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ABSTRACT 

Biology, ecology and efficacy of Lecanicillium muscarium as a potential fungal biocontrol of 

the invasive hemlock woolly adelgid (Adelges tsugae) on eastern hemlock (Tsuga 

canadensis) 

Kristen L. Wickert 

Hemlock woolly adelgid (HWA) is an exotic insect pest of eastern hemlock. The 

entomopathogen Lecanicillium muscarium, including the commercially available strain 

Mycotal®, is a potential candidate for fungal biocontrol. There are many factors to consider when 

using a fungal biocontrol such as ecology and genetic variation of candidate strains and 

interactions with other fungi and life stages of the target insect pest. Efforts of this study focused 

on: 1) sampling for reservoirs for L. muscarium and other Lecanicillium spp., 2) elucidating 

interactions between Lecanicillium and other fungi present in hemlock tissues and 3) 

characterizing genetic diversity of Lecanicillium and subsequent entomopathogenicity against 

HWA. Six Lecanicillium isolates were recovered out of 2,954 total fungal colonies isolated 

across all substrates, resulting in <1% incidence. Sampling of Mycotal®-treated hemlock stands 

failed to recover any Lecanicillium isolates, which suggests that Lecanicillium does not persist in 

these environments. To help explain low incidence of Lecanicillium recovery, common fungal 

community members recovered from these same hemlock tissues were co-plated with 

Lecanicillium to evaluate inhibitory effects. These frequently recovered fungi included 

Colletotrichum, Epicoccum, Pestalotiopsis, Rhizosphaera and an undescribed Leotiomycete. The 

Leotiomycete was shown to have inhibitory effects on several species of Lecanicillium. Since the 

Leotiomycete fungus is present 17% of the time on average, this could be a significant factor 

influencing the persistence of Lecanicillium in the environment. To further understand 

relationships among Lecanicillium, multi-gene phylogenetic analyses were conducted. Six 

separate phylogenetic analyses, with data partitioned by individual genes produced some 

complementary results and supported the monophyly of Lecanicillium sensu strictu and close 

relationships among L. muscarium and L. longisporum as well as uncovered novel linages of 

Lecanicillium. The phylogenetic trees informed selection of a diverse set of isolates used in 

entomopathogenicity testing. All isolates used were found to be pathogenic against HWA but 

virulence among fungal species and isolates varied. Mycotal® utilizes a virulent strain for an 

inundative augmentative approach to bolster naturally low population of Lecanicillium present in 

hemlock stands. However, its low infection rate on egg masses (33%) could indicate that other 

Lecanicillium isolates used in this study, especially North American strains, might be a better 

candidate for widespread application against HWA in the eastern United States. 
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Chapter 1 

Literature Review 

Eastern hemlock (Tsuga Canadensis L. Carr.) 

Eastern hemlock is one of the four native hemlock species belonging to the genus Tsuga in the 

United States. The continuous range of eastern hemlock extends from Nova Scotia south to 

northern Alabama and west to northeastern Minnesota and eastern Kentucky (Godman and 

Lancaster 1990). Disjunct satellite populations of eastern hemlock are also known in extreme 

western Alabama, western Ohio, and southern Indiana as well as east of the Appalachians mainly 

in Virginia. Eastern hemlock is commonly planted as a tree, shrub, or hedge in ornamental 

landscapes. There are at least 274 cultivars of eastern hemlock important to the landscaping 

industry (Godman and Lancaster 1990).  

Eastern hemlock can grow in pure stands and is on occasion an associate in a mixture of 

species, which are generally also shade tolerant. Four forest cover types include eastern hemlock 

as an important component, those being northern hardwood, Allegheny hardwood, Appalachian 

mixed hardwood, and bottomland mixed hardwood (Godman and Lancaster 1990). Common 

associates include sugar maple (Acer saccharum), black cherry (Prunus serotina), eastern white 

pine (Pinus strobus), red spruce (Picea rubens), hickories (Carya spp.), oaks (Quercus spp.), 

yellow birch (Betula alleghaniensis), black birch (Betula lenta) and red maple (Acer rubrum) 

Bormann 1954). Pure stands of hemlock tend to develop distinct microclimates because of their 

dense canopy, shading, deep duff layer, subsequent retention of moisture and uniformly low 

temperatures. Habitat of hemlock includes riparian areas or in bogs near water but also on xeric 

hill sides which have poorer soils, such as spodisols. Eastern hemlock is generally restricted to 

regions with cool humid climates. The drop of naturally acidic hemlock needles perpetuate the 

high pH state of understory soil and promote a closed area of growth suitable primarily for 

hemlock and other adapted species. This is a quality of a climax species in that hemlock 

maintains and supports the late-successional forests it inhabits. As a slow growing and highly 

shade tolerant softwood species, hemlocks can be very long lived. It is not uncommon to find 

trees aged 200 years. This gymnosperm can take 200-350 years just to reach maturity and can 

exceed 800 years of age in extreme conditions (Hough 1960, Godman and Lancaster 1990). 
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Hemlock is an excellent example of the versatile benefits of a riparian species and the economic, 

ecological and intrinsic value it provides. Economically hemlock is important because it 

produces valuable lumber. This versatile softwood is exceptional for light framing, subflooring, 

boxes, crates, pallets and general millwork (Brisbin 1970). A portion of the leathering industry 

that chooses not to use synthetics use tannins produced in the hemlock bark for processing. Much 

of the present production is used in paper pulping for newsprint and wrapping papers.  

Recreation traffic and revenue increases with the presence of hemlocks in state parks due 

to their ability to create shaded cool escape areas in the summer and warmer windbreaks in the 

winter. The dense canopy of hemlocks is known for keeping stream waters cool for sensitive 

trout and other aquatic life. These aquatic species are important ecologically and economically in 

that they create a large amount of revenue from fishing enthusiasts. As a riparian species 

hemlock provides vastly important ecosystem services to humans through the mitigation of flood 

waters, food chain support, and water quality protection. These ecosystem services can be hard 

to quantify and set a specific value to, however it is estimated that a forest with high evergreen 

and minimal deciduous components can provide around $2,173 per acre per year. This 

estimation considers biodiversity, carbon sequestering, cultural aspects and watershed benefits 

(Texas Forest Service, 2015).  

 Hemlock is important ecologically as a resource for wildlife. Co-dominant hemlock help 

maintain microenvironments important to native organisms in hardwood forests. Eastern 

hemlock stands are considered essential for shelter and bedding of white-tailed deer, ruffed 

grouse, turkeys and many other animals (Godman and Lancaster 1990). In the southern 

Appalachians, there are greater than 240 known insect species associated with eastern hemlock. 

These insects encompass a diversity of lifestyles including hematophage, herbivore, fungivore, 

parasitoid, predator, scavenger, and transients (Dilling et al. 2007). Native insect communities 

can alter drastically with the introduction of invasive pests like the elongated hemlock scale and 

the hemlock woolly adelgid (Buck 2004). Since many insects are at the bottom of the food chain, 

the introduction of an invasive pest such as hemlock woolly adelgid can impact not only the 

insects that previously held hemlock woolly adelgid’s niche, but the animals that subsist on the 

native insects in hemlock canopies in a cascading effect through the food chain.  
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Hemlock woolly adelgid (Adelges tsugae) 

Hemlock woolly adelgid (HWA, Adelges tsugae Annand) is a hemipteran insect in the suborder 

Sternorrhyncha, native to East Asia and in the superfamily Phylloxeroidea in the family 

Adelgidae. This insect is a specialist and can survive mainly on hemlock species. Hemlock 

woolly adelgid have piercing and sucking mouthparts. Unlike closely related insects that feed on 

nutrients in sap, HWA feeds primarily intracellularly on stored starches in the xylem ray 

parenchyma (Young 1995). These starch reserves are critical to the tree’s growth and long-term 

survival. 

The hemlock woolly adelgid is parthenogenetic with all individuals being females 

utilizing asexual reproduction. There are three stages of development. Life begins in an egg and 

development continues through four nymphal instars until reaching adulthood (Salom et al. 

2002). Adelgid populations complete two generations a year on hemlock. The winter generation, 

called sistens, developes from early June to March of the following year. The spring generation, 

called progrediens, developes from March to June (Figure 1-1). The generations overlap in mid 

to late spring. The ovisacs of the winter generation contain up to 300 eggs, while the spring 

generation ovisacs contain between 20 and 75 eggs (Chowdhury 2002). Depending on spring 

temperatures, eggs hatch from April to June. After hatching the first instar nymphs, called 

crawlers, search for suitable feeding sites on the twigs at the base of hemlock needles and prefer 

new growth. The crawlers are the only mobile stage of HWA. This is also the most vulnerable 

stage of HWA, due to a lack of protective woolly covering. Once settled at the base of a hemlock 

needle, the nymphs begin feeding on the young twig tissue and remain at that location 

throughout the remainder of their life. The development time from progrediens to adult ranges 

from 52 days in warmer temperatures to 147 days in colder temperatures (Salom et al. 2002). 

The hemlock woolly adelgid enters a period of dormancy, or diapause, during the hot summer 

months. The reasons for this are unknown and is the continued focus for several researchers. 

During diapause, the nymphs have a tiny halo of woolly wax surrounding their bodies, but lack a 

complete covering like the later months. The adelgids begin to feed once cooler temperatures 

return, usually in October, and continue throughout the winter months. Temperature and 

photoperiods influence the length of diapause for hemlock woolly adelgid.  
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Many adelgids fail to break diapause and the reasons are still unknown, however this may 

be due to temperature changes (Salom et al. 2001). However, adelgid populations are known to 

be self-regulating, so egg laying numbers will compensate for the loss (McClure 1991). Once 

diapause is broken and the adelgid matures, it produces a covering of wool-like wax filaments to 

protect itself and its eggs from natural enemies (Skinner 2003). The wax also prevents the 

adelgid from becoming desiccated. Additionally, the waxy coating contains anthraquinones, 

antifeedant compounds which are thought to act as a chemical defense against predation (Jones 

2014). The white wool that covers the ovisacs is the most conspicuous when the adelgid is 

mature and laying eggs from late fall to early summer on the underside of the outermost branch 

tips of hemlock trees.  

Another unique facet to the HWA life cycle is that it involves two species of host trees. 

The progrediens have two forms, a wingless form that remains on the hemlock and a winged 

form, called sexupara, which flies in search of a suitable spruce tree host upon which to start a 

sexual reproductive cycle (McClure 1999). Throughout much of the range of the spreading HWA 

in North America, there are no suitable spruce hosts meaning the sexual life stage is unable to be 

completed. Most of the adults of the spring progrediens generation are wingless and remain on 

the hemlock tree feeding and producing eggs protected by woolly masses just like the 

overwintering generation, but during June to July (Figure 1-1). Their offspring hatch into 

crawlers, and repeat the previously described developmental cycle. These nymphs become the 

next overwintering generation called sistens.  

Dispersal and movement of HWA occur primarily during the first instar crawler stage as a result 

of wind and by birds, deer, and other forest-dwelling mammals that come in contact with the 

sticky ovisacs and crawlers. Although adelgid appear more commonly in the upper canopy they 

can be found in all sections of the tree. 

Impacts of hemlock woolly adelgid 

Hemlock woolly adelgid are of little to no concern in its native range of East Asia. The 

coevolution of HWA and its east Asian plant hosts has resulted in resistance and a discontinuous 

distribution of infested trees in Asian forests (Havill 2006). Generally only single or small 

groups of trees dieback and succumb as the insect develops within its native range in eastern 

Asia. Hemlock woolly adelgid was first reported in the Western United States in the early 1920s 
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and can be found today in northern California to southeastern Alaska (Chowdhury 2002). In 

1951 HWA was introduced again into the Eastern United States near Richmond, Virginia 

accidentally from Osaka, Japan (Ward 2004). In North America the exotic nature of the HWA-

hemlock relationship results in a widespread infestation and accelerated mortality of entire 

stands. As of 2014, HWA is present in most states contained within the native range of hemlock 

and occupying about half of the continuous range of hemlocks in the east (Evans 2007). 

Hemlock woolly adelgid feed on all four species of native hemlock in the United States 

but populations of mountain and western hemlock (T. mertensiana and T. heterophylla 

respectively) along the west coast are not as susceptible as the native Eastern species. The two 

western hemlock species have maintained healthy populations even with HWA being present for 

almost 100 years. It is suspected that the two western Tsuga species have a thicker cuticle wax 

that inhibits the stylet insertion of HWA to some degree (Oten et al. 2012). This has led to 

significantly less mortality in the western species. Within HWAs range in the eastern U.S., HWA 

feeds on both eastern and Carolina hemlock (Tsuga caroliniana). Carolina hemlock is more 

restricted to higher elevation sites between 2,300–3,900 ft in the southern Appalachian 

Mountains between southwest Virginia and Northern Georgia and has a much smaller population 

than eastern hemlock (Coladonato 1993). The two eastern species of hemlock in particular are 

vastly more susceptible to hemlock woolly adelgid infestation and are experiencing major 

mortality. Areas of extensive tree mortality and decline are found throughout the infested region, 

but the impact has been most severe in some areas of Virginia, New Jersey, Pennsylvania, 

Tennessee, and Connecticut. Many of the eastern satellite populations remain uninfested 

presumably due to geographic isolation. According to the Ohio Department of Natural 

Resources, as of 2015, HWA is spreading through West Virginia and into eastern Ohio where 

seven counties are newly infested. Outlying infestations around the advancing front, are also 

known. HWA is slow moving compared to more recently introduced insect pests such as emerald 

ash borer, presumably due to the lack of mobility of the adelgids themselves.   

The initial symptoms from HWA infestation are chlorosis and needle drop, followed by branch 

desiccation and an overall lack of vigor indicated by crown thinning (Hale 2004). Individual 

trees weakened by HWA may likewise become predisposed to further decline through continued 

stress contributing to eventual death. Hemlock stressors including drought, poor site conditions, 
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and other insect pests and diseases such as elongate hemlock scale (Fiorinia externa) 

(Hemiptera: Diaspididae), hemlock looper (Lambdina fiscellaria) (Lepidoptera: Geometridae), 

spruce spider mite (Oligonychus ununguis) (Trombidiformes: Tetranychidae), hemlock borer 

(Melanophila fulvogutta) (Coleoptera: Buprestidae), Armillaria root rot disease (Armillaria 

mellea), and hemlock needle rust (Melampsora parlowii) likely accelerate the rate and extent of 

hemlock mortality. The greatest impacts of HWA are an increase in hemlock mortality and the 

associated ecosystem changes that follow, such as increased water temperatures, decreased 

wildlife habitat and increased loads of coarse woody debris (Quimby 1996). Hemlock decline 

and mortality typically occur within 4 to 10 years of infestation in the insect’s northern range, 

but can occur in as little as 3 to 6 years in its southern range due to differences in temperature 

(Paradis 2007). All life stages of hemlock are impacted. HWA can be seen on regeneration in the 

understory, although it is suggested that HWA prefer more mature hosts. Disturbance created by 

HWA in hemlock stands removes hemlock and opens gaps for other less desirable species. Black 

birch will readily recruit small gaps created by the hemlock woolly adelgid disturbance (Black 

and Abrams 2005). Birch proportions will decline as sugar maple or other tolerant species move 

in, resulting in extreme changes in species composition and ecological function. Stands of 

hemlock that suffer massive mortality are susceptible to being overtaken by invasive species 

such a tree-of-heaven (Ailanthus altissima), winged euonymus (Euonymus alatus), common reed 

(Phragmites australis), mile-a-minute (Polygonum perfoliatum), Japanese hops (Humulus 

japonicas) and autumn olive (Elaeagnus umbellata) (Eichelberger and Perles 2009). 

