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ABSTRACT 

 

LONG-TERM EFECTS OF TIMBER MANAGEMENT ON FOREST BREEDING 

SONGBIRDS IN THE CENTRAL APPALACHIANS 

 

DOUGLAS BECKER 

 

Multiple-use demands on forests often lead to compromises among human benefits from 

timber harvesting and maintaining habitat for wildlife and ecosystem function. Timber harvests 

are economically important throughout the central Appalachians; at the same time, many species 

of neotropical migrant bird species have been declining, including mature forest and early 

successional species.  Past research has primarily been short-term, focused on single harvest 

types or single harvesting events, overlooking the complexity of long-term, continued forest 

management using multiple harvesting methods, which this study addresses. 

I conducted 50-m fixed radius point counts and monitored nests at the Wildlife and 

Ecosystem Research Forest (WERF) and Panther Run Tract in Randolph County, WV, from 

2007-2009 and incorporated previous research using the same techniques from 1996-1998 and 

2001-2003.  I digitized annual landcover, dividing the cover classes into five categories: mature 

deciduous, mature mixed, clear-cut, light partial harvest, and heavy partial harvest.  From each 

yearly landcover, I calculated the area by landcover type and landscape metrics at two scales: 

landscape and local.  The study area was divided into three elevational blocks (Panther Run was 

a block and the WERF was divided in two), which each represented a landscape.  I used a 100-m 

radius around each point count and nests to calculate local scale landcover and metrics for 

chapters two and three and a 300-m radius for chapter four.. 

In chapter two, my objectives were to identify temporal abundance and nest success 

trends and identify landscape-scale disturbance thresholds for species and habitat guilds using a 

variety of harvests. Early successional species increased in relative abundance, while interior-

edge and forest-interior guilds peaked in relative abundance mid-study, after which the forest-

interior guild declined.  Of 44 analyzed species, 9% declined, 36% increased, and 32% peaked in 

abundance mid-study.  Forest-interior and interior-edge guilds exhibited thresholds, a 

disproportionate response in bird abundance relative to a small change in habitat results, at 28% 

of the landscape, 10% harvesting by clear-cuts, and 18% harvesting by light partial harvests, 

after which abundances declined.  Thresholds for the early successional guild were greater for 



total harvests (42%), similar for harvesting by clear-cuts (11%), and smaller for light partial 

harvests(10%), for which relative abundances increased after surpassing thresholds except for a 

reduction in the rate of increase for clear-cuts.  Even though abundance of most species (82%) 

did not decline as the area affected by timber management increased, implementing management 

at or below our approximate harvest thresholds for forest-interior and interior-edge guilds would 

reduce the number of declining species by half. 

In chapter three, my objective was to use the broader spectrum of habitat conditions 

resulting from long-term management to categorize bird species into habitat groups, identify 

habitat commonalities between group members, and determine habitat conditions associated with 

successful nests.  Using non-metric multidimensional scaling (NMDS), I identified four habitat 

groups: mature forest, disturbed-canopy low elevation, disturbed-canopy high elevation, and 

early succession.  Early successional species increased in abundance with greater amount of 

clear-cuts, heavy partial harvests, and edge density.  The two disturbed-canopy groups (divided 

based on elevation) had no consistent metrics among species, but included variables representing 

different aspects of disturbed mature forests.  Mature (undisturbed) forest species declined in 

abundance with increased clear-cuts, core early succession habitat, and habitat intermixing and 

reduced shape complexity.  Nest success models had high error due to small sample sizes; still, 

they suggested different conditions are required for successful breeding than for high abundance.  

My results highlight the need to reconsider the classification of bird species with respect to 

habitat created by timber management.  Group members shared many habitat commonalities and 

model error was improved over traditional habitat guilds, but variation remains among most 

species within these groups. 

In chapter four, my objectives were to evaluate the response of Canada Warbler (CAWA) 

abundance and nest success to habitat characteristics as they changed due to forest management 

practices.  According to the Breeding Bird Survey (BBS), the abundance of this declining species 

has been stable in the Appalachian Bird Conservation Region (BCR), suggesting this region may 

make important contributions to the species’ conservation; however, off-road point count results 

indicate that CAWA relative abundance decreased on the WERF and the Appalachian BCR, but 

at lower yearly rates on the WERF.  Early in the study, relative abundance was greater closer to 

roads, but as timber harvest became more common, it was positively related to area of light 

partial harvests at the local scale.  Overall, relative abundance responded positively to all three 



types of timber harvests.  Nest success did not differ between 1996–1998 and 2007–2009.  Nests 

in 2007–2009 had less intermediate canopy cover and residual trees but more green cover, 

woody debris, and pole trees than nests in 1996–1998.  Successful nests had more low cover, less 

vertical diversity, more woody debris, more saplings, and greater edge density than unsuccessful 

nests.  My research finds preliminary support for use of timber harvests management tool for 

Canada Warblers in the southern portion of their range with the need for long-term monitoring of 

abundance and nest success to confirm successful management. 
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Due to the ―deepening biodiversity crisis‖ forest managers have begun implementing 

broader forest management approaches such as ecosystem management and sustainable forestry 

(Grumbine 1994, Haulton 2008), which have been adopted by many resource agencies (Brown 

and Marshall 1996, Thomas 1996).  These approaches generally strive to sustain ecological 

integrity by maintaining viable populations, ecosystem representation, ecological processes, and 

evolutionary potential while accommodating human use (Grumbine 1994).  Multiple-use 

demands on forests by humans and wildlife, often lead to compromises by forest managers and 

landowners when making management decisions.  Therefore, economic benefits from timber 

harvesting and related wood products are often balanced against maintaining habitat for wildlife 

and ecosystem function and other human uses such as recreation, aesthetic beauty, and improved 

air and water quality.  

As of 2000, West Virginia was the third most heavily forested state (78%) in the United 

States with over 4.8 million ha of forest.  Of these forested areas, 98% are available for timber 

harvesting (USDA Forest Service 2000) and all counties have a significant component of 

timberland (Childs 2005).  Timber harvesting and related wood products are important 

economically for West Virginia, ranking ninth in share of total state employment and fourth in 

total gross state product (West Virginia Department of Commerce 2010).  In 2008 approximately 

9.5 million m
3
 of timber were harvested in West Virginia (Widmann et al. 2010) and when 

combined with other wood products, resulted in approximately 45,000 jobs (West Virginia 

Department of Commerce 2010) and contributed $4 billion annually to the state (Childs 2005).  

The economic value of timber and wood products extends beyond West Virginia within the 

central Appalachian region.  In Kentucky, forest industries provide 37,500 jobs and ship products 

worth $6.4 billion annually (Thomas et al. 2007).  In Tennessee, forests and forest products 

accounted for 6.6% of the state’s economy, $21.7 billion in economic output, and approximately 

180,000 jobs (Young et al. 2007). Pennsylvania is the leading U.S. producer of hardwoods, over 

1 billion board feet annually, and produces over $5.5 billion of forest products yearly 

(Pennsylvania Forest Products Association 2004).  Therefore, timber harvests are economically 

valuable throughout the region.     

At the same time, many species of neotropical migrant bird species have been declining 

in West Virginia and other parts of the eastern United States (Askins et al. 1990, Peterjohn et al. 

1995, Rich et al. 2005).  Many factors have influenced this decline including habitat loss and 
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degradation (Faaborg et al. 1995) and forest fragmentation (Robinson et al. 1995).  Researchers 

have noted declines in species that require mature, minimally disturbed forests (Robbins et al. 

1989, Hoover et al. 1995, Rosenberg et al. 1999) as well as disturbance-dependent shrub species 

(Hunter 2001, Dettmers 2003).  Because West Virginia remains heavily forested compared to 

many other eastern states, the state has a unique opportunity to play a key role in forest bird 

conservation.  Therefore, to ensure the long-term persistence of many bird species’ populations 

while maintaining economically important timber harvest, research is needed to determine how 

to optimize harvesting goals and the habitat requirements of forest songbirds. 

Because most research on the responses of birds to timber management has been short-

term, lasting only 1-2 years (Sallabanks et al. 2000), a need exists for long-term research to 

include not only the initial bird response but the continued response to future vegetative change.  

Further, this research should include multiple scales as different bird species respond to different 

scales of habitat management (Brennan and Schnell 2005). 

 

Silviculture-Habitat Change 

Timber harvests change the composition of forest habitats for bird species via the 

selection of specific trees.  Further, type and size of the harvest can modify both the horizontal 

and vertical structure of the remaining habitat.   

For forest-interior species, harvests may reduce the overall quantity of forested habitat 

and the overall quality of the remaining habitat by reducing patch size and increasing edge.  

Smaller, more fragmented stands experience higher nest predation rates (Yahner and Scott 1988, 

Hoover et al. 1995), and increased competition for resources from edge species (Wilcove and 

Robinson 1990), reducing nest success within the stands (Bollinger and Linder 1994).  Smaller 

fragments also support less prey biomass for ground foraging bird species (Burke and Nol 1998) 

and gap formation and harvesting can depress arthropod availability (Duguay et al. 2000, Kilgo 

2005).  Although greater Brown-headed Cowbird, Molothrus ater, parasitism can be a problem 

in some landscapes (Brittingham and Temple 1983, Robinson 1992), it generally is not in heavily 

forested areas where cowbird abundance is relatively low (Annand and Thompson 1997, Duguay 

2001, Rodewald and Yahner 2001, Moorman et al. 2002).  Similarly, many other edge effects 

may be limited in more heavily forested areas (Rudnicky and Hunter 1993).  
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At the same time, harvests increase the availability of early successional habitats, 

thereby, increasing the abundance of early successional specialist and generalist species 

(Drapeau et al. 2000, Duguay et al. 2001).  Currently, many early successional species are 

declining as their habitats are advancing to later successional states following human-induced 

forest changes earlier in the century (Hagan 1993, Hunt 1996).  Early successional species often 

decline from 6-15 years post-harvest depending on the type of harvest (McDermott 2007, 

McDermott and Wood 2009).  Forest-interior bird species and their young also do not strictly 

rely on mature forest but use early successional habitats post-breeding (Vega Rivera 1998, Pagen 

et al. 2000, Marshall et al. 2003, Dellinger 2007, McDermott and Wood 2010).  While artificial 

gap creation may cause declines in abundance of forest species, it does not always increase 

predation and parasitism (Germaine et al. 1997, Gram et al. 2003).  Therefore, in a forest-

dominated landscape, harvesting might be an important management tool to support a broad 

array of bird species. 

   

Silviculture-Bird Response 

Silvicultural treatments can increase overall avian diversity and abundance (Baker and 

Lacki 1997, King et al. 2001) by creating younger stands and a greater heterogeneity of 

landscape ages (Loehle et al. 2005). Due to past clear-cutting of a majority of eastern forests, 

many mature forests are approximately 100 years old and characterized by a dense overstory and 

open subcanopy, reducing vertical diversity.  Timber harvests increase vertical diversity, which 

has a positive linear relation with bird diversity (Karr and Roth 1971) and was found to be an 

important local factor in bird abundance changes (Holmes and Sherry 2001).  Higher diversity 

and abundance of birds in treated stands does not imply that logging is beneficial to the entire 

bird community.  Individual species’ abundances may be increased, but the treatments alter the 

composition of the bird community (Anderson and Crompton 2002).  The effects of harvesting 

are beneficial to shrub-scrub species through habitat creation while negatively affecting interior 

forest species (Baker and Lacki 1997, Germaine et al. 1997, Duguay 2001, McDermott and 

Wood 2009).  Avian response to disturbance can differ between natural and human disturbance 

regimes with generally greater effects on habitat availability from human disturbance (Klaus et 

al. 2005).  However, research suggests that to maintain bird communities, management practices 

should simulate levels of natural disturbance (Drapeau et al. 2000). 
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Silvilcultural- Treatment Differences 

 Uneven-aged treatments include partial harvest techniques such as thinning, diameter-

limit cutting, and single-tree selection (Smith 1962).  Trees are selected based upon age, 

diameter, vigor, form, and species to maintain a relatively consistent stand structure (Thompson 

et al. 1995).  Uneven-aged techniques retain a mix of age and size classes by selective harvest of 

individual trees or small groups (Nyland 1996) and often resemble natural disturbance such as 

ice and wind storms (Greenberg and Lanham 2001, Faccio 2003). As a result, uneven-aged 

treatments often have little effect on species composition and abundance of forest bird species 

(Thompson et al. 1995, Robinson and Robinson 1999, Weakland 2002, Gram et al. 2003, 

Campbell et al. 2007, Holmes and Pitt 2007), and increase the relative abundance of gap-

specialist species (Brawn et al. 2001), but may not create suitable habitat for early successional 

species requiring large areas (Costello et al. 2000, DeGraaf and Yamasaki 2003).  Uneven-aged 

treatments have little effect on nest survival (Robinson and Robinson 2001, Gram et al. 2003, 

King and DeGraaf 2004) including nest predation and cowbird parasitism (King et al. 2001, 

Clawson et al. 2002, Moorman et al. 2002, Gram et al. 2003) as long as the reduction of 

overstory canopy closure does not make the stand unsuitable.  Over time, conditions remain 

beneficial for late-successional species, but wane within 15-20 years for early-successional ones 

(DeGraaf and Yamasaki 2003, Campbell et al. 2007).    

In contrast, even-aged cuts remove a large percentage of the canopy cover and result in 

uniform patches of even-aged trees (Nyland 1996).  Examples of even-aged treatments include 

clear-cuts, two-age harvests, and shelterwood cuts.  Even-aged patches often have almost 

complete avian species turnover (Franzreb and Ohmert 1978).  Following tree removal these 

patches are colonized by early successional bird species and late-successional, mature forest 

birds are rare until a new closed canopy forms through regeneration (Thompson et al. 1996, 

Baker and Lacki 1997, Duguay et al. 2001, Gram et al. 2003, Bulluck and Buehler 2006, 

Hanowski et al. 2006, Wallendorf et al. 2007).  The size of the harvest also is important as most 

studies suggest some degree of area-sensitivity by early-successional species (Lent and Capen 

1995, Costello et al. 2000, Gram et al. 2003, Brito-Aguilar 2005, Rodewald and Vitz 2005, 

Askins et al. 2007), although Krementz and Christie (2000) found no effects of even-aged 

harvest patch size.  Though not suitable breeding habitat for mature forest birds, even-aged 

harvests are used post-breeding and during migration (Vega Rivera 1998, Pagen et al. 2000, 
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Marshall et al. 2003, King et al. 2005, Vitz and Rodewald 2006, McDermott and Wood 2009) 

due to favorable foraging (Keller et al. 2003, McDermott and Wood 2009) and denser vegetative 

cover.  Even-aged treatments also often lead to lower nest success for forest-interior species due 

to increased nest predation and parasitism (Robinson et al. 1995, Flaspohler et al. 2001, Manolis 

et al. 2002) but some research has found similar or greater nest survival rates in regenerating 

stands compared to nests within mature forest (Hanksi et al. 1996, Weakland 2000, Duguay et al. 

2001, Gram et al. 2003).  Compared to uneven-aged treatments, even-aged treatments vary 

primarily in the scale and the intensity of the disturbance (Brawn et al. 2001).   

On a landscape scale, removing the same volume of tree basal area with either method 

results in the same total area of regeneration, because the amount of trees removed would be 

equal, but differs in the size and distribution of the disturbances (Shifley et al. 2000).  Even-aged 

treatments result in landscape mosaics of different aged stands, while landscapes from uneven-

aged treatments are less heterogeneous but stands are composed of a range of tree sizes (Brawn 

et al 2001).   

Clear-cutting is a type of even-aged treatment in which all trees from a selected stand are 

harvested at the same time however residual trees often are left standing (Smith 1962).  Harrison 

and Kilgo (2005) found that compared to silvicultural clear-cuts, patch-retention harvests, an 

alternative to silvicultural clear-cutting in which the residual trees are left in a clumped 

distribution, had greater bird species abundance and richness and that forest-interior bird species 

recolonized these sites faster.  Residual trees are important for retention of forest bird species 

following clear-cutting.  Brawn et al. (2001) found that some canopy breeding species such as 

Scarlet Tanager, Piranga olivacea, and Great-crested Flycatcher, Myiarchus crinitus, will 

continue to breed within clear-cuts if residual trees are retained.  Dellinger et al. (2007) found 

that three thrush species [Veery (Catharus fuscescens), Wood Thrush (Hylocichla mustelina), 

and American Robin (Turdus migratorius)] nested in clear-cuts stands often near residual canopy 

trees.  

Shelterwood cuts vary from clear-cuts in that the harvest occurs in a series of two or more 

cuts (Smith 1962).  Some trees are left uncut to provide protection and a partial canopy for the 

establishment of the new stand following harvest.  Once the new stand is well developed, the 

remaining trees are harvested.  Compared to clear-cuts, shelterwood cuts will favor regeneration 

of more shade-tolerant tree species (Brawn et al. 2001).  While the responses of many bird 
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species are similar to clear-cuts, some species show strong relations with the denser, vertical 

cover provided by shelterwood cuts (Annand and Thompson 1997, Brashear 2006, Augenfeld et 

al. 2008). 

Two-age harvests, or deferment cuts, are even-aged harvests intermediate between clear-

cuts and shelterwood cuts.  Two-aged harvests are created by removing at least half of the stand 

each half rotation, resulting in two distinct age classes (Marquis 1989).  Compared to 

silvicultural clear-cuts, two-age cuts have greater vertical complexity and canopy cover 

(Weakland 2000).  Where clear-cutting is not an acceptable practice, two-age management 

provides an acceptable conservation alternative when cowbird parasitism is not a concern 

(Duguay et al. 2001).  Further, as compared to clear-cuts, the more complex canopy structure of 

two-aged stands supported almost a 5 times greater abundance of Cerulean Warblers (Dendroica 

cerulea), a species of conservation concern, in the Allegheny Mountains of West Virginia (Wood 

et al. 2005).  Finally, many consider two-age harvests to have more aesthetic value than clear-cut 

harvests (Miller 1993).  

Of the studies that have compared bird response to different even-aged and uneven-aged 

silvicultural treatments, few have found differences among harvesting treatments and some have 

contradictory results.  At the stand scale, Baker and Lacki (1997) and Duguay et al. (2001) found 

no differences in overall bird abundance between clear-cuts and two-aged cuts, although 

Harrison and Kilgo (2004) found greater diversity and bird densities.  Clawson et al. (2002) and 

King et al. (2001) found no differences in nest success of early successional species between 

group selection cuts and clear-cuts.  Morrison (1992) found higher abundances of birds in 

uneven-aged stands, but suggested that managing for tree species diversity in even-aged stands 

could minimize these differences.   

 On a landscape scale, Thompson et al. (1996) modeled differences between even- and 

uneven-aged treatments and again found no difference for mature forest species, only differences 

in composition of early successional species caused by the availability of different size gaps in 

clear-cuts compared to selective cuts.  Results examining the effects of landscape configuration 

were conflicting, as Drolet et al. (1999) found that birds did not respond to different mature 

forest configurations, while Mitchell et al. (2006) found that species richness was strongly 

related to the availability of and configuration of the landscape.   
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Study Scale 

 To effectively manage bird populations, a species’ habitat relations must be examined on 

scales from local to landscape.  Different bird species respond to different scales of habitat 

management, requiring multi-scale analysis for effective management of all species (Brennan 

and Schnell 2005).  The best explanatory models of species richness and community similarity 

often include both local-scale measures of habitat structure and heterogeneity and also 

landscape-scale measures of the environment (Cleary et al. 2005).  Further, vegetative landscape 

models based on the surrounding habitat matrix more accurately measure bird distribution than 

vegetative cover models based on the vegetation at the sampling site, highlighting the gains in 

predictive ability achieved by incorporating landscape patterns (Seoane et al. 2004).  Optimal 

design of landscapes for bird conservation should include multiple scales (Will et al. 2005).  

Initially, the amount and conditions of habitat types at the landscape-scale should be 

characterized including their ability to support and sustain bird populations to develop 

population-based habitat objectives and identify landscapes of conservation priority.  Patch 

characteristics and landscape configuration should be included in this landscape assessment.  

Next, to assess, predict, and monitor bird population response to landscape change and 

management activities, models should be created relating micro-scale vegetation to bird 

abundance and productivity.  These models would predict the effects of stand level change such 

as the amount of edge, patch size, predator density, and vegetative structure.  Finally, models at 

both scales, along with an assessment of the opportunity costs of conservation, are combined to 

create an optimal management solution. 

The scale at which variables are measured also can influence bird-habitat relations.  

Small-scale data better explain variation in bird abundance, while landscape factors better 

explain the presence/absence of species (Cushman and McGarigal 2004).  Finally, only using 

local factors in analysis limits the applicability of research because local factors can be 

misleading when used to predict the impact of forest management on larger regional scales 

(Drapeau et al. 2000). 

 

Need for Long-term Research using Multiple Harvest Types 

Long-term research is needed to investigate the response of bird communities to active 

timber management practices.  Past research has been short-term in nature lasting only 1-2 years 
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(Sallabanks et al. 2000).  Short-term studies increase the likelihood that observed changes in bird 

abundance are due to yearly variability not related to the management practices under 

consideration by the study or that they reflect only the immediate response to habitat changes 

(Sallabanks et al. 2000, Collins 2001).  Long-term research encompasses not only the initial 

change in habitat but the continued successional vegetative response.   

Further, avian temporal response to landscape habitat change often is not linear in nature 

(Betts et al. 2007, Betts and Villard 2009), but can incorporate thresholds, during which a small 

change in habitat results in a disproportionate response in bird abundance and nest success.  

Theory has predicted the occurrence of landscape thresholds (With and Christ 1995, Fahrig 

2003), but until recently few statistical techniques were available to identify them (Guenette and 

Villard 2005, Haggett 2005).  Swift and Hannon (2010) suggest four possible explanations for 

thresholds: habitat configuration, allee effects, time lags, and habitat loss.  Empirical tests for 

landscape thresholds remain uncommon (Homan et al. 2004, Radford and Bennett 2004) but are 

becoming more frequent in bird research including both simulation (Carlson 2000, Flather and 

Bevers 2002, Schrott et al. 2005) and empirical landscape studies (Carlson 2000, Imbeau and 

Desrochers 2002, Cushman and McGarigal 2003, Radford and Bennett 2004, Lindenmayer et al. 

2005, Radford et al. 2005).  Thresholds have been more commonly identified in agricultural 

landscapes than forest ones (Mönkkönen and Reunanen 1999), but this may be due to greater 

difficulty in identifying the distribution of habitat across a forest gradient (Wiens 1994).  Thus, 

identifying timber harvesting thresholds would be of great value in management decisions.      

Landscapes also typically consist of multiple owners, which often have different 

objectives and use different management practices.  Thus, research needs to consider a diversity 

of timber management practices including both even-aged and uneven-aged methods. To date, 

most research has focused on avian response to different types and methods of timber harvests 

including those that compared the effects of even-aged and uneven-aged management to 

unmanaged forests (Weakland et al. 2002, Duguay et al. 2001, Augenfeld et al. 2008), the 

differences between harvest types (Annand and Thompson 1997, Baker and Lacki 1997, Duguay 

et al. 2001, Dellinger et al. 2007, McDermott and Wood 2009), and the effects of modifying 

existing harvesting techniques, for example retaining residual trees in clear-cuts (Brawn et al. 

2001, Harrison and Kilgo 2004).  However, most such studies have been short-term or have only 

focused on bird community response following initial harvest (Keller et al. 2003, Campbell et al. 
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2007).  Therefore, research is needed to determine the response to continual, long-term timber 

management using a variety of harvest types.   

 

Detection Probability 

Point counts, the most common method used to acquire the relative abundances of birds, 

assume equal detectability among both species and individuals, an assumption commonly 

violated.  Variation in detectability can be caused by many factors that influence singing rate and 

activity including the time of day or season (Skirvin 1981, Amrhein et al 2004), breeding stage 

(Wilson and Bart 1981, Gill 2003), geographic region (Kroodsma et al. 1999), developmental 

differences (Titus et al. 1997), mate quality (Moller 1991, Otter et al. 1997), and food and/or 

water availability (Gottlander 1987, Rashotte et al. 2001).  Further, point counts fail to account 

for differences in observer skill and training (Sauer et al. 1994, Diefenbach et al. 2003) or habitat 

acoustical properties that influence the degree to which singing birds can be heard (Richards 

1981, Waide and Narins 1988).    As a result, relative abundances include inherent bias which 

limits their value for comparing between species, for individual species across different habitats, 

or across other factors such as year or observer.   

To overcome this limitation a variety of techniques have been proposed to determine 

detection probabilities such as removal models (Farnsworth et al. 2002), double-observer 

(Nichols et al. 2000), capture-recapture (Karr 1981), and distance sampling (Burnham et al. 

1980, Buckland et al. 1993).  To account for detectability within this study, I performed two 

different removal model analyses to determine differences between experienced and 

inexperienced observers and yearly differences.  First, across all nine years of data, I calculated 

removal model detection probabilities using three time intervals (0-3min, 4-5, and 5-10).  I found 

no observer or year differences, and the null model was selected for most species that failed to 

incorporate heterogeneity in detection among individuals within species.  Second, I calculated 

removal models using the final 3-years of data collected from 2007-2009 using seven intervals 

(0-2min, >2-3, >3-4, >4-5, >5-6, >6-7, and >7-10).  I did detect some observer and year 

differences in the detection probability per minute; however, these differences were negligible 

when calculated over the entire 10-min duration of the count.  

Johnson (2008) found that no effective method of adjustment has yet been designed for 

large-scale, multi-species surveys, a classification under which this study falls, which is further 
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supported by Efford and Dawson (2009) who also found that ―no existing method allows 

effective estimation of population size from point counts‖.  Based on the previous two studies 

and a lack of differences from the removal model results, I chose not to correct the count results 

but to use relative abundances for analyses within the study.  I limited as many sources of bias as 

possible through training of observers, only conducting counts from 0600-1000 in favorable 

condition (no rain, minimal wind), and using 50-m fixed radius.  The 50-m fixed radius counts 

should limit habitat differences as compared to a larger or unlimited radius count.   

 

Statistical Techniques 

 Within this dissertation, I have used some less familiar techniques in analyzing my results 

to account for the inherent messiness of ecological data.  Therefore, I provide more detailed 

background about these techniques to provide a better understanding of their selection and use.  

 

Classification and Regression Trees 

 De’ath and Fabricius (2000) suggested using this modern statistical technique (Breiman 

et al. 1984) to find ecological patterns from data that are complex, unbalanced, contained 

missing data, include non-linear relations, and high-order interactions.  Trees explain the 

variation of a single response variable (relative abundance or nest success in my case) using one 

or more explanatory variables (e.g. landcover, landscape metrics, microhabitat) to split the 

response variable into homogenous groups.  Classification trees are performed on categorical 

response variables and their final groups are characterized by the distribution of the response 

variable; whereas, regression tree are performed on numerical response variables and their 

groups are characterized by the mean.   

The tree is constructed using an iterative splitting process such that each split follows a 

single rule: a single explanatory variable is used to split the response variable into two mutually 

exclusive groups that are as homogenous as possible.  The split is represented as > or < the value 

for the single explanatory variable that maximized the homogeneity of the resulting two groups.  

Homogeneity is measured using either the information index, Gini index, or the twoing index for 

classification trees and the sum of squares about the group means or sum of absolute deviations 

about the median for regression trees (Breiman et al. 1984).  Each successive group is then split 

again using the same rule.  In selecting the final tree, the goal is to partition the response 
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variables into as homogenous groups as possible while keeping the size of the tree (number of 

groups) reasonably small.  The process of selecting the best tree involves building an overly 

large tree and finding ways to reduce its size (pruning).  To select the best tree size, cross-

validation is used to estimate the true (prediction) error for any given tree size.  These estimates 

are then plotted against the tree size, and the best tree is often selected as the one with the 

minimum relative error or alternatively within 1 SE of the minimum.   

To assess fit for each tree, the relative error (the inverse of the variance explained by the 

model) and the cross-validation error are calculated.  Values close to zero are perfect predictors 

while values close to one are poor predictors (De’ath 2002).  Cross-validation error better 

represents the predictive abilities of trees using new data. 

De’ath and Fabricius (2000) identified five advantages of classification and regression 

trees: 1) flexibility to handle a broad range of response types, 2) invariance to transformation of 

explanatory variables, 3) ease and robustness of construction, 4) ease of interpretation, and 5) 

ability to handle missing data.       

