing, pelleting, crumbling, cooling,

storage and during transportation of finished feed.  Feed should be adequately processed (82-
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85oC for 10-12 min) in pre-pelleting feed conditioners.  Hazard analysis and critical control point

(HACCP) protocols may be introduced in feed mills to reduce Salmonella.

A biosecurity program to reduce rodent access to feed and water within poultry houses

should include appropriate house management and sanitation, professional inspections for rodent

baiting and trapping, rodent proofing the facility, and eliminating grass, shrubs, broken

equipment, and burrows inside and outside the facility.  Feed spills should be removed regularly

to avoid attracting wildlife.  Insects can be controlled by maintaining stringent sanitary practices

at the facility and through careful use of pesticides.  Drinking water should be chlorinated (3-5

ppm residual chlorine) to prevent Salmonella transmission.

An effective biosecurity program can never be “set in stone,” and must be continuously

improved through revisions, updates, and periodic audits by federal agencies and other

professionals.  Workshops on biosecurity and sanitation protocols must be organized to educate

managers, flock supervisors, contract growers, farm employees, vaccination and monitoring

crews, veterinarians, and others involved with poultry operations.  A biosecurity program should

be complemented by the use of antibiotics, competitive exclusion products, feed additives to

prevent recontamination, litter and water treatments, and vaccination.

Use of Antibiotics

Antibiotics are added to poultry feed or water (100-200 ppm) for treatment of bacterial

diseases (Stavric and D’Aoust, 1993).  Williams (1985) reported that neomycin or

oxytetracycline, alone and in combination, reduced the level and frequency of S. typhimurium in

the intestines of broilers.  On the other hand, feeding antibiotics such as a combination of

lincomycin and ovaparacin, nitrofurazone, and a combination of nitrofurazone and novobiocin
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enhanced colonization of S. typhimurium, S. infantis, and S. enteritidis, respectively, in chickens

(Glisson, 1998).

Widespread use of antibiotics in the poultry industry have resulted in the emergence of

antibiotic resistant Salmonella isolates from farm animals and meat-derived products (Novick,

1981; Holmberg et al., 1984; Spika et al., 1987; Pacer et al. 1989; D’Aoust, 1997).  Gast and

Stevens (1988) found that administering kanamycin to chickens resulted in increased kanamycin-

resistant strains of S. arizonae.  Salmonella typhimurium DT 104 has attracted attention from

public health authorities in the U.S. due to several reported outbreaks associated with this strain

(Anon, 1997; Benson and Munro, 1997).  This serotype is resistant to a wide range of antibiotics

such as ampicillin, chloramphenicol, streptomycin, sulfonamides, tetracyclines, trimethoprim,

and ciprofloxacin (Threfall et al., 1997).  Salmonella typhimurium DT 104 can withstand food-

processing conditions such as acids, drying, preservatives, and disinfectants, when compared to

other Salmonella serotypes.  Human infections of DT 104 have been associated with eating

contaminated meat products.  Controlling multi-drug resistant Salmonella would require

avoidance of unnecessary antibiotic usage by the poultry industry.

Competitive exclusion (CE)

A promising approach to reduce Salmonella in live birds is CE.  This approach, the

“Nurmi Concept,” was first reported by Nurmi and Rantala (1973).  Pivnick and Nurmi (1982)

summarized the CE concept as follows: (i) newly hatched chicks may be colonized by a single

cell of Salmonella; (ii) older birds are more resistant to Salmonella colonization because of a

mature, complex gut microflora; and (iii) introduction of pathogen-free intestinal/cecal contents

or scrapings from a healthy, adult bird into a day-old chick speeds up maturation of gut

microflora.  This mature microflora increases the resistance of most chicks to Salmonella
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colonization.  Studies have conclusively shown that CE is an effective approach to Salmonella

control (Snoeyenbos et al., 1978; Pivnick et al., 1981; Bailey, 1988; 1993).  Competitive

exclusion cultures may exclude Salmonella by (1) competing for attachment sites and nutrients

in the intestine; (2) excreting metabolic products such as bacteriocins, volatile fatty acids, lactic

acid, and hydrogen sulfide that are toxic to Salmonella; and/or (3) creating an intestinal

environment conducive to the growth of obligate anaerobes.  The exact mechanism(s) of action

remains unknown.

Two types of CE cultures, undefined (bacterial composition unknown) and defined

(known bacterial composition) are used (Stavric and D’Aoust, 1993; Mead, 1998).  Studies have

been carried out during the past decade to determine the laboratory and field efficacy of

undefined and defined CE cultures.  Undefined CE cultures offered protection to chicks when

challenged with a standard dose of Salmonella under laboratory conditions (Stavric and D’Aoust,

1993; Nisbet et al., 1996; Palmu and Camelin, 1997; Corrier et al., 1998; Fukata et al., 1999;

Hume et al., 1998).  However, field study results have been variable.  Protective capacity of

undefined cultures is influenced by source of microflora, culture conditions, methods of

administration, presence of feed additives, in-laboratory or natural environmental Salmonella

challenge, and hygienic practices on the farm (Bailey, 1987; Savage, 1987).  Formulation of

undefined cultures has been difficult due to insufficient knowledge of microbial ecology,

isolation/detection techniques, underlying protective mechanisms, and host (bird)-microbe and

microbe-microbe interactions in the GI tract.  Defined cultures are less effective than undefined

cultures under laboratory conditions and afford little protection against Salmonella colonization

(Stavric, 1987; Corrier et al., 1993; Stavric and D’Aoust, 1993).  Potency of defined cultures

decreases with storage and manipulation of isolates.  Commercial CE preparations such as
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Aviguard, Avi-Free, Broilact, CF3, Preempt, and Mucosal CE are currently available (Smith,

1997; Nisbet et al., 1998).  Yeast (Saccharomyces boulardii) has also been used to reduce

Salmonella associated with broiler chickens (Line et al., 1997).  Competitive exclusion treatment

should be complemented by biosecurity measures, vaccination programs, HACCP protocols, and

stringent hygiene practices on the farm to protect poultry from natural Salmonella challenge.

Vaccination

Prophylactic vaccination is another method of preventing vertical transmission of

Salmonella.  Bacterins and live attenuated cultures have been used as vaccines in the prevention

of avian salmonellosis (Nagaraja and Back, 1998).  Components, such as ribosomes, outer

membrane proteins, and polysaccharide-protein conjugates extracted from Salmonella have also

been investigated as potential vaccines (Nagaraja et al., 1982; 1984; 1985; 1988).  An

experimental vaccine prepared from an acetone-killed, S. enteritidis oil emulsion reduced

incidence and level of intestinal colonization by S. enteritidis in poultry feces at 1 week when

post-challenge with 108 CFU (Gast et al., 1993).  A vaccine prepared from killed S. typhimurium,

expressing high amounts of type 1 fimbriae, has been effective in lowering Salmonella

colonization in the cecal junction, liver and spleen.  Killed vaccines do not induce sufficient

protection to eliminate non-specific Salmonella serotypes colonizing chickens.  Vaccines

prepared from live but attenuated Salmonella strains (gallinarum, typhimurium, choleraesuis,

and enteritidis) have produced variable protection depending on delivery route and ability of the

attenuated strain to survive the host (Pritchard et al., 1978; Barrow et al., 1987; 1998; Barrow,

1990; Barrow et al., 1990a; 1990b; 1998; Hassan and Curtis, 1994).
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Control of Salmonella During Processing

Processes in a poultry slaughter facility may cause a serious threat if not controlled on a

regular basis.

Sources of contamination

Although the frequency of Salmonella-positive birds entering a processing plant is

generally low (National Advisory Committee on Microbiological Criteria in Foods, 1997), there

are several opportunities for carcass cross-contamination during slaughter and subsequent

processing (Bryan et al., 1968; Morris et al., 1969; May, 1974; Lillard, 1990).  Rate of

Salmonella contamination, either from processing plants or retail markets, varies from 5 to 100%

on broiler carcasses (Todd, 1980; Humphrey et al., 1988; Lammerding et al., 1988; Carraminana

et al., 1997; National Advisory Committee on Microbiological Criteria in Foods, 1997).  Possible

sources of Salmonella contamination during poultry processing are summarized in Table 2

(Russell, 1998).  Reviews on microbial contamination associated with individual processing

steps have been reported (Bryan and Doyle, 1995; National Advisory Committee on

Microbiological Criteria in Foods, 1997; Russell, 1998).

Intervention strategies in the processing plant

Although broiler slaughter operations do not include thermal processes that ensure

elimination of Salmonella, a number of processing steps can be controlled to minimize and

reduce microbiological hazards.  Implementation of HACCP protocols in the slaughter facility

and several chemical and physical treatments of broiler carcasses reduce/eliminate Salmonella

associated with fresh poultry.

The goals of HACCP for poultry slaughter operations are to prevent, eliminate, or reduce

the incidence and level of pathogenic microorganisms such as Salmonella and Campylobacter
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and to control bacterial recontamination and/or outgrowth (National Advisory Committee on

Microbiological Criteria in Foods, 1997).  In general, HACCP can be defined as a systematic,

scientific approach used in food production to ensure food safety (National Advisory Committee

on Microbiological Criteria in Foods, 1998).  It involves seven principles: (1) to assess hazards

and risks associated with the process.  A food safety hazard includes any biological, chemical or

physical agent that is reasonably likely to cause illness or injury in the absence of its control; (2)

to determine critical control points (CCP) for identified hazards.  A CCP is any step in the

process at which control can be applied in order to prevent/eliminate a food safety hazard or to

reduce it to an acceptable level; (3) to establish critical limits at each CCP to control the hazards.

Critical limits are based on process parameters such as temperature, time, pH, water activity, salt

concentration, and sensory information; (4) to establish reliable procedures to monitor CCP’s.

Monitoring frequencies must be sufficient to ensure optimal control of CCP’s; (5) to establish

corrective actions when there is a deviation identified during monitoring a CCP.  Actions must

eliminate the hazard and ensure safe disposition of the product; (6) to establish record keeping

and documentation procedures.  The HACCP plan, CCP documentations, and modifications

made in HACCP or CCP plans should be included in the file; and (7) to establish verification

procedures confirming that the HACCP system is working correctly.

Regulatory agencies have poultry processing companies switch from organoleptic to

science-based inspection.  This inspection includes microbiological testing and mandatory

reporting of any incidence of pathogen recovery, and identification of actual sources of

contamination and cross-contamination, and visual examination of carcasses for fecal

contamination.  Federal regulations mandate all poultry processing plants to implement an in-

house HACCP protocol.  To verify that HACCP systems are effective, the Food Safety and
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Inspection Service (FSIS) has set performance standards for Salmonella that slaughter plants

producing ground meat and poultry have to meet.  According to the “Mega-Reg” policy

implemented by the federal agencies, meat slaughtering facilities in the U.S. are required to meet

performance standards for Salmonella in order to verify the effectiveness of their HACCP plans

(Anon, 1996).  This policy was mandated on January 27, 1997 for meat processing plants in the

U.S.  Sampling and testing for Salmonella is carried out on an unannounced basis by federal

inspectors.  Failure to meet performance standards (Table 3) requires a plant to take immediate

action to meet the guidelines.  If the company fails consistently, the FSIS suspends inspection

services.

In the slaughter facility, CCP’s fall into two categories (Fig. 2): (1) preventive measures

to avoid colonization of carcasses with Salmonella.  These measures include adequate live-bird

surveillance on the farm, surveillance of personnel handling the birds, pest control, equipment

sanitation, safe water supply, and good manufacturing practices in the processing units

(McCapes et al., 1991); and (2) risk minimization measures to limit spread of Salmonella from

contaminated carcasses.  These measures include chlorination of carcass rinse water,

refrigeration, equipment cleaning and disinfection procedures, and personnel sanitation.

Several intervention strategies have been attempted to rid raw poultry carcasses of

Salmonella and other poultry pathogens.  Presently, commercial processing plants in the U.S. use

20-50 ppm chlorine disinfectant (3-5 ppm residual chlorine) in immersion chillers (Thomson et

al., 1979; Tamblyn et al., 1997).  Chlorine has been widely used because it is safe (GRAS

status), readily available, and inexpensive (Tsai et al., 1991).  Chlorine (20 ppm) has also been

used by slaughter facilities to disinfect equipment surfaces, carcass rinse cabinets, and the inside-

outside bird washer prior to the chiller.  However, chlorinated immersion and spray methods of
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carcasses have been relatively ineffective against Salmonella due to the large amounts of organic

matter (blood and feces) (Hargis et al., 1998).

Another factor that affects bactericidal properties of chlorine is pH.  In water, chlorine

dissociates into hypochlorous acid (powerful disinfectant) and hypochlorite ion (weak

disinfectant).  Poultry chill water has a pH of 7.6 to 8.0.  At this pH, less than 60% of the

chlorine is available in the form of hypochlorous acid (Waldroup, 1998).  However, if chill water

pH is maintained between 6.0-6.5, about 95-98% of the chlorine would be available as

hypochlorous acid.  Hence, chill water tanks are injected with CO2 that forms carbonic acid

thereby reducing pH of the chill water.

Alternative decontamination methods have been investigated as potential replacements

for chlorine as the standard disinfectant.  Chlorine dioxide (1.5 to 3.0 ppm residual chlorine) has

been permitted in U.S. poultry processing plants (Lillard, 1979; 1980; Waldroup, 1998).

However, high cost and skin discoloration of raw carcasses have limited its use.  Trisodium

phosphate (8 to 12%) has also been approved for use in processing units to reduce Salmonella

and other foodborne pathogens (Giese, 1993; Tamblyn et al., 1997).

Several physical and chemical approaches such as air scrubbing (Dickson and Cox,

1992), heat (Davidson et al., 1985; Morrison and Fleet, 1985), irradiation (Mulder et al., 1977;

Hanis et al., 1989; Thayer et al., 1991; Thayer, 1995; Abu-Tarboush et al., 1997), ozone (Yang

and Chen, 1979; Sheldon and Brown, 1986; Waldroup, 1998), and several organic acids and

chemicals have been used to reduce/eliminate Salmonella on carcasses and to minimize cross-

contamination (Conner and Bilgili, 1994; Hwang and Beuchat, 1995; Tamblyn and Conner,

1997; Tamblyn et al., 1997; Xiong et al., 1998; Yang et al., 1998).  The Food and Drug

Administration (FDA) has approved irradiation of refrigerated or frozen uncooked meat, meat by
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products, and certain meat products to control foodborne pathogens and extend product shelf life

(FDA, 1997).  Organic acids such as lactic, acetic, citric, malic, propionic, and tartaric acid

reduce Salmonella levels on poultry carcasses (Snijders et al., 1985; van der Marel et al., 1988;

Hwang and Beuchat, 1995; Kolsarchi and Candogan, 1995; Tamblyn and Conner, 1997).

Among several chemical treatments, phosphates (Kim and Slavik, 1994; Lillard, 1994; Hwang

and Beuchat, 1995; Salvat et al., 1997; Wang et al., 1997; Coppen et al., 1998), hydrogen

peroxide (Lillard and Thomson, 1983), quaternary ammonium salts (Breen et al., 1995; Wang et

al., 1997), glutaraldehyde (Thomson et al., 1977), sorbates (Robach and Sofos, 1982; Kolsarchi

and Candogen, 1995), Tween 80 (Hwang and Beuchat, 1995), and a combination of lysozyme

and EDTA (Samuelson et al., 1985) have been found to be effective in reducing Salmonella

contamination on poultry carcasses.

Although these approaches reduce Salmonella on fresh poultry, they could adversely

affect taste, color, flavor, texture, and/or appearance of the product (Breen et al., 1995; Hargis et

al., 1998).  Existing technologies reduce, but rarely eliminate, Salmonella on carcasses during

processing because they are ineffective against bacterial cells that are attached to skin.

Salmonella attachment to poultry skin/carcasses

Salmonella incidence on broiler carcasses increases with successive stages of processing,

possibly due to the ability of the pathogen to firmly attach to poultry tissue or skin (Lillard,

1986a; b; 1989a; b).  According to Lillard (1989b), “attached” bacteria can be defined as bacteria

that remain on the skin after exposure to a bacterial cell suspension for a predetermined time and

following rinsing for one min under running water at 50 psi.  Lillard (1989a) demonstrated that

Salmonella are firmly attached to poultry skin before broilers arrive at the slaughter facility, and

high levels are recovered after 40 consecutive whole carcass rinses of a single carcass.
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Salmonellae were not always recovered in the first whole carcass rinse and this sampling method

could result in false negative reports.  Attachment of Salmonella to poultry skin or the avian

intestinal tract is complex and the mechanism(s) of action are not well understood.

The mechanism of bacterial attachment involves two steps (Kim and Doores, 1993).  The

first step involves retention of bacteria in a liquid film on the surface of skin and meat after

immersing the sample in the bacterial suspension (Thomas and McMeekin, 1981; Lillard, 1986a;

1986b; Thomas et al., 1987).  Thomas and McMeekin (1984) demonstrated that, in the first 15 s

of immersion, over 90% of S. typhimurium cells were in the water film and less than 10% were

recovered from the skin samples.  However, after 30 to 60 min of immersion, 40 and 60% of

cells were recovered from the skin, respectively, and fewer were found in the water film.  These

results indicate that there is a transfer of cells from the water film to the skin as immersion time

increases.  Contamination of carcasses by Salmonella during immersion processes can be

reduced by preventing formation of the surface film, and by altering the surface tension.

Scanning electron micrographs have shown that Salmonella appears to be entrapped in deep

crevices or ridges that become more prominent after immersing poultry skin and muscle in water

(Lillard, 1988).  Salmonella cells lodged in these crevices or ridges of the skin are protected and

not easily accessible.  Certain chemical treatments used in chill water are effective in reducing

salmonellae to nondetectable levels, but did not completely eliminate them from the carcasses

(Lillard, 1979; 1980; Lillard and Thomson, 1983; Lillard et al., 1987).

Firstenberg-Eden (1981) reported that bacteria are closely associated with each other and

entrapped in certain inaccessible sites by physical forces.  Attachment at this stage is reversible

and balanced between attractive van der Waals and repulsive electrostatic forces (Gristina,

1987).  Adhesion depends on characteristics of the bacterium, the surrounding medium, and the
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substrate surface to be colonized.  Bacteria approach the binding site with flagella in motile

organisms or through fluid flow or external propulsion in motile and non-motile organisms

(Benedict, 1988).  Although both surfaces (bacterial and meat tissue) possess a net negative

surface charge favoring repulsion, variations in isoelectric points, through localized changes in

the microenvironmental pH, may allow the two surfaces to approach within the minimum van

der Waals forces, favoring attraction (Benedict, 1988).

The second step of attachment is characterized by a time-dependent, irreversible

exopolymer formation.  At this stage, bacteria multiply and form a microcolony, which can lead

to the formation of a biofilm.  Formation of these extracellular polysaccharides (glycocalyx) or

attachment fibrils has been involved in the attachment process (Costerton et al., 1978; Butler et

al., 1979; 1980; Schwach and Zottola, 1982).

The strongest form of Salmonella attachment involves high-affinity chemical attachment

to specific receptor sites.  Little is known about the mechanisms involved in the chemical

attachment of Salmonella to avian intestinal tract or skin surfaces.  Duguid and coworkers (1966)

found that S. typhimurium exhibited adhesive properties due to type 1 pili.  Adhesive properties

of type 1 pili were inhibited by D-mannose.  On the other hand, Jones and workers (1980) found

that type 1 pili were not involved in the attachment of S. typhimurium to HeLa cells.  Cell

adhesin, released during homogenization of S. typhimurium cells, inhibited attachment of the

organisms to the HeLa cell receptor.  Authors confirmed the presence of a cell-bound, D-

mannose resistant hemagglutinin that was responsible for attachment of S. typhimurium to HeLa

cells.  Inhibition of in vitro attachment of Salmonella to inverted ceca (McHan et al., 1989) and

intestinal segments (Oyofo et al., 1989a) by D-mannose and inhibition of colonization in broilers

by D-mannose (Oyofo et al., 1989b) indicated that mannose-sensitive adhesion (associated with
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type 1 fimbriae) plays a major role in the colonization of the avian intestinal tract by salmonellae

(Craven and Williams, 1998).  Lillard (1986b) also found that mannose-sensitive type 1 fimbriae,

isolated from S. typhimurium, were responsible for attachment of the organism to chicken skin.

Attachment of microorganisms depends on the presence of flagella and their activity

(Notermans and Kampelmacher, 1974; Butler et al., 1979; Farber and Idziak, 1984).  Flagellated

bacteria readily attach and nonflagellated bacteria rarely attach to poultry skin.  Bouttier et al.