Management of hemlock woolly adelgid 

Eradicating HWA is no longer a realistic goal due to the widespread dissemination and 

proliferation of this invasive pest. Many land managers understand this limitation and aim to 

instead mitigate the spread and the populations already present in parks and forests. Cultural, 

regulatory, chemical and biological controls can reduce the rate of spread of HWA. Protection of 

individual trees is possible, but ecosystem-level management has not been realized. Actions such 

as removing isolated infested trees from a woodlot and state quarantines can help prevent further 

infestations. 

Numerous abiotic and biotic factors can influence adelgid populations. Temperature 

plays a large role in the success of adelgid populations. Lab-reared populations of adelgid under 
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artificially stabilized temperature regimes showed considerable differences in development. 

Adelgid in 4°C took 147 days for progrediens nymphs to develop from 1st instar to adult, 

whereas adelgids in 22°C took 52 days to develop (Salom et al. 2002). First instar development 

is not affected by temperature as much as the development of the other instars. Some adelgids 

can survive temperatures as low as -30°C for periods up to 24 hours. There seems to be a low 

temperature threshold of -3.8°C and a high temperature threshold for progrediens which will not 

complete development at a constant temp of 27°C (Salom et al. 2002). These temperature effects 

were exemplified with the recent polar vortex winter of 2013-2014 which accounted for up to 

75% reduction in adelgid populations throughout the Mid-Atlantic. Specific sites further north 

experienced mortality rates as high as 99.4% due to the 2013-2014 winter temperatures 

(Whitmore 2015). 

Although there are natural enemies that are native to Eastern North America that feed on 

hemlock woolly adelgid they are not effective at reducing populations to prevent tree mortality. 

There are no known parasitoids of HWA. Predatory insects of HWA include native generalists 

such as Harmonia axyridis (Coleoptera: Coccinellidae), lacewings (Neuroptera: Chrysopidae and 

Hemerobiidae), and gall gnats (Diptera: Cecidomyiidae). All of these predatory species are non-

specific feeders that are associated with density and are negligible as regulators (Wallace and 

Hain 1998).  

There are several effective chemical methods that can be used to protect against HWA on 

small scales and high value singular trees. These chemical control methods are foliar sprays of 

insecticides, horticultural oils and insecticidal soaps. Trees must be fully saturated with these 

methods in order to prove effective.  Foliar sprays are not feasible in forests, particularly when 

large numbers of trees are infested, due to cost and chemical application limitations. Two main 

utilization strategies of chemical control on larger forest scales involve soil trenching and 

chemical stem injection with systemic insecticides. Merit® is a systemic neonicotinoid 

insecticide that utilizes Imidacloprid that has proven to be very successful in HWA control. The 

mode of action is through ingestion when adelgid uptake the chemical through their stylet. 

Success rates of using chemicals vary with many factors, such as temperature and drought in that 

they slow the uptake and translocation of the systemic chemical (Bennet 1957). In an 18-26 

month study evaluations of adelgid populations after chemical insecticide application determined 
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that fall and spring application timing did not significantly differ (Cowles et. al. 2005). Mode of 

delivery of insecticide also seems to be an important determinant of HWA population control. 

Trunk injections of Merit resulted in 100% decline of HWA populations whereas soil 

applications of systemic insecticides resulted in 79% suppression and increased to 98.5% in the 

following year (Cowles et. al. 2005). Yet other factors seem to have little effect on success.  

Chemical control is limited to individual tree treatments that are in readily accessible and 

in non-environmentally sensitive areas. These insecticides are toxic to aquatic organisms which 

limits their application along stream beds, which unfortunately is the main ecotype for hemlocks 

(Cowles et al. 2006). Chemical treatments offer a short-term solution, and applications may need 

to be repeated in subsequent years. Crawler stages seem to be the most impacted by chemical 

treatments, so aligning treatments with the adelgid lifecycle is key.  

Several predator insects that are known to feed exclusively on adelgids have been 

imported from China, Japan and Northwestern and Southeastern North America as a form of 

biological control. Some of these released insects are slowly becoming established throughout 

the infested region. Primary biocontrol agents include Laricobius nigrinus (Coleoptera: 

Derodontidae), L. rubidus (Coleoptera: Derodontidae), L. osakensis (Coleoptera: Derodontidae), 

Scymnus coniferarum (Coleoptera: Coccinellidae), Leucopis argenticollis (Diptera: 

Chamaemyiidae), L. piniperda (Diptera: Chamaemyiidae), and Sasajiscymnus tsugae 

(Coleoptera: Coccinellidae) (Cheah 2011, Wallin Unpublished). Currently, Laricobius spp. 

appear to be the most efficient insect biocontrols of HWA. The efficacy of L. osakensis and L. 

nigrinus against HWA is promising as both the larvae and adults feed on all life stages of HWA 

(Zilahi-Balogh et al. 2002). Furthermore, studies show that Laricobius spp. can only complete 

development on HWA which means Laricobius species are specialists (Vieira et al. 2011). Early 

emergence of Laricobius at a time when there are no adelgid for them to consume is a perennial 

problem. This is problematic in that they emerge at a time there are no adelgid for them to 

consume (Zilahi-Balogh 2003). Options of alternate naturally occurring food sources for 

predatory beetles are being looked into such as the pine bark adelgid (Pineus strobi) and balsam 

woolly adelgid (Adelges piceae) until the HWA break diapause (Zilahi 2001). However, only 

adults can survive on consuming these alternate hosts, meaning they only add to the diet but 

cannot be a replacement for the diet. At the same time, high HWA mortality due to the polar 
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vortex across the east coast in the winter of 2013-2014 contributed to HWA population crashes 

and scarce resources available for feeding beetle populations in rearing labs. Demand of field 

collected predatory beetles can also cause population crashes in their native environment and 

limit their efficacy. It will likely take a complex of natural predators and traditional chemical 

methods to maintain HWA populations below damaging levels. Efforts to locate, evaluate, and 

establish other natural predators continue. 

Fungal biocontrol of Insects  

Fungal biocontrol of insect have shown much promise in the agricultural business, especially in 

the greenhouse setting. Beauvaria bassiana, Metarhizium spp., Paecilomycetes fumosorosues, 

Purpureocillium, Trichoderma and Lecanicillium spp.; all have been successfully used as fungal 

biocontrols of various insect pests including whiteflies, thrips. In the United States products such 

as BotaniGard®, which is a manufactured Beauvaria bassiana, are EPA approved and used in 

greenhouses mainly against whiteflies and aphids. Green Muscle® is a successfully 

commercialized fungal biocontol of grasshoppers and locusts (Douthwaite 2001). Green Muscle® 

can control grasshopper and locust swarms with a single spraying of an extremely virulent strain 

of Metarhizium anisopliae. This shows that there are differences not only between different 

entomopathogenic species of fungi, but there are differences in strains of a single species in 

strength against specific hosts coupled with other factors (Douthwaite 2001). Fungal biocontrols 

are a more environmentally friendly option than chemical insecticides, but commercially they are 

more expensive.  

Lecanicillium spp. are a promising group of generalist fungal entomopathogens with a 

cosmopolitan distribution. To date, Lecanicillium in many cases are being exploited as biological 

controls. Lecanicillium spp. can be frequently isolated from soil and plant materials. Like most 

entomopathogenic fungi, spores of Lecanicillium attach to the exoskeleton of an insect, 

germinate there and then penetrate the cuticle via the production of an appressorium, which uses 

mechanical pressure to gain ingress into the host (St. Leger 1989). Once inside the insect body 

the fungal hyphae lose the need for a cell wall and will proliferate the internal cavity of the insect 

until all nutrients in the hemolmpyh are utilized (Hajek 1994). Although the duration of infection 

leading up to their ultimate death may vary, all insects eventually succumb. Death of the insect is 

caused by tissue destruction and sometimes toxins produced by the entomopathogen (Sujeetha 
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2014). External sporulation will then occur and the use of passive dissemination by wind will 

distribute the spores onto the next host (Parker et al. 2004). 

Like most generalist entomopathogens, Lecanicillium fungi can be successfully used in 

certain environments coupled with the correct environmental factors (Shipp 2003). For example 

Lecanicillium lecanni has shown 85-100% mortality when used as a biocontrol for Coccus 

hesperidium (Hemiptera: Coccidae), a common greenhouse and indoor plant pest (Samsinakova 

and Kalalova 1975). A variety of biological, ecological, and behavioral factors serve to limit 

their effects on non-target insect species. Very important factors such as sufficient moisture and 

a strict temperature range are regularly required for infection to occur (Reddy and Bhat 1989). 

Lecanicillium muscarium (formerly Lecanicillium lecanii) has been isolated from white 

fly (Trialeurodes vaporariorum) (Hemiptera: Aleyrodidae) and is marketed in the Netherlands as 

a fungal biocontrol product called Mycotal® distributed by Koppert B.V. Mycotal® consists of 

16.1% Lecanicillium muscarium as the active ingredient and 83.9% inert ingredients. Mycotal® 

is attractive as a biocontrol in that there is limited evidence that suggests that Mycotal® has 

negligible effects on commercially available natural enemies in greenhouses and therefore it can 

be used in conjunction with other biocontrol measures such as predators and parasitoids. This 

disclaimer on Mycotal® packaging can be supported with previous fungal isolations from live L. 

nigrinus, predatory beetles of HWA, which revealed that Lecanicillium propagules were 

abundant (Table 1-1). Not only does this show that fungal propagules can come in contact with 

predatory insects of HWA in the field and not kill them, but it also suggests these beetles may 

serve as inadvertent vectors for entomopathogenic fungus (Kasson, Martin, and Wickert, 

unpublished data). This management technique of coupling two biocontrols is not an unfamiliar 

method and could add to the success of L. muscarium (Down et al. 2009). Interestingly, L. 

nigrinus spends part of its lifecycle in the soil, where previous studies have shown Lecanicillium 

spp. among other important entomopathogens to be abundant (Kasson, unpublished data).  In this 

way, Laricobius species could further disseminate Mycotal® propagules and increase the efficacy 

of Mycotal® as a fungal biocontrol method for HWA. 

Taxonomy and Phylogenetics of Lecanicillium  

The genus Lecanicillium was introduced to accommodate entomogenous and fungicolous 

Verticillium-like anamorphs in the Claviciptaceae family previously classified in Verticillium 
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sect. Prostrata including V. lecanii, characterized by its ellipsoidal-cylindrical conidia and V. 

psalliotae, characterized by fusiform-falcate conidia (Zare and Gams 2001). Species within 

Lecanicillium generally form slender aculeate phialides, mostly with procumbent or postrate 

aerial hyhae, singly or in terminal and intercalary whorls. Conidia are generally elongate 

adhering in heads or fascicles at the tips of phialides, often at right angles to the phialide, a 

morphological feature exclusive to Lecanicillium (Zare and Gams 2001).  

Lecanicillium resides in the Clavicipitaceae family within the order Hypocreales. 

Members of the Clavicipitaceae include pathogens of arthropods (e.g., Cordyceps, Hypocrella, 

and Torrubiella), parasites of truffles (e.g., Elaphocordyceps), and endophytes and epiphytes of 

the grass family (e.g., Claviceps, Balansia, and Epichloe) (Sung et al. 2007). Previous 

subfamilial classification was based on host affinity as a diagnostic character; Clavicipitoideae 

includes all species of grass symbionts (e.g., Claviceps, Balansia, and Epichloe) and 

Cordycipitoideae and Oomycetoideae contain all of the pathogens of arthropods and fungi (e.g., 

Cordyceps, Hypocrella, and Torrubiella). However, recent multi-gene phylogenetic analyses 

were conducted to address the evolution of Clavicipitaceae (Ascomycota) which revealed the 

subfamily Cordycipitoideae is not monophyletic (Sung et al. 2007) (Figure 1-2). In particular, 

species of the genus Cordyceps, which are pathogens of arthropods and truffles, are found in all 

three clavicipitaceous clades. Clavicipitaceae clade C, which includes Lecanicillium, consists of 

two major subclades: a strongly supported asexual lineage, which includes three species of the 

asexual genus Simplicillium and are primarily isolated as parasites of fungi and are not linked to 

any sexually reproducing species of Clavicipitaceae. Subclade C2 which includes the members 

of genera Cordyceps and Torrubiella as well as several members of asexual genera (e.g., 

Beauveria, Isaria, and Lecanicillium) with known links to Cordyceps and Torrubiella (Sung et 

al. 2007). 

A Framework for Biological Control of HWA 

At this time best option for managing further spread of HWA in forests is biological control 

mixed with some utilization of chemical stem injections on high value areas. The ultimate goals 

are to reduce losses of hemlock and regenerate healthy hemlock in infested and non-infested 

sites. Research on characterization, resistance, impacts, and possible management of HWA has 

been described above. 
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Table 1-1: Fungal propagules isolated from Laricobius nigrinus predatory beetles in a recapture 

program of beetles that were previously released and recaptured after one year in hemlock forests 

infested with hemlock woolly adelgid. Accession numbers and their % similarity relate to 

GenBank. 