    

Non-metric Multidimensional Scaling 

 Non-metric multidimensional scaling (NMDS; Kruskal 1964) is a visual ordination 

technique that represents objects in space based proportionally on a dissimilarity or distance 

matrix based on some attribute.  In my study, avian survey locations are the objects and they are 

related in a distance matrix based on their species composition.  McCune and Grace (2002) 

identified NMDS as the ordination method of choice for characterizing most ecological 

community structure, and Minchin (1987) described this technique as the most robust 

unconstrained (based on species data not constrained by environmental variables) ordination 

technique in community ecology.   NMDS differs from other metric ordinations, in that it deals 

with ordinal not ratio or interval data (Kruskal 1964).  Also, NMDS does not explain variation 

such as eigenvector techniques [principal component analysis (PCA), discriminant function 

analysis (DFA), or canonical correspondence analysis (CCA)] only displaying gradients or 

structure in species composition (Holland 2008).  The advantage is that NMDS makes few 

assumptions about the nature and distribution of the data so that it can be used for non-normal, 

skewed, and non-linear data.  Any distance metric (i.e. Euclidean, Manhattan, Bray-Curtis) can 
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be used to determine the dissimilarity matrix by NMDS unlike other techniques which specify 

specific measures such as covariance or correlation in PCA (Holland 2008). 

 Generally, complex data sets include relations in many dimensions (n-dimensional 

space), but ordinations serve as data reduction techniques to reduce them to a manageable 

number.  For NMDS, the number of dimensions is defined and then the ordination iteratively 

seeks a solution that maximizes the rank order correlation between distances in the dissimilarity 

matrix and the distance in the reduced dimensional space, stopping once an acceptable solution is 

found.  The difference between the true distance in the n-dimensional space and the distance in 

the reduced dimensional space is measured as stress (Kruskal 1964).  To avoid being trapped in 

local minima, multiple random starts are performed in the iterative process to find the global 

minimum (Holland 2008).  To understand this need for multiple starts, think of the ordination as 

a flat surface with a many minor depressions and one large deeper depression and the iterative 

process as a ball.  Dropping the ball at a single point increases the likelihood that the ball may 

come to rest in a smaller depression, not the best solution, but by repeated dropping the ball in 

different locations eventually the ball will come to rest in the deeper depression, the best 

solution.  This process is repeated for higher dimensions to see if stress is appreciably reduced 

and the best solution is selected.  Species can be added to the final solution as a weighted 

average of their position in the ordination. 

 The axes of the NMDS ordination do not represent and are not interpretable as a gradient; 

therefore, to represent the ordination in terms of environmental variables, the entire ordination is 

correlated with the independent variables using vector fitting.  Vector fitting assumes a linear 

relation between the environmental variable and the ordinations using an arrow to represent the 

direction of the gradient and the length of the arrow to represent the strength (Oksanen 2010).  In 

the case of non-linear relations, the environmental variables can be fit using smoothed curves 

(Roberts and Oksanen 2010). 

 

Study Area  

We conducted our research at the Wildlife and Ecosystem Research Forest (WERF), 

located in Randolph County, West Virginia in the unglaciated Allegheny Mountain and Plateau 

region from 1996-1998 (Weakland 2000), 2001-2003 (Dellinger 2005), and 2007-2009 (Fig. 1).  

This 3,413 ha forested area was established in 1994 by Westvaco Corporation to study relations 
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between commercial forest management practices and ecosystem wildlife processes.  In 2002, 

we added the 1,705 ha Panther Run Tract (PRT), also owned by Westvaco Corporation, located 

16 km north of the WERF.  Both properties were sold to Penn Virginia in the winter of 2007.   

Each year of the study, we conducted 50-m fixed radius point counts to quantify the avian 

relative abundance and monitored nests within nest-searching plots to quantify nest success.  The 

study area was divided into three elevational blocks (Panther Run the lowest elevation; block 1: 

mean = 750 m, range = 596-905 m) and the WERF divided into two block of approximately 

equal area along the elevational gradient (block 2: mean = 902 m, range = 696-1107 m; block 3: 

mean = 955 m, range = 816-1094 m; Figs 2-5).  

Regional topography consists of narrow valleys with small, high-gradient streams, and 

steep slopes topped by broad ridges that generally run in a south-southwest to north-northeast 

direction.  The sites receive high annual average precipitation, more than 160 cm, with snow 

common throughout the winter resulting in a cool and humid environment.  Soils are acidic and 

well-drained inceptisols and ultisols.  

Vegetation communities on the study areas vary by elevation.  Red spruce (Picea rubens) 

and eastern hemlock (Tsuga canadensis) characterize stands above 1000 m.  Northern 

hardwoods including red maple (Acer rubrum), American beech (Fagus grandifolia), and black 

cherry (Prunus serotina) dominate at 850–1000 m. Below 850 m, cove hardwood and mixed 

mesophytic plant communities occur with species such as northern red oak (Quercus rubra), 

black birch (Betula lenta), and tulip poplar (Liriodendron tulipifera) dominating the canopy.  

Xeric oak-hickory communities dominated by black oak (Quercus velutina), scarlet oak 

(Quercus coccinea), and hickory (Carya spp.) also occur at low elevations.  Communities of 

eastern hemlock, red spruce and rhododendron (Rhododendron spp.) are found in the riparian 

areas.   

Although primarily mature forest at the study’s inception, the WERF is currently a 

mixture of harvested and mature forest stands as a result of timber management (Fig 6-7).  In 

2002, PRT had comparable proportions of clear-cuts to the WERF, but slightly higher 

proportions of light partial harvests and total harvests.  Forest management was classified into 

three types: silvicultural clear-cuts (Figs. 8, 9), heavy partial harvests including shelterwood cuts 

and deferment cuts (Figs. 10, 11), and light partial harvesting via group selection and high-grade 

harvests of mature sawtimber (Figs. 12, 13). 
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Objectives and Hypotheses 

The purpose of this study was to evaluate the demographic responses of songbird species 

and habitat guilds to landscape habitat change in an actively managed forest.  In turn, this will 

enable the development of forest management guidelines allowing maintenance of bird 

communities in managed landscapes.  Specific objectives were: 

1) Measure the change in landscape metrics over the course of the study and the effects of 

these changes on songbird nest success, relative abundance, and community structure.  

Determine which metrics have the strongest relations to demographic changes and which species 

and guilds are most affected by landscape change. 

 

Ho1:  Landcover and landscape metrics will not vary temporally. 

Ho2:  Songbird abundance, nest success, and community structure will not change in 

response to landscape change. 

Ho3:  All metrics will evenly affect changes in nest success, relative abundance, and 

community structure as a response to landscape changes. 

Ho4:  The responses of all bird species and guilds to landscape changes will be the same. 

Ho5: Early successional, interior-edge, and forest-interior species will respond similarly 

to landscape changes. 

 

2) Identify threshold levels of disturbance from different harvest types after which bird 

abundance increased or decreased. 

 

Ho6: All species and guilds will respond linearly to landscape change. 

Ho7: Bird response to landscape change will be the same for all harvest types. 

Ho8: Thresholds will be the same for early successional, interior-edge, and forest-interior 

species. 

Ho9:  Thresholds will be the same for habitat guilds and species within the guilds. 

 

3) Evaluate breeding bird-habitat relations among a wide gradient of disturbance levels in 

a managed landscape by developing empirically-derived habitat groups for forest-breeding birds, 
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for which we compared their habitat relations to traditional habitat guilds and among bird species 

within habitat groups.  

 

Ho10: Traditional habitat guilds best classify bird species in relation to disturbance from 

timber management. 

Ho11: All metrics will evenly affect changes in relative abundance and nest success for 

empirically-derived habitat groups. 

Ho12: The metrics will influence the empirically-derived habitat groups and species 

within these groups the same. 

Ho13: The metrics will influence relative abundance and nest success the same for each 

empirically-derived habitat group. 

 

4) Determine the response of Canada Warbler abundance and nest success to changing 

forest characteristics at multiple spatial scales as a result of forest management practices 

including clear-cut and partial harvests. 

 

Ho14:  Canada Warbler relative abundance and nest success will not respond to landscape 

change. 

Ho15:  The response of Canada Warbler relative abundance to landcover and metrics will 

not vary over time.   

Ho16: Microhabitat and landscape metrics will be the same at nests found early in the 

study (1996-98) versus nests found late in the study (2007-09).  

Ho17:  Microhabitat and landscape metrics will be the same at successful and 

unsuccessful nests.  

Ho18:  Habitat used by Canada Warblers will be the same as available habitat. 

 

Chapter Overview 

This dissertation has been written in the form of four chapters. The first chapter provides 

an introduction and justification for my research. The second chapter examines the temporal 

response of forest breeding songbirds to continuous, long-term timber management. The third 

chapter evaluates breeding bird-habitat relations among a wide gradient of disturbance levels in a 
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managed landscape.  The fourth chapter examines the response of Canada Warbler abundance 

and nest success to timber management and the conservation implications of timber management 

for this species.  The last three chapters are written in the style of, and will be submitted to the 

following scientific journals: 

Chapter 2—Forest Ecology and Management 

Chapter 3—The Auk 

Chapter 4—The Wilson Journal of Ornithology 
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Figure 1.  The upper inset map shows the location of West Virginia within the black boundary of the Appalachian Bird Conservation 

Region.  The black star locates the study area within West Virginia.
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Figure 2.  Point count locations at the Panther Run Tract, 2002-2003 and 2007-2009.  The 

number indicates the elevational block. 

 

Figure 3. Nest plot locations at the Panther Run Tract.  Solid lined plots are the original plots and 

plots with dashed lines were shifted to that location due to changing landcover.  The number 

indicates the elevational block.
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Figure 4.  Point count locations at the Wildlife and Ecosystem Research Forest in A) 1996-1998 and B) 2001-2003 and 2007-2009.  

The numbers represent the elevational blocks. 
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Figure 5.  Nest plot locations at the Wildlife and Ecosystem Research Forest.  Red lines are the 

nests plots in 1996-1998 and black lines are plots in 2001-2003 and 2007-2009.  Plots with 

dashed lines represent plots that were shifted to that location due to changing landcover.   The 

numbers represent the elevational blocks. 
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Figure 6.  Aerial photo of the Wildlife and Ecosystem Research Forest and surrounding 

landscape in 2007. 
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Figure 7.  Aerial photo of the Wildlife and Ecosystem Research Forest and surrounding 

landscape in 2007 with the annual landcover layer overlayed.
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Figure 8.  New clear-cut harvest at the Wildlife and Ecosystem Research Forest. 

 

Figure 9.  Approximately 2-year old clear-cut harvest with early vegetative regeneration at the 

Wildlife and Ecosystem Research Forest.  
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Figure 10.  New heavy partial harvest at the Wildlife and Ecosystem Research Forest. 

 

Figure 11.  Approximately 2-year heavy partial harvest with early vegetation regeneration 

harvest at the Wildlife and Ecosystem Research Forest.  
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Figure 12.  Light partial harvest in a mature deciduous stand at the Wildlife and Ecosystem 

Research Forest. 

 

Figure 13.  Light partial harvest in a mature mixed forest stand at the Wildlife and Ecosystem 

Research Forest. 
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THRESHOLD RESPONSES OF SONGBIRDS TO LONG-TERM TIMBER 

MANAGEMENT ON AN ACTIVE INDUSTRIAL FOREST 
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Abstract- Forest managers often seek to balance economic benefits from timber harvesting with 

maintaining habitat for wildlife and ecosystem function and other human uses.  Most research on 

the response of bird abundance to active timber management has been short-term, lasting 1-2 

years, creating the need to investigate long-term avian responses that include non-linear 

thresholds during which a small change in habitat results in a disproportionate response in 

abundance and nest success.  Our objectives were to identify temporal relative abundance and 

nest success trends and identify landscape-scale disturbance thresholds for species and habitat 

guilds over a 14 year period and using a variety of harvests (clear-cuts and heavy and light 

partial harvests).  We conducted point counts and monitored nests at the Wildlife and Ecosystem 

Research Forest in Randolph County, WV from 1996-1998, 2001-2003, and 2007-2009.  Early 

successional species increased in relative abundance across all three time periods, while interior-

edge and forest-interior guilds peaked in relative abundance mid-study after which the forest-

interior guild declined.  Of 44 analyzed species, four (9%) declined significantly, 16 (36%) 

increased significantly (only three species among all periods), and 14 (32%) peaked in 

abundance mid-study, of which over the entire study period, nine species had no significant 

change in abundance, four declined, and one increased.  Based on piecewise linear models, 

forest-interior and interior-edge guilds exhibited thresholds at 28% of the landscape, 10% 

harvesting by clear-cuts, and 18% harvesting by light partial harvests, after which abundances 

declined.  Thresholds for the early successional guild were greater for total harvests (42%), 

similar for harvesting by clear-cuts (11%), and smaller for light partial harvests (10%), and 

relative abundances increased after surpassing thresholds albeit at a reduced rate of increase after 

the clear-cut threshold.  Some species differed from their guilds in their threshold values and 

responses to exceeding the thresholds.  Even though relative abundance of most species (82%) 

did not decline as the area affected by timber management increased, implementing management 

at or below our approximate harvest thresholds would reduce the number of declining species by 

half, maintaining higher relative abundances for four species with a net decline in abundance but 

who peaked in abundance mid-study, and maintain higher relative abundances of ten additional 

species.  Implementing management at our thresholds would also prevent the increase in relative 

abundance for seven species and limit the increase in abundance for three species that increased 

throughout the study.   

Keywords: timber management, thresholds, songbirds, relative abundance trends 



41 

 

1. Introduction 

Due to multiple-use demands on forests, forest managers often seek compromises when 

making management decisions.  For example, economic benefits from timber harvesting and 

wood products are usually balanced with maintaining habitat for wildlife and ecosystem function 

and other human uses such as recreation, aesthetic beauty, and improved air and water quality.  

Already defined as a mandate for national forests through the Multiple Use-Sustained Yield Act 

of 1960, the management of these competing interests is important to consider across all public 

forestlands.  Sustainable forestry certification programs ask private landowners (as well as other 

participants) to balance economic and ecological objectives such as conservation of biological 

diversity, maintenance of long-term site productivity, and protection of soil and water resources.  

Because private forestlands are common in the Eastern United States, management options 

should be provided for landowners to make informed management decisions. 

West Virginia is the third most heavily forested state (78%) in the United States with 

over 4.8 million ha of forests.  Of these forested areas, 98% are available for timber harvesting 

(USDA Forest Service 2000) and all counties have a significant component of timberland 

(Childs 2005).  Timber harvesting and related wood products are important economically for 

West Virginia, as they ranked ninth in wood industry share of total state employment and fourth 

in wood industry share of total gross state product (West Virginia Department of Commerce 

2010).  In 2008 approximately 9.5 million m
3
 of timber were harvested in West Virginia 

(Widmann et al. 2010) and when combined with other wood products, resulted in about 45,000 

jobs (West Virginia Department of Commerce 2010) and contributed $4 billion annually to the 

state (Childs 2005).  The economic value of timber and wood products extends beyond West 

Virginia within the central Appalachian region.  In Kentucky, forest industries provide 37,500 

jobs and ships products worth $6.4 billion annually (Thomas et al. 2007).  In Tennessee, forests 

and forest products accounted for 6.6% of the state’s economy, $21.7 billion in economic output, 

and approximately 180,000 jobs (Young et al. 2007). Pennsylvania is the leading U.S. producer 

of hardwoods, over 1 billion board feet annually, and produces over $5.5 billion of forest 

products yearly (Pennsylvania Forest Products Association 2004).  Therefore, timber harvests are 

economically valuable throughout the region.     

At the same time, many species of Neotropical migrant birds have been declining in West 

Virginia, the Allegheny Plateau, and other parts of the eastern United States (Askins et al. 1990, 
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Peterjohn et al. 1995).  Of the 50 mature-forest breeding passerines identified in the Allegheny 

Plateau by the Breeding Bird Survey, 28% are significantly declining, (Sauer et al. 2008).  

Timber harvesting changes the composition and structure of mature forest habitats for bird 

species potentially resulting in edges with higher nest predation rates (Yahner and Scott 1988, 

Hoover et al. 1995), increased competition for resources from edge species (Wilcove and 

Robinson 1990), and reduced nest success within the stands (Bollinger and Linder 1994).  

However, studies in more heavily forested habitats have found no or limited edge effects 

(Rudnicky and Hunter 1993).  Although Brown-headed Cowbird (Molothrus ater) parasitism can 

be a problem in some landscapes (Brittingham and Temple 1983, Robinson 1992), it generally is 

not in heavily forested areas where cowbird populations are relatively low (Annand and 

Thompson 1997, Rodewald and Yahner 2001, Moorman et al. 2002).  In some cases, smaller 

residual forest patches can support less prey biomass for ground foraging bird species (Burke and 

Nol 1998) and gap formation and harvesting can depress arthropod availability (Duguay et al. 

2000, Kilgo 2005).  However, harvests increase the availability of early successional habitats, 

increasing the abundance of early successional specialist and generalist species (Drapeau et al. 

2000, Duguay et al. 2001, McDermott and Wood 2009).  Currently, 18 of 24 early successional 

species are declining across the Allegheny Plateau (Sauer et al. 2008), as their habitats are 

naturally returning to later successional states following human-induced forest changes earlier in 

the century (Hagan 1993, Hunt 1996).  Also, forest-interior bird species and their young do not 

rely strictly on mature forests, but use early successional habitats post-breeding (Vega Rivera 

1998, Pagen et al. 2000, Marshall et al. 2003, Dellinger 2007, McDermott 2007).  Therefore, in a 

forest-dominated landscape harvesting might be an important management tool to support a 

broad array of bird species. 

Long-term research is needed to investigate the response of bird communities to active 

timber management.  Most research has been short-term in nature lasting only 1-2 years 

(Sallabanks et al. 2000).  Short-term studies increase the likelihood that observed changes in bird 

abundance are due to yearly variability and not the management practices under consideration by 

the study or that they reflect only the immediate response to habitat changes (Sallabanks et al. 

2000, Collins 2001).  Long-term research encompasses not only the initial change in habitat but 

the continued successional vegetative response.  Further, avian temporal response to landscape 

habitat change often is not linear in nature (Betts et al. 2007, Betts and Villard 2009), but can 
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incorporate thresholds during which a small change in habitat results in a disproportionate 

response in bird abundance and/or nest success.  Theory has predicted the occurrence of 

landscape thresholds (With and Christ 1995, Fahrig 2003), but until recently few statistical 

techniques were available to identify them (Guenette and Villard 2005, Haggett 2005).  

Empirical tests for landscape thresholds remain uncommon (Homan et al. 2004, Radford and 

Bennett 2004) but are becoming more frequent in empirical bird research (Imbeau and 

Desrochers 2002, Cushman and McGarigal 2003, Radford and Bennett 2004, Lindenmayer et al. 

2005, Radford et al. 2005).  Thresholds have been more commonly identified in agricultural 

landscapes than forest ones (Mönkkönen and Reunanen 1999), but this may be due to greater 

difficulty in identifying the distribution of habitat across a forest gradient (Wiens 1994).  Thus, 

identifying timber harvesting thresholds would be of great value in management decisions.          

Research also needs to consider changes in abundance at larger landscape scales to 

incorporate bird response to the heterogeneous mosaic of habitats created across the landscape.  

Managing bird diversity only at local scales overlooks broader patterns resulting from the 

reduction or change in habitat across the larger landscape (Faaborrg 1980, Gavin 1991).  The 

number of species does not need to be maximized locally, but viable populations need to be 

maintained across the larger scale (Welsh and Healy 1993).   

Finally, landscapes typically consist of multiple owners, which often have different 

objectives and use different management practices.  Thus, research needs to consider a diversity 

of timber management practices including both even-aged and uneven-aged methods.  Varied 

harvest types influence forest characteristics uniquely, resulting in different bird responses.  

Clear-cuts, the complete removal of mature trees, result in habitat for early successional species 

while temporarily displacing mature forest species (Annand and Thompson 1997, Duguay et al. 

2001, Gram et al. 2003, Keller et al. 2003).  Heavy partial harvests, including shelterwood and 

deferment harvests, create habitat for early successional species, while retained overstory trees 

provides some benefit for mature forest species (Annand and Thompson 1997, Rodewald and 

Yahner 2000, Augenfeld et al. 2008, McDermott and Wood 2009).  Light partial harvests, 

including single-tree selection, diameter-limit cuts, and high-grading harvests, create forest 

openings similar to natural disturbances (Greenberg and Lanham 2001, Faccio 2003) while 

maintaining trees in a variety of age classes including older mature trees.  By retaining many 

characteristics of mature forests, light partial harvests support mature forest bird species 
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(Weakland et al. 2002, Gram et al. 2003, Campbell et al. 2007, Holmes and Pitt 2007) while 

increasing abundance of interior-edge species relying on canopy gaps (Lent and Capen 1995, 

Robinson and Robinson 1999, Greenberg and Lanham 2001, Weakland et al. 2002). 

Our objective was to determine the long-term response of the avian community in a 

heavily forested landscape managed with a diversity of timber management practices. We 

identified 1) species and habitat guilds with significantly increasing or decreasing relative 

abundance and nest success trends, 2) threshold levels of disturbance from different harvest types 

after which relative abundance increased or decreased, and 3) nest success differences over a 14-

year period. 

 

2. Methods 

2.1 Study Area 

We conducted our research on the Wildlife and Ecosystem Research Forest (WERF), 

located in Randolph County, West Virginia in the unglaciated Allegheny Mountain and Plateau 

region, from 1996–1998 (Weakland 2000), 2001–2003 (Dellinger 2005) and 2007–2009. This 

3,413 ha forested area was established in 1994 by Westvaco Corporation to study the relations 

between industrial forest management practices and ecosystem processes and wildlife.  The 

property was sold to Penn Virginia in the winter of 2007.  Elevations are 734–1180 m and 

regional topography consists of narrow valleys with small, high-gradient streams, and steep 

slopes topped by broad ridges that generally run in a south-southwest to north-northeast 

direction.  The site receives high annual average precipitation, more than 160 cm per year, with 

snow being common throughout the winter. As a result, the environment is cool and humid. Soils 

at the study area are acidic and well-drained inceptisols and ultisols.  

Vegetation communities on the WERF vary by elevation.  Red spruce (Picea rubens) and 

eastern hemlock (Tsuga canadensis) characterize stands above 1,000 m. Northern hardwoods 

including red maple (Acer rubrum), American beech (Fagus grandifolia), and black cherry 

(Prunus serotina) dominate at 850–1,000 m. Below 850 m, cove hardwood and mixed 

mesophytic plant communities occur with species such as northern red oak (Quercus rubra), 

black birch (Betula lenta), and tulip poplar (Liriodendron tulipifera).  Xeric oak-hickory 

communities dominated by black oak (Quercus velutina), scarlet oak (Quercus coccinea), and 

hickory (Carya spp.) also occur at low elevations.  Communities of eastern hemlock, red spruce 
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and rhododendron (Rhododendron spp.) are found in the riparian areas surrounding streams.  

Non-forest cover on the study area is limited.  Grassy cover (1.9%) resulted from road edges, gas 

well openings, and log landings. Additionally, roads covered 1.5%, streams covered 0.1%, and 

human development covered <0.01%. 

At the study’s inception, the WERF was primarily a 70- to 90-year-old even-aged mature 

forest that originated following logging during 1916–1928 (Keyser and Ford 2005).  Since that 

time, much of the WERF has been actively managed using even-aged timber harvesting in the 

form of clear-cutting, shelterwood cuts, and deferment cuts, and uneven-age or partial harvesting 

via single-tree selection and high-grade harvests of mature sawtimber (Dellinger et al. 2007).  

Initial management included a balanced mixture of even and uneven-aged methods, although in 

2007, management shifted to primarily uneven-aged techniques.   

 

2.2 Point Counts 

We conducted 50-m fixed-radius point counts (Hutto et al. 1986) at locations selected 

systematically from available points on a 241 m by 241 m grid established by Westvaco during a 

1995 forest inventory.  We surveyed 118 points from 1996–1997, 116 points in 1998, and 108 

points from 2001–2003 and 2007–2009.  The location of 40 points changed from 1998 to 2001 

and two points were not sampled in 1998 due to limited access because of active timber harvests.  

Sample points were 241 m or 482 m apart and each point was marked with a 1 m by 1 cm 

aluminum stake and uniquely numbered. 

Each year from 29 May to 4 July, birds were sampled at every point twice, once by each 

of two observers proficient in bird identification and distance estimation, with about three-week 

intervals between surveys.  We conducted counts beginning at 0600 and ending no later than 

1000 on mornings with suitable weather conditions (i.e., no rain, wind ≤4 on the Beaufort scale).  

We recorded all individuals heard or observed within a 10-minute time span and noted whether 

each individual was within 50 m, the type of detection (song, call, visual, or fly-over), and the 

sex if possible.  Recently fledged young and flyovers were excluded from analyses.  If a bird 

could not be identified by species, the observer attempted to locate and identify the individual 

after completing the count.  Relative abundance at each survey station was the maximum count 

from the two samples each year.   
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2.3 Nest Searching and Monitoring 

We searched for and monitored nests for 11 focal species that were relatively common 

within the study area and represented a diversity of nesting habitats and heights. We selected two 

forest-interior species, Blue-headed Vireo (Vireo solitarius) as a subcanopy nester and Hermit 

Thrush (Catharus guttatus) as a ground nester.  We selected five interior-edge species, American 

Robin (Turdus migratorius) and Wood Thrush (Hylocichla mustelina) as subcanopy/shrub 

nesters, Red-eyed Vireo (Vireo olivaceus) as a subcanopy nester, and Dark-eyed Junco (Junco 

hyemalis) and Veery (Catharus fuscescens) as ground nesters.  Finally, we selected four 

edge/early successional species, Chestnut-sided Warbler (Dendroica pensylvanica) as a ground 

nester; and Eastern Towhee (Pipilo erythrophthalmus), Gray Catbird (Dumetella carolinensis), 

and Indigo Bunting (Passerina cyanea) as shrub nesters. 

In 1996–1998, Weakland (2000) monitored nests on eight 40 ha nest-searching plots 

distributed across the study area.  Plots sampled primarily mature forest, as few harvests were 

present on the study area, but included approximately 40 ha of light partial harvests and 25 ha of 

2-aged harvests.  In 2001–2003 (Dellinger 2005) and 2007–2009, we placed twelve nest plots, 

each approximately 20 ha in area, throughout the study area.  We placed half the plots in areas of 

>50% predominantly mature, closed-canopy hardwood forest, while the other half were placed in 

areas of >50% early successional vegetation.  All plots were orientated parallel to the slope to 

reflect the steep nature of the landscape and ensure they were not primarily in either ridges or 

valleys. 

We searched each plot every three days, spending equal time in plots representing each 

habitat type to minimize potential sampling bias in the location of nests found.  Additionally, we 

supplemented this nest searching with nests found at point count locations or while traveling to 

and from the counts.  We used multiple techniques to locate nests including both systematic 

searches and behavioral observations.  Once located, we checked each nest a minimum of every 

three days until the nest attempt was complete and identified as either successful or failed.   

 

2.4 Landcover  

We created a digital landcover layer for each year of the study in which bird data was 

collected, subdividing cover into ten types: clear-cuts (harvests with no residual trees), heavy 

partial harvests (clear-cuts with residual trees plus deferment and shelterwood cuts), light partial 
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harvests [single-tree selection, diameter limit, and high-grade cuts with approximately 14-16 

m
2
/ha basal area (Dellinger 2007)], mature deciduous forest, mature mixed forest, herbaceous, 

shrub/scrub (mostly roadside), water, road, and development.  We delineated cover types and 

stand boundaries annually at the beginning of each field season using 1 m resolution National 

Agriculture Imagery Program (NAIP) 1:10,000 scale aerial orthophotos, harvest shapefiles 

provided by the timber companies, and Universal Transverse Mercator (UTM) coordinates of 

habitat types measured in the field.  From yearly landcover layers, we used Fragstats (McGarigal 

et al. 2002) to calculate the total area (ha) for five landcover classes: clear-cut, heavy partial 

harvest, light partial harvest, mature deciduous forest, and mature mixed forest.  We also used 

Fragstats calculated core area (areas >50m from an edge) for mature forest (mature deciduous 

and mature mixed forest patches combined) and early successional cover (combined patches of 

clear-cuts, heavy partial harvests, and shrub/scrub cover).   

