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          Abstract 
 

Identifying Infestation Probabilities of Emerald Ash Borer (Agrilus 
planipennis, Fairmaire) in the Mid-Atlantic Region 

 
 

William D. Ayersman 
 
 
Emerald Ash Borer (EAB) impacts all species of North American ash trees, and has 
caused several million dollars (U.S.) in damage to trees across the affected region.  EAB 
is primarily spread through the movement of trees and wood products, such as nursery 
stock and firewood.  This thesis assessed the potential risk of EAB introduction in the 
Mid-Atlantic region of the U.S., where the species has not yet been as widely reported.  
Using a Geographic Information Systems-based approach, a risk prioritization framework 
was developed to assess and rank various mapped factors for EAB introduction.  Results 
indicated high risk areas throughout the study region with approximately 30 counties 
being cited for potential risk.  From an analysis of risk versus ash basal area for all 
counties, three management strategies were derived; quarantine, plan harvest, public 
outreach and monitoring. 
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Chapter 1: Introduction 
 

Invasive, or exotic species, frequently receive great attention from researchers and natural 

resource agencies due to the potential for rapid spread and widespread damage.  They pose 

challenges to indigenous life forms because they use valuable resources, have no known natural 

enemies, and thrive in environments suitable for their survival.  One invasive species, in 

particular, that has quickly arisen as a major threat in the United States is the emerald ash borer 

(Agrilus planipennis, Fairmaire: Coleoptera: Buprestidae).  The emerald ash borer (EAB) was 

introduced sometime in the mid 1990s in Detroit, Michigan (Siegart et al. 2008) and first 

reported in July 2002 (Poland and McCullough, 2006).  Since that time, EAB has spread to 

several states throughout the upper Mid-West and Mid-Atlantic regions (USDA APHIS, 2008).  

For over 10 years, the EAB has been killing ash (Fraxinus spp.) trees throughout the 

upper Mid-West and Mid-Atlantic Regions of the United States.  To date, the EAB has 

collectively killed over 20 million ash trees within these regions with no sign of slowing down.  

It takes roughly 2-3 years, after infestation, before tree mortality occurs.  Through its numerous 

vectors (firewood, nursery stock, flight, etc), EAB is spreading without much resistance.   

With tree mortality and its rapid spread, total costs associated with the EAB are hard to 

quantify.  Monetary figures such as tree removal, tree replacement, and timber damage can be 

derived, but it’s difficult to obtain a dollar amount for loss of non-market items such as an 

aesthetic value or reduced wildlife habitat associated with tree mortality.  In addition, limited 

monetary resources are available for treatment procedures so eradication efforts cannot be 

blindly established.  Currently, each state, with a significant ash population, has a written 

reaction plan for EAB identifying how to treat and monitor its presence.  Interstate rest areas are 

targeted sites for sampling traps because of the high volume of human traffic.  Visual surveys are 
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also conducted to monitor spread but are not extremely effective, especially in new areas of 

contamination, since symptoms do not normally occur for one to three years.  Trap trees and 

artificial traps are generally unreliable due to weak responses and recognition of them by the 

insect. 

Economic Implications 
 

Given that ash is a valuable hardwood species in the US, economic impacts are at high 

risk.  It is estimated that there are more than 8 billion ash trees in the US, of which more than 

700 million occur in Michigan, 280 million in Ohio, and 150 million in Indiana (Mastro et al. 

2007; Wei et al. 2007).  Wisconsin currently has approximately 720 million ash trees with black 

and green being the most prevalent (Perry et al. 2008).  Wide-range establishment of EAB could 

have substantial impacts on the landscape of the upper Mid-West and Mid-Atlantic regions 

because of lost timber value, wildlife habitat, and depletion of urban shade trees.  Damages could 

result in a total loss of millions of board feet of ash sawlogs and veneer.  Totals in Michigan 

alone reach upwards of 307 million board feet with a compensatory value as high as $18.9 

billion (Poland and McCullough, 2006; Mastro et al. 2007; Wei et al. 2007).  In addition, the 

total impact of the losses will include the loss in landscape value, the cost of tree removal, 

including stumps, and the cost of replacement trees.  For example, in Ohio, the total loss for 

removal and replacement could range from $1.8 to $7.8 billion alone (Sydnor et al. 2007).  

By examining the losses in Michigan and Ohio, potential damages could result in billions 

of dollars in damages throughout the rest of the Mid-Atlantic region.  The West Virginia 

Department of Agriculture EAB Action Plan indicates that the EAB could potentially affect 30-

90 million trees having a value of $20-60 billion.  The nursery industry could also be in 

jeopardy, as ash stock accounts for $100-140 million in revenue annually.  In Michigan alone, 
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eradication efforts have cost over $328 million as of 2003 and continue to increase with 

infestations spreading rapidly (Poland and McCullough, 2006).   

Pre-Emptive Management Strategies 
 
 Protecting and saving ash trees should be one of the main priorities when dealing with 

EAB spread.  Infected ash trees and products cannot be sold on the market, rendering them as 

wasted material.  A solution for urban landowners, and others with small property holdings, is to 

pre-treat ash trees giving them a better chance of survival.  Many chemical treatments such as 

basal applicators, systemic injections, soil injection, and foliar applications are available for use 

(Herms et al. 2009).  Landowners should take initiative and protect their ash trees and save 

money in the future. 

An alternate solution for landowners and managers with large woodlots of contiguous ash 

is to harvest that timber in advance of EAB establishment and mortality to avoid serious loss.  

This provides a better solution where it is not applicable or economically feasible to apply 

chemical treatments to protect trees.  Pre-emptive harvesting utilizes ash timber without waste 

making it a good treatment option while providing a source of income for the landowner.  

Spatial Aspects 
 

Studies ranging from bio-control treatments to risk modeling with Geographic 

Information Systems (GIS) have been ongoing in order to learn as much as possible about this 

curious new insect and the outcomes associated with pest outbreaks.  In the past decade, GIS has 

proven to be a powerful tool for analyzing spatial problems.  Utilization of GIS allows users to 

collect, manage, and analyze large amounts of data that can be linked to spatial locations within 

the given study region (Ward and Johnson, 2007).  Using GIS to model invasive species will aid 
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in the process of understanding their dispersal, distributions, and habitats.  Defining where a 

species may survive depends heavily on being able to determine its existing or potential habitat 

(Holcombe et al. 2007).  

GIS has been applied in many applications dealing with indigenous and non-indigenous 

forest pests.  Wolter et al. (2008) used Landsat data to map the abundance of the host species for 

the spruce budworm for future planning and modeling of outbreaks.  Additional GIS applications 

in research studies include the development of a hazard rating system for pine beetles (Cook et 

al. 2007), predicting the spread of forest pathogens (Hunter et al. 2008) and monitoring 

landscape classification (Mora and Iverson, 2002).  

 Exclusive EAB studies have involved capturing ash decline using hyperspectral 

technologies by predicting forest health with an emphasis on ash species in areas that are 

currently being impacted by EAB (Pontius et al. 2008).  In another study, BenDor et al. (2006) 

spatially modeled EAB spread with anthropogenic criteria and modeled the spread while only 

using natural movement of EAB.  Tests from that study showed that EAB spread was accelerated 

when anthropogenic factors were included in the model.  The Minnesota Dept. of Agriculture 

took this a step further by incorporating human vectors (campgrounds, nurseries, wood 

producers, population data, etc.) into their modeling approach.  Their findings suggest that 

weights should be applied for each of the vectors because the likelihood of spread is not 

consistent throughout all vectors.  In addition, their model was one of the first spatial models to 

predict the risk of EAB introduction with urban areas and human population.  

Predictive Spatial Modeling 
 

Predictive models of spatial distribution of species are valuable in numerous ecological 

and conservation applications (Phillips and Dudik, 2008).  Examples of predictive modeling 
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includes mapping suitable locations for threatened and endangered species (Kumar & 

Stohlegren, 2009), predicting fungal distribution patterns (Wollan et al. 2008), and spread of 

invasive insects (Thuiller et al. 2005).  However, the vast majority of these models depend on the 

availability of presence and absence data (Phillips and Dudik, 2008).  Research is beginning to 

shy away from the requirement to provide absence data when creating predictive models, 

especially since the amount of absence data is rare (Phillips et al. 2006).  The lack of systematic 

sampling is the most likely reason as to why this occurs (Elith et al. 2006).  Use of presence-only 

data certainly has its advantages, but some of the data collection methods can be biased toward 

individual studies (Elith et al. 2006).  Ecological (or niche) modeling with presence-only data has 

been gaining recognition in the last few years (Peterson et al. 2007).  Species modeling using 

presence data needs to have environmental criteria to produce the suitability for the species in 

question (Phillips et al. 2006).  Environmental criteria (variables) can include but are not limited 

to: topographic, climatic, edaphic, and remotely sensed data.  A number of models can predict 

distributions from presence and absence data such as Genetic Algorithm for Rule Set Production 

(GARP), Classification and Regression Trees (CART), Greater Linear Models (GLM), and 

Greater Additive Models (GAM).  A relatively new predictive modeling approach, maximum 

entropy, allows for only presence data to be used when modeling which is convenient for users 

because it does not involve the hassle of collecting absence data. 

Maximum entropy (Maxent) is described as a general purpose method for making 

predictions using incomplete information.  Maxent models probability distributions well with 

few occurrence points which makes it an excellent choice for this study.  The model design uses 

prior information and follows the basic principal of agreeing with what is proven to be known 

while carefully avoiding assumptions to anything that is unknown (Jaynes, 1957).  Avoided 
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assumptions allow the model to produce more accurate results than the other predictive models 

which enforces why Maxent is the selected model for this study.  Since Maxent is built upon a 

Bayesian statistical model, the model has the ability to predict not only current infestation 

distributions but also has the predictive power to find new potential areas where EAB has the 

greatest risk of introduction through interpolation.   

Purpose of Study 
 

The purpose of this study is to develop a predictive model that can be used to identify 

areas most susceptible to EAB in efforts to slow or contain the spread through human mediated 

criteria.  These criteria are described as any human interaction variables that could be associated 

with EAB spread.  This study attempts to model the susceptibility of future spreading for areas 

not yet affected by EAB within the six-state study area of DE, MD, NJ, OH, PA, WV and the 

District of Columbia.  This study will look to build upon past EAB models by introducing the 

idea of recently urbanized growth, housing density, land use changes, and by including homes 

that use firewood as the main source of fuel.  This mapping and modeling effort to locate new 

susceptible areas should increase recognition about EAB in the Mid-Atlantic region and will 

hopefully prevent future destructive impacts. 

 Currently, land managers are taking a reactive approach to the EAB spread.  Timelines 

begin when infestations are first found, and then extensively monitor sites often resulting in 

regulatory action otherwise known as quarantine boundaries.  Regulatory restrictions usually 

begin on a county-wide level, prohibiting the movement of any ash from within the boundaries in 

a desperate attempt to slow spreading, and then, migrate to state quarantines.  Treatments are a 

likely approach but they are not economically feasible after approximately 50% of the canopy 

has died (Herms et al. 2009).  Instead, all trees are cut down within a certain distance of the 
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infestation.  Eradication distance varies greatly based on how extensively the area was monitored 

and size of the infestation.  So far, these measures have yielded unsuccessful results, largely due 

to people unknowingly moving EAB through quarantined boundaries.   

 This research seeks to give land managers a proactive approach to EAB spread.  By 

creating this model, land managers will be able to monitor areas deemed to have the highest 

probability of presence based on current EAB locations and human spread factors from past 

research.  Implementation of monitoring and treatment methods can be established before EAB 

colonies are found, which increases survival success of ash trees and possibly saving millions of 

dollars in eradication processes in the future. 

Objectives 
 
The objectives of this study are to; 
 

1) create spatial data layers related to spread and establishment of EAB through     

anthropogenic criteria 

2) implement an appropriate modeling framework in order to utilize these data layers using 

GIS, and 

3) map and identify new high risk areas for EAB for management and monitoring.  
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Chapter 2: Literature Review 
 

Emerald Ash Borer 
 

Regarded as one of the most destructive invasive pests in North America, the emerald ash 

borer (Agrilus planipennis, Fairmaire) has quickly made a profound impact on the United States 

(Haack et al. 2002; Cappaert et al. 2005; Poland and McCullough, 2006; Mastro et al. 2007; Wei 

et al. 2007).  Within the first five years of inception (1998 to 2003), the core area of infestation 

by EAB had increased 170-fold (Siegart et al. 2008).  Even EAB outlier populations have spread 

more rapidly than first predicted (Cappaert et al. 2005; Iverson et al. 2006; Heimlich et al. 2008).  

Currently, EAB infestation has resulted in rapid mortality of ash (Fraxinus spp.) of various sizes 

and habitats (Pontius et al. 2008).  While EAB has had adverse impacts on forest biodiversity, it 

also creates problems in urban ecosystems because ash resources are not only widely distributed 

in forested ecosystems but also planted as shade trees and ornamentals (Lui and Bauer, 2008). 

Emerald Ash Borer: The Arrival and Spread 
 

First reports of EAB came from Detroit in the summer of 2002.  In July 2002, EAB was 

discovered to be the causal agent of decline and mortality of ash throughout the city of Detroit 

(Poland and McCullough, 2006).  Soon after, population density surveys were conducted in areas 

where tree mortality had occurred (Poland and McCullough, 2006).  In an unrelated study, a 

cross-dating analyses of the area suggested that EAB was originally established in the Westland-

Garden City vicinity of Michigan in 1997-1998 (Siegart et al. 2008).  It is believed that EAB 

made its entry into the United States nestled in solid wood packaging material from Asia 

(Cappaert et al. 2005).  
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Spreading from Michigan became apparent and soon after it was discovered in Ohio in 

2003.  Since then, EAB has spread to 39 counties throughout the state with five other counties 

quarantined (Ohio Dept. of Agriculture, 2009).  In Maryland, EAB was found in a Prince George 

County nursery in August 2003 from infested nursery stock and was quickly eradicated by 

March 2004 (Maryland Dept. of Agriculture, 2008).  The Maryland Dept. of Agriculture also 

indicated that EAB larvae were found in the same vicinity in August 2006 which led to the area 

being quarantined once again.  In 2007, EAB spread into the neighboring states of Pennsylvania 

and West Virginia. Pennsylvania implemented a quarantine area in the western part of the state 

in June of 2007 containing Allegheny, Beaver, Butler, and Lawrence counties (Pennsylvania 

DCNR, 2008).  Most recently, EAB was confirmed in Clinton County, PA in early March 2009 

(Rick Turcotte, personal communication).  In West Virginia, EAB was discovered from a trap 

tree in Fayette County in October 2007 and is believed to be introduced by the movement of 

firewood (West Virginia Division of Forestry, 2008).  In May 2009, a positive EAB sample was 

found Morgan County making it the second county in West Virginia to be identified with 

additional finds in Morgan and Roane counties (Yong-Lak Park, personal communication).  EAB 

has also been confirmed in other surrounding states that include Wisconsin, Indiana, Illinois, 

Missouri, and Virginia by means of firewood movement and infested nursery stock (USDA 

APHIS, 2008).   