(1997) observed a 90% reduction in S. choleraesuis attachment to beef muscle tissues after

mechanically removing the flagella or treating the bacteria with specific antiflagella serum.

Authors attributed this reduction to a loss of bacterial mobility leading to a reduction in the

number of bacterial cells reaching the tissue during the period of contact.  Salmonella attachment

has also been associated with connective tissue, particularly collagen (Thomas and McMeekin,

1981; Benedict et al., 1991; Kim and Doores, 1993; Walls et al., 1993).  Adhesion to hyaluronan

has been identified as the likely explanation (Sanderson et al., 1991).  Benedict (1988)

demonstrated that S. typhimurium attached to fresh meat surfaces by selectively binding to

collagen fibers, particularly the reticulin type.  Lipopolysaccharides and hydrophobic bonding

have contributed to in vitro attachment of S. typhimurium and S. california cells to chicken cecal

mucus and enterocytes (Craven et al., 1992; Craven, 1994).  The phenomenon of Salmonella

attachment to poultry skin/tissue or the intestinal tract involves more than one mechanism.

Water uptake and type of fimbriae, flagella, and cell wall components may, alone or in

combination, influence Salmonella attachment to poultry skin.

Reduction of Salmonella will depend on the extent of fecal contamination within the

production facility.  Use of non-pathogenic E. coli, as an indictor of fecal contamination, merits
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consideration in monitoring fecal contamination and thus, controlling overall sanitation on

poultry farms.

Significance of Generic Escherichia coli as an Indicator Organism

Fecal coliforms are generally found in the gastrointestinal tract of humans and warm-

blooded animals.  They include members of at least three genera: Escherichia, Klebsiella, and

Enterobacter.

According to FSIS, generic (non-pathogenic) E. coli is an ideal indicator of good

manufacturing practices within processing units (USDA-FSIS, 1996).  This organism has also

been chosen as a measure of assessing control in poultry slaughtering facilities (USDA, 1996).

The new FSIS Pathogen Reduction/Hazard Analysis and Critical Control Point (HACCP)

regulation, also referred to as “Mega-Reg” policy, codifies the principles of pathogen prevention

and reduction.  This policy, published in July 1996, provides food safety inspectors with

systematic science-based tools to carry out inspections of raw carcasses in all federally inspected

meat and poultry slaughter and processing operations in the U.S.  The FSIS estimated that total

cost of implementation by meat and poultry industries will be between $305 to $357 million

(Anon, 1996).

Sanitation standard operating procedures (SOP’s), establishment and maintenance of

HACCP plans, and microbiological testing of generic E. coli for process control are the focal

points of this policy.  Sanitation SOP’s were required to develop, implement, maintain, and

document ongoing sanitary measures in the plant by January 1997.  All establishments were

required to implement a HACCP protocol for each final product.  Implementation was dependent

on the plant size.  The HACCP plan in large (>500 employees) and smaller (10 to 499

employees) plants was implemented by January 26, 1998 and January 25, 1999, respectively.
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Very small plants (<10 employees or annual sales <$2.5 million) have a HACCP plan in place

since January 25, 2000 (Anon, 1996).

In accordance with the “Mega-Reg” policy, slaughter facilities have been testing generic

E. coli since January 27, 1997.  Federal regulations require plants to test for E. coli in order to

verify that the slaughter process is removing or preventing fecal contamination on carcasses.  E.

coli was selected as the test organism because enumeration is useful to insure that processing

parameters are in control, analysis is easy and inexpensive, and E. coli can be easily quantified

when compared to pathogens such as Salmonella, Campylobacter, and Listeria (Russell, 1996).

Smaller plants, annually producing less than 6,000 cattle, 20,000 pigs, 440,000 chickens, or

60,000 turkeys were required to collect one sample per week during June to August period for E.

coli testing.  Sampling criterion for larger plants is shown in Table 4 (Anon, 1996).  A survey

(1992 to 1998) conducted by FSIS found that 99.6% of broilers, 98.9% of turkey, 99.3% of

ground chicken, and 84.4% of ground turkey were contaminated with generic E. coli, while

99.9% of broilers, 99.8% of turkey, 99.7% of ground chicken, and 95.5% of ground turkey were

contaminated with fecal coliforms (McNamara and Levine, 1998).  Establishments sampled in

this program were responsible for slaughtering approximately 99.9% of all broiler and turkeys

slaughtered in the U.S. and for producing 100% of the ground chicken and turkey under federal

inspection.

Generic E.coli has been reported as the best indicator of fecal contamination on poultry

carcasses (USDA-FSIS, 1996).  Fecal contamination is the primary route by which enteric

bacteria such as Salmonella, Campylobacter, and E. coli O157:H7 gain access to meat and

poultry. Escherichia coli can be considered as an “index” organism because its presence could be

used to indicate the presence of other pathogenic organisms.  However, generic E. coli and fecal
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coliforms do not have a reliable and defined relationship with poultry pathogens because of

differences in physiology, growth requirements, and growth characteristics (Solberg et al., 1977).

While E. coli levels may be affected by processing parameters, environmental conditions

to which birds are exposed before entering the slaughter facility may also have an impact on the

contamination level.  Fecal matter present on the outside of birds as they enter the plant may

influence E. coli levels on the carcasses, regardless of efforts to reduce contamination during

processing.  Feed withdrawal before transportation could influence the level of E. coli

contamination.  Feed is normally withheld for 6-7 hours before being shipped to the slaughter

plants.  If they are not withheld from feed for a sufficient period, these birds will have their

intestines full of ingesta that are likely to rupture during evisceration and eventually leak onto the

carcasses.  If feed withdrawal is too long (>12 h), the intestines begin to slough their mucosal

lining, which weakens the intestine and makes it more susceptible to tearing during evisceration

(Russell, 1996).  Although such factors are not plant related, under current guidelines, the

processor maybe ultimately responsible for E. coli incidences.

Consumer Food Safety

Nearly 85% of outbreaks associated with foodborne diseases occurs as a result of food

mishandling in food service establishments and homes (Hall, 1997).  Food safety measures

implemented by the industry and federal agencies to govern pre- and post-harvest control of

foodborne outbreaks/illnesses will be of no avail if the consumer mishandles/abuses raw or

processed foods.  Therefore, it is important to heighten consumer awareness and encourage food

safety training and education among consumers and personnel associated with food service

establishments.  Knabel (1985) reported the top eleven factors contributing to outbreaks

associated with foodborne diseases caused by mishandling of household foods in the U.S.  They
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were ranked as follows: (1) contaminated raw food/ingredients; (2) inadequate heat processing;

(3) procuring food from unsafe source; (4) improper cooling; (5) lapse of ≥ 12 h between

preparing and eating; (6) infected person handling the food; (7) improper fermentations; (8)

inadequate reheating; (9) toxic containers; (10) improper hot holding; and (11) cross

contamination.

General guidelines for handling poultry meat in retail food stores and food service

establishments (National Advisory Committee on Microbiological Criteria for Foods, 1997)

The following precautionary measures should be taken to avoid the risk of foodborne

diseases in restaurants and retail food establishments: Fresh raw broilers should be received in

good condition at ≤ 41oF and visually inspected, and temperatures should be checked for product

abuse.  Products must be stored below 40oF to minimize growth of foodborne pathogens and they

must be rotated on the first-in, first-out basis.  All raw materials should be covered, properly

dated, and labeled.  Raw products must be separated from cooked products to avoid cross

contamination.  Coolers should be checked regularly for temperature fluctuations.  Food service

workers must be educated about risks associated with mishandling raw poultry during food

preparation and distribution.  Fresh products must be separated from processed products during

food preparation.  Equipment and utensils such as knives, cutting boards and pans used in

preparing raw chicken must not be allowed to come in contact with processed foods.

Contaminated equipment and utensils should be properly cleaned and sanitized after use.

Chicken and turkey (whole and parts) products must be cooked to a minimum internal

temperature of 180oF, as measured in the thickest part of the breast muscle.  Ground/restructured

poultry products must be cooked to a minimum internal temperature of 165oF for 15 s.  Products

such as rotisserie that are cooked and held for hot display should be kept at a minimum
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temperature of 140oF.  Leftover processed poultry products should be immediately refrigerated

to prevent microbial growth.  Leftovers and other precooked broiler parts should be reheated to

an internal temperature of 165oC within two hours.

General guidelines for handling poultry meat by consumers (National Advisory Committee on

Microbiological Criteria for Foods, 1997)

Consumers should take the following precautions in their kitchens to reduce the risk of

foodborne illnesses: Perishable poultry products should be purchased after other grocery items

have been selected.  Raw products should be bagged separately to avoid contamination of other

food products.  Raw meat or poultry product should never be allowed to come in contact with a

food package that will not be cooked before consumption.  Raw poultry products must be

immediately refrigerated (< 40oF) or frozen (< 0oF).  The refrigerator and freezer should be

cleaned and sanitized periodically.  Raw products should be kept separately from cooked

products.  Kitchen countertops, sinks, and cutting surfaces should be cleaned and sanitized after

they come in contact with any raw poultry product.  Surfaces should be cleaned with soapy

water, rinsed thoroughly, and sanitized with chlorine solution (one cap of bleach/gallon of cold

water) or any available kitchen sanitizers.  Cross-contamination can occur in the kitchen when

utensils, plates, and hands are not thoroughly washed and sanitized before handling or preparing

cooked foods or foods that will not be further processed (e.g. salads).  Never use the same cutting

board or plates for raw and cooked poultry products unless they have been washed and sanitized

between uses.  Frozen products should be thawed overnight in the refrigerator.  Guidelines for

cooking, refrigerating, and reheating (leftovers) whole and minced poultry products have been

mentioned in the previous discussion.
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Although the above guidelines are directed toward reducing contamination of pathogens

in poultry products, they could be applied to any meat product.  Minimum cooking temperatures

will vary with the type of meat product.  In general, consumers, food safety establishments, and

retail outlets should remember four key terms to fight foodborne diseases: (1) Clean: wash hands

and surfaces often; (2) Separate: do not cross-contaminate; (3) Cook: cook to proper

temperatures; and (4) Chill: refrigerate promptly.

Concluding Remarks

 Microorganisms are naturally present in the environment and are found on most raw

agricultural products.  There are several means by which microbes, particularly foodborne

pathogens such as Salmonella, Campylobacter, E. coli O157:H7, and Listeria, can enter a food

system.  Factors such as temperature, stress, and unsanitary conditions in the facility may

contribute to pre- and post-harvest contamination.  Pathogens can survive minimal preservation

treatment(s) and can continue to multiply if food products are abused.  Humans may introduce

pathogens into food products during production, processing, distribution, storage, and

preparation, prior to consumption.  Depending on individual susceptibility (old age, infants, or

immunocompromised), foodborne pathogens can inflict mild to life-threatening diseases.  The

public health system in the U.S. needs to develop a more efficient early-warning network than

the currently existing Foodborne Disease Active Surveillance Network (FoodNet) and pathogen

DNA fingerprinting (PulseNet), to detect, control and/or prevent foodborne outbreaks.  Food

safety research should involve more sensitive, rapid, and automated methods to accurately detect

and characterize pathogens in food products.

Food companies should strictly adhere to the food safety regulations and guidelines

implemented by the federal agencies.  Food safety educational training programs should be made
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mandatory for personnel working in the food companies.  Food safety workshops can be held

through extension services at the universities to educate the public.  More federal dollars must be

invested in educating school students and consumers through regular food-safety related

programs on television, radio, and the Internet.  Controlling the incidence of foodborne

pathogens in food products from “The Farm to the Table” must be a concerted effort on the part

of all people involved in each segment of the food system – producers, integrators, shippers,

retailers, processing companies, retailers, food service establishments, and consumers.
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Table 1.  Salmonella virulence factors and their mechanisms of action (D’Aoust, 1997).

Virulent factors Mechanism of action Invasion genes

Siderophores Compete with host transferrin, lactoferrin and
ferritin ligands for available iron

fur

PhoP/PhoQ regulon Enables Salmonella to survive phagocytes, high
acidity of phagolysosomes and defensins

pag and prg

Toxins
   A-B entertoxin,
   cytotoxin

Fluid exsorption stx

Vi antigen Inhibiting opsonization of the C3b host
complement factor on surface lipopolysaccharide

viaA and viaB

Enzymes
   Catalase, superoxide
   dismutase, peroxidase

Protection against singlet oxygen and H2O2 oxyR

Plasmid (30-60 Mda) Rapidly multiply the bacteria and spread
infection

spv

Porins (outer
membrane proteins)

Regulates influx of nutrients and antibiotics ompC, ompD,
ompE and ompF

Lipopolysaccharides Repels lytic attack of the host complement
system

-



52

Table 2.  Sources of Salmonella (and other microorganisms) contamination during poultry
processing (Russell, 1998).

Operation Workers hands Equipment and
tools

Bird to bird Other
environmental

factors1

Stunning - - - *

Scalding - ** *** ****

Picking - **** ** -

Washing - * - ****

Rehanging *** - - -

Evisceration ** **** ** -

Inspection **** - - -

Reprocessing **** **** - -

Washing - * - ****

Chilling - - ** ****

Rehanging **** - - -

Sizing - *** *** -

Boxing **** * * -

1processing parameters, water quality, and disinfectant level
* not a significant source of contamination
**** significant source of contamination



53

Table 3.  Salmonella-reduction performance standards1 in the U.S. poultry slaughter plants
(Anon, 1996).

Class Performance
standards (% positive)

Number of samples
tested

Maximum number of
positives to achieve

standard
Broiler carcasses 20.0 51 12

Turkey carcasses 18.62 Not available Not available

Ground chicken 44.6 53 26

Ground turkey 49.9 53 29

 1 Products cannot test positive at rates exceeding the above standards.  Frequency and timing of
   testing will be based on the establishment’s previous results and other performance criteria.

2 McNamara and Levine, 1998
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Table 4.  Escherichia coli control testing criteria in U.S. processing plants (Anon, 1996).

Acceptable limitsaClass Sampling
frequency

Procedure

Lower limit (m)
CFUb/cm2

Upper limit (M)
CFU/cm2

Cattle 1 sample/300
carcasses

Sponge flank,
rump, and brisket
from carcass in
the cooler

Negativec 100

Hogs 1 sample/1,000
carcasses

Sponge ham,
belly, and jowls
from carcass in
the cooler

10 10,000

Chickens 1 sample/22,000
carcasses

Rinse whole bird
after the drip line

100 10,000

Turkeys 1 sample/3,000
carcasses

Rinse whole bird
after the drip line

Not available Not available

a No result can exceed the upper limit (M) and three or fewer sample are allowed between the
  lower limit (m) and the upper limit out of the most recent 13 samples.
b Colony forming unit
c Negative is defined by the sensitivity of the method to detect at least 5 CFU/cm2



55

Figure 1.  An overview of the movement of Salmonella through the poultry chain (adapted from
International Hatchery Practice and International Poultry Production Supplement).  
Arrows indicate Salmonella movement; D=disinfection; H=heat treatment; M=monitoring;
A=acidification; V=vaccination; Ve=vaccination of egg layers only; T=test (if positive reject or
reschedule); and CE=competitive exclusion.
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Figure 2.  Critical control points for whole carcass processing of poultry salmonellosis (McCapes
et al., 1991).
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CHAPTER 1

DYNAMICS OF SALMONELLA COLONIZATION IN A TURKEY

PRODUCTION FACILITY
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ABSTRACT

A comprehensive ecological survey was conducted from April 1997 to June 1999 on four

turkey flocks (F5 to F8) to identify the key preharvest sources of Salmonella colonization.  This

study was part of an ongoing survey conducted to evaluate the frequency of Salmonella

contamination on a turkey production facility that has not been populated with poultry for over

20 years.  Turkey cecal and crop contents, litter, drinkers, air, feed, and feeder contents were

sampled.  Environmental swabs were also collected throughout the facility.  For each flock, 5 to

12 pens were sampled during each sampling period.  Conventional microbiological and

serological procedures were used to isolate, identify, and confirm the presence or absence of

Salmonella.  Isolates were serotyped and screened for antibiotic resistance.  Salmonella was

detected from 21%, 5%, 0%, and 1% of the samples in F5, F6, F7, and F8, respectively.  Overall,

Salmonella was isolated from 13% of litter, 11% of turkey ceca, 10% of drinker, 5% of swab,

3% of feed, and 1% of feeder contents.  Salmonella was not detected in crop and air samples.

Salmonella heidelberg (65%), S. senftenberg (19%), S. muenster (10%), S. anatum (3%), and S.

worthington (3%) were the serotypes isolated from the sampled sources and flocks.  Of the 69

serotypes screened, 25% of the Salmonella isolates were resistant to the following antibiotics:

gentamycin, spectinomycin, tetracycline, tobramycin, and trimethoprim/sulfamethoxazole.

Identifying environmental sources associated with Salmonella colonization and characterizing

serotypes and antibiograms would assist in designing preharvest controls for this poultry-borne

pathogen.  Integrators and poultry producers may be able to design hazard analysis and critical

control point (HACCP) protocols to reduce the level of Salmonella arriving at the processing

plant.
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INTRODUCTION

Salmonella contamination has been a persistent problem affecting the poultry industry in

the United States. Annual productivity losses and medical costs due to salmonellosis are

estimated from $0.6 billion to $3.5 billion (Opitz et al., 1993; Buzby et al., 1996).  The poultry

industry processes over eight billion broiler-hatching eggs through commercial hatcheries each

year (Cox, 1998).  Much of the traceable human Salmonella enteritidis infection has been caused

by consumption of egg or poultry products (Bailey, 1993).  Poultry meat has been implicated in a

large number of salmonellosis cases in humans.  Salmonella colonizes the intestinal tract of

poultry causing contamination of carcasses during processing.  The incidences of Salmonella

contamination among broiler carcasses has been found to vary from 5 to 100% (Carraminana et

al., 1997).  The Food Safety and Inspection Services conducted a nationwide survey (1992-1998)

from federally inspected plants to generate microbiological baseline data (McNamara and

Levine, 1998).  Establishments sampled in the program accounted for approximately 99.9% of

all broiler and turkeys slaughtered in the US, and they produced 100% of ground chicken and

turkey product.  The study found that Salmonella was prevalent in broiler carcass rinses (20%),

turkey carcass rinses (18.6%), raw ground chicken (44.6%), and raw ground turkey meat

(49.9%).

Reduction of Salmonella in poultry requires comprehensive control at the farm where

birds are brooded and raised before shipment to processing plants.  Chicks are very susceptible to

Salmonella infection and gut colonization from hatching to 96 h of age (Bailey, 1988).  These

chicks can be infected by vertical transmission through infected parents or by horizontal

transmission through hatcheries, sexing in contaminated hatcheries, cloacal infection,

transportation equipment, and feed (Lahellec and Colin, 1985; Opitz et al., 1993).
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Environmental factors such as air, litter, and unclean facilities, and vectors such as insects,

humans, and rodents are also responsible for Salmonella transmission in poultry (Jones et al.,

1991; Bailey, 1993; Hoover et al., 1997).  Once sources are identified, critical control points can

be established at the farms to control horizontal and vertical transmission of Salmonella.  A

reduction in Salmonella-positive birds will reduce public health risks associated with poultry

products (Simmons and Byrnes, 1972).

 Although research has been carried out on Salmonella ecology in chickens (Simmons

and Byrnes, 1972; Bains and MacKenzie, 1974; Snoeyenbos et al., 1974; Dougherty, 1976;

Morgan-Jones, 1980; Bhargava et al., 1983; Lahelec and Colin, 1985; Jones et al., 1991; Bailey,

1993), limited information is available on turkey flocks (Kumar et al., 1971; Hoover et al., 1997;

Amick-Morris, 1998).  Additionally, rearing turkeys differs from rearing chickens.  The

production cycle of turkeys is 20 to 22 weeks compared to 6 to 8 weeks in broilers.  An

ecological survey was conducted on turkey flocks to:

1. Identify key environmental sources/vectors influencing Salmonella colonization dynamics in

a turkey production facility;

2. Characterize Salmonella isolates for serotype and antibiotic resistance patterns;

3. Evaluate the role of temperature and humidity within the production facility, and litter pH

and water activity (Aw) on Salmonella colonization among sampled flocks and;

4. Monitor sex effect on resistance to Salmonella colonization.

MATERIALS AND METHODS

Production parameters

Facility: This survey was conducted at Reymann Memorial Farm, Wardensville, WV, in

partnership with British United Turkeys of America (BUTA), Lewisburg, WV.  The farm has
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been used for beef and sheep production, and it had not been populated with chickens or turkeys

for over 20 years prior to initiation of survey work (Hoover et al., 1997).  Prior to this study,

production trials of three turkey flocks were carried out by BUTA and frequency of Salmonella

was monitored (Amick-Morris and Kenney, 1997; Guo et al., 1997; Hoover et al., 1997).  The

facility consists of 24 pens divided equally by the service area (Fig. 1).  The dimensions of each

pen were 3.6 m (width) x 4.2 m (length) x 2.4 m (height).  Four consecutive turkey flocks (F5-

F8) were sampled in this facility from April 1997 to June 1999.  These were the 5th, 6th, 7th, and

8th flocks produced in this facility.  Flock characteristics and responses measured are

summarized in Table 1.  Biosecurity measures were in accordance with BUTA guidelines

(Appendix).  Before placement of each new flock, used litter was removed, pens and equipment

were disassembled, and the production facility was thoroughly cleaned and disinfected to prevent

cross contamination from the previous flock.  Fresh litter was added to the pens before placement

of new poults in each flock.