 

2.5 Data Analysis  

2.5.1 Change in Relative Abundance 

To analyze changes in abundance, we determined the average relative abundance within 

each 3-year period (1996–98, 2001–03, and 2007–09) for all individual bird species with >10 

detections, the natural break in the data, and for three habitat guilds (forest-interior, interior-

edge, and early succession) as described by Whitcomb et al. (1981), Ehrlich et al. (1988), and 

based on observations from other avian research in West Virginia (Appendix A).  To account for 

detectability across habitats we only included birds within a 50-m radius and conducted removal 

model analysis (Farnsworth et al. 2002) comparing year and observer effects, for which we 

found no differences.  For the relative abundance data we analyzed means across the three 

different 3-year periods rather than the nine individual years to highlight long-term trends and 

minimize yearly variability, assuming differences among 3-year periods were greater than 

differences within a 3-year period.  We used the maximum value for each species or guild from 

the two counts at each survey location.  Within the same 3-year periods, we analyzed species 

richness, measured as the maximum number of species/point over the two surveys each year, and 

the Shannon diversity index (Shannon 1948).  We tested for differences in relative abundance 

and diversity among the three 3-year periods using the Kruskal-Wallis test (Kruskal and Wallis 

1952) due to non-normal data with α = 0.05.  For significant results, we conducted Dunnett-
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Tukey-Kramer multiple comparison tests using package DTK in Program R (R Core 

Development Team 2009), identifying pairwise comparisons as statistically different if the 

confidence limit for the difference in mean relative abundance did not include zero.  To depict 

the range of total harvests for which the species was most abundant, the total harvests 

corresponding to the 3-year period or periods with the highest relative abundance were plotted 

versus the total range of harvests.  

  

2.5.2 Harvest Thresholds  

We identified harvest thresholds, a point at which a small increase in the percent of area 

in a particular harvest type causes a disproportionate change in relative abundance, across the 

nine years of data using piecewise linear models (Toms and Lesperance 2003) from the SiZer 

package in program R.  Given that the percent harvests did not vary by a set amount annually, we 

were limited in the choice of other threshold techniques such as Bayesian analysis of change 

point (Barry and Hartigan 1993), which assume an equal interval on the x-axis, and by default 

chose piecewise linear models.  Using annual relative abundance as the response variable, we 

developed three threshold models (total, clear-cut, and light partial) for each of the three habitat 

guilds and 11 focal species for which we conducted nest searches.  The predictor variable for the 

models for each guild and species was percent of the landscape harvested (clear-cuts, heavy and 

light partial harvests combined), percent of landscape harvested using clear-cuts, or percent of 

landscape harvested using light partial harvests in each year.  Models for each harvest type were 

developed separately from the other harvest types, using only the percent harvest for one type, 

and therefore the threshold for each harvest type should be interpreted individually.  We did not 

construct a model for heavy partial harvests because they were not evenly applied throughout the 

study and had the smallest total area harvested of the three types (6% of the landscape by 2007).  

For each model, we defined the threshold as the percent harvest at which the slope (relative 

abundance of each guild species/percent harvest) of the linear model changed and calculated 

95% confidence intervals for the threshold estimate by resampling the data using 1000 bootstrap 

samples.  We measured the relative abundance slope, which represents the change in relative 

abundance associated with a changed from 0-100% of the landscape harvested, before and after 

the threshold.  For example, a slope equal to two would indicate an increased abundance of two 

birds/point when the percent harvest increased from 0-100% of the landscape.  The first slope 
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represents the rate of change in abundance before reaching the threshold and the second slope 

represents the response of the rate of change after exceeding the threshold.  The second slope can 

change in direction of response (positive to negative or vice-versa) and magnitude (reduced or 

increased rate of change).        

 

2.5.3 Nest Success   

We calculated nest success for each focal species within each 3-year time period of the 

study (1996–1998, 2001–2003, and 2007–2009) using the modified Mayfield method (Mayfield 

1961, 1975, Johnson 1979).  Nests within each 3-year period were combined to increase sample 

size and because we reasoned that nest success within each 3-year period was more similar than 

nest success among the three time periods.  We classified a nest as successful if at least one 

young fledged.  If a nest failed between checks, the median day was used in calculating exposure 

(Mayfield 1961) and for nests of unknown fate, we calculated exposure to the last successful nest 

check and considered the nest successful (Manolis et al. 2000).  We used program CONTRAST 

(Hines and Sauer 1989) to test for difference among these 3-year nest success groups with Chi-

square tests.   

 

3. Results 

3.1 Landcover  

During 1996–2007, forests at the WERF shifted from primarily mature forest (93% in 

1996) to a mix of mature forest (34% in 2009) and early successional (i.e., harvested) habitats 

(Table 1).  Since 1996, mature deciduous forest area decreased 64%, mature mixed forests 62%, 

and core mature forest 83%.  In contrast, area in clear-cut and heavy partial harvests increased 

until 2007, when harvesting techniques shifted to primarily light partial harvests; the latter 

increased throughout the study.  In 2008, the cover of early successional habitats surpassed the 

cover of mature forest.  Core early successional habitat was minimal in 1996 but increased to 73 

ha in 2009.    

 

3.2 Relative Abundance and Diversity 

 We detected 76 species during the study; 44 had ≥10 detections and were used in analysis 

(See appendix B for annual relative abundance for all species).  Of these 44 species, 9% (4 
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species) declined significantly from 1996–1998 to 2001–2003 (Table 2).  In contrast, 16 species 

(36%) increased in relative abundance during some portion of the study, six from 1996–1998 to 

2001–2003, seven from 2001–2003 to 2007–2009, and three among all periods.  The relative 

abundance of 14 species (32%) peaked mid-study, 2001–2003, nine of which had no significant 

change in abundance between 1996–1998 and 2007–2009, four species declined, and one species 

increased.  Ten species had no significant differences in relative abundance among the 3-year 

periods.  From the first to the third 3-year periods (net change in relative abundance excluding 

2001-2003), relative abundance for 17 species (39%) increased, eight (18%) decreased, and 19 

(43%) remained the same.  The annual change in relative abundance for declining species ranged 

from 1.5–6.3% (BLBW: -6.3%, DOWO: -5.4%, CAWA: -4.8%, BHVI: -3.3%, MAWA: -2.7%, 

SCTA: -2.4%, REVI: -1.5%; no counts of GCKI after 2003).   

Of the three habitat guilds, only early successional species increased in relative 

abundance across all three time periods (Table 2). The remaining guilds peaked in relative 

abundance during the middle period from 2001–2003.  Only the forest-interior guild had the 

lowest relative abundance in 2007–2009.  Based on these results (Table 2), Figs 2-4 depict the 

ranges of total harvests for which we observed the highest relative abundance for species by 

habitat guild.  These harvest value ranges are determined based on the maximum and minimum 

harvest values from the 3-year period or periods with the highest relative abundance.  

Species richness (H = 95.7, p <0.001) and diversity (H = 80.2, p <0.001) changed 

significantly across the three time periods.  Both metrics significantly increased from the first to 

second period, reaching the highest diversity in 2001–2003 (Fig 1).  These metrics then declined 

in 2007–2009 but remained significantly higher than the first three years, 1996–1998.  We first 

detected five of our analyzed species (BWWA, COYE, FISP, SOSP, YBCU) in 2001–2003 

species and detected nine additional new species for the first time during this period (BAOR, 

BBCU, BGGN, CAWR, CHSP, GCFL, GWWA, MODO, RBWO).  We also detected three new 

species in 2007–2009 (ALFL, BRTH, YBCH).  All new species were interior-edge or early 

successional species. 

  

3.3 Timber Harvest Thresholds 

Forest-interior and interior-edge guilds exhibited similar threshold patterns with 

thresholds occurring at 28% of the landscape harvested, 10% harvested by clear-cuts, and 18% 
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harvested by light partial harvests (Table 3).  Appendix C provides a visual depiction of sample 

piecewise linear regression output representing the major threshold patterns including difference 

in the direction and magnitude of the response.  The relative abundance slopes for both guilds 

changed from positive to negative once the thresholds were surpassed (Appendix C.1), except for 

the light partial harvest threshold for the interior-edge guild, which remained positive after the 

threshold but was reduced (Table 3, Appendix C.2).   

Early successional guild thresholds were greater than other guilds for total harvest (42%), 

about the same as other guilds for harvesting by clear-cuts (11%), and smaller for harvesting by 

light partial harvests (10%).  Slopes before and after thresholds were positive, but became 

steeper after surpassing overall harvest (Appendix C.3) and light partial harvest thresholds, 

indicating a more rapid increase in relative abundance.  However, slope was reduced in steepness 

for this guild above the clear-cut threshold.  Early succession threshold confidence intervals were 

broader than forest-interior or interior-edge confidence intervals (Table 3).   

 Thresholds of some species agreed with their guild results, but other species differed in 

their threshold value and response to exceeding the threshold (Table 3).  Blue-headed Vireo 

threshold levels were greater for total harvest and clear-cut but lower for light partial harvest 

than the forest-interior guild and the direction of the response was reversed (Appendix C.4).  

While the direction of the response for Red-eyed Vireo and Veery was the same as the interior-

edge guild, threshold values were lower for Red-eyed Vireo and higher for Veery.  In contrast, 

American Robin and Wood Thrush differed in both their threshold value and response.  

Chestnut-sided Warbler had lower threshold values and an opposite response to the clear-cut 

threshold than did the early succession guild.  Gray Catbird slopes indicated a minimal negative 

shift as a result of surpassing any of the thresholds.  

The clear-cuts threshold for Wood Thrush and Indigo Bunting (Table 3) occurred at the 

highest harvest percentages measured near the end of the study (Appendix C.5).  Without further 

data we cannot extrapolate this pattern and therefore consider neither to have a threshold within 

the range of values we measured.   

 

3.4 Nest Success 

We located and monitored 402 nests of 11 focal species; 129 in 1996–1999, 175 in 1996–

1999, and 98 in 2007–2009.  We found not cowbird parasitism of any nests.  Nest success 
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differed among the 3-year periods for four focal species (Table 4).  Dark-eyed Junco success 

declined from the first to the second time period.  Indigo Bunting and Veery success declined 

from the second to the third time period.  Wood Thrush success declined from the first to the 

third time period.   

 

4. Discussion 

As a result of continuous timber management, the habitat within our study area changed 

from primarily mature forest (92%) in 1996, to 61% harvested habitats and 34% mature stands in 

2009.   This change occurred as the result of multiple harvest types with light partial harvests 

most prevalent, especially after 2007, but with clear-cuts and to a lesser degree heavy partial 

harvests.  In response to this broad range of habitat conditions, we identified a variety of 

temporal responses by guilds and species that often differed in direction, magnitude, and timing. 

 

4.1 Declining Trends 

For species with overall declining relative abundance (8 species), we observed two 

different patterns.  Half the species declined from 1996–1998 to 2001–2003, indicating an 

immediate decline, but displayed no response to further harvesting.  The other half had an initial 

short-term positive response to harvesting but subsequently declined in abundance, resulting in 

abundances lower than those of 1996–1998.  The majority of the species in the declining group 

were forest-interior (n=6) with a few interior-edge species (n=2).   

The initial decline associated with the first type of response reflects findings of declining 

relative abundance of late-successional bird species due to even-aged harvests (Annand and 

Thompson 1997, Duguay et al. 2001, Gram et al. 2003, Keller et al. 2003).  The four species 

within this group (BHVI, BLBW, CAWA, and GCKI) all tended to be higher elevation species 

that preferred mixed mature forests.  CAWA, the only forest-interior species in this group, has 

been found to be a higher elevation disturbance specialist and may have declined during the 

study in response to a larger, region-wide decline (Becker unpublished).  The lack of continued 

declines in the other three species from 2001–2003 through 2007–2009 might be related to the 

change in harvesting techniques to primarily light partial harvests that have been shown to 

support mature forest species (Gram et al. 2003, Campbell et al. 2007, Holmes and Pitt 2007).   
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We observed the second declining pattern for two forest-interior species (DOWO, 

MAWA) and two interior-edge species (REVI, and SCTA) that peaked in relative abundance 

mid-study but ultimately declined below 1996–1998 levels.  All were found at lower elevations 

in predominantly mature deciduous forests.  This temporary increase may have been a response 

to the creation of canopy gaps by light partial harvests that provided more habitat for interior-

edge species (Lent and Capen 1995, Robinson and Robinson 1999, Greenberg and Lanham 

2001) and the creation of early successional habitats used by mature forest species during the 

post-breeding period (Pagen et al. 2000, Keller et al. 2003, Marshall et al. 2003, McDermott 

2007).  The eventual declines indicate a threshold above which these benefits were outweighed 

by lost habitat.   

These two different declining patterns also may explain threshold differences among 

species and guilds.  Blue-headed Vireo relative abundance followed the first response type, 

immediate decline, while its forest-interior guild followed the second, short-term increase.  The 

guild was strongly influenced toward the second pattern by the inclusion of other guild members 

with this pattern.  Interestingly, the light partial harvest threshold (14%) for BHVI occurred 

earlier, between 1998 and 2001, than total harvest (40%) and clear-cuts thresholds (18%), 2007, 

when timber management shifted primarily to light partial harvests.  This suggests that light 

partial harvests might have mitigated the decline in BHVI abundance.   

The forest-interior and interior-edge guilds and many members of these guilds had 

thresholds that reflected a mid-study peak in relative abundance.  Those guilds included the four 

species with the second declining trend mentioned above (DOWO, MAWA, REVI, and SCTA), 

but also nine species that returned to relative abundance levels similar to 1996–1998 and one 

species that remained significantly higher than at the start of the study.  For these guilds and 

species, relative abundance increased until reaching their thresholds (27–29% for total harvest, 

8–10% for clear-cuts, and 17–18% for light partial harvests) and subsequently declined (Table 

3).  These thresholds occurred with conditions that were present five to seven years into the 

study, 2001–2003; however, because bird relative abundance data were not collected in either 

1999 or 2000, we cannot be sure the actual threshold did not occur in these years.  Therefore, by 

including values greater than the percent harvests measured in 1998, the threshold could range 

from 15–29% total harvest, 3–10% clear-cuts, and 11–18% light partial harvests.  Species from 

both guilds had similar thresholds and included Dark-eyed Junco, Hermit Thrush, Red-eyed 
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Vireo, and Veery.  We observed variation in these thresholds for a number of species.  For 

instance, the threshold conditions for Red-eyed Vireo (17% total harvest, 6% clear-cut, 11% light 

partial harvest) occurred approximately a year earlier than that for the guilds, while the Veery 

threshold (32% total harvest, 13% clear-cut, 20% light partial harvest) occurred approximately a 

year later.   

 

4.2 Increasing Trends   

More bird species increased in relative abundance (39%, 17 species) than decreased, with 

early successional species (n=9) being the primary beneficiaries.  The relative abundance of all 

early successional species increased or remained the same.  Early successional species have been 

found to benefit from even-aged harvests, both clear-cuts and heavy partial harvests, (Annand 

and Thompson 1997, Duguay et al. 2001, Gram et al. 2003, Keller et al. 2003 Rodewald and 

Yahner 2000, Augenfeld et al. 2007) and uneven-aged harvests if the gap size is large enough.  

Besides early successional species, we also identified seven interior-edge species (AMRE, 

AMRO, CEDW, DEJU, HOWA, NOFL, WOTH) and one forest-interior species (BAWW) that 

increased in relative abundance. 

While many species increased in relative abundance, we found that the timing of the 

increase varied.  From 1996–1998 to 2001–2003, six species (AMGO, AMRO, CEDW, GRCA, 

HOWA, NOFL) increased in relative abundance and then subsequently their relative abundance 

stabilized.  This group, which included a greater percentage of forest-interior species, had a more 

immediate response to timber management but exhibited no response to continued management.  

In contrast, the relative abundance of seven species (AMRE, BAWW, BHCO, EATO, FISP, 

SOSP, WOTH) was initially stable, but then increased from 2001–2003 to 2007–2009.  The 

delayed increase could be the result of a lag in the development of suitable early successional 

habitat or the need for larger proportions of the landscape in early successional habitat.  Three 

early successional species (COYE, CSWA, INBU) increased in relative abundance in each 3-

year time period, exhibiting a continued benefit to further timber harvests. Finally, DEJU peaked 

in relative abundance mid-study but remained more abundant than at the beginning of the study, 

indicating a stronger intermediate response to timber management but that continued 

management while not the most beneficial, was an improvement over no harvesting.  An 

additional 12 new species (2001–2003: BAOR, BBCU, BGGN, CAWR, CHSP, GCFL, GWWA, 
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MODO, RBWO; 2007–2009: ALFL, BRTH, YBCH), that were not included in the analysis, 

were not detected until later in the study indicating a delayed response to timber management of 

at least 5–10 years.  These species, interior-edge or early successional species, were either 

initially scarce and not detected until abundance began to increase as a result of timber 

management or colonized the study area once harvesting began.  WEWA, a forest-interior 

species,      

Although, increased relative abundance of Brown-headed Cowbirds may raise concerns 

about future increases in nest parasitism, past studies have found parasitism to be relatively low 

in highly forested habitats such as our study area (Annand and Thompson 1997, Rodewald and 

Yahner 2001, Duguay et al. 2001, Moorman et al. 2002).  In our study we found no effects of 

parasitism, as cowbirds did not parasitize any of the 402 nests we monitored.  Additionally, we 

observed no change in the relative abundance of avian nest predators (AMCR, BLJA) and a 

decline in forest-breeding raptors (BWHA, COHA, SSHA; Becker unpublished) as a result of 

timber management. 

Increasing trends in relative abundance were evident for the early successional guild and 

its members, as well as for American Robin and Wood Thrush that contradicted their guild 

response.  Both these species benefitted from continued increases in light partial harvests, 

although the Wood Thrush thresholds (49% total harvest, 14% light partial harvest) were lower 

than those for American Robin (56% total harvest, 31% light partial harvest).  The inclusion of 

interior-edge species benefitting from increased light partial harvests for the interior-edge 

thresholds explains why the light partial harvest slope is reduced but remains positive after 

passing the threshold for the guild, while the slope is negative for total harvest and clear-cuts. 

For the early successional guild, slope increased in steepness after the threshold, 

indicating a more rapid increase in relative abundance.  The total harvest threshold ranged from 

42–51% of the landscape, values that were not observed until 2007–2008.  During this period, 

we identified three new species (Alder Flycatcher, Brown Thrasher, and Yellow-breasted Chat) 

within the study area.  Timing within this guild varied by species, as Chestnut-sided Warbler 

followed a similar pattern, but the threshold occurred earlier (1998) and at a lower percent total 

harvest (15%).   

The relative abundance threshold of early successional species was influenced by harvest 

type.  We found little response to small amounts of light partial harvests.  All species had a 
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minimal or slightly negative slope until surpassing the threshold of 7–11% light partial harvest.  

However, the clear-cut threshold differed among the species.  For the guild and Eastern Towhee, 

the most rapid increase in relative abundance occurred from 0 to 11% clear-cuts, after which the 

slope remained positive but decreased in steepness.  As a result, even though the guild continued 

to increase in relative abundance, the greatest benefit occurred when the first 10% of the 

landscape was harvested by clear-cuts.  In contrast, Chestnut-sided Warbler and Indigo Bunting 

increased throughout the study as percent clear-cuts increased.  Therefore, the early successional 

guild includes at least two types of species, those which benefitted most from the initial harvests 

and those which continued to benefit from long-term harvesting.      

 

4.3 Species Diversity 

Past research has shown that species diversity across the larger landscape increases in 

response to both uneven-aged (Annand and Thompson 1997, Robinson and Robinson 1999, 

Campbell et al. 2007) and even-aged harvests (Annand and Thompson 1997, Baker and Lacki 

1997) and overall disturbance (Mitchell et al. 2006, 2008). Increased diversity is attributed to the 

increase in species using forest gaps and early successional habitats (Lent and Capen 1995, 

Robinson and Robinson 1999, Greenberg and Lanham 2001) and greater overall variation in 

forest age (Mitchell et al. 2006).  We found similar results with species richness (species/point) 

and Shannon diversity, greatest from 2001–2003.  Despite declining from 2001–2003 to 2007–

2009, diversity remained greater than at the beginning of the study.  Therefore, while timber 

harvests resulted in greater species diversity across the landscape, the decline in diversity in the 

last 3-year period indicates there are limits to this increase after which the returns are diminished.  

Our results are consistent with the intermediate disturbance hypothesis (Connell 1978), which 

states that diversity is maximized when disturbance is neither too rare nor too frequent. 

 

4.4 Regional Trends 

 We also considered our temporal trends in respect to the larger region-wide trends within 

the Allegheny Plateau using BBS trends from 1980-2007 (Sauer et al. 2008) to isolate the effects 

of timber management from other confounding regional factors.  A majority of our trends (80%) 

contradicted region-wide patterns.  Twelve of 13 significantly declining species (AMRO, 

BAWW, BHCO, BLJA, CEDW, EAWP, FISP, INBU, RBGR, SOSP, VEER, and WOTH), 
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seven of 10 non-significantly declining species (ACFL, AMCR, AMGO, AMRE, COYE, EATO, 

and GRCA), 13 of 16 significantly increasing species (BHVI, BLBW, BTBW, HETH, MAWA, 

OVEN, PIWO, REVI, RBNU, TUTI, WBNU, WIWR, and YBCU), and three of five non-

significantly increasing species (BCCH, HOWA, and MOWA) contradicted regional abundance 

patterns.  The differences strongly support different temporal trends within our study area due to 

timber management than across the rest of the region.  The nine exceptions were AMGO, 

CAWA, CSWA, DEJU, DOWO, GCKI, HOWA, NOFL, and SCTA for which our observed 

trends coincided with regional patterns.  Since a large proportion of the species’ trends run 

counter to regional patterns, the trends are probably stronger than our data suggests.  

 

4.5 Priority Conservation Species 

We documented trends for 11 priority bird species for conservation as defined by 

Partner’s in Flight within the Mid-Atlantic Ridge and Valley physiogeographic region, which 

includes the West Virginia portion of the Allegheny Plateau (Rosenberg 2003).  This designation 

accounts for global threats to the species, high concern for regional or local populations, or 

responsibility for conserving large or important populations of the species.  Timber management 

had minimal negative effects on the relative abundance of most priority species.  We found 

declining relative abundance trends for only three species (BLBW, CAWA, and SCTA) of which 

two (CAWA, SCTA) had corresponding regional declines based on BBS results from 1980-2007 

(Sauer et al. 2008).  Only the decline of BLBW contradicted the region-wide increase.  Of the 

remaining eight species, five increased in relative abundance (WOTH, HOWA, and all three 

shrub species: EATO, FISP, INBU).  The relative abundance of the final three species did not 

change (ACFL, BTBW, EAWP), although BTBW relative abundance did temporarily increase.  

Additionally, we detected three new priority species (BRTH, GWWA, YBCH) that colonized the 

study area as a result of timber management.     

Beyond individual species, timber management improved the total conservation index 

value of the study area (Nuttle et al. 2003).  The conservation value was calculated by 

multiplying the relative abundance of each analyzed bird species within a given 3-year period by 

the species’ PIF priority score and then summing the conservation value for all species within the 

3-year period.  Similar to patterns of community richness, the total conservation index value was 
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greatest from 2001-2003 (118.8), and while it was reduced from 2007-2009 (99.1) remained 

greater than the initial conservation value from 1996-1998 (81.1).    

  

4.6 Nest Success 

While relative abundance is important in identifying habitat use, nest success must also 

be considered as an indicator of habitat quality.  The effects of timber management on nest 

success have not been studied as much as the effects on relative abundance, and most researchers 

have reported few differences in success.  Robinson and Robinson (2001), Moorman et al. 

(2002), and Gram et al. (2003) found uneven-aged harvests had little overall effect on 

productivity, while Duguay et al. (2001), Moorman et al. (2002), and Gram et al. (2003) found 

the same for even-aged harvests.  We also found few differences in nest success.  Of the 11 focal 

species, only Wood Thrush nest success was significantly different (declined) from the 

beginning of the study (1996–1998) to the end (2007–2009), which contrasted with an increase 

in relative abundance.  We also identified significant short-term nest success declines in Dark-

eyed Junco and longer-term declines in Veery and Indigo Bunting.  However, our results were 

hampered by the small sample sizes within each 3-yr period for many of the species.  The small 

sample sizes limited our ability to detect significant differences and increased the influence of a 

small set of nests for a given species.  We recommend in future research to select a smaller group 

of species to ensure greater sample for each species. 

     

4.7 Management Implications and Conclusions 

 In managing for avian diversity, no single approach can provide the required habitat for 

all species at all times.  Instead, a diversity of management techniques and tools, including both 

even-aged and uneven-aged timber management, is the most effective approach for enhancing 

species richness and diversity (Haulton 2008).   By increasing habitat heterogeneity using a 

variety of silvicultural practices, managers can increase avian diversity on the landscape (Loehle 

et al. 2005, Mitchell et al. 2006), but also must avoid excess heterogeneity that may negatively 

affect diversity (Mitchell et al. 2006). 

Overall, we found that of the 44 species analyzed, 39% increased in relative abundance, 

18% decreased in abundance, and 43% had no change.  Thirty-two percent of the species had 

their greatest abundance in 2001–2003, apparently a short-term response to timber harvest.  In 
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general, the relative abundance of 82% of the species did not decline as the area harvested 

increased to over 60% of the landscape, indicating a net loss of habitat but minimal reduction in 

habitat quality.   

Implementing management at or below our approximate harvest thresholds (30% total 

harvests, 10% clear-cuts, and 20% light partial harvests), the number of declining species would 

be reduced by half, maintaining higher relative abundance for four species who peaked in 

abundance mid-study but had a net decline in abundance, as well as maintaining higher relative 

abundances of ten additional species, which peaked in relative abundance mid-study but 

ultimately had no change or increased but less than peak abundance.  Implementing management 

at our thresholds would also prevent the increase in relative abundance for seven species and 

limit the increase in abundance for three species that increased throughout the study.  Overall, 

management at our thresholds would maintain higher abundance for three species of 

conservation concern (BTBW, EAWP, SCTA), prevent an increase in relative abundance for 

three species (EATO, FISP, WOTH), and limit the increase for INBU.  We note that these 

thresholds are only applicable to similar landscapes over an equivalent time period, as we cannot 

predict the future bird response to continued harvesting and stand maturation.  Because bird data 

was not collected every year from 1996-2009, greater uncertainty exists for threshold harvest 

values occurring the year before or after such a gap.     

Some species will still decline but the inclusion of more light partial harvests could 

minimize the decline for some species such as Blue-headed Vireo and increase the relative 

abundance of species such as American Robin and Wood Thrush.  Increasing the percentage of 

light partial harvest could also increase total harvest threshold values as this type of harvest has 

been found to support more mature forest bird species than even-aged harvests (Gram et al. 

2003, Campbell et al. 2007, Holmes and Pitt 2007).   

A threshold of 10% clear-cuts includes the most beneficial period for the early 

successional guild and many of its species; however, many species will continue to increase in 

relative abundance with greater percentages of clear-cuts.  Therefore, if the primary management 

goal is early successional species this value could be increased.  The guild and 75% of all species 

increased more rapidly with >10% light partial harvests, so implementing a greater proportion of 

light partial harvests in conjunction with clear-cuts could be beneficial for this guild.  Another 

option to increase the even-aged threshold would be to incorporate a greater percent of heavy 
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partial harvests.  We did not analyze heavy partial harvests as no heavy partial harvests occurred 

in five of the nine years (1997–1998 and 2007–2009) and heavy partial harvests covered only 

6% of the landscape, but other studies have found heavy partial harvests to be a viable alternative 

to clear-cuts for early successional birds and that mature forest birds will use the residual trees in 

the cuts (Duguay et al, 2001, McDermott and Wood 2009).   

Landowners must also consider economic objectives when setting harvesting objectives. 

Given the minimal negative bird response to >60% harvesting of the landscape, landowners and 

managers should be able to maintain economically viable timber operations while using harvests 

to successfully manage habitat for many bird species, especially early successional.  Surpassing 

our defined thresholds should not be defined as a bad choice, as the threshold values inherently 

include uncertainty and most of the bird community would not be negatively affected.  If the 

thresholds are set too low to retain an economically viable timber flow, the alternatives are to sell 

the property or a conversion to other land uses that may be more detrimental to birds.     

 We identified three priorities for future research.  First, there is a need to determine 

whether nest success and productivity follow trends similar to those exhibited by abundance 

relative to timber management.  Also, research is needed to evaluate the effects of different 

proportions of harvest types on the landscape.  We had a single proportion for each year of our 

study; however, we expect that increasing or decreasing the percentage of each harvest type 

could change the results for individual species and overall threshold values.  Finally, thresholds 

are dynamic and will continue to change as the landscape continues to change.  Therefore, 

continued monitoring is needed to determine the future bird response to additional harvests but 

also to stand maturation following the cessation of harvesting.  
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Figure 1.  Bird diversity among 3-year periods using species richness (species/pt) and Shannon 

diversity at the Wildlife and Ecosystem Research Forest from 1996-2009.  All 3-year periods for 

both diversity metrics are significantly different (α=0.05) according to the Dunnett-Tukey-

Kramer multiple comparison test. 
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Figure 2.  Percent total harvests of the landscape (range) for the 3-year period or periods with the 

largest relative abundance for each forest-interior species at the Wildlife and Ecosystem 

Research Forest from 1996-2009. 