 
Plate 

ID BLAST ID Accession 

% 

Similarity 

D1 Cordyceps confragosa AB111495 99 

D2 Isaria farinosa isolate HK7  KC768083 99 

D3 Cordyceps confragosa AB111495 98 

D5 Microdiplodia sp. G16A  EF432267  99 

D6 Simplicillium lamellicola AB214656   99 

D7 Isaria farinosa isolate HK7  KC768083 100 

D8 Simplicillium lamellicola AB214656   99 
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Figure 1-2: Clavicipitaceae phylogenetic tree with emphasis on 

Clavicipitaceae clade C which includes Lecanicillium and Cordyceps 

genera (Sung et al. 2007). 
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Chapter 2 

Persistence of entomopathogenic Lecanicillium (Clavicipitaceae, Ascomycota) in hemlock 

stands  

Kristen L. Wickert 

Abstract 

Lecanicillium species are generalist fungal entomopathogens native to the United States and are 

a main component in the product Mycotal®. Mycotal® is a commercially formulated 

Lecanicillium muscarium biopesticide commonly used in greenhouses in the Netherlands. In 

determining the efficacy of a Lecanicillium muscarium based fungal biocontrol method against 

hemlock woolly adelgid (HWA), it is necessary to understand other fungi present in the hemlock 

environment. This is imperative because of the ability of other already-present fungal community 

members to inhibit L. muscarium. In order to find preexisting fungi in hemlock ecosystems, 

hemlock tissues, HWA and soil were sampled in a standardized method for varying sites. Five 

sites were established in the range of eastern hemlock with varying levels of HWA infestation 

and management types to contain and mitigate HWA populations. One site in Tennessee was 

included in the study due to a pilot study of Mycotal® in 2009 and 2010 which allowed 

observance of persistence of Mycotal® in the environment five years post inoculation. Five 

fungal taxa were frequently isolated from surface disinfested hemlock tissues and HWA in MD, 

OH, PA, TN and WV including Colletotrichum fioriniae, Epicoccum nigrum, Pestalotiopsis 

microspora, Rhizosphaera macrospora and a potentially undescribed Leotiomycete. The 

Leotiomycete, inhibited other fungi in the community and several species of Lecanicillium. Since 

the Leotiomycete fungus was present 17% of the time on average across all five sites, this fungus 

could be a significant factor against the persistence of Lecanicillium in the environment. In 

inhibition assays, Lecanicillium species/strains were inhibited 35% of the time by the 

Leotiomycete fungus. However, different fungal strains and isolates of both the Leotiomycete 

and Lecanicillium had different responses to each other. The L. muscarium strain in Mycotal® 

was not inhibited by the Leotiomycete. A total of six isolates were recovered of Lecanicillium 

out of 2,954 total fungal colonies across all substrates. Lecanicillium species were recovered 

from a chlorotic hemlock needle, an insect pupating within chlorotic/ necrotic hemlock needles, 

hemlock needles in the soil duff and soil samples. However the target entomopathogen was 

recovered in extremely low incidence and appears to be locally rare. In the 2015 fall/winter 
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sample season, two fungal colonies out of 2,472 recovered from hemlock needles were 

Lecanicillium species resulting in a <1% incidence across all five sites. This indicates that 

Lecanicillium is already present in the environment, at an extremely low incidence. The 

Mycotal® treated TN site harbored zero Lecanicillium isolates, which suggests that Lecanicillium 

does not persist in the environment.  
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Introduction 

 Hemlock woolly adelgid has resulted in significant mortality of eastern hemlock 

throughout eastern North America since its introduction near Richmond, Virginia around 1950. 

HWA is now widespread and deeply entrenched throughout much of hemlocks’ continuous 

range in the eastern United States, where it continues to impact forests and ecosystem functions 

(Figure 2-1).  In response to the massive mortality of eastern and Carolina hemlock throughout 

the eastern U.S. research efforts have intensified to better understand the biology, ecology, and 

population dynamics of HWA in areas long-affected by this invasive pest and areas along the 

advancing edge where efforts to slow the spread are most concentrated.  

The last few decades have produced control methods that have mitigated the spread of 

HWA but are unable to eradicate the invasive pest. Current management methods that are most 

effective at reducing HWA populations include classical insecticide applications and biocontrol 

methods used individually and in combination. Classical insecticides include Imidacloprid (trade 

name Merittm) (which is a systemic neonicotinoids that have proven to be very successful in 

HWA control. Success rates of using chemical insecticides vary with many factors, such as 

temperature and drought in that they can slow the uptake and translocation and ultimately 

decrease the efficacy of these controls (Bennet 1957). Chemical control is limited to individual 

tree treatments that are in readily accessible, non-environmentally sensitive areas. Despite their 

effectiveness, insecticides including those most effective against HWA are harmful to a diversity 

of non-target insect species spanning several insect orders including many pollinators and can 

bioaccumulate in the environment (Blacquiere et al. 2012). These insecticides are acutely toxic 

to aquatic organisms limiting their application along stream beds, which unfortunately is the 

main ecotype for hemlocks (Cowles et al. 2006). Because of these non-target effects, their use 

and mode of application has been restricted in many forest cover types where hemlock fills the 

role of a keystone species including: White Pine-Hemlock, Eastern Hemlock, Hemlock-Yellow 

Birch, and Yellow-Poplar-Eastern Hemlock. 

The first exploration for native natural enemies (i.e. classical biocontrols) of HWA in 

Japan began in 1992 where Sasajiscymnus tsugae was recovered (Cheah 2011). Shortly 

thereafter, in 1995, a federally funded program for biological control of HWA using non-native 

predators was initiated in the eastern United States, resulting in importation of predators from 
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Japan, China, and Canada. Scymnus lady beetles were recovered in China (Montgomery and 

Keena 2011). Native Laricobius nigrinus were collected from a western hemlock seed orchard in 

Victoria, British Columbia in 1997. Following the identification, quarantine evaluation, mass 

rearing, and releases of these first group of biocontrol candidates, several other additional 

biocontrols were introduced and include: L. osakensis (Coleoptera: Derodontidae), Scymnus 

coniferarum (Coleoptera: Coccinellidae), Leucopis argenticollis (Diptera: Chamaemyiidae), L.s 

piniperda (Diptera: Chamaemyiidae), and Sasajiscymnus tsugae (Coleoptera: Coccinellidae) 

(Cheah 2011). Currently, Laricobius spp. appear to be the most successful insect biocontrols on 

account of widespread establishment in HWA impacted areas throughout the eastern U.S. The 

efficacy of L. osakensis and L. nigrinus as controls is promising as both the larvae and adults 

feed on all life stages of HWA (Salom et al. 2011, Zilahi-Balogh et al. 2002). The release of 

insect predators as biocontrols of HWA have proven useful in more sensitive areas where 

chemical controls are restricted, yet the post-release results for many of these biocontrols are 

inconclusive. For example, some of the predatory beetles’ lifecycles are asynchronous with that 

of HWA and therefore effective control has not been realized (Salom et al. 2012). On the other 

hand, since 2008 hemlocks have stopped dying in the 5,000-square mile L. nigrinus release area 

around Grandfather Mountain, NC, and regrowth of adelgid-infested hemlocks at several of the 

release sites has been observed (Oakes 2015). Nevertheless, when used together with chemical 

controls, these management methods are somewhat successful, but they are not able to eradicate 

HWA from the landscape or to levels that limit additional mortality.  

Other avenues for control are being looked into to add to the management and hopeful 

eradication of HWA. Fungal biocontrol might be an appropriate option to add to the ongoing 

integrated pest management against HWA, especially if those controls can be used in concert 

with insect and chemical controls. Fungal biocontrols have proven to be a successful 

management method against other invasive species such as Entomophaga maimaiga on gypsy 

moth (Lymantria dispar) (Lepidoptera: Erebidae) and Beauvaria bassiana on aphids and other 

greenhouse insect pests (Hajek et al. 1996, Hong and Kim 2007). Green Muscle®, a successfully 

commercialized and extremely virulent strain of Metarhizium anisopliae is an effective 

biocontrol of grasshoppers and locust swarms (Douthwaite 2001). This shows that there are 

differences not only between entomopathogenic species of fungi, but there are differences in 
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strains of a single species in strength against specific hosts coupled with other factors 

(Douthwaite 2001).  

 Moreover, many of these fungal biocontrols have proven to be host-adapted with limited 

non-target impacts. Still many obstacles remain in place that limit the use of entomopathogenic 

fungi as a management tool against HWA, such as limited knowledge on fungal biology and life 

cycle, fungal competition, as well as regulatory and commercialization aspects (Shipp et al. 

2003). Previous studies by Reid et al. (2002), indicated the Lecanicillium was common from 

dead HWA throughout the eastern U.S. and might serve as an effective biocontrol. The genus 

Lecanicillium includes many generalist entomopathogenic fungi with a cosmopolitan distribution 

and are relatively common across the landscape (Sree and Joshi 2015). Lecanicillium also has a 

history of use as a control of greenhouse pests including whiteflies and aphids (Alavo 2015). 

In a pilot study conducted in 2009 and 2010 in Tennessee, entomopathogenic L. 

muscarium was aerially deployed against HWA as a means of assessing its efficacy against 

HWA. This study utilized a commercialized form of L. muscarium named Mycotal® distributed 

by Koppert Biological Systems in the Netherlands. Mycotal® consists of spores of L. muscarium 

strain number ARSEF 5128 isolated from white fly (Trialeurodes vaporariorum) (Hempitera: 

Aleyrodidae) in the United Kingdom (Koppert 2015). One year post-inoculation data indicated a 

decline in growth of HWA populations following inoculation with the enhanced fungus, yet 

results were not significantly different from controls (Costa 2010). Regardless, the short term 

results of this study provided a glimpse into the potential application of aerially deployed fungal 

biocontrols against HWA and a foundation for follow-up studies. The long-term results from the 

pilot study were inconclusive due to many confounding factors, including the polar vortex of 

2014, which reduced HWA populations to trace levels and in turn, limited the ability to 

accurately assess long-term efficacy against HWA. The ongoing pilot study site enables 

sampling opportunities to assess the long term persistence of Lecanicillium in the environment as 

significant amounts of exogenous inoculum was applied to this ecosystem.  

Many fungal species occupy and colonize healthy and naturally senescing plant tissues 

and can competitively exclude or inhibit growth of other fungi (Carroll 1988).  Fungi can utilize 

their host resource in two ways that preclude other fungi from accessing the resource: they can 

deplete the resource, or they can exude chemicals to prevent competitor access into the tissue 
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(Wicklow 1992). Competition is an important aspect to consider when introducing a fungal 

biocontrol because it may reduce the overall efficacy of the introduced fungus. Hemlock 

branchlets and adjacent leaf tissues serve as environmental reservoirs for many species of fungi 

occupying various ecological niches such as plant pathogens, saprotrophs and beneficial plant 

endophytes (Carroll and Carroll 1978, Marcelino et al. 2009, U’Ren et al. 2012). Because fungi 

have the ability to transition from a primary niche to a facultative niche depending on available 

food source, it is possible that entomopathogenic Lecanicillium species already persist in 

hemlock environments as saprotrophs or plant pathogens even in the absence of insect hosts 

(Marcelino et al. 2009). When HWA is introduced into the environment, Lecanicillium may have 

the ability to revert back to the entomopathogenic niche and infect HWA.  

This study aims to elucidate the fungal community in hemlock ecosystems and the 

persistence of Lecanicillium as well as other potential entomopathogenic fungi both in areas of 

previous deployment such as the pilot study area in TN as well as untreated areas that may or 

may not harbor native entomopathogenic populations. The specific objectives will address the 

points of environmental reservoirs for Lecanicillium in the hemlock environment and if the target 

entomopathogen persists in the environment. 

Materials and methods 

Sampling locations and Experimental Design 

Four sampling locations within a 150-mile radius of Morgantown, West Virginia were chosen for 

fungal community composition studies on the following criteria: basal area and stem density of 

hemlock, levels of HWA, and HWA management practices. Sites from west to east included 

Shade River State Forest, OH; West Virginia University’s University Research Forest, WV; 

Ohiopyle State Park, PA, and Savage River State Forest, MD. With the exception of parts of 

Shade River State Forest, which is on the advancing edge of HWA’s current geographic range, 

all other study locations had previous history of adelgid, with initial infestations reported in 2006 

for WV, 2007 for MD, 2009 for PA, and 2014 for OH (Table 2-1).  At three of the four locations 

(MD, PA, and WV), three plots were established. In OH, two additional plots were established 

on account of recent HWA infestations within the forest which allowed direct comparisons of 

infested and non-infested sites. By including sites not historically affected by HWA, direct 

comparisons of fungal community composition among long-infested, recently infested, and 
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uninfested sites could be made. Management methods also varied among geographic locations 

allowing for comparisons in fungal communities within and across sites with released predatory 

beetles, chemical stem injection, a mixture of chemical stem injection and predatory beetle 

releases or no management.  

Permanent tenth-acre plots were established to allow for repeated sampling and was based 

largely on capturing variability in HWA incidence, management strategy and HWA residency 

time. Within each fixed radius plot, tree-level variables including species, diameter-at-breast-

height (DBH), canopy class, and percent dieback (for hemlock only) were recorded. HWA 

density was rated on branchlets as well as overall for infested hemlock trees. An ordinal scale 

was used to rate HWA infestation levels and were as follows: uninfested, trace (zero individuals 

present, but evidence of previous HWA infestations), light (1-10 individual HWA masses / 10” 

branchlet), moderate (11-20 individual HWA / 10 inch branchlet), and heavy (>21 individual 

HWA / 10 inch branchlet), crown transparency and percent crown dieback ratings were based on 

10% increments.  

For hemlock sampling, trees were randomly selected from within each of three canopy 

classes (upper-story, mid-story, and suppressed) and branches destructively sampled using a pole 

pruner. Given the co-dominance of many of the hemlock across all sites, sampling in the higher 

parts of the canopy was not possible without felling the tree. Therefore sampling focused on the 

lower branches and up to 20 feet in height. Likewise, assessments of HWA density in the upper 

part of the crowns of over-story and mid-story trees could not be assessed. Two trees per canopy 

class were selected, flagged, and their locations recorded. From each selected canopy class 

representative, three categories of hemlock needles were sampled: asymptomatic (healthy), 

chlorotic (diseased), and necrotic (diseased and senesced). Six needles per category were 

carefully removed from branchlets to avoid damaging of the intact needle prior to surface 

disinfestation and subsequent fungal plating and placed inside pre-labeled microcentrifuge tubes 

for transport back to the lab. Three ten-inch randomly chosen branchlet sections from which 

representative needles were taken were also retained for fungal isolation. To examine possible 

linkages between infestation levels and fungal community structure, adelgid population density 

was assessed and noted for each of the sampled 10 inch branchlet as described earlier. In 

locations where extant HWA populations were found, infested branchlets were sampled and 
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brought back to the lab for adelgid sampling. A total of ten live and ten dead HWA were 

sampled per HWA-positive plot for fungal isolations. 