Invasive Insects and the Urban Ecosystem  
 

Industrial cities are often a major arrival and breeding ground for invasive insects (Poland 

and McCullough, 2006).  Cities, such as Detroit, have numerous ports, highways, and airports for 

transporting various materials which facilitates spread of invasive species through a variety of 

different vectors (Crowl et al. 2008).  All of these factors equate to an advantageous entry 
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method for invasive insects because of the amount of human activity that flows to and from 

urban areas. 

Upon arriving at a new destination, invasive insects must have suitable habitat in order to 

survive.  Insects need food, proper temperatures, and habitable areas for reproduction to maintain 

a steady and increasing population (Keena, 2006).  Unfortunately, the eastern United States has 

the proper elements needed for EAB survival.  EAB thrives on green ash (F. pennsylvanica), 

white ash (F. americana), and black ash (F. nigra) species which are all native to the United 

States (Poland and McCullough, 2006).  Having these native ash species as a suitable host 

enables EAB population growth and ultimately, with time, enables spread.  In large urban areas, 

green and white ash are used mainly for aesthetic purposes.  City landscapers often plant ash 

along streets and in parks as a valuable resource of shade for the public during hot summer 

months.  In addition to aesthetics, street trees provide shade to houses, air pollution removal, and 

reduce storm water runoff making them extremely beneficial (Walton et al. 2008). 

Urban trees are frequently planted in unfavorable sites such as parking lots, where they 

experience stresses from pollution, soil compaction, and damage due to human activities (Ward 

and Johnson, 2007; Barnd et al. 2008).  Trees in natural forest settings generally experience less 

stress than those located along roadsides, in plantations, or city parks because they are not 

exposed to these harmful conditions (Lui et al. 2008).  Factors such as the exposure to concrete 

and asphalt, shallow and compacted soils, toxic emissions, and lack of essential nutrients all have 

the potential to hinder tree health (Flint, 1985; Nowak et al. 2006; Ward and Johnson, 2007).  

These physiological stresses can weaken a tree’s natural defense to diseases and insect outbreak 

making them vulnerable to infestation.  Such stressful conditions could possibly predispose trees 

10 
 



to insect or pathogen attacks increasing the chance that non-indigenous pests will increase 

establishment success (Poland and McCullough, 2006).  

Native Ranges and Natural Enemies of Emerald Ash Borer 
 
Due to the presence of natural enemies, EAB is only considered a minor pest in China 

(Lui et al. 2008).  Found elsewhere in surrounding countries, EAB is also native to Taiwan, 

Korea, Russia, Mongolia and Japan (Haack et al. 2002; Smith et al. 2003).  In Asia, ash species 

have rapid growth, attractive crowns, high wood quality and are resistant to most pests which 

makes them a desirable timber and ornamental tree species (Lui et al. 2008).  In recent decades, 

the introduction of North America ash species to these countries have thrust EAB into pest status 

in some areas as well as increasing its distribution to additional locations in northern China (Lui 

et al. 2008).  During the 1960s, in the Heilongjiang and Liaoning Provinces of China, EAB 

outbreaks were common in the Nearctic white ash plantings (Liu et al. 2008).  The outbreak in 

the Liaoning Providence subsided in the late 1960s after all the white ash trees in the city of 

Shenyang died. 

Much of the bio-control research has been done in China because EAB is native to that 

region.  After initial studies were completed, three specific insects were found to be natural 

enemies of EAB which include: Spathius agrili (Hymenoptera: Braconidae), Oobius agrili 

(Hymentoptera: Encyrtidae) and Tetrastichus planipennisi (Hymenoptera: Eulophidae) (USDA 

APHIS, 2008).  Since EAB is still a recent discovery in the United States, indigenous natural 

enemies may be somewhat slow to react to the newly introduced species.  If eradication or 

containment of EAB cannot be obtained from resources within the United States, the 

introduction of Chinese natural enemies could be considered (Liu et al. 2008).  For instance, in 

the summer of 2007, Spathius agrili was determined to have no significant impact on North 
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American fauna (Strazanac et al. 2008).  To test its effectiveness on EAB, three sites in Michigan 

were selected for Spathius agrili release for a monitoring and impact study with results still 

pending at this time (Strazanac et al. 2008).  The introduction of these natural enemies are 

possible; however, more studies are needed before their use could be enacted due to 

environmental regulations.  

Impacts from the Emerald Ash Borer 

Social Impacts 
 

Outbreaks of EAB are devastating to urban and naturally forested areas because of the 

potential to create adverse social, economic, and 

ecological impacts.  In Detroit and many other major 

cities, ash is a landscape tree found in urban settings 

(Fig. 1).  An impact of this magnitude can leave people 

emotionally distraught with feelings of unsatisfaction 

and displeasure because millions of Americans benefit 

physiologically from the presence of urban trees (Nowak et al. 2006).  Such drastic outcomes can 

result in neighborhoods being barren and having unattractive streets if outbreaks reach the point 

where trees must be removed.  If removal is necessary, planting small trees will take years to 

reach the mature size of most trees that are currently being eradicated.  Schroeder and Ruffolo 

(1996) noted that the single largest factor in determining the attractiveness of street scenes was 

the size of trees.  Larger trees are more attractive according to homeowners. 

Figure 1. Damages associated with EAB. 
Photo by Steven Katovich, USDA Forest 
Service, Bugwood.org.  

One example of this situation is a study that was conducted in Toledo, Ohio, by Heimlich 

et al. (2008).  His research tried to pinpoint different attitudes that were prominent when the 
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removal of ash trees was ordered by the city.  Currently, all of Toledo’s approximately 5,000 ash 

street trees are scheduled for removal (Heimlich et al. 2008).  From his report, many residents 

were eager to see the events taking place outside their homes and even offered suggestions and 

responses on how to handle the epidemic.  Since it was apparent that residents wanted to be 

involved in the ash replacement strategy, the city of Toledo offered a survey for people to 

provide ideas for the project.  Results of the study concluded that the people of Toledo wanted 

replacement trees planted (no particular species indicated) because it makes the streets more 

aesthetically appealing.  

Economic Impacts 
 

Ash is a valuable hardwood species in the United States which has great economic impact 

from loss.  Ash wood is used for many different applications such as flooring, furniture, sports 

equipment and tool handles (USDA APHIS, 2008).  Of the 16 native ash species (Cappaert et al. 

2005), white, green, and black ash are more valuable than other ash species because of their 

practical uses.  It is estimated that there are more than 8 billion ash trees in the US, of which 

more than 700 million occur in Michigan, 280 million in Ohio, and 150 million in Indiana 

(Mastro et al. 2007; Wei et al. 2007).  The numbers in these three states are alarming because 

one-seventh of the ash trees located in the United States are present in this region.  Another 

example is in Wisconsin where ash is a staple tree species.  Ash is found throughout Wisconsin 

but is most abundant in the northern part of the state.  Currently, Wisconsin has approximately 

720 million ash trees with black and green being the most prevalent (Perry et al. 2008).  With 

such a substantial amount of ash, EAB impacts in Wisconsin, and the rest of the US, are 

projected to match the devastation of Dutch elm disease and chestnut blight (Perry et al. 2008).   
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EAB has already become widely established in Michigan and Ohio resulting in a total 

loss of millions of board feet of ash sawlogs and veneer.  Totals in Michigan alone reach 

upwards of 307 million board feet with a compensatory value as high as $18.9 billion (Poland 

and McCullough, 2006; Mastro et al. 2007; Wei et al. 2007).  The total impact of the losses 

include the decline in landscape value, the cost of tree removal (including stumps), and the cost 

of replacement trees.  In Ohio, the total losses for removal and replacement could range from 

$1.8 to $7.8 billion alone (Sydnor et al. 2007).  Diminished landscape values include a variety of 

fiscal and environmental factors such as increased heating and cooling costs, reduced property 

values, increased storm water runoff, and reduced wildlife habitat as well as reduced aesthetic 

quality (Sydnor et al. 2007).  

The fiscal impacts that are expected to occur in the state of Ohio are described by Sydnor 

et al. (2007).  One aspect of the fiscal impacts is predicated on landscape value.  This aspect 

represents an individual tree’s contribution to the environment.  The landscape value is 

calculated using the tree diameter, monetary values for size/species, and the tree’s location on the 

landscape.  From the report, a street tree’s value was estimated to be roughly $800 for a 12-in 

diameter tree.  Park trees were a bit lower ($642).  In aggregate, the potential loss in landscape 

value for the state of Ohio is projected to be $0.8 to $3.4 billion.  The study compared tree 

removal costs as well as tree replacement costs.  Tree removal costs are similar to landscape 

values and range from $0.7 to $2.9 billion and will most likely need to be covered by public and 

private budgets.  Tree replacement costs are lower than landscape values and tree removal costs, 

but still range from $0.3 to $1.3 billion and will also need to be covered by public and private 

budgets.  Total costs, including landscape, removal, and replacement costs, are $1.7 billion at 
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best.  In a worst case scenario, grand totals yield a loss of $7.5 billion as a result of EAB, which 

is a staggering amount for a single pest in a single state (Sydnor et al. 2007).  

Ecological Impacts 
 
In Michigan, as well as numerous other states, many landscapers and city organizations 

plant monocultures (single species) to reduce costs.  Infestations in these monocultures will 

likely have a disastrous outcome when epidemics arrive because of lack of diversity (Whitesell et 

al. 1992).  When invasive outbreaks affect cities, rapid spread usually occurs which can create 

the potential for disaster.  Monocultures make it difficult to contain or eradicate pests because 

every tree within a given radius 

is susceptible to infection.  For 

instance, a similar situation has 

occurred before in Detroit when 

the American elm population was 

destroyed by Dutch elm disease 

in the 1950s and 1960s (Poland 

and McCullough, 2006).  Once 

all elms were cleared from the city, ash was planted to re-inhabit the decimated areas.   

Figure 2. Tree mortality associated with EAB damages. Photo by 
Daniel Herms, The Ohio State University, Bugwood.org.  

Natural forest ecosystems are at just a high risk as the urban ecosystems from EAB 

infestations (Fig. 2).  In 2003, the Federal Register estimated that the United States contains 

roughly 8 billion ash trees, the vast majority of which are growing throughout our forest 

landscapes.  According to Poland and McCullough (2006), EAB impacts are difficult to quantify, 

ecologically, but could be profound in the long-term.  For example, the loss of ash could affect 
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certain wildlife populations because ash trees provide browse, thermal cover, and protection for a 

variety of wildlife species (Heyd, 2005).  Seeds, which are often produced in abundance, are 

consumed by song and game birds, small mammals, and insects.  Without this source of food and 

shelter, some wildlife species could have trouble adapting to the extenuating circumstances.  

Ash Abundance in the Mid-Atlantic 
 

Naturally, ash grows in a variety of the 26 known forest cover types with white ash, green 

ash, and black ash being the most abundant in volume.  White ash prefers rich, moist, well-

drained soils with high nitrogen content and a moderate to high calcium content which can be 

found throughout eastern United States (Burns and Honkala, 1990).  Green ash is the most 

widely distributed of all the American ashes (Fig. 3) and generally grows on moist bottom land 

or stream bank sites (Burns and Honkala, 1990).  Because green ash is resistance to most insects 

and disease, it is a very popular ornamental tree.  Black ash can be found in mixed stands but 

most often grows in poorly drained sites such as bogs 

 

Figure 3. Native range of green ash (left) and white ash (right).  Photo taken from Burns and Honkala 1990. 
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and swamps (Burns and Honkala, 1990).  Pure stands of black ash are common in the northern 

Great Lakes region and Canada (Poland and McCullough, 2006).  Many aspects of black ash are 

unknown because it has never been commercially important; however, it has been used for 

basket making because the wood is craftable (Burns and Honkala, 1990).  

In the Mid-Atlantic region, ash resources are present but not as abundant as in the Upper 

Mid-West states such as Wisconsin and Michigan.  Pennsylvania contains approximately 5% ash 

with no spatially distinct area of abundant growth (McWilliams et al. 2007).  Ash resources in 

Delaware are mostly confined to the northern part of the state, planted in cities, and are not 

common throughout the rest of the state (Nowak et al. 2009).  New Jersey’s landscape is 

dominated by pine and oaks with a very low amount of ash; however, the total volume of ash has 

increased by 13% since 1987 (Widmann, 2005).  From the last documented forest resources 

report in 1986, the volume of ash in Maryland is also minimal (Frieswky and DiGovanni, 1988).  

Throughout West Virginia, ash grows sporadically throughout the forest landscape comprising a 

mere 3% of the total volume of trees growing in the state (Griffith and Widmann 2003).  Ohio 

has a younger age distribution of ash and has become more abundant within the last few decades 

(Griffith et al. 1993).  Even though the amount of ash in this region is low, there is still the 

potential for ecological impacts.  If EAB continues to invade urban and forest ecosystems, it 

could possibly change the structure of the forest of the eastern United States creating a 

significant ecological change to the region (Poland and McCullough, 2006). 
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Emerald Ash Borer Ecology 

Biology 

Classification  
 
 Emerald ash borer is classified in the Coleopteran order 

in taxonomy.  One of the most distinctive features of 

Coleopterans is their wing structure.  EAB adults have four 

wings with the front pair being hard and brittle (elytra) and the 

hind wings being membranous (Fig. 4).  The membranous hind 

wings are used for flight and are folded under the elytra for 

protection when not in use.  Even though EAB beetles have wings, they are not known to be 

sufficient flyers and, therefore, not their primary means of long-range dispersal (Bauer et al. 

2003b; Cappaert et al. 2005).   However, short-range dispersal can be done by flying (Yong-Lak 

Park, personal communication).  In addition to their two different pairs of wings, EAB adults 

have chewing mouthparts and well-developed mandibles which give them the ability to consume 

ash leaves as their food source.  EAB undergoes complete metamorphosis to transform from 

their larvae to adulthood.  The life cycle of EAB can vary in length but normally has one 

generation per year. 