 

Figure 3.  Percent total harvests of the landscape (range) for the 3-year period or periods with the 

largest relative abundance for each interior-edge species at the Wildlife and Ecosystem Research 

Forest from 1996-2009. 
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Figure 4.  Percent total harvests of the landscape (range) for the 3-year period or periods with the 

largest relative abundance for each early successional species at the Wildlife and Ecosystem 

Research Forest from 1996-2009. 
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Table 1.  Annual amounts of landcover (ha) at the Wildlife and Ecosystem Research Forest, 1996–2009. 

  Year 

   1996 1997 1998 2001 2002 2003 2007 2008 2009 

Landcover            

  Mature Deciduous ha 1379.8 1287.1 1268.9 1068.2 1009.7 933.4 780.4 624.1 492.7 

 % 44.7 41.7 41.1 34.6 32.7 30.2 25.3 20.2 16.0 

  Mature Mixed ha 1470.2 1291.1 1209.8 1011.6 964.4 927.2 836.2 668.8 565.6 

 % 47.6 41.8 39.2 32.8 31.2 30.0 27.1 21.7 18.3 

  Clear-cut  ha 50.7 81.3 98.2 241.0 259.2 326.7 537.5 551.9 551.9 

 % 1.6 2.6 3.2 7.8 8.4 10.6 17.4 17.9 17.9 

  Hvy Partial Harvest ha 0.0 42.6 42.6 78.7 85.4 90.4 187.5 187.5 187.5 

 % 0.0 1.4 1.4 2.5 2.8 2.9 6.1 6.1 6.1 

  Lt Partial Harvest
a  ha 52.2 250.8 333.5 553.3 632.9 662.6 590.8 900.1 1134.7 

 % 1.7 8.1 10.8 17.9 20.5 21.5 19.1 29.2 36.8 

Core Habitat            

  Forest ha 1165.8 983.6 928.7 725.1 666.8 558.9 425.9 252.6 201.9 

 % 37.8 31.9 30.` 23.5 21.6 18.1 13.8 8.2 6.5 

  Early Succession ha 1.2 8.4 8.4 26.1 31.5 32.3 73.3 72.6 72.6 

 % 0.0 0.3 0.3 0.8 1.0 1.0 2.4 2.4 2.4 

a
Declined from 2003 to 2007 due to clear-cut harvesting of previous light partial harvests  
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Table 2.  Average relative abundance of bird species and guilds among 3-year periods 

at the Wildlife and Ecosystem Research Forest, WV, 1996–2009. 

 Average Abundance (Birds/pt)
b Kruskal 

-Wallis 

 

Species
a 1996-98 2001-03 2007-09 P 

Forest-interior 2.83 B 3.75 C 2.30 A 88.41 <0.001 

  ACFL 0.08  0.07  0.04  1.79 0.409 

  BAWW 0.14 A 0.15 A 0.28 B 23.88 <0.001 

  BHVI 0.68 B 0.38 A 0.37 A 49.82 <0.001 

  BLBW 0.08 B 0.00 A 0.01 A 38.86 <0.001 

  BTBW 0.31 AB 0.41 B 0.27 A 6.51 0.039 

  BTNW 0.49 A 0.89 B 0.44 A 81.33 <0.001 

  EAWP 0.01 A 0.05 B 0.02 AB 9.83 0.007 

  GCKI 0.04 B 0.00 A 0.00 A 18.95 <0.001 

  HAWO 0.11  0.17  0.11  8.37 0.015 

  HETH 0.06 A 0.14 B 0.06 A 11.65 0.003 

  MAWA 0.24 B 0.46 C 0.15 A 43.09 <0.001 

  OVEN 0.15  0.15  0.18  1.79 0.409 

  PIWO 0.05  0.07  0.04  2.87 0.238 

  RBNU 0.01  0.02  0.01  0.45 0.800 

  SCTA 0.27 B 0.54 C 0.18 A 80.87 <0.001 

  WBNU 0.04 A 0.23 B 0.08 A 52.23 <0.001 

  WIWR 0.15  0.13  0.10  2.87 0.238 
         

Interior-edge 3.21 A 5.27 C 3.72 B 111.96 <0.001 

  AMRE 0.04 A 0.03 A 0.15 B 30.34 <0.001 

  AMRO 0.07 A 0.19 B 0.23 B 27.88 <0.001 

  BCCH 0.20 A 0.32 B 0.22 AB 7.60 0.022 

  BHCO 0.05 AB 0.02 A 0.08 B 8.73 0.013 

  BLJA 0.15  0.23  0.24  4.57 0.102 

  CAWA 0.60 B 0.22 A 0.20 A 78.77 <0.001 

  CEDW 0.01 A 0.19 B 0.17 B 47.69 <0.001 

  DEJU 0.34 A 1.11 C 0.54 B 118.53 <0.001 

  DOWO 0.04 B 0.11 C 0.01 A 35.12 <0.001 

  HOWA 0.12 A 0.23 B 0.30 B 28.70 <0.001 

  NOFL 0.03 A 0.08 B 0.07 B 6.84 0.033 

  RBGR 0.13  0.12  0.15  2.18 0.336 

  REVI 0.88 B 1.10 C 0.69 A 44.04 <0.001 

  TUTI 0.00 A 0.37 B 0.01 A 170.56 <0.001 

  VEER 0.43 A 0.73 B 0.43 A 30.05 <0.001 

  WOTH 0.09 A 0.10 AB 0.16 B 13.40 0.001 

  YBCU 0.00 A 0.06 B 0.00 A 30.15 <0.001 
         

Early Succession 0.61 A 1.07 B 1.92 C 74.52 <0.001 

  AMCR 0.05  0.03  0.02  5.40 0.067 
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Table2.  Continued         

 Average Abundance (Birds/pt)
a Kruskal 

-Wallis 

 

Species 1996-98 2001-03 2007-09 P 

  AMGO 0.01 A 0.05 B 0.05 B 6.65 0.036 

  COYE 0.00 A 0.03 B 0.08 C 29.39 <0.001 

  CSWA 0.18 A 0.34 B 0.48 C 41.86 <0.001 

  EATO 0.20 A 0.13 A 0.53 B 76.67 <0.001 

  FISP 0.00 A 0.01 A 0.08 B 43.96 <0.001 

  GRCA 0.03 A 0.11 B 0.10 B 20.53 <0.001 

  INBU 0.13 A 0.29 B 0.44 C 60.14 <0.001 

  MOWA 0.01  0.02  0.02  4.13 0.127 

  SOSP 0.00 A 0.03 AB 0.07 B 26.29 <0.001 
a
See appendix B for AOU species codes. 

b
Abundance in 3-year periods with different letters are significantly different (α=0.05) 

using the Dunnett-Tukey-Kramer multiple comparison test. 
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Table 3.  Thresholds (%) in relative abundance for total harvests, clear-cut harvest, and light partial harvests at the Wildlife and Ecosystem 

Research Forest, WV, 1996–2009. 

 Total Percent Harvested  Percent Clear-cuts   Percent Light Partial Harvests 

Species 
Thres

hold 95% CI
a 

First
b
 

Slope 
Second

b
 

Slope   
Thres

hold 95% CI
a 

First
b
 

Slope 
Second

b
 

Slope   
Thres

hold 95% CI
a 

First
b
 

Slope 
Second

b
 

Slope 
Forest-interior 28.4 (28-30) 3.42 -3.79  10.4 (9-11) 12.90 -11.03  18.0 (17-18) 3.31 -3.91 

   BHVI 40.3 (16-45) -1.62 1.25  18.3 (15-20) -4.05 6.02  14.3 (12-24) -4.78 0.50 

   HETH 26.5 (10-30) 0.49 -0.25  8.2 (3-10) 2.11 -0.65  17.0 (4-18) 0.63 -0.30 

               
Interior-edge 28.4 (25-28) 6.62 -1.40  10.4 (8-11) 22.87 -7.97  18.0 (5-32) 8.10 1.58 

   AMRO 55.8 (28-56) 0.19 3.65  10.4 (10-24) 1.46 0.34  31.1 (7-33) 0.38 3.23 

   DEJU 28.4 (28-31) 3.20 -1.46  10.4 (10-11) 9.74 -3.95  18.0 (18-19) 4.36 -1.75 

   REVI 17.4 (14-22) 4.33 -1.18  5.8 (5-7) 17.18 -3.35  10.8 (7-13) 5.54 -1.36 

   VEER 31.8 (28-35) 1.06 -1.00  13.2 (10-15) 3.22 -3.24  20.2 (18-22) 1.31 -1.30 

   WOTH 48.9 (10-55) -0.07 1.70  24.1 (6-24) -0.15 2388.20  13.9 (5-31) -0.94 1.01 

               
Early 

Succession 42.4 (9-56) 2.67 4.81  11.2 (8-24) 8.69 5.76  10.4 (5-32) 0.39 7.07 
   CSWA 15.3 (9-57) 0.10 0.81  3.4 (3-21) -0.15 1.66  9.8 (5-33) 0.13 1.45 

   EATO 51.1 (15-56) 0.63 2.91  11.2 (10-24) 2.73 1.20  10.8 (9-31) -0.04 2.18 

   INBU 42.4 (9-56) 0.61 1.20  24.1 (5-24) 1.13 2218.90  6.8 (5-32) -0.64 1.57 

   GRCA 35.1 (9-55) 0.31 -0.03  15.0 (7-21) 0.89 -0.38  21.5 (5-32) 0.47 0.02 
a
Threshold confidence interval as a result of 1000 bootstrap samples. 

b
The slope is the change in relative abundance when the variable changes from 0-100% of the landscape harvested.  The first slope is rate of 

change in abundance prior to threshold and second slope is rate of change after surpassing the threshold; a + slope indicates increasing abundance 

while a – slope indicates decreasing abundance. 



75 

 

 

 

Table 4.  Nest success (surv) for focal species during each three-year period at the Wildlife and 

Ecosystem Research Forest, WV, 1996–2009. 

 1996-1998  2001-2003  2007-2009 

Species n Surv
a
   SE   n Surv

a
    SE   n Surv

a
    SE 

AMRO 7 0.229  0.159  10 0.507  0.199  9 0.437  0.231 

BHVI 10 0.441  0.183  9 0.072  0.088  6 0.205  0.188 

CSWA 1 0.183  0.311  11 0.319  0.168  6 0.565  0.228 

DEJU 37 0.425 B 0.100  30 0.164 A 0.066  25 0.342 AB 0.112 

EATO 10 0.111  0.093  22 0.192  0.099  12 0.083  0.076 

GRCA 1 .  .  3 0.290  0.254  6 0.293  0.223 

HETH 5 0.162  0.165  18 0.214  0.099  5 0.619  0.297 

INBU 4 0.180 AB 0.258  15 0.720 B 0.178  14 0.216 A 0.142 

REVI 10 0.186  0.124  9 0.197  0.153  3 0.167  0.299 

VEER 23 0.189 AB 0.080  36 0.346 B 0.087  7 0.054 A 0.071 

WOTH 21 0.317 B 0.107   12 0.207 AB 0.120   5 0.031 A 0.077 
a
 Success values with different letters are significantly different at alpha=0.05 
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Appendix A.  All bird species detected at the Wildlife and Ecosystem Research Forest, WV 

1996–2009 

Name
a
 Scientific Name AOU Code Habitat Guild

b
 

Acadian Flycatcher
a
 Empidonax virescens ACFL FI 

Alder Flycatcher Empidonax alnorum ALFL IE 

American Crow
a
 Corvus brachyrhynchos AMCR ES 

American Goldfinch
a
 Spinus tristis AMGO ES 

American Redstart
a
 Setophaga ruticilla AMRE IE 

American Robin
a
 Turdus migratorius AMRO IE 

Baltimore Oriole Icterus galbula BAOR IE 

Barred Owl Strix varia BDOW FI 

Belted Kingfisher Ceryle alcyon BEKI ES 

Black-and-white Warbler
a
 Mniotilta varia BAWW FI 

Black-billed Cuckoo Coccyzus erythropthalmus BBCU IE 

Blackburnian Warbler
a
 Dendroica fusca BLBW FI 

Black-capped Chickadee
a
 Poecile atricapillus BCCH IE 

Black-throated Blue Warbler
a
 Dendroica caerulescens BTBW FI 

Black-throated Green Warbler
a
 Dendroica virens BTNW FI 

Blue Jay
a
 Cyanocitta cristata BLJA IE 

Blue-gray Gnatcatcher Polioptila caerulea BGGN IE 

Blue-headed Vireo
a
 Vireo solitarius BHVI FI 

Blue-winged Warbler Vermivora pinus BWWA ES 

Brewster's Warbler Helminthophila 

leucobronchialis 

BRWA ES 

Broad-winged Hawk Buteo platypterus BWHA FI 

Brown Creeper Certhia familiaris BRCR FI 

Brown Thrasher Toxostoma rufum BRTH ES 

Brown-headed Cowbird
a
 Molothrus ater BHCO IE 

Canada Warbler
a
 Wilsonia canadensis CAWA IE 

Carolina Wren Thryothorus ludovicianus CAWR ES 

Cedar Waxwing
a
 Bombycilla cedrorum CEDW IE 

Cerulean Warbler Dendroica cerulea CERW FI 

Chestnut-sided Warbler
a
 Dendroica pensylvanica CSWA ES 

Chipping Sparrow Spizella passerina CHSP ES 

Common Raven Corvus corax CORA FI 

Common Yellowthroat
a
 Geothlypis trichas COYE ES 

Cooper's Hawk Accipiter cooperii COHA IE 

Dark-eyed Junco
a
 Junco hyemalis DEJU IE 

Downy Woodpecker
a
 Picoides pubescens DOWO IE 

Eastern Phoebe Sayornis phoebe EAPH ES 

Eastern Towhee
a
 Pipilo erythrophthalmus EATO ES 
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Appendix A.  Continued 

Name Scientific Name AOU Code Habitat Guild 

Eastern Wood-pewee
a
 Contopus virens EAWP FI 

Field Sparrow
a
 Spizella pusilla FISP ES 

Golden-crowned Kinglet
a
 Regulus satrapa GCKI FI 

Golden-winged Warbler Vermivora chrysoptera GWWA ES 

Gray Catbird
a
 Dumetella carolinensis GRCA ES 

Great-crested Flycatcher Myiarchus crinitus GCFL IE 

Hairy Woodpecker
a
 Picoides villosus HAWO FI 

Hermit Thrush
a
 Catharus guttatus HETH FI 

Hooded Warbler
a
 Wilsonia citrina HOWA IE 

Indigo Bunting
a
 Passerina cyanea INBU ES 

Kentucky Warbler Oporornis formosus KEWA FI 

Least Flycatcher Empidonax minimus LEFL FI 

Louisiana Waterthrush Seiurus motacilla LOWA FI 

Magnolia Warbler
a
 Dendroica magnolia MAWA FI 

Mourning Dove Zenaida macroura MODO ES 

Mourning Warbler
a
 Oporornis philadelphia MOWA ES 

Nashville Warbler Vermivora ruficapilla NAWA ES 

Northern Cardinal Cardinalis cardinalis NOCA ES 

Northern Flicker
a
 Colaptes auratus NOFL IE 

Northern Parula Parula americana NOPA IE 

Northern Waterthrush Seiurus noveboracensis NOWA FI 

Ovenbird
a
 Seiurus aurocapillus OVEN FI 

Pileated Woodpecker
a
 Dryocopus pileatus PIWO FI 

Prairie Warbler Dendroica discolor PRAW ES 

Red-bellied Woodpecker Melanerpes carolinus RBWO IE 

Red-breasted Nuthatch
a
 Sitta canadensis RBNU FI 

Red-eyed Vireo
a
 Vireo olivaceus REVI IE 

Red-shouldered Hawk Buteo lineatus RSHA IE 

Red-tailed Hawk Buteo jamaicensis RTHA IE 

Rose-breasted Grosbeak
a
 Pheucticus ludovicianus RBGR IE 

Ruby-throated Hummingbird Archilochus colubris  RTHU IE 

Ruffed Grouse Bonasa umbellus RUGR IE 

Scarlet Tanager
a
 Piranga olivacea SCTA FI 

Song Sparrow
a
 Melospiza melodia SOSP ES 

Tufted Titmouse
a
 Baeolophus bicolor TUTI IE 

Turkey Vulture Cathartes aura TUVU ES 

Veery
a
 Catharus fuscescens VEER IE 

White-breasted Nuthatch
a
 Sitta carolinensis WBNU FI 
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Appendix A.  Continued 

Name Scientific Name AOU Code Habitat Guild 

White-eyed Vireo Vireo griseus WEVI ES 

Wild Turkey Meleagris gallopavo WITU IE 

Willow Flycatcher Empidonax traillii WIFL ES 

Winter Wren
a
 Troglodytes troglodytes WIWR FI 

Wood Thrush
a
 Hylocichla mustelina WOTH IE 

Worm-eating Warbler Helmitheros vermivorus WEWA FI 

Yellow-bellied Sapsucker Sphyrapicus varius YBSA FI 

Yellow-billed Cuckoo
a
 Coccyzus americanus YBCU IE 

Yellow-breasted Chat Icteria virens YBCH ES 

Yellow-throated Vireo Vireo flavifrons YTVI IE 

a
Species analyzed for temporal trends 

b
Forest-interior= FI; Interior-edge= IE; Early Succession=ES

 

 

  



79 

 

 

Appendix B.  Annual relative abundance for birds detected at the Wildlife and Ecosystem 

Research Forest, WV, 1996–2009. 

 
Relative Abundance (Birds/pt) 

Species 1996 1997 1998 2001 2002 2003 2007 2008 2009 

ACFL 0.08 0.08 0.08 0.07 0.08 0.09 0.09 0.04 0.05 

ALFL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 

AMCR 0.02 0.03 0.06 0.06 0.02 0.01 0.01 0.03 0.01 

AMGO 0.00 0.01 0.02 0.06 0.07 0.01 0.01 0.04 0.03 

AMRE 0.03 0.04 0.05 0.02 0.21 0.15 0.11 0.20 0.31 

AMRO 0.12 0.07 0.03 0.28 0.24 0.06 0.14 0.13 0.37 

BAOR 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.00 

BAWW 0.14 0.18 0.12 0.09 0.30 0.36 0.27 0.33 0.38 

BBCU 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

BCCH 0.10 0.25 0.24 0.44 0.29 0.17 0.14 0.12 0.22 

BEKI 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

BGGN 0.00 0.00 0.00 0.00 0.02 0.01 0.01 0.02 0.00 

BHCO 0.01 0.10 0.03 0.01 0.04 0.02 0.04 0.09 0.06 

BHVI 0.84 0.92 0.28 0.42 0.44 0.27 0.19 0.30 0.36 

BLBW 0.08 0.04 0.11 0.01 0.00 0.00 0.02 0.01 0.01 

BLJA 0.15 0.14 0.08 0.23 0.23 0.10 0.10 0.16 0.29 

BRCR 0.01 0.01 0.04 0.00 0.00 0.00 0.02 0.00 0.01 

BRTH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 

BRWA 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 

BTBW 0.33 0.31 0.31 0.40 0.35 0.26 0.15 0.24 0.21 

BTNW 0.37 0.62 0.47 0.82 0.88 0.80 0.21 0.37 0.56 

BWWA 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 

CAWA 0.58 0.75 0.47 0.22 0.15 0.15 0.09 0.12 0.19 

CAWR 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 

CEDW 0.02 0.00 0.01 0.05 0.22 0.20 0.07 0.19 0.14 

CERW 0.02 0.01 0.01 0.00 0.07 0.06 0.01 0.00 0.00 

CHSP 0.00 0.00 0.00 0.00 0.04 0.02 0.00 0.00 0.01 

CORA 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.02 

COYE 0.00 0.00 0.00 0.01 0.05 0.06 0.04 0.07 0.15 

CSWA 0.18 0.19 0.19 0.17 0.48 0.48 0.29 0.53 0.44 

DEJU 0.25 0.40 0.38 1.11 0.76 0.62 0.29 0.38 0.49 

DOWO 0.03 0.05 0.04 0.15 0.10 0.10 0.00 0.01 0.04 

EATO 0.19 0.26 0.13 0.26 0.67 0.50 0.28 0.48 0.72 

EAPH 0.01 0.00 0.00 0.02 0.00 0.01 0.00 0.01 0.01 

EAWP 0.02 0.02 0.00 0.02 0.06 0.06 0.01 0.02 0.04 

FISP 0.00 0.00 0.00 0.00 0.07 0.04 0.06 0.07 0.09 

GCFL 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.01 
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Appendix B.  Continued 

 
Relative Abundance (Birds/pt) 

Species 1996 1997 1998 2001 2002 2003 2007 2008 2009 

GCKI 0.02 0.09 0.02 0.00 0.00 0.00 0.00 0.01 0.00 

GRCA 0.04 0.01 0.03 0.11 0.11 0.11 0.09 0.06 0.09 

GWWA 0.00 0.00 0.00 0.00 0.03 0.01 0.03 0.01 0.02 

HAWO 0.08 0.11 0.13 0.28 0.14 0.07 0.04 0.11 0.12 

HETH 0.02 0.10 0.06 0.19 0.09 0.06 0.02 0.04 0.06 

HOWA 0.11 0.14 0.11 0.16 0.54 0.54 0.29 0.31 0.58 

INBU 0.12 0.11 0.16 0.23 0.46 0.46 0.32 0.47 0.48 

LEFL 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 

LOWA 0.00 0.01 0.02 0.00 0.00 0.00 0.01 0.01 0.00 

MAWA 0.25 0.17 0.31 0.47 0.35 0.24 0.14 0.11 0.09 

MODO 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.02 0.02 

MOWA 0.00 0.01 0.01 0.04 0.01 0.01 0.01 0.01 0.02 

NAWA 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

NOCA 0.00 0.00 0.01 0.00 0.03 0.00 0.00 0.01 0.02 

NOFL 0.03 0.02 0.04 0.07 0.15 0.07 0.04 0.04 0.10 

NOPA 0.01 0.01 0.01 0.00 0.01 0.04 0.00 0.00 0.00 

NOWA 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

OVEN 0.13 0.18 0.15 0.11 0.28 0.35 0.21 0.33 0.35 

PIWO 0.04 0.07 0.03 0.05 0.06 0.06 0.01 0.02 0.05 

PRWA 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 

RBGR 0.16 0.14 0.07 0.11 0.19 0.18 0.06 0.11 0.20 

RBNU 0.03 0.01 0.01 0.04 0.01 0.01 0.00 0.01 0.01 

RBWO 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.02 

REVI 0.58 0.93 1.12 1.12 1.32 1.05 0.59 0.66 0.98 

RTHU 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.01 0.01 

SCTA 0.22 0.31 0.28 0.57 0.56 0.40 0.19 0.19 0.16 

SOSP 0.00 0.00 0.00 0.03 0.04 0.02 0.04 0.07 0.06 

TUTI 0.00 0.01 0.00 0.03 0.20 0.05 0.02 0.02 0.06 

VEER 0.42 0.53 0.34 0.68 0.57 0.58 0.30 0.24 0.33 

WBNU 0.02 0.05 0.04 0.36 0.19 0.07 0.05 0.04 0.15 

WEVI 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 

WEWA 0.02 0.01 0.00 0.00 0.04 0.01 0.02 0.02 0.01 

WIFL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

WIWR 0.11 0.20 0.15 0.16 0.06 0.09 0.03 0.08 0.11 

WOTH 0.14 0.05 0.07 0.08 0.25 0.21 0.16 0.19 0.32 

YBCH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 

YBCU 0.00 0.00 0.00 0.17 0.00 0.01 0.01 0.00 0.01 

YBSA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 

YTVI 0.03 0.00 0.03 0.00 0.01 0.01 0.01 0.00 0.00 
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Appendix C.   Examples of piece-wise linear regression output.  Stacked dots represent the 

relative abundance values measured at each annual percent harvest.  There are nine stacks 

representing each year except for clear-cut harvests in which there are eight stacks because 

percent harvest did not differ from 2008–2009.  The red line represents the slope before and after 

the thresholds, which is the point at which the line changes.   
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1. Forest-interior guild clear-cut threshold: mid-study abundance peak 
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2. Interior-edge guild light partial harvest threshold: reduced slope steepness 
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Appendix C.  Continued 

Percent Total Harvest
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3. Early successional guild total harvest threshold: increased slope steepness 
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4. Blue-headed Vireo light partial harvest threshold: initial decline then leveling-off 
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Appendix C.  Continued 
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5. Wood Thrush clear-cut threshold: Sharp 



    

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 

REASSESSING FOREST SONGBIRD HABITAT ASSOCIATIONS: INFLUENCE OF 

DISTURBANCE ON RELATIVE ABUNDANCE AND NEST SUCCESS ON A 

MANAGED LANDSCAPE IN THE CENTRAL APPALACHIANS
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ABSTRACT 

Timber management affects both mature forest and early successional bird species, many of 

which have been declining in relative abundance.  Most research has focused on the short-term 

effects of different types of timber harvests on birds, overlooking the broader spectrum of habitat 

conditions resulting from long-term management.  Our objective was to use these broader habitat 

conditions to categorize bird species into habitat groups, identify habitat commonalities between 

group members, and determine habitat conditions associated with successful nests.  We 

conducted point counts and monitored nests at the Wildlife Ecosystem Research Forest in 

Randolph County, WV from 1996-1998, 2001-2003, and 2007-2009.  Using non-metric 

multidimensional scaling (NMDS), we identified four habitat groups: mature forest, disturbed-

canopy low elevation, disturbed-canopy high elevation, and early succession.  NMDS group 

regression tree abundance models had reduced error rates compared to traditional habitat guilds 

(forest-interior, interior-edge, early successional).  Early successional species increased in 

relative abundance with greater amount of clear-cuts, heavy partial harvests, and edge density.  

The disturbed-canopy species were divided into two groups based on elevation.  We found no 

consistent metrics among these species, but models contained variables representing aspects of 

disturbed mature forests including increased intermixing of habitats, a greater diversity of 

habitats, increased edge habitat, reduced patch shape complexity, and greater amounts of light 

partial harvests.  Mature (undisturbed) forest species declined in relative abundance with 

increased clear-cuts, core early succession habitat, and habitat intermixing and reduced patch 

shape complexity.  Early successional species were more influenced by local-scale variables and 

disturbed-canopy species were more influence by landscape-scale variables; most species were 

influenced to some degree by variables at both scales.  Nest success models had high error due to 

small sample sizes.  Few nest variables were also retained in relative abundance models 

suggesting different conditions are required for successful breeding than for high relative 

abundance.  Our results highlight the need to reconsider the classification of bird species with 

respect to habitat created by timber management.  Group members shared many habitat 

commonalities and model error was improved over traditional habitat guilds. Variation among 

species remains with models for most species containing additional variables compared to group 

models. 

Key Words: timber management, bird-habitat relations, NMDS ordination, bird habitat guilds  
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Over half of all passerines nesting in West Virginia are forest species (Hall 1983).  Of the 

50 mature-forest breeding passerines identified in the Allegheny Plateau by the Breeding Bird 

Survey, 28% are significantly declining (Sauer et al. 2008).  Area-sensitive forest songbirds may 

be negatively impacted by forest disturbance in the short-term and at smaller spatial scales 

(Temple 1986), although other studies have indicated limited tolerance to forest management 

(Thompson et al. 1992), a reduced effect of silvicultural versus agricultural disturbance 

(Rodewald 2002), and use of early successional habitats post-breeding (Vega Rivera et al. 1998, 

Marshall et al. 2003, Dellinger 2007, McDermott 2007) by forest-breeding songbirds.  

Furthermore, forest management can create habitat needed by early successional species, 75% 

(18 of 24) of which are declining across the Allegheny Plateau (Sauer et al. 2008).   

The Allegheny Plateau provides important summer breeding habitat for many bird 

species and is considered a ―major area of high importance‖ (Rosenberg and Wells 1995), 

ranking in the top five physiographic regions for 28 of 34 avian species of conservation interest.  