Production trials: BUTA trials evaluated effects of strain, gender, and nutrition on growth

performance, feed efficiency, and carcass composition of turkeys among sampled flocks.  In F5,

a strain x gender combination was replicated twice and randomly assigned to the 24 pens.

Treatment main effects consisted of six breeds (78x12, 78x25, 38x71, 72x12, 72x71, and 72x25)

and two genders (male and female).  One hundred and fifty male and 150 female poults for each

of 12-treatment combination were placed in a brooding ring (3.6 m diameter).  Poults were

hatched at the BUTA hatchery in Lewisburg, WV, and transported to the Rocco Farms hatchery

in Harrisonburg, VA, to be de-toed.  Turkeys from each flock were brooded for a 2-week period,

after which the poults were assigned to their respective rearing pens (Table 2).  Diet formulation,

feeding schedule, and flock densities were not available for this flock.
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In F6, a strain x feed combination was replicated four times and randomly assigned to the

24 pens.  Treatments main effects consisted of three strains of male turkeys (Big 6, Hybrid, and

Nicholas) and two feeding regimens (BUTA-USA feeding program and European High Protein

feeding program).  Ration formulations and feeding programs are shown in Table 3.  Two

hundred and fifty poults for each of 6-treatment combination were placed a brooding ring.

Approximately 50 poults were placed in assigned pens.

In F7, a strain x feed combination was replicated three times and randomly assigned to

the 24 pens.  Treatment main effects consisted of four strains of female turkeys (Big 6, Hybrid,

Nicholas, and Line 37) and two feeding regimens (Heavy Hen feeding program and Least Cost

Hen feeding program).  Ration formulation and feeding program are shown in Table 4.  Two

hundred and fifty poults for each of 8-treatment combination were placed in a brooding ring.

Approximately 70 poults were placed in assigned pens.

In F8, a strain x gender combination was replicated three times and randomly assigned to

the 24 pens.  Treatment main effects consisted of four strains of turkeys (Big 6, Hybrid,

Nicholas, and 37-Roaster) and two genders (male and female).  The composition of feed is

shown in Table 5.  Two hundred and twenty five female poults and 175 male poults for each of

8-treatment combinations were placed in a brooding ring. Approximately 70 female and 55 male

poults were placed in assigned pens.

Sampling procedures

Litter, drinker, air, feed samples, and environmental swabs were collected for each flock

throughout the grow-out period (Table 1).  Litter, drinkers, and turkeys were sampled from the

same pen.  Turkeys were sacrificed by cervical disarticulation in accordance with approved

animal care and use procedures (AVMA, 1993).
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Turkeys: At day 0, poults arrived from a commercial hatchery within 24 h of hatch.

Cardboard liners were sampled by removing three, 16 cm2 areas with a sterile scalpel and

transferring them to 100 mL Universal Preenrichment (UP) broth (Bailey and Cox, 1992).

Liners were sampled only for F7.  Samples were collected from boxes that represented three

different hatcheries in which the birds were shipped.  Four boxes were randomly sampled from

each hatchery.  In F7, 12 poults from three hatcheries were sacrificied by cervical disarticulation

at day 0, and the entire intestine and yolk sacs were transferred to 100 mL UP broth.  After two

weeks of brooding, 24 poults were sampled from 12 brooding rings in F5, 16 poults from 8

brooding rings in F7, and 16 poults from 8 brooding rings in F8.  For F6, sample collection

began from week 6 (Table 1).  At week 2, intestinal samples were transferred to 100 mL UP

broth among the sampled flocks.  From week 10 until the end of the grow-out period, the entire

ceca were removed, the blind end was snipped with sterile scissors, and cecal contents were

emptied into sterile stomacher bags and sealed.  Bottles containing UP broth and stomacher bags

were held on ice during transport to the laboratory for Salmonella testing.  Crop contents were

sampled in F7 and F8 by removing the crop, making an incision with a sterile scalpel and

transferring the contents into a sterile stomacher bag.  This bag was sealed and shipped to the

laboratory on ice for further analysis.

Litter: Litter samples consisted of a composite sample collected from six random

locations within each pen.  Samples were collected from the top 5.08 cm of litter preferably

mixed with bird feces.  Litter samples were placed in sterile bags and held on ice during transport

to the laboratory.

Drinkers: At each sampling period, one Plasson drinker in each of the designated pens

was sampled.  Drinkers were swabbed with 2 or 3 ply sterile cloth gauzes (5 x 5 cm2) held by a
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pair of sanitized forceps.  Samples were placed in sterile stomacher bags, and bags were sealed

and held on ice during transport to the laboratory.

Environmental swabs: Samples were collected from a 16 cm2 area at various locations in

the facility using a sterile swab moistened with sterile UP broth.  Locations included walls,

ventilation fans, feathers and open wounds of sick birds, feathers of dead birds, employee shoes,

the feed truck, fans inside the pens, feed storage bins, and door handles.  Swabs were transferred

to 10 mL sterile UP broth and held on ice during transport to the laboratory.

Air: Samples were collected on Rodac plates (65 x 15 mm) containing Brain Heart

Infusion (BHI) agar using a SAS portable high flow air-sampler (Model 5203, Spiral Biotech,

Inc., Maryland).  The air sampler was set to collect 60 liters of air in 20 s, allowing impingement

of airborne microorganisms on the Rodac plate (Al-Dagal and Fung, 1993; Hoover et al., 1997).

The air sampler cover was sanitized with 70% ethyl alcohol before reuse.  Following sampling,

the agar was aseptically transferred to sterile stomacher bags, sealed, and held on ice during

transport to the laboratory.  Air samples were collected from pens, ventilation fans, alleys on

each side of the turkey house, the centralized service area, and entrances to the facility during

each sampling period (Fig. 1).

Feed and feeder contents: Samples were collected randomly from each feed shipment by

placing a sterile bag in the flow of feed from the auger or from the feed cart.  Feeder contents

were sampled from each of 24 pens every Friday of production for each flock.  Samples were

stored at – 4oC at the production facility prior to transport to the laboratory for analyses.

Approximately 10 to 20% of the feed weigh-back samples were analyzed during each sampling

period.
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Laboratory procedures

Turkey cecal and crop samples, placed in stomacher bags, were mixed with UP broth in a

1:10 (w/v) ratio and were sealed.  Gauze and agar from drinker and air samples, respectively,

were mixed with 100 mL UP broth.  Approximately 5 g of litter and 10 g of feed or feeder

content samples, respectively, were transferred to bottles containing 100 mL UP broth using

sterile gloves.  Samples were thoroughly mixed with UP broth and incubated (Imperial II

Incubator 422, Labline Instrument Inc., Illinois) at 37oC for 24 h.  One mL of this preenriched

sample was transferred to 9 mL of tetrathionate (TT) broth and incubated at 37oC for 24 h.

Selectively enriched samples from TT broth were streaked to isolation on Xylose Lactose

Tergitol (XLT4) plates for F5, F6, and F7.  Due to the unavailability of tergitol supplement in

XLT4 for detecting Salmonella in F8, Xylose Lactose Desoxycholate (XLD) plates were used.

These plates were incubated at 37oC for 24 h.  A single presumptive positive, Salmonella colony

(black colony on XLT4/XLD plate), per sample, was stabbed and streaked on Triple Sugar Iron

(TSI) and Lysine Iron agar (LIA) slants, respectively, using the same inoculating loop.  The TSI

and LIA slants were incubated at 37oC for 24 h and 48 h, respectively.  Salmonella-positive, TSI

tubes could be identified by a red slant and black butt while LIA tube exhibited a purple slant

and black butt.  The above transfers were carried out under aseptic conditions in a laminar flow

hood (Model NU-425-400, Class II Type A/B3, NuAire™ Inc., Minnesota).

Serology: At least 2 to 3 positive isolates, identified by TSI or LIA, were maintained on

BHI agar slants and incubated at 37oC for 24 h.  Serology was performed on fresh (18-24 h) BHI

cultures using Salmonella O (Group A-E; Vi) polyvalent antisera (BBL-Becton Dickenson

Microbiological Systems, Maryland) to confirm the presence of Salmonella.  Using a sterile

inoculating loop, sufficient bacterial growth from the BHI slant was gently mixed with 0.5 mL
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saline (0.85% NaCl).  A drop of this bacterial suspension was placed on a glass slide and mixed

with a drop of polyvalent antisera.  The mixture was gently rocked for 1 min and agglutination

was observed.  A positive control of S. typhimurium and a negative control of Escherichia coli

were used to eliminate false-positive readings.

Storage: Salmonella cultures, confirmed by serology, were transferred to 5-10 mL UP

broth and incubated at 37oC for 18 to 24 h.  A loopful of this fresh culture was streaked to

isolation on XLT4 plates and incubated at 37oC for 20 to 24 h.  A single Salmonella-positive

black colony from each XLT4 plate was mixed in Micro-Protect tubes (TS/70-B, Technical

Service Consultants Ltd., Lancashire, England) containing beads suspended in nutrient broth.

These tubes were vertically shaken for 5 s and allowed to stand for at least 30 s allowing enough

time for the bacterial suspension to be immobilized on the beads.  Subsequently, nutrient broth

from each tube was discarded using a sterile dropper and the tubes were stored at –70oC until

further use.  This procedure was carried out under aseptic conditions in the laminar flow hood.

Serotyping: Salmonella isolates were removed from the freezer (–70oC) and 1-2 beads

from each Micro-Protect tube were aseptically transferred to 5 mL of sterile UP broth.  The tube

was immediately placed back into –70oC storage.  Beads and broth were incubated at 37oC for 24

h, and subsequently, a loopful of culture was streaked to isolation onto a XLT4 plate.  A single

black colony from XLT4 was streaked on BHI slant.  Isolates were packed, labeled, and shipped

to the Salmonella Reference Center at the University of Pennsylvania for serotyping and

determining their antibiotic resistance profile, in accordance with the Interstate Shipments of

Etiological Agents (42 CFR Part 72) regulations.

Environmental parameters: Litter pH and water activity (Aw) were measured, and

temperature and relative humidity in the production facility were monitored as potential factors
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affecting frequency of Salmonella colonization (Hoover et al., 1997).  For litter pH, about 10 g of

litter were mixed with 100 mL distilled water in a stomacher bag and blended (Model 400,

Tekmer, Ohio) at 230 rpm for 30 s.  Sample pH was measured with a pH meter (Model 350,

Corning Inc., New York).  Water activity was measured in duplicate.  The Aw meter (Model

AquaLab CX2, Decagon Devices, Inc., Washington) was calibrated with 6 M NaCl (Aw=0.76)

before measuring samples.  Maximum and minimum temperatures inside and relative humidity

within the production facility were recorded using temperature and relative humidity sensors

(Model ART.NR, Fancom Corp., Netherlands).

RESULTS AND DISCUSSION

Frequency of detection

In any microbiological survey, it is the important to select a suitable isolation/detection

procedure for the targeted organism.  A negative result does not necessarily indicate the absence

of Salmonella in the sources sampled.  Inability to detect Salmonella could be due to poor

sensitivity of the isolation/detection procedure.  In some cases, isolates may be viable but non-

culturable.  In any case, a sample may still harbor enough cells to transmit Salmonella infection

among turkeys even though organisms were non-detectable (Amick-Morris, 1998).

Of the 991 samples in the survey, 6% were positive for Salmonella.  Prevalence of

Salmonella across all samples was found to vary from 0 to 21% among the sampled flocks.

McBride and coworkers (1978) observed considerable flock to flock variation (0 to 72%) among

broiler breeds with one-third of the flocks having greater than 10% infection.  In the present

study, Salmonella was isolated from 13% of litter samples, 11% of turkey ceca, 10% of drinkers,

5% of environmental swabs, 3% of feed, and 1% of feeder contents.  Salmonella was not

detected in turkey crop and air samples.  Isolation of Salmonella from litter samples, drinkers,
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feed samples, and feeder contents was evidence of the cross-contamination that occurred within

the production facility.  A survey conducted by Kumar and coworkers (1971) on three turkey

flocks demonstrated that hatcheries, breeder flocks, and environmental sources such as litter,

dust, water, and feed were the major sources of Salmonella contamination.  Jones and coworkers

(1991) surveyed two broiler houses for Salmonella contamination.  Salmonella was isolated from

20.8% of feed mills, 13% of breeder houses, 7.1% of hatcheries, 4.5% of broiler houses, and

16.1% of processing plants and 13% of insects and 5.3% of mice collected at the grow-out

facility.  Among the sources sampled within the broiler houses, authors detected Salmonella in

4.3% of dead bird rinses, 2.4% of environmental swabs, and 5.2% of fecal droppings.  Hoover

and coworkers (1997) reported that 63.8% of drinkers, 53.8% of turkey ceca, 51.1% of litter,

39.1% of feeder contents, 22.8% of air, and 14.8% of feed were positive for the presence of

Salmonella in two turkey flocks.

In F5, 21% of the 218 samples were positive for the presence of Salmonella (Table 6).

Salmonella was isolated from 31% of turkey ceca, 28% of drinkers, 25% of litter samples, and

12% of environmental swabs.  Salmonella was not detected in air and feed samples.  Shedding of

Salmonella by turkeys in feces could result in contamination of litter, drinkers, and feeder

contents.  Simmons and Byrnes (1972) found that 92% of the 56 litter samples isolated from two

chicken flocks were contaminated with one or more Salmonella serotypes.  Drinkers are a

primary source of Salmonella transmission in poultry houses.  Morgan-Jones (1980; 1982)

reported that water in drinkers was the major oral route of infection or re-infection among

broilers during rearing.  Morris and coworkers (1969) found identical serotypes of Salmonella

from the feces of colonized birds and drinker samples.  Feeder contents, within each pen, may be

contaminated through turkey feces, feathers, and personnel working within the facility.  These
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sources, in turn, could be responsible for propagating Salmonella transmission among birds.

Frequency of Salmonella detection increased from 15% at week 2 to 47% at week 18.  Although

temperature within the facility was not recorded, temperature fluctuations could stress turkeys,

inducing them to shed Salmonella that might lead to increased rates of horizontal transmission.

In F6, only 5% of the 179 samples were Salmonella-positive (Table 7).  Salmonella was

isolated from 22% of litter, 8% of feed, and 4% of feeder content samples, and 3% of turkey

ceca.  Salmonella was not detected from drinkers, environmental swabs, and air samples.  Feed

and feeder contents have been reported to be the major sources of horizontal transmission of

Salmonella in poultry houses (MacKenzie and Bains, 1976; Cox et al., 1983; Jones et al. 1991).

McIlroy (1998) reported that about 15% of the feed samples tested positive for Salmonella.

Although Salmonella was undetected at week 6, frequency of Salmonella decreased slightly from

8% at week 13 to 7% at week 21.  The decrease could be attributed to a qualitative and

quantitative change in gut microflora that may inhibit Salmonella colonization in adult turkeys

by competing for nutrients and attachment sites in the gastrointestinal tract.  Barnes and

coworkers (1972) showed that older birds were more resistant to intestinal colonization by

Salmonella due to a mature gut microflora.

In F7, Salmonella could not be detected in any of the 361 samples (Table 8).  Before

placement of the poults in F7 (Day 0), litter, drinkers, air, feed, and environmental swabs were

collected from various locations in the facility to determine the initial level of contamination.

Poults entering the facility and box liners in which the poults were shipped were sampled as an

indication of the level of Salmonella contamination acquired from the breeder flocks or the

hatchery.  Mayes and Takeballi (1983) reported that Salmonella might either contaminate young

chicks directly through ovarian transmission or penetrate the shell membrane after the egg is
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laid.  Once Salmonella transverses the membrane, it is very difficult to remove and destroy them

or prevent their further invasion of the egg contents and developing embryo (Cason et al. 1994).

Day-old, Salmonella-free poults may be contaminated in the rearing house by the environment,

feed, water, or litter samples.  Simmons and Byrnes (1972) reported that day-old chicks, feed,

and litter were the major sources of Salmonella contamination for chicken carcasses sampled

from two flocks.  In order to prevent horizontal transmission of Salmonella, it is imperative that

poults entering the turkey house are free from Salmonella.  Hoover and coworkers (1997)

reported 18.1% of poult box liners and 25% of yolk sac samples were positive for the presence of

Salmonella in two sampled flocks.  Elsewhere, Jones and coworkers (1991) could detect

Salmonella in 9.4% of chick yolk sac and 7.1% of hatcheries in a survey of 2 integrated broiler

firms.

In F8, only 1% of the 233 samples were Salmonella-positive (Table 9).  Salmonella was

isolated from 6% of environmental swabs, 5% of litter, and 3% each of turkey ceca and feeder

content samples.  Salmonella could not be detected in turkey crops, drinkers, air, and feed

samples.  Reduced detection of Salmonella in F6 (5%), F7 (0%), and F8 (1%) could be attributed

to TerminateTM, a formaldehyde-based feed additive, administered to turkeys.

Distribution of serotypes

A total of 69 isolates were serotyped from 58 Salmonella-positive samples in F5, F6, and

F8 (Table 10).  Salmonella heidelberg was the most prevalent serotype, accounting for 65% of

the isolates from these flocks.  Other serotypes were identified as S. senftenberg (19%), S.

muenster (10%), S. anatum (3%), and S. worthington (3%).  Of the 48 isolates serotyped in F5,

92% were S. heidelberg, 4% S. muenster, and 4% S. anatum (Table 11).  Salmonella heidelberg

was isolated from turkey ceca (46%), drinkers (23%), litter samples (21%), and environmental
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swabs (10%).  Turkey ceca appeared to be the reservoir for S. heidelberg, and it may have been

responsible for transmitting this serotype to litter and drinker samples.  Differentiating S.

heidelberg using genotypic methods would be useful in confirming the transmission pattern.  In

order to prevent S. heidelberg from entering the ecosystem of the production facility, control

measures should be directed towards reducing this serotype in turkeys and not towards

environmental vectors.  Salmonella muenster was isolated from litter samples, drinkers, and

environmental swabs, while S. anatum could be detected only in drinkers.  Since S. muenster and

S. anatum were detected only in litter and drinker samples, control measures should be

implemented on these vectors, and not on the turkeys, because these vectors were responsible for

propagation of these serotypes within the production facility.  Of the 16 isolates serotyped in F6,

81% were S. senftenberg, 13% S. worthington, and 6% S. heidelberg (Table 12).  Salmonella

senftenberg was isolated primarily from turkey ceca (6%), litter (50%), and feed samples (25%),

indicating that these vectors could serve as critical control points.  Salmonella worthington was

isolated from litter (6%) and feeder content samples (6%), while S. heidelberg was isolated from

6% of litter samples.  Salmonella muenster was identified as the serotype for all 5 isolates

evaluated in F8.  Salmonella muenster was detected in 20% of litter samples and 40% each of

environmental swabs and feeder content samples.

Serotypes appeared flock and source specific.  In F5, S. heidelberg (92%) was the most

prevalent serotype, while in F6 and F8, S. senftenberg (81%) and S. muenster (100%),

respectively, were predominant.  In F5, S. anatum was associated with only drinkers.  Salmonella

heidelberg, which was a predominant serotype in F5, could be detected only from F6 litter

samples.  The presence of S. heidelberg in F6 indicates that this serotype could have been

transmitted from F5.  This observation could have been confirmed by differentiating S.
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heidelberg using genotypic methods such as plasmid finger printing, pulse field gel

electrophoresis (PFGE), PCR-based typing or 16S ribotyping (Olsen et al., 1993; Threlfall et al.,

1994).  Serotypes were not identified using any such techniques in this study.