Mycotal® Release Pilot Study Location, Campbell Co. Tennessee 

In May 2009, a pilot study was initiated within a mature hemlock stand along Titus Creek 

immediately west of the North Cumberland Wildlife Management Area in Campbell County, 

TN. The purpose of the pilot study was to evaluate the efficacy of Mycotal®, a promising 

commercial formulation of L. muscarium approved for control of whitefly in greenhouse 

settings, against HWA (Costa 2011). A total of sixteen 1.25-acre hemlock plots were established 

from 2009-2010 on the basis of pre-treatment HWA density, twelve in 2009 and an additional 

four in 2010. All plots were aerially treated via helicopter at a volume of 10 liters/acre for each 

of three treatments. In 2009, plots received one of three treatments: ‘no spray’ control, Mycotal® 

(1 x 108 spores ml-1) and Mycotal® at the same concentration enhanced with the microfactory 

formulation (5% w/v MycoMax®) (Table 2-2). Treatments were replicated three times. In 2010, 

2009 plots were again treated but treatments were randomly assigned with some receiving the 

same treatment, no treatment or a new treatment in year two (Table 2-2). In addition four new 

plots were established in close proximity to 2009-treated plots and were treated with Mycotal® (1 

plot), Mycotal® + Mycomax® (2 plots), or served as a control (1 plot) (Table 2-2). The purpose 

of the microfactory formulation, which consisted of whey protein, was to serve as an additional 

food source until the fungus came in contact with the insect host. The oil adjuvant Addit (0.25% 

v/v: Koppert Biological Systems) and the sticker Hyperactive (0.05% v/v : Helena Chemical) 

were added to both fungal treatments. The oil adjuvant Addit served to increase the effectiveness 

of the fungal biocontrol by increasing spore longevity. Previous formulation studies of 

Metarhizium anisopliae (Green Muscle®) indicated that fungal spore viability and efficacy is 

enhanced when covered in oil, especially in dry conditions (Prior and Greathead 1989).  

Fungal community sampling was conducted in 2015 in sites previously established for 

the HWA aerial suppression pilot study.  A total of 12 of the 16 previously established plots were 

successfully located and sampled. Sampling was as previously described for sites in MD, OH, 

PA, and WV with some exceptions. To allow for site comparisons 5-years post-inoculation, 

hemlock crown ratings were assessed and recorded for a subset of previously rated trees on 12 of 
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the original 16 plots. Measurements included HWA presence and abundance using an ordinal 

rating scale as previously described, crown transparency and percent crown dieback. 

Fungal isolations 

Field collected hemlock needles and branchlets as well as HWA were sampled to permit fungal 

community characterization and assess whether Lecanicillium was pervasive across sampled 

sites. Sampling occurred in fall-winter of 2014 and summer of 2015 to consider the possible 

influence of the seasons and abiotic factors on the fungal community. Three categories of 

hemlock needles previously described were surface disinfested in a 10% sodium hypochlorite 

solution for 20 seconds and plated on a Difco potato dextrose agar (PDA; BD and Co., Franklin 

Lakes, NJ, USA) amended with streptomycin sulfate (Sigma-Aldrich, St. Louis, MO, USA) and 

tetracycline (Fisher Scientific, Pittsburgh, PA, USA) (+ST). 

A total of thirty-six needles for each of the three needle categories were sampled per plot 

with a total of 324 needles from across three plots at each of three sampling locations in MD, 

PA, and WV and 540 needles across five plots in OH. In Tennessee 1,296 needles were sampled. 

Following surface disinfestation, needles were arranged three per 10 cm diameter petri plate. 

Branchlets were similarly surface disinfested as previously described and plated individually on 

PDA+ST. A total of 54 branchlets from across three plots at each of three sampling locations in 

MD, PA, and WV and 90 branchlets across the five plots in OH were sampled. In Tennessee 72 

branchlets were sampled. Live and dead HWA were aseptically removed from the base of 

infested needles, surface disinfested (dipped) in a 95% ethanol and plated on PDA+ST. Two 

adelgid were plated per 10 cm diameter plate. A total of 119 adelgid from four sampling 

locations in MD, PA, OH and TN were collected. A total of 79 of the 119 HWA were alive at the 

time of plating and 40 were dead to allow comparisons between saprophytic and 

entomopathogenic fungal community members. The West Virginia site, despite previous 

confirmation of HWA, lacked detectable populations for sampling. A secondary round of 

sampling collections was conducted in the summer of 2014 to see if seasonal differences 

occurred throughout the year. 1,296 Needles were sampled in the summer collections, and 72 

branchlets from the standard sampling locations in OH, PA, MD, WV. HWA were unable to be 

sampled in the summer months.  
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Soil samples were collected at each of the 26 plots. Soil samples were also included given 

recent work by Kasson (unpublished) that suggested Lecanicillium spp. was in high incidence in 

soils on account of high arthropod diversity. Initial soil sampling aimed to enhance Lecanicillium 

recovery with selective media, such as Ophiostoma Selective Agar (OSA). Given the high 

amount or organic matter in the soil samples collected, hemlock needles recovered from soil 

were separated from the remaining substrate and plated as previously described for branchlet-

extracted needles but on OSA. For the remaining soil substrate, serial dilutions of soil were 

generated by adding 5 g of substrate to 50 ml of sterile distilled water. Following 

homogenization, serial dilutions were generated up through 1 x 10-7. Because of the presumed 

high colony count from less diluted suspensions, only dilutions for 1 x 10-5 through1 x 10-7 were 

plated on OSA. Plates were kept at ambient temperatures for 7 – 10 days or until fungal growth 

appeared from hemlock tissues, soil dilutions and HWA. 

For fungal characterization, fungi were initially grouped based on colony and spore 

morphology. Colony features such as presence or absence of aerial mycelium, presence and 

morphology of conidiomata and/or ascocarps/basidiocarps, presence and color of pigments, and 

general growth rates were used to distinguish fungal genera and species.  

Storage and preservation of representative fungi 

For long-term storage, representative isolates of morphotypes with an incidence of  >3% of the 

total number of fungal isolates recovered or isolates of particular interest, were placed onto PDA 

slants for long-term storage and maintained at 4°C. From each site, representative isolates were 

retained for DNA and entomopathogenicity studies as well as inhibition assays. Singleton and 

other low incidence morphotypes were tallied but not retained. Representative slants are 

maintained in cold storage in the Kasson Plant Pathology Lab at West Virginia University and 

available upon request.  

DNA extraction and molecular identification of isolates 

Genomic DNA was extracted from fungal mycelial plugs harvested from Difco potato dextrose 

broth (PDB; BD and Co., Franklin Lakes, NJ, USA) following procedures described by Short 

and colleagues (2015). All PCR was performed on a MJ Research PTC-200 Peltier Thermal 

Cycler (GMI, Ramsey, MN) using primers (Integrated DNA Technologies, Coralville, IA, USA) 
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ITS 4 and ITS5 (White et al. 1990) to amplify the nuclear internal transcribed spacer regions 

ITS1-5.8S-ITS2 (ITS) and BioLine PCR Kits (Bioline USA Inc, Taunton, MA) in 25.5 μL 

reactions containing: 1 μL  of each of two primers, 1 μL genomic DNA, 10 μL nuclease free 

water, and 12.5 Bioline PCR Mastermix. For gel electrophoresis, 4 μL of SYBR gold 

(Invitrogen, Grand Island, NY, USA) and 4 μL of loading dye (5Prime, Gaithersburg, MD) were 

added to PCR products which were then loaded into a gel comprising 0.5% Tris-Borate-EDTA 

buffer (Amresco, Solon, OH, USA) and 1.5% w/v agarose (Amresco, Solon, OH, USA). 

Electrophoresis was performed at 90 v for 45 min and DNA bands were visualized on a UV 

transilluminator (Syngene, Frederick, MD, USA). A 100 bp molecular ladder (Omega Bio-tek, 

Norcross, GA, USA) was included for size comparison. PCR products were purified using 

ExoSap-IT (Affymetrix, Santa Clara, CA). Representative PCR amplicons were Sanger 

sequenced with the same primers used for PCR (Eurofins, Huntsville, AL, USA). 

Fungal inhibition assays 

A preliminary inhibition assay was performed to see if dominant fungal community members 

recovered from hemlock and HWA inhibited Lecanicillium growth. Fungal taxa included 

Colletotrichum fioriniae, Epicoccum nigrum, Pestalotiopsis microspora, Rhizosphaera 

macrospora. To test inhibition, two fungal plugs, one from each of the two tested species, were 

co-cultured on a single 10-cm diameter PDA+ST petri plate and kept at ambient temperatures for 

7 days. Tester plugs originated from 12-21 day old parent cultures that were cultivated from 

long-term storage slants for the sole purpose of this assay. Seven days post-inoculation, presence 

and extent of inhibition was recorded. 

The Lecanicillium spp. isolated from the chlorotic needle, the Lepidopteran pupa (Figure 2-16) 

and Mycotal® were plated with a representative of the main saprophytic guild of Penicillium, 

Aspergillus and Trichoderma. None of these fungi inhibited the growth of Lecanicillium. 

Results 

Fungal diversity summary 

A total of 3,132 needles, comprising chlorotic, necrotic, and asymptomatic categories, 378 

branchlets and 119 HWA were sampled from 26 plots across all 5 sites.  A total of 2,472 fungal 

colonies were recovered from needles, 351 from branchlets, and 120 from HWA from all five 
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sites in PA, OH, MD, WV and TN (Table 2-3)(Figure 2-2). From the fourteen plots in the four 

standard sites of PA, OH, MD, and WV from fall-winter 2014 a total of 1,836 needles, 306 

branchlets and 90 adelgid were sampled. This round of sampling produced 1,303 fungal colonies 

recovered from needles, 244 fungal colonies from branchlets and 83 from HWA. From 

Tennessee, where Mycotal® was aerially deployed a total of 1,296 needles, 72 branchlets and 29 

live adelgid were sampled. This round of sampling produced 1,169 fungal colonies from needles, 

107 fungal colonies from branchlets and 37 from HWA (Figure 2-3). 

Five fungal taxa were frequently isolated from surface-disinfected hemlock tissues and 

HWA in OH, MD, WV, PA and TN including Colletotrichum fioriniae, Epicoccum nigrum, 

Pestalotiopsis microspora, Rhizosphaera macrospora and an undescribed Leotiomycete (Figure 

2-4 - 2-8). A high number of singleton taxa as reflected by a species richness value of 44 fungal 

genera across all sampling substrates, were present, albeit at low levels. As such these low 

incidence taxa were grouped into a combined category labeled as “other” in Figures 2-5 through 

2-9. The ecological niches of the dominant fungi included previously-confirmed plant pathogens 

(Kou et al. 2015), plant endophytes (Carroll and Carroll 1978, U’Ren et al. 2012), saprotrophs 

and to a lesser degree, facultative entomopathogens (Marcelino et al. 2009, Pirttilä 2009). 

Colletotrichum fioriniae is a confirmed pathogen of apple, European blueberry, grape, olive, 

papaya, and strawberry (Damm et al. 2012) causing blight, leaf spots, cankers and dieback in 

these hosts. Recently, Colletotrichum fioriniae was implicated in causing seedling blight of 

poison ivy in Virginia (Kasson et al. 2014). Colletotrichum was isolated from all substrates with 

a uniform distribution. Epicoccum nigrum has been reported as both an endophyte and 

opportunistic plant pathogen in conifers (Kowalski 1993). During this study, Epicoccum was 

most commonly isolated from chlorotic (42%) and necrotic (45%) needles. Pestalotiopsis 

microspora is a weak secondary plant pathogen involved in mostly saprophytic activity of 

already stressed plant tissues and can be found in damaged areas and already diseased tissues 

(Sinclair 2005). Chlorotic (34%) and necrotic (49%) tissues yielded the highest incidence of 

Pestalotiopsis with some sites having no Pestalotiopsis recovered from green healthy tissues. 

Rhizosphaera macrospora is the causal agent of a needle cast disease which leads to premature 

death and casting of needles in conifers (Sinclair 2005). Rhizospheara was almost always 

isolated from only necrotic needles, but was also recovered in extremely low incidence from the 

other substrates.  The Leotiomycete is suspected to be an endophyte of hemlock tissues as it is 
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present in all needle types, especially in healthy hemlock needles (U’Ren et al. 2012). This 

fungus could also be an opportunistic plant pathogen like Epicoccum in that it is the most 

common in chlorotic hemlock needles. Colletotrichum and the Leotiomycetes fungus were never 

recovered from HWA. All locations had similar representative numbers and percentages of key 

fungal species of interest.  

Necrotic needles harbored the most fungi at 1,071 colonies, 871 were isolated from 

chlorotic needles, and 530 from green asymptomatic needles (Figure 2-9). There was a trend of 

fungal species recovered from the different needle types at each site. Average percentages of 

recovery for genera from needles were Colletotrichum, 7%; Epicoccum, 3%; Pestalotiopsis, 

21%; Rhizosphaera, 4%; an undescribed Leotiomycete, 17% (Table 2-10). On average at all sites 

49% of fungi belonged to the “Other” category which was comprised of fungal species in a 

saprophytic guild of common environmental contaminants. These environmental contaminants 

included: Penicillium spp., Aspergillus spp., Trichoderma spp., Mucor spp., and Xylaria spp. 

Average percentages of recovery for genera from all sites were Colletotrichum, 8%; Epicoccum, 

3%; Pestalotiopsis, 24%; Rhizosphaera, 4%; and an undescribed Leotiomycete, 15% (Figure 2-

11). On average, at all sites 47% of fungi belonged to the “Other” category. On average at all 

sites 43% of fungi belonged to the “Other” category isolated from branchlets. Average 

percentages of recovery for genera from branchlets across all sites were Colletotrichum, 13%; 

Epicoccum, 3%; Pestalotiopsis, 43%; Rhizosphaera, 3%; and an undescribed Leotiomycete, 1% 

(Figure 2-12). On average at all sites 48% of fungi belonged to the “Other” category isolated 

from HWA. Average percentages of recovery for genera from HWA from all sites were 

Colletotrichum, 0%; Epicoccum, 9%; Pestalotiopsis, 37%; Rhizosphaera, 6%; and an 

undescribed Leotiomycete, 0% (Figure 2-13). 

A total of six out of 2,954 fungal colonies recovered across all plots were Lecanicillium. 

This included five isolates of L. muscarium, Lecanicillium attenuatum and one isolate of 

Lecanicillium fungicola. L. fungicola is a mushroom pathogen, with the ability to degrade a 

broad spectrum of proteins but is not described as an entomopathogen (St Leger et al. 1997, Zare 

and Gams 2001, Kim et al. 2008). In the fall-winter 2014 sample season, two colonies out of 

2,472 needle fungal colonies recovered were Lecanicillium species resulting in a <1% incidence 

across all five sites. Two Lecanicillium spp. were successfully isolated from 582 fungal colonies 
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recovered from all substrates resulting in a 0.3% incidence. Cordyceps confragosa teleomorph of 

L. muscarium was isolated from hemlock needles L. attenuatum was isolated from a pupating 

Lepidopteran in hemlock needle bundles in Ohio. Lecanicillium was found in the soil of two sites 

(WV and OH) at extremely low incidence as well. One C. confragosa came from WV soil. Two 

isolates of C. confragosa came from soil dilutions from the OH site and one L. fungicola isolate 

from Ohio soil needles. 