Timber is also economically important within this region, especially in West Virginia where the 

wood industry ranks 9
th

 in share of total state employment and 4
th

 in wood industry share of total 

gross state product (West Virginia Department of Commerce 2010). In the state approximately 

9.5 million m
3
 of timber is harvested annually (Widmann et al. 2010) and when combined with 

wood products results in 45,000 jobs (West Virginia Department of Commerce 2010) and over 4 

billion dollars annually to the state (Childs 2005).   This heavily forested region, therefore, 

provides a valuable context to study forest management and its implications for avian species of 

high conservation importance.   

Much research has focused on avian response to different types and methods of timber 

harvests including those that compared the effects of even-aged and uneven-aged management to 

unmanaged forests (Weakland et al. 2002, Duguay et al. 2001, Augenfeld et al. 2008), the 

differences between harvest types (Annand and Thompson 1997, Baker and Lacki 1997, Duguay 

et al. 2001, Dellinger et al. 2007, McDermott and Wood 2009), and the effects of modifying 

existing harvesting techniques, for example retaining residual trees in clear-cuts (Brawn et al. 

2001, Harrison and Kilgo 2004).  However, most such studies have been short-term or have only 

focused on bird community response following initial harvest (Keller et al. 2003, Campbell et al. 

2007).  Sallabanks et al. (2000) also noted these limitations in extant research investigating bird 

response to forest management and recommended that ―future research should:1 ) be more long-
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term; 2) incorporate rigorous experimental designs in which treatments are assigned randomly 

and better replicated; and 3) although difficult, measure parameters related to avian fitness and 

population viability.‖   

Research has indentified a positive linear relation between bird diversity and vertical 

structural diversity (Karr and Roth 1971) and found temporal change in vegetative structure as an 

important local factor in determining changes in bird abundance (Holmes and Sherry 2001).  Due 

to past clear-cutting of a majority of eastern forests, most forests are 70-100 year old even-aged 

forests characterized by a dense overstory and open subcanopy, reducing vertical diversity.  

These forests have not yet achieved the greater structural complexity of old-growth forests and 

disturbances such as fire, that create structural diversity, are often limited apart from timber 

management.      

Landowners in the Allegheny Plateau use several timber harvest types (Smith 1995), each 

of which has varying effects on the treated forest (Smith 1962).  Clear-cuts usually remove all 

mature trees resulting in early successional, shrub habitat.  Heavy partial harvest via deferment 

or shelterwood cuts result in early successional habitat similar to clear-cuts, although they retain 

some residual trees providing limited vertical structure and canopy cover.  Light partial harvests 

via single-tree, group-selection, or high-grading harvests of mature sawtimber result in a 

continuous but broken canopy that retains many mature forest characteristics, but with 

understory development within the created gaps.  Because of intermixed ownership patterns in 

the Allegheny Plateau, it is not uncommon for forested landscapes to consist of forests managed 

with a mix of these harvesting practices.  Thus, a study at the landscape scale that encompasses 

forests managed using different harvesting techniques would provide a more complete 

understanding of the effects timber management may have on forest breeding birds.  Such 

improved knowledge can better inform improved conservation planning. 

The goal of our study was to evaluate breeding bird-habitat relations among a wide 

gradient of disturbance levels in a managed landscape.  Therefore, we examined relative 

abundance and nest success of forest songbirds on a landscape structured by active forest 

management, by considering a variety of harvesting techniques, over a 14-year period.  Our 

objectives were to 1) develop empirically-derived habitat groups for forest-breeding birds, 2) 

compare habitat relations between these groups and traditional habitat guild groupings, 3) 
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compare habitat relations among bird species within our empirically-derived habitat groups, and 

4) determine the influence of habitat characteristics on nest success. 

 

METHODS 

Study area. – We conducted our research at the Wildlife and Ecosystem Research Forest 

(WERF), located in Randolph County, West Virginia in the unglaciated Allegheny Mountain and 

Plateau region from 1996-1998 (Weakland 2000), 2001-2003 (Dellinger 2005), and 2007-2009.  

This 3,413 ha forested area was established in 1994 by Westvaco Corporation to study relations 

between commercial forest management practices and ecosystem processes and wildlife.  In 

2002 we added the 1,705 ha Panther Run Tract (PRT), also owned by MeadWestvaco 

Corporation, located 16 km north of the WERF.  Both properties were sold to Penn Virginia in 

the winter of 2007.   Elevations at the WERF are 734-1,180 m, whereas at Panther Run 

elevations are 634-914 m.  Regional topography consists of narrow valleys with small, high-

gradient streams, and steep slopes topped by broad ridges that generally run in a south-southwest 

to north-northeast direction.  The sites receive high annual average precipitation, more than 160 

cm, with snow common throughout the winter resulting in a cool and humid environment.  Soils 

are acidic and well-drained inceptisols and ultisols.  

Vegetation communities on the study areas vary by elevation.  Red spruce (Picea rubens) 

and eastern hemlock (Tsuga canadensis) characterize stands above 1,000 m.  Northern 

hardwoods including red maple (Acer rubrum), American beech (Fagus grandifolia), and black 

cherry (Prunus serotina) dominate at 850–1,000 m. Below 850 m, cove hardwood and mixed 

mesophytic plant communities occur with species such as northern red oak (Quercus rubra), 

black birch (Betula lenta), and tulip poplar (Liriodendron tulipifera) dominating the canopy.  

Xeric oak-hickory communities dominated by black oak (Quercus velutina), scarlet oak 

(Quercus coccinea), and hickory (Carya spp.) also occur at low elevations.  Communities of 

eastern hemlock, red spruce and rhododendron (Rhododendron spp.) are found in the riparian 

areas.   

Although primarily mature forest at the study’s inception, the WERF is currently a 

mixture of harvested and mature forest stands as a result of timber management.  In 2002, PRT 

had comparable proportions of clear-cuts to the WERF, but slightly higher proportions of light 

partial harvests and total harvests.  Forest management included even-aged timber harvesting in 
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the form of clear-cuts, shelterwood cuts, and deferment cuts, and partial harvesting via group 

selection and high-grade harvests of mature sawtimber (Dellinger et al. 2007).  Initially, 

management included a balance of even and uneven-aged methods; in 2007, management shifted 

to primarily uneven-aged techniques.   

Non-forest habitat on the study area was limited.  At the end of the study, grassy habitat 

covered 1.9% and included road edges, gas well openings, and log landings.  Roads covered 

1.5%, streams 0.1%, and human development <0.01%.  

Point counts. – We counted breeding birds using 50-m fixed-radius plots (Hutto et al. 

1986) at points selected systematically from existing points on a 241 x 241 m grid established by 

Westvaco during a 1995 forest inventory.  We surveyed 118 points in 1996-1997, 116 in 1998, 

108 in 2001, and 162 in 2002-2003 and 2007-2009.  Sample points were either 241 m or 482 m 

apart at the WERF and 480 m apart at PRT; each point was marked with a uniquely numbered 1 

x 1 cm aluminum stake. 

Each year from 29 May to 4 July, every point count was sampled twice, once by each of 

two observers proficient in bird identification and distance estimation, with at least a three-week 

interval between surveys.  We conducted counts beginning at 0600 EST and ending no later than 

1000 on mornings with suitable weather conditions (i.e., no rain, little wind).  We recorded 

species of all individuals heard or observed within a 10-minute time span and within 50 m, the 

type of detection (song, call, visual, or fly-over), and sex if possible.  Recently fledged young 

and flyovers were noted but excluded from analyses.  If a bird could not be identified to species, 

the observer attempted to locate and identify the individual after completing the count.  For the 

final relative abundance at point, we used the maximum count from the two samples each year.   

Nest searching. – In 2001-2003 and 2007-2009, we monitored nests from mid-May until 

mid-July for eleven focal species that were relatively common within the study area and 

represented a variety of nesting habitats. We selected two forest-interior species, Blue-headed 

Vireo (Vireo solitarius) as a subcanopy nester and Hermit Thrush (Catharus guttatus) as a 

ground nester.  We selected five interior-edge species, American Robin (Turdus migratorius) and 

Wood Thrush (Hylocichla mustelina) as subcanopy-shrub nesters, Red-eyed Vireo (Vireo 

olivaceus) as a subcanopy nester, and Dark-eyed Junco (Junco hyemalis) and Veery (Catharus 

fuscescens) as ground nesters.  Finally, we selected four early successional species, including 

Chestnut-sided Warbler (Dendroica pensylvanica) as a ground nester; and Eastern Towhee 
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(Pipilo erythrophthalmus), Gray Catbird (Dumetella carolinensis), and Indigo Bunting 

(Passerina cyanea) as shrub nesters. 

We divided the study area into three elevational blocks and randomly located six nest 

plots, each approximately 20 ha, distributed throughout each block (Fig. 1).  The lowest 

elevation Panther Run Tract was defined as one elevational block, and the WERF was divided 

into two approximately equal area blocks along the elevational gradient.  Within each block, we 

placed half the plots in areas with >50% intact, predominantly mature, hardwood forest, while 

the other half were placed in areas with >50% closed-canopy early successional vegetation.  Due 

to harvesting within mature forest plots, we shifted five plots once during the study to maintain 

mature forest conditions (Fig. 1).  All plots were orientated perpendicular to the slope to reflect 

the steep nature of the landscape and to ensure they were not primarily in either ridges or valleys. 

Throughout the breeding season, we searched each plot every three days from 0600 until 

1300, spending equal time in plots, at least 18 days or 126 person hours, representing each 

habitat type to minimize potential sampling bias.  Additionally, we monitored nests found 

opportunistically at point-count locations or while traveling to and from the counts.  We located 

nests using both systematic searches and behavioral observations (Martin and Geupel 1993).  

Once located, we checked each nest a minimum of every 3 days until the nest attempt was 

complete and identified as either successful or failed.   

Landcover and Landscape Pattern Metrics. – We created a digital landcover layer for 

each year of the study in which bird data was collected, subdividing cover into ten types: clear-

cuts (Clear; harvests with no residual trees), heavy partial harvests (HvyPH; clear-cuts with 

residual trees plus deferment and shelterwood cuts), light partial harvests (LtPH; single-tree 

selection and high-grade cuts), mature deciduous forest (Decid), mature mixed forest (Mixed), 

herbaceous cover, shrub/scrub cover (mostly roadside), water, road, and development.  Data 

were not available to define the age of each harvest, because landcover was not available from 

1999-2000 and 2004-2006, so harvest classification remained constant throughout (a clear-cut in 

the first year was still a clear-cut in the last year). We defined cover types and stand boundaries 

annually using 1 m resolution National Agriculture Imagery Program (NAIP) 1:10,000 scale 

aerial orthophotos, harvest shapefiles provided by the timber companies, and ground-truthing. 

We calculated landcover and landscape pattern metrics at two scales: landscape, within 

each of the three elevational blocks (Fig.1), and local, covering areas within 100 m of each point 
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count or nest.  Variables at the landscape-scale influence selection of the landscape by birds, 

while local-scale variables influence selection of territories within this larger area.  For each year 

of the study, we calculated total area of five harvest-based landcover classes: clear-cut, heavy 

partial harvest, light partial harvest, mature deciduous forest, and mature mixed forest.  We 

calculated annual landscape pattern metrics with Fragstats (McGarigal et al. 2002) selecting 

metrics indentified as important to avian species in past research in the area (Demeo 1999, 

Weakland 2000, Williams 2002, Bosworth 2003, and Dellinger 2005).  Area-weighted mean 

shape index (AWMSI) measures the shape complexity of patches of all cover types by measuring 

the perimeter-to-area ratio weighted by the size of its patches.  Timber management should 

decrease AWMSI as harvests are often more regularly shaped than natural stands.  We calculated 

interspersion and juxtaposition (IJI), a measure of the intermixing of cover types relative to the 

maximum intermixing possible, Shannon diversity index (SHDI), a measure of the diversity of 

different cover types, and contrast-weighted edge density (CWED), a measure of the amount of 

edge per ha that gives different weights to the intersection of different cover types (Appendix 1).  

We calculated core area, area >50m from an edge, for mature forest (mature deciduous and 

mature mixed forest patches combined) and for early successional cover (combined patches of 

clear-cuts, heavy partial harvests, and shrub/scrub cover).  We measured shrub cover annually so 

that it could be included in the calculation of core early successional habitat but this variable was 

not included as separate landcover variable.  Finally, at each point or nest, we measured 

elevation using the 30-m National Elevation Dataset (NED), slope, and aspect. 

Data analysis. – We treated each point in each year as individual samples (n = 1270) with 

associated unique habitat conditions and bird counts.  All point locations were sampled in 

multiple years and each year was treated as a separate sample because habitat could change 

annually.   

Relative abundance for each avian species at each point was the maximum count from the 

two surveys within each year.  We analyzed the 15 species detected at ≥20% of survey points 

including Black-and-white Warbler (Mniotilta varia; BAWW), Black-throated Blue Warbler 

(Dendroica caerulescens; BTBW), Black-throated Green Warbler (Dendroica virens; BTNW), 

Blue-headed Vireo (BHVI), Canada Warbler (CAWA), Chestnut-sided Warbler (CSWA), Dark-

eyed Junco (DEJU), Eastern Towhee (EATO), Hooded Warbler (Wilsonia citrina; HOWA), 

Indigo Bunting(INBU), Magnolia Warbler (Dendroica magnolia; MAWA), Ovenbird (Seiurus 
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aurocapillus; OVEN), Red-eyed Vireo (REVI), Scarlet Tanager (Piranga olivacea; SCTA), and 

Veery (VEER).  We included four additional species for which we had nest searched [American 

Robin (AMRO), Gray Catbird (GRCA), Hermit Thrush (HETH), and Wood Thrush (WOTH)] 

and three early successional species which occurred at <20% of the points but were species of 

conservation concern [Golden-winged Warbler (Vermivora chrysoptera; GWWA) and Blue-

winged Warbler (Vermivora pinus; BWWA)] or had recently become abundant but were 

detected at <20% of points due to initial absence within the study area [Common Yellowthroat 

(Geothlypis trichas; COYE)]. 

  To describe the range of habitat conditions available for avian species throughout the 

study, we created boxplots for each landcover variable and landscape pattern metric at both the 

local and landscape scales (Figs. 2, 3).  The central line of the boxplot measures the median for 

each variable, while the ends of the box are the first and third quartiles.  The whiskers on each 

boxplot extend to 1.5 times the interquartile range with dots representing values further than this 

cutoff. 

  We used non-metric multidimensional scaling (NMDS; Kruskal 1964) to identify which 

bird species were identified in similar habitat conditions.  McCune and Grace (2002) identified 

NMDS as the ordination method of choice for characterizing most ecological community 

structure.  We created models using the metaMDS function in the vegan package in program R 

(R Development Core Team 2009) using 2 – 6 dimensions.  Since stress decreases as the number 

of dimensions increase, we selected the model with the fewest dimensions for which adding an 

additional dimension did not greatly reduce overall stress.  The metaMDS function included 

multiple random starts to avoid the model becoming stuck on local minima.  The distance 

between points was measured using the Bray-Curtis distance metric (Bray and Curtis 1957).  To 

handle zero dissimilarities in species among some of the points, we used the ―add‖ command 

which adds a small positive value instead of zero for the dissimilarity value.  We then grouped 

species with similar habitat relations based on their location within the NMDS ordination.     

To interpret the NMDS ordination, we correlated the habitat metrics to the ordination 

using vector fitting and the envfit function in the vegan package in program R.  Variables were 

area of five cover types (clear-cut, mature deciduous forest, mature mixed forest, light partial 

harvest, and heavy partial harvest), four landscape pattern metrics (AWMSI, SHDI, IJI, and 

CWED) at the landscape and local scales, and three additional local variables (elevation, degree 
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slope, and aspect).  We only included variables on the resulting plot with p ≤0.05.  Additionally, 

to identify non-linear patterns, we fitted a smooth curve to the ordination for the previously 

mentioned variables using the ordisurf function in program R.  

To compare models between traditional habitat guilds and NMDS-defined habitat groups 

and to determine commonalities in habitat relations among bird species within each NMDS 

habitat group, we created regression tree models (De’ath and Fabricius 2000) for each guild, 

NMDS group, and species.  We assigned birds to traditional habitat guilds based on Whitcomb et 

al. (1981), Ehrlich et al. (1988), and observations from previous research in West Virginia 

(Appendix 1).  We created models using the mvpart package in program R using 10-fold cross-

validation and the ―pick‖ functions to interactively select the best tree size, balancing the number 

of branches versus the decline in relative error.  We created three models: landscape, local, and 

combined using relative abundance as the response variable and the landcover and landscape 

pattern metrics in Fig. 2 and Fig. 3 as the predictor variables.  To assess fit for each model, we 

calculated relative error (the inverse of the variance explained by the model) and cross-validation 

error such that values close to 0 were perfect predictors while values close to 1 were poor 

predictors (De’ath 2002).  Cross-validation error better represents the predictive abilities of 

models using new data. 

To examine landscape differences between successful and unsuccessful nests, we used 

classification trees (De’ath and Fabricius 2000).  We initially modeled individual species; 

however, due to the limited number of nests, model fits were poor.  Thus, we instead modeled 

the combined nests of species within each NMDS habitat group.  We created models using the 

mvpart package in program R using 10-fold cross-validation and the ―pick‖ functions to select 

tree size.  The response variable was nest outcome (success or failure), and we used the same 

landcover and landscape pattern metric variables and the same three models (landscape, local, 

and combined) as for the relative abundance models.  To assess model fit, we calculated the 

misclassification rates to determine how often successful and unsuccessful nests and nests within 

the two time periods were classified incorrectly within the model and also as a result of cross-

validation.  We measured cross-validation error using the same approach as described above for 

the abundance models. 
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RESULTS 

Habitat Condition. – Our point count survey locations included a broad array of habitat 

conditions (Fig. 2 and 3; see Appendix 2 for mean and SE).  Elevation ranged from 629-1073 m 

(middle 50%: 829-972 m), while slope ranged from flat (0°)-32° (middle 50%: 8.8-18.9°).  

AWMSI ranged from 1.1-2.1 at the local scale but was skewed toward larger value, while the 

landscape scale distribution was narrower (3.0-3.6) but more even.  At the local scale CWED 

ranged from 0-368 m/ha, including >25% values without any edge, while landscape scale CWED 

was narrower (66-104 m/ha).  Outliers expanded local scale IJI, which ranged from 9-100, but 

most of the data ranged from 42-81.  Landscape IJI had a narrower range (62-79) and a more 

even distribution.  The distribution of SHDI at the local scale ranged from no diversity (0)-0.8 

but was skewed towards larger values, while landscape scale SHDI ranged from 1.1-1.7.  Of the 

core metrics, mature forest had a broader range (52-921 ha) than early succession (2.7-150 ha). 

Cover types at the local scale ranged from complete absence (0 ha) to complete cover 

(3.13 ha) for all types except heavy partial harvest, which peaked at 2.8 ha, but harvest landcover 

types included many zero values (Fig. 2).  At least 50% of the values for clear-cut and light 

partial harvest were zeroes as were at least 75% of the heavy partial harvest values.  At the 

landscape scale (Fig. 3), mature deciduous (141-828 ha), mature mixed (114-925 ha), and light 

partial harvests (17-759 ha) had the largest ranges, while the ranges of clear-cut (25-325 ha) and 

heavy partial harvest (0-119 ha) were narrower and had smaller maximums.  

Non-metric multidimensional scaling. – The strongest NMDS ordination model included 

three dimensions and resulted in a stress of 22.8.  As a result of the ordination, we placed the 15 

species into four groups (Fig. 4).  Correlations of habitat metrics to each species location in the 

ordination resulted in linear (Fig. 5) and non-linear (Fig. 6) relations.   

The first NMDS group, early succession, included seven shrubland species (BWWA, 

COYE, CSWA, EATO, GRCA, GWWA, and INBU) located farthest left on the ordination (Fig. 

4).   The location of this group within the NMDS ordination was correlated with increasing area 

in clear-cuts, heavy partial harvests, and SHDI at both scales (Fig. 5; Fig. 6).  

The second and third groups, both associated with disturbed mature forests, were 

separated from each other based on elevation, which became higher moving down the second 

axis of the ordination (Fig 5).  A low-elevation disturbance group included BAWW, HOWA, 

OVEN, and WOTH, and a high-elevation disturbance group included AMRO, CAWA, DEJU, 
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and VEER (Fig. 4).  Local light partial harvests increased moving from the center of the 

ordination towards both groups (Fig. 6), while landscape light partial harvest increased only 

towards the lower elevation disturbance group (Fig. 5).  Similarly, local CWED was greatest in a 

band running through both groups (Fig. 6) while landscape CWED increased toward the lower 

elevation group (Fig. 5).  

The last group, undisturbed mature forest, included BHVI, BTBW, BTNW, HETH, 

MAWA, REVI, and SCTA.  At both scales, the upper portion of this group was associated with 

more mature deciduous forest (Fig. 6), whereas mature mixed, elevation, and core mature forest 

increased moving downward to the right on the ordination toward the lower portion of this group 

(Fig. 5).  SHDI and IJI increased moving left on the NMDS ordination from the mature forest 

group towards the other three groups (Fig. 5; Fig. 6). 

Abundance regression trees. – NMDS group models had lower errors than traditional 

habitat guild models, except for early successional species that were the same for the guild and 

NMDS group, indicating an improved classification of guilds due to greater similarity in required 

habitat conditions (Table 1).  Error and cross-validation error for models at all scales were 

improved for both NMDS disturbance groups versus the interior-edge guild and for the mature 

forest NMDS group versus the forest-interior guild.   

The two disturbed-canopy mature forest NMDS groups differed from each other in their 

response to elevation and mature mixed forests.  The low-elevation group responded negatively 

to area in mature mixed forests and elevations >845 m, while the high-elevation group responded 

positively to area in mature mixed forest and elevations >837 m.  Both increased in response to 

area in light partial harvests but at different scales.  The undisturbed mature forest NMDS group 

declined in relative abundance with greater disturbances at both scales, more core early 

successional habitat at the landscape scale, and more area in clear-cuts at the local scale, but 

increased in response to greater habitat diversity and elevation >862 m.  

The early succession NMDS group contained the same members as the early succession 

habitat guild.  Relative abundance of the early successional NMDS group increased with greater 

area in clear-cuts and heavy partial harvests at the local scale and declined with more area in 

mature mixed forest at the landscape scale. 

We found common habitat variables among individual species within each NMDS group 

(Table 2).  The relative abundance of all early successional species increased as the area of clear-
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cuts increased at the local scale, although the actual branching point varied from 0.74-1.81 ha 

(24-58% of the local area).  Three species (COYE, CSWA, GRCA), all at the local scale and 

GRCA at the landscape scale, increased in relative abundance with increasing area in heavy 

partial harvests.  At the landscape scale, relative abundances of four species (CSWA, EATO, 

GWWA, INBU) increased when CWED exceeded 88 – 103 m/ha, while three species (BWWA, 

COYE, EATO) declined with greater area in mature mixed forests.   

The traditional interior-edge and forest-interior guilds were subdivided into three 

different NMDS groups (Fig. 4).  These NMDS group included species from both traditional 

guilds except for the high-elevation disturbance group that included only interior-edge species 

(Table 2).  Within the low-elevation disturbance group, all four species decreased in relative 

abundance when elevation surpassed 798 – 859 m and three species declined with greater area in 

mature mixed forests (Table 2).  All four species also increased in relative abundance with 

increasing area in partial harvests, two at the landscape scale and two at the local scale.  Half the 

species increased in relative abundance when CWED was >103 m/ha, near the maximum 

measured value.  Within the high-elevation disturbance group, all species increased in relative 

abundance when elevation surpassed 824 – 947 m.  At the local scale, relative abundance of all 

species increased in response to metrics indicating a more disturbed forest, but the actual metrics 

varied among the individual species (two species for IJI, two species for SHDI, and one species 

for CWED).  At the landscape scale, the relative abundance of two species decreased with more 

mature deciduous forest and three species decreased when AWMSI declined below an index 

value from 3.14 – 3.28.   

Within the mature forest NMDS group, relative abundance of all species decreased when 

metrics associated with forest disturbance increased.  Variables at the local scale differed by 

species, though some species declined when clear-cut area increased to more than 0.004 – 0.56 

ha (0.1 – 18% of the local area).  At the landscape scale, two species declined with increasing 

amounts of clear-cuts, two species declined with increasing amounts of core early successional 

habitat, and three species declined, each with increasing AWMSI and IJI. 

Individual species relative abundance models had at least one variable in common with 

their respective NMDS group models, except for BTBW, but also included additional variables, 

except for BWWA and OVEN (Tables 1 and 2).  All members of the early-successional group 

shared a positive response to area in clear-cuts, while three out of seven species shared the 
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negative response to mature mixed forest and only GRCA shared the positive response to heavy 

partial harvests.  The variable branching values differed for most species.  Models for all species 

in both disturbed-canopy mature forest groups included the elevation variables of the group 

model.  For species in the high-elevation group, a negative response to AWMSI was most 

commonly shared.  All species in the low-elevation group shared a positive response to light 

partial harvests (two were at a different scale) and three species shared a negative response to 

mature mixed forests.  Within these groups, branching values were similar for most shared 

variables except for CAWA.  Finally, of the seven undisturbed mature forest species, three 

shared no variables or only elevational variables with the group.  The remaining four species 

shared a negative response to either core early successional habitats or clear-cuts.  The cut-offs 

for about half of the shared variables within this group differed.   

The scale of the variables retained in the combined models varied among individual 

species, but patterns differentiated the NMDS groups (Table 1).  Combined models included 

variables from both scales for 14 species, and models for four species each included only local or 

landscape variables.  Among individual species’ models with each NMDS group, combined 

models including variables from both scales were tied or most common. However, in reviewing 

species’ models with only single-scale variables, early-successional group species models had 

only local variables, high- and low-elevation disturbance groups species had only landscape 

variables, and mature-forest group species had a mixture of both scales.  This pattern within the 

individual species is consistent with the combined models variables for each NMDS group.   

Nest success classification trees. – Classification trees for nest outcome (success or 

failure) had relative errors ranging from 0.37 – 0.95, but predictive results were poor, i.e., CV ≥1 

for all models except the undisturbed mature forest group at the landscape scale (Table 3).  

Abundance and nest success models for each NMDS group had some similar variables.  For the 

low elevation disturbed-canopy forest group, nest success was greater with increasing edge 

density at the local scale (Table 3), while relative abundance increased with increasing edge 

density at the landscape scale (Table 1).  For the high elevation disturbed-canopy forest group, 

nest success increased with decreasing area in mature mixed forest locally, but relative 

abundance increased with increasing area in matured mixed forest at the landscape scale. 

 



98 

 

DISCUSSION 

Our results suggest that we should consider reclassification of species within their current 

habitat guilds (Whitcomb et al. 1981, Ehrlich et al. 1988) with respect to disturbance of mature 

forests by timber harvests.  Compared with traditional guilds, species in the NMDS ordination 

groups had more habitat relations in common and lower model errors, creating more cohesive 

ecological units.  Traditional guilds seemed too broadly defined and personal observations of 

some species indicated broader use of habitats than would be expected.  The more narrowly 

defined NMDS groups better reflected the biological relations between the species and habitat.  

As an additional benefit, the NMDS groups were aligned with types of disturbance created by 

timber harvests, making management objectives easier to define than possible with traditional 

guilds.  We want to clarify that we are not supporting the use of these exact species assemblages 

within each NMDS groups as a classification, but rather the data-driven refinement of traditional 

guilds relative to habitat conditions.  The actual assemblages in any given areas depend on a 

variety of factors such as habitat, elevation, etc.  

  The early successional guild best classified species and no species differed between the 

traditional guild and NMDS groups; however, based on our NMDS results, we suggest 

reorganizing both the traditional interior-edge and forest-interior guilds.  Within NMDS groups, 

Black-and-white Warbler and Ovenbird, traditionally considered to be forest-interior species, 

were shifted to the disturbed-canopy forest group, and Red-eyed Vireo, an interior-edge guild 

member, was moved to the undisturbed mature forest group.  This reclassification may indicate 

some elasticity in use of disturbed and undisturbed mature forests by members of both guilds.  

The commonalities within the NMDS groupings indicate the need for three types of habitats to 

support the full diversity of species: early successional regenerating forests, disturbed mature 

forests with increased opening of the canopy and small gap creation, and undisturbed mature 

forests.   

Members of these newly defined groups have many habitat relations in common and 

these groups improve upon the traditional habitat guilds, but we still found variation among 

individual species within groups.  Of species considered, all except two included additional 

variables beyond those included in their NMDS group models.  Further, we realize that the 

NMDS groups were defined and then compared to traditional habitat guilds using the same avian 

data, which might favor the NMDS groups over traditional guilds.  Locally, this does not present 
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a problem as the data drove the creation of the groups; however, future research is needed to 

confirm if our groupings are consistent over a larger spatial scale. 