Figure 4. Emerald Ash Borer. 
Photo by David Cappaert, 
Michigan State University, 
Bugwood.org 

EAB adults belong to a family of insects known as the flat-headed wood borer, also 

known as Buprestidae (Poland and McCullough, 2006; Wei et al. 2007; Wisconsin DNR, 2008; 

USDA APHIS, 2008).  Buprestids are one of the most common families of beetles with 

approximately 675 known families in the United States.  Many adult buprestids are attracted to 

dead or dying trees and the foliage of trees and shrubs, such as the case with EAB.  Buprestid 

larvae have the distinct characteristic to bore underneath the bark into the wood of living trees or 
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newly cut or dying logs (Ueckert and Wright, 1974).  Once hatched, they tunnel under the bark 

making serpentine galleries that are used for pupation.  

Life Cycle 
 

EAB adults are dark metallic green in appearance (Fig. 5).  Adults are observed to be 7.5 

to 13.5 mm long with their bodies elongated and slender (McCullough and Katovich, 2004).  The 

life span of adults varies depending on sex.  On average, females live roughly one to two weeks 

longer than males (USDA APHIS, 2008) with 

most adults living from three to six weeks 

(Poland and McCullough, 2006).  Adults are 

most active during the day because they favor 

warm, sunny weather while feeding 

(Wisconsin DNR, 2008).  

Adults prefer feeding on foliage in 

direct sunlight generally feeding on the leaf 

margins (Wisconsin DNR, 2008; McCullough and Katovich, 2004).  Females lay roughly 60-90 

eggs throughout their lifetime (USDA APHIS, 2008) with eggs approximately 1 mm in diameter.  

Eggs gradually change from a light to dark tint after being laid on the bark (Bauer et al. 2003a) 

and hatch generally within 7-10 days.  Once hatched, the first instar larvae chew their way 

through the bark and into the cambial region which contains live tissue and phloem (Wisconsin 

DNR 2008). 

Figure 5. EAB adult. Photo by David Cappaert, 
Michigan State University, Bugwood.org 

As the larvae feed (Fig. 6), they wind back and forth creating characteristic serpentine-

shaped galleries beginning in the phloem and extending into the xylem layers (Bauer et al. 

2003a).  As larvae mature and complete their feeding, they excavate a pre-pupal chamber in the 
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outer sapwood where they stay and continue their life cycle over 

winter (McCullough and Katovich, 2004).  Pupation occurs 

while in this chamber the following spring which completes th

life cycle (Poland and McCullough, 2006).   However, not all 

EAB larvae complete their lifecycle in one year; scientists have 

found that larvae can require an additional year of feeding prior 

to adult emergence (Cappaert et al. 2005).  These larvae with extended feeding periods are 

typically observed in healthy or lightly infested ash trees whose defenses are more effective at 

decreasing larval growth rate and increasing larval mortality (Poland and McCullou

e 

gh, 2006). 

Figure 6. EAB larvae. Photo by 
David Cappaert, Michigan State 
University, Bugwood.org 

Signs and Symptoms of Infestation 
 

Common signs left by EAB are serpentine galleries beneath the surface of the bark, eggs 

in deep bark crevices, presence of larvae, and D-shaped emergence holes (Fig. 7) (Wisconsin 

DNR, 2008; Wilson and Rebek, 

2005; Pennsylvania DCNR, 

2008).  Symptoms of EAB are 

common to those of any stressed 

tree.  Often, rapid crown dieback 

in the top third of the tree will be 

the first symptom of an attack 

(Wilson and Rebek, 2005) and 

persist until significant dieback 

throughout the rest of the crown has been fatal.  As with most stressed trees, epicormic branching 

is common with EAB infections (USDA APHIS, 2008).  Other symptoms such as bark splitting 

Figure 7. D-shaped exits holes associated with emerging EAB 
adults. Photo by Daniel Herms, The Ohio State University, 
Bugwood.org
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and increased woodpecker activity have also been noted (McCullough and Katovich, 2004; 

Wisconsin DNR, 2008).  These signs and symptoms are an effective way to identify an EAB 

outbreak, but when these signs occur, infestation has already taken place and not much can be 

done to prevent the spread of EAB in that 

general area.  Unfortunately, signs and 

symptoms usually do not appear until 

sometime after infestation (Timms et al. 

2006).  By that time, significant tree 

mortality can occur in 1-3 years (Poland 

and McCullough, 2006).  

 
EAB Impacts on Individual Trees 

  Since EAB is an invasive species, 

indigenous ash trees are not adapted and 

have not evolved with natural defenses to 

ward off an attack.  Once eggs have hatched 

from the bark crevices, they bore their way 

into the cambial layer and the sapwood 

(Bauer et al. 2003a).  After numerous larvae have fed on the cambium and sapwood, they, in 

essence, girdle the tree.  Once the cambial layer is destroyed, trees cannot transport vital 

nutrients through the phloem which will hinder growth of the crown and leaves.   Eventually, 

adults will emerge and start feeding on the foliage.  This, too, has a traumatizing effect and 

stresses the tree even further.  By feeding on leaves, photosynthetic activities will decline with 

the decrease in leaf area.  The barrage of attacks from different areas interrupts all abilities a tree 

Figure 8. Epicormic branching. Photo by Michigan 
Department of Agriculture, Bugwood.org 
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needs to survive.  It is very common for stressed trees to respond by producing epicormic 

branches (Fig. 8) as a last ditch effort to receive the vital nutrients they need to survive (Pontius 

et al. 2008).  Generally, trees die within five years of an EAB attack (USDA APHIS, 2008). 

Dispersal Methods 
 

The EAB is known to have flight potential - upwards of 5,200m in 40 hours (Bauer et al. 

2003b), but is thought to spread more rapidly through the movement of firewood, nursery stock, 

and freight including wood pallets.  In many states, such as Ohio, where EAB has been found are 

now quarantined and movement of wood is illegal (Goebel et al. 2008).  Natural resource 

agencies have restricted the movement of firewood as precautionary measures to slow the spread 

and prevent new areas of development.  To restrict movement, states are requiring a permit 

before any logs, firewood, pulpwood and other wood products can be moved across quarantined 

borders.  For example, it is illegal to transport ash products such as trees, logs, branches, wood 

chips, bark, and other non-coniferous firewood out of Ohio's quarantined areas (Goebel et al. 

2008).  While these materials can move freely within the boundaries of the quarantined area, 

they cannot leave without an Ohio Department of Agriculture compliance agreement or permit 

that meets current federal requirements (Goebel et al. 2008).   

A case study done in 2003 by McCullough et al. (2003) recorded EAB spread from 

infested firewood pile in Tipton, Michigan.  The firewood was brought from an EAB infested 

area in southwestern Michigan.  To analyze the movement from the woodpile, 235 ash trees were 

marked and recorded up to a distance of 400m away from the infested wood.   Samples were 

taken from a selected amount of marked trees.  From these trees, a section of bark was removed 

from the trunk, lower, middle and canopy of the tree.  Once it was confirmed that galleries were 

found at the boundary of the 400m survey area, another survey was conducted.  This time, 
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samples were taken as far away as 850m from the infested woodpile.  After analyzing both 

surveys, it was determined that 70% of galleries occurred within 100m of the woodpile and 

greatly decreased as distance from the woodpile increased with no apparent preference on tree 

size (McCullough et al. 2003).   The farthest gallery was observed 750m away.  To neutralize the 

problem, all ash trees within a radius of 800m were destroyed by the Michigan Department of 

Agriculture. 

Current Options for Monitoring and Treatment 
 

Choice Tests 
 

Choice tests are used by entomologists to test for preferences of a particular insect.  For 

instance, through a series of choice test studies, entomologists have discovered that EAB could 

be attracted to purple colored objects by comparing them with many other color options.  Putting 

this to good use, these purple traps have been placed near high traffic areas (human activity) to 

monitor EAB distributions and find new areas of infestation.  Choice tests can also be used to 

determine trap selection apparatuses, ash leaf volatiles, and alternate host potential.  By 

combining all these factors, the data could be used as part of other studies to test factors that are 

unknown or have limited information.  For example, a study done in 2004 by Anulewicz et al. 

(2007) put the alternate host potential theory to the test.  This study was designed to test if EAB 

females would oviposit on species other than ash.  Four common ash species (green, white, 

black, and blue) and three alternate hosts American elm (U. americana), black walnut (J.  nigra), 

and Japanese tree lilac (S. reticulate) were selected for the study.  Analysis of nursery stems from 

dissection showed that galleries had formed on ash stems and virtually no galleries were found 

on lilac or walnut stems (Anulewicz et al. 2007).  Looking deeper into the results, 65% of the 
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galleries were found on green ash trees with rough bark.  Overall, their study revealed that EAB 

females will oviposit on alternate species, but early development and feeding was drastically 

impaired when compared to the early development on ash trees. 

Trap Trees 
 

A study conducted from 2003 to 2005 by Storer et al. 

(2007) looked into the detection and monitoring of EAB 

populations by using trap trees (Fig. 9).  In their study, they 

intentionally girdled thousands of ash trees across Michigan to 

monitor outlier populations and to evaluate its distribution 

throughout the state.  Adult EAB may be trapped on a sticky 

surface on the tree, or larvae may be detected by peeling the tree 

after possible exposure to adults (Storer et al. 2007).  Findings from their study show that EAB 

lands more frequently on ash trees than any other species with girdled ash trees being much more 

attractive than ungirdled ash trees.  Because stressed trees emit volatiles by girdling, this makes 

trap trees much more effective way to monitor EAB.  In the same document, the Michigan Dept. 

of Agriculture conducted a girdling study in 2004 and 2005 with a similar trap tree process. 

Accounts of that study are described to be similar to Storer et al. (2007).   

Figure 9. Trap tree used to lure 
EAB adults. Photo by 
Pennsylvania Department of 
Conservation and Natural 
Resources - Forestry Archive, 
Bugwood.org 

Treatment Procedures 
 

Biocontrol options have been studied extensively due to their popularity and 

effectiveness in controlling other invasive species.  The use of entomopathogenic fungi such as 

Beauveria bassiana (Balsamo) Vuillemin and Metarhizium anisopliae (Metschnikoff) Sorokin 

have been used in other pest situations to manage outbreaks of locusts, Colorado potato beetle, 
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and diamondback (Lui and Bauer, 2008).  Whether or not they will be effective against EAB is 

undetermined as studies are still ongoing.  However, with the recent accounts of Lui and Bauer 

(2008), EAB shows some susceptibility to these strands of entomopathogenic fungi.  When in 

contact with B. bassiana, a fungal trunk spray, EAB adults were infected and killed.  The fungi 

also had positive effects on EAB larvae because it increased their mortality.  Sub-lethal effects 

even showed shortened adult longevity and prolonged larval development.  

Chemical treatments such as imidacloprid sprays that are applied to the trunk have been 

known to severely reduce EAB emergence (Nzokou et al. 2006).  Trunk injections like 

Imicide/Mauget and Bidrin/Mauget have had little success slowing EAB reproduction (US 

Forest Service 2009).  Other tests using bifenthrin and permethrin were found to reduce 

concentration of EAB (US Forest Service 2009). 

Public Awareness 
 
 EAB is believed to be distributed primarily by the movement of firewood, nursery stock 

and by human transportation such as vehicles (Cappaert et al. 2005).  Raising awareness to the 

public is a very important step to slowing the spread of this invasive insect.  Outreach activities 

have been used to alert the public and educate them on the consequences of firewood movement.  

Within the last few years, many campaigns, brochures, bulletins, and announcements have been 

created to reach the public sector stressing the urgency of containment.  The most important step 

in damage mitigation by the EAB is implementation and strict law enforcement of firewood 

quantities (BenDor et al. 2006). 

 

GIS Use in Modeling 
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Geographic Information System (GIS) is a geospatial technology used for handling 

geographic data in digital form (Goodchild, 1993).  GIS has the ability to preprocess and store 

large quantities of data while performing spatial operations (Goodchild, 1993).  GIS allows users 

to collect, manage, and analyze data that can be linked to spatial locations geographically (Ward 

and Johnson, 2007).  In addition, GIS makes data easy to view and manipulate in a variety of 

ways (Holcombe et al. 2007).  Digital data layers and maps have significant value in decision 

making and assessments because they can aid in solving natural resource problems such as the 

relationship between a species and their environment (McRoberts et al. 2006).  GIS has also been 

used in predicting the spatial distribution of exotic species since spatial analyses results are 

important for developing and implementing early warning and prevention systems (Hao et al. 

2007).  GIS users can enhance social and ecological benefits by identifying new areas of 

development and management to increase connectivity between social and ecological aspects 

(Carreiro and Zipperer, 2008).  

Today, invasive species frequently receive great attention due to the potential for rapid 

spread and widespread damage.  Invasive species pose challenges to indigenous life forms 

because they use valuable resources, have no known natural predators, and thrive in 

environments suitable for their survival.  Using GIS to model invasive species will aid in the 

process of understanding their dispersal, distributions, and habitats.  Defining where a species 

may survive depends heavily on being able to determine its existing or potential habitat 

(Holcombe et al. 2007). Since locations of infested trees can be mapped individually (Sharma et 

al. 2008), visual representations of spatial patterns can be accurately depicted and treatment areas 

can be designated.  
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Using GIS Data in Risk Modeling  

 In the past few years, GIS has emerged as an extremely powerful tool and is being used 

to analyze risks in areas of natural disasters and outbreaks invasive species.  In addition, the 

software is used for other research such as the development of a hazard rating system for pine 

beetles (Cook et al. 2007), predicting the spread of forest pathogens (Hunter et al. 2008) and 

monitoring landscape classification (Mora and Iverson,  2002).  In conjunction with remote 

sensing and photogrammetry, GIS can be used to identify these types of hazards and/or risks.  

When assessing risk, many different definitions can be composed but most would define the two 

key components of susceptibility and vulnerability as part of the structure (Krist et al. 2006). 

These areas of interest are studied by researchers using GIS to analyze satellite images, aerial 

photos and field survey data.  One example of risk modeling is a study approach to early 

detection over a large area that involves remote sensing technology.  Narrow-band hyperspectral 

instruments have the capability to identify early signs of stress in vegetation and trees and, in 

some cases, even when symptoms are not visible to the human eye (Pontius et al. 2008). 