Total counts from soil substrates were not recorded because the application of selective 

media inhibited most fungi. Other cycloheximide tolerant entomopathogenic fungi were 

recovered from the soil environment. Cordyceps brongniartii is the teleomorph of Beauveria 

brongniartii a common generalist entomopathogen (Shimazu 1988). Simplicillium was recovered 

from the environment as well and is also an entomopathogen.  

A secondary round of sampling was conducted in the summer of 2014 to see if seasonal 

differences occurred throughout the year. Needles (1,296) were sampled in the summer 

collections and 72 branchlets from the standard sampling locations in OH, PA, MD, WV. HWA 

were unable to be sampled in the summer months. This round of sampling produced 1,311 fungal 

colonies recovered from needles and 316 fungal colonies from branchlets (Figure 2-14). There 

was a shift in fungal species from the average fall-winter collections in that more needles 

produced the secondary pathogen Pestalotiopsis. This could be due to the possibility that 

evergreen trees drop their needles in fall, and the natural senescence of the needles in late 

summer created more reservoirs for the secondary pathogen (Terhonen et al. 2011). On average 

at all sites 27% of fungi belonged to the “Other” category Average percentages of recovery for 

genera from all sites and hemlock substrates were Colletotrichum, 12%; Epicoccum, 2%; 

Pestalotiopsis, 47%; Rhizosphaera, 2%; and an undescribed Leotiomycete, 10%. 

No appreciable differences in fungal community structure were noted between upper 

canopy, mid-canopy and suppressed hemlock trees. Likewise, no significant differences were 

observed between levels of HWA on the branchlets and fungal community differences. There 

does not appear to be a significant difference between management types and the percentages of 

fungi recovered from sites. West Virginia (0.271322751) and Pennsylvania (0.275270037) are 

more diverse than OH (0.331098), MD (0.342391), and TN (0.335824) due to a lower diversity 

index. All sites complied together have a diversity index of (0.308104). No differences were 
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noticed from dead or alive adelgid. Fungal growth probably resulted from fungal spores on their 

woolly masses which were merely encountered from the environment, not from their infected 

bodies.  

There was no difference between fungi recovered from upper mid and suppress trees. 

There is no difference between canopy classes and fungal occurrence in incidence of species or 

count. There was not a difference between levels of HWA on the branchlets and fungal 

community differences. There does not appear to be a significant difference between 

management types and the percentages of fungi recovered from sites. No differences were 

noticed from dead or alive adelgid. Fungal communities associated with HWA were likely 

resulted from fungal spores on their woolly masses which were merely encountered from the 

environment, not from the HWA bodies.  

There were differences between fungal isolation occurrences between HWA and hemlock 

tissues. The Leotiomycetes and Collectotrichum were only recoverable from plant tissues. HWA 

was found colonized by Epicoccum, Pestalotiopsis, and Rhizosphaera and species classified in 

the earlier described “Other” category. 

Molecular identification 

BLASTn searches of the NCBI GenBank database found 99 to 100% maximum identity matches 

with the fungal identity sequences deposited (Table 2-4). Lecanicillium spp. were confirmed 

recovered, which confirms that hemlock tissues can serve as a viable, albeit rare, reservoir for L. 

muscarium. 

 

Fungal Inhibition assays 

Results of the inhibition assay between Lecanicillium isolates and dominant fungal community 

members revealed that four of the five most commonly recovered fungi from hemlock and HWA 

(Colletotrichum fioriniae, Epicoccum nigrum, Pestalotiopsis microspora, Rhizosphaera 

macrospora) did not inhibit the growth of any of the tested Lecanicillium species, although 

overgrowth was observed in some of the pairings. The potentially novel Leotiomycete exhibited 

strong inhibitory effects against other fungal community members (data not shown) and against 

several species of Lecanicillium in inhibition assays. Over all across all pairings of Lecanicillium 

isolates with several Leotiomycetes, Lecanicillium were inhibited 35% of the time (Table 2-5) 
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(Figure 2-15). However, inhibition varied across strains of both species. Interestingly, the 

Lecanicillium strain in Mycotal® was not inhibited.  Since the Leotiomycete fungus is present 

17% of the time on average across all five sites, this could be a significant factor in the 

persistence of Lecanicillium in the environment.  

Discussion 

Sampling of hemlock tissues, soils, and HWA confirmed that Lecanicillium isolates, albeit rare, 

do exist in the environment in the absence of an insect host. The isolation from the chlorotic 

needle suggests that Lecanicillium may, in rare cases, survive as a facultative saprotroph and/or 

endophyte in addition to having an entomopathogenic lifestyle in hemlock needles. Although the 

primary goal of thesis study was to uncover insights into the biology of Lecanicillium, several 

observations on other common fungi in the hemlock ecosystem are noteworthy. First, 

Colletotrichum fioriniae, Epicoccum nigrum, Pestalotiopsis microspora, Rhizosphaera 

macrospora and the undescribed Leotiomycete all occupy a niche within the ecosystem. The 

absence of Colletotrichum and Leotiomycete from HWA but dominance within needle and 

branchlets samples suggest these fungi are dominant saprotrophs/ endophytes not capable of 

colonizing HWA. Interestingly previous studies by Marcelino and colleagues (2008) 

demonstrated that endophytic Colletotrichum fioriniae were opportunistic entomopathogens of 

another hemlock pest, elongate hemlock scale but the host range of this fungus does not appear 

to extend to HWA. There does not appear to be a significant difference between management 

types and the percentages of fungi recovered from sites indicating that previous management 

methods do not need to be considered if thinking about applying a fungal biopesticide.  

Lecanicillium is inhibited, in vitro, by other fungal community members in the hemlock 

tissues. The presence of Leotiomycete fungi must be considered in the efficacy of using 

Mycotal® or a Lecanicillium-based fungal biocontol. Different Lecanicillium species/strains 

reacted differently, but the Mycotal® isolate was not inhibited by the Leotiomycetes. The 

Mycotal® strain stands as a best option against fungal competition.  However, as an important 

aspect of this study, all pairings were performed on PDA media. There could be a difference in 

inhibition tendencies when plated on different media types which means these results are is 

inconclusive.  
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The Tennessee site had low incidence of HWA in the canopies during the summer 2015 

collection. This could be due to the aerial application of Mycotal® however, it could also be a 

result of the 2014-2015 polar vortex winter or another unknown abiotic/biotic factor.  

Lecanicillium should still be considered as a combat method against hemlock woolly 

adelgid as it is a more ecofriendly alternative to chemical insecticides. The application approach 

should be an augmentation of the natural population of Lecanicillium by an inundative release of 

millions of Lecanicillium spores. An aerial application of Mycotal® in the first year of HWA 

infestation could add to the already present Lecanicillium in the environmental reservoir of the 

soil and greatly reduce HWA populations until traditional chemical and biological methods can 

be implemented. Lecanicillium should not be used as a preventative measure since it does not 

persist in the environment, but instead as a reaction to HWA being present in the ecosystem.  
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Table 2-3: Fungal colonies recovered from substrates of 5 sampling sites 

    

Chlorotic Necrotic Asymptomatic Branchlets HWA

Maryland 63 137 51 75 62

Total Needles: 251

Ohio 184 201 146 34 17

Total Needles: 531

Pennsylvania 74 115 44 72 4

Total Needles: 233

Tennessee 452 497 220 107 37

Total Needles: 1169

West Virginia 98 121 69 63 0

Total Needles: 288

Needles
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Table 2-4: ITS confirmation of representative fungal isolates recovered from hemlock, HWA 

and soil 

 

  

Site 

Sampling 

Substrate NCBI BLAST ID % Identity GenBank Accession # 

MD1 Chlorotic Needle Colletotrichum fioriniae 100 JN121190 

OH 

HTP3 

Dead HWA Pestalotiopsis sp. 100 JX624316 

MD1 Chlorotic Needle Rhizosphaera macrospora 100 EU700368 

OH 

HTP1 

Necrotic Needle Leotiomycete  99 JQ761460 

MD1 Dead HWA Epicoccum nigrum 99 KM519661 

OH 

HTP2 

Lepidopteran 

pupa 

Lecanicillium attenuatum 99 JQ901939.1 

OH 

HTP3 

Chlorotic Needle Cordyceps confragosa 99 AB111495.1 

WV 2 Soil Needles Cordyceps confragosa 99 KM678344.1 

OH 

HTP2 

Soil Dilution 

10^7 

Cordyceps confragosa 99 KM678344.1 

OH 

HTP2 

Soil Dilution  

10^6 

Cordyceps confragosa 99 KM678344.1 

OH 

HTP2 

Soil Needles Lecanicillium fungicola 99 FJ810136.1 
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Figure 2-1: Current geographic range of the exotic HWA in the eastern U.S. Map provided by 

USDA Forest Service Northern Research Station Alien Forest Pest Explorer 

 

Figure 2-2: Fungal diversity from hemlock tissues and HWA across all 5 sites. Simpson’s 

Diversity Index: 0.308104149 
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Figure 2-3: Fungal diversity from hemlock tissues and HWA, Royal Blue WMA, TN Simpson’s 

Diversity Index: 0.335824448 

 

 

Figure 2-4: Fungal diversity from hemlock tissues and HWA, Savage River State Forest, MD 

Simpson’s Diversity Index: 0.34239058 
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 Figure 2-5: Fungal diversity from hemlock tissues and HWA, Shade River State Forest, OH 

Simpson’s Diversity Index: 0.331097586 

 

Figure 2-6: Fungal diversity from hemlock tissues and HWA, Ohiopyle State Park, PA. 

Simpson’s Diversity Index: 0.275270037 
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Figure 2-7: Fungal diversity from hemlock tissues, WVU University Forest, WV.  Simpson’s 

Diversity Index: 0.271322751 

 

 

Figure 2-8: (A) Isolation of fungi from hemlock needles on Difco Potato Dextrose Agar and 

common fungi recovered from the substrates (B) Leotiomycete (C) Epicoccum nigrum (D) 

Pestalotiopsis sp.  (E) Colletotrichum fiorniae (F) Rhizosphaera macrospora 
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Figure 2-9: Fungal diversity from hemlock needles across all five study sites 

 

Figure 2-10: Fungal diversity across all sites isolated from hemlock needles (n=2472) 
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Figure 2-11: Fungal diversity recovered from HWA and hemlock needles, and branchlets 

 

 

Figure 2-12: Fungal diversity across all sites isolated from hemlock branchlets (n=351) 
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Figure 2-13: Fungal diversity across all sites isolated from HWA (n=120) 

 
Figure 2-14: A second round of summer sampling occurred to evaluate the possibility of 

seasonal changes of fungi recovered from tissues in hemlock stands. There was an increase in 

saprophytic fungi recovered in the summer sampling, which is to be expected, due to naturally 

occurring conifer needle senescence.  
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Figure 2-15: Inhibition by the common Leotiomycete fungus on different species of 

Lecanicillium plated on Difco Potato Dextrose Agar ranging from: (A) no inhibition, (B) 

moderate inhibition, (C) distinct lack of aerial mycelium on the Lecanicillium species on the left 

from the Leotiomycete specie on the right, (D) high inhibiton on the growth of the Lecanicillium 

species.  
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Figure 2-16: (A) Infected Lepidopteran pupa (B) showing hyphae of Lecanicillium attenuatum.  
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Chapter 3 

Lecanicillium phylogeny and comparative entomopathogenicity of Lecanicillium spp. and 

other fungi isolated from eastern hemlock stands Kristen L. Wickert 

Abstract 

Hemlock woolly adelgid is an invasive insect that is decimating eastern hemlock throughout 

most of hemlock’s native range. Classical control methods of chemical insecticides and insect 

biocontrols are not enough to eradicate HWA. Methods of a fungal biocontrol are being 

investigated with a candidate being the entomopathogen Lecanicillium muscarium. There are 

many factors to consider when using a fungal biocontrol such as ecology, genetic distinction and 

mode of insect/pathogen contact. During this study multi-gene phylogenetic analyses were 

conducted to address the evolution of Lecanicillium (Clavicipitacaea, Ascomycota). Data 

presented in this study are for approximately 4,500 base pairs from portions of four genes and 

one mitochondrial gene: β-tubulin, elongation factor 1α (EF-1α), the largest and second largest 

subunits of RNA polymerase II (RPB1 and RPB2), and NADH dehydrogenase subunit (nad1). 

Separate phylogenetic analyses, with data partitioned according to genes produced some 

complementary results and supported the monophyly of many Lecanicillium species. The 

phylogenetic trees informed selection of isolates to use in entomopathogenicity testing. The 

pathogenicity of selected isolates were tested on hemlock woolly adelgid adults and eggs 

separately. All isolates were found to be pathogenic to the insect but their virulence among 

species and isolates within species varied. The six isolates of Lecanicillium caused significantly 

higher mortality than the other fungal species. Lecanicillium isolates recovered from HWA were 

found to be more pathogenic than the Mycotal® isolate, which was isolated from white fly 

(Trialeurodes vaporariorum) (Hemiptera: Aleyrodidae). The most pathogenic isolates were 

5165, 3531, 7375 and 5126 which all caused 100% mortality in adult trials. In egg mass trails 

these same isolates caused 73%, 64%, 94% and 87% mortality respectively. These results 

indicate that these isolates are promising candidates for the control of the HWA. Lecanicillium 

isolates 5795 and 7375 from the ARSEF collection caused significantly more mortality on HWA 

eggs than the other isolates. It is recommended that treatment of adelgid with a fungal biocontrol 

occur during May to select for progredien generation adults carrying sistens generation eggs. 

Due to higher mortality rates, the adults seem more vulnerable than the egg masses, therefore it 

is more efficient to utilize a different Lecanicillium strain than Mycotal® during this life stage.  
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Introduction 

Hemlock woolly adelgid (HWA) has caused significant mortality of eastern hemlock throughout 

its introduced range in eastern North America. The past few decades have produced control 

methods that have mitigated the spread of HWA, but, ultimately, are unable to eradicate or this 

invasive insect. These methods are primarily traditional insect chemical controls or classical 

biocontrol releases of insect predators of HWA imported from outside the native range of eastern 

hemlock. Despite their effectiveness, insecticides are harmful to a diverse group of non-target 

insect species and can bioaccumulate in the environment (Cowles et al. 2006). The release of 

insect predators as biocontrols of HWA have proven useful in more ecologically sensitive areas 

where chemical controls are restricted yet these biocontrols have yielded mixed results (Onken 

and Reardon 2011). Nevertheless, when used together with chemical controls, these management 

methods are marginally successful at finer scale resolution but they are neither able to eradicate 

HWA from the larger landscape nor have they slowed hemlock mortality in heavily infested 

areas.  