Early successional NMDS group. – Similar to findings in previous research, we found 

that the early successional NMDS group was positively associated with regenerating forests 

created through even-aged timber management, including clear-cuts and heavy partial harvests 

(Annand and Thompson 1997, Duguay et al. 2001, Gram et al. 2003, Keller et al. 2003, 

Rodewald and Yahner 2000, Augenfeld et al. 2008).  Area in clear-cuts had the greatest effect on 

relative abundance of these species with heavy partial harvests and CWED also being influential 

but to a lesser degree.   

Although Krementz and Christie (2000) found no effects of even-aged harvest patch size 

on early successional bird relative abundance, most other studies suggest some degree of area-

sensitivity (Lent and Capen 1995, Costello et al. 2000, Gram et al. 2003, Brito-Aguilar 2005, 

Rodewald and Vitz 2005, Askins et al. 2007).  In our study, we did not detect increases in 

relative abundance of early successional species until there was at least 24-58% of the area in 

clear-cuts at the local scale and detected no relationship at the landscape scale.  Further, area of 

core early successional habitat was not retained in any of the models for early successional 

species.  Greater edge density increased relative abundance for some species indicating that early 

successional forests mixed with other habitat types would support greater relative abundances 

compared to early successional forests alone.  Rodewald and Vitz (2005), however, found seven 

of eight early successional species avoided clear-cut edges and preferred larger openings.      

Of all the NMDS ordination groups, early successional species were least influenced by 

elevation, with neither elevation nor elevational block included in models for any species.  The 

early succession group and three species within it (BWWA, COYE, EATO) were less abundant 

as mixed mature forests increased, revealing an indirect preference for lower elevations where 

mixed mature forests were less common.  Still, some early successional species, such as 

Mourning Warbler (Oporornis philadelphia), were more common at higher elevations.  This 

greater flexibility in regard to elevation and inclusion of a greater area of habitat might benefit 

such species by increasing the probability of finding inherently more ephemeral early 

successional habitats in heavily forested environments. 

Early successional nest success models had no variables in common with the group 

abundance models, suggesting that conditions required for successful breeding might be different 
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than for high relative abundance.  However, the positive relationship between IJI and nest 

success could, along with the similar relationship between CWED and relative abundance, reflect 

an adaptation among these species for niches associated with the mixing of mature and 

regenerating forests.  Most studies of  the influence of edge on mature-forest bird nest success 

found no effect (Duguay et al. 2001, Moorman et al. 2002, Gram 2003) or detrimental effects 

(Flaspohler et al. 2001, Manolis et al. 2002), but our result suggests a positive effect for early 

successional species.  Future research is necessary to determine specific habitat conditions within 

early successional habitats that support high relative abundance and nest success.  Our study 

underscores the importance of large sample sizes in evaluating habitat relationships for nest 

success; we had to combine species by NMDS group to conduct our analysis.  We suggest that 

future studies focus on a smaller, more select group of species. 

Disturbed-canopy mature forest NMDS groups. – We identified two NMDS groups using 

disturbed mature forests.  Within these forests, bird species composition shifted within a 

relatively narrow elevation (800 – 850m), necessitating the creation of two habitat groups.  

Beyond that distinction, though, we found no consistent relationship with any single habitat 

metrics among the species within either group.  Group members responded to increased 

interspersion, habitat diversity, availability of edge, and a reduction in patch shape complexity, a 

function of the inclusion of regularly-shaped timber harvests, all different aspects of disturbed 

forests.  Thus, a mix of forest management practices on a landscape likely enhances habitat 

quality for disturbed mature forest birds.   

Our results were similar to previous studies of the interior-edge guild (Lent and Capen 

1995, Robinson and Robinson 1999, Greenberg and Lanham 2001) with light partial harvests 

positively related to relative abundance for species in disturbed mature forests.  However, the 

influence of light partial harvests was less pronounced with species associated with higher 

elevations.  As was the case with the early successional forest NMDS group, forests with 

increased IJI, SHDI, and CWED, supported higher relative abundances, perhaps due to a greater 

variety of habitats compared to stands with just light partial harvests.  At the local scale, 

disturbed-canopy mature forest species relative abundance increased with >71% of the area in 

light partial harvests compared to a cut-off of >24-58% clear-cuts for early successional species, 

suggesting a need for larger patches of disturbed mature forest than for early successional forest. 
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Nest success models for both disturbed-canopy mature forest groups had few variables in 

common with their related group relative abundance models.  At the local scale, nest success 

decreased with increasing areas in mature deciduous forests for the low elevation group and 

increasing areas in mature mixed forests for the high elevation group; both forest types are the 

dominant mature forest landcover within their respective elevation ranges.  Area in another 

common cover type, light partial harvests, was not retained in any of the nest success models, but 

this could be due to low sample sizes.  Regardless, we cannot reach conclusions about nest 

success in this cover type.  However, previous research has found minimal response of nest 

success to light partial harvests (Robinson and Robinson 2001, Moorman et al. 2002, Gram et al. 

2003).   

Undisturbed mature forest NMDS group. –Undisturbed mature forest species declined in 

relative abundance as clear-cut and core early successional habitats increased, even when clear-

cuts were uncommon at the local scale (0.1-18%).  Areas in heavy and light partial harvests were 

not included in any models for these species, indicating a minimal or reduced effect in 

comparison to area of clear-cuts.  Relative abundance of the undisturbed mature forest group also 

decreased with a greater mixing of habitats, a reduction in shape complexity, and increase in 

edge density, all characteristics of more disturbed forests.  Mature forest birds exhibited some 

resilience to disturbance as models for the guild, the NMDS ordination, and models for some 

individual species included a positive response to increased habitat diversity.   

Similar to abundance models, nest success models for undisturbed mature forest species 

indicated flexibility and benefits from some forest disturbance.  Nest success increased with 

greater CWED and area in light partial harvests, both indicative of a more open forest canopy 

and supporting use of light partial harvests in managing this group of species.  

Although mature forest birds can be area-sensitive (Temple 1986), we did not retain core 

forest in any model for this group suggesting against area-sensitivity or that the influence of 

area-sensitivity is less pronounced than other changes in landscape and cover.  This is consistent 

with results from Bayard and Elphick (2010), who found that that only about a quarter of the 

1065 studies of area-sensitivity among forest songbirds discovered a positive response to greater 

patch size.    

 We observed an elevation gradient within the mature forest NMDS group, but not as 

strong as for the disturbed mature forest groups.  Moving down the second NMDS axis, we 
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observed a shift from lower elevation, deciduous species such as Red-eyed Vireo, Scarlet 

Tanager, and Black-throated Green Warbler to higher elevation, mixed forest species such as 

Hermit Thrush and Magnolia Warbler.  Across this elevational gradient, we observed a 

partitioning of habitats among similar species such as the shift from Wood Thrush at low 

elevations to Hermit Thrush at high elevation similar to that reported by Dellinger et al. (2007) 

or from Red-eyed Vireo at low elevations to Blue-head Vireo at high elevations.   

Scale. – Most species (64%) in all guilds and groups responded to a mixture of local and 

landscape scale variables.  The larger-scale variables likely influence the selection of the 

landscape in which the bird settles, while local variables probably influence selection of 

territories within this larger area.  Landcover types had greater effects at the local scale, while the 

landscape pattern metrics, such as AWMSI, IJI, and SHDI, had a greater effect at the landscape 

scale.   

The remaining guilds and groups (36%) included variables for only a single spatial scale.  

For example, the early successional NMDS group was only influenced by local variables, which 

would be expected for species that must take advantage of the patchy, small-scale, and 

ephemeral disturbances common in this heavily forested region.  In contrast, disturbed mature 

forest species were influenced by broader landscape variables.  They generally did not respond to 

small localized disturbance but selected mature forest landscapes with greater overall disturbance 

relative to available mature forests.  Undisturbed mature forest species were influenced by 

variables at both spatial scales.  Thus, mature forest species also selected more intact mature 

forest landscapes; however, they also responded locally within the larger landscape by avoiding 

sources of major canopy disturbance such as clear-cuts.    

Relation among NMDS group and harvest type. – We found that the NMDS groups 

tended to align with different harvest types.  Metrics associated with clear-cuts and heavy partial 

harvests were associated with early successional species.  Light partial harvests were associated 

with disturbed-canopy forest species.  No harvesting was associated with mature forest species.  

Clear-cuts had the greatest overall influence both positive (early succession species) and negative 

(mature forest species).  Because of the negative response to clear-cuts by mature forest birds, 

partial harvests provide an alternative timbering option for managers interested in reducing the 

effects of harvesting on this group of birds.  Light partial harvests provide habitat for disturbed-

canopy mature forest species while retaining many characteristics of undisturbed mature forests.  
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Although Heavy partial harvests have more open canopies than light partial harvests and 

undisturbed forests, research has shown that mature forest species will use residual trees in these 

harvests (Duguay et al, 2001, McDermott and Wood 2009).  Heavy partial harvests also provide 

habitat for early successional species similar to that provided in clear-cuts.   

Our results found a positive response by early successional birds and no negative 

response in the models for the other NMDS groups to heavy partial harvests.  No negative 

associations within the models does not guarantee the absence of a negative responses to heavy 

partial harvests only that the response was less pronounced than the observed response to clear-

cuts.  Of harvesting treatments examined, clear-cuts appeared to promote the greatest positive 

response for early successional species.  Potential negative effects of clear-cut harvests for other 

species groups could be minimized by using heavy partial harvests.  Overall, a variety of 

harvesting techniques led to high avian diversity in this landscape. 
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Figure 1.  Landscape blocks and nest searching plots (dashed plots were shifted due to timber 

harvests) within the Wildlife and Ecosystem Research Forest (lower) and Panther Run Tract 

(upper left), WV.   
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Figure 2. Local-scale boxplot results at point count locations (n = 1270) for A) elevation and B) degree slope and within 100m of plot 

center for C) area-weighted mean shape index, D) contrast-weighted edge density, E) interspersion-juxtaposition, F) Shannon diversity 

index, and G) the area of five landcover types (mature deciduous, mature mixed, clear-cut, light partial harvest, and heavy partial 

harvest) at the Wildlife and Ecosystem Research Forest and Panther Run Tract (combined) for entire study period, 1996 - 2009. The 

central line of the boxplot measures the median for each variable, while the ends of the box are the first and third quartiles.  The 

whiskers on each boxplot extend to 1.5 times the interquartile range with dots representing values further than this cutoff. 
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Figure 3. Landscape-scale boxplot results for A) area-weighted mean shape index, B) contrast-weighted edge density, C) 

interspersion-juxtaposition, D) Shannon diversity index, E) the area of core mature forest and core early succession, and F) the area of 

five landcover types (mature deciduous, mature mixed, clear-cut, light partial harvest, and heavy partial harvest) at the Wildlife and 

Ecosystem Research Forest and Panther Run Tract (combined) for entire study period, 1996 - 2009. The central line of the boxplot 

measures the median for each variable, while the ends of the box are the first and third quartiles.  The whiskers on each boxplot extend 

to 1.5 times the interquartile range with dots representing values further than this cutoff. 
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Figure 4.  Groupings of selected bird species A) early succession, B) low elevation disturbance, C), high elevation disturbance D), 

mature forest as a result of NMDS (k=3) at the Wildlife and Ecosystem Research Forest and Panther Run Tract.  
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Figure 5. Linear vector fitting for landscape pattern metrics and landcover on the first two axes of NMDS 

ordination (k=3) at the A) local and B) landscape scales.  Variables with p ≤0.05 are plotted.



114 

 

 

 

FE

CBA

D

HG HG

FED

CBA

 
Figure 6. Smoothed curves on the NMDS ordination (k=3) for non-linear metrics and landcover 

at the local scale [A) light partial harvest, B) mature deciduous, C) contrast weighted edge 

density, and D) Shannon diversity] and at the landscape scale [E) mature deciduous, F) clear-cut, 

G) contrast-weighted edge density, and H) interspersion-juxtaposition.  Arrows point from 

higher values to lower values. 
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Table 1.  Regression tree results identifying landscape pattern metrics and landcover types influencing a change in relative abundance of 

traditional habitat guilds and NMDS ordination habitat groups at the Wildlife and Ecosystem Research Forest from 1996-2009. 

Species Model Landcover and landscape pattern metrics
a,b

 Error 
CV 

Error 

Habitat Guild     

Early Succession Landscape Mixed (-418.1 ha; 2.5) 0.91 0.92 

Local Clear (+0.77 ha; 4.6), HvyPH (+0.52 ha; 3.8) 0.64 0.67 

Combined P_Clear (+0.77 ha; 4.6), P_HvyPH (+0.52 ha; 3.8) 0.64 0.68 

Interior-edge Landscape SHDI (+1.41; 1.4), IJI (-72.4; 1.3), Clear (-137.2 ha; 1.3), CWED (-92 m/ha; 1.6),  

SHDI (+1.72; 1.7) 

0.82 0.85 

Local LtPH (+2.44 ha; 1.3), CWED (+155.3 m/ha; 1.2) 0.97 0.99 

Combined L_SHDI (+1.41; 1.4), L_IJI (-72.4; 1.3), L_Clear (-137.2; 1.3) 0.87 0.91 

Forest-interior Landscape IJI (-72.4; 1.5), SHDI (+1.45; 1.3, -1.49; 1.3) 0.89 0.91 

Local Clear (-0.77 ha; 2.3), Elev (+917.5 m; 1.3) 0.86 0.88 

Combined P_Clear (-0.77 ha; 2.3), Elev (+917.5; 1.3), L_AWMSI (-3.16; 1.4) 0.83 0.87 

NMDS Group     

Early Succession Landscape Mixed (-418.1 ha; 2.5) 0.91 0.92 

Local Clear (+0.77 ha; 4.6), HvyPH (+0.52 ha; 3.8) 0.64 0.67 

Combined P_Clear (+0.77 ha; 4.6), P_HvyPH (+0.52 ha; 3.8) 0.64 0.68 

Low Elev. Mat. Dist. 

Forest 

Landscape Mixed (-299.3 ha; 3.4), CWED (+102.2 m/ha; 1.7), Block (-2.5; 2.6) 0.66 0.69 

Local Elevation (-844.5 m; 2.6), Mixed (-0.003 ha; 1.9), LtPH (+2.38 ha; 1.6) 0.78 0.84 

Combined L_Mixed (-299.3 ha; 3.4), LCWED (+102.2 m/ha; 1.7), Block (-2.5; 2.6) 0.66 0.69 

High Elev. Mat. Dist. 

Forest 

Landscape Mixed (+208.5 ha; 4.0), LtPH(+482.3 ha; 1.6), AWMSI (-3.15; 1.6) 0.78 0.78 

Local Elevation (+948.5 m; 1.9, +837 m; 2.2) 0.85 0.87 

Combined L_Mixed (+208.5 ha; 4.0), L_LtPH(+482.3 ha; 1.6), L_AWMSI (-3.15; 1.6) 0.78 0.79 

Undisturbed Mature 

Forest 

Landscape Cor_ES (-88.1 ha; 1.7), SHDI (+1.45; 1.5) 0.78 0.82 

Local Clear (-0.45 ha; 2.0), Elevation (+862 m; 1.4) 0.84 0.88 

Combined L_Cor_ES (-88.1 ha; 1.7), L_SHDI (+1.45; 1.5), P_Clear (-0.88 ha; 2.2, -0.51 ha; 2.1) 0.71 0.74 
a
Variables are listed in order with the first variable explaining the most variation, + and - indicate the direction of the relation in relative to higher 

relative abundance, the first value in parentheses is the cutoff value for the branch while the second is factor by which abundance is increased (ex. 

2.5 means the higher abundance is 2.5 times greater than the lower abundance) 
b
Variables with the prefix L are landscape variables and the prefix P are local variables    
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Table 2.  Regression tree results identifying landscape pattern metrics and landcover types influencing a change in relative 

abundance of focal bird species at the Wildlife and Ecosystem Research Forest from 1996-2009.  

Species
a
 Model Landcover and landscape pattern metrics

b
 

Erro

r 

CV 

Error 

Undisturbed Mature Forest   

BHVI
FI

 Landscape Cor_ES (-14.64 ha; 2.8), Clear (-302 ha; 3.0) 0.97 0.89 

 Local Elevation (+875 m; 2.2), Clear (-0.004 ha; 1.6) - - 

 Combined
c
 L_Cor_ES (-14.64 ha; 2.8), Elevation (+875 m; 2.1) 0.86 0.89 

BTBW
FI

 Landscape Mixed (+208.5 ha; 4.4) 0.96 0.97 

 Local CWED (-15.85 m/ha; 2.4) 0.95 1.00 

 Combined P_CWED (-15.85 m/ha; 2.4), DegSlope (+22.29°; 2.4) 0.91 1.00 

BTNW
FI

 Landscape SHDI (+1.45; 1.8), IJI (-72.4; 1.8), Clear (-324.6 ha; 3.0) 0.90 0.92 

 Local Clear (-0.45 ha; 3.2), Elevation (+997 m; 1.8) 0.89 0.91 

 
Combined P_Clear (-0.45  ha; 3.2), Elevation (+997 m; 1.8), L_SHDI (+1.447; 1.8),  

L_Cor_ES (-122.7 ha; 1.8) 

0.83 0.87 

HETH
FI

 Landscape CWED (-93.61 m/ha; 4.6), AWMSI (-3.12; 2.4) 0.96 1.00 

 Local IJI (+90.45; 8.6), DegSlope (-11.31°; 3.8), Elevation (+1017 m; 8.2) 0.84 1.15 

 Combined P_IJI (+90.45; 8.6), DegSlope (-11.31°; 3.8), Elevation (+1017 m; 8.2) 0.84 1.15 

MAWA
F

I
 

Landscape Block (+2.5; 4.7), AWMSI (-3.15; 2.2) 0.85 0.86 

 Local Mixed (+1.06; 3.7) 0.91 1.02 

 Combined Block (+2.5; 4.6), P_Decid (-0.32 ha; 4.0), L_AWMSI (-3.15; 2.2) 0.78 0.84 

REVI
IE

 Landscape Cor_ES (-122.7 ha; 1.5, +14.64; 1.7), IJI (-78.6; 1.8) 0.90 0.93 

 Local IJI (+45.5; 4.0), Decid (+2.05 ha; 1.3) 0.80 1.02 

 Combined P_IJI (-9.60; 2.7), L_Cor_ES (-122.7 ha; 1.5, +14.64; 1.8), P_Decid (+1.26 ha; 1.2) 0.79 1.54 

SCTA
FI

 Landscape IJI (-72.4; 2.2), AWMSI (-3.14; 1.8)  0.93 0.95 

 Local Clear (-0.56 ha; 2.3) 0.98 1.02 

 Combined L_IJI (-72.4; 2.2), L_AWMSI (-3.14; 1.8)  0.93 0.96 
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Table 2.  Continued   

Species Model Landcover and landscape pattern metrics Error 
CV 

Error 

Low Elevation Disturbed Forest   

BAWW
FI

 Landscape Block (-2.5; 4.8), LtPH (+222.5 ha; 1.9), CWED (+103.4 m/ha; 1.5) 0.86 0.90 

 Local Elevation (-798 m; 4.8) 0.95 1.54 

 
Combined Block (-2.5; 4.8), L_LtPH (+222.5 ha; 1.9), L_CWED (+103.4 m/ha; 2.2),  

Elevation (-723 m; 1.8,+676.6 m; 3.2) 

0.84 0.90 

HOWA
IE

 Landscape 
LtPH (+707.6 ha; 4.0), Mixed (-299.3 ha; 2.9), CWED (+103.8 m/ha; 1.6), AWMSI (-3.08; 

2.5) 
0.76 0.79 

 Local Elevation (-858.5 m; 2.9), Mixed (-0.003 ha; 2.4) 0.91 1.04 

 Combined L_LtPH (+707.6 ha; 4.0), L_Mixed (-299.3 ha; 2.9) 0.79 0.83 

OVEN
FI

 Landscape Mixed (-208.5 ha; 3.5) 0.90 0.91 

 Local LtPH (+2.42 ha; 3.0), Elevation (-840.5 m; 2.5) 0.89 0.97 

 Combined L_Mixed (-208.5 ha; 3.5), P_LtPH (+2.42 ha; 2.2), P_Decid (+0.24 ha; 2.3) 0.87 0.93 

WOTH
IE

 Landscape Mixed (-299.3 ha; 3.8) 0.93 0.93 

 Local Elevation (-835 m; 3.4), IJI (-61.79; 2.2), LtPH (+2.23 ha; 4.2), Decid (+0.51 ha; 2.1) 0.94 0.96 

 Combined P_IJI (+98.04; 9.1), L_Mixed (-299.3 ha; 3.5), P_Decid (+3.14 ha; 3.4) 0.93 0.99 

High Elevation Disturbed Forest   

AMRO
IE

 Landscape Decid (-367.2 ha; 2.7), AWMSI (-3.17; 2.4) 0.94 0.96 

 Local IJI (+75.6; 4.0), Elevation (+991.5 m; 3.8), SHDI (+0.91; 1.9) 0.79 1.83 

 Combined P_IJI (+89.34; 8.0), Elevation (+991.5 m; 3.6), L_AWMSI (-3.14; 2.0) 0.83 1.60 

CAWA
IE

 Landscape Mixed (+529 ha; 4.0), AWMSI (-3.28; 28.5) 0.87 0.89 

 Local Elevation (+824; 8.1) 0.95 0.97 

 Combined 
L_Mixed (+529 ha; 4.0), DegSlope (+23.68°; 3.2), L_AWMSI (-3.28; 40.8), P_CWED 

(+112.7 m/ha; 2.0), P_LtPH (+2.65 ha; 3.3) 
0.75 0.83 

DEJU
IE

 Landscape AWMSI (-3.14; 2.6, +3.10; 2.2), Block (+2.5; 4.4), CWED (-98.69 m/ha; 1.9) 0.77 0.79 

 Local Elevation (+947 m; 2.2), IJI (+75.08; 2.5), CWED (+43.61 m/ha; 1.5), SHDI (+0.53; 1.4) 0.92 0.97 

 Combined L_AWMSI (-3.14; 2.6), Elevation (+945 m; 2.2), Block (+2.5; 4.4) 0.82 0.86 

VEER
IE

 Landscape Clear (-279.4 ha; 9.3), Decid (-345 ha; 1.6), LtPH (-253.2 ha; 1.8) 0.89 0.92 

 Local Elevation (+837 m; 3.2) 0.94 0.95 

 Combined L_Clear (-279.4 ha; 9.3), L_Decid (-345 ha; 1.6) 0.90 0.92 
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Table 2.  Continued 

Species Model Landcover and landscape pattern metrics Error 
CV 

Error 

Early Succession   

BWWA
E

S
 

Landscape Mixed (-114.3 ha; 13.5) 0.99 1.01 

 Local Clear (+1.81 ha; 71.6) 0.85 1.48 

 Combined P_Clear (+1.81 ha; 71.6) 0.85 1.48 

COYE
ES

 Landscape SHDI (+1.72; 6.2), Mixed (-418.1 ha; 5.6) 0.95 0.99 

 Local Clear (+1.81 ha; 12.5), Elevation (-813 m; 2.6) 0.89 1.07 

 Combined P_Clear (+1.81 ha; 1.8), P_HvyPH (+2.14 ha; 18.0), L_SHDI (+1.72; 11.8) 0.89 1.09 

CSWA
ES

 Landscape Clear (+127.5 ha; 2.5), CWED (+102.9 m/ha; 1.6) 0.95 0.97 

 Local Clear (+0.74 ha; 4.5) 0.80 0.81 

 Combined P_Clear (+0.74 ha; 4.5), P_HvyPH (+0.83 ha; 4.4) 0.76 0.80 

EATO
ES

 Landscape Mixed (-388.6 ha; 3.7), Clear (-324.5 ha; 2.1) 0.88 0.89 

 Local Clear (+0.45 ha; 3.7) 0.88 0.93 

 Combined P_Clear (+0.45 ha; 3.7), L_CWED (+102.9 m/ha; 2.3) 0.84 0.89 

GRCA
ES

 Landscape HvyPH (+62.11 ha; 2.8) 0.99 1.00 

 Local Clear (+0.77 ha; 8.2), AWMSI (+1.78; 5.2), HvyPH (+2.02 ha; 12.5) 0.86 0.97 

 Combined P_Clear (+0.77 ha; 8.0), P_AWMSI (+1.78; 5.2), L_IJI (-66.53; 3.3) 0.86 0.98 

GWWA
E

S
 

Landscape CWED (+99.3 m/ha; 14.6) 0.98 1.00 

 Local Clear (+1.81 ha; 20.4), LtPH (+0.46 ha, 4.6) - - 

 Combined  L_IJI (-71.42; 4.7), L_CWED (+99.3 m/ha; 16.1), P_Clear (+1.81 ha; 20.5) 0.79 1.15 

INBU
ES

 Landscape CWED (+87.86 m/ha; 3.0, +102.9 m/ha; 1.7) 0.92 0.94 

 Local Clear (+1.18 ha; 4.9) 0.78 0.79 

  Combined P_Clear (+1.18 ha; 4.9), L_CWED (+103.4 m/ha; 2.1, +102.9 m/ha; 2.9) 0.72 0.75 
a
Superscript identifies traditional habitat guild (FI=forest-interior, IE= interior-edge, ES=early succession) 

b
Variables are listed in order with the first variable explaining the most variation, + and - indicate the direction of the relation relative to 

higher relative abundance, the first value in parentheses is the cutoff value for the branch while the second is the factor by which abundance 

is increased (ex. 2.8 means the higher abundance is 2.8 times greater than the lower abundance) 
c
Variables with the prefix L are landscape variables and the prefix P are local variables 
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Table 3.  Classification tree results identifying landscape pattern metrics and landcover types distinguishing successful and unsuccessful nests of 

NMDS ordination habitat groups at the Wildlife and Ecosystem Research Forest from 2001-2009. 