Applications of GIS provide several opportunities to model outbreaks, assess ecological 

impacts, and visualize outcomes (Hunter et al. 2008).  Model design and behavior, when 

understood, will yield more realistic estimates and predictions (Gustafson et al. 2002).  

Predicting natural resource data can be assessed within an acceptable range if historic and 

location data is specific enough.  Ultimately, this type of research and data acquisition can be 

used to model future populations, climates, and pest outbreaks.  Because of the adaptability and 

wide range of GIS uses, many agencies, emergency services and businesses utilize GIS to plan 

and organize their geographic data to make their daily activities more efficient. 
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Previous GIS Studies Involving Emerald Ash Borer 
 

A study done by Iverson et al. (2006) modeled the susceptibility and potential spread of 

EAB across the eastern United States, in Michigan and Ohio, using Forest Inventory and 

Analysis (FIA) data to account for ash distributions and abundance at a 20 X 20 km resolution.  

When combining the maps of percent forest cover, they were able to estimate the availability of 

the ash resource to EAB.  In Ohio, a spatially explicit cell-based model was used to consider 

insect flight characteristics (Insect Flight Model) as well as external factors that enable the 

insects to travel passively (Insect Ride Model) (Iverson et al. 2006).  From their study, the insect 

flight model would calculate probabilities of colonization in each cell based on the basal area of 

ash abundance and EAB abundance by assuming an 11-year cycle starting with initial 

colonization of a site and ending when all ash at the site are dead.  The Insect Ride Model was 

then used to weight the road networks, wood products, population density, and campground 

information in a GIS and calculate an ash abundance multiplier that alters the ash abundance 

input to the Insect Flight Model.  The modeled EAB colonization probability yields a map of 

colonization potential.  Results from their study suggest that when the actual EAB detection 

spots were overlaid to determine the accuracy of predicted spread, 83% of the infections fell 

within a zone of high probability of colonization.  In addition, 69% of the EAB finds (2004-

2007) in the outlier zone, the zone beyond the immediate infestation front, occurred within 2 km 

of major Ohio roads.  Campgrounds and wood products that were located farther from major 

roads experienced more EAB positive detections beyond the immediate vicinity (2-10 km) of the 

major roads.  These results show that the potential sources of infection are more likely to 

contribute to EAB finds from roads.  It should be noted that no significant relationship was found 
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between ash basal area and EAB positive detections in either the occupied or the outlier zones.  

The same procedures are being used in Michigan but results are still pending. 

Another study done by Pontius et al. (2008) captures ash decline in EAB infested areas 

using hyperspectral technologies.  Because of the increase chance of spread, early detection of 

EAB is important in terms of management.  The use of wavelength indices (or band ratios) pairs 

stress-sensitive wavebands in combination with relatively stress-insensitive bands to correct for 

variation in irradiance, leaf orientation, and shading.  The result is a variable that is optimized for 

detection of plant stress (Carter, 1994).  The majority of plant stress indices are sensitive to foliar 

chlorophyll content.  Stress-induced changes in reflectance have been directly linked to foliar 

chlorophyll content in numerous studies (Rock et al. 1988; Vogelmann et al. 1993; Gitelson and 

Merzlyak, 1996; Pontius et al. 2008).  When plants are subjected to stress, reductions in 

photosynthetic activity, inhibition of chlorophyll formation, and an increasing breakdown of the 

chlorophyll molecule commonly occurs.  These criteria can be analyzed using remote sensing 

applications.  For their study, image data and ground truth data (chlorophyll fluorescent 

measures, transparency, live crown ratio, crown vigor, twig dieback, and infestation symptoms) 

were collected.  The field-based decline rating system developed for this study was able to 

capture and summarize the full range of ash decline that existed within the study areas.  These 

data were used in conjunction with hyperspectral remote sensing imagery to create continuous 

coverages of predicted forest health with an emphasis on ash species in areas that are currently 

being impacted by EAB infestation.  Compared to traditional decline classification, this 

hyperspectral based predictive model differentiated 5 decline classes with 97% accuracy (Pontius 

et al. 2008).  This represents an improvement in both accuracy and detail over more common 

multi-spectral remote sensing assessments of forest health.  However, the extent to which these 

29 
 



techniques can be used to monitor forest health is still unclear due to high costs, limited 

availability, and complex processing requirements (Pontius et al. 2008).  With time, competition 

in the private sector and currently planned satellite sensors will eventually make this technology 

available to a wider audience.  Utilizing these capabilities will be essential to identification and 

management of current and future pests (Pontius et al. 2008).  

Another example of a project using GIS for EAB research was done by the Minnesota 

Department of Agriculture (MDA).  This project was completed in December 2006 by the Plant 

Protection Division with the purpose of optimizing the placement of new EAB detection trees 

throughout Minnesota.  To map the risk of EAB, they assembled GIS data layers for the state 

which included: campgrounds, seasonal homes, urban areas, sawmills, firewood dealers, 

nurseries, and accessibility.  Campground, firewood, nursery and sawmill data can be obtained 

from natural resources agencies while seasonal homes and urban areas were derived from census 

data (Minnesota Dept. of Agriculture, 2006).  From their study, campgrounds rated as the most 

likely sites for EAB introduction due to the potential for infested firewood to be brought to the 

campground.  The mapped campgrounds contained records from all ownership types which 

include Federal, State, County, Municipal, and Private (Minnesota Dept. of Agriculture, 2006).  

Urban areas, sawmills, nurseries ranked high on the list of factors that could induce spread from 

the movement of wood and large human populations.  Of the data obtained for sawmills, 493 of 

626 mills were coded high risk because of three factors: 1) volume of wood processed; 2) if ash 

is used; 3) if logs are imported with bark attached (Minnesota Dept. of Agriculture, 2006).  With 

all the datasets, input layers were additively combined to produce the introduction risk map.  

Once all the equations were applied, the map grid was smoothed using statistical kriging 

interpolation to create a more interpretable surface.  Completion of the map yielded profound 
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areas of risk that are easy to identify and was used to plan new areas to place trap trees, which 

were surveyed in 2007 and 2008.  No information on those trees is available at this time.   
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Review of Maximum Entropy 
 

Maxent has been used extensively for species modeling within the past five years.  The 

model utilizes environmental data coupled with presence points for the species being modeled.  

Probabilities are then created for the study area based on the combination of these data.  For this 

project, Maxent provides an excellent modeling tool because EAB positive sites are currently 

known and environmental variables can be collected for the region.  Results of the model can 

clearly define new areas of high probability other than those close to the presence-only point 

locations.   

Statistically, entropy is defined as a measure of uncertainty when associated with a 

random variable.  The principle of maximum entropy states that the probability distribution that 

best represents the current state of knowledge is the one with the largest entropy, in other words, 

closest to a uniform distribution (Phillips et al. 2006).  Approximating unknown distributions is 

the best described by Jaynes (1957):   

 

“The best approach is to ensure that the approximation satisfies any constraints on the unknown 

distribution that we are aware of, and that subject to those constraints, the distribution should 

have maximum entropy.”  

 

Basically, the maximum entropy principle agrees with what has proven to be known without 

assuming anything that is not known.  The constraints mentioned in the above quote refer the 

environmental variables or features (Phillips and Dudik, 2008).  The probability estimation from 

maximum entropy resides from Bayesian statistics using prior probabilities and a Maximum 

Likelihood method (Phillips et al. 2006).  For an extensive review and explanation of maximum 
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entropy associated functions see Phillips et al. (2006), Shamilov et al. (2008), Phillips and Dudik 

(2008) and Jaynes (1957).    

The Maxent modeling approach utilizes the known presence-only data when predicting 

spatial distributions without the use of absence samples.  Applying a maximum entropy model 

provides a method for making inferences from incomplete data information (Jaynes, 1957).  

Most species distribution models are very sensitive to sample size which can have effects on the 

model results (Kumar and Stohlegren, 2009).  Maxent, on the other hand, is able to predict 

probability distributions/habitat suitability with a small amount of sample points (Wollen et al. 

2008).  Maxent’s capability to utilize a machine learning method to evaluate current species 

locations and their interaction with the associated environmental variables is what sets it apart 

from other predictive models (Wollan et al. 2008).  In fact, when compared to other modeling 

methods such as GLM and GAM, Maxent has been found to perform the best and provide the 

most accurate results in numerous comparison studies (Kumar & Stohlegren, 2009).    

Advantages to using Maxent are numerous. Over-fitting models can lead to inaccurate 

results.  The Maxent design has the ability to not over-fit the model when using the presence-

only data but careful consideration must be taken when selecting variables (Phillips et al. 2006; 

Wollan et al. 2008).  It also utilizes continuous and categorical data types and can represent 

probability distributions based on deterministic algorithms and mathematical definitions.  In 

addition, Maxent is being accepted in many areas of research because of its ability to utilize a 

machine learning function as part of the predictive modeling procedure.  However, since Maxent 

is still a relatively new modeling procedure, it does have some drawbacks.  Fewer guidelines and 

methods for estimating error are not as defined as GLM and GAM (Phillips et al. 2006).  Over-

fitting also requires more research to avoid error in variable selection, and, in general, Maxent is 
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currently not used in standard statistical software packages because it has its own stand-alone 

program (Phillips et al. 2006). 

Maxent has been used for a variety of different applications that have included: spatial 

distribution of wildlife species habitat (Yost et al. 2008, Thorn et al. 2009), threatened and 

endangered species modeling (Tinoco et al. 2009, Williams et al. 2009), and climate change 

(Fitzpatrick et al. 2008, Loarie et al. 2008).  The versatility of Maxent illustrates its usefulness 

for modeling complex ideas with accuracy.  Compared to previous modeling methods mentioned 

earlier, Maxent, more times than not, produces better results.  The power and effectiveness of 

using maximum entropy proves that it can be used across multiple fields and still be capable of 

generating models to suit the user’s needs.  

Theoretically, predictive modeling revolves around the fundamental concepts of 

geographical versus environmental space as well as estimating niches and distributions (Pearson, 

2007).  The concept of environmental space pertains to the foundations of a “fundamental niche” 

which is defined by Hutchinson (1957) as a set of environmental conditions within which a 

species can survive and persist.  Figure 10 displays the concept of these niches in respect to 

geographical or environmental space.  If the actual distribution of the species occurs in the 

environmental space, then that part of the environmental space is occupied by the species 

(Pearson, 2007).  This is referred to as an “occupied niche.”  If the environmental conditions 

located within the fundamental niche are displayed in the geographical space, then this could be 

considered the potential species distribution (Pearson, 2007).     
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Figure 10. Diagram of fundamental and occupied niches explaining species distributions in geographical and 
environmental space. Taken from Pearson (2007).  
 

 

 

 

 

 

35 
 



Chapter 3: Study Area 
 
 
 The study area for this research project is the Mid-Atlantic region of the United States 

which includes six states: Delaware, Maryland, New Jersey, Ohio, Pennsylvania, and West 

Virginia and the District of Columbia.  This location was selected because it is currently on the 

fringe of the EAB infestation.  Presently, EAB is highly concentrated in western Ohio with 

satellite populations in three other states (Maryland, Pennsylvania, and West Virginia).  

Delaware and New Jersey have yet to report positive EAB sites.  In order to better understand the 

general characteristics of the study area, this chapter provides information about physiographic 

regions, topography, soils, climate, past disease and outbreaks, and land cover and use.   

This study area contains many diverse elements such as urban development, contiguous 

and fragmented forests, and major elevation changes.  Elevation and climatic conditions are 

essential to EAB reproduction.  Warmer climates offer more suitable habitat and increased 

growth rates.  Urban development and forest fragmentation provide easily accessible breeding 

grounds for EAB establishment and colonization because of their anthropogenic interaction and 

stressed urban trees.  Soils provide information as to where ash may or may not grow limiting the 

area of potential EAB spread.  Physiographic provinces and ecoregions may contain useful 

information (about the location current EAB infestations and potential sites in the future) through 

similar environmental characteristics.  Knowing the history of disease and insects outbreaks 

could affect how EAB is managed by studying past invasive problems.  Since this study only 

models human spread criteria, environmental data should also be mentioned as it, too, may have 

an effect on EAB spread.     
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1. Physiographic Provinces & Ecoregions  
 

Physiographic Provinces 
 

Physiographic regions are defined as broad scale subdivisions based on geologic structure 

and history, rock type, and terrain identity (USGS, 2003).  Regions with flatter surfaces could be 

more inclined to spread EAB based on easier accessibility rather than navigating mountainous 

terrain.  

The study area extends across many physiographic provinces including: the Coastal 

Plain, Piedmont, Ridge and Valley, Appalachian Plateaus, and the Central Lowlands (Herlihy et 

al. 1998).  Other provinces such as the Blue Ridge, New England, and Interior Low Plateaus are 

located within the study area but make up only three percent of the total (Fig. 11).   The 

Appalachian Plateaus make up the greatest portion covering 51% of the area with the Central 

Lowlands (17%) and Ridge & Valley (14%) as the other dominant provinces. 

 

Figure 11. Physiographic provinces. 
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Ecoregions 
 
 Ecoregions, or ecological regions, are areas of land or water that contain common 

characteristics which are geographically distinct from other areas around them (Omernik and 

Bailey, 1997).  An ecoregion contains natural communities and/or species that are unique to its 

defining region; similar to an ecosystem except on a much larger scale.  The study area contains 

18 different ecoregions (Fig. 12) dominated by the southern unglaciated Allegheny plateau 

section, located in eastern Ohio, southwest Pennsylvania and the western part of West Virginia, 

encompassing 22% of the study area.  The northern ridge and valley ecoregion contains another 

15%, and the central till plains, beech-maple section contributes 11%.  

 
Figure 12. Ecoregions in the Mid-Atlantic. 
 

2. Topography & Soils 
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Topography 
 

Elevation within the region varies greatly from sea level in Delaware, Maryland, and 

New Jersey to the highest point at Spruce Knob [1428m (~4850ft)] in West Virginia (Fig. 13). 

The study area encompasses an array of different terrain attributes such as steep slopes, narrow 

valleys, plateaus, and coastal plains.  Delaware, New Jersey, and eastern Maryland are relatively 

flat compared to the rest of the study area with elevations less than 118 meters.  

 

Figure 13. Elevation above sea level (meters). 
 

