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Abstract 

 
USE OF PROTEIN IMMOBILIZATION TO 

MEASURE CYTOCHROME P450 METABOLISM 
KINETICS AND ITS EFFECTORS 

by Christopher D. Bostick 

Cytochrome P450s (P450s) are a large family (>11,000) of heme thiolated proteins that are 
responsible for ~ 75% of the metabolism of pharmaceuticals on the market. Understanding 
P450 mediated metabolism is crucial for accurate in vitro predictions of drug metabolism. P450 
protein-protein interactions have been shown to alter enzyme catalytic activity. Furthermore, 
these interactions are isoform specific, and can elicit activation, inhibition, or no effect on 
enzymatic activity. Studies show these effects are also dependent on the protein binding partner 
cytochrome P450 reductase (CPR), and the order of protein addition to purified reconstituted 
enzyme systems. In the current work, we use controlled immobilization of P450s to a gold 
surface to gain a better understanding of P450-P450 interactions between three key drug-
metabolizing isoforms (CYP2C9, CYP3A4, and CYP2D6). Molecular modeling was used to 
assess the favorability of homo/heteromeric P450 complex formation. P450 complex formation 
in vitro was analyzed in real-time utilizing surface plasmon resonance (SPR). Lastly, the effects 
of P450 complex formation were investigated utilizing our immobilized platform and 
reconstituted enzyme systems.  

Molecular modeling shows favorable binding of CYP2C9-CPR, CYP2C9-CYP2D6, CYP2C9-
CYP2C9, and CYP2C9-CYP3A4 in rank order. KD values obtained via SPR show strong 
binding, in the nanomolar range, of the above pairs, with CYP2D6 yielding the lowest KD, 
followed by CYP2C9, CPR, and CYP3A4. Metabolic incubations show immobilized CYP2C9 
metabolism was activated by homomeric complex formation. CYP2C9 metabolism was not 
affected by the presence of CYP3A4 with saturating CPR concentrations. CYP2C9 metabolism 
was activated by CYP2D6 in solution, but inhibited when CYP2C9 was immobilized, both at 
saturating and sub-saturating CPR concentrations. Order of addition of proteins (CYP2C9, 
CYP2D6, CYP3A4, and CPR) influenced magnitude of inhibition for CYP3A4, but not CYP2D6. 
These results indicate isoform specific P450 interactions and effects on P450 mediated-
metabolism. These findings are important in evaluating how in vitro results are obtained for 
measuring P450 kinetics, and provide a better mechanistic understanding of P450-P450 
interactions to allow for better prediction of in vivo metabolism from in vitro data. 

We also demonstrate that gold nanopillars, functionalized with an organic self-assembled 
monolayer, can be used to measure the electrical conductance properties of immobilized P450s 
without aggregation. Given that transfer of the 1st electron to the P450 heme group acts as the 
gating step for the catalytic cycle, understanding electron transfer in P450s could shed light on 
metabolism kinetics. Conductance measurements of nanopillars with immobilized CYP2C9 
using conducting probe atomic force microscopy demonstrate that a correlation exists between 
the energy barrier height between hopping sites and CYP2C9 metabolic activity. Measurements 
performed as a function of tip force indicate that, when subjected to a large force, the protein is 
more stable in the presence of a substrate. This agrees with the hypothesis that substrate entry 
into the active site helps to stabilize the enzyme.  

The relative distance between hopping sites also increases with increasing force, possibly 
because protein functional groups responsible for electron transport depend on the structure of 



the protein. The inhibitor sulfaphenazole, in addition to the previously studied aniline, increased 
the barrier height for electron transfer and thereby makes CYP2C9 reduction more difficult and 
inhibits metabolism. This suggests that P450 Type II ligands may decrease the ease of electron 
transport processes in the enzyme, in addition to occupying the active site. These findings 
further our understanding of how P450 metabolism is mediated through substrates, and 
provides an important technological advancement for studying P450s that avoids complications 
found in current methodologies. These two studies demonstrate the ability of an immobilized 
P450 platform to provide information on protein-protein interactions, substrate protein 
interactions, and atypical enzyme kinetics.  
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Chapter 1 