Serotype information can be valuable in designing control measures at the production

facilities.  If certain serotypes are consistently isolated from a particular farm, flock, or source,

steps can be taken against those specific Salmonella strains in the production facility.  Several

studies have shown that Salmonella serotypes isolated from fully processed broiler carcasses

originated from hatcheries, breeder flocks and/or broiler houses (Bhatia and McNabb, 1980;

Bhargava et al., 1983; Lahellec and Colin, 1985; Goren et al., 1988; Jones et al., 1991).  In a

survey conducted by Bhargava and coworkers (1983), S. kentucky, S. saint paul and S. infantis

were the major serotypes isolated from three chicken flocks.  Lahellec and Colin (1985) found

17.3% of hatcheries and 21.6% of chicken houses infected with Salmonella.  Salmonella binza,

S. infantis, S. saint paul, and S. schwarzengrund were detected from chicken viscera,

environmental swabs, drinkers, litter, and feeder contents.  In addition, S. coeln, S. heidelberg, S.

montevideo, and S. saint paul were detected consistently in hatchery, grow-out, and processing

facilities.  Jones and coworkers (1991) reported that S. typhimurim (33%) and S. heidelberg

(13%) were the most prevalent serotypes isolated from breeder houses, broiler houses, feed mills,

hatcheries, and processing units.  Elsewhere, S. agona (47%), S. saint paul (26%), and S. reading

(16%) were the most frequently detected from 25 sampled flocks (McBride et al., 1978).

Morgan-Jones (1980) isolated S. senftenberg, S. agona, S. montevideo and S. infantis from water

troughs, while S. senftenberg, S. agona, and S. infantis were isolated from litter samples from

four broiler houses.
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Antibiotic resistance profile

Of the 69 Salmonella serotypes screened, 25% were resistant to one or more antibiotics

such as gentamycin (GM), spectinomycin (SPT), streptomycin (S), tetracycline (TE), tobramycin

(TOB), and trimethoprim/sulfamethoxazole (SXT).  Among the isolates screened, 100% each of

S. anatum and S. worthington, 29% of S. muenster, and 17% of S. heidelberg were resistant to

the above antibiotics.  In F5, F6, and F8, frequency of Salmonella serotypes resistant to

antibiotic(s) was isolated from drinkers (55%), swabs (43%), feeder contents (33%) turkey ceca

(26%), and litter samples (5%) (Table 13).

Of the 48 isolates in F5, 27% of serotypes were resistant to two or more antibiotics

(Table 14).  Two isolates of S. anatum from drinkers at week 2 were resistant to TE and S.  Of

the 6 isolates of S. heidelberg detected in turkey ceca at week 18, 5 isolates were resistant to S,

SPT, and GM, while the remaining isolate was resistant to TE, S, SPT, and GM.  During this

sampling period, two isolates of S. heidelberg from drinkers were resistant to S, SPT, and GM

and the remaining two were resistant to TE, S, SPT, and GM.  One isolate of S. heidelberg

isolated from an environmental swab at week 18 was resistant to TE and SXT.  Antibiotic

resistant strains of S. heidelberg isolated from drinker samples at week 18 could have been

horizontally transmitted by turkeys.  However, the origin of TE and S-resistant S. anatum in

drinkers and TE and SXT-resistant S. heidelberg in environmental swab remains unclear.  Of the

16 isolates in F6, 13% of serotypes were resistant to TE (Table 15).  At week 21 of the grow-out

period, S. worthington, detected in litter and feeder content samples, was resistant to TE.  Of the

5 isolates in F8, 40% of serotypes were resistant to TOB, S, SPT, and GM (Table 16).  At week

20 of the grow-out period, two isolates of S. muenster, isolated from environmental swabs, were

resistant to TOB, S, SPT, and GM.
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Antimicrobial agents are fed at subtherapeutic levels to poultry to improve their growth

rate and feed conversion, and at therapeutic levels to prevent bacterial infections.  Polymixin B

and combinations of (1) trimethoprim and sulfadiazine, (2) neomycin and polymixin, and (3)

trimethoprim and polymixin B have been administered in feed or drinking water to reduce the

levels of Salmonella in chickens (Craven, 1995).  Williams (1985) reported that feeding

oxytetracycline and/or neomycin reduced S. typhimurium levels in broiler intestines.  On the

other hand, feeding antibiotics such as avoparicin and lincomycin favored colonization of S.

typhimurium while nitrofurazone enhanced colonization of S. infantis (Glisson, 1998).  Spread of

Salmonella to contact chickens was subsequently observed.  The increase in Salmonella

colonization could be the result of a decrease in total microbial count of the natural gut

microflora.  Administering these antibiotics can result in gradual emergence of antibiotic

resistant Salmonella.  One such human pathogen, S. tyhimurium DT 104, has been found to be

resistant to several antibiotics such as ampicillin, chloramphenicol, sulfonamides, streptomycin,

and tetracyline.  Approval of drugs such as sarafloxacin in poultry may contribute to the

emergence and circulation of fluoroquinolone (nalidixic acid and ciprofloxacin) resistant strains

of Salmonella (Herikstad et al., 1997).  Drug resistant strains of S. enteritidis PT 4 and S.

typhimurium DT 104 have been implicated in several outbreaks of salmonellosis.  These drug

resistant Salmonella strains, in turn, could contaminate poultry carcasses eventually leading to

salmonellosis outbreaks among humans.  It would be difficult to treat illnesses associated with

such outbreaks with conventional antibiotics.

Effect of litter pH and water activity

Litter pH and Aw could play an important role in controlling or suppressing the growth

of salmonellae in the environment within the production facilities.  In F5, the average pH and
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Aw measured from the sampled pens at week 10 and 18 were 7.53 and 0.959, and 7.62 and

0.958, respectively (Table 17).  Litter pH and Aw measurement data were not available during

week 2 of the sampling period.  Although frequency of Salmonella detection increased from 17%

at week 2 to 50% at week 18 in litter samples (Table 6), there was no significant change in litter

pH and Aw measurements from week 10 to 18.

In F6, the average pH and Aw at week 6, 12 and 21 were 6.59 and 0.974, 7.48 and 0.981,

and 8.10 and 0.870, respectively (Table 18).  Although Salmonella was not detected in litter

samples at week 6, frequency of detection decreased from 50% at week 13 to 17% at week 21

(Table 7).  A high litter pH (8.10) and low Aw (0.870) at week 21 (p<0.05) could have reduced

presence of Salmonella in litter samples, when compared to week 6 and week 13 of the grow-out

period.  Opara et al. (1992) observed a negative correlation between Salmonella-positive, house-

representative drag swab (HRDS) samples and litter pH.  They concluded that an increase in

litter pH was associated with a decrease in Salmonella-positive, HRDS samples collected from

13 chicken houses.  The authors also reported a positive correlation between HRDS samples and

litter Aw indicating that Salmonella prevalence increased with increased litter moisture.  A high

litter pH, as a result of ammonia, and low Aw suppress the growth of S. typhimurim, S.

senftenberg, and S. thompson (Opara et al., 1992).  These authors attributed the bactericidal

activity to a lower Aw that is unfavorable to Salmonella viability and to a high litter pH from

ammonia dissolved in the available moisture of the litter.  A reduction of litter Aw and/or

increased litter pH in the turkey grow-out facility may serve as an intervention measure in

controlling Salmonella.

In F7, the average pH and Aw at week 0, 2, 10, 14, and 21 were 5.26 and 0.410, 6.55 and

0.967, 7.48 and 0.962, 6.96 and 0.979, and 7.70 and 0.953, respectively (Table 19).  The low pH
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(5.26) and Aw (0.410) of fresh litter may be responsible for no Salmonella in litter samples at

day 0 (Table 8).  Absence of Salmonella in fresh litter can also be attributed to heat processing

during drying and processing.  However, when poults were assigned to pens, litter pH reached

neutrality (6.55-7.70) and a Aw above 0.95 during the grow-out period.  These conditions were

conducive for harboring salmonellae.  Salmonella has been reported to proliferate from pH 4.5 to

9.5, with an optimum pH for growth of 6.5 to 7.5 (D’Aoust, 1997).  Water activity below 0.94

and above 0.4 are detrimental to Salmonella survival (Turnbull and Snoeyenbos, 1973).

However, Salmonella was not detected in any of the litter samples during the grow-out period

(Table 8), indicating that factors other than litter pH and Aw could be responsible for a 0%

frequency of detection.

No relationship was observed between litter pH and Aw, and Salmonella detection in F8.

Average pH and Aw at week 2, 15, and 20 were 6.34 and 0.983, 7.81 and 0.944, and 7.11 and

0.956, respectively (Table 20).  Salmonella was detected in 13% of litter samples at week 2, but

was not detected at week 15 and 20 (Table 9).

Effect of environmental conditions

Maximum and minimum temperatures inside the turkey production facility (averaged

across north and south sides; Fig. 1) and percent relative humidity for F6, F7, and F8 are

illustrated in Figs. 2, 3 and 4, respectively.  Data were not available for F5 due to a

malfunctioning of the temperature sensor.  In F6, maximum and minimum temperatures inside

the facility decreased with the grow-out period.  While broad fluctuations were observed in

relative humidity, the differences between maximum and minimum temperature measurements

were uniform (Fig. 2).  No relationship was observed between temperature differences and

prevalence of Salmonella throughout the grow-out period in F6 because no significant changes
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were observed in Salmonella frequency (Table 7).  In F7, differences between maximum and

minimum temperatures were greater from approximately 42 days until the end of the production

period (Fig. 3).  Relative humidity fluctuations were observed from day 0 to day 40.  Large

differences between the maximum and minimum temperatures would stress turkeys, inducing

them to shed and transmit Salmonella within the facility.  Salmonella remained undetected in

sources sampled in F7 during the grow-out period, thus there was no relationship between

temperature fluctuation and prevalence of Salmonella.  In F8, the difference between maximum

and minimum temperatures was greater after approximately 70 days of the grow-out period (Fig.

4).  Similar to F7, no relationship was observed between temperature differences and prevalence

of Salmonella in F8 because no significant changes were observed in Salmonella frequency

(Table 9).  No relationship between temperature and prevalence of Salmonella in F7 and F8 may

have been due to addition of TerminateTM to the feed.  The effectiveness of this feed additive in

reducing the frequency of Salmonella detection was greater than stress-induced shedding and/or

proliferation of Salmonella caused by temperature fluctuations.

Because the flocks were reared at different times during the year, effect of seasonal

changes was evaluated.  Flock 6 was sampled from September 1997 to February 1998 (winter),

F7 was sampled from March 1998 to August 1998 (summer), and F8 was sampled from January

1999 to June 1999 (spring) (Table 1).  Temperature differences were greater during summer

months than winter and spring months.  Seasonal changes did not affect frequency of Salmonella

detection in this study.  Hoover and coworkers (1997) found that greater temperature fluctuation

during summer months contributed to greater Salmonella shedding from turkeys.  McBride and

coworkers (1978) found that Salmonella infection among broiler flocks entering the slaughter

facility during the summer were not different from flocks arriving in winter.  Temperature
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differences can have a profound effect on Salmonella colonization dynamics (Soerjadi et al.,

1979).  High environmental temperatures have been reported to depress the immune system in

young chickens (Thaxton and Siegel, 1970).

Sex effect

Male and female turkeys were placed only in F5 and F8 of the BUTA production trials.

A total of 42 samples from turkey ceca, litter, and drinkers were positive for Salmonella in F5.

Of these 42 samples, Salmonella was detected more frequently in male (57%) than in female

(43%) turkeys.  In litter and drinker samples, frequency of Salmonella detection was higher in

males than in females (Fig. 5).  A frequency of Salmonella detection among male turkeys could

be the result of greater sensitivity of male birds to stimuli such as presence of personnel working

in the production facility.  This stimulus, in turn, could contribute to stress.  Male turkeys

appeared more active than females.  This stress may cause greater shedding of Salmonella in

their feces, which might cross contaminate litter and drinkers within each pen.  Observations

regarding the mobility of turkeys were in context with this particular flock, and they do not

represent mobility of birds in a typical grow-out facility.  In a study conducted by McBride and

coworkers (1978) on 25 turkey flocks, the average incidence of salmonellae in male and female

turkeys was 7.4 (0 to 36%) and 9.2 % (0 to 44%), respectively.  With respect to turkeys in F8,

Salmonella was detected in 75% males and 25% females.  One Salmonella-positive sample each

of litter, drinker, and feeder content was isolated from male pens, while the remaining sample

was isolated from the ceca of a female turkey.

CONCLUSIONS

Contamination of poultry products with Salmonella concerns consumers and the poultry

industry.  Reduction of Salmonella is necessary on farms where turkeys are bred, hatched,
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brooded, and raised.  This study was undertaken to identify and confirm the key sources

responsible for Salmonella colonization at a turkey production facility.  Frequency of Salmonella

detection varied from 0 to 21% across the four flocks sampled.  Turkeys were the major sources

and litter and drinkers were the major vectors of Salmonella contamination in the turkey

production facility.  Salmonella colonizes the gastrointestinal tract of poultry and, through

horizontal transmission, contaminates other birds and eventually carcasses.  A knowledge of

preharvest factors responsible for Salmonella colonization would help integrators and poultry

producers design hazard analysis and critical control point (HACCP) protocols to safeguard fresh

turkey against Salmonella contamination during processing.

Salmonella heidelberg was the most prevalent serotype isolated among the sampled

flocks.  About 25% of Salmonella serotypes were resistant to one or more antibiotics tested.

Some serotypes appeared flock specific and were associated with specific preharvest sources.

Serotype information and antibiogram patterns can be used, in part, to delineate possible

transmission pathways of Salmonella in the rearing facilities.  A transmission pathway could not

be completely established in the present study due to limitation on the number of samples

collected and number of isolates serotyped and screened for their antibiotic resistance pattern.

Genotypic methods of differentiating Salmonella serotypes can provide a complete picture on the

transmission pathway.  This information could be used to define critical, preharvest control

points on the farm.  Intervention at these points would reduce and/or eliminate horizontal

transmission and Salmonella-positive birds arriving at the processing plants.  Although

antibiotics have improved growth efficiency and reduced bacterial infections in poultry,

widespread use could result in emergence of antibiotic resistant strains in farm birds and fresh

and processed poultry products.



83

Environmental conditions, farm management, and husbandry practices within the poultry

facility could contribute to stressful conditions increasing the potential for Salmonella

colonization.  No relationship was observed between environmental conditions and Salmonella

prevalence in this study.  Salmonella was detected more frequently in male than in female

turkeys.  A higher frequency of Salmonella in male turkeys warrants consideration in designing

protocols that reduce Salmonella colonization by minimizing stress in rearing male turkeys.

Salmonella is a management disease, and its control depends on controlling the sources

of contamination and transmission.  To reduce and/or eliminate the incidence of Salmonella in

turkeys before they enter the processing plants, a concerted effort among hatchery management,

breeders, producers, integrators, and feed manufacturers is necessary.
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Table 1.  Characteristics of turkey flocks sampled during the survey.

Turkey
flocks

BUTA production
trials

Sampling
period

Sampling
frequency
(weeks)

Number of
pens sampled

Sex of birds Samples1 Environmental
characteristics

Flock 5 6 strains x 2
genders

April 1997 to
August 1997

2, 10, and 18 12 Males and
females

CC, L, D, ES,
A, and F

Litter pH and
Aw

Flock 6 3 strains x 2 feeds September
1997 to
February 1998

6, 13, and 21 6 Males CC, L, D, ES,
A, F, and FC

Litter pH and
Aw, and
temperature
and relative
humidity2

Flock 7 4 strains x 2 feeds March 1998 to
August 1998

0, 2, 10, 14,
and 21

5-10 Females IY, CC, CrC,
L, D, ES, A,
F, FC, and
BL

Litter pH and
Aw, and
temperature
and relative
humidity

Flock 8 4 strains x 2
genders

January 1999
to June 1999

2, 15, and 20 6-8 Males and
Females

CC, CrC, L,
D, ES, A, F,
and FC

Litter pH and
Aw, and
temperature
and relative
humidity

1 IY = intestine and yolk sac samples; CC = turkey cecal contents; CrC = turkey crop contents; L = litter samples; D = drinker
samples; ES = environmental swabs; A = air samples; F = feed samples; FC = feeder contents; BL = box liner samples

2 Maximum and minimum temperatures and relative humidity were measured inside the production facility.
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Table 2.  Pen assignments for the sampled flocks.

Flock 5 Flock 6 Flock 7 Flock 8Pen No.
Strain Sex Strain Feed Strain Feed Strain Sex

1 78x12 Toms Hybrid USA1 Nicholas LC3 Nicholas Toms
2 72x71 Toms Big 6 EHP2 Hybrid HH4 37-Roaster Toms
3 78x25 Toms Nicholas EHP Line 37 HH Big 6 Toms
4 38x71 Toms Big 6 USA Big 6 LC Nicholas Toms
5 72x12 Toms Hybrid EHP Nicholas HH 37-Roaster Toms
6 72x25 Toms Nicholas USA Hybrid LC Hybrid Toms
7 72x17 Toms Nicholas EHP Hybrid HH Big 6 Toms
8 38x71 Toms Hybrid USA Big 6 LC Nicholas Toms
9 72x71 Toms Big 6 EHP Hybrid LC 37-Roaster Toms

10 72x25 Toms Hybrid EHP Nicholas HH Hybrid Toms
11 78x12 Toms Nicholas USA Line 37 LC Big 6 Toms
12 78x25 Toms Big 6 USA Big 6 HH Hybrid Toms
13 72x71 Hens Nicholas USA Line 37 LC Nicholas Hens
14 78x25 Hens Big 6 USA Big 6 HH 37-Roaster Hens
15 72x25 Hens Hybrid EHP Hybrid HH Hybrid Hens
16 72x12 Hens Nicholas EHP Nicholas LC Nicholas Hens
17 38x71 Hens Big 6 EHP Line 37 HH 37-Roaster Hens
18 78x12 Hens Hybrid USA Big 6 LC Big 6 Hens
19 72x25 Hens Big 6 EHP Nicholas HH Hybrid Hens
20 72x71 Hens Nicholas USA Line 37 LC Nicholas Hens
21 38x71 Hens Hybrid EHP Nicholas LC Big 6 Hens
22 78x12 Hens Big 6 USA Hybrid LC 37-Roaster Hens
23 78x25 Hens Hybrid USA Big 6 HH Big 6 Hens
24 72x12 Hens Nicholas EHP Line 37 HH Hybrid Hens

Shaded areas indicate brooding pens; 1BUTA-USA; 2European high protein; 3Least cost; 4Heavy hen
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Table 3.  Dietary specifications of the British United Turkeys of America feeding program used for flock 6.

BUTA (USA) Feeding Program European High Protein (EHP) Feeding ProgramDiet
composition Starter

I
Starter

II
Grower

I
Grower

II
Grower

III
Finish I Finish

II
Starter

I
Starter

II
Grower

I
Grower

II
Finish I Finish

II

ME 1290 1310 1350 1425 1475 1525 1550 1275 1340 1425 1475 1540 1550

Protein 28.5 26.0 24.0 22.0 20.0 18.0 17.0 31.50 27.70 24.83 21.03 18.71 17.22

Lysine 1.80 1.65 1.48 1.30 1.12 1.00 0.90 1.88 1.66 1.45 1.21 1.07 0.92

TSAA 1.15 1.10 1.02 0.95 0.90 0.80 0.75 1.22 1.17 1.10 0.97 0.91 0.81

Methionine 0.70 0.65 0.60 0.56 0.51 0.48 0.42 0.68 0.66 0.61 0.54 0.51 0.45

Arginine 1.96 1.78 1.58 1.43 1.21 1.10 1.00 2.03 1.81 1.60 1.39 1.25 1.14

Threonine 1.05 1.00 0.94 0.84 0.70 0.64 0.59 1.20 1.07 0.99 0.79 0.68 0.60

Calcium 1.50 1.40 1.30 1.20 1.10 1.00 0.90 1.50 1.30 1.20 1.10 1.00 0.90

A. Phos. 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.75 0.65 0.60 0.55 0.50 0.45

Sodium 0.16-
0.19

0.16-
0.19

0.16-
0.19

0.16-
0.19

0.16-
0.19

0.16-
0.19

0.16-
0.19

0.16-
0.18

0.16-
0.19

0.16-
0.19

0.16-
0.19

0.16-
0.19

0.16-
0.19

Chloride 0.20-
0.25

0.20-
0.25

0.20-
0.25

0.20-
0.25

0.20-
0.25

0.20-
0.25

0.20-
0.25

0.20-
0.25

0.20-
0.25

0.20-
0.25

0.20-
0.25

0.20-
0.25

0.20-
0.25

Pound/tom 2.2 8.0 12.0 18.0 22.0 24.0 Market 3.5 12.0 22.0 30.0 40.0 Market
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Table 4.  Dietary specifications of the British United Turkeys of America feeding program used for flock 7.