Soils 
 
 Soil maps are commonly used for land assessment, environmental protection, and land 

evaluation.  Depending on the scale, soil maps can be very general or extremely detailed, 

especially when accompanied by a soil survey report and soil attributes.  For this study area, a 

generalized image of soil orders is used to represent the spatial distribution (Fig. 14).  Inceptisols 
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and Ultisols dominate throughout Delaware, Maryland, New Jersey, Pennsylvania and West 

Virginia while Alfisols are present throughout the Ohio landscape.  Inceptisols are the most 

abundant, occurring mostly in forested environments.  Alfisols represent one of the most 

important soil orders because of their productivity for food and fiber.  These soil orders are 

important for ash species because of increased growth and production on these sites.  

 

 

Figure 14. NRCS map of soil orders for the Mid-Atlantic 
 

3. Climate 
 
 Although climate is not directly related to EAB survival, it does serve as a determinant 

for ash growth.  The vast majority of the study area is classified as a humid continental climate 

(Fig. 15).  This climate type undergoes variable weather patterns and large seasonal temperature 

variances.  Summers are warm and humid with reoccurring thunderstorms while winters can be 

quite cold and snowy.  Differences in elevation will effect winter precipitation as most snowfall 
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will occur in the higher elevations.  Snow cover does not generally last long in valleys and 

plains.  Temperatures during the summer can be very hot at times with high humidity levels.   

 

Figure 15. Climate zone map acquired from howtotravelamerica.com 
 

Growing seasons for this region vary but generally begin during late April to early May 

and end roughly mid-October to early November.  Depending on the location, the area has an 

approximate range of 140 to 200 growing days.  Some growing seasons are much shorter like in 

north-central Pennsylvania where the growing season runs from late May to late September. 

Annual precipitation totals range from 50 to 125 cm (20-50 inches) which includes rain and 

snowfall.  Some areas will receive over 150cm (60 inches). 

4. Prior Invasive Species and Disease Outbreaks 
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 Invasive species are common to the study area.  Invasive insect outbreaks such as 

hemlock woolly adelgid (A. tsugae) and gypsy moth (L. dispar) have greatly affected hemlock 

and oak species in this region.  Asian longhorn beetle (A. glabripennis) is another harmful 

invasive that is a serious threat to hardwood species because it has no known natural predators 

(USDA APHIS, 2006).  Non-indigenous plant species such as tree-of-heaven (A. altissima), 

garlic mustard (A. petiolata), Japanese stiltgrass (M. vimineum), and Kudzu (P. lobata) have also 

established in great numbers (Swearingen et al. 2002).  Current regulations prohibit the 

transportation of infested host materials beyond quarantine areas in eradication attempts for all 

invasive insects (USDA APHIS, 2006).  In some cases, monetary fines are given to citizens 

moving wood outside the designated boundaries.  Constant monitoring and public outreach 

continues to be done by APHIS and the US Forest Service to raise awareness about the impacts 

invasives species can have on the forest. 

 In addition to invasives, disease pathogens such as Dutch elm disease (Ophiostoma spp.), 

chestnut blight (C. parasitica) and beech bark disease (C. fagisuga – the beech scale) have 

plagued the study region in years past by inflicting widespread damage and mortality.  In fact, a 

disease such as chestnut blight, which became widespread in the early 1900s, has completely 

eradicated any chestnut component left in the forest today.  Chestnut blight was originally found 

in New York in 1904 and within 40 years the entire range of American chestnut from Maine to 

Mississippi was determined to be infected (Griffin, 2000).  To this date, chestnut trees rarely 

become larger than pole size.  Much like chestnut blight, Dutch elm disease quickly spread 

throughout the US in the first half of the 1900s except this pathogen was disseminated by elm 

bark beetles as its primary source of dispersal (Gibbs, 1978) rather than relying on reproductive 

spores and wind. 
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5. Land Cover and Use  
 
 According to the National Land Cover Dataset (NLCD) 2001 classification, deciduous 

forests dominate the study region making up approximately 44% of the land cover (Table 1). The 

main forest species include: oaks (Quercus spp), hickories (Carya spp.), maples (Acer spp.) and 

yellow-poplar (L.  tulipifera) with components of hemlock (T. canadensis), white pine (P. 

strobus), beech (F. grandifolia), black cherry (P. serotina), ash (Fraxnis spp.), and other various 

commercial and non-commercial species.  The deciduous forest is prominent throughout the  

Table 1. NLCD 2001 land cover area (in km²) and percentage for the emerald ash borer study region. 
 
  Land Cover Classification  km²  Percentage 
       
Open Water  15933.68  4.58% 
Developed, Open Space  22189.49  6.37% 
Developed, Low Intensity  11532.92  3.31% 
Developed, Medium Intensity  4706.85  1.35% 
Developed, High Intensity  1827.61  0.52% 
Barren Land  1712.51  0.49% 
Deciduous Forest  153975.86  44.21% 
Evergreen Forest  9581.33  2.75% 
Mixed Forest  9732.20  2.79% 
Shrub, Scrub  1632.87  0.47% 
Herbaceous  3239.59  0.93% 
Hay/Pasture  42270.72  12.14% 
Cultivated Crops  62640.45  17.99% 
Woody Wetlands  4880.64  1.40% 
Emergent Herbaceous Wetlands  2418.55  0.69% 
Total   348,275.27  100.00% 
 

mountainous regions of West Virginia and Pennsylvania.  Another combined 30% of the study 

area is classified as Hay/Pasture and Cultivated Crops (Fig. 16).  Cultivated Crop land is 

restricted mainly in western Ohio while Hay/Pasture land is concentrated in Delaware, Maryland 

and Pennsylvania.  
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Figure 16. NLCD land cover image for the emerald ash borer study area. 
 

Urban areas and major cities, which are a facilitator of EAB spread, are located within in 

the region (Iverson et al. 2006; Poland and McCullough, 2006).  In terms of area, the developed 

land cover makes up 11.5% across all intensities, of which 6.4% is classified as open space.  

Developed lands are dispersed around the major cities, such as Columbus, Cleveland, Pittsburgh, 

Philadelphia, Baltimore, and Washington DC. 
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Chapter 4: Methodology 
 
 
 This project compiled spatial data layers that are important to the spread and 

establishment of emerald ash borer.  The goal was to develop and assemble a modeling 

procedure in order to utilize data layers using GIS.  These objectives were accomplished by 

developing spatial datasets using mostly human causal vectors combined with a maximum 

entropy modeling approach to predict probability distributions.  The development of spatial data 

layers were completed using ArcMap Version 9.2 (ESRI, 2003) for analysis and dataset creation.  

Target Species and Occurrence Data 
 

Occurrence records of EAB were obtained from Department of Agriculture offices in 

each respective state where EAB has been positively identified as of December 2009 (n=982).  

No records from Delaware or New Jersey exist to date.  These records indicate where EAB has 

been located by coordinate points.  The range of EAB is not yet fully known in the United States 

so it is assumed that EAB can and will survive throughout the Mid-Atlantic study region as long 

as ash is the host species.  Climatic factors affecting EAB survival are also unknown, but the 

climate of the northeastern U.S rivals its native range in Asia.  

1.  Environmental Variables  
 
 Fifteen environmental variables were considered as potential predictors of EAB spread 

and distribution.  These variables were selected based on human spread mechanics and past 

modeling studies.  All variables are associated with anthropogenic spread vectors with the 

exception of an ash basal area grid.  All datasets were assembled using ESRI ArcGIS version 9.2 

(ESRI, 2003).  All environmental layers were resampled to 90m spatial resolution to correspond 
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for efficiently running Maxent while still properly representing ground resolution. As a result of 

preliminary analysis, some initial variables were omitted because they over represented certain 

areas which biased some urban areas.  In all, eleven environmental variables were used for the 

final simulations.  Final data types included: point features, line features, census data, and raster 

grids.  This project used many different types of spatial data compiled from various sources.  The 

following subsections describe how each data layer in the final model was collected and the 

justification for each variable.     

1.1 Campground, Nursery, and Sawmill Density Grids 
 

Human vector datasets are considered very important in modeling the spread of emerald 

ash borer.  Firewood is often brought into campgrounds from long distances by travelers (Iverson 

et al. 2006), which creates a problem of EAB spreading and establishing satellite populations. 

EAB has also been noted to be spread through nursery stock and sawmill (firewood) movement 

(Iverson et al. 2006).  EAB is often transported in live or dead wood materials which makes it 

difficult to detect.  In order to model these variables, business locations were identified and 

density grids for each vector were created.  

RefUSA, which is an online business database, was used to find business locations within 

the study region.  RefUSA contains business information including business name, street 

address, city, state, zip, phone number, XY coordinates, and a NAICS code describing type of 

business.  Each business was tabulated in an Excel spreadsheet.  The information was then 

uploaded into ArcGIS to create the shapefiles for each layer.  

Density grids were calculated from each of these variables for final analysis using the 

Kernel density function in Arc Toolbox.  Kernel density was chosen because it provides a 

dynamic output that fits a smooth curve over each point.  This is a better representation than 
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using a Simple density calculation because it avoids the bulls-eye effect around each point.  Cell 

size for the density grids was set at 90 X 90 meters for this study which represents roughly two 

acres per cell.  This cell size was chosen to lessen computational time and still produce accurate 

results.  For sawmill density, the search radius was set at 80,460m (50 miles) because it is not 

economically feasible to transport ash timber much further.  Ash is rarely of veneer quality 

which is why it is not a huge part of the timber market.  Campground and nursery densities were 

calculated with a search radius of 8,046m (5 miles) which was the same value used by the 

Minnesota Department of Agriculture for their EAB risk map.  This is a conservative estimate of 

how far EAB could spread within one year.  Since EAB has a low probability of spreading 

through firewood in campgrounds, the risk is much lower than sawmills because wood transport 

can cover a much larger area for each individual mill.   

 
1.2 Census Data Acquisition  

Census data was used to analyze the total population and the amount of seasonal homes 

within the study area.  Total population is defined by the U.S Census as the sum of all 

individuals occupying a given census boundary.  Research shows that higher human population 

density can lead to incidental EAB transport (Iverson et al. 2006).  Seasonal homes are also 

defined by the U.S Census as residences for seasonal, recreational, or occasional use such as 

cottages and hunting cabins.  In 2006, the Minnesota Department of Agriculture implemented an 

EAB spread model that included seasonal homes since these types of homes are more likely to 

transport (and store) firewood as a source of fuel in large quantities.  

Population and seasonal home data was prepared using Census Data for 1990 and 2000.  

Using the National Historic Geographic Information System (NHGIS) database website, 

searches were conducted for both years in an effort to monitor change detection from 1990 to 
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2000.  The website provided shapefiles for census boundaries down to block level.  However, 

due to the amount of missing data from the block level, block group level shapefiles and 

databases were used for this project.  Total population and occasional use tables (which includes 

seasonal home data per block group) were the main emphasis of the searches for both years.   

Detecting change from 1990 to 2000 was not feasible because many new census 

boundaries were created between the two years.  Instead, the 2000 census data for population and 

seasonal homes were used in the final analysis due to that year being the most updated.  

1.3 Road Intersection and Rest Area Dataset Creation  
 
 A dataset of roads was obtained from the ArcGIS 9.2 Data and Maps Media Kit for the 

study region.  Invasive insects disperse/propagate through highways and rest areas because of the 

amount of human activity is higher (Koch & Smith, 2008).  Using the roads dataset, a distance to 

roads grid was derived.  Rest areas and major highway/interstate intersections were also 

calculated.  Distance from the roads was set at a threshold of 1/8 mile, while the distance from 

intersections and rest areas was one mile.  One mile represents a feasible distance that EAB can 

naturally disperse and begin colony establishment in a short amount of time (Taylor et al. 2005).  

The three grids were then weighted with rest areas being weighted the most and distance from 

roads weighted the least, then, additively combined to produce the final raster grid.  Since these 

three variables are connected, weights were assigned to differentiate risk.  Rest areas were 

deemed more suitable for EAB introduction because they generally have a park-like setting and 

because travelers congregate around them.  Major roads and intersections were treated the same 

way except they usually do not have stopping points next to wooded areas so they were weighted 

much lower than rest areas.  Roads were considered to have a very small chance of introducing 

EAB.  Constant human traffic could cause an incidental EAB colony, but the risk is very low.     
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1.4 Harbors and Urban Areas 
 
 Distance grids are important because of their spatial locations from important EAB 

spread vectors.  Important variables used in this research included shipping harbors and urban 

areas.  Shipping harbors were used due to the risk of insects being moved long distance or the 

introduction of new infestations by wood crating and packaging, such in this case of EAB being 

imported from Asia (Haack, 2002).  Urban areas have more human activity than other rural 

communities which increases the probability of EAB establishment (Poland and McCullough, 

2006; Minnesota Dept. of Agriculture, 2006).  Trees in urban areas are generally more stressed 

due the environmental conditions, which makes them more susceptible to attack (Iverson et al. 

2006). 

 The shipping harbors dataset was created by coordinate input since a feasible dataset was 

not attainable.  To create this data layer, port addresses were entered from the World Port Source 

(www.worldportsource.com/states.php).  The website provides a combination of satellite 

photographs (Imagery 2009 Digital Globe, GeoEye, U.S. Geological Survey) and Google maps 

for addressing.  Additional information about each port is also available on the website such as 

its address, port type, size, coordinates and some websites.  Using the coordinates and aerial 

photography, a shapefile was created using ArcCatalog.  Urban areas for the project area were 

extracted from National Transportation Atlas Database 2009 Bureau of Census.  The distance 

grids were calculated using Straight Line distance.  

1.5 Housing Density 
 
 Housing density is another key variable because it correlates with human population and 

urban areas.  As urban sprawl continues to increase, urban areas are become larger due to the 

construction of additional housing and business sectors.  New development means land 
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disturbances are occurring, which causes a transformation of land cover.  Invasive species often 

thrive in disturbed areas making these new developments a point of emphasis.  To study the 

housing change, housing density data was downloaded from the University of Wisconsin 

housing density statistics page (http://www.silvics.forest.wisc.edu/maps.asp).  This dataset tracks 

housing density (units per km²) from 1940 to 2030.  Housing density was projected from 2010-

2030 using the prediction model from Hammer et al. (2004).  The definition of a “housing unit” 

is strictly defined by the census bureau as a house, an apartment, a mobile home, a group of 

rooms, or a single room that is occupied (or if vacant, is intended for occupancy) as separate 

living quarters.  Separate living quarters are those in which the occupants live and eat separately 

from any other persons in the building and which have direct access from the outside of the 

building or through a common hall.  Zip files for each state were downloaded from their database 

provided on the website (see above website).  Upon unzipping the data, the interchange file must 

be converted to a coverage file before ArcMap can read it properly.  