    Missclass Rates     

Group
c
 N Model Landcover and landscape pattern metrics

a
 Null  Model CV Error 

CV 

Error 

Undisturbed Mature Forest 58 Landscape CWED (+94.1 m/ha), LtPH (+222.5 ha) 0.38 0.24 0.35 0.64 0.91 

  Local SHDI (-3.1) 0.38 0.28 0.40 0.73 1.05 

  Combined
b
 L_CWED (+94.1m/ha) 0.38 0.26 0.42 0.68 1.10 

         

High Elev. Disturbed For. 140 Landscape Decid (-156.1 ha) 0.42 0.40 0.49 0.95 1.15 

  Local Mixed (-0.06 ha) 0.42 0.16 0.55 0.37 1.30 

  Combined P_Mixed (-0.06 ha) 0.42 0.15 0.54 0.36 1.27 

         

Low Elev. Disturbed For. 69 Landscape IJI (-70.7), Decid (-404 ha) 0.28 0.25 0.34 0.90 1.23 

  Local Decid (-1.51 ha), CWED (+133.2 m/ha) 0.28 0.15 0.46 0.53 1.67 

  Combined L_AWMSI (-3.24), P_CWED (-162,+133 m/ha) 0.28 0.15 0.39 0.53 1.40 

         

Early Succession 148 Landscape Decid (-322 ha), AWMSI (+3.33) 0.47 0.43 0.58 0.91 1.25 

  Local IJI (+58.2) 0.47 0.29 0.47 0.62 1.00 

    Combined P_IJI (+58.2) 0.47 0.29 0.47 0.62 1.00 
a
Variables are listed in order with the first variable explaining the most variation, + and - indicate the direction of the relationship in relation to 

successful nests, the value in parentheses is the cutoff value for the branch 
b
Variables with the prefix L are landscape variables and the prefix P are local variables  

c
Group members: Early Succession (BWWA, COYE, CSWA, EATO, GRCA, GWWA, INBU), Low Elevation Disturbed (BAWW, HOWA, 

OVEN, WOTH), High Elevation Disturbed (AMRO, CAWA, DEJU, VEER), Mature Forest (BHVI, BTBW, BTNW, HETH, MAWA, REVI, 

SCTA). 
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Appendix 1.  Bird species detected at the Wildlife and Ecosystem Research Forest, 1996–2009 

Name
a
 Scientific Name AOU Code Habitat Guild

b
 

Acadian Flycatcher
a
 Empidonax virescens ACFL FI 

Alder Flycatcher Empidonax alnorum ALFL IE 

American Crow
a
 Corvus brachyrhynchos AMCR ES 

American Goldfinch
a
 Spinus tristis AMGO ES 

American Redstart
a
 Setophaga ruticilla AMRE IE 

American Robin
a
 Turdus migratorius AMRO IE 

Baltimore Oriole Icterus galbula BAOR IE 

Barred Owl Strix varia BDOW FI 

Belted Kingfisher Ceryle alcyon BEKI ES 

Black-and-white Warbler
a
 Mniotilta varia BAWW FI 

Black-billed Cuckoo Coccyzus erythropthalmus BBCU IE 

Blackburnian Warbler
a
 Dendroica fusca BLBW FI 

Black-capped Chickadee
a
 Poecile atricapillus BCCH IE 

Black-throated Blue Warbler
a
 Dendroica caerulescens BTBW FI 

Black-throated Green Warbler
a
 Dendroica virens BTNW FI 

Blue Jay
a
 Cyanocitta cristata BLJA IE 

Blue-gray Gnatcatcher Polioptila caerulea BGGN IE 

Blue-headed Vireo
a
 Vireo solitarius BHVI FI 

Blue-winged Warbler Vermivora pinus BWWA ES 

Brewster's Warbler Helminthophila 

leucobronchialis 

BRWA ES 

Broad-winged Hawk Buteo platypterus BWHA FI 

Brown Creeper Certhia familiaris BRCR FI 

Brown Thrasher Toxostoma rufum BRTH ES 

Brown-headed Cowbird
a
 Molothrus ater BHCO IE 

Canada Warbler
a
 Wilsonia canadensis CAWA IE 

Carolina Wren Thryothorus ludovicianus CAWR ES 

Cedar Waxwing
a
 Bombycilla cedrorum CEDW IE 

Cerulean Warbler Dendroica cerulea CERW FI 

Chestnut-sided Warbler
a
 Dendroica pensylvanica CSWA ES 

Chipping Sparrow Spizella passerina CHSP ES 

Common Raven Corvus corax CORA FI 

Common Yellowthroat
a
 Geothlypis trichas COYE ES 

Cooper's Hawk Accipiter cooperii COHA IE 

Dark-eyed Junco
a
 Junco hyemalis DEJU IE 

Downy Woodpecker
a
 Picoides pubescens DOWO IE 

Eastern Phoebe Sayornis phoebe EAPH ES 

Eastern Towhee
a
 Pipilo erythrophthalmus EATO ES 
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Appendix 1.  Continued 

Name Scientific Name AOU Code Habitat Guild 

Eastern Wood-pewee
a
 Contopus virens EAWP FI 

Field Sparrow
a
 Spizella pusilla FISP ES 

Golden-crowned Kinglet
a
 Regulus satrapa GCKI FI 

Golden-winged Warbler Vermivora chrysoptera GWWA ES 

Gray Catbird
a
 Dumetella carolinensis GRCA ES 

Great-crested Flycatcher Myiarchus crinitus GCFL IE 

Hairy Woodpecker
a
 Picoides villosus HAWO FI 

Hermit Thrush
a
 Catharus guttatus HETH FI 

Hooded Warbler
a
 Wilsonia citrina HOWA IE 

Indigo Bunting
a
 Passerina cyanea INBU ES 

Kentucky Warbler Oporornis formosus KEWA FI 

Least Flycatcher Empidonax minimus LEFL FI 

Louisiana Waterthrush Seiurus motacilla LOWA FI 

Magnolia Warbler
a
 Dendroica magnolia MAWA FI 

Mourning Dove Zenaida macroura MODO ES 

Mourning Warbler
a
 Oporornis philadelphia MOWA ES 

Nashville Warbler Vermivora ruficapilla NAWA ES 

Northern Cardinal Cardinalis cardinalis NOCA ES 

Northern Flicker
a
 Colaptes auratus NOFL IE 

Northern Parula Parula americana NOPA IE 

Northern Waterthrush Seiurus noveboracensis NOWA FI 

Ovenbird
a
 Seiurus aurocapillus OVEN FI 

Pileated Woodpecker
a
 Dryocopus pileatus PIWO FI 

Prairie Warbler Dendroica discolor PRAW ES 

Red-bellied Woodpecker Melanerpes carolinus RBWO IE 

Red-breasted Nuthatch
a
 Sitta canadensis RBNU FI 

Red-eyed Vireo
a
 Vireo olivaceus REVI IE 

Red-shouldered Hawk Buteo lineatus RSHA IE 

Red-tailed Hawk Buteo jamaicensis RTHA IE 

Rose-breasted Grosbeak
a
 Pheucticus ludovicianus RBGR IE 

Ruby-throated Hummingbird Archilochus colubris  RTHU IE 

Ruffed Grouse Bonasa umbellus RUGR IE 

Scarlet Tanager
a
 Piranga olivacea SCTA FI 

Song Sparrow
a
 Melospiza melodia SOSP ES 

Tufted Titmouse
a
 Baeolophus bicolor TUTI IE 

Turkey Vulture Cathartes aura TUVU ES 

Veery
a
 Catharus fuscescens VEER IE 

White-breasted Nuthatch
a
 Sitta carolinensis WBNU FI 

White-eyed Vireo Vireo griseus WEVI ES 
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Appendix 1.  Continued 

Name Scientific Name AOU Code Habitat Guild 

Wild Turkey Meleagris gallopavo WITU IE 

Willow Flycatcher Empidonax traillii WIFL ES 

Winter Wren
a
 Troglodytes troglodytes WIWR FI 

Wood Thrush
a
 Hylocichla mustelina WOTH IE 

Worm-eating Warbler Helmitheros vermivorus WEWA FI 

Yellow-bellied Sapsucker Sphyrapicus varius YBSA FI 

Yellow-billed Cuckoo
a
 Coccyzus americanus YBCU IE 

Yellow-breasted Chat Icteria virens YBCH ES 

Yellow-throated Vireo Vireo flavifrons YTVI IE 

a
Species analyzed for temporal trends 

b
Forest-interior= FI; Interior-edge= IE; Early Succession=ES
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Appendix 2.  Mean landscape metrics at 

the local and landscape at the Wildlife and 

Ecosystem Research Forest and Panther 

Run Tract (combined) for entire study 

period, 1996 - 2009 

Metric Mean SE 

Local   

  

 

Elevation (m) 892.3 2.6 

 

Slope (deg) 14.4 0.2 

 

AWMSI 1.42 0.01 

 

CWED (m/ha) 97.3 2.6 

 

IJI 62.4 0.5 

 

SHDI 0.51 0.01 

 

Decid (ha) 0.94 0.03 

 

Mixed (ha) 0.82 0.03 

 

Clear (ha) 0.36 0.02 

 

LtPH (ha) 0.78 0.03 

 

HvyPH (ha) 0.09 0.01 

Landscape 

   

 

AWMSI 4.22 0.99 

 

CWED (m/ha) 89.7 0.99 

 

IJI 72.1 0.95 

 

SHDI 2.43 0.99 

 

Decid (ha) 454.0 5.8 

 

Mixed (ha) 425.2 6.0 

 

Clear (ha) 174.2 3.1 

 

LtPH (ha) 374.8 7.4 

 

HvyPH (ha) 51.0 1.5 

 

CorFor (ha) 450.6 7.9 

  CorES (ha) 79.1 1.7 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4 

RESPONSE OF CANADA WARBLERS (WILSONIA CANADENSIS) TO CHANGING 

FOREST CHARACTERISTICS IN THE SOUTHERN PORTION OF THEIR RANGE 
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ABSTRACT.---Although Canada Warblers (Wilsonia canadensis) have been declining in the 

eastern United States, their population in the Appalachian Bird Conservation Region (BCR), the 

southern edge of their range, remains stable.  Given this stable population, this BCR may make 

important contributions to the species’ conservation. Our study objectives were to evaluate the 

response of Canada Warbler abundance and nest success to habitat characteristics at multiple 

spatial scales in response to active forest management.  We conducted point counts (1996–1998, 

2001–2003, and 2007–2009) and monitored nests (first and thirds sampling periods) at the 

Wildlife and Ecosystem Research Forest (WERF), Randolph County, WV in and evaluated 

relative abundance and nest success as a function of landscape metrics, landcover, and 

microhabitat features.  During the study, relative abundance of Canada Warblers decreased on 

the WERF and the Appalachian BCR, but at lower yearly rates on the former.  Early in the study, 

relative abundance was greater closer to roads, but as timber harvest became more common, it 

was positively related to area of light partial harvests at the local scale.  Nest success was 45.6% 

(± 18.3) during 1996–1998 (n=10) and 24.9% (± 14.6) during 2007–2009 (n=17), but did not 

differ (P = 0.38) between these periods.  Nests in 2007–2009 had less intermediate canopy cover 

and residual trees but more green cover, woody debris, and pole trees than nests in 1996–1998.  

Successful nests had more low cover, less vertical diversity, more woody debris, more saplings, 

and greater edge density than unsuccessful nests.  Compared to available habitat, nest sites had 

less mature deciduous and mixed cover but more clear-cuts and light partial harvests suggesting 

Canada Warblers are disturbance-dependent.  We found a positive response in relative 

abundance to all three timber harvest types (clear-cut, heavy partial, and light partial) and 

improved in habitat through understory development and greater retention of residual trees; 

however, warblers responded most positively to light partial harvests possibly because of the 

availability of both residual trees and understory shrubs.  Our research finds preliminary support 

for use of timber harvests as a management tool for Canada Warblers in the southern portion of 

their range.  Long-term monitoring of abundance and nest success will be required to confirm 

successful management. 
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Like many other neotropical migrant songbirds in the eastern United States, the Canada 

Warbler (Wilsonia canadensis), a woodland species, has been declining throughout its range 

(Robbins et al. 1989; Terborgh 1989, 1992; Finch 1991; Hagan and Johnston 1992; Askins 1993) 

at a high annual rate (3.8% since 1980; Sauer et al. 2008, Appendix I).  Ranked by Smith et al. 

(1993) as the seventh highest conservation priority of 132 species of neotropical migrants, 

concern for this species recently has increased resulting in its’ inclusion on the 2007 Audubon 

Watchlist for U.S. birds (Butcher et al. 2008), the U.S Fish and Wildlife Service’s Birds of 

Conservation Concern 2008 (U.S Fish and Wildlife Service 2008), and threatened listing by the 

Committee on the Status of Endangered Wildlife in Canada (COSEWIC 2008).  The species is 

also under consideration for uplisting from least concern to vulnerable on the International Union 

for Conservation of Nature (IUCN) Redlist by BirdLife International due to estimated population 

declines (BirdLife International 2009).  The causes of Canada Warbler population declines 

remain unknown, but studies have suggested loss of forested wetland breeding habitat and late-

successional forests (Conway 1999), increased urban development within forested landscapes 

(Miller 1999), reduced understory vegetation due to deer herbivory (DeGraaf et al. 1991), and 

loss of wintering habitat (Faccio et al. 1998) as possible factors. 

Canada Warblers typically breed from the southern boreal forests of Canada south 

through the northeast and Great Lakes regions of the United States, and southward along the 

Appalachian Mountains.  Breeding Bird Survey (BBS) data indicate declining population trends 

since 1980 across all Bird Conservation Regions (BCR) in their range except for the Appalachian 

Mountains (+1.2%) and Prairie Hardwood Transition (+6.3%; Sauer et al. 2008).  This stable 

population within the Appalachian Mountain BCR may contribute to conservation of the species 

by providing a source population. 

Canada Warblers inhabit a wide range of deciduous and coniferous forests, but are most 

common in mixed coniferous-deciduous forests that are moist and have well-developed 

understory shrub layers (Conway 1999).  Canada Warblers also are positively associated with 

natural disturbances such as wind or tree-fall created forest gaps (Hall 1984, Hagan and Grove 

1999, Mitchell 1999, Faccio 2003), outbreaks of invasive insects such as spruce budworm 

(Choristoneura fumiferana; Crawford and Jennings 1989), and regenerating forests 6 to 20 years 

post-harvest in the northern (Titterington et al. 1979, Hagan et al. 1997) and southern portions of 

their range (Mauer et al 1981, Weakland 2002).  This species seems primarily disturbance-
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dependent at higher elevations, especially in the southern portion of its range, including the 

Appalachian Mountains.  Lambert and Faccio (2005) suggested that elevation influences this 

shift to primarily disturbed habitats compared to the more diverse habitat use in their core range 

because wet conditions at lower elevations limit canopy closure and promote understory growth, 

whereas understory development at higher elevations is primarily disturbance-driven through gap 

creation.  In managing for Canada Warblers, this shift in habitat use from core breeding range to 

its’ southern edge needs to be considered; however, minimal research is available outside the 

core of the warbler’s range, and almost none in the central and southern Appalachians.  

Studies in the United States and Canada have found different responses of warbler 

abundances when comparing natural disturbances with timber harvests.  Buford and Capen 

(1999) and Drapeau et al. (2000) found that abundance decreased in response to harvested areas 

while Mauer et al. (1981) found an increase on such sites.  Lambert and Faccio (2005) and 

Hallworth et al. (2008a) reported that pairing and fledging rates were similar in regenerating 

harvests and forested wetlands, but overall productivity was higher in forested wetlands because 

territory densities were greater, indicating higher quality habitat.  With respect to harvesting 

techniques, Canada Warbler abundance has been shown to increase in both clear-cut and partial 

harvests (Mauer et al. 1981, Hagan et al. 1997, King and DeGraaf 2000).  Conversely, Hagan et 

al. (1997) and Lambert and Faccio (2005) found abundance declined in clear-cut harvests versus 

partial harvests.  Within recently harvested stands, the most important features seem to be high 

understory shrub density (Christian et al. 1996, Hagan and Meehan 2002, Hallworth et al. 2008b) 

and the retention of some overstory trees (Hagan et al. 1997, Lambert and Faccio 2005, 

Hallworth et al. 2008b). 

Given the limited research throughout the Canada Warbler’s southern range and the 

conservation opportunity provided by stable populations compared to large declines throughout 

the core range, we studied this species in the central Appalachians.  The objective of our study 

was to determine the response of Canada Warbler abundance and nest success to changing forest 

characteristics at multiple spatial scales as a result of forest management practices, including 

clear-cut and partial harvests, in the Allegheny Mountains.   

METHODS 

Study Area.---Research was conducted from 1996–1998 (Weakland 2000), 2001–2003 

(Dellinger 2005), and 2007–2009 at the Wildlife and Ecosystem Research Forest (WERF) 
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located in southwestern Randolph County, West Virginia in the unglaciated Allegheny Mountain 

and Plateau Region. The WERF is a 3,413 ha forested area, established in 1994 by Westvaco 

Corporation to study the ecological effects of industrial forest management practices on 

ecosystem processes and wildlife.  Elevations range from 734–1,180 m and regional topography 

consists of narrow valleys with small, high-gradient streams, and steep slopes topped by broad 

ridges that generally run in a south-southwest to north-northeast direction.  Annual average 

precipitation is generally >160 cm per year, with snow common throughout the winter, resulting 

in a cool and humid environment. Soils are acidic and well-drained inceptisols and ultisols.  

Vegetation communities on the WERF vary by elevation.  Red spruce (Picea rubens) and 

Eastern hemlock (Tsuga canadensis) characterize stands above 1,000 m. Northern hardwoods 

including red maple (Acer rubrum), American beech (Fagus grandifolia), and black cherry 

(Prunus serotina) dominate at 850–1,000 m. Below 850 m, cove hardwood and mixed 

mesophytic plant communities occur with species such as northern red oak (Quercus rubra), 

black birch (Betula lenta), and tulip poplar (Liriodendron tulipifera).  Xeric oak-hickory 

communities dominated by black oak (Quercus velutina), scarlet oak (Quercus coccinea), and 

hickory (Carya spp.) also occur at low elevations.  Communities of eastern hemlock, red spruce 

and rhododendron (Rhododendron spp.) are found in the riparian areas surrounding streams.   

At the study’s inception in 1996, the WERF was primarily a 70–90 year old even-aged 

mature forest due to logging from 1916–1928 (Keyser and Ford 2005).  In 2009, it consisted of a 

mix of mature and successional forests due to recent timber harvests.  Forest management during 

the study included even-aged timber harvesting in the form of clear-cutting, shelterwood cuts, 

and deferment cuts, and uneven-age or partial harvesting via single-tree and diameter limit 

harvests of mature sawtimber (Dellinger et al. 2007).  Additional early successional habitat was 

created by other disturbance including haul roads and a few gas wells. 

Point Count.---During 1996–1998, 2001–2003, and 2007–2009, we sampled breeding 

birds using 50-m fixed-radius plots (Hutto et al. 1986) located at points selected systematically in 

1995 from a grid of points used by Westvaco for forest inventory.  We surveyed 118 points from 

1996–1998 and 108 points from 2001–2009.  Sample points were 241 m or 482 m apart and each 

point was marked with a 1 m X 1 cm aluminum stake and uniquely numbered. 

Each year from 29 May to 4 July, every 50-m plot was sampled twice, once by each of 

two observers proficient in bird identification and distance estimation, with at least a three-week 
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interval between surveys.  We conducted counts beginning at 0600 EST and ending no later than 

1000 on mornings with suitable weather conditions (i.e., no rain, little wind).  We recorded all 

individuals heard or observed within a 10-minute time span and noted whether each individual 

was within 50 m, the type of detection (song, call, visual, or fly-over), and the sex if possible.  

Recently fledged young and flyovers were excluded from analyses.  If a bird could not be 

identified to species, the observer attempted to locate and identify the individual after completing 

the count.   

To determine the concurrent region-wide trend, we obtained Canada Warbler abundance 

data collected during 1998–2006, the years which data was available, at off-road point counts in 

multiple studies from all states within the Appalachian BCR except New York, Connecticut, and 

Massachusetts.  Sources included the Alabama Department of Conservation and Natural 

Resources, the Kentucky Fish and Wildlife Service, the National Park Service, the North 

Carolina State Cooperative Fish and Wildlife Research Unit, the North Carolina Wildlife 

Resource Commission, the Pennsylvania Breeding Bird Atlas, the Tennessee Wildlife Resources 

Agency, the US Forest Service, the West Virginia Department of Natural Resources, and the 

West Virginia Cooperative Fish and Wildlife Research Unit.  The number of counts completed 

annually was 2551–6499.  They were conducted following typical count procedures (Hutto et al. 

1986) and were at least 250 m apart.  Only detections from within 50 m were included in the 

analysis to keep results comparable to our 50-m fixed radius counts.    

Nest Searching and Monitoring.---We searched for and monitored Canada Warbler nests 

in 1996–1998 and in 2007–2009.  We included a single nest discovered incidentally as part of 

another project in 2001–2003 (Dellinger 2005) for analyses of microhabitat and landscape 

metrics at successful and unsuccessful nests to increase sample size.  During 1996–1998, 

Weakland (2000) monitored nests on eight 40 ha nest-searching plots distributed across the study 

area that included diameter-limit harvests, two-age harvests, and unharvested forest.  In 2007–

2009, we divided the study area into six sections of equal area and placed two nest plots of 

approximately 20 ha (12 total) in each.  We placed one plot in an area of >50% unharvested, late-

rotation forest (predominantly hardwood), while the other was placed in an area of >50% 

harvested successional forests, primarily scrub habitat.  All plots in both studies were oriented 

perpendicularly to the prevailing topography to ensure they were not primarily in either ridges or 

valleys. 
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We searched each plot every three days, spending equal time in plots representing each 

habitat type to minimize potential sampling bias in the location of nests found.  Additionally, we 

supplemented this nest searching with nests found at point count locations or while traveling to 

and from the counts.  We used multiple techniques to locate nests including both systematic 

searches and behavioral observations.  Once located, we checked each nest a minimum of every 

three days until the nest attempt was complete and then identified it as either successful or failed.   

Landcover and Landscape Metrics.---We created a digital landcover layer using 1 m X 1 

m raster grids for each year of the study, subdividing cover into ten types: clear-cut harvests 

(even-age harvests with no residual trees), heavy partial harvests (clear-cuts with residual trees 

plus deferment and shelterwood cuts), light partial harvests (single-tree selection and diameter 

limit cuts), mature deciduous forest, mature mixed forest, herbaceous groundcover (mostly grass 

log-landings), shrub/scrub (mostly roadside), water, road, and development.  Few harvests were 

present in 1996 at the initiation of the study, so harvested stands ranged in age from 1–12 years 

and were primarily shrub habitat with the oldest stands beginning the transition into pole-stage 

forests.  We defined cover types and stand boundaries annually using 1-m resolution NAIP 

1:10,000 scale aerial orthophotographs, harvest shapefiles provided by the timber companies, 

and ground-truthing.     

We measured landcover and landscape metrics at two scales: landscape, encompassing 

the entire study area, and local, covering areas within 300 m of each point count and nest.  From 

landcover layers, we calculated the total area (ha) for five landcover classes: clear-cut, heavy 

partial harvest, light partial harvest, mature deciduous forest, and mature mixed forest.  We 

calculated landscape metrics with Fragstats (McGarigal et al. 2002) selecting metrics indentified 

as important to avian species in past research (Demeo 1999, Weakland 2000, Williams 2002, 

Bosworth 2003, Dellinger 2005).  Area-weighted mean shape index (AWMSI) measures the 

shape complexity of patches of all cover types by measuring the perimeter-to-area ratio weighted 

by the size of its patches.  Timber management should decrease AWMSI as harvests are more 

regularly shaped than natural stands (Mladenoff et al. 1993).  We also calculated interspersion 

and juxtaposition (IJI), which is a measure of the intermixing of cover types relative to the 

maximum intermixing possible, Shannon diversity index (SHDI), which is a measure of the 

diversity of different cover types, and contrast-weighted edge density (CWED), which is a 

measure of the amount of edge per unit area and that gives the intersection of different cover 
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types different weights (Appendix II).  We calculated core area, area >50 m from an edge, for 

mature forest (mature deciduous and mature mixed forest patches combined) and for early 

successional cover (combined patches of clear-cuts, heavy partial harvests, and shrub/scrub 

cover).  Using the spatial analyst extension and a haul road shapefile in ArcGIS (ESRI, 2003), 

we also calculated the distance to the nearest logging road for each nest and point count. 

  Microhabitat.---We sampled vegetation using a 0.04-ha circular plot centered at each 

nest based on James and Shugart (1970) and BBIRD (Martin et al. 1997) protocols.  Two 22.6-m 

long transects, one oriented parallel and one perpendicular to the slope, intersected at the plot 

center.  Using a 3.8-cm diameter sighting tube, we recorded the presence or absence of ground 

cover at 2.26 m intervals along the two transects (10 points each transect omitting the center 

point; Noon 1981).  At each interval, we pointed the sighting tube directly downward and 

recorded the ground cover observed at the crosshairs (green, leaf litter, woody debris, moss, 

water, or bare).  At each interval, we also used the sighting tube to estimate canopy cover in six 

height classes (<3m, 3–6m, >6–12m, >12–18m, >18–24m, and >24m) by aiming the tube 

directly overhead and recording all height classes in which the crosshairs intersected green cover.  

We calculated the overall vertical diversity as the sum of the tube hits across the canopy height 

classes.  

Within a 5-m radius centered on each count location and nest site, we counted the number 

of saplings taller than 0.5 m with a diameter at breast height (dbh) <2.54 cm and the number of 

pole trees with dbh 2.54–7.6 cm.  Within a 22.6-m radius, we counted the number of small trees 

(>7.6–22.9 cm dbh), medium trees (>22.9–38.1 cm dbh), and large trees (>38.1 cm dbh).  These 

three classes were summed to determine the number of residual canopy trees. 

Finally, at each nest, we visually estimated the percent concealment of the nests from 

overhead and 2 m away from the nest in each of the cardinal directions.  We calculated average 

concealment as the mean of the concealment from the four sides. 

Statistical Analysis 

Relative Abundance.---To analyze yearly trends in abundance, we conducted a Poisson 

regression because the data were measured as a count.  We used the generalized linear model 

function in program R (R Development Core Team 2009) with a significance of α = 0.05.  We 

used the number of Canada Warblers counted at each point count as the dependent variable and 
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the year during which the count occurred as the independent variable.  We conducted separate 

analyses for the WERF from 1996–2009 and for the Appalachian BCR from 1998–2006.   

We next created regression tree models (De’ath and Fabricius 2000) to assess relations 

between landscape metrics and Canada Warbler relative abundance.  We created models using 

the ―mvpart package‖ in program R using 10-fold cross-validation and the ―pick‖ functions to 

interactively select the best regression tree size, balancing the number of branches versus the 

decline in relative error.  We attempted an overall model for all nine years combined, but the 

regression tree branched based primarily on a single sharp decline in abundance prior to 2001 

masking the effects of the more subtle changes in abundance and is, therefore, not reported.  

Instead, we created separate models for each 3-year time period of the study (1996–1998, 2001–

2003, and 2007–2009) to account for possible temporal changes in the relation between 

abundance and landscape metrics.  Within each time period, we created three models: landscape 

scale, local scale, and combined.  In each model, we used relative abundance of Canada 

Warblers at each point as the response variable and included variables measuring the area of five 

landcover types (clear-cut, mature deciduous forest, mature mixed forest, light partial harvest, 

and heavy partial harvest) and five landscape metrics (AWMSI, SHDI, IJI, CWED, and distance 

to road).  To assess fit for each model, we calculated the relative error (the inverse of the 

variance explained by the model) and the cross-validation error such that values close to zero are 

perfect predictors while values close to one are poor predictors (De’ath 2002).  Cross-validation 

error better represents the predictive abilities of models using new data. 

Nest Success.---We calculated nest success using the Mayfield method (Mayfield 1961, 

1975, Johnson 1979) for two time periods: nests found during 1996–1998 and nests found during 

2007–2009.  Rather than comparing annual success, we combined nests into 3-year periods to 

increase sample size and because we assumed that habitat was more similar within each 3-year 

period than between the two periods. We classified a nest as successful if at least one young 

fledged.  If a nest failed between checks, the median day was used in calculating exposure 

(Mayfield 1961).  We used program CONTRAST (Hines and Sauer 1989) to test for difference 

between the two time periods using Chi-square tests.   

To compare differences in microhabitat between nests found early and late during the 

study and between successful and unsuccessful nests, we used classification trees (De’ath and 

Fabricius 2000).  Again, we created models using the ―mvpart package‖ in program R using 10-
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fold cross-validation and the ―pick‖ functions to select tree size.  The response variable was 

either the time period (early, 1996–1998, or late, 2007–2009) or nest outcome (success or 

failure).  For each comparison, we created three separate microhabitat models representative of 

different components of the habitat (canopy and vertical structure, ground cover, and spatial 

distribution of tree stems) and a combined global model.  The first model incorporated the six 

canopy cover variables and vertical diversity.  The second included only ground cover variables 

(percent cover of green vegetation, grass, shrub, herbaceous vegetation, fern, litter, woody 

debris, bare ground, moss), percent concealment directly over the nest, and average percent 

concealment from the sides of the nest.  The third model included stem density variables (the 

number of saplings, pole trees, and residual trees).  The global model included all microhabitat 

variables.   

We also examined local and landscape scale differences between successful and 

unsuccessful nests by creating classification trees using the same landcover and landscape metric 

variables used for the relative abundance models.  Because specific nest locations and hence, 

UTM coordinates, were not available for the early period nests, only nests from 2007–2009 and 

the single nest from 2001–2003, could be included in these models.   

To assess model fit, we calculated the misclassification rates to determine how often 

successful and unsuccessful nests and nests within the two time periods were classified 

incorrectly within the model and also as a result of cross-validation.  We measured cross-

validation error as we did with abundance models.  

Habitat Use.---We examined differences in landcover and landscape metrics between 

areas used by Canada Warblers and available habitat.  Available habitat was the landcover and 

landscape metrics within 300 m of all point count locations.  Used habitat was metrics measured 

at point count locations with Canada Warblers present and at nest sites.  To determine if these 

differences varied by year, we used an ANOVA, which is robust to non-normal data (Zar 2010), 

to test for a significant interaction between group (all point counts, presence point counts, and 

nest sites) and year using the ―aov‖ function in R.  If the interaction was significant, we tested 

differences within each 3-year time period (1996–1998, 2001–2003, and 2007–2009), combining 

years within each period.  If the interaction was not significant, we tested differences across all 

nine years combined.  In R, we tested each variable using the Shapiro-Wilk (Shapiro and Wilk 

1965) test and determined that the distributions were not normal.  Therefore, we tested 
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differences among the mean values of each variable for each group using the Kruskal-Wallis test 

(Kruskal and Wallis 1952) when comparing all nine years.  We also used the Kruskal-Wallis test 

for the period 2007–2009 to test for differences among the three groups.  Since we had no 

landcover and landscape metrics for nests in 1996–1998 and only one nest in 2001–2003, we 

compared only two groups (all point counts and presence point counts) within these two time 

periods and used Mann-Whitney tests.   