Fungal biocontrol might be an appropriate option to add to the ongoing integrated pest 

management against HWA but much remains unclear regarding efficacy and host specificity of 

candidate entomopathogens (Federici and Maddox 1996). This understanding is critical since 

many fungal biocontrols are native to the invaded ranges of the targeted insect pest and therefore 

have not co-evolved with these introduced pests (Kasson et al. 2014, 2015, Carrillo et al. 2014). 

Nevertheless, fungal biocontrols have proven to be a successful management method against 

other invasive species such as Entomophaga maimaiga against gypsy moth (Lymantria dispar) 

(Lepidoptera: Erebidae) and Beauvaria bassiana against aphids and other greenhouse pests 

(Hajek et al. 1996, Hong and Kim 2007).  

Previous studies by Reid et al. 2010, showed that Lecanicillium was commonly 

associated with dead HWA throughout the eastern U.S. and might indicate its utility as an 

effective and naturally occurring biocontrol. The genus Lecanicillium is a generalist 

entomopathogenic fungus with a cosmopolitan distribution and is present across the landscape 

and reported from numerous hosts (Meyling and Eilenberg 2006, Sree and Joshi 2015, Sun et al. 

2008). This entomopathogen also has a history as a control for greenhouse pests (Alavo 2015). 
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Lecanicillium is a member of the Clavicipitaceae within the Hypocreales. The genus was 

erected to accommodate entomogenous and fungicolous Verticillium-like anamorphs in the 

Claviciptaceae. Specifically, members of the Clavicipitaceae include pathogens of arthropods 

(e.g., Cordyceps, Hypocrella, and Torrubiella), parasites of truffles (e.g., Elaphocordyceps), and 

pathogens, endophytes and epiphytes of the Poaceae (e.g., Claviceps, Balansia, and Epichloe) 

(Sung et al. 2007). Recent multi-gene phylogenetic analyses of the of Clavicipitaceae revealed 

species of the genus Cordyceps (teliomorph of many entomophagous Lecanicillium spp.) are 

found in all three clavicipitaceous clades, highlighting the need for heightened resolution prior to 

utilizing these fungi as biocontrols (Sung et al. 2007). Although there is morphological overlap 

with some closely related Claviciptaceae, species within Lecanicillium generally form slender 

aculeate phialides, mostly with procumbent or postrate aerial hyhae, singly or in terminal and 

intercalary whorls. Conidia are generally elongate adhering in heads or fascicles at the tips of 

phialides, often at right angles to the phialide, a morphological feature exclusive to Lecanicillium 

(Zare and Gams 2001).  

Recent multi-locus phylogenetic analysis conducted by Sung et al. (2007) and Koevelis et 

al. (2008) demonstrated several mitochondrial and nuclear genes including NADH 

dehydrogenase subunit 1 (nad1) gene (mitochondrial gene), DNA-dependent RNA polymerase II 

second largest subunit (RPB2) gene, translation elongation factor 1 alpha (EF1-α) gene, and 

DNA-dependent RNA polymerase II largest subunit (RPB1) gene had utility for resolving 

members of the Clavicipitaceae. 

Koevelis et al. (2008) characterized sixty-five strains of Lecanicillium from different 

geographical regions and hosts. The combined use of mitochondrial gene sequences with ITS 

sequences, supported close relationships among L. muscarium, L. psalliotae, L. lecanii, L. 

longisporum and L. nodulosum as well as the the monophyly of the latter three species. In 

addition these studies helped place uncharacterized Verticillium lecanii and Verticillium sp. 

firmly into Lecanicillium sensu stricto. For example, the combined mt data resolved the 

uncertainty of Mycotal®, a commercially available formulation of L. muscarium (Koppert 

Biological Systems - The Netherlands), which had been previously identified among a group of 

isolates within a mixed L. muscarium/L. longisporum clade in the ITS dataset, by placing it 

clearly into L. muscarium. Results from these same studies failed to uncover any geographic 
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association of strains clustered in one species or another, but they clearly showed association 

with hosts in L. lecanii (scale insects) and L. longisporum (aphids). 

In a pilot study, conducted in 2009/2010 in Tennessee, Mycotal® was aerially deployed to 

assess its efficacy against HWA. Although aerial application resulted in a decrease in growth of 

HWA populations, overall results were inconclusive (Costa 2010). Moreover, follow-up 

evaluations of these same hemlock trees revealed little if any sustained control and/or persistence 

of the fungus in the environment, emphasizing the need for reevaluation of previous 

methodologies as well as alternative strategies to permit meaningful observations along with 

successful outcomes in future attempt using fungal biocontrols (Costa 2010). Entomopathogenic 

infections likely require direct contact of conidia with specific life stages of HWA under specific 

environmental conditions, some of which may have been sub-optimal during aerial deployment.  

The specific biology of HWA and the ecology of the environment will most likely also 

need to be considered in the implementation of a fungal biocontol for HWA. As an example, 

Entomaphaga maimaiga is only virulent on larval stages of gypsy moth (Andreadis and Weseloh 

1990). Confirming whether such limitations exist on HWA is vital in understanding L. 

muscarium’s potential as a biocontrol. Furthermore, numerous studies indicate a lag-effect in 

populations’ growth and subsequent efficacy (Tobin and Hajek 2012). Regardless, the short term 

results of this study provided a glimpse into the potential application of aerially applied fungal 

biocontrols against HWA.  

Beginning in 2012, the previous field study using Mycotal® against HWA was re-

evaluated and, as a result, modified to include phylogenetic resolution and comparative 

entomopathogenicity testing. Both of these additions to the study included native, naturally-

occurring Lecanicillium sp. and closely related species, in addition to Mycotal®, with emphasis 

on potential HWA-adapted strains. This revision included strains recovered by the author during 

concurrent studies examining the potential environmental reservoirs for Lecanicillium. The 

purpose of the proposed project was two-fold. First, phylogenetic studies would resolve 

relationships among Mycotal®, closely related Lecanicillium species recovered from HWA, and 

numerous strains from other geographic locations and insect hosts. In doing so, phylogenetic 

diversity could be used in a targeted manner to aid in the selection of candidate isolates for 

efficacy studies representing the breadth of diversity within Lecanicillium. As an example, Green 



 

 
 

60 

Muscle® is a successfully commercialized fungal biocontol that utilizes an extremely virulent 

strain of Metarhizium anisopliae and has been used successfully against swarms of grasshoppers 

and locusts in Africa (Douthwaite 2001). The use of an aggressive strain supports the previous 

point that there are stark differences not only between different entomopathogenic species of 

fungi, but between strains of a single species (Douthwaite 2001). In this study, once selected, 

isolates were used experimentally against wild caught HWA to determine their efficacy against 

HWA and better understand the interaction between life stage of HWA and the fungal biocontol 

candidate. 

Materials and methods 

Fungal Isolates and Culture Maintenance  

Fungal isolates were obtained from the USDA Agricultural Research Service Collection of 

Entomopathogenic Fungal Cultures (ARSEF) housed at Cornell University in Ithaca, NY and the 

Kasson Lab Culture Collection (KLCC) at West Virginia University in Morgantown, WV. 

Isolates acquired from the ARSEF included a diverse set of 58 Lecanicillium muscarium isolates 

and closely related species (L. longisporum, L. psalliotae, L. sp., and Verticillium lecanii) from 

two classes of arthropods, seven orders of insects, 12 insect families, and 17 species including 35 

isolates from HWA (Table 3-1). Of the 46 included isolates originating from within the United 

States, 30 were from HWA and spanned 5 states. The additional 16 domestic isolates from other 

arthropods originated from seven states. Twelve non-domestic isolates were recovered from 

Canada, the Peoples Republic of China, Russia, and the United Kingdom including the reference 

isolate, Mycotal® ARSEF 5128, isolated from Trialeurodes vaporariorum (whitefly) (Hempitera: 

Aleyrodidae)  in the U.K. (Figure 3-1) (Koppert 2015). All five Chinese isolates were recovered 

from HWA and represent the only Lecanicillium spp. from HWA not recovered from within the 

U.S. Although efforts were primarily focused on charactering and testing pathogenicity of HWA 

associated Lecanicillium, efforts were made to include isolates from other closely related 

Homopteran insects as well as geographically diverse isolates spanning six other insect orders. 

At least eleven of the isolates included in this study had been previously characterized with 

regard to phylogenetic placement (Koevelis et al. 2008), as well as a varying numbers of these 

same isolates used in entomopathogenicity testing against HWA (Reid et al. 2002), HWA 

predators used in classical biocontrol (Parker et al 2004), and other insects (Parker et al. 2003, 

Pas et al. 1996) (Table 3-1). 
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Kasson Lab Culture Collection isolates included six isolates of Lecanicillium spp. 

recovered from hemlock tissues and soil in hemlock stands as part of a parallel study aimed at 

identifying environmental reservoirs of Lecanicillium and other entomopathogens in hemlock 

stands with and without HWA (Wickert and Kasson, unpublished data). In addition, two 

Lecanicillium isolates recovered from rinses of Laricobius nigrinus predatory beetles in a 

recapture program of previously released HWA predators after one year in hemlock forests 

infested with hemlock woolly adelgid were also included. Four additional isolates associated 

with fungivorous millipedes were included in the study because they represented species not 

available or limited in availability through ARSEF (L. psalliotae, L. saksenae, L. fungicola) or 

whose identification could not be resolved with previous ITS rDNA sequencing (Verticillium 

sp.). Finally, five isolates served as the outgroup and included four isolates of Ponchonia 

bulbillosa/Metacordycepts bulbillosa, all previously recovered from hemlock needles in the soil 

described from the author’s parallel study (Table 3-2). 

For long-term storage, subcultures of all isolates were maintained on PDA slants and/or 

colonized Whatman GF/A 60-mm glass microfiber filter paper (GE Healthcare Bio-Sciences, 

Pittsburgh, PA, USA) and placed in individual coin envelopes. To revive cultures from long-term 

storage, colonized slant plugs or filter paper pieces were excised and placed onto Difco potato 

dextrose agar (PDA; BD and Co., Franklin Lakes, NJ, USA) plates amended with streptomycin 

sulfate and tetracycline. 

DNA extraction, amplification and sequencing of rDNA 

For DNA extraction, isolates were transferred to Difco potato dextrose broth (PDB; BD and Co., 

Franklin Lakes, NJ, USA) and incubated for seven days. Mycelia were harvested, dried between 

filter papers, and transferred to 1.5 mL Eppendorf tubes. Genomic DNA was extracted as 

described (Short et al. 2015). Following DNA extraction, a portion of the internal transcribed 

spacer (ITS) region was PCR amplified and sequenced to validate putative identifications based 

on morphology. GenBank BLASTn searches were used to confirm fungal identification 

following sequencing. Morphological features were subsequently confirmed to acknowledge 

congruence between morphological features and molecular identification. This step is critical in 

that long-term storage can result in both contamination and/or phenotypic changes (e.g. 

reduction/loss of sporulation) that render subcultures unrecognizable from parent strains (Marx 

and Daniel 1976).  
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Portions of the following five genes were PCR amplified and sequenced based on their 

proven utility for resolving phylogenetically distinct members of the Claviciptaceae and 

Lecanicillium sensu strictu (Koevelis et al. 2008, Sung et al. 2007): NADH dehydrogenase 

subunit 1 (nad1, 569bp alignment) gene (mitochondrial gene), DNA-dependent RNA polymerase 

second largest subunit (RPB2, 1154 bp alignment) gene, translation elongation factor 1 alpha 

(EF1-α, 951 bp alignment) gene, DNA-dependent RNA polymerase II largest subunit (RPB1, 

786 bp alignment) gene, and β-tubulin gene (BTUB, 823 bp alignment). 

All PCRs were performed using primers (Integrated DNA Technologies, Coralville, IA, 

USA) and BioLine PCR kits (Bioline USA Inc., Taunton, MA) in 25.5-μl reaction mixtures 

containing 1 μl genomic DNA, 10 μl nuclease-free water, and 12.5 BioLine PCR master mix. 

Each primer was used at 1 μl at 10 pmol. Thermal cycling profiles were based from previous 

phylogeny studies for each gene (Castlebury et al. 2004, Kouvelis et al. 2008, Sung et al. 2007). 

Gel electrophoresis was performed for each reaction to confirm positive amplifications. 

Prior to electrophoresis 4 μl of SYBR gold (Invitrogen, Grand Island, NY, USA) and 4 μl of 

loading dye (5Prime, Gaithersburg, MD, USA) were added to PCR products. This mixture was 

then loaded onto a 1.5%, wt/vol, agarose gel (Amresco, Solon, OH, USA) made with 0.5% Tris-

borate-EDTA buffer (Amresco, Solon, OH, USA). Electrophoresis was performed at 115 V for 

45 minutes, and bands were visualized on a UV transilluminator (Syngene, Frederick, MD, 

USA). For size comparison, 100-bp and 1-kbp molecular ladders (Omega Bio-tek, Norcross, GA, 

USA) were included in gels. Representative PCR amplicons were Sanger sequenced with the 

same primers used for PCR (Eurofins, Huntsville, AL, USA). Sanger sequences were edited and 

consensus files created using Codon code aligner (CodonCode Corporation, Centerville, MA, 

USA). 

Phylogenetic analyses 

Multi-gene phylogenetic analyses were conducted to address the evolution of Lecanicillium 

(Clavicipitacaea, Ascomycota). A concatenated 64-taxon five-locus alignment was generated 

using CLUSTAL-W (http://www.genome.jp/tools/clustalw) followed by manual improvement. 

Separate partitions were created for each gene to permit analyses for both individual genes and 

the combined dataset. Mega 6.0’s Modeltest was used to find the best parameters to permit 

phylogenetic analyses. Maximum likelihood (ML) analyses were conducted using MEGA 6.0 
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(Tamura et al. 2013). ML bootstrap analyses of the individual and combined dataset were 

generated for individual and combined phylogenies.  

Fungal isolates used in entomopathogenicity testing 

Isolates selected for the entomopathogenicity testing included Lecanicillium species from both 

the ARSEF and Kasson Lab Culture Collection. In addition to Lecanicillium isolates, several 

hemlock fungal community members previously recovered from hemlock tissues and HWA as 

part of a peripheral study were utilized for entomopathogenicity testing. These included 

Colletotrichum fioriniae, Epicoccum nigrum, Pestalotiopsis microspora and Rhizosphaera 

macrospora, and Simplicillium lamellicola based off literature that these genera have incidences 

of facultative entomopathogenic abilities (Marcelino et al. 2009). Ten Lecanicillium strains were 

included in the entomopathogenicity testing. Isolate selection was based primarily on 

phylogenetic diversity (i.e. genealogical exclusivity) followed by geographic origin and host. 

Isolates used in adult/crawler and egg stages varied. In both studies, Mycotal® served as a 

positive control in that it is a vetted entomopathogen of HWA (Table 3-3).  