After the conversion, the attribute table will be available to calculate percent change.  For 

this study, percent change from 2000-2010 was selected because those years coincide with the 

years when EAB became prevalent.  Since this density grid is still considered a shapefile, a raster 

conversion is needed with the percent change column as the point of reference for the new raster 

grid. 

 1.6 Primary Source of Fuel 

 Many homes owners in the Mid-Atlantic region use wood as a primary source of fuel to 

heat their house during the winter months.  As a fuel source, wood is generally transported and 

stored while waiting to be burned.  Stored firewood, especially unused firewood, could allow 

EAB ample amount of time to emerge, reproduce, and establish a new colony.  The 2000 Census 
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was used to provide an estimate of how many people in the Mid-Atlantic region use firewood 

throughout the winter as their primary heat source.  Data was obtained on a county-level and the 

number of homes per county was identified.  

1.7 Ash Basal Area  
 

Ash is one of the most important factors of EAB modeling because an absence of ash 

means that EAB cannot survive without its host species.  Tree basal area grids can be found and 

downloaded from the USDA Forest Service Forest Health Technology Enterprise Team 

(FHTET) website (http://www.fs.fed.us/foresthealth/technology/nidrm.shtml).  The ash basal 

area grid displays the presence of ash throughout the study area determined from Forest 

Inventory Analysis (FIA) data.  

  

2.  Data Pre-processing 
 
 Data pre-processing was conducted in three steps: re-projection, clipping the study area 

boundary, and creation of ASCII grids for the Maxent model.  All datasets were converted to 

raster grids with the same 90m pixel size.  Geographic dimensions for all layers must match 

exactly for the Maxent model to run.  

2.1 Scale and Projections  
 
 Map scale is an important part of any spatial analysis.  In GIS terms, map scale is defined 

as the relationship existing between a distance on a map and the corresponding distance on the 

earth.  The terms “large-scale” and “small-scale” are common delineations of maps in reference 

to their size.  These two delineations are often confused.  Large-scale maps are very detailed over 

a small area (i.e. city maps) while small-scale maps are not as detailed and cover large areas (i.e. 
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North America).  This level of detail is called resolution for digital maps.  Scale can greatly 

affect resolution which alters map accuracy.    

Projections are also another very important part of GIS modeling, especially for large 

study areas that stretch hundreds of miles.  Projections are used to account for the curvature on 

the earth’s surface.  Without them, calculations would assume that the earth’s surface is flat 

causing drastic errors in mathematical functions.  For this project, the standard projection was 

chosen to be North American Datum (NAD) 1983 Universal Transverse Mercator (UTM) Zone 

17 coordinate system.  This projection was selected because it was centralized to the study area.  

Original projections for downloaded data differed for almost every layer.  Re-projection of these 

datasets to the standard projection was done before sub-setting the data.  

2.2 Study Area Clipping 
 
 The states in the study area were clipped from a larger dataset from the ArcGIS 9.2 Data 

and Maps Media Kit.  The coordinates for the corners are given in Table 2. 

 
Table 2. ArcMap corner coordinates for the EAB study area. 
 

Corner X (UTM) Y(UTM) 

Upper Left 169747.78 meters 4707195.32 meters 

Lower Right 1097901.82 meters 4117579.51 meters 

2.3 Creation of ASCII Grids 
 
 All raster datasets were clipped to the aforementioned coordinates and saved as new 

raster grids.  The grids were transformed to Integer format during the clip.  The raster datasets 

were then, converted to ASCII format using the “Raster to ASCII” option in ArcToolbox.  
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3.  Maximum Entropy Model Parameters 

   
Maxent software version 3.3.1 was available for free download and used for modeling 

(http://www.cs.princeton.edu/~schapire/maxent/).  Based on the current occurrence points, this 

model generates an estimate of probability of presence for EAB that varies logistically from 0 to 

1, where 0 is the lowest and 1 is the highest.   The 982 locations and 11 environmental predictors 

were implemented in Maxent to model the potential areas at risk for EAB.   

 Testing and validation is required for any predictive model.  Testing model performance 

should ideally have independent data, but some cases arise where this will not be available.  In 

such cases, it is common to use an approach that partitions data randomly into “training” and 

“test” datasets (Kumar & Stohlegren, 2009).  Executing this creates a quasi-independent data for 

model testing (Kumar & Stohlegren, 2009).  Maxent has the ability to do this internally.  In 

addition, Maxent allows modelers to use a jackknife procedure that tests each variable in the 

model separately, and then combines them for the final output.   This allows for variable analysis 

to determine which variables had the most contribution to the model.  However, it is important to 

note that all variables are still considered “significant.”  Otherwise, they should have not been 

included.   

3.1 File Formats Requirements 
 

Maxent works best for presence-only (or known location) data.  For this project, a list of 

current EAB positive locations was used as presence data.  This file must be in CSV format and 

contain three essential columns: species, longitude, and latitude.  The column headings must 

match for the model to run.  If the headings are not labeled correctly, the Maxent program will 

not recognize the CSV file appropriately resulting in an error.  It is possible to have other 
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information include in the file, but Maxent will not recognize these data.  Extra data will not 

affect the outcome of the model.  The environmental layers must be in ASCII format.  

3.2 Setting up the Model 
 

The environmental layers window is where the ASCII grids are placed for analysis.  The 

boxes for create response curves, make picture of predictions, and jackknife to measure variable 

importance can be checked before the model is run to provide material for additional analysis.  

Output formats can be selected as Logistic, Cumulative, or Raw.  Logistic formats are most 

common as they are the most intuitive when displaying probabilities since values range from 0 to 

1.  Auto features is the default setting and should remain checked unless the user wants to 

experiment with different response curves.  Leaving auto features checked will instruct the 

model to search for all constraints based on the number of presence records available.  Other 

feature types are based on the number of sample points which is explained within the Maxent 

Help menu.   

The Settings tab allows for Maxent parameters to be set.  The newest versions of Maxent 

have three tabs for defining parameters.  Running the model with all default setting is 

“acceptable” but to produce more refined output, the user can utilize these parameters.  The 

Basic tab represents the most basic features of the Maxent model but some of the most important 

too.  Some notable features in this tab are random seed, random test percentage, regulation 

multiplier, backgrounds points, number of replicates and the replicate run type.  Random seed is 

important for users who are running multiple replications of their model and want to use 

different sets of background points and test/training data partitions.  If the random seed is not 

desired, random test percentage will suffice for partitioning test/training data by selecting a 

certain percent of sample points to set aside for testing, which is required to do the statistical 
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tests for variable importance.  A set test percentage is not currently defined, but 25-40% is 

common based on most existing studies.  Regularization multiplier functions act much like a 

confidence interval.  As the multiplier increases, the output distributions become wider which 

can be considered a conservative approach.  When the multiplier is less than one, the output 

display becomes more defined and could be classified as a liberal approach.  Generally, the 

default setting is used unless the user wants to be more conservative or more liberal.  

Background points collect environmental information in order to train the model.  The default 

number of points is generally selected here as well, but larger study areas may want to increase 

this number.  Replications indicate how many times the model is run.  The outputs, when 

selecting multiple replications, are averaged and standard deviation is calculated to explain the 

variance within the replications.  Replication run type indicates the type of sampling (with or 

without replacement) and includes crossvalidate, bootstrap, and subsample.  If crossvalidate is 

selected, multiple replications must be used because each replicate provides its own set of test 

data.    

The Advanced and Experimental tabs offer very in depth parameters that are only 

recommended for advanced Maxent users.  The newer versions of Maxent provide very detailed 

features but currently, their contribution to model accuracy is not clearly evident at this time.  

For these tabs, default settings are almost always selected.  
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Chapter 5: Results  
 

The Maxent model produced some promising results.  This section reports the outcomes 

of the Maxent model based on an average of 10 replications.  Predictive power, error, and 

analysis of variable importance using response curves and jackknifes were recorded in this 

section. 

Analysis of Predictive Power and Error 
 
 Assessing a model’s outputs for error and predictive power can be somewhat daunting.   

However, Maxent’s internal statistical features allows for model interpretation to be achieved 

with relative ease.  Initially, it analyzes omission and commission errors, then, produces a 

receiver operating curve (ROC) to assess area under the curve (AUC).  Through these analyses, 

figures are produced for interpretation.  The first analysis result is to assess the diagram for 

omission and commission errors (Fig. 17).  This image displays the test omission rate and 

predicted area as a function of cumulative threshold.  The black line that splits the graph 

represents the predicted omission rate and is straight by the definition of the cumulative output 

format (Phillips et al. 2006).  If the model is a “good” match to the predicted omission, the 

turquoise line (test data) will be above the predicted omission line.  Although in some cases, the 

test data omission line will be below the predicted omission line.  This does not necessarily mean 

that the model is invalid, but just explains that the test data and the training data are not 

independent.  Spatially auto-correlated occurrence data will produce this type of result.  In 

theory, if the training and test data were independent, the test data line would be above the 

predicted line.  If the omission error of the test data was shifted further to the right in Fig. 17, 

then that would be a cause for concern because it implies a high amount of error.  The dark band 

surrounding the test data line represents the standard deviation of the 10 model replications.  As 
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shown, the standard deviation is minimal indicating that the average is low for this model which 

indicates low variance among simulations.   

 
 
Figure 17. Omission and commission errors in Maxent model for EAB. 
 
 
 The next graph gives the results for the ROC curve (Fig. 18).  This curve is derived from 

the same data as the omission and predicted area graph.  The x-axis represents the commission 

error from the Fig. 17 while the y-axis represents sensitivity or the absence of omission error 

(aka true positive rate).  In this graph, the turquoise line depicts the chance of yielding a random 

prediction or the outcome of the model that was no better than random.  Falling below this line 

indicates that the model performs very poorly resulting in a model that is worse than a random 

model.  Thus, any model with an AUC greater than 0.5 is considered to have better predictive 
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power than a randomly generated model would.  The red line in Fig. 18 shows the average “fit” 

of the model to the test data for EAB within one standard deviation.  This is the indicator of the 

model’s real predictive power.  The closer this line is to 1, the better the model is at predicting 

probability of presence.  As shown, the EAB model has an average AUC of 0.952, which 

signifies that the model achieves a high predictive power.  In addition, the standard deviation 

(0.007) for the AUC is very low indicating low variance which strengthens the model’s 

predictive power as well.   

 

Figure 18. Receiver operating curve (ROC) representing area under the curve (AUC) justifying the model's 
predictive power for probability of EAB presence. 
 
 It is important to mention that AUC values are tied to study area size.  Therefore, AUC 

values will generally be higher for studies with a smaller or narrow range.  For example, this 
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study uses the Mid-Atlantic region of the Unites States as a study boundary, which can seem 

quite large.  However, many Maxent models will have data representing whole continents and 

sometimes, the whole world.  AUC values for these particular study sizes will be much lower 

because the amount of error will undoubtedly increase, ultimately decreasing the predictive 

power of the model.  As Phillips et al. (2006) explain, this is just an artifact of the AUC statistic 

and does not mean the models are less relevant.  

Predictive Probability of Presence Map 

 As a part of the Maxent outputs, an image was generated to provide a visual 

interpretation of areas with probabilities.  In addition to probabilities, the amount of area at risk 

by EAB was also calculated in ArcMap (Fig. 19).  The map properly predicts high EAB risk in 

western Ohio because most of the observation points were confined to that part of the study area.  

This study was particularly interested in predicting new areas of risk to EAB.  The output map 

has accomplished this goal.  The map has clearly defined new high risk areas locations in 

northern New Jersey as well as western Pennsylvania.  Parts of central Maryland are also 

predicted at high risk to EAB.  The Ohio River valley along the border of Ohio and West 

Virginia has predicted greater than a 50% probability of presence for EAB.   

 Under the current model, the majority of the study area was at very low risk (0-10%) to 

EAB establishment.  The output predicted only 3,221 km² of very high risk areas and 11,160 km² 

of high risk areas (50.1-75%).  It is crucial to note that just because an area has reported a very 

low risk does not necessarily mean it is immune to establishment.  For instance, one infestation 

in West Virginia was reported in a very low risk area.  A few colonies in Ohio were also reported 

in low risk areas.     
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Figure 19. Predicted potential probability of presence for EAB in the Mid-Atlantic. 
 

Statistical Significance of the Prediction 

 Since the model was provided with test data, Maxent automatically calculates statistical 

inference.  This information is useful for depicting when the model yields significant values.  

Fig. 20 is only produced in each replicate simulation instead of the average of the 10 replicates.  

It is possible to select a threshold in which to apply for the model after a preliminary test has 

been run.  Again, the contents of this table coincide with the other figures.  Maxent allows for 

thresholds described in the description column of the table to be chosen in model simulations.  

By choosing a particular threshold, the model uses the value in calculating the final model.  

Determining which threshold to use and when to use them is still a newer concept in Maxent 
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modeling.  It is also important to note that choosing a threshold is completely up to the user and 

is not required to run the model.   

 To provide an example of the threshold interpretations, the test sensitivity and specificity 

threshold is first selected which resulted in a cumulative threshold value of 25.900 in Fig. 17.  

The logistic threshold column is the value in which all numbers of greater value are significant.  

In this case, values that are greater than 0.298 were considered significant in the logistic output, 

which is displayed in the next subsection.  In terms of the EAB model, all cells 

with values larger than the 0.298 value signify that there was “significant” risk of EAB presence.  

Omission rates and predicted area are also derived.  Fractional predicated area represents the 

 

Figure 20. Common threshold values from one simulation of the replications for the Maxent EAB model. 
 

percentage of the study area at risk meaning the percentage of the study area with a logistic value 

greater than 0.298.  This informs the user that roughly 30% of the study area was at “significant” 

risk to EAB according to the selected threshold (equal test sensitivity and specificity).  For 
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omission rates, a smaller value indicates less error.  A value close to zero acknowledges that 

there was little omission error for the model.  The last column in the table shows the standard p-

value for determining significance at the 0.05 level.  For a more detailed explanation of Maxent 

output option statistics, see Phillips et al. (2006).  