Heavy Hen (HH) Feeding Program Least Cost (LC) Hen Feeding ProgramDiet
composition Starter

I (201)
Starter
II (202)

Grower
I (203)

Grower
II (204)

Grower
III

(205)

Finish I
(206)

Finish
II (207)

Starter
I (401)

Starter
II (402)

Grower
I (403)

Grower
II (404)

Grower
III

(405)

Finish I
(406)

Finish
II (407)

ME 1290 1325 1375 1450 1475 1500 1550 1290 1325 1400 1450 1500 1525 1550

Protein 28.5 26.0 24.0 22.0 19.3 18.2 16.2 28.5 26.0 24.0 22.3 19.3 17.5 15.4

Lysine 1.78 1.62 1.45 1.30 1.15 1.02 0.93 1.78 1.62 1.55 1.35 1.15 0.98 0.88

TSAA 1.20 1.15 1.05 0.95 0.88 0.82 0.75 1.20 1.15 1.08 0.95 0.85 0.75 0.68

Arginine 1.96 1.80 1.58 1.43 1.21 1.10 1.00 1.96 1.76 1.58 1.47 1.25 1.10 0.95

Threonine 1.05 1.00 0.94 0.84 0.74 0.67 0.59 1.05 1.00 0.95 0.84 0.72 0.65 0.55

Calcium 1.40 1.30 1.20 1.15 1.10 1.00 0.90 1.40 1.30 1.20 1.15 1.05 1.00 0.90

A. Phos. 0.75 0.70 0.63 0.60 0.55 0.50 0.45 0.75 0.65 0.63 0.60 0.55 0.50 0.45

Sodium 0.16-
0.18

0.16-
0.18

0.16-
0.18

0.16-
0.18

0.16-
0.18

0.16-
0.18

0.16-
0.18

0.16-
0.18

0.16-
0.18

0.16-
0.18

0.16-
0.18

0.16-
0.18

0.16-
0.18

0.16-
0.18

Chloride 0.20-
0.25

0.20-
0.25

0.20-
0.25

0.20-
0.25

0.20-
0.25

0.20-
0.25

0.20-
0.25

0.20-
0.25

0.20-
0.25

0.20-
0.25

0.20-
0.25

0.20-
0.25

0.20-
0.25

0.20-
0.25

Age (days) 0-21 22-42 43-63 64-77 78-98 99-
112

Mark
et

0-14 15-28 29-49 50-63 64-77 78-91 Mark
et

Pound/hen 2.00 5.62 9.75 8.50 15.14 11.50 25.50 1.00 2.50 6.93 6.96 8.50 9.79 42.45
Total lbs 1350 4720 8200 7150 12100 9200 19400 675 2100 5800 5800 7200 7800 32000
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Table 5.  Dietary specifications of the British United Turkeys of America feeding program used
for flock 8.

Heavy Bird Feeding ProgramDiet
Composition Starter

I
Starter

II
Grower

I
Grower

II
Grower

III
Finisher

I
Finisher

II

ME 1290 1325 1375 1450 1475 1500 1550
Protein 28.5 26.0 24.0 22.0 19.3 18.2 16.2
Lysine 1.78 1.62 1.45 1.30 1.15 1.02 0.93
TSAA 1.20 1.15 1.05 0.95 0.88 0.82 0.75
Arginine 1.96 1.80 1.58 1.43 1.21 1.10 1.00
Threonine 1.05 1.00 0.94 0.84 0.74 0.67 0.59
Calcium 1.40 1.30 1.20 1.15 1.10 1.00 0.90
A. Phos. 0.75 0.70 0.63 0.60 0.55 0.50 0.45
Sodium 0.16-

0.18
0.16-
0.18

0.16-
0.18

0.16-
0.18

0.16-
0.18

0.16-
0.18

0.16-
0.18

Chloride 0.20-
0.25

0.20-
0.25

0.20-
0.25

0.20-
0.25

0.20-
0.25

0.20-
0.25

0.20-
0.25

Age (days) 0-21 22-42 43-63 64-77 78-98 99-112 Market

Pounds/hen 2.00 5.62 9.75 8.50 15.14 11.50 25.50

Age (days) 0-21 22-42 43-63 64-84 85-105 106-126 Market

Pounds/tom 2.00 7.85 11.84 17.56 21.00 23.55 15.00
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Table 6.  Frequency of Salmonella detected from various flock 5 samples in the turkey
production facility.

Grow-out Period
(number positive/number sampled)

Sample

Week 2 Week 10 Week 18

Total

Turkey ceca 6/24 1/24 15/24 22/72    (31%)1

Litter 2/12 1/12 6/12 9/36      (25%)

Drinkers 2/12 2/12 6/12 10/36    (28%)

Environmental
swabs

1/14 0/18 4/10 5/42      (12%)

Air 0/11 0/10 0/5 0/26

Feed 0/0 0/3 0/3 0/6

Total 11/73
(15%)

4/79
(5%)

31/66
(47%)

46/218  (21%)

1 Figures in parentheses indicate percent positive
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Table 7.  Frequency of Salmonella detected from various flock 6 samples in the turkey
production facility.

Grow-out Period
(number positive/number sampled)

Sample

Week 6 Week 13 Week 21

Total

Turkey ceca 0/12 0/12 1/10 1/34    (3%)1

Litter 0/6 3/6 1/6 4/18    (22%)

Drinkers 0/6 0/6 0/6 0/18

Environmental
swabs

0/8 0/8 0/8 0/24

Air 0/8 0/7 0/8 0/23

Feed 0/15 1/10 2/13 3/38    (8%)

Feeder contents 0/0 0/0 1/24 1/24    (4%)

Total 0/55 4/49
(8%)

5/75
(7%)

9/179  (5%)

1 Figures in parentheses indicate percent positive
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Table 8.  Frequency of Salmonella detected from various flock 7 samples in the turkey production facility.

Grow-out Period
(number positive/number sampled)

Sample

Day 0 Week 2 Week 10 Week 14 Week 21

Total

Turkey ceca 0/121 0/16 0/12 0/12 0/12 0/64

Turkey crop 0/0 0/0 0/0 0/0 0/12 0/12

Litter 0/6 0/10 0/6 0/6 0/5 0/33

Drinkers 0/6 0/8 0/6 0/6 0/5 0/31

Environmental
swabs

0/14 0/8 0/8 0/8 0/8 0/46

Air 0/8 0/8 0/7 0/8 0/8 0/39

Feed 0/2 0/2 0/10 0/4 0/8 0/26

Feeder contents 0/0 0/10 0/28 0/29 0/40 0/107

Liners 0/3 0/0 0/0 0/0 0/0 0/3

Total 0/51 0/62 0/77 0/73 0/98 0/361

1 turkey intestine and yolk sacs were sampled
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Table 9.  Frequency of Salmonella detected from various flock 8 samples in the turkey
production facility.

Grow-out Period
(number positive/number sampled)

Sample

Week 2 Week 15 Week 20

Total

Turkey ceca 0/15 0/12 0/12 0/39    (3%)1

Turkey crop 0/13 0/12 0/12 0/37

Litter 1/8 0/6 0/6 1/20    (5%)

Drinkers 0/8 0/6 0/6 0/20

Environmental
swabs

0/6 0/6 1/6 1/18    (6%)

Air 0/6 0/6 0/6 0/18

Feed 0/8 0/24 0/9 0/41

Feeder contents 0/0 0/20 1/20 1/40    (3%)

Total 1/64
(2%)

0/92 2/77
(3%)

3/233  (1%)

1 Figures in parentheses indicate percent positive
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Table 10.  Distribution of Salmonella serotypes isolated from various samples in the turkey production facility.

Flock 5 Flock 6 Flock 8Sample Serotype
 Week 2 Week 10 Week 18 Week 13 Week 21 Week 2 Week 20

Total

S. heidelberg 6 1 15 - - - - 22CECAL
CONTENTS S. senftenberg - - - - 1 - - 1

S. heidelberg 1 2 6 1 - - - 10
S. muenster 1 - - - - 1 2
S. senftenberg - - - 8 - - - 8

LITTER

S. worthington - - - - 1 - - 1

S. anatum 2 - - - - - - 2
S. heidelberg - 1 7 - - - - 8

DRINKERS

S. muenster - 1 - - - - - 1

S. heidelberg 1 - 4 - - - - 5SWABS
S. muenster - - - - - - 2 2

FEED S. senftenberg - - - 2 2 - - 4

S. muenster - - - - - - 2 2FEEDER
CONTENTS S. worthington - - - - 1 - - 1

Total 11 5 32 11 5 1 4 69
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Table 11.  Distribution of Salmonella serotypes isolated from various flock 5 samples in the
turkey production facility.

SamplesSerotype

Turkey ceca Litter Drinkers Environmental
swabs

Total

S. heidelberg 22 9 8 5 44 (92%)1

S. muenster 0 1 1 - 2     (4%)

S. anatum 0 0 2 0 2     (4%)

Total 22 10 11 5 48

1 Figures in parentheses indicate percent of total isolates
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Table 12.  Distribution of Salmonella serotypes isolated from various flock 6 samples in the
turkey production facility.

SamplesSerotype

Turkey
ceca

Litter Feed Feeder
contents

Total

S. senftenberg 1 8 4 0 13 (81%)1

S. worthington 0 1 0 1 2   (13%)

S. heidelberg 0 1 0 0 1   (6%)

Total 1 10 4 1 16

1 Figures in parentheses indicate percent of total isolates
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Table 13.  Frequency of antibiotic resistant Salmonella serotypes isolated from various samples
in the turkey production facility.

Sample Flock 5 Flock 6 Flock 8 Total

Turkey ceca 6/22 0/1 0/0 6/23     (26%)1

Litter 0/10 1/10 0/1 1/21     (5%)

Drinkers 6/11 0/0 0/0 6/11     (55%)

Environmental
swabs

1/5 0/0 2/2 3/7       (43%)

Feed 0/0 0/4 0/0 0/4

Feeder contents 0/0 1/1 0/2 1/3       (33%)

Total 13/48
(27%)

2/16
(13%)

2/5
(40%)

17/69   (25%)

1 Figures in parentheses indicate percent positive
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Table 14.  Antibiotic resistance among Salmonella serotypes isolated from various flock 5 samples in the turkey production facility.

Grow-out Period
Week 2 Week 10 Week 18

Sample

Serotype Frequency1 Serotypes Frequency Serotypes Frequency

Total

Turkey ceca S. heidelberg 0/6 S. heidelberg 0/1 S. heidelberg 6/15
(5-S, Spt, Gm)
(1-Te, S, Spt,

Gm)

6/22  (27%)2

Litter S. heidelberg
S. muenster

0/1
0/1

S. heidelberg 0/2 S. heidelberg 0/6 0/10

Drinkers S. anatum 2/2
(2-Te, S)3

S. heidelberg

S. muenster

0/1

0/1

S. heidelberg 4/7
(2-S, Spt, Gm)
(2-Te, S, Spt,

Gm)

6/11  (55%)

Environmental
Swabs

S. heidelberg 0/1 S. heidelberg 1/4
(1-Te, Sxt)

1/5    (20%)

Total 2/11
(18%)

0/5 11/32
(34%)

13/48  (27%)

1 Antibiotic resistant isolates/total isolates
2 Figures in parentheses indicate percent positive
3 Number of isolates and resistant antibiotics
Te=tetracycline; S=streptomycin; Spt=spectinomycin; Gm=gentamycin; Sxt=trimethoprim/sulfmethoxazole
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Table 15.  Antibiotic resistance among Salmonella serotypes isolated from various flock 6
samples in the turkey production facility.

Grow-out Period

Week 13 Week 21

Sample

Serotype Frequency1 Serotype Frequency

Total

Turkey ceca - - S. senftenberg 0/1 0/1

Litter S. senftenberg

S. heidelberg

0/8

0/1

S. worthington 1/1
(1-Te)2 1/10 (10%)3

Feed S. senftenberg 0/2 S. senftenberg 0/2 0/4

Feeder
contents

- - S. worthington 1/1
(1-Te)

1/1   (100%)

Total 0/11 2/5
(40%)

2/16 (13%)

1 Antibiotic resistant isolates/total isolates
2 Number of isolates and resistant antibiotic
Te=tetracycline
3 Figures in parentheses indicate percent positive
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Table 16.  Antibiotic resistance among Salmonella serotypes isolated from various flock 8
samples in the turkey production facility.

Grow-out Period

Week 2 Week 20

Sample

Serotype Frequency1 Serotype Frequency

Total

Litter S. muenster 0/1 - - 0/1

Environmental
swabs

- - S. muenster 2/2
(2-Tob, S,
Spt, Gm)2

2/2 (100%)3

Feeder
contents

- - S. muenster 0/2 0/2

Total 0/1 2/4
(50%)

2/5 (40%)

1 Antibiotic resistant isolates/total isolates
2 Number of isolates and resistant antibiotics
Tob=tobramycin; S=streptomycin; Spt=spectinomycin; Gm=gentamycin
3 Figures in parentheses indicate percent positive
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Table 17.  Litter pH and Aw measurements from pens sampled during the grow-out of flock 5

Week 10 Week 18
Pen No. PH Aw Pen No. pH Aw

1 7.77 0.945 2 6.39 0.961

3 8.37 0.949 4 7.71 0.954

6 8.35 0.949 5 7.33 0.962

7 7.20 0.945 8 7.36 0.976

9 7.44 0.966 10 7.49 0.991

12 8.31 0.950 11 7.73 0.944

13 7.38 0.976 14 8.21 0.928

15 6.07 0.972 16 7.47 0.966

18 5.81 0.976 17 8.26 0.938

19 7.12 0.961 20 8.24 0.969

21 7.94 0.953 22 7.77 0.954

24 8.62 0.970 23 7.42 0.956
Average 7.53 0.959 7.62 0.958
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Table 18.  Litter pH and Aw measurements from pens sampled during the grow-out of flock 6

Week 6 Week 13 Week 21

Pen No. pH Aw Pen No. pH Aw1 Pen No. pH Aw2

1 7.19 0.990 3 7.29 0.982 2 8.34 0.886

9 6.22 0.990 4 6.91 0.979 5 7.97 0.832

11 6.34 0.964 5 7.40 0.982 10 8.16 0.854

15 6.38 0.962 17 7.72 0.976 14 8.28 0.867

22 7.09 0.976 18 7.82 0.988 19 7.59 0.918

24 6.30 0.960 20 7.74 0.979 21 8.25 0.865

Total 6.59 0.974 7.48 0.981 8.10 0.870

1 Average temperature of the Aw meter 23.5oC
2 Average temperature of the Aw meter 25.4oC
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Table 19.  Litter pH and Aw measurements from pens sampled during the grow-out of flock 7

Day 0 Week 2 Week 10 Week 14 Week 21
Pen No pH Aw1 Pen No pH Aw2 Pen No pH Aw3 Pen No pH Aw4 Pen No pH Aw5

3 5.24 0.326 3 6.02 0.979 1 7.48 0.950 2 7.38 0.977 4 8.33 0.967
4 5.34 0.456 4 6.97 0.985 5 7.32 0.981 3 6.73 0.983 7 7.49 0.971
10 5.25 0.377 9 6.94 0.967 8 7.46 0.966 6 7.11 0.987 16 7.51 0.914
14 5.38 0.385 10 6.21 0.984 11 6.88 0.948 13 7.17 0.976 20 7.33 0.957
16 5.26 0.433 14 6.77 0.967 14 7.67 0.966 17 6.46 0.986 22 7.85 0.954
22 5.09 0.482 15 7.59 0.975 15 8.04 0.960 18 6.91 0.966

16 6.07 0.931
20 5.93 0.982
21 6.86 0.941
22 6.16 0.960

Avg. 5.26 0.410 6.55 0.967 7.48 0.962 6.96 0.979 7.70 0.953

1 Average temperature of Aw meter 30.3oC
2 Average temperature of Aw meter 27.8oC
3 Average temperature of Aw meter 22.6oC
4 Average temperature of Aw meter 21.6oC
5 Average temperature of Aw meter 21.4oC
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Table 20.  Litter pH and Aw measurements from pens sampled during the grow-out of flock 8

Week 2 Week 15 Week 20

Pen No. pH Aw1 Pen No. pH Aw2 Pen No. pH Aw3

3 6.30 0.979 2 8.35 0.932 1 7.02 0.983

4 6.39 0.979 6 8.37 0.944 5 7.56 0.964

9 6.35 0.983 12 7.68 0.953 11 7.32 0.963

10 6.27 0.978 13 7.31 0.944 14 6.91 0.943

15 6.25 0.989 17 7.66 0.935 18 6.68 0.965

16 6.39 0.988 20 7.51 0.955 19 7.15 0.915

21 6.37 0.990

22 6.40 0.975

Total 6.34 0.983 7.81 0.944 7.11 0.956

1 Average temperature of Aw meter 25.2oC
2 Average temperature of Aw meter 22.1oC
3 Average temperature of Aw meter 24.1oC
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Figure 1.  Turkey production facility.
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Figure 2.  Maximum and minimum temperatures and percent relative humidity inside the turkey
production facility in flock 6.
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Figure 3.  Maximum and minimum temperatures and percent relative humidity inside the turkey
production facility in flock 7.
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Figure 4.  Maximum and minimum temperatures and percent relative humidity inside the
turkey production facility in flock 8.
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Figure 5.  Prevalence of Salmonella in male and females turkeys from various flock 5 samples in
the turkey production facility.
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APPENDICES
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FARM BIOSECURITY MEASURES

Following biosecurity measures were implemented on the farm:

1. All barns used to brood, rear, and lay parent stock were operated on a single age, all in-all out

basis.  Adequate time was allowed for cleaning the facility and equipments before placement

of the new flock.  Building surroundings were maintained to exclude rodents, wild birds, and

other wild animal that could be responsible for transmitting diseases to the birds.

2. Dead birds were removed from the general population and immediately incinerated.

3. Water supply used for drinkers was chlorinated (2-3 ppm residual chlorine) to reduce and

control levels of harmful pathogens.

4. Personnel movement inside the facility was controlled.  Before entering the facility all

personnel were required to shower and change clothes (including footwear) that were

provided by BUTA on the farm.  Used clothing was washed within the service building.

Before entering the turkey house, the rubber boots were rinsed with water containing iodine

solution [18.05% (alpha-(p-nonylphenyl)-omega-hydroxypoly(oxyehtylene) iodine complex;

1.75% titrable iodine and 16% phosphoric acid].

5. Vehicles transporting poults and carrying market-size birds were thoroughly cleaned and

disinfected to reduce the risk of disease transmission.

Source: British United Turkeys of America (BUTA) Management Guide
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TURKEY HOUSE CLEANING AND DISINFECTION METHODS

Following measures were implemented by BUTA between placement of each flock:

1. Following removal of birds, all remaining feed from bins, augers, hoppers, lines, and feed

pans were either disposed off or transferred from the farm.

2. Movable equipments such as drinkers, hoses, feed pans, and feed drops were moved to a

centralized location for washing.

3. Personnel clothing from shower/dressing area was washed, dried, and placed into plastic bags

for storage until next cycle.

4. A high-pressure water washer was used to rinse dust and litter from the ceiling walls,

windowsills, fans, and light traps.  Thorough washing was carried out later.  Fan motors,

electric boxes, and thermostats were dry cleaned.

5. Litter and remaining debris were swept and removed from the facility.

6. Feed tank was washed with a high pressure sprayer containing 20% chlorine bleach and the

water was allowed to run out of the boot.

7. Water lines were flushed with 20% chlorinated water for 15-20 min.  The chlorinated water

was allowed to sit in the water lines over night before flushing with clean water for 15-20

min.

8. Turkey house (ceiling, walls, and floor) was cleaned and disinfected with high-pressure water

with mild detergent before placement of new flock.

9. Feed lines and hoppers were cleaned before washing the floor so that all residual feed/dust

was removed from the facility.

10. Storage, break room, and shower areas were cleaned.
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11. Equipment was removed from the facility, disassembled, and disinfected.  After cleaning

equipment, each piece was returned to the house for installation.

12. After all equipment was returned to the facility, all doors, and drain holes were closed and

secured tightly (rodent proof).

13. Final disinfection of the premise included foaming inside and outside with a disinfectant

solution.  The facility was closed for at least one day before opening.