For variables that were significantly different using the Kruskal-Wallis tests, we 

determined which pairs were significantly different using the Tukey-Kramer multiple 

comparison test (Kramer 1956) in the DTK package in R.  We tested all combinations of groups 

(available, used point counts, used nest sites) performing three tests for each variable. 

RESULTS 

Landcover and Landscape Metrics.---During 1996–2009, forests on the WERF shifted 

from primarily mature forest (93% in 1996) to a mix of mature forest (34% in 2009) and 1-12 

year post-harvest early successional habitats (Table 1).  Mature deciduous and mature mixed 

cover has declined steadily since 1996, 64% and 62%, respectively.  In contrast, clear-cuts and 

heavy and light partial harvests have all increased, although clear-cuts and heavy partial harvests 

leveled off after 2007 due to a change in harvesting techniques to primarily light partial harvests.  

Overall, clear-cuts increased from 51 to 552 ha, while heavy partial harvests increased from 0 to 

188 ha, and light partial harvest increased from 52 to 1135 ha.  In 2008, the cover of early 

successional forest surpassed the cover of mature forest.   

Landscape metrics were influenced by this shift from mature forest to a mix of cut and 

uncut stands (Table 1).  After initially declining until 2001, AWMSI remained relatively the 

same, indicating an initial reduction in the complexity of stand configuration with the initiation 

of timber harvests but a limited effect afterward.  From 1996 to 2007, CWED increased by 32%, 

but then began declining, probably due to the addition of further harvests adjacent to each other 

essentially creating one larger cut and reducing edge contrast between the two.  Similarly, by 

2008 the study area reached the highest diversity of habitat types (SHDI) and the highest percent 

of intermixing of cover types (IJI).   

Relative Abundance.---Relative abundance of Canada Warblers decreased over the study 

period (Fig. 1).  At the WERF, we observed an initial increase from 1996 to 1997, followed by a 

sharp decline until 2001, after which abundance leveled-off until increasing again in 2009.  
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While the magnitude is different, these patterns on the WERF are similar to relative abundance 

patterns found on point counts throughout the Appalachian BCR (Fig. 1).  Within the BCR, a 

similar sharp decline occurred until 2000 followed by a leveling-off of abundance.  The Poisson 

regression coefficients for Canada Warbler relative abundance were negative for both the WERF 

(Coeff. =   -0.108, SE = 0.013, P <0.001) and BCR (Coeff. = -0.194, SE = 0.015, P <0.001), but 

significantly smaller for the WERF (Z = -4.33, P <0.001) indicating a less severe decline at the 

WERF than the Appalachian BCR.   

Different landscape metrics and landcover influenced Canada Warbler abundance for 

each 3-year period (Table 2; see Appendix III for graphical models).  In 1996–1998, abundance 

increased with more heavy partial harvests at the landscape scale and reduced distance to road at 

the local scale and for the combined model.  In 2001–2003, no landscape scale variables were 

retained.  At the local and combined scale, although abundance again was greater as the distance 

to road was reduced, abundance also increased with more light partial harvests and clear-cuts 

within 300 m of the point count.  In 2007–2009, abundance decreased with more mature mixed 

forest at the landscape scale and increased with more light partial harvests within 300 m of the 

count and for the combined model.  The cross-validation errors for all models were close to one 

indicating that the models are generally poor predictors.   

Nest Success.---We located and monitored 27 nests, 10 in 1996–1999 and 17 in 2007–

2009.  Of the 27 nests, 15 were successful, 11 failed, and one was abandoned before any eggs 

were laid.  The abandoned nest was used only in analyses to compare microhabitat at nests found 

early and late during the study.   

Mayfield nest success in 1996–1998 (45.6 ± 18.3 SE) and 2007–2009 (24.9 ± 14.6) was 

not significantly different (χ
2 

= 0.78, P = 0.38).  Crude nest success, the percent of nests fledging 

at least one young was 60% in 1996–1998 and 63% in 2007–2009. 

Several microhabitat variables differentiated nests monitored early (1996–1998) and late 

(2007–2009) in the study (Table 3; see Appendix IV for graphical models, see Appendix V for 

microhabitat means and ranges).  For canopy cover variables, 15 later nests (88%) had <32.5% 

intermediate canopy cover (12–18m high) compared to only two early nests (22%).  Among 

ground and concealment cover variables, green cover was the most important, with 14 late nests 

(82%) having >47.5% cover compared to one early nest (11%).  The remaining three late period 

nests had >17.5% woody debris cover compared to only one of the remaining eight early nests.  
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For stem density variables, residual trees best differentiated the two time periods, with 12 late 

(71%) and zero early nests having <7.5 residual trees.  Of the five remaining late nests, three had 

>12 pole trees while all early nests had <12 pole trees.  The global model incorporated residual 

trees and green cover as did the previous models but had the poorest fit with the highest cross-

validation error and misclassification rates.   

Of the three models (canopy cover, ground cover, and stem density), ground cover was 

the best having the smallest misclassification rates (7%, 28% for predicting new nests) and cross-

validation error indicating predictions would explain about 25% of the variability. The other two 

models, canopy cover and stem density, had the same cross-validation rates and misclassification 

rates errors indicating the models would predict about 17% and 11% of the variability, 

respectively. 

We identified differences among microhabitat and landscape scale variables at successful 

and unsuccessful nests, although the cross-validation errors were greater than one for all models 

indicating poor predictors probably due to small sample sizes (Table 3; see Appendix IV for 

graphical models).  The misclassification rates were 15–30% for existing nest data but were 

higher when predicting outcomes of new nests (45–68%).  Among canopy cover variables, seven 

successful nests (47%) had >57.5% low cover from 3–6 m compared to zero unsuccessful nests.  

Of the remaining eight successful nests, six had vertical diversity <24.5 compared to only two of 

the 11 unsuccessful nests.  Woody debris was the only important ground cover variable with ten 

successful nests (67%) having >12.5% woody debris cover compared to three unsuccessful nests 

(27%).  For stem density variables, results depended on whether the nest had >6.5 residual trees.  

Of nests with >6.5 residual trees, seven successful nests had <11.5 pole trees compared to two 

unsuccessful nests with >11.5 pole trees.  Of nests with <6.5 residual trees the two nests with 

>342.5 saplings and <1 sapling were successful while only 44% of the nests with >1 and <342.5 

saplings were successful.  The global microhabitat model results were the same as for canopy 

cover.   

Finally, in evaluating landcover and metrics, no variables were retained at the landscape 

scale and CWED was most important at the local scale.  Also at the local scale, all successful 

nests had an edge density >61.6 m/ha compared to 57% of unsuccessful nests.  This model had a 

high cross-validation error and similar misclassification rates to other nest outcome models.    
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Habitat Use.---Two variables, SHDI and light partial harvest, had a significant interaction 

of group (all point counts, presence point counts, and nest sites) and year (Table 4) so we 

analyzed these variables separately for the three year classes.  In 2007–2009, points with Canada 

Warblers present were surrounded by more light partial harvests than were all count stations.  

We observed differences for SHDI between all points and points with Canada Warblers only in 

1996–1998; points with warbler detections had a greater diversity of habitats.   

For variables without significant year-group interactions, we found significant differences 

for all remaining cover types (mature deciduous, mature mixed, clear-cut, light partial harvest, 

and heavy partial harvest), distance to road, and AWMSI.  Although significant overall, multiple 

comparisons identified no group differences for AWMSI.  Nest sites had less mature deciduous 

and mixed cover but more clear-cuts and light partial harvests than all count stations.  Nest sites 

also had less mature mixed cover and more clear-cuts than presence counts.  Stations with 

warblers present were closer to a road and had fewer heavy partial harvests. 

DISCUSSION 

Response to Temporal Habitat Disturbance.---Our results suggest that Canada Warblers 

were associated with disturbances in our study area and selectively used harvested areas, 

especially to breed, as indicated in previous research in the northern (Titterington et al. 1979, 

DeGraff 1985, Hagan et al. 1997) and southern portions of their range (Mauer et al 1981, 

Weakland 2002).  In comparing yearly abundance to landcover changes for the three time 

periods, we observed a shift in habitat use.  Initially, Canada Warblers seemed to be limited by 

the availability of patches of disturbance.  They occurred in greater abundance closer to roads 

suggesting that they were using roadside habitat.  Also, because abundance increased in the 

1996–1998 period with greater heavy partial harvests at the landscape scale, this suggests use of 

the limited available cuts.  Higher Shannon diversity index values at presence stations compared 

to all stations in 1996–1998 further support this species’ use of areas with disturbances.  

Generally, habitat diversity was low for most of the study area due to mature forest cover, but 

increased in areas in which forest cover was disturbed such as harvests and roadsides.   

Lambert and Faccio (2005) suggested a lag time until new harvests become suitable in 

structure and this idea is evidenced by the delayed appearance of light partial harvest and clear-

cuts in the relative abundance (CART) models beginning in 2001.  Starting five years after 

harvest initiation, we observed warblers still using roadside successional habitats, as indicated by 
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the negative relation of distance to road in the models, but they were beginning to use recently 

harvested stands as understory structure developed.   

During the last period, 2007–2009, abundance was primarily influenced by light partial 

harvests and the distance to road was no longer included in the models.  We identified similar 

selection of harvested habitat at nesting sites.  On average, cover within 300 m of nest sites had 

greater than three times more clear-cut harvests and almost double the amount of light partial 

harvests than was available across all point count locations and less than half the amount of 

mature forest, both deciduous and mixed. 

Canada Warbler abundance was more sensitive to local-scale variables than landscape 

scale variables.  In 2001–2003, no landscape scale variables were retained in relative abundance 

models, and when we combined models, the local variables were retained over landscape 

variables in all models.  Northern hardwood forests historically have been limited in naturally 

occurring large-scale disturbance (Lorimer 2001) and, therefore, birds must instead rely on 

small-scale wind and tree-fall gaps.  Past research has found positive associations between such 

small-scale disturbances and avian abundance (Hall 1984, Hagan and Grove 1999, Mitchell 

1999, Faccio 2003).  Therefore, habitat selection based on local cover would be advantageous for 

species associated with patchy and small-scale disturbances.    

Response to Timber Harvests.---Although Canada Warbler response to all three types of 

harvests on our study area (clear-cut, heavy partial, and light partial harvests) was positive, we 

found that light partial harvests received greater use by Canada Warblers than clear-cut harvests, 

a finding similar to that of Hagan et al. (1997) and Lambert and Faccio (2005).  Light partial 

harvests were positively related to abundance in both the 2001–2003 and 2007–2009 regression 

trees and, while clear-cut harvests also were positive in the 2001–2003 model, area in partial 

harvests explained more variability.  Further, point count stations with warblers present had more 

light partial harvests than all count stations.  We also observed an increase in abundance 

beginning in 2008 when harvesting shifted to primarily light partial harvests, although future 

research is necessary to determine if this pattern continues.  Canada Warblers appear to have 

responded most positively to light partial harvests possibly because they provided both residual 

trees and a developing understory. Territories were distributed throughout partial harvests.  

Although we observed Canada Warblers breeding within clear-cut harvests, territories were 
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limited to the periphery of the cuts near forested edges or patches of remaining trees indicating 

minimal use of the interior areas of the cuts. 

We are hesitant to compare use by Canada Warbler of heavy and light partial harvests 

because no heavy partial harvests occurred in five of the nine years (1997–1998 and 2007–2009).  

Also, the area of heavy partial harvests was smaller, around one sixth the area of light partial 

harvests.  We suggest this is an important area for future research.  

Timber harvests seem to have improved habitat quality for Canada Warblers on our study 

area.  Many studies have identified high understory shrub density (Christian et al. 1996, Hagan 

and Meehan 2002, Hallworth et al. 2008b) and retention of some overstory trees (Hagan et al. 

1997, Lambert and Faccio 2005, Hallworth et al. 2008b) as the most important microhabitat 

variables for Canada Warblers.  These variables relate to the higher amounts of woody debris, 

sapling density, low cover, and edge density that we observed at successful nest locations.  In 

comparing early (2007–2009) to late (1996–1998) nests, classification tree models indicated 

increased associations with many of these same microhabitat variables.  Later nests were 

associated with reduced intermediate canopy cover and residual trees as a result of the removal 

of trees through timber harvests; however, this same disturbance opened the canopy, increased 

light availability and promoted understory development.  For this reason, we believe, later nests 

also had more green vegetation, woody debris, and pole trees.  The increase in understory shrub 

density not only provided greater concealment for nests but increased available foraging habitat 

within the 3–5 m vegetative strata where Canada Warblers focus their foraging (Sabo and 

Holmes 1983, Sodhi and Paszkowski 1995, Hallworth 2008b).  We must note that the reduction 

in residual trees should not be interpreted as their complete removal, as all later nest sites 

included residual trees.  Clearly, there is a trade-off between maintaining breeding perches 

(Hallworth 2008a) and providing canopy openings that promote understory development. 

Even though we found that Canada Warblers were associated with harvests and that 

attributes of microhabitat were enhanced, we urge caution when interpreting our results. Indeed, 

we did not document increases in either relative abundance or nest success, two requirements for 

successful management, as a function of timber harvest.  Alternatively, yearly relative abundance 

declined across the entire Appalachian BCR, as it did on our study area, making it impossible to 

isolate the effects of timber management on relative abundance.  Regardless, we did identify two 

potentially positive responses to timber harvests.  Based on the results of the Poisson regression, 



140 

 

the yearly decline at our study site was smaller than that for the Appalachian BCR, possibly 

indicating a muting of the region-wide decline via timber harvests.  Also, from 2008 to 2009, we 

measured an increase in relative abundance, possibly indicating the start of a positive trend in 

abundance.  However, further research is necessary to confirm these trends as well as possible 

causes of the region-wide decline.  Furthermore, our study does not consider factors on the 

CAWA wintering ground or during migration that may be related to survival or fitness. 

Although we found no significant change in nest success from 1996–1998 compared to 

2007–2009, the Mayfield nest success value in 2007–2009 was half that of the 1996–1998 value.  

Nest sample sizes were small and estimates of success may have been biased downward by our 

inability to find nests early in the annual nesting cycle in 2007–2009.  Nine nests in 2007–2009 

fledged within three days of finding the nest compared with only three nests in 1996–1998.  

Given the already limited sample size, the reduction in exposure-days in the later period could 

result in lower estimated nest success.  Taking this into account, we compared crude nest success 

and found similar rates between the two time periods, also indicating no relation between nest 

success and the observed changes in habitat conditions.  No change in fledging rates could 

increase overall productivity if the number of breeding pairs increased in recently harvested 

habitats.  Still, we are hesitant in making strong statements about the response of Canada 

Warbler nest success to timber management given the limitations of our nest sample sizes. 

CONSERVATION IMPLICATIONS 

Given that we identified a positive association between Canada Warblers and high-

elevation disturbance, we hypothesize that timber harvests can be used to enhance habitat quality 

for Canada Warblers in the southern portion of their range as others have suggested for their core 

range (Titterington et al. 1979, DeGraff 1985, Hagan et al. 1997).  Our results indicated a 

positive response to all three types of timber harvests (clear-cut, heavy partial, and light partial 

harvests); however, CAWA response was greatest to light partial harvests, probably because 

residual trees and understory shrubs were both present.  Hagan et al. (1997) found stands most 

suitable 6–20 years post-harvest, thus a post-harvest lag time to allow for suitable stand 

development (approximately five years) appears beneficial to providing CAWA habitat.  Forest 

management may be an especially useful tool for enhancing CAWA habitat in heavily forested 

states such as West Virginia (78% forest) where early successional habitats are limited (10% of 

timberlands; Trani et al. 2001), and where timber management is the primary source of new early 
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successional habitats due to minimal large-scale natural disturbance in higher elevation habitats 

such as northern hardwood forests (Lorimer 2001).  However, long-term monitoring of 

abundance and nest success in managed forest landscapes in the southern portion of the species’ 

range is needed to confirm this hypothesis.  If confirmed this region could provide an important 

source population for this species. 

Beyond using timber harvests to manage Canada Warblers, the creation of early 

successional habitat provides auxiliary benefits for many other bird species.  We detected a 

variety of priority species identified by the Appalachian Mountains Joint Venture (2010) using 

the timber harvests including Alder Flycatcher (Empidonax alnorum), Blue-winged Warbler 

(Vermivora pinus), Brown Thrasher (Toxostoma rufum), Cerulean Warbler (Dendroica cerulea), 

Eastern Towhee (Pipilo erythrophthalmus), Field Sparrow (Spizella pusilla), Golden-winged 

Warbler (Vermivora chrysoptera), Hooded Warbler (Wilsonia citrina), Indigo Bunting 

(Passerina cyanea), Kentucky Warbler (Oporornis formosus), Northern Flicker (Colaptes 

auratus), Prairie Warbler (Dendroica discolor), Wood Thrush (Hylocichla mustelina), and 

Yellow-breasted Chat (Icteria virens).     
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FIG. 1.  Relative abundance (number of individuals/pt/year) of Canada Warblers by year at point counts on the Wildlife and 

Ecosystem Research Forest (WERF) and throughout the entire Appalachian Bird Conservation Region, 1996–2009. 
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TABLE 1.  Annual values for landscape metrics and landcover on the Wildlife and Ecosystem Research Forest, 1996–

2009. 

  1996 1997 1998 2001 2002 2003 2007 2008 2009 

Landscape Metrics
a
          

AWMSI 3.67 3.57 3.45 3.29 3.29 3.35 3.33 3.26 3.30 

CWED (m/ha) 75.1 77.2 78.3 83.1 84.8 91.6 99.0 98.3 96.1 

IJI 65.3 65.2 66.2 71.0 72.1 73.0 76.9 77.7 77.7 

SHDI 1.04 1.27 1.33 1.52 1.55 1.59 1.70 1.70 1.65 
          

Landcover (%) 

Clear-cut Harvest 1.6 2.6 3.2 7.8 8.4 10.6 17.4 17.9 17.9 

Heavy Partial Harvest 0.0 1.4 1.4 2.5 2.8 2.9 6.1 6.1 6.1 

Light Partial Harvest 1.7 8.1 10.8 17.9 20.5 21.5 19.1 29.2 36.8 

Mature Deciduous 44.7 41.7 41.1 34.6 32.7 30.2 25.3 20.2 16.0 

Mature Mixed 47.6 41.8 39.2 32.8 31.2 30.0 27.1 21.7 18.3 
a
AWMSI = Area-weighted mean shape index, CWED = Contrast-weighted edge density, IJI = Interspersion juxtaposition, 

SHDI = Shannon diversity index. 
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TABLE 2.  Landcover and landscape metrics retained in regression trees of 

Canada Warbler relative abundance during each three year time period (1996–1998, 

2001–2003, and 2007–2009) at the Wildlife and Ecosystem Research Forest. 

Time Period  Scale Landcover and Landscape Metrics 
a
 CV Error 

1996–1998    

 Landscape Heavy Partial Harvest (+42.6 ha; 1.4) 1.01 

 Local and Combined
 b

 Distance to Road (-63.5 m; 1.8) 1.05 

2001–2003    

 Landscape None - 

 

Local and Combined
 
 Light Partial Harvests (+26.34 ha; 5.5),  

Distance to Road (-358.6 m; 9.3),  

Mature Deciduous (-5.05 ha; 9.3),  

Clear-cuts(+7.55 ha; 2.9) 

0.93 

2007–2009    

 Landscape Mature Mixed (-617.2 ha; 1.8) 1.02 

 Local and Combined Light Partial Harvests (+15.84 ha; 5.3) 0.93 
a
Variables are listed in order with the first variable explaining the most variation, + and – 

indicate the direction of the relationship and number is the branching value; the second 

value is the multiplier describing the difference between the abundance on either side of 

the split. 
b
Results for local and combined models were identical for all 3-year periods. 
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TABLE 3.  Variables retained in classification trees comparing Canada Warbler nests 

found in 1996–1998 (n = 9) and in 2007–2009 (n = 17) and comparing successful (n = 15) and 

unsuccessful nests (n = 11) in 1996–1998 and 2007–2009 for microhabitat and successful (n = 11) 

and unsuccessful nests (n = 7) in 2007–2009 for landscape metrics at the Wildlife and Ecosystem 

Research Forest. 

      Missclass Rates CV 
   

Comparison Model Variables 
a
 Model CV Error 

1996–1998 vs. 2007–2009      

     Microhabitat      

 Canopy Cover Cover 12-18m (-32.5%) 0.17 0.31 0.83 

 

Ground Cover Green (+47.5%), Woody 

Debris (+17.5%) 

0.07 0.28 0.75 

 

Stem Density Residual Trees (-7.5), 

Pole Trees (+12.5) 

0.11 0.31 0.83 

 

Combined Residual Trees (-7.5 

trees), Green (+52.5%) 

0.19 0.47 1.27 

      

Success vs. Failure      

     Microhabitat      

 

Canopy Cover Cover 3-6m (+57.5%), 

Vertical Diversity (-24.5) 

0.16 0.45 1.02 

 Ground Cover Woody Debris (+12.5%) 0.30 0.62 1.52 

 

Stem Density Residual Trees (-6.5), 

Pole Trees (-11.5), 

Saplings (-1, +342.5) 

0.19 0.68 1.66 

 

Combined Cover 3-6m (+57.5%), 

Vertical Diversity (-24.5) 

0.15 0.57 1.39 

     Landcover and Metrics     

 Landscape None - - - 

 Local CWED (+61.6 m/ha) 0.22 0.44 1.13 
a
Variables are listed in order with the first variable explaining the most variation, + and – indicate 

the direction of the relationship in relation to later nests and successful nests while number is the 

branching value. 
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TABLE 4.  Mean
 
(#/pt/yr) and SE for landcover and landscape metrics at point count stations (n=1000), stations with 

Canada Warblers present (n = 266), and nest sites (n = 19) at the Wildlife and Ecosystem Research Forest, 1996–2009.  

 Point Count
 a
  Presence

 a
  Nest

 a
  Kruskal-Wallis 

Variable n Mean SE    n Mean SE     n Mean SE     χ
2
 P 

Landcover                    

   Mature Deciduous 1000 9.0 0.3 A 
  
 266 8.3 0.5 AB  19 3.9 1.3 B  8.70 0.013 

   Mature Mixed 1000 8.9 0.3 A  266 9.8 0.5 A  19 3.6 1.0 B  14.60 <0.001 

   Clear-cut 1000 2.8 0.1 A  266 2.4 0.3 A   19 8.7 1.6 B  22.92 <0.001 

   Heavy Partial Harvest 1000 1.0 0.1 A  266 0.6 0.1 B  19 0.6 0.3 AB  6.15 0.046 

   Light Partial Harvest
 b

                  

1996–1998 352 1.6 0.2 A  150 1.8 0.4 A  -     25031
d
 0.196 

2001–2003 324 5.9 0.5 A  63 9.1 1.3 A  -     8905
d
 0.092 

2007–2009 324 8.5 0.5 A  53 13.9 1.3 B  17 9.6 2.2 AB  13.82 <0.001 

Landscape Metrics
 c
                  

   AWMSI 1000 1.81 0.01 A  266 1.84 0.02 A  19 1.92 0.06 A  6.10 0.047 

   CWED 1000 84.7 1.4 A  266 88.9 2.7 A  19 98.2 8.6 A  2.93 0.231 

   IJI 1000 65.4 0.3 A  266 66.2 0.5 A  19 62.9 2.8 A  3.05 0.218 

   SHDI
 b

                  

1996–1998 352 0.71 0.02 A  150 0.77 0.02 B  -     22932
d
 0.028 

2001–2003 324 0.90 0.02 A  63 0.91 0.05 A  -     9847
d
 0.659 

2007–2009 324 1.07 0.02 A  53 0.99 0.06 A  17 0.99 0.09 A  2.33 0.313 

   Distance to Road 1000 130.2 3.8 A  266 100.4 6.2 B  19 107.3 29.1 AB  14.20 <0.001 
a
Means with different letters are significantly different according to the Tukey-Kramer Multiple comparison test or Mann-Whitney test at 

alpha=0.05. 
b
Each 3-year period was tested separately for variables with significant interactions of year and group. 

c
AWMSI = Area-weighted mean shape index, CWED = Contrast-weighted edge density, IJI = Interspersion juxtaposition, SHDI = Shannon 

diversity index. 
d
Mann-Whitney test for 1996–1998 and 2001–2003 comparisons.          
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Appendix I. Canada Warbler breeding bird survey A) distribution map from 1994-2003 

and B) trend map from 1966-2003 (Sauer et al. 2008). 
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APPENDIX II.  Weights assigned to each habitat combination for contrast-weighted edge 

density 

Habitats
a
 1 2 3 4 5 6 7 8 9 10 

1 0 1 0 1 1 0.5 1 1 0.25 0.75 

2 1 0 1 0 1 0.5 0 0.25 0.25 0.25 

3 0 1 0 1 1 0.5 1 1 0.25 0.75 

4 1 1 1 1 0 1 1 1 1 1 

5 1 0.25 1 0 1 0.5 0 0 0.25 0.35 

6 0.5 0.5 0.5 0.5 1 0 0.5 0.5 0.25 0.25 

7 1 0 1 0 1 0.5 0 0 0.25 0.25 

8 1 0.25 1 0 1 0.5 0 0 0.25 0.5 

9 0.25 0.25 0.25 0.25 1 0.25 0.25 0.25 0 0.25 

10 0.75 0.25 0.75 0.25 1 0.25 0.25 0.5 0.25 0 

a
1 = Mature Deciduous, 2 = Clear-cut, 3 = Mature Mixed, 4 = Grass, 5 = Road, 6 = Light Partial 

Harvest, 7 = Early Succession, 8 = Developed, 9 = Water, 10 = Heavy Partial Harvest. 
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APPENDIX III.  Canada Warbler relative abundance regression tree models created using landscape metrics at the landscape, 

local, and combined scales at the Wildlife and Ecosystem Research Forest for each 3-year period of the study during 1996–2009. 

 

1996–1998 Models 

 
Landscape Scale                           Local and Combined Scales 
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APPENDIX III. Continued 

 

2001–2003 Models 

 
Local and Combined Scales 
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APPENDIX III. Continued 

 

2007–2009 Models 

 

 
Landscape Scale                           Local and Combined Scales 
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APPENDIX IV.  Canada Warbler classification tree models created comparing nests found in 1996–1998 to those in 2001–

2003 and successful and unsuccessful nests at the Wildlife and Ecosystem Research Forest in 1996–2009 

 

Early (E; 1996–1998) vs. Late (L; 2007–2009) Nests 

 
      Canopy Cover Model               Ground Cover Model 
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APPENDIX IV. Continued 

 

Early (E; 1996–1998) vs. Late (L; 2007–2009) Nests 

 

 
            Stem Density Model        All Variables Model 
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APPENDIX IV. Continued 

 

Microhabitat at Successful (S) vs. Unsuccessful (F) Nests 

 
Canopy Cover Model               Ground Cover Model 
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APPENDIX IV. Continued 

 

Microhabitat Successful (S) vs. Unsuccessful (F) Nests 

 
                  Stem Density Model        All Variables Model 
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APPENDIX IV. Continued 

 

Landscape Metrics at Successful (S) vs. Unsuccessful (F) Nests 

 

 

 
 

Local Scale Model
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Appendix V.  Canada Warbler nest microhabitat 

variable summary 

Variable Mean Max Min 

Canopy cover (%) 

   

 

<3m 37.7 85 0 

 

3-6m 39.4 95 5 

 

>6-12m 33.1 75 0 

 

>12-18m 26.9 80 0 

 

>18-24m 21.3 80 0 

 

>24m 12.7 80 0 

Vertical Diversity 34.2 66 5 

Ground Cover (%) 

   

 

Green 48.7 90 0 

 

Grass 5.2 20 0 

 

Shrub 26.0 75 0 

 

Herb 5.8 35 0 

 

Fern 12.9 40 0 

 

Leaf litter 23.8 70 0 

 

Woody debris 13.3 60 0 

 

Moss 3.9 35 0 

 

Bare 9.2 30 0 

Residual trees (#) 11.1 28 1 

Pole trees (#) 6.4 45 0 

Saplings (#) 163 467 0 

Concealment (%) 

   

 

Average 72.3 100 25 

 

Overhead 70.6 100 0 

 

North 80.2 100 0 

 

East 78.9 100 10 

 

South 76.7 100 0 

  West 53.2 100 0 
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