 

Variable Contribution  

As with most studies, it is common to determine how the variables in the model were 

used.  Upon completed simulations, Maxent outputs provide a table to analyze how each variable 

was used while the program was being trained.  Maxent keeps track of how each variable’s 

contribution and adjusts the coefficients accordingly.  Then, after the simulation, Maxent tallies 

the contributions of each variable into a percentage.  Maxent found that wood transportation by 

sawmill or firewood (43.7%) had the most contribution to the probability of EAB presence over 

the 10 replications (Table 3).  Tree production (nurseries) and seasonal homes were the next 

most used variables in the model.  It is important to note that even though variable contribution is 

minimal for some variables (i.e. human pop and road_rest) this does not mean that they are less 

significant.  This only indicates the path that Maxent has chosen in order to provide the best 

outcome for maximum entropy.  If another variable had been added or the datasets were 

represented differently, there could have been a completely different outcome.  Therefore, 

variable contribution should be interpreted with caution, especially when variables are correlated 

(Phillips et al. 2006).   
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Table 3. Selected environmental variables and their percent contribution (average of 10 simulations) in 
Maxent model for EAB in the Mid-Atlantic study region. 
 
Environmental Variable (Maxent code) Percent Contribution   
 
Wood Transport (woodtrans) 
Tree Production (treeproduct5) 
Seasonal Homes (seasonal) 
Distance to Harbors (dist2harbor) 
Total Homes with Firewood Usage by county (wooduse_raw) 
Distance to Urban Areas (dist2urban) 
Campground Density (campdens5) 
Housing Density (housinggrid) 
Ash Basal Area (ashgrid) 
Human Population (humanpop) 
Road Intersections and Rest Areas (road_rest) 

  
43.7 
14.6 
11.8 
10.7 
7.9 
5.6 
1.7 
1.6 
1.5 
1 
0 

  

 

Response Curves 

 Maxent produces response curves to explain how each variable affects the probability 

prediction.  These response curves are created from a selection of features in the Maxent 

interface.  For instance, Maxent provides five different options for displaying the response 

curves: linear, quadratic, product, threshold and hinge.  Each of these different options will 

change the look of the response curves.  Since Maxent utilizes a machine-learning process, two 

different sets of response curves are created.  The first set contains the logistic probability of 

presence (y-axis) of suitable conditions with all other variables fixed at their average value 

(marginal response curves).  This requires Maxent to assess how each variable interacts with all 

others during the model simulations.  For marginal response curves, it should be noted that if the 

variables are correlated, then the curves can be misleading.  To counteract this, Maxent produces 

a second set of response curves using only a particular variable and disregarding all other 

variables.  As a result, some curves can look drastically different or look very similar to the first 
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set.  Curves with only the corresponding variables may be easier to interpret because of this 

reason.    

 It is important to point out that when comparing response curves that the y-axis scale will 

be different.  When evaluating the graphs, caution must be taken to avoid inaccurate 

interpretation.  In general, the standard deviation of the marginal response curves will be higher 

than those of the corresponding variable response curves, although this is not always the case.  

This is mostly attributed to the different variances, through multiple simulations, when the 

particular variable interacts with the others.   

This section will analyze each variable (in no particular order) and their response curves 

to evaluate their interactions.  The ash grid was included into the model because it is the 

preferred host species of EAB.  The x-axis in these response curves represents the amount of 

basal area with 0 being the lowest and 100 the highest.  The marginal response curve (all 

variables) on the left with the corresponding variable (only variable used) is on the right.  From 

each of the response curves, the amount of ash was not really a “good” determinant of EAB 

spread, especially when it is the only variable (Fig. 21).  Probability of EAB risk was low even at 

its highest peak.  An increase of ash basal area does not mean that EAB has a higher likelihood 

of establishment.  One reason this could be true is that ash, itself, it just not a good indicator.  

The ash variable seems to be highly dependent on other variables for EAB spread.  Another 

possible factor could be the representation of ash in urban areas, since it was so limited.  With 

most of the presence points being in very low ash areas, the model does not accurately depict the 

ash grid as a contributing factor because the model was not including them properly in the 

analysis.   
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Figure 21. Response curves for ash basal area grid for the Maxent EAB model.  The left curve represents the 
marginal response curve and the corresponding variable curve located on the right.  The x-axis represents the 
amount of basal area while the y-axis is probability of presence.  
 
 
 Campgrounds were one of the most studied variables for EAB spread since they have 

interactions with the general public during the movement of firewood.  This model used a 

variable as a density grid with a five mile search radius.  The marginal response curve (left) 

predicts of 40% probability of presence at its highest point when interacting with other variables.  

This was a good indicator that EAB spread could be connected to campgrounds.  The 

corresponding variable curve (right) tends to reinforce that concept with a high probability of 

occurrence when campgrounds were the only variable at 65% (Fig. 22).  Although the actual 

probabilities can be somewhat deceiving, the higher density amounts show no increasing risk of 

EAB presence.  The variance of the marginal response curve provides an interesting output.  A 
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large difference in variation decreases the strength of this variable because it was not consistent 

in any simulation.  This was especially true in higher density areas. 

 
Figure 22. Response curves for campground density for the Maxent EAB model.  The left curve represents 
the marginal response curve and the corresponding variable curve located on the right.  The x-axis represents 
density within a five mile search radius using kernel density.  The y-axis is probability of presence.  
 
 
 The distance to harbors grid was included to model the risk of introduction from sources 

outside the study area, most notably foreign countries.  EAB was originally introduced into the 

U.S. by wood crating.  Both response curves indicate that this variable is highly connected to 

EAB risk.  Low variances in each curve signify that this variable was consistent throughout all 

simulations.  The highest probabilities were located closest to the harbor and show a decreasing 

trend as distance increases (Fig. 23).  The secondary peak in the middle of both graphs was an 

interesting artifact.  Possibly, product distribution could be the factor producing this result.  The 

initial probability of establishment occurs near the harbor.  Products are generally shipped away 
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by some transportation means.  Therefore, the probability of risk would decrease because, while 

being transported, EAB establishment would be difficult to achieve.  Consequently, products 

shipped to local distribution centers would increase the risk of EAB establishment, hence the 

increase in the middle of the graphs.  

 
Figure 23. Response curves for the distance to harbors grid for the Maxent EAB model.  The left curve 
represents the marginal response curve and the corresponding variable curve located on the right.  The x-axis 
represents distance (meters) from the closest harbor.  The y-axis is probability of presence. 
  

Urban areas are often a source for invasive insects due to likelihood of spread by humans 

and product distribution centers.  Maxent considers this variable as a decent indicator of EAB 

probability risk from the response curves.  As expected, increased distance from urban areas 

decreases the chance of EAB presence (Fig. 24).  This would be true with urban-forest interfaces.  

Natural EAB spread is slow, but increases rapidly with human involvement.  Moving away from 
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urbanized regions usually means less human interaction as human populations disperse rather 

than cluster.  

 

Figure 24. Response curves for the distance to urbanized areas grid for the Maxent EAB model.  The left 
curve represents the marginal response curve and the corresponding variable curve located on the right.  The 
x-axis represents distance (meters) from the urban area boundary.  The y-axis is probability of presence. 
 
 
 Housing density was a new variable introduced in this EAB model.  This variable was 

somewhat tied to urban areas, but differs due the recent trend of housing complexes being built 

outside of urbanized boundaries.  These response curves are intriguing because both show a high 

probability of presence even though this variable did not have a high percent contribution (Fig. 

25).  One explanation for this could be that current EAB established colonies interact with the 

data layer, which indicated a high probability.  Simply put, EAB may have already been present 
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in these areas before housing density increased since this data layer has an increment of ten 

years.  Nonetheless, the variance on both curves represents consistent usage over all simulations.    

 
Figure 25. Response curves for the housing density grid in the Maxent EAB model.  The left curve represents 
the marginal response curve and the corresponding variable curve located on the right.  The x-axis represents 
housing units per square kilometer.  The y-axis is probability of presence. 
 
 
 
 Overall, both response curves for total human population decrease as population 

increases (Fig. 26).  Most likely, this means that human population was not correlated with risk 

of EAB spread above approximately 3000-4000 per census block group.  Therefore, anything 

above this range does not increase the probability of EAB present based on this variable.  With 

the increased standard deviation, the variable was not consistent at high population levels which 

means it could be a good indicator or serve almost no use at all.   
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Figure 26. Response curves for the human population for the Maxent EAB model.  The left curve represents 
the marginal response curve and the corresponding variable curve located on the right.  The x-axis represents 
the total human population per block group from the 2000 census.  The y-axis is probability of presence. 
 
 
 Major road intersections and rest areas provided interesting response curves.  When 

interacting with other variables, the probability was rather low compared to when it was the only 

variable (Fig. 27).  However, such a large standard deviation hinders the value of this 

information.  The general trends decrease with distance, which was expected.  From the curves, 

it appears that a distance greater than 600-800 meters has a negative effect on EAB 

establishment.   

 

70 
 



 
Figure 27. Response curves for the major (i.e. interstates and U.S. highways) road intersections and rest areas 
for the Maxent EAB model.  The left curve represents the marginal response curve and the corresponding 
variable curve located on the right.  The x-axis represents the distance (meters) from each intersection or rest 
area.  The y-axis is probability of presence. 
 
 
 The number of seasonal or secondary homes does not appear to increase the probability 

of EAB presence even though it was one of the top three variables that Maxent used to create the 

model (Fig. 28).  Any census block group with more than 500 secondary homes has a zero 

percent probability of EAB presence.  Maxent could have possibly interpreted this variable by 

assuming anything block group with over 500 secondary homes does not increase the risk 

leaving the probability at zero rather than pick a random number of homes and finding a 

probability for that amount.  This outcome was perplexing and does not seem to have a logical 

explanation. 
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Figure 28. Response curves for the seasonal homes for the Maxent EAB model.  The left curve represents the 
marginal response curve and the corresponding variable curve located on the right.  The x-axis represents the 
total number of seasonal homes (secondary homes) per block group from the 2000 census.  The y-axis is 
probability of presence. 
 
 
 When combined with other variables, nurseries seemed to be a good indicator of EAB 

presence (Fig. 29).  The probability shows a positive trend when all variables were included.  As 

the only variable, this was partly true because of the high probability with low variance on the 

left part of the curve.  Once it reaches a value of 0.06, the probability decreases drastically 

indicating that, upon the given density, nurseries are less likely to contribute to EAB spread.  Its 

seems that nurseries, as well as a number of other variables, have a saturation point as any value 

greater than that point does not increase risk.     
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Figure 29. Response curves for tree production (nurseries) density within a five mile radius for the Maxent 
EAB model.  The left curve represents the marginal response curve and the corresponding variable curve 
located on the right.  The x-axis represents the density of tree production.  The y-axis is probability of 
presence. 
 
 
 Wood transport was the main variable in terms of percent contribution for the Maxent 

model.  Conversely, the response curves do not indicate a high probability when this variable 

was included (Fig. 30).  Low variances strengthen the variable because of minimal deviation 

from multiple simulations. Wood transport remains a strong indicator of EAB spread because the 

small amount of variance.   

 

73 
 



 
Figure 30. Response curves for the wood transportation (i.e. sawmills, logging, and firewood) density with a 
search radius of 50 miles for the Maxent EAB model.  The left curve represents the marginal response curve 
and the corresponding variable curve located on the right.  The x-axis represents the density of available 
businesses that transport wood.  The y-axis is probability of presence. 
 
 
 The response curves for homes that reported using firewood as their main source of heat 

throughout the winter show a possible correlation to EAB risk.  When included with other 

variables, the response curve peaks at 30% probability of presence (Fig. 31).  That value is much 

higher when this was the only variable used proving that EAB has an increased risk in areas with 

greater amounts of firewood usage.  Relatively low variances for both curves indicate that the 

variable was represented consistently throughout the models making it a good indicator of EAB 

risk.    
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Figure 31. Response curves for the homes that use firewood by county for the Maxent EAB model.  The left 
curve represents the marginal response curve and the corresponding variable curve located on the right.  The 
x-axis represents the total homes per county.  The y-axis is probability of presence. 
 
 

Jackknife Analysis of Environmental Variables 
 
 While the percent contribution and response curves are useful for variable analysis, they 

have some inherent flaws.  Another method to examine variables was to use a jackknife 

procedure.  Maxent creates a model where each variable is excluded one at a time and then used 

to create a model using the rest of the variables.  It then generates a model using each variable as 

a single model.  As a result, each variable was analyzed with all variables and then again by 

itself.  This process was the same as the response curves.  Maxent creates three different 

jackknifes: regularized training gain, test gain, and AUC gain.  Each jackknife has its own 

meaning and provides insight into how the model was generated using the variables.   
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 The first jackknife plot represents the regularized training gain.  This jackknife was used 

for analysis because it utilizes the whole model.  From the plot, the environmental variable with 

the highest gain was “woodtrans” (dark blue line).  This indicates that “woodtrans” appears to 

contain the most useful information when it was the only variable used in the model (Fig. 32).  

Generally speaking, the dark blue lines that provide the highest gain provide the most 

information when they are used in isolation.  From this model, “wooduse_raw,” “dist2harbor,” 

and “seasonal” all contain other useful information.  Conversely, humanpop and road_rest 

provide almost no gain to the model indicating that they provide no useful information when 

used as the only variable.  

 
 
Figure 32. Results of jackknife evaluations of relative importance of environmental variables for EAB 
Maxent model using training data.  For non abbreviated variables reference Table 2.  
 
  

The light blue lines characterize the overall gain of the model when a particular variable 

was excluded.  In this case, “woodtrans” decreases the model gain the most, therefore, it seems 

76 
 



to have the most information that was not contained in the other variables.  Analysis of the plot 

also reveals that “wooduse_raw,” “dist2urban,” and “dist2harbor” are parameters that decrease 

the overall gain.  Therefore, these variables could be considered as the most important ones to 

include in the model because they have the greatest effect.   

 The next jackknife analyzes the test data that was set aside for the statistical analysis.  

The gain from this jackknife test will be different because the training data was not included.  

Conclusions drawn from this plot will be different and the most important values can change 

(Fig. 33).  Although this plot can differ from the training data, it shows little disparity in terms of 

variable importance. 

 

Figure 33. Results of jackknife evaluations of relative importance of environmental variables for EAB 
Maxent model using test data.  For non abbreviated variables reference Table 2. 
 

 The last plot (Fig. 34) represent the jackknife used to created the AUC plot.  It is essential 

to note that the red line only increases to the amount of the AUC previously mentioned in Fig. 18 
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as opposed to the training and test gains in the other two jackknife plots.  Here we see that the 

variables have changed drastically in appearance when they are represented as the only variable 

in the model.     

 

Figure 34. Results of jackknife evaluations of relative importance of environmental variables for EAB 
Maxent model using AUC data.  For non abbreviated variables reference Table 2. 
 