14. Upon opening the facility, insecticide and rodent bait was immediately applied and/or

distributed before placement of new litter.
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SALMONELLA ISOLATION PROCEDURE

Preenrichment*
(UP broth)

Selective enrichment*
(TT and CS broth)

Isolation of presumptive positive colonies*
(XLT4 and BGS agar plates)

Screening of positive colonies
(TSI* and LIA** slants)

Positive cultures
maintained on BHI*

Confirmation
(Serology using polyvalent antisera)

Serotyping and antibiotic resistance profile

(Salmonella Reference Center, University of Pennsylvania)

* Incubated at 37oC for 24 hr
** Incubated at 37oC for 48 hr
UP=universal preenrichment broth; TT=tetrathionate broth; CS=celenite cystine broth;
XLT4=xylose lactose tergitol agar; BGS=brilliant green sulfa agar; TSI=triple sugar iron slant;
and LIA=lysine iron agar slant
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SAMPLED PENS

Sampling
period

Flock 5 Flock 6 Flock 7 Flock 8

Day 0 3, 4, 10, 14, 16,
22

Week 2 3, 4, 5, 9, 10, 11,
14, 15, 16, 20,
21, 22

3, 4, 9, 10, 14,
15, 16, 20, 21,
22

3, 4, 9, 10, 15,
16, 21, 22

Week 6 1, 9, 11, 15, 22,
24

Week 10 1, 3, 6, 7, 9, 12,
13, 15, 18, 19,
21, 24

1, 5, 8, 11, 14,
15

Week 13 3, 4, 5, 17, 18,
20

Week 14 2, 3, 6, 13, 17,
18

Week 15 2, 6, 12, 13, 17,
20

Week 18 2, 4, 5, 8, 10, 11,
14, 16, 17, 20,
22, 23

Week 20 1, 5, 11, 14, 18,
19

Week 21 2, 5, 10, 14, 19,
21

4, 7, 16, 20, 22
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BIRD DENSITY AND MORTALITY DATA

Flock 5 Flock 6 Flock 7 Flock 8Pen No.
Week 2 Week 10 Week 18 Week 6 Week 13 Week 21 Week 2 Week 10 Week 14 Week 2 Week 15 Week 20

1 0/781 1/77 0/65 0/51 0/47 1/38 - 0/70 0/65 - 0/50 4/39
2 0/80 0/80 0/68 1/48 0/45 1/34 - 1/69 1/63 - 4/39 4/29
3 0/80 0/79 1/55 0/51 3/44 1/33 0/168 1/61 0/58 3/163 2/50 4/40
4 0/77 0/76 0/50 0/51 5/41 1/31 1/167 0/70 0/66 2/162 0/48 4/36
5 0/79 0/79 0/79 0/52 2/49 1/38 - 0/70 9/55 - 4/40 4/30
6 0/79 0/78 0/72 1/49 2/46 1/37 - 1/69 9/57 - 3/47 4/38
7 0/77 0/77 0/70 0/48 1/44 1/35 - 0/69 3/66 - 0/45 4/36
8 0/77 1/72 0/52 0/48 0/44 1/34 - 0/70 0/63 - 0/49 4/40
9 0/80 0/79 0/65 1/50 0/45 0/37 0/168 2/68 0/64 2/165 4/39 4/26

10 0/81 0/80 0/65 0/50 0/49 0/41 0/167 0/70 9/58 11/148 0/36 0/36
11 0/79 1/78 0/56 0/52 1/48 0/39 - 1/64 0/59 - 0/47 4/38
12 0/79 0/79 0/64 1/49 0/49 0/40 - 0/70 9/57 - 2/49 4/40
13 0/80 0/79 0/60 0/48 1/45 0/39 - 0/62 0/59 - 6/60 0/54
14 0/80 0/78 0/63 1/48 0/43 1/34 1/165 2/66 0/61 - 2/55 0/59
15 0/80 1/77 0/56 0/52 2/47 1/38 1/163 0/69 0/64 2/219 4/62 0/56
16 0/80 0/79 0/58 0/49 0/48 0/37 0/168 0/70 0/66 2/218 4/60 0/54
17 0/80 1/79 0/67 1/50 3/46 1/36 - 0/69 9/54 - 6/56 0/48
18 0/71 0/71 0/43 1/51 2/49 1/40 - 1/68 0/64 - 4/61 0/56
19 0/70 0/70 0/45 1/48 0/46 0/36 - 0/70 9/58 - 5/58 0/52
20 0/80 0/79 1/61 0/52 3/43 0/33 0/166 1/68 0/63 - 6/58 0/52
21 0/80 0/78 0/52 1/49 1/48 0/41 0/168 0/69 0/66 2/217 4/60 0/54
22 0/80 0/79 0/56 1/48 0/44 1/34 1/167 0/69 0/66 2/222 7/57 0/43
23 0/80 0/80 0/64 0/50 0/47 0/31 - 0/69 9/57 - 4/59 0/54
24 0/80 0/80 0/56 1/51 0/48 0/38 - 0/68 18/46 - 3/61 0/54

1 Dead birds/total birds
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CHAPTER 2

NON-PATHOGENIC ESCHERICHIA COLI AND TOTAL COLIFORMS AS

INDICATORS OF FECAL CONTAMINATION IN A TURKEY

PRODUCTION FACILITY
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ABSTRACT

An ecological survey was conducted from March 1998 to June 1999 to determine the prevalence

of generic E. coli and total coliforms in two turkey flocks (F7 and F8).  Flocks were sampled at

weeks 10, 14, and 21 for F7 and weeks 2, 15, and 20 for F8.  Number of pens sampled during

each grow-out period ranged from 5 to 8.  Turkey cecal and crop contents, litter, drinkers, air,

feed, and feeder contents were sampled.  Environmental swabs were collected from various

locations in the production facility.  Samples from each source were mixed with appropriate

amounts of Universal Preenrichment broth, and 1-mL of this enriched sample was immediately

transferred to a 3M PetrifilmTM E. coli/coliform count plate.  Plates were incubated at 37oC for

24 and 48 h to enumerate total coliforms and generic E. coli, respectively.  Escherichia coli and

total coliforms were detected from 45 and 53%, respectively, of all sources sampled.

Escherichia coli and total coliforms were isolated from 99 and 100% of cecal contents, 97 and

100% of drinkers, 81 and 95% of litter, 63 and 76% of crop contents, 48 and 52% of swabs, and

18 and 33% of feeder content samples, respectively.  Frequency of E. coli detection decreased in

both flocks as the grow-out period progressed.  Identifying preharvest sources of generic E. coli

and total coliform contamination will help poultry producers and integrators to take necessary

control measures in implementing good manufacturing practices within the production facilities.

On-farm E. coli reduction will assist processors in reducing positive carcasses at the plant.

KEY WORDS: E. coli, preharvest sources, total coliforms, turkey
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INTRODUCTION

Generic (non-pathogenic) E. coli has been used as an indicator organism and its presence

indicates a failure in good manufacturing practices at the processing plant.  This failure could

result in a food product of unacceptable microbial quality (Johnson, 1995).  Generic E. coli is

ubiquitous to the gastrointestinal tract of chickens and turkeys and serves as a microbial indicator

of fecal contamination on poultry carcasses.  Fecal contamination, in turn, may be responsible

for transmitting enteric pathogens such as E. coli O157:H7, Salmonella, and Campylobacter on

fresh poultry.  Solberg et al. (1977) reported practical implications of using E. coli as an

indicator of pathogens in raw poultry.  The authors demonstrated that if a raw food product

contained less than 3 cells of E. coli/g, then 7% of the product will contain pathogens.  Similarly,

if the raw food contained <102, 103, or 104 E. coli cells/g, then 42, 52, and 59% of the product,

respectively, will contain pathogens.  Studies have shown that verotoxigenic (or

enterohemorrhagic) E. coli O157:H7, a major serotype of generic E. coli infections, has been

reported predominantly in live beef and dairy cattle resulting from on-farm contamination and/or

contamination at the processing units (Hinton et al., 1985; Sischo and Hancock, 1994; Garber et

al., 1995; Johnson et al., 1995; Hancock et al., 1997; Wells et al., 1998).  Gill et al. (1996)

demonstrated that enumerating E. coli could be valuable in assessing plant sanitary conditions

during beef slaughter.  Although E. coli-related food borne outbreaks have been associated with

raw beef products, raw and processed poultry products should not be excluded.

Federal guidelines stipulate testing of E. coli levels on poultry carcasses at the slaughter

facility.  According to the “Mega-Reg” policy initiated by the Food Safety and Inspection

Service (FSIS), meat and poultry slaughtering facilities are required to implement Hazard

Analysis and Critical Control Point (HACCP) protocols and conduct testing of generic E. coli on
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carcasses to ensure process control (Anon, 1996).  Escherichia coli testing has been carried out

using AOAC-approved methods.  Regulation requires smaller plants (annually producing

440,000 chickens or 60,000 turkeys) to collect one sample (whole bird rinse after the drip line)

per week during the months of June to August (Anon, 1996).  Larger plants are required to

collect one sample every 22,000 chickens or 3,000 turkeys.  Chickens have a lower limit of 100

CFU/cm2 and an upper limit of 10,000 CFU/cm2.  Limits have not been set for turkeys.  No

result can exceed the upper limit, and only three of fewer samples are allowed in the range from

100 to 10,000 CFU/cm2 from the last 13 samples.

However, to facilitate process control at the slaughtering plant, comprehensive control

should be implemented at the production facilities.  One way of implementation is to identify

preharvest sources of generic E. coli and total coliforms so that critical control points could be

established, preharvest, to reduce their incidence.  The objective of this study was to identify key

environmental sources/vectors in a turkey production facility that may contribute to generic E.

coli and total coliform contamination of poultry.

MATERIALS AND METHODS

The survey was conducted at Reymann Memorial Farm, Wardensville, WV, in

conjunction with turkey production trials supported by British United Turkeys of America

(BUTA), Lewisburg, WV.  The facility consists of 24 pens with 12 pens on each side of a central

service area.  Two turkey flocks (F7 and F8) were sampled from March 1998 to June 1999 on

this facility.  These are the 7th and 8th flocks produced in this facility.  Production trials were

conducted by BUTA to evaluate the effect of strain and feed (F7) and strain and gender (F8) on

growth performance, feed efficiency and carcass composition of turkeys.  Flock characteristics

are summarized in Table 1.  Standard biosecurity measures were implemented and the houses,
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pens, and equipments were thoroughly cleaned and disinfected between each flock in accordance

with BUTA guidelines (Appendix, Chapter1).

Sampling Procedures

Turkey cecal and crop contents, litter, drinkers, air, feed, and feeder content were

sampled during weeks 10, 14, and 21 for F7 and weeks 2, 15, and 20 for F8.  Environmental

swabs were collected throughout the facility.  Turkeys were euthanized by cervical

disarticulation within accepted guidelines.  The entire cecum was removed, the blind end was

snipped with a pair of scissors, and the cecal contents were transferred to a sterile stomacher bag

and sealed.  Litter and drinker samples were collected from the same pens used for sampling

turkeys.  Litter samples were collected from 5-6 random locations within the pen and a

composite sample was tested.  For water samples, 2 or 3 strips of sterile cloth gauzes were

dipped into drinker water and these gauzes were transferred to sterile bags and sealed.

Environmental swabs were collected from a 16 cm2 area using a sterile swab template; swabs

were transferred to 10 mL UP broth.  The locations for swab samples included walls, ventilation

fans, feathers and open wounds of sick birds, feathers of dead birds, employee shoes, fans inside

the pens, feed storage bins, and door handles.  Air samples were collected using Rodac plates

containing brain heart infusion (BHI) agar with a SAS portable high flow air sampler (Model

5203, Spiral Biotech Inc., Maryland).  The air sampler was set to withdraw 60 L of air in 20 s.

Air samples were collected from pens, ventilation fans, entrances to the turkey house, centralized

service area, and service area on each side of the turkey house during each production period.

After collecting the air samples on rodac plates, BHI agar was aseptically transferred to a sterile

stomacher bag and sealed.  Feed samples were randomly collected from each feed shipment by

placing a sterile bag in the feed flow from the auger and/or from the feed cart.  Feeder content
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samples included feed weighback samples collected from each of 24 pens per week.  Samples

were stored at  – 4oC in the facility.  About 10 to 20% of the feeder samples were analyzed

during each sampling period.  Samples were shipped to the laboratory on ice to minimize E. coli

growth.

Laboratory procedures

Samples of turkey ceca and crop contents were thoroughly mixed with UP broth (1:10

w/v).  Drinker and air samples were mixed with 100 mL of UP broth and massaged manually for

30 s.  Approximately 5 g of litter, 10 g of feed or 10 g of feeder content samples were transferred

to specimen bottles containing 100 mL UP broth and mixed.  Bacterial counts from these sources

are expressed as log CFU/mL of UP broth.  Swab samples, placed in 10 mL UP broth, were

directly used for E. coli testing.  A PetrifilmTM E. coli/coliform count plate (Microbiology

Products 3M Health Care, Minnesota) for enumerating generic E.  coli and total coliforms was

placed on a leveled surface (Appendix).  The top film was lifted and 1-mL of freshly mixed

sample was placed at the center of the bottom gel.  The top film was rolled down slowly ensuring

no air bubbles were entrapped.  A plastic spreader was placed on the center of the plate and the

sample was distributed evenly by applying gentle pressure on the center of the spreader.  The

spreader was removed and the gel was allowed to solidify for 1 min.  The 3M PetrifilmTM plates

were incubated (Imperial II Incubator 422, Labline Instruments Inc., Illinois) at 37oC for 24±2 h

to enumerate total coliforms and incubated for an additional 24±2 h at 37oC to enumerate generic

E. coli colonies.  The total coliform count consisted of bright red and blue colonies, and these

colonies were closely associated (~ 1 colony diameter) with entrapped gases.  Escherichia coli

colonies appeared blue or red-blue with or without gas regardless of size or intensity of color.

All red and blue colonies were counted to obtain a total coliform count.  The entire procedure
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described above was carried out under aseptic conditions using a laminar flow unit (Model

NU425-400, Class II Type A/B3, NuAire™ Inc., Minnesota).  Matner and coworkers (1990)

reported that the PetrifilmTM plate count method was as good as or better than AOAC-approved

Most Probable Number (MPN) method for detecting generic E. coli and total coliforms in

several food products.

RESULTS AND DISCUSSION

Of the 481 sources sampled from both flocks, 45 and 53% tested positive for generic E.

coli and total coliforms, respectively.  Generic E. coli and total coliforms were isolated from 99

and 100% of turkey ceca, 63 and 76% of turkey crop, 81 and 95% of litter, 97 and 100% of

drinkers, 48 and 52% of environmental swabs, 0 and 10% of air, 0 and 3% of feed, and 18 and

33% of feeder content samples, respectively.  Prevalence of generic E. coli has been used in

assessing sanitary control of the turkey slaughtering process (USDA, 1996).  According to the

United States Department of Agriculture (USDA), E. coli testing would verify that the

slaughtering process was reducing or preventing fecal contamination on carcasses (USDA-FSIS,

1996).  Unsanitary conditions on turkey farms could be responsible for harboring E. coli and

fecal coliforms, contributing to transmission at the slaughter facilities.  Escherichia coli was

selected as the test organism because enumerating E. coli could assist in verifying that

processing parameters were in control.  In addition, detection and quantification of E. coli is

simple and inexpensive compared to other poultry pathogens such as Salmonella,

Campylobacter, and Listeria (Russell, 1996).

In F7, E. coli was detected from 100% each of turkey ceca, litter, and drinkers, 75% of

crop contents, 50% of environmental swabs, and 26% of feeder content samples (Table 2).

Escherichia coli remained undetected in air and feed samples.  Frequency of detection decreased
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from 55% at week 10 to 41% at week 21 of the grow-out period.  Since E. coli inhabits the

gastrointestinal tract, high levels (> 7.0 log CFU/mL) would be expected in turkey ceca and crop

contents.  Escherichia coli found in drinker samples ranged from < 1.0 to 7.0 log CFU/mL, and

low counts were observed in environmental swabs (< 1 log CFU/cm2) and feeder contents (<1 to

2.4 log CFU/mL).  In F8, turkey ceca (97%) and drinkers (95%) were the major sources/vectors

of E. coli contamination (Table 3).  Generic E. coli were also detected in 65% of litter, 59% of

crop contents, and 44% of environmental swabs.  Levels of E. coli detected from these samples

ranged from 1.0 to 7.0 log CFU/mL.  Similar to F7, E. coli frequency decreased from 73% at

week 2 to 31% at week 20.  Higher incidences of E. coli from litter, drinker, and feeder contents

in the sampled flocks indicate that these sources could have been cross-contaminated by turkey

droppings.  Information on E. coli serotypes isolated from the sampled sources would be useful

in delineating the possible transmission pathway.  Although poultry has not been associated with

E. coli infections, it is possible that serotype O157:H7 could be among the sources sampled.

This strain could contaminate the birds entering the slaughter facility.  Nonetheless, frequency

and level of O157:H7 were not evaluated in this study.  It would be worthwhile enumerating the

level and frequency of E. coli O157:H7 from the sampled flocks in order to determine a

correlation with generic E. coli and total coliform data from the present study.

High levels of E. coli can be used to predict the presence of other pathogenic bacteria

such as Salmonella or Campylobacter.  In other words, E. coli can be considered as an “index

organism” or a reference for the presence of pathogens (Russell, 1996).  In this study, prevalence

of Salmonella was also determined.  In F7, Salmonella could not be detected in any of the 361

sources sampled, while in F8, only 1% of the 233 sources sampled tested positive (Table 8 and 9;

Chapter 1).  Salmonella was isolated from 6% of environmental swabs, 5% of litter samples, and
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3% each of turkey ceca and feeder content samples.  Solberg and coworkers (1977) reported a

high correlation coefficient between generic E. coli and Salmonella (0.708) and coliforms and

Salmonella (0.704).  No correlation could be found in the present study between the presence of

E. coli/total coliforms and prevalence of Salmonella during the grow-out period.  Frequency of

E. coli detection will always be higher than that of pathogens such as Salmonella and

Campylobacter.

Turkey ceca (100%), litter (100%), drinkers (100%), and crop (83%) were the primary

sources of total coliform contamination in F7 (Table 4).  Total coliforms were also isolated from

50% of environmental swabs, 46% of feeder contents, and 4% of air samples.  Turkey ceca, crop,

and litter samples had high total coliform counts (> 7.0 log CFU/mL), while swabs, air, and

feeder content samples had low counts (< 1.0 to 2.4 log CFU/mL).  Although E. coli-positive

samples decreased in F7 during the grow-out period (Table 1), frequency of total coliforms

detected decreased from 60% at week 10 to 54% at week 21.  Total coliforms include members

of at least three genera: Escherichia, Klebsiella, and Enterobacter.  The complex microbial

ecology in the turkey intestine may have been balanced by replacement of E. coli in the total

coliform count with Klebsiella and Enterobacter during the grow-out period in F7.  In F8, total

coliforms were detected in 100% each of ceca and drinker samples, 90% of litter, 73% of crop,

56% of environmental swabs, 17% of air, and 5% of feed samples (Table 5).  Although 46% of

feeder contents were tested positive for total coliforms in F7 (Table 4), no feeder content samples

in F8 tested positive.  Turkey ceca had high coliform counts (> 7.0 log CFU/mL), while the level

of coliforms varied (< 1.0 to 7.0 log CFU/mL) for all other sources sampled.  Frequency of total

coliforms detection decreased from 80% at week 2 to 43% at week 20.
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CONCLUSIONS

Cecal contents, litter and drinker samples were the major preharvest sources/vectors of

generic E. coli and total coliform contamination in the turkey production facility.  Controlling

these sources can help the turkey producers and integrators implement good sanitary measures

on the farm.  Fecal matter present on the outside of turkeys could affect E. coli and coliforms

levels on the carcasses as these birds enter the slaughter facilities.  This is regardless of sanitary

conditions maintained at the processing facilities or efforts taken to decrease bacterial load

during processing.  Feed withdrawl and transportation stress may contribute to E. coli

contamination before turkeys enter the processing units.  These factors are not directly plant

related nor are they a measure of personnel sanitation; nonetheless, under the current federal

regulations, the integrators would be ultimately responsible for high levels of E. coli on

carcasses.  Since E. coli frequently represents the majority of total coliforms, reducing the latter

in poultry carcasses could also assist in minimizing risk of E. coli infections.  Certain serotypes

of E. coli have been responsible for human hemorrhagic colitis and hemolytic uremic syndrome.