Introduction: Understanding Cytochrome P450 

Mediated Metabolism and its Effectors 
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1.1 P450 Function and Mechanism of Action 

P450 catalyzed reactions were first described for the metabolism of the azo dye 4-

dimethylaminoazobenzene by liver homogenates in the 1940s1, but the identity of the enzyme 

responsible was unknown. Twenty years later this enzyme was identified when a unique 

spectral peak was observed with a maxima at 450 nm when the protein was reduced by 

dithionite and bound to carbon monoxide2. This spectral signature is where P450s derive their 

name. A study in 1968 revealed a redox partner was necessary for the P450 mediated ω-

hydroxylation of fatty acids3, which would later be identified as cytochrome P450 reductase 

(CPR). Expression of P450s was achieved first in human liver microsomes, but gave rise to low 

yields4. Later scientific advancements would allow expression of recombinant human P450s in 

Escherichia coli, with much greater yields5. The ability to isolate purified protein allowed 

extensive characterization including generation of high resolution crystal structures of P450s6, 

as well as the functional interaction between P450s and CPR7. 

A nomenclature system was developed based on genetic similarity to identify the 14 P450 

families, and 26 subfamilies found in mammals8,9. P450s are designated as CYPs, denoting 

cytochrome P450. CYP is followed by a number placing it in a gene family, which share ≥ 40% 

genetic sequence identity. Next is a letter that denotes a sub family, which share ≥ 55% genetic 

sequence identity. Lastly, each individual gene receives a second number. Thus the name 

CYP2C9 would represent a cytochrome P450 in the ‘2’ family, the ‘C’ subfamily, and individual 

gene ‘9’. In addition, there also exist allelic variants of P450 isoforms resulting from single 

nucleotide polymorphisms altering the amino acid sequence. These mutant CYPs are labeled 

by the isoform followed by an * and a number greater than ‘1’, with ‘1’ being reserved for the 

wild type. Expression of these mutants occurs more frequently in some populations, and has 

been demonstrated to affect catalytic activity, as evidenced by difference in warfarin 

hydroxylation by CYP2C9*3 compared to wild type CYP2C9*110. 
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P450s constitute of a large family (>11,000) of heme containing proteins.  In humans the 

P450 enzymes are found primarily in the liver where they are membrane bound in the smooth 

endoplasmic reticulum11. The main function of P450s is to take lipid-soluble substrates and 

convert them to more water soluble products by insertion of an oxygen atom and the creation of 

a hydroxylated product. Of the 57 P450 genes identified by the human genome project, 15 

found in the liver are principally responsible for metabolizing xenobiotic agents such as drugs; 

20 participate in the biosynthesis of steroids, sterols, fatty acids, and eicosanoids; 7 play key 

roles in sterol biosynthesis; and 15 are enzymes whose functions still remain unknown12. P450s 

are responsible for the metabolism of 75% of all pharmaceuticals on the market13. Furthermore, 

five P450 isoforms, CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4, are responsible for 

95% of P450-mediated metabolism in humans14.  

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Crystal structure of CYP2C9 with 

bound flurbiprofen (1R9O.pdb). CYP2C9 displayed in ribbon 

diagram with heme group and flurbiprofen depicted in space 

filling model, and outside of the active site as stick figure 

models. Figure rendered in Pymol (www.pymol.org). 
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P450s contain a heme group within the active site composed of an iron atom coordinated in 

a porphyrin ring (Figure 1.1). A series of reductions and oxidations must occur to allow the 

splitting of a dioxygen and hydroxylation of a substrate. Looking at Figure 1.2 we can identify 

the important steps of the catalytic cycle as such, i) binding of substrate in the active site with 

the heme iron in the low spin, +3 or ferric state (12), ii) donation of an electron by the binding 

partner CPR (2) results in the formation of the +2 ferrous iron to which oxygen then binds (3), iii) 

donation of a second electron from CPR (4), iv) cleavage of the dioxygen occurs and there is a 

loss of water and formation of the perferryl species (5), v) abstraction of the hydrogen atom from 

the substrate followed by the radical recombination step (67), and finally, vi) the hydroxylated 

substrate (metabolite) exits from the active site (8) and concludes the cycle15 returning the 

enzyme to its initial state. Of central importance to the catalytic cycle is the transfer of two 

electrons from nicotinamide adenine dinucleotide phosphate (NADPH), in two distinct steps, via 

CPR to the P450 heme. 