HWA field collections 

Live HWA were collected from the field on two separate occasions to cover different periods in 

the adelgid lifecycle. In June of 2015 a collection occurred to select progredien generation adults 

carrying sisten generation eggs which hatched into crawlers. Progredien generation eggs masses 

were collected in late February, 2016. Treatments for adelgid are separated by adult/crawler and 

egg experiments.  

HWA adult inoculations 

HWA infested hemlock branches were collected from the field mid-June 2015 and transported to 

the lab. The source of infested branches was Ohiopyle State Park, Ohiopyle, PA, USA. In the 

lab, a total of 320 live adult adelgid were aseptically removed from their woolly masses and 

surface disinfected with 95% ethanol. Following disinfestation, four adult HWA were then plated 

onto 10 cm diameter petri dishes lined with sterile filter paper (VWR, Radnor, PA, USA) at five 

replicates per treatment. Inoculum consisted of conidial suspensions of previously mentioned 

ARSEF and Kasson Lab cultures (Table 3-3). Inoculum was prepared by adding 5 to 10 ml of 

sterile distilled water to 2-week-old cultures for each of the fifteen isolates tested on PDA and 
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scraping the surface with a sterile cell spreader. The resulting spore suspensions were collected, 

vortexed, and passed through sterile milk filters (KenAg, Ashland, OH, USA) to separate 

mycelial fragments out of the conidial suspension. Conidial concentrations were determined 

using a hemocytometer and adjusted to 8.5 x 105 conidia ml–1. Viability of conidia was evaluated 

by examining growth after four days of plating suspensions on each of the fungal treatments onto 

PDA plates. Each of the 15 treatments received 1 ml of conidial suspension divided among the 

four replicates. For fungal treatments, filter paper helped ensure inoculum remained in close 

contact with HWA to permit infection whereas in controls it served to ensure HWA did not 

succumb on account of desiccation. Plates were parafilmed to maintain moisture and sterility and 

kept at room temperature. Adult adelgid plates were monitored and allowed to incubate for seven 

days or until signs of infection occurred. To assess entomopathogenicity, fungal growth from 

treated HWA adults was quantified, cultured from symptomatic HWA cadavers, and subjected to 

morphological and molecular protocols as previously described to confirm identity.  

HWA egg mass inoculations 

The source of the egg masses was on West Virginia University’s Evansdale Campus, 

Morgantown, WV, USA. Egg masses were collected and plated near the end of February 2016 

due to the specific life stage of progredien eggs being present. The adult sisten generation were 

dead after laying eggs and therefore could not be tested concurrently with progredien eggs. 

Adelgid egg masses were removed from their waxy coverings and hemlock branchlets using a 

sterilized dissecting needle. HWA were surface disinfested in 95% ethanol and plated onto 10-

cm diameter petri plates with sterile filter paper. Three egg masses were plated onto single 10-cm 

diameter petri plates and replicated three times per treatment for a total of nine egg masses per 

treatment. Conidial suspensions were created as previously described and inoculum 

concentration ranged from 5.6 x 105 and 8.2 x 105. An average goal of 6.5 x 105 conidial 

suspension was created for 17 treatments (Table 3-3). Filter paper was provided to maintain 

moisture levels while creating a surface on which the eggs would not be submerged. Each of the 

treatments including the H2O (negative) control received 1 ml of conidial suspension divided 

among the three adelgid egg masses per replicate plate. Two of the controls received no moisture 

as they were to remain untreated. Conidial suspension was aliquoted equally to the petri dish 

over adelgid egg masses.  
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Additionally, to assess whether eggs might desiccate following removal of their woolly 

coverings, entire 3-4 inch long branchlet sections with an average of 2-5 egg masses were placed 

on filter paper inside sterile petri dishes. Entire branchlets with attached adelgid egg masses were 

dipped in 95% ethanol as a surface disinfectant. These branchlets were placed on filter paper and 

the same conidial solution used on the single egg mass experiment was applied in a dip 

inoculation method. Entire branchlets were submerged in the conidial suspension and placed on 

the filter paper. One milliliter of conidial suspension was added to the filter paper to provide 

moisture during the one week incubation period. Three branchlets were dipped and plated for 

each of the 17 treatments.  

Plates were parafilmed to maintain moisture and kept at room temperature. Egg mass 

plates were monitored and allowed to incubate for seven days or until signs of infection 

occurred. Eggs were counted on inoculated plates after the allotted time period passed and 

images were taken.  Symptoms of infection, such as desiccation, presence of aerial hyphae, and 

lack of hymolymph, of the eggs was checked by observing the presence of red hemolymph 

during recording of infection. 

Microtome cross sectioning of HWA eggs 

Fungus-treated and negative control HWA egg masses were assessed for the presence of fungal 

colonization using a microtome. Eggs were prepared as previously described by Li et al. (2015) 

and Kasson et al. (in review). Eggs were not orientated in any certain direction, rather masses 

were embedded together to permit simultaneous longitudinal and transverse visualization of 

HWA eggs. Five-μm transverse sections were cut with a Microm HM 325 rotary microtome 

(Walldorf, Germany) at the West Virginia University School of Medicine. Selected slides 

confirmed by immediate viewing were dried at 60°C for 24 h, double-stained with Harris-

hematoxylin and eosin-phloxine by hand, and examined and photographed using a Nikon Eclipse 

E600 compound microscope (Nikon Instruments, Melville, NY, USA) equipped with a Nikon 

Digital Sight DS-Ri1 high-resolution microscope camera and Nikon NIS-Elements BR 3.2 

imaging software.  
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Anthroquinone assessments 

Previous work by Jones (2012, 2014) indicated that anthroquinones present in HWA eggs might 

have inhibitory effects on fungal infection and colonization. In order to test anthroquinone 

inhibitory fungal capabilities during entomopathogenicity testing, eggs were plated on GYE + A 

plates that were inoculated with conidial suspensions from the egg mass entomopathogenicity 

treatments. Two egg masses were 100% ethanol surface disinfested and placed on the inoculated 

GYE + A plate per each treatment. Observations of halos around egg masses were recorded one 

to two days after inoculation.  

Results 

DNA sequencing results 

All amplicons were sequenced and identified by BLASTn searches of the NCBI GenBank 

database and found to have 99 to 100% maximum identity matches with the fungal sequences 

deposited (Table 3-2).  

Phylogenetic analyses 

Sequence data for 64 taxa were obtained from portions of four nuclear protein-coding genes 

(RPB2, RPB1, EF-1α, BTUB) as well as a portion of the mitochondrial gene nad1. Phylogenetic 

inference using maximum likelihood on both individually partitioned genes as well as 

concatenated gene alignment resolved most Lecanicillium spp. in a strongly supported 

monophyletic group, within which two of five conserved lineages contained isolates or were 

isolated exclusively from HWA. In the absence of formal names, a numeric system was applied 

to each of the novel multilocus sequence types (MLSTs). Conserved linages include: MLST #1 

which contained a majority of North American Lecanicillium isolates included in the study; 

MLST #2, which contained two isolates, one from Aphididae and a second from Coleoptera; 

MLST #3, a novel lineage (5-6 isolates) of Lecanicillium sp. exclusive to HWA from China; 

MLST #4 (L. longisporum clade, 2-3 isolates); and, MLST #5, which contains two isolates, one 

from Coccidae and one from the fungivourous millipede, Brachycybe lecontii. Individual genes 

supported additional genealogically exclusive lineages including two for nad1, MLST #6 and 

MLST #7, which contained a lineage recovered exclusively from HWA and a second lineage 

which contained two isolates, one from hemlock tissues and a second from Coleoptera. 

Additional genealogically exclusive lineages were identified from the RPB1 (Figure 3-2) and 
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BTUB (Figure 3-3) phylogenies, MLST #8 and MLST #9, respectively. MLST #8 contained a 

lineage recovered exclusively from HWA whereas MLST #9 contained isolates from both HWA 

and from Geometridae (Lepidoptera). 

ML bootstrap analyses of the individual partitions as well as the concatenated alignment 

indicated very strong support (>90% ML BS) for each of the five clades with few exceptions. 

Additionally, both combined and individual partitions showed strong support >75% ML BS for 

the monophyly of Lecanicillium with the exception of EF1-α (Figure 3-4), which showed weaker 

support (ML BS = 50%). Combined and EF1-α ML BS support for MLST #4 was 61% and 62%, 

respectively. EF1-α, and RPB2 (Figure 3-5) ML BS support for MLST #5 was <50% and 84%, 

respectively. ML bootstrap analyses of the individual partitions for MLST #6-#9 were 63%, 

78%, 61%, and 62%, respectively. 

Three other well supported lineages which comprised a second clade sister to and outside 

Lecanicillium included a lineage containing four isolates of Ponchonia 

bulbillosa/Metacordycepts bulbillosa, a lineage of Lecanicillium psalliotae containing isolates 

from both Aphididae and Brachycybe lecontii, and a lineage containing two isolates, one from 

Thripidae and a second identified as V. insectorum from Brachycybe lecontii. A fourth lineage 

revealed incongruence between individual gene genealogies and contained two isolates of 

Lecanicillium fungicola. Phylogenies based on nad1 (Figure 3-6) and BTUB as well as the 

concatenated (Figure 3-7) (Figure 3-8) dataset support L. fungicola as a member of Lecanicillium 

whereas EF1-α and RPB2 resolve its placement among the second clade sister to and outside 

Lecanicillium.  

ML bootstrap analyses of the individual partitions as well as the concatenated alignment 

of a second clade sister to and outside Lecanicillium indicated some lineages had strong support 

(>90% ML BS) whereas others could not be resolved in this study. Fortunately, this applied 

almost exclusively to outgroup taxa but also included lineages with known members of L. 

psalliotae and L. fungicola. Combined and EF1-α ML BS support for Ponchonia 

bulbillosa/Metacordycepts bulbillosa was <50% and 88%, respectively, compared to 91-100% 

for the remaining four genes. EF1-α and RPB2 ML BS support for V. insectorum lineage was 

77% and 62%, respectively, while ML BS support for nad1 and RPB1 was 99%. The combined 

and BTUB datasets only included one isolate from the V. insectorum lineage therefore ML BS 
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values were not available. Despite very strong ML BS support (99% for all genes), the 

phylogenetic placement of Lecanicillium fungicola could not be fully resolved. For combined, 

nad1, and BTUB, L. fungicola resolved with other Lecanicillium forming a monophyletic group 

whereas EF1-α and RPB2 data resolved its placement among outgroup taxa. 

ML bootstrap analyses of the individual partitions revealed nad1and RPB1 (Table 3-4) 

possessed the highest proportion of informative characters and supported the largest number of 

nodes (3 and 4 at P>65% ML BS, respectively). By contrast, the EF1-α partition was the least 

informative with all nodes receiving P<50% ML BS. EF1-α number of amplicons was also the 

smallest of all the gene regions contained a total of 255 bp compared to >500 bp for all other 

products. ML bootstrapping of the combined five-locus data set provided support for five nodes 

with P>50% ML-BS.  

Entomopathogenicity testing 

After constructing the phylogenetic trees and analyzing phylogenetic diversity and structure, 

isolates ARSEF 9925, 5165, 6035, 3531, 5126, 7375 were selected for entomopathogenicity 

experiments. Three isolates were selected primarily because they had been isolated from HWA, 

however they differed in geographic origin. Isolate 9925 is from New Hampshire, 5165 from 

Massachusetts and 6035 from The People’s Republic of China. Three additional isolates from 

hosts other than adelgid were include in the pathogenicity testing. These isolates are 3531 (L. 

muscarium) from gypsy moth (Lymantra dispar) (Lepidoptera: Erebidae) from WV, 5126 (L. 

longisporum) from chrysanthemum aphid (Macrosiphoniella sanborni) (Hemiptera: Aphididae) 

from the United Kingdom and 7375 (L. muscarium) from a Ceroplastes scale species 

(Hemiptera: Coccidae) from Massachusetts. 

 Strains selected for entomopathogenicity testing spanned four phylogenetically confirmed 

MLSTs including MLST #1 (9925, 5165, and 3531), MLST #3 (6035), MLST #4 (5126), and 

MLST #5 (7375).  

HWA adult and crawler entomopathogenicity 

The results of this study confirmed pathogenicity of most fungal treatments including non-

entomopathogenic fungi commonly recovered from hemlock plant tissues despite significant 

differences in infection rates among tested isolates. This significance was proven with a Tukey’s 
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pairwise comparison. Inoculations using Lecanicillium isolates recovered from HWA (5165), 

gypsy moth (3531), scale (7375), and hemlock needles (KLW 84) in North America and aphid 

(5126) in the UK all resulted in 100% mortality on HWA adults. Inoculations with MLST #3 

(6035) from HWA as well as two inoculations of Mycotal® (MLST #1) also resulted in high 

infection rates ranging from 90-95% of the adult adelgid. Lecanicillium isolate KLW 80 

recovered by the author as part of a peripheral study of environmental reservoirs of Lecanicillium 

resulted in 80% infection rate.  

Needle, branchlet, and HWA associated fungi without previously confirmed reports of 

entomopathogenicity appeared to infect some adult HWA. Percent infections ranged from 25% 

(K6 – Rhizosphaera macrospora, K31 – Colletotrichum fioriniae), 35% (K28 – Pestalotiopsis 

sp.), and 70% (K14 - Epicoccum nigrum). Percent infections for negative controls were 10% 

(Figure 3-9). All crawlers that emerged from woolly masses of plated HWA adults onto 

Lecanicillium treated plates were infected and succumbed. In comparison, no crawlers exposed 

to non-entomopathogenic fungi were infected despite apparent colonization of immobile adults 

on the same plates (Figure 3-10). 

Egg mass entomopathogenicity 

The results of the egg mass entomopathogenicity study not only confirmed pathogenicity of all 

Lecanicillium treatments used in this study but also further confirmed that entomopathogenic 

isolates spanned the phylogenetic diversity of Lecanicillium. Significant differences in infection 

rates were noted among tested Lecanicillium isolates. This significance was proven with a 

Tukey’s pairwise comparison. Isolate 5795 (HWA) had the highest mortality (96%) followed by 

isolates 7375 (MLST #5), 94%, 5126 (MLST #4) 87%, 6035 (MLST #3) 85%, KLW 84 76%, 

KLW 80 74%, 5165 73%, 3531 64% and 9925 causing 41% mortality, respectively, and 

Mycotal® at 33% (Figure 3-11). 

Needle, branchlet, and HWA associated fungi without previously confirmed reports of 

entomopathogenicity appeared to infect HWA eggs, albeit at low levels. Epicoccum nigrum 

(K14) had the highest mortality (18%) followed by Pestalotiopsis sp. (K28) with 9%, and 

Rhizosphaera macrospora (K6) and Colletotrichum fioriniae (K31), both with 0% (Figure 3-13, 

3-14). 
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Percent infections for water inoculated (negative) controls were 8% whereas egg masses 

left untreated as a second (negative) control showed no signs of infection. The common natural 

environmental contaminants for this study were Alternaria sp. and Aspergillus spp. Branchlets 

showed similar rates of infection compared to the egg mass plating’s at one week post 

inoculation (Figure 3-14). 