Although many of these cases have been linked to consumption of undercooked ground beef,

raw and processed poultry products are no exception.  It is imperative that turkeys arriving at the

slaughter facilities have reduced levels of E. coli and/or fecal coliforms.  Eliminating generic E.

coli or total coliforms from turkey houses is impossible because these microorganisms are

ubiquitous and they form the natural microflora of the bird’s gastrointestinal tract.  Hence, efforts

should be made in reducing their levels by implementing stringent hygienic practices at the

grow-out facilities.
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Table 1.  Summary of turkey flock statistics

Characteristics Flock 7 Flock 8

Sampling period March to August 1998 January to June 1999

BUTA production trail 4 strains x 2 feeds 4 strains x 2 genders

Sampling frequency (weeks) 10, 14, and 21 2, 15, and 20

Number of pens 5-6 6-8

Sex of birds Females Males and females
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Table 2. Frequency and enumeration of generic E. coli detected from various flock 7 samples in
the turkey production facility.

Sample Grow-out period
(no. positive/no. sampled)

Total
(% positive)

Week 10 Week 14 Week 21
Turkey ceca 12/12

(>7.0)a
12/12
(>7.0)

12/12
(>7.0)

36/36    (100)

Turkey crop 0/0 0/0 9/12
(>7.0)

9/12      (75)

Litter 6/6
(>7.0)

6/6
(>7.0)

5/5
(>7.0)

17/17    (100)

Drinkers 6/6
(1.0-7.0)

6/6
(<1.0-7.0)

5/5
(<1.0)

17/17    (100)

Environmental
swabsb

5/8
(<1.0)

3/8
(<1.0)

4/8
(<1.0)

12/24    (50)

Air 0/7 0/8 0/8 0/23

Feed 0/10 0/4 0/8 0/22

Feeder contents 13/28
(1.0-2.4)

7/29
(<1.0-1.9)

5/40
(<1.0)

25/97    (26)

Total
(% positive)

42/77
(55)

34/73
(47)

40/98
(41)

116/248  (47)

a expressed as range (log CFU/mL) for number of sources sampled
b counts expressed in log CFU/cm2
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Table 3. Frequency and enumeration of generic E. coli detected from various flock 8 samples in
the turkey production facility.

Sources Grow-out period
(no. positive/no. sampled)

Total
(% positive)

Week 2 Week 15 Week 20
Turkey ceca 15/15

(>7.0)a
12/12
(>7.0)

11/12
(>7.0)

38/39    (97)

Turkey crop 13/13
(1.2-7.0)

6/12
(<1.0-7.0)

3/12
(<1.0-1.6)

22/37    (59)

Litter 8/8
(>7.0)

4/6
(>7.0)

1/6
(<1.0)

13/20    (65)

Drinkers 8/8
(>7.0)

6/6
(<1.0-7.0)

5/6
(<1.0-7.0)

19/20    (95)

Environmental
swabsb

3/6
(<1.0-2.0)

1/6
(<1.0)

4/6
(<1.0)

8/18      (44)

Air 0/6 0/6 0/6 0/18

Feed 0/8 0/24 0/9 0/41

Feeder contents 0/0 0/20 0/20 0/40

Total
(% positive)

47/64
(73)

29/92
(32)

24/77
(31)

100/233  (43)

a expressed as range (log10CFU/mL) for number of sources sampled
b counts expressed in log CFU/cm2
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Table 4. Frequency and enumeration of total coliforms detected from various flock 7 samples in
the turkey production facility.

Sample Grow-out period
(no. positive/no. sampled)

Total
(% positive)

Week 10 Week 14 Week 21
Turkey ceca 12/12

(>7.0)
12/12
(>7.0)

12/12
(>7.0)

36/36   (100)

Turkey crop 0/0 0/0 10/12
(1.4->7.0)

10/12   (83)

Litter 6/6
(>7.0)

6/6
(>7.0)

5/5
(>7.0)

17/17   (100)

Drinkers 6/6
(1.4-7.0)

6/6
(2.0-7.0)

5/5
(1.3-1.6)

17/17   (100)

Environmental
swabsb

4/8
(<1.0)

3/8
(<1.0)

5/8
(<1.0)

12/24   (50)

Air 1/7
(<1.0)

0/8 0/8 1/23     (4)

Feed 0/10 0/4 0/8 0/22

Feeder contents 17/28
(<1.0-2.4)

12/29
(<1.0-1.9)

16/40
(<1.0-1.5)

45/97   (46)

Total
(% positive)

46/77
(60)

39/73
(53)

53/98
(54)

138/248  (56)

a expressed as range (log CFU/mL) for number of sources sampled
b counts expressed in log CFU/cm2
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Table 5. Frequency and enumeration of total coliforms detected from various flock 8 samples in
the turkey production facility.

Sample Grow-out period
(no. positive/no. sampled)

Total
(% positive)

Week 2 Week 15 Week 20
Turkey ceca 15/15

(>7.0)
12/12
(>7.0)

12/12
(>7.0)

39/39   (100)

Turkey crop 12/13
(1.3-7.0)

8/12
(<1.0-7.0)

7/12
(<1.0-7.0)

27/37   (73)

Litter 8/8
(>7.0)

6/6
(2.1-7.0)

4/6
(<1.0)

18/20   (90)

Drinkers 8/8
(>7.0)

6/6
(<1.0-1.5)

6/6
(1.3-7.0)

20/20   (100)

Environmental
swabsb

5/6
(<1.0-2.3)

1/6
(1.5)

4/6
(<1.0-1.3)

10/18   (56)

Air 3/6
(<1.0)

0/6 0/6 3/18     (17)

Feed 0/8 2/24
(<1.0)

0/9 2/41     (5)

Feeder contents 0/0 0/20 0/20 0/40

Total
(% positive)

51/64
(80)

35/92
(38)

33/77
(43)

119/233  (51)

a expressed as range (log CFU/mL) for number of sources sampled
b counts expressed in log CFU/cm2
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APPENDIX
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INSTRUCTIONS FOR USING 3M PETRIFILMTM E. COLI/COLIFORM PLATES

STORAGE AND DISPOSAL

Store unopened Petrifilm plate pouches at temperatures ≤ 8oC.  Allow pouches to come to

room temperature before opening.  To prevent exposure to moisture, do not refrigerate

opened pouches.  Store resealed pouches in a cool, dry place for no longer than a month.

Exposure to Petrifilm plates to temperature > 25oC and/or humidities  ≥ 50% RH can affect the

performance of the plates.  Do not use plates with brown or orange discoloration.

INSTRUCTIONS FOR USE

Sample preparation (recommended by 3M Microbiology Products, St. Paul, MN)

1. Use appropriate sterile diluents: Butterfield’s phosphate buffer (IDF phosphate buffer, 0.0425

g/L KH2PO4, adjust to pH 7.2), 0.1% peptone water, peptone salt diluent, 0.85-0.9% saline

solution, thiosulfate-free letheen broth or distilled water.  Do not use buffers containing

citrate or sodium thiosulfate with Petrifilm plates.  If citrate buffer is recommended in the

procedure, substitute warmed (40-45oC) Butterfield’s phosphate buffer.

2. For acidic products, adjust pH of the diluted sample to 6.6-7.2 with 1N NaOH.  For alkaline

products, adjust pH with 1N HCl.

3. Blend or homogenize sample.

Plating

Inoculate and spread one Petrifilm plate before inoculating the next plate.

1. Place a Petrifilm plate on a level surface.

2. Lift the top film and dispense 1 mL of sample or diluted sample on the center of bottom film.

3. Slowly roll the top film down onto the sample to prevent trapping air bubbles.

4. With the smooth side down, place the plastic spreader on the center of the plate.
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5. Distribute sample evenly using a gentle downward pressure on the center of the plastic

spreader.  Do not slide the spreader across the film.

6. Remove spreader and leave plate undisturbed for at least one min to permit the gel to

solidify.

7. Incubate plates in a horizontal position, with the clear side up in stacks of up to 20 plates.

Incubator should be humidified.  Moisture loss from the plate should not exceed 15% during

48 h of incubation.

Incubation times and temperatures

1. AOAC  official methods (991.14 coliform and E. coli counts in foods, dry rehydrated  film

methods): Incubate Petrifilm plates 48 ± 2 h at 35 ± 1oC.

2. AFNOR validated method (certificate number 3M 01/04 - 09/92): Petrifilm incubated at 24 ±

2 h at 42 ± 1oC.

3. Nordic Committee on Food Analysis (NMKL) method (147.1993): For coliforms incubate

Petrifilm plates at 24 ± 2 h at 37oC.  For E. coli incubate at 48 ± 2 h at 37oC.

Interpretation

1. Petrifilm plates can be counted on a standard colony counter or any magnified light source.

Do not count colonies on the foam dam since they do not contain certain chemicals present in

the gel.  Do not count artifact bubbles that may be present.  The interpretation of E. coli and

coliform colonies on Petrifilm EC plates varies by method.  Approximately 95% of E. coli

produce gas.

In general, E. coli colonies are blue to red-blue and closely associated (~ 1 colony dia.)

with entrapped gases.  Coliform colonies are bright red and closely associated (~ 1 colony dia.)

with entrapped gases.
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Caution: E. coli O157:H7 strains are atypical; they do not grow at ≥ 44.5oC and are

glucuronidase negative.  These strains will not produce a blue precipitate.  They will appear as

non-E. coli coliforms (red with gas).

AOAC Method

Enumerate blue to red-blue colonies associated with entrapped gas, regardless of size or

intensity of color, as confirmed E. coli.  Blue colonies without gas are not counted as E. coli.

Other coliform colonies will be red and associated with gas bubbles.  Colonies not associated

with gas are not counted as coliforms.  The total coliform count consists of both red and blue

colonies associated with gas at 24 h.  Reincubate plates for an additional 24 ± 2 h at 35oC to

detect any additional E. coli growth.  Regardless of incubation time, whenever a blue colony

associated with gas appears, it is a confirmed E. coli.

AFNOR Method

Blue to red-blue colonies with or without gas regardless of size or intensity of color are

enumerated as E. coli.

NMKL Method

Enumerate E. coli colonies as noted under AFNOR methodology.  Enumeration of total

coliforms at 24 ± 2 h as noted under AOAC method.

2. The circular growth area is approximately 20 cm2.  Estimates can be made on plates

containing greater than 150 colonies by counting the number of colonies in one or more

representative squares and determining the average number per square.  Multiply the average

number by 20 to determine total count per plate.

3. Petrifilm plates with colonies that are too numerous to count (TNTC) have one or more of the

following characteristics: many small colonies, many gas bubbles, and deepening of red color
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on the gel.  Higher concentrations of E. coli will cause the growth area to turn blue while

high concentrations of coliforms (non-E. coli) will cause the growth area to turn dark red.

When any of these occur, dilute the sample further to obtain a more accurate count.

4. Colonies may be isolated for further identification.

5. After incubation is complete, plates may be stored frozen (≤ 15oC) for later enumeration for

no longer than one week.
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CHAPTER 3

INHIBITION AND REVERSAL OF SALMONELLA TYPHIMURIUM

ATTACHMENT TO POULTRY SKIN USING ZINC CHLORIDE
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ABSTRACT

A skin attachment model was used to examine the ability of ZnCl2 to reverse or inhibit

Salmonella attachment to broiler skin.  In reversal experiments, skin samples were treated first

with 1 mL of S. typhimurium suspension (108 CFU/mL) and held at room temperature for 30

min.  Skin samples were then treated with 25 or 50 mM ZnCl2 for 5 or 15 min.  Zinc chloride

solutions remained in contact with the culture during the time of application.  In inhibition

experiments, ZnCl2 solutions were first added; treatment solutions were discarded after 5 or 15

min of application and then the culture was added.  Populations of “firmly” and “loosely”

attached Salmonella were enumerated.  Each skin sample was blended with 20 mL of 0.1%

peptone water for 30 s.  Cells recovered from the skin were denoted as “loosely” attached.  The

same skin sample was again mixed with fresh 20 mL of 0.1% peptone and blended for 2 min.

Recovered cells were denoted as “firmly” attached.  Salmonella was enumerated on Xylose

Lactose Tergitol (XLT4) plates.  A section of skin sample, subjected concurrently to the above

treatments, was observed under a scanning electron microscope (SEM) to observe changes in

skin topography and bacterial attachment.  In reversal experiments, 25 and 50 mM ZnCl2

reduced (p<0.01) “firmly” attached cells by 77 and 89%, respectively, when compared to the

control (water).  At 25 and 50 mM concentrations, ZnCl2 reduced (p<0.0001) cells in the

“discard” by 99.4 and 99.9%, respectively.  Reduction of cells in the “discard” suggests

bactericidal activity of zinc on Salmonella due to contact between bacterial culture and ZnCl2

solutions during the time of application in the reversal experiments.  Micrographs indicated that

25 and 50 mM ZnCl2 reduced (p<0.1) Salmonella attachment by 69 and 99.9%, respectively, in

the reversal experiments.  Results from SEM and XLT4 enumeration of “firmly” attached cells

in the reversal experiments revealed a consistent reduction in bacterial count on skin with
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increasing ZnCl2 concentration.  In the inhibition experiments, 25 and 50 mM ZnCl2 reduced

(p<0.01) “firmly” attached cells by 82 and 91%, respectively.  Reduction of Salmonella may be

attributed, in part, to the bactericidal activity of ZnCl2 in addition to detachment of the bacterial

cells on skin.

KEY WORDS: Zinc chloride, Salmonella, poultry skin, attachment, micrographs
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INTRODUCTION

Contamination of poultry products with Salmonella continues to concern consumers and

the poultry industry.  Attention has focused on the microbiological quality of broiler carcasses

and how processing procedures influence cross-contamination of carcasses.  Salmonella

colonizes the gastrointestinal tract of chickens and, through horizontal transmission, may

contaminate other birds and eventually carcasses (Craven and Williams, 1998).  Five percent of

broilers entering a processing plant harbored Salmonella, and the incidence increased to 36% for

processed carcasses from the same flock (Lillard, 1990).

Research is needed to find effective, safe, and affordable methods to reduce Salmonella

contamination of fresh poultry.  Physical and chemical methods have been tested with varying

degree of success for reducing Salmonella contamination on poultry carcasses.  Physical

methods include air scrubbing, UV and gamma irradiation (Wolfson et al., 1994).  Chemical

treatments have included chlorine, chlorine dioxide, glutaraldehyde, trisodium phosphate,

sodium hypochlorite, sodium metabisulfite, NaCl, NaOH, grapefruit seed extract, Tween 80,

cetyl pyridinium chloride, ozone, a combination of hydrogen peroxide and sodium bicarbonate,

and organic acids such as lactic, malic, propionic, acetic, and citric acid, (Lillard, 1988; Conner

and Bilgili, 1994; Dickson and Siragusa, 1994; Kim et al., 1994; Lillard, 1994; Breen et al.,

1995; Hwang and Beuchat, 1995; Tamblyn and Conner, 1997; Salvat et al., 1997; Tamblyn et al.,

1997; Wang et al., 1997; Coppen et al., 1998; Xiong et al., 1998a; b; Yang et al., 1998).

Currently in U.S. poultry processing plants, 50 ppm chlorine is permitted in carcass washes and

immersion chillers as a commercial disinfectant (Tamblyn et al., 1997).  Trisodium phosphate (8-

12%) is also approved for use in processing plants to reduce the incidence of foodborne

pathogens (Tamblyn et al., 1997).  Although these treatments reduce Salmonella (CFU/cm2) on



151

skin, they were ineffective against bacterial cells attached to skin.  Bacteria are firmly attached or

entrapped in the skin before they arrive at the processing plant and are difficult to remove by

rinsing (Lillard, 1990).  Hence, it is necessary to devise effective methods that interfere with

Salmonella attachment to poultry skin.

Limited information is available on ZnCl2 as an antimicrobial agent.  Salmonella is a

gram-negative organism with an outer membrane consisting of lipoproteins, lipopolysaccharides,

and phospholipids.  The strong negative charge on the outer surface of the membrane aids the

organism in evading phagocytosis and the action of complement – two components of the host

defenses.  Cultures of S. typhimurium in contact with meat surfaces selectively bind to collagen

fibers, particularly the reticulin type (Benedict, 1988).  Salmonella exhibits adhesion properties

due to type 1 pili that are sensitive to D-mannose, while the principal carbohydrate residues of

collagen, glucose-galactose and galactose, do not include mannose (Lillard, 1986a; Benedict,

1988).  Electropositive zinc ions may interfere with Salmonella attachment to poultry skin by

selectively binding to the negative charges on the cell membrane.  Zinc chloride may also

indirectly interfere with Salmonella attachment by competing with specific receptor sites on the

skin surface.  Zinc chloride may change the conformation of surface proteins such that receptor

sites on skin surfaces would no longer be exposed for Salmonella attachment.  The objective of

this study was to determine the efficacy of 25 or 50 mM ZnCl2 to reverse or inhibit attachment of

Salmonella to chicken skin.

MATERIALS AND METHODS

Salmonella culture

Salmonella typhimurium (FY98-DT 12) was obtained from the National Veterinary

Services Laboratory (Ames, IA). This organism was selected because it is the most frequently
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isolated serotype from raw broiler carcasses (Lillard, 1986a).  Cultures were maintained on

Micro-Protect beads (TS/70-B, Technical Service Consultants Ltd., Lancashire, England) and

stored at -70oC.  Two beads containing immobilized Salmonella were transferred to 5 mL of

Universal Preenrichment (UP) broth and incubated at 37oC for 24 h.  Cultures were subsequently

streaked on Brain Heart Infusion (BHI) agar slants, incubated at 37oC for 24 h, and stored at 4oC.

Freshly inoculated slants were used as starter cultures for experiments conducted in this study.

A loopful of S. typhimurim culture, maintained on BHI slants, was added to 5 mL of UP

broth and incubated at 37oC for 24 h.  This culture was streaked on a Xylose Lactose Tergitol

(XLT4) plate and further incubated at 37oC for 24 h.  A single isolated colony (ca. 1 mm dia.)

was transferred from XLT4 to 100 mL of UP broth and incubated at 37oC for 18-24 h.  The cell

suspension was transferred to three, 50 mL tubes and centrifuged at 3,000 x g for 10 min at 4oC

(Damon IEC B20A, 870 head, 8x50 mL tube, Fisher Scientific, Pittsburgh).  The supernatant in

each tube was discarded and the cell pellet was washed with 25 mL of cold, 0.1% peptone water.

Resuspended cells were re-centrifuged at 3,000 x g for 10 min at 4oC.  Supernatant was again

discarded, and pellets from the three tubes were suspended in 100 mL of cold, 0.1% peptone

water.  This suspension yielded a cell count of 108 CFU/mL.  The optical density of the culture

ranged from 0.55 to 0.58 when measured at 600 nm using a spectrophotometer (Spectronic 20D,

Milton Roy Co., New York).

Skin preparation

Skin models were prepared as described by Kim et al. (1996) with a few modifications.

Skin samples were obtained from chicken drumsticks purchased at a local supermarket on the

day of experiment.  Drumsticks were purchased in family packs and these packs were brought to

the laboratory for immediate model skin preparation.  Skin pieces (ca. 36 cm2) were cut from the
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proximal, two-thirds of the drumstick and spread evenly on a Styrofoam tray with the external

surface of the skin facing up.  The tray had been previously sanitized with 70% ethanol.  The

skin sample was placed on top of a sterile, open capped, 50 mL Nalgene centrifuge tube with the

external surface of the skin faced inside the tube.  Rubber bands were used to secure the skin

section on the tube and the tube was capped (Fig. 1).  A hole was inserted at the conical end of

the tube for adding culture and test solutions.  The above procedure was carried out in aseptic

conditions using a laminar flow unit (NU425-400, Class II Type A/B3, NuAire™ Inc.,

Minnesota).

Skin attachment model experiments

Reversal of Salmonella attachment (Appendix): A 1 mL suspension of S. typhimurium culture

(108 CFU/mL) was added to the skin model, and attachment was allowed to take place at room

temperature (~ 22oC) for 30 min.  Attachment of Salmonella to poultry tissue or skin takes place

within 15 s and may continue up to 60 min after immersing the samples in a Salmonella

suspension (Thomas and McMeekin, 1984; Lillard, 1985; 1986a; b).  A treatment solution

(sterile) of 5 mL water (control), 25 mM ZnCl2 or 50 mM ZnCl2 was added to the tube

containing the bacterial suspension.  Skin samples were exposed to treatments at room

temperature for either 5 or 15 min.  The mixture of treatment solution and cell suspension was

drained from the skin model for 2-3 min in 10 mL sterile tubes.  The mixture was serially diluted

and populations of Salmonella were designated as “discard” cells.  “Discard” pH was measured

with a pH meter (Model 350, Corning Inc., New York).  The skin sample was cut along the outer

circumference of the tube (ca. 8.8 cm2) using a sterile scalpel blade.  Each skin sample was

placed in a sterile stomacher bag containing 20 mL of 0.1% peptone water and massaged in a

stomacher blender (Model 400, Tekmer, Ohio) at 230 rpm for 30 s.  Cells present in the wash
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solution at this point were denoted as “loosely” attached cells.  Aliquots of the skin wash

solution were serially diluted and spread plated in duplicate on XLT4 agar to enumerate S.

typhimurium.  The same skin sample was transferred to 20 mL of fresh 0.1% peptone water and

massaged in a stomacher at 260 rpm for 2 min.  Cells present in the wash solution at this point

were denoted as “firmly” attached.