 
 Comparing these jackknifes can offer very useful information.  For instance, total homes 

with firewood usage (wooduse_raw) were only used marginally when data was set aside for 

testing.  However, it was the single most effective environmental layer when predictive power of 

the model was measured.  The same could be said for seasonal homes (seasonal) and nurseries 

(treeproduct5).   In doing so, this allows these particular variables to be more transferable in the 

estimate of other models, which can be a good thing.  Sometimes very detailed variables can 

actually hinder the overall model because they are more focused rather than generalized (Phillips 

et al. 2006).     
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Chapter 6: Discussion and Conclusions 
 

Management Implications 
 
 The Mid-Atlantic region of the United States was assessed for the risk of EAB spread 

through anthropogenic criteria using maximum entropy.  While the majority of the study area 

(69%) yielded less than a 10% chance of presence, thousands of square kilometers were still at 

very high risk.  Of the areas yet to be infested by EAB, northern New Jersey, northeastern 

Pennsylvania, parts of the Ohio River Valley and central Maryland appear to be the most 

susceptible to risk.  All locations have sizable areas with a probability of 50% or greater.  These 

areas were found to have the best likelihood of infestation based on the environmental factors 

from the current EAB colonies.   

Contiguous High Risk Areas 
 
 High risk areas were defined as locations with a probability of presence 50% or greater.  

These areas were selected because they incur the most interaction associated with anthropogenic 

induced spreading.  The Maxent model produced some noticeable large contiguous areas 

throughout the Mid-Atlantic, most of which occurred in Ohio.  These locations were helpful but 

do not accomplish some of the goals for this study.  This study wanted to find new locations 

where EAB was most likely to spread or have a high risk of spreading.  Based on the results, the 

model can be used to identify areas of interest.   

 Determining a size threshold feasible enough for management can be somewhat 

complicated.  Although it was useful to identify every high risk location, it was not economically 

feasible to manage all areas.  The model identifies both forested and urban setting in which risk 

was high, but management practices would differ greatly between the two.  Forested settings 
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provide the challenge of accessibility when implementing management procedures.  Since 

individual tree applications were not achievable, treatments for ash trees in this environment 

would be difficult.  Aerial pesticide application could be a possibility, but the high overhead 

costs of the application could quite possibly hinder this solution.  Consequently, ash species 

generally do not dominate in a forested landscape, so aerial application would possibly be a 

wasted attempt because the treatment would not just target the ash trees.  Planned timber harvests 

would also be a challenge because ash was not a major timber species for most loggers and 

sawmills.  The daunting task of finding a company to harvest in these setting would be rare with 

the cost of road construction, finding a buyer, and low volumes of harvestable timber.  In these 

conditions, the logger would most likely have to spend more money than they would make, 

which would be a reason to not be involved in the transaction.  Forested settings would have to 

include large contiguous high risk areas (possibly greater than 5,000-10,000 acres) before active 

management would even be considered due to inferring costs.   

 Urban settings seem to offer better solutions than forested settings, mainly because of 

accessibility.  Individual herbicide treatments for each tree could be more economically feasible 

assuming there were enough workers to apply treatments.  In general, more high risk areas tend 

to be located within urban boundaries, which increase the need to be more proactive in these 

areas.  Costs of herbicides and labor hours could be high, but they provide a more feasible option 

than trying to manage large forested areas.  Other preventive measures such as public awareness 

and education would be more effective in urbanized areas because they would reach a larger 

audience than in rural areas.   

Ash Basal Area versus High Risk Areas 
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 Ash species are the only suitable host for EAB and without them EAB has virtually no 

chance to survive and establish colonies.  Reviewing the ash response curve and basal area grid, 

a couple of conclusions can be reached: 1) high amounts of ash basal area does not necessarily 

indicate that EAB risk will be high, and 2) low amounts of ash basal area cannot be assumed to 

be low risk.  Numerous locations with high basal area were predicted to have low risk to EAB.    

For example, ash basal area was present in large quantities throughout the mountainous regions 

of eastern West Virginia and the plateaus of north central Pennsylvania, but reported having risk 

below 10%.  This was due to the absence of many other environmental criteria.  Conversely, ash 

basal area throughout western Ohio was very low in comparison, but currently has the highest 

risk areas as well as widespread infestations.  The difference here was the presence of almost (if 

not all) human risk criteria.  The lack of ash basal could be from sampling methods as the basal 

area grid does not sample in urbanized areas.  Localized sampling and inventories from urban 

areas would have to be used to receive a more accurate depiction of basal area.  Since the 

representation of the basal area grid was misleading, this could be one of the reasons Maxent did 

not use the ash grid as a major contributor to the predictive model.  However, locations with high 

ash basal area volumes should still be considered important because any EAB infestation could 

be disastrous.   

Selection of Management Areas 

 Pinpointing management areas can be subjective since management boundaries are 

difficult to delineate.  County level summaries are a good starting point because they provide 

focal points for management on a reasonable scale.  Although county boundaries cannot 

realistically enforce policy and containment, they do enable land managers a proactive option of 

EAB management by preparing herbicide treatments and ash tree removal, if necessary.  The 
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counties listed in Table 4 note the most highly probable locations for EAB spread without a 

current known EAB established colony in the immediate vicinity.  These counties listed in this 

table were considered at utmost importance.  Counties that have reported infestations were not 

included in this list as preventing infestations were not possible.  It should be noted that the 

current EAB infestations were based on a collaboration of data from each state as of December 

2009; therefore, these counties were identified using that data.  Of the counties listed in Table 4, 

all counties except Ashtabula (Ohio) and Wayne (Pennsylvania) contain urban areas.  Extra 

precautions should be given to these counties because the risks associated with human spread 

were higher.  For management purposes, these counties should be the focal point of treatments 

and public awareness.     

   
Table 4. Counties by state that contain at least 26 km² (~6500 acres) of high risk area (>50% probability of 
presence). 
 
State Counties 
Maryland 
 

Howard, Montgomery, Washington, Wicomico 

New Jersey 
 

Morris, Passaic 

Ohio  
 

Ashtabula, Brown, Lawrence, Washington  

Pennsylvania 
 

Lackawanna, Wayne 

West Virginia Berkeley, Cabell 
 
 
 The following table provides a list of counties that potentially could be affected by EAB 

based on their proximity and adjacency to higher risk counties (Table 5).  In terms of 

management, these counties should be monitored for EAB, but not actively managed.  Again, the 

counties in this table do not currently have any known EAB infestations, but do have 

considerable contiguous areas with probabilities upwards of 50%.   
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Table 5. Potential counties to be at risk for EAB. These counties have tens of thousands of acres with 
probabilities ranging from 25-50%.  
 
State Counties 
Delaware 
 

Kent 

Maryland 
 

Anne Arundel, Charles 

New Jersey 
 

Atlantic, Bergen, Cumberland, Monmouth, 
Ocean  

 
Ohio 
 
Pennsylvania 
 

 
Clinton, Crawford, Darke 
 
Blair, Cumberland, Lebanon, Luzerne  

West Virginia Putnam, Wayne, Wood 

 
 Spatially, these counties are distributed throughout the entire study area (Fig. 35), which 

corresponds to Tables 4 and 5.  Counties that are not displayed on the map currently have EAB 

infestations or are currently not highly susceptible to EAB infestation at this time.     

 

 
Figure 35.  Spatial distribution of counties that have high risk or that could potentially be affected by EAB. 
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Presence versus Establishment 
 
 The Maxent model revolves around the basis of potentially finding EAB based on 

probability.  The model does not, however, predict the probability of establishment.  This model 

was constructed on the premise of finding EAB at a given point, which could possibly lead to 

EAB establishment.  Identifying just a few EAB individuals at one location does not insinuate 

establishment, but it does indicate presence.  In order to find establishment probabilities, EAB 

density would have to be examined for each of the infestation points, and then, be included in the 

Maxent model.  For colony establishment, hundreds, if not thousands, of EAB would have to be 

present with enough available ash resource to support the population.   

Management Options 

 When assessing the risk map for management options, the key factors of risk probability 

and amount of ash are extremely important.  For each county in the study area, the average 

probability of risk and the average amount of basal area within that county was tabulated.  

Instead of using raw averages, the values were normalized and then plotted as a scatter plot (Fig. 

36).  Different areas of the scatter plot will have conceptually different management strategies.  

For instance, counties with high probability of risk but have low amounts of ash could be 

considered quarantine areas.  Conversely, areas with high amounts of ash but low probability of 

risk could plan harvests to avoid wasted materials.  Ultimately, counties with low risk and ash 

could be counties with public outreach and occasional monitoring.   

 To understand up-to-date county quarantines, Fig. 36 has also indicated where each of 

these quarantines would lay on the scatter plot.  Interesting enough, most quarantines are within 

the public outreach and monitoring sector.  This is somewhat misleading because most of these 

counties are located in Ohio, where the main EAB infestations are in full force.   
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Figure 36. Scatter plot of management options for the EAB study area.  The green marks indicate all counties 
within the study area while the yellow dots indicate the counties that are currently quarantined.   

 

Recommendations 
 
The following management recommendations should be implemented to save ash trees and 

prevent further EAB damages: 

1)  Areas with 50% or greater probability should take extreme caution by pre-treating ash 

trees or begin preparations for ash harvests, if feasible, to avoid wasted material.  

Extensively surveying for and surrounding areas for EAB should also be highly 

considered. 

2)  Areas with 25-50% probability should be cautious of possible EAB infestations.  

Surveying and monitoring should be completed but not to the extent of the higher 

probability areas. 
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3)  Areas with less than 25% probability should still be aware of EAB by informing 

landowners and land managers about the EAB risks.  No pre-treatment or further 

surveying necessary.  

4)  Sawmills and nurseries that utilize ash should be monitored regularly. 

5)  Public awareness methods should be tailored to areas with over 50% probability by 

utilizing newspaper adds, billboards, or television as well as public outreach notices and 

education.    

6)  Avoid managing counties not listed in Tables 4 and 5 because they have little risk or 

poor accessibility.  Forested landscapes are normally in remote areas making them 

somewhat immune to EAB infestations.   

7)  Concentrated efforts should be focused on the counties that contain urbanized areas 

from Tables 4 and 5.   

 

Limitations and Assumptions 
 

Management Limitations    
 
 While management attempts to contain and slow the spread of EAB, it must be 

understood that completely stopping the spread is simply not possible.  EAB has many means of 

being moved by the general public.  Too many in which can be controlled.  Management tries to 

contain EAB but has limited options.  Public awareness and education only works to a certain 

extent and treatments can only be applied to accessible locations.  Harvesting ash timber is 

fundamentally a good idea, but comes with large costs and potentially low interest from loggers.    
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Data Limitations 
 

Data limitations are a natural part of research because they exist in almost all types of 

studies.  Not all data is perfect, in fact, most data have inherent flaws that must be discovered by 

the user before the data can be used accurately.  Therefore, data-mining is necessary to uncover 

relationships and explore data.   

Finding the appropriate amount of basal area without rigorous sampling is difficult to 

obtain.  Because the study area was large in size, inventories could not be done for this study.  

Instead, Forest Inventory and Analysis (FIA) data had to be used as an alternative which is the 

best representation of basal area to date.  This is the accepted method when using basal area data 

in research studies when individual inventories cannot be completed.  Unfortunately, FIA 

sampling methods are somewhat limited and their accuracy for local applications is questionable.  

Under the current sampling design, one FIA plot is established every 6,000 acres and measured 

every three years.  In addition, only forested landscapes are used in the design grid.  Plots are not 

placed in urban areas under the current established sampling criteria.  With these regulations, 

parts of the EAB study area are not sampled by FIA data.  This will not accurately depict ash 

populations in those areas.   

Collecting data for every campground, nursery, sawmill, and firewood dealer is virtually 

impossible to accomplish.  Representing the total number of these businesses was at utmost 

importance for this study because they symbolize the most common human transportation 

vectors.  Assumptions were also made for these datasets due to time constraints.  For sawmills, 

ash was automatically assumed to be one of the timber species that was used.  Transportation of 

ash was understood to be less than 50 miles from each sawmill location because of travel costs.  

Campgrounds were assumed to be actual field locations or campsites and not a main office or 
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headquarters location.  It was also assumed that firewood was used at each camp location.  Each 

nursery was assumed that ash was grown and sold.  Distribution from the nurseries was also an 

assumption because of unknown shipment routes.   

Harbors are used in this analysis as risk factors that could be brought into the U.S. from 

foreign sources.  Since EAB was noted to be brought to this country in wood crating and pallets, 

this human vector was important.  Harbors are much more likely to transport cargo by wood 

crating so there existence in the datasets was justified.   

New housing development was a new variable of EAB modeling introduced in this 

project.  Actual representation of this variable is unknown and use is questionable.  New 

developments are assumed to have ash being planted in the landscaped areas for aesthetic 

reasons.  However, ash is not always planted as a shade tree.  Also, for the housing density data, 

housing units were by building but can include multiple units such as apartments. 

Future Research  
 
 This study to find the probability of presence and the risk of EAB was conducted on a 

broad scale.  Many factors associated with the business features such as sawmill size, amount of 

ash consumed, and number of campground visitors could not be directly obtained because they 

were so abundant.  This extra detailed information could go a long way in assessing risk for 

EAB.  By decreasing the actual study area, information can be more accurately gathered on a 

local scale.  Sawmills could be weighted by their size or the amount of ash used as well as 

identifying if they are being regulated.  Inventories of ash could be conducted to predict and 

provide their current abundance and distribution instead of relying on sparse FIA data.  

Campground size could be weighted for risk by how many visitors they serve per year or by the 

number of campsites.  Examining the zip code of travelers to campsites could also be a 
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possibility to find how far they travel and where they are traveling from.  For individual cities 

wishing to assess risk, distribution of ash could be studied throughout the city to provide areas 

where EAB could potential have an effect.  

 In future analysis and model updates, the values within each variable will change.  With 

more research, how the variables were used in this project will also change.  By using sensitivity 

analysis, determining each variables contribution in the model and how it reacts when 

manipulating the other variables is an important future step.  Currently, the values in this model 

are fixed in time, but in the future these variables will change.  For instance, adjusting the search 

radius on the density grids could become more vital in analysis than it currently is today.  

Variables with major contributions now may be hardly used at all in the future.  However, if 

variables remain at a static contribution regardless of time, then the selection of those variables 

would seem most justified because no matter what else changes, those criteria will always have a 

major impact on EAB spread.       
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