Anthroquinone fungal inhibition assessments 

Antroquinones already present in the eggs did not produce any inhibitory effect around the egg 

masses, indicating that they do not have an inhibitory effect on fungal growth and infection. 

However this could be due to the large inoculum source of the 106 conidial suspension, which 

would be what representative of the inoculation load used in field applications.  

Microtome cross sectioning of HWA eggs 

Microtome visualization of hyphae invasion of HWA tissues was present in unstained and 

stained images versus the control egg masses (Figure 3-15, 3-16).  

Discussion 

The Lecanicillium concatenated tree shows that the genus Lecanicillium appears to be 

monophyletic with strongly supported bootstrap values over 50. This monopyly is indicative of a 

clonally reproductive organism. The entomopathogenicity testing of isolates from the 

phylogenetic tree answer a few questions about the efficacy of a fungal biocontrol. Mycotal® 

utilizes a virulent strain for an inundative augmentative approach to bolster naturally low 

population of Lecanicillium present in hemlock stands. However, its low infection rate on egg 

masses (33%) could indicate that other Lecanicillium isolates used in this study, especially North 

American strains, might be a better candidate for widespread application against HWA in the 

eastern United States. It is hypothesized that Mycotal® is not able to compete with other fungi as 

well as other stronger isolates, as was seen in the entomopathogenic testing. The Mycotal® 

repetitions had Alternaria contamination arising from fungal propagules found in the egg masses 

from the natural environement and Mycotal® fungal hyphae/conidiophores appeared in low 

incidence when Alternaria was present; however, other Lecanicillium isolates had Alternaria 

contamination but were still able to outcompete and infect the host at high percentages. There 

may be possible host adaptation supported by the virulence of the strains of Lecanicillium 
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recovered from HWA. All adelgid recovered isolates caused 90 to 100% infection in adelgid 

adults. Location of the Lecanicillium isolates did not seem to show a difference in virulence. 

Comparing the two life stages infected in this study, it is recommended that treatment of adelgid 

with a fungal biocontrol occur during the month of May to select for progredien generation 

adults carrying sisten generation eggs. Due to higher mortality rates, the adults seem more 

vulnerable than the egg masses. The month of May also has more appropriate weather and 

humidity conditions for a fungal biocontrol than winter months. Adults experienced higher 

mortality than eggs masses did, and by killing progredien adults, sisten eggs will be removed 

from the system. 
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Table 3-1: Fungal isolates from the ARSEF Collection and recovery hosts. 

  
 

  

Order Family Species Location Fungal species ARSEF No. Internal ID Concatenation

Homoptera Aphididae Rhopalosiphum nymphaeae FL, USA L. longisporum 321* 1 x

Homoptera Adelgidae Adelges tsugae NH, USA L. sp. 9924 2 x

Homoptera Aphididae Macrosiphum euphorbiae ME, USA L. muscarium 204* 4 x

Coleoptera Buprestidae Agrilus planipennis MI, USA L. muscarium 8163 5

Diptera Culicidae Ochlerotatus triseriatus KY, USA L. muscarium 810* 7 x

Homoptera Eriococcidae Cryptococcus fagisuga UK L. muscarium 3740 8 x

Lepidoptera Lymantriidae Lymantria dispar OR, USA L. muscarium 2065* 10 x

Lepidoptera Lymantriidae Lymantria dispar NY, USA L. muscarium 3600* 12 x

Homoptera Aphididae ? VT, USA V. lecanii 5166 13 x

Hemiptera Scutelleridae Eurogaster sp. Russian Fed. V. lecanii 6010 14 x

Homoptera Adelgidae Adelges tsugae NJ, USA V. lecanii 5795 15 x

Homoptera Adelgidae Adelges tsugae CT, USA V. lecanii 5759 16 x

Hymenoptera Formicidae Formica sp. VT, USA V. lecanii 5168 17

Homoptera Adelgidae Adelges tsugae MA, USA V. lecanii 5165 18 x

Homoptera Adelgidae Adelges tsugae Pr China V. lecanii 6035 19 x

Homoptera Adelgidae Adelges tsugae MA, USA V. lecanii 5777 20 x

Homoptera Adelgidae Adelges tsugae MA, USA V. lecanii 5798* 21 x

Homoptera Aphididae Myzus cerasi NY, USA L. muscarium 8714 22 x

Homoptera Adelgidae Adelges tsugae MA, USA L. muscarium 5828 23 x

Homoptera Adelgidae Adelges tsugae NH, USA L. sp. 9926 24 x

Lepidoptera Lymantriidae Lymantria dispar WV, USA L. muscarium 3531 25 x

Homoptera Adelgidae Adelges tsugae MA, USA L. sp. 9176 26 x

Homoptera Adelgidae Adelges tsugae NH, USA L. sp. 9925 27 x

Homoptera Adelgidae Adelges tsugae MA, USA L. sp. 9175 28 x

Homoptera Adelgidae Adelges tsugae VA, USA V. lecanii 5821 29

Araneida Araneae ? VT, USA V. lecanii 5167 30 x

Homoptera Adelgidae Adelges tsugae Pr China V. lecanii 6045 31 x

Homoptera Adelgidae Adelges tsugae Pr China V. lecanii 6047 32 x

Homoptera Adelgidae Adelges tsugae MA, USA V. lecanii 5783 33 x

Homoptera Adelgidae Adelges tsugae Pr China V. lecanii 6046 34

Homoptera Adelgidae Adelges tsugae MA, USA V. lecanii 5793 35 x

Homoptera Adelgidae Adelges tsugae MA, USA V. lecanii 5789 36 x

Homoptera Eriococcidae Cryptococcus fagisuga UK V. lecanii 3741 37 x

Homoptera Adelgidae Adelges tsugae MA, USA V. lecanii 5781 39 x

Homoptera Adelgidae Adelges tsugae VA, USA V. lecanii 5824 40 x

Homoptera Adelgidae Adelges tsugae MA, USA V. lecanii 5820 41 x

Homoptera Adelgidae Adelges tsugae VA, USA V. lecanii 5771 42 x

Homoptera Adelgidae Adelges tsugae Pr China V. lecanii 6050 43 x

Homoptera Coccidae Ceroplastes sp. MS, USA L. muscarium 7375 44 x

Homoptera Adelgidae Adelges tsugae VA, USA V. lecanii 5772 45 x

Homoptera Adelgidae Adelges tsugae MA, USA V. lecanii 5778 46 x

Homoptera Adelgidae Adelges tsugae MA, USA V. lecanii 5779 47

Homoptera Adelgidae Adelges tsugae MA, USA V. lecanii 5780 48 x

Homoptera Adelgidae Adelges tsugae MA, USA V. lecanii 5782 49 x

Homoptera Adelgidae Adelges tsugae MA, USA V. lecanii 5785 50 x

Homoptera Adelgidae Adelges tsugae MA, USA V. lecanii 5787 51 x

Homoptera Adelgidae Adelges tsugae MA, USA V. lecanii 5791 52 x

Homoptera Adelgidae Adelges tsugae MA, USA V. lecanii 5794 53 x

Homoptera Adelgidae Adelges tsugae VA, USA V. lecanii 5822 54 x

Homoptera Adelgidae Adelges tsugae MA, USA V. lecanii 5829 55 x

Hemiptera Aphididae Diuraphis noxia ALB, CAN L. muscarium 3000* 56 x

Thysanoptera Thripidae Taeniothrips inconsequens PA, USA Lecanicillium sp. 3255 57

Homoptera Adelgidae Adelges tsugae MA, USA V. lecanii 5786 58

Hemiptera Aphididae Macrosiphoniella sanborni UK L. longisporum 5126 59 x

Hemiptera Aphididae Macrosiphoniella sanborni UK L. muscarium 314* 60

Hemiptera Aphididae Sitobion avenae ID, USA L. psalliotae 2332* 61 x

Hemiptera Aphididae Macrosiphoniella sanborni UK L. longisporum 5126* 62

Hemiptera Aleyrodidae Trialeurodes vaporariorum UK Mycotal none 63

Hemiptera Aleyrodidae Trialeurodes vaporariorum UK Mycotal none 64

Hemiptera Aleyrodidae Trialeurodes vaporariorum UK L. muscarium 5128 11N x

Homoptera Aphididae ? HI, USA L. muscarium 7034 3,9 x

Thysanoptera Thripidae Taeniothrips inconsequens NH, USA L. muscarium 10178 6N x

*- denotes previous use in phylogenetic or pathogenicity testing and therefore a priority isolate
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Table 3-4: Maximum likelihood analysis and percent of informative characters for the five 

single gene phylogenies and concatenation of these five genes.  

 

Taxa

Number of  

Characters

Total Number 

of Characters

Informative 

Characters

RPB2 76 130 1218 11%

RPB1 71 181 796 23%

nad1 74 488 584 84%

EF1-α 74 80 2551 3%

BTUB 72 193 858 22%

Concatenation 64 1112 3775 29%
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Figure 3-2: Phylogenetic tree created in Mega 6 for the RPB1 gene utilizing Maximum 

Likelihood and a bootstrap value of 1000. 
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Figure 3-3: Phylogenetic tree created in Mega 6 for the βtubulin gene utilizing Maximum 

Likelihood and a bootstrap value of 1000. 
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Figure 3-4: Phylogenetic tree created in Mega 6 for the EF1-α gene utilizing Maximum 

Likelihood and a bootstrap value of 1000. 
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Figure 3-5: Phylogenetic tree created in Mega 6 for the RPB2 gene utilizing Maximum 

Likelihood and a bootstrap value of 1000.
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Figure 3-6: Phylogenetic tree created in Mega 6 for the NAD1 gene utilizing Maximum 

Likelihood and a bootstrap value of 1000. 
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Figure 3-8: Concatenation of all five genes for 64 taxa. Designation of state or nation in brackets 

appears next to ARSEF isolate ID or Kasson Lab collection ID. Host of isolation is represented 

by a colored circle corresponding to the above key. Five main multilocus sequence types 

(MLST) were observed in the above concatenation. MLST 1 represents the monophyly of L. 

muscarium. MLST2 represents a single isolate from an aphid in New York. MLST3 groups 

isolates from HWA all in China showing some geographic separation. MLST4 supports some 

host affinity in a pairing of two isolates from aphids. MLST5 groups together as it includes 

Pochonia spp. to serve as outliers.  
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Figure 3-9: Entomopathogenicity testing of isolates on progredien generation adults. Blue 

represents Lecanicillium species, orange bars represent species of interest recovered from 

hemlock stands in a parallel study, red represents Mycotal® isolates and black represents the 

(negative) control. ANOVA results in an F-value of 21.63 with a significant P-Value of 0.000, 

showing there are significant differences between treatments. Lecanicillium isolates are from 

both the ARSEF collection and the Kasson lab. 
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Figure 3-10: Entomopathogencity of adults and crawlers (A) HWA crawlers uninfected by 

Rhizospheara conidial suspension (B) Lecanicillium conidiaphores emerging from the wooly 

mass of an infected HWA adult (C) HWA crawlers emerging from an egg mass to only be 

infected by Lecanicillium from the previous hemlock sampling. 
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Figure 3-11: Entomopathogenicity testing of isolates on progredien generation eggs masses. 

Blue represents Lecanicillium species, orange bars represent species of interest recovered from 

hemlock stands in a parallel study, red represents a Mycotal® isolate and black represents the 

(negative) controls. ANOVA results in an F-value of 76.09 with a significant P-Value of 0.000, 

showing there are significant differences between treatments. Lecanicillium isolates are from 

both the ARSEF collection and the Kasson lab. 
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Figure 3-13: (A) Rhizosphaera infecting the wooly masses but not the eggs in the masses. (B) 

Epicoccum infecting an HWA egg exposed from the egg mass (C) Rhizosphaera sporulation 

over the entire filter paper due to the fungus utilizing remnants of the wooly masses but not 

utilizing the eggs.  (D) Pestalotiopsis infecting the eggs. 
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Figure 3-14: Microcosm hemlock branchlets during entomopathogenicity testing. (A) Untreated 

branchlet with three woolly egg masses showing no signs of fungal infection. (B) HWA egg 

masses infected with a virulent Verticillium lecanii isolate (5795). (C) HWA egg masses infected 

with isolate Lecanicillium muscarium (3531) showing a stronger infection. (D) All eggs masses 

in the 3531 treatment were infected at the end of the experiment.  
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Figure 3-15: Unstained microtome images of HWA eggs. (A) HWA Eggs treated as controls 

showing full rounded healthy edges (B) Infected HWA eggs showing withered shells and 

cavities full of fungal tissue.  
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Figure 3-16: HWA egg microtome images after being stained for visualization. (A) Eggs in the 

control treatment with clear uninfected cavities. (B) HWA eggs infected with ARSEF 5795 

Verticillium lecanii showing their cavity full of fungal protoplast (C) Close up of control egg (D) 

Close up of infected egg from the 5795 treatment. All photos utilize a 100 µm scale bar. 
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CHAPTER 4 

 

CONCLUSIONS 

 A good classical biocontrol method has the ability to persist in the environment 

where it would be long lasting, is inexpensive, and has a selective host range. Even though 

Lecanicillium does not seem to meet all of these criteria, I still believe that Lecanicillium should 

still be considered as a combat method against hemlock woolly adelgid as it is a more 

ecofriendly alternative to chemical insecticides. The application approach should be an 

augmentation of the natural population of Lecanicillium by an inundative release of millions of 

Lecanicillium spores. An aerial application of Mycotal® in the first year of HWA infestation 

could add to the already present Lecanicillium in the environmental reservoir of the soil and 

greatly reduce HWA populations until traditional chemical and biological methods can be 

implemented. Lecanicillium should not be used as a preventative measure since it does not 

persist in the environment, but instead as a reaction to HWA being present in the ecosystem. 

Timing, dosage, HWA life stage and percent coverage are all important factors in considering 

Mycotal® and other Lecanicillium as biocontrols for HWA.  

Sampling during this study may have not been truly representative of what is in the 

environment in normal climatic situations. Lecanicillium could have been recovered in such low 

incidence during 2015 due to the Polar Vortex of 2014. Such cold temperatures for a prolonged 

period of time killed many adelgids and many other insects. This could have greatly reduced the 

food source for the entomophagous fungi. It is also uncertain if these cold temperatures impacted 

the fungus in the environment directly. A repeat of sampling in winter of 2016 and summer of 

2017 could add to the certainty that Lecanicillium is found in low numbers in the environment.  

Future directions that this study need to address the host range of Lecanicillium.  
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