Inhibition of Salmonella attachment (Appendix): Attachment of skin pieces to sterile 50 mL

centrifuge tubes was carried out as described in the previous experiment.  Skin samples were

treated with 5 mL water (control), 25 mM ZnCl2 or 50 mM ZnCl2 and held at room temperature

for 5 or 15 min.  Each treatment solution was allowed to drain for 2-3 min and pH of the solution

was measured.  One mL of S. typhimurium suspension (108 CFU/mL) was then applied to each

skin sample.  Attachment was allowed to take place for 30 min at room temperature.  The culture

was drained for 2-3 min, and the bacterial count was designated as “discard.”  The skin sample

was cut from the tube around its circumference.  “Loose” and “firmly” attached cells on the skin

sample were enumerated as described in the reversal experiment.

One family pack, consisting of 14-16 drumsticks, was used for each replication nested

within mechanism of action (reversal versus inhibition).  For each treatment combination, skin

samples were taken from different drumsticks.  Skin samples from 12 different drumsticks (six

for enumerating Salmonella using the model study and six for electron microscope studies) came

from the same drumstick tray.  In order to determine a reference baseline, Salmonella was

enumerated on one skin sample, without treatment, from each family pack.  In the reversal and

inhibition experiments, each treatment combination was carried out with two separate Nalgene

centrifuge tubes.  The skin sample from one tube was used for enumerating viable cells on XLT4

while the skin sample from the other tube was used to directly enumerate cells using scanning
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electron microscopy (SEM).  The skin model experiments were performed first and then a fresh

set of tubes was used for SEM studies.

Scanning electron microscopy

Electron microscopy was carried out using the procedure described by Kim and Doores

(1993a; b).  Skin sample (ca. 1 cm2) from each treatment was cut and pinned on a wooden cork

such that the external skin surface faced outwards.  Bacterial cells were fixed on skin sample by

placing each skin in 3% glutaraldehyde in 0.15 M sodium cacodylate buffer (pH 7.1) at 4oC for 8

to 12 h.  Samples were washed with distilled water and dehydrated in a graded series of 50, 60,

70, 80, 95, and 100% ethanol (15 min at each ethanol concentration).  Specimens were finally

dehydrated twice with 100% ethanol for 15 min, washed for three, 5-min intervals with

hexamethyldisilazane (HMDS) and air-dried.  After complete evaporation of HMDS, skin pieces

were mounted on aluminum stubs and sputter coated with 28 nm gold/pallidium (Model E5100,

Polaron, England).  Specimens were examined under a scanning electron microscope (JSM 6400,

JEOL, Japan) at 20 kV and 2,500-fold magnification.  Ten fields from each treatment were

examined and bacterial cells were visually counted from each field.  Representative fields are

shown.

Experimental design

Six incomplete blocks and treatment within each block were randomized.  Each

incomplete block consisted of three ZnCl2 treatments (0, 25, or 50 mM) by two time intervals (5

or 15 min).  These six treatment combinations were replicated three times and nested within

application of ZnCl2 (reversal or inhibition).  Salmonella enumeration using XLT4 plates and

SEM data was analyzed by ANOVA using General Linear Model (GLM) procedures (SAS,

1989; Appendix).  Means were separated using least square methods.  Separate analyses were
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conducted for the reversal and inhibition experiments.  The following orthogonal comparisons

were made: (1) without ZnCl2 vs with ZnCl2; (2) 25 mM ZnCl2 vs 50 mM ZnCl2; (3) 5 min (25

mM ZnCl2) vs 15 min (25 mM ZnCl2); (4) 5 min (50 mM ZnCl2) vs 15 min (50 mM ZnCl2); and

(5) 5 min (25+50 mM ZnCl2) vs 15 min (25+50 mM ZnCl2).

RESULTS AND DISCUSSION

There are several advantages in using a skin attachment model.  Conner and Bilgili

(1994) indicated that skin model techniques make it easier to evaluate the efficacy of a potential

carcass disinfectant and control the optimum conditions of application.  Efficacy of a disinfectant

could be evaluated under pilot processing conditions in the plant prior to commercial application.

An appropriate baseline measurement was made for each treatment combination to account for

background Salmonella on the skin samples.  Activity of ZnCl2 against the test bacterium (S.

typhimurium) could be conducted while accounting for background Salmonella.  In the present

study, Salmonella could not be detected from the skin samples used for baseline measurements.

Reversal experiments

Limited information is available on effectiveness of ZnCl2 in reversing and/or inhibiting

S. typhimurium attachment to poultry skin.  This study demonstrated that increasing ZnCl2

concentration decreased (p<0.05) Salmonella attachment to the chicken skin.  “Firmly” attached

S. typhimurium cell count was reduced (p<0.01) from 3.94 log CFU/mL for the control to 3.31

and 2.98 log CFU/mL for 25 and 50 mM ZnCl2, respectively (Table 1).  A similar trend was

observed in the ability of ZnCl2 to detach “loosely” attached Salmonella to chicken skin (p<0.1).

At 25 and 50 mM concentration, ZnCl2 reduced (p<0.0001) cells in the “discard” by 99.4 and

99.9%, respectively.  Reduction of cells in the “discard” suggests bactericidal activity of zinc on

Salmonella due to contact between bacterial culture and ZnCl2 solutions during the time of
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application in the reversal experiments.  Orthogonal comparisons for the enumerated cells

indicated a significant difference (p<0.05) between treatments with or without ZnCl2 (Table 1).

The efficacy of ZnCl2 to detach “firmly” attached cells improved with an increase in the time of

application.  Zinc chloride reduced (p<0.05) “firmly” attached cells from 3.64 log CFU/mL at 5

min to 3.18 log CFU/mL at 15 min.

Inhibition experiments

Zinc chloride was effective in interfering with attachment of S. typhimurium to chicken

skin.  Results from inhibition experiment indicated that “firmly” attached S. typhimurium count

was reduced (p<0.01) from 4.39 log CFU/mL for the control to 3.64 and 3.35 log CFU/mL for

25 and 50 mM ZnCl2, respectively.  Zinc treatment reduced (p<0.05) “firmly” attached cells.

Levels of ZnCl2 had no effect (p>0.05) on “loosely” attached Salmonella or cells in the

“discard.”  Time of ZnCl2 application also did not seem to influence the detachment of

Salmonella on chicken skin for the inhibition experiments.

Studies have been carried out to determine effectiveness of divalent chloride salts in

reducing in vitro attachment of S. typhimurium to chicken cecal mucus (Craven and Willams,

1998) and Listeria monocytogenes growth (Zaika et al., 1997).  These studies were carried out

using divalent cations such as calcium, magnesium, barium, iron, and manganese.  Attachment of

S. typhimurium to immobilized cecal mucus was inhibited by 10 mM zinc, lanthanum, and a

combination of EDTA and citrate (Craven and Williams, 1998).  However, Salmonella

attachment was enhanced in the presence of 10 mM calcium, barium, and manganese ions.

Effect of ZnCl2 in cell suspension

When averaged across ZnCl2 concentration and the time of application, a combination of

“firm” and “loosely” attached cells and cells in the “discard” for the reversal and inhibition
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experiments equaled 5.37 and 7.79 log CFU/mL, respectively.  Although most of the cells were

accounted for in the inhibition experiments, when compared to the initial inoculum volume (8

log CFU/mL), a large reduction in the bacterial count was observed in the reversal experiments.

In reversal experiments ZnCl2-treatment solutions were in contact with S. typhimurium culture

for 5 or 15 min, depending on the treatment combination.  Unaccounted cells in reversal

experiments indicated that ZnCl2 might possess bactericidal activity against S. typhimurium in

cell suspensions.  Increasing levels of ZnCl2 significantly reduced (p<0.0001) pH of the

“discarded” solutions containing the bacterial culture and ZnCl2 (Table 1).  “Discard” pH was

reduced from 6.85 for the control to 5.63 for 25 mM ZnCl2 and 5.45 for 50 mM ZnCl2.  This

reduction in pH could also be attributed to the reduction of Salmonella in cell suspension.

Preliminary experiments conducted prior to this study indicated that bacterial cells tended to

clump together when 25 or 50 mM ZnCl2 was added to pure Salmonella suspension (Fig. 2).

Cell clumping could reduce the overall number of Salmonella colonies isolated on XLT4 agar

plates.  The bactericidal activity and/or the clumping effect may account for an overall reduction

in Salmonella cell count by ZnCl2 treatment in the reversal experiments.  The exact mechanism

of action needs further investigation.

Bacterial attachment is a complex process and involves more than one mechanism.

Adherence of bacteria to poultry skin depends on the bacterial strain, substratum, and

environmental conditions such as medium temperature, and pH.  Butler and coworkers (1980)

demonstrated that bacterial attachment takes place during the first minute of immersion; although

in some instances, attachment continues over a 60-min period.  Bacterial attachment involves a

two-step process (Kim and Doores, 1993a).  The first step involves retention of bacteria in a

liquid film on the surface of skin or meat.  Bacteria are closely associated and entrapped in
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inaccessible sites by physical forces.  Reversible adhesion at this stage is associated with an

optimal energy balance between attractive van der Waal forces and electrostatic repulsion.  The

second stage involves a time-dependent, irreversible exopolymer (polysaccharides) formation by

bacteria.  At this stage, bacteria multiply and form a microcolony that can lead to the formation

of a biofilm.  Although the exact mechanism was not defined in the present study, a strong

affinity of zinc ions for S. typhimurim cells could override the attachment of these bacterial cells

to specific receptor sites on skin samples in the reversal experiments.

Zinc ions play an important role in offering protection against Salmonella infections in

live birds.  Hill and coworkers (1977) found that poultry dietary supplementation with 200 mg of

ZnSO4 /kg of feed and 1g of Na-EDTA /kg of feed reduced mortality associated with S.

gallinarum infections.  Kidd and coworkers (1992) demonstrated that supplementing zinc-

methionine (72 mg/kg of feed) in hen diets increased cellular immune responses in their progeny

by enhancing primary antibody titers to S. pullorum antigen.  Popova (1997) reported a

significant decrease in blood zinc concentrations when pigs were challenged with 5x109 CFU of

S. choleraesuis.  Zinc ions were found to be effective against other strains of Salmonella.  Zinc-

methionine (30 mg/kg of feed) reduced S. arizonae incidence in turkey spleens (Kidd et al.,

1994).  As a future experiment, it would be interesting to challenge chicks/poults with a known

inoculum volume of Salmonella and supplement drinking water with ZnCl2 to evaluate whether

zinc ions offers resistance to Salmonella colonization in the gastrointestinal tract.

Scanning electron microscopic studies

The antibacterial efficacy of ZnCl2 treatments in reversing or inhibiting attachment of S.

typhimurium to chicken skin was also evaluated by enumerating the bacterial cell count using

scanning electron microscopy.  Figures 3 and 4 represent micrographs of chicken skin subjected
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to different ZnCl2 treatments for the reversal and inhibition experiment, respectively.  Level of

ZnCl2 was effective in reducing Salmonella attached to chicken skin.  Enumeration of bacterial

cells on the skin samples indicated that ZnCl2 reduced (p<0.1) Salmonella count from 5.27 log

CFU/cm2 for the control to 4.76 log CFU/cm2 for 25 mM ZnCl2  and 2.26 log CFU/cm2 for 50

mM ZnCl2 (Table 1).  Direct enumeration of Salmonella by SEM supports data derived from

enumeration of cells using XLT4.  Results from SEM and from XLT4 enumeration of “firmly”

attached cells revealed a consistent reduction in Salmonella on poultry skin with increasing

ZnCl2 concentration.  No significant changes in the skin topography were observed between the

control and ZnCl2 treatment for reversal and inhibition experiments.

Salmonella cells clustered in certain sections of the skin samples (Fig. 3d, 4a), indicating

these regions were more conducive to Salmonella attachment than others.  In vitro attachment of

Salmonella to intestinal segments (Oyofo et al., 1989), inverted ceca (McHan et al., 1989), and

immobilized cecal mucus and enterocytes (Craven et al., 1992) has been associated with type 1

fimbrae (mannose-sensitive adhesion).  In addition, lipopolysaccharides play a major role in S.

typhimurium attachment of to chicken cecal mucus (Craven, 1994).  Certain skin sections may

have a predominance of type 1 fimbriae and lipopolysaccharide receptor sites facilitating

attachment.  Immersion of poultry skin in an aqueous bacterial medium results in expansion of

collagen and formation of deep channels on the skin surface or deep ridges in the muscle

(Thomas and McMeekin, 1984).  The authors indicated that bacteria lodged in these crevices

were not visible on electron micrographs.  The skin samples in the present study should have

been shredded before cell enumeration to account for bacteria attached to the skin within the

deep crevices.  Such deep channels and crevices were observed in the present study (Fig. 3c and

4a).  It is possible that these deep ridges could protect Salmonella from the treatment solution.
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Unfortunately, the skin samples were not shredded in this study, suggesting that the actual cell

count could be higher than reported.

CONCLUSIONS

Zinc chloride at 25 and 50 mM concentrations was effective in detaching “firmly”

attached Salmonella on chicken skin in the reversal and inhibition experiments.  Bacterial

detachment was more pronounced at 15 min of ZnCl2 application in the reversal experiments.

Reduction of Salmonella in cell suspension in the reversal experiments may be attributed, in part,

to the bactericidal activity of ZnCl2 in addition to the pH and clumping effect.  Data from

inhibition experiments suggested that zinc ions may interfere with binding of Salmonella to

receptor sites on skin surface or zinc ions may compete with Salmonella for the same receptors

sites involved in the attachment process.  Further studies are necessary to determine the exact

mechanism of zinc ions against Salmonella attachment to poultry skin.  Initial levels of

attachment and a combination of time and level of ZnCl2 could influence efficacy of zinc ions as

an antimicrobial agent.  Since most Salmonella serotypes attach to poultry skin by the same

mechanism(s), effectiveness of ZnCl2 treatments could be extended to other serotypes involved

in contamination of poultry carcasses.  However, the physiological characteristics of individual

serotypes may influence ZnCl2 activity.  In poultry processing plants antimicrobials are routinely

added to the chill tank to reduce the level and frequency of pathogens on carcasses.  Future

investigations should determine whether ZnCl2 could effectively reduce Salmonella

contamination on carcasses when added to chill water in combination with 50 ppm chlorine.  The

authors did not evaluate the efficacy of ZnCl2 at chill temperatures.  Lower temperature may

alter the skin topography and/or the dynamics by which Salmonella gets attached to skin.  These

alterations may affect the mechanism(s) by which ZnCl2 interferes with Salmonella attachment
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to chicken skin.  The practicality of using ZnCl2 as a chemical disinfectant on poultry carcasses

in a slaughter facility merits additional consideration.
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Table 1.  Effect of ZnCl2 on “discard” pH and Salmonella typhimurium attachment to chicken skin in the reversal experiments.

“Firmly” attached cells “Loosely” attached cells “Discarded” cells Scanning electron
microscope data

ZnCl2 level
(mM)

pH

Log
CFU/mL

%
reduction

Log
CFU/mL

%
reduction

Log
CFU/mL

%
reduction

Log
Cells/cm2

%
reduction

0 6.85c 3.94b - 4.86c - 6.80b - 5.27c -

25 5.63b 3.31a 77 4.42a 64 4.61a 99.4 4.76bc 69

50 5.45a 2.98a 89 4.44a 62 4.40a 99.6 2.26a 99.9

Significance p<0.0001 p<0.01 p<0.1 p<0.0001 p<0.1

Orthogonal
comparisons

A vs B
C vs D

(p<0.05)

A vs B
(p<0.05)

A vs B
(p<0.05)

A vs B
(p<0.05)

A vs B
C vs D
(p<0.1)

A vs B = without ZnCl2 versus with ZnCl2
C vs D = 25 mM ZnCl2 versus 50 mM ZnCl2
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Figure 1.  Schematic diagram of a skin attachment model.
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Figure 2.  Salmonella typhimurium cell suspension (107 CFU/mL) mixed with (a) control;
(b) 25 mM ZnCl2; and (c) 50 mM ZnCl2 and held for 15 min at room temperature (~ 22oC) (1000
X).
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Figure 3.  Scanning electron micrographs of chicken skin samples from reversal experiments: (a)
control, 5 min; (b) 25 mM ZnCl2, 5 min; (c) 50 mM ZnCl2, 5 min; (d) control, 15 min; (e) 25
mM ZnCl2, 15 min; and (f) 50 mM ZnCl2, 15 min (bar 10 µ)
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 Figure 4.  Scanning electron micrographs of chicken skin samples from inhibition experiments:
(a) control, 5 min; (b) 25 mM ZnCl2, 5 min; (c) 50 mM ZnCl2, 5 min; (d) control, 15 min; (e) 25
mM ZnCl2, 15 min; and (f) 50 mM ZnCl2, 15 min (bar 10 µ).
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(d)

(e) (f)



177

APPENDICES
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REVERSAL EXPERIMENT FLOW DIAGRAM

50 mL centrifuge tube with skin attached (2 tubes)

Add 1 mL of Salmonella culture

Incubate at room temperature for 30 min

Add 5 mL (each) control (water), 25 mM or 50 mM ZnCl2 solution

Incubate at room temperature for 5 or 15 min

Discard the treatment solution (drain for 2-3 min)
and enumerate Salmonella in “discard”

Enumerate “loose” and “firmly” attached Salmonella on skin (Tube 1)
Scanning electron microscopy studies (Tube 2)
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INHIBITION EXPERIMENT FLOW DIAGRAM

50 mL centrifuge tube with skin attached (2 tubes)

Add 5 mL (each) control (water), 25 mM or 50 mM ZnCl2 solution

Incubate at room temperature for 5 or 15 min

Discard the treatment solutions (drain for 2-3 min)

Add 1 mL of Salmonella culture

Incubate at room temperature for 30 min

Discard the culture (drain for 2-3 min)
and enumerate Salmonella in “discard”

Enumerate “loose” and “firmly” attached Salmonella on skin (Tube 1)
Scanning electron microscopy studies (Tube 2)
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STATISTICAL PROGRAM

INHIBITION OR REVERSAL EXPERIMENTS

OPTION LS=80 PAGESIZE=60 NO NUMBER;
TITLE '2X3 FACTORIAL RCB – REVERSAL/INHIBITION EXPERIMENT PLATE
COUNT';
DATA MAZE; INPUT REP TIME LEVEL PH LOOSE FIRM DISCARD;
CARDS;
{PASTE DATA}
PROC PRINT;
PROC GLM; CLASSES REP TIME LEVEL;
MODEL PH LOOSE FIRM DISCARD=REP TIME LEVEL TIME*LEVEL;
LSMEANS TIME LEVEL TIME*LEVEL/PDIFF;
CONTRAST 'A VS B' LEVEL 2 -1 -1;
CONTRAST 'C VS D' LEVEL 0 1 -1;
CONTRAST 'E VS F' TIME 1 -1
                  TIME*LEVEL 0 1 0 0 -1 0;
CONTRAST 'G VS H' TIME 1 -1
                  TIME*LEVEL 0 0 1 0 0 -1;
CONTRAST 'I VS J' TIME*LEVEL 0 1 -1 0 -1 1;
RUN;

SCANNING ELECTRON MICROSCOPE STUDIES

OPTION LS=80 PAGESIZE=60 NO NUMBER;
TITLE '2X3 FACTORIAL RCB – REVERSAL/INHIBITION SEM EXPERIMENT';
DATA MAZE; INPUT REP TIME LEVEL CFU;
CARDS;
{PASTE DATA}
PROC PRINT;
PROC GLM; CLASSES REP TIME LEVEL;
MODEL CFU=REP TIME LEVEL TIME*LEVEL;
LSMEANS TIME LEVEL TIME*LEVEL/PDIFF;
CONTRAST 'A VS B' LEVEL 2 -1 -1;
CONTRAST 'C VS D' LEVEL 0 1 -1;
CONTRAST 'E VS F' TIME 1 -1
                  TIME*LEVEL 0 1 0 0 -1 0;
CONTRAST 'G VS H' TIME 1 -1
                  TIME*LEVEL 0 0 1 0 0 -1;
CONTRAST 'I VS J' TIME*LEVEL 0 1 -1 0 -1 1;
RUN;
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