 

Figure 1.2. Catalytic cycle of a Cytochrome P450 enzyme. Electrons 

transferred in step two is provided by CPR, and electron transferred in step four is 

provided by CPR or cytochrome b5. Dotted lines in the interior of the diagram 

represent shunt pathways that prevent P450 from metabolizing itself in the event of 

substrate exit prior to the finish of the catalytic cycle. Reproduced in part from 

reference
16

 with permission of The Royal Society of Chemistry. 
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P450s are membrane bound via their hydrophobic N-terminus, and are co-localized with 

protein partners CPR and b5 (Figure 1.3)11. Their mechanism of action is dependent upon on the 

sequential transfer of two electrons. The first transfer can only be accomplished by cytochrome 

P450 reductase (CPR), and the second transfer requires CPR or cytochrome b5 (b5)16. While 

CPR is required for P450 metabolism, b5 is not required for P450-mediated metabolism, and its 

presence, in certain instances, simply activates metabolism17–19.  

CPR contains four regions including a flavin mononucleotide (FMN), a flavin adenine 

dinucleotide (FAD) prosthetic groups, a connecting flexible hinge domain, and a NADPH-binding 

domain20. FAD accepts a hydride ion from NADPH, and reduced FAD donates electrons to 

FMN, which, in turn, transfers electrons to the heme center of cytochrome P45021. Transfer from 

CPR to the heme is mediated by a binding location on the proximal side of P450s7,22 (substrate 

binds on the distal side). CPR is able to open and close about its flexible hinge domain, brining 

both prosthetic groups in close proximity, allowing the transfer of electrons23. FRET studies 

have shown that when closed CPR it is not able to interact with P450, but is in the optimal 

configuration to be reduced. Reduction causes opening, exposing the FMN residues that 

participate in P450 binding24. In microsomes, P450 concentration exceed those of CPR by at 

least five fold25,26 suggesting enzyme mobility may be required27,28, or multiple P450s utilize a 

 

Figure 1.3. Cartoon representation of the smooth ER membrane 

containing a P450 and CPR. CPR and P450 interact through the shown electrostatic 

interactions. The electron transfer pathway is shown by the arrows. 
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single CPR for the supply of electrons from NADPH29–31. The exact interplay of CPR and P450 

in vivo has yet to be fully elucidated and this needs to be taken into consideration during in vitro 

study analysis.  

P450s are able to oxidize (metabolize) a wide variety of substrates resulting in various 

reactions including carbon hydroxylation, heteroatom oxygenation, N- and O- dealkylation, 

epoxidation of olefins, aromatic oxidation, heteroatom oxidation, aldehyde oxidations, and 

dehydrogenation of organic molecules32,33. The insertion of oxygen by P450 enzymes into the 

chemical structure of many xenobiotics can often create reactive or otherwise toxic 

metabolites34 that subsequently undergo chemical reactions. “Reactivity” of metabolites is 

characterized by their stability (or lack thereof), and how far they can travel before they are 

inactivated through, for example, covalent binding35. There are stable metabolites that exit the 

organ of generation, long-lived that can exit the tissue of origin, intermediate-lived that exit the 

cell of origin but not the tissue, short-lived that diffuse away from the enzyme but are not able to 

leave the cell, and ultra short-lived that form covalent adducts at the site of generation. Reactive 

species that can result from P450 bioactivation include free radicals and electrophilic 

metabolites. These compounds are able to bind or bond to proteins36 or DNA37, and are able to 

cause mitochondrial permeability transition pore opening38, hepatotoxicity39, carcinogenesis40, 

and increased immune hypersensitivity41. In addition, highly reactive metabolites may act as 

mechanism based inactivators of P450s through alkylation of the heme group, as is seen in 

CYP3A4 and substrate raloxifene42,43. This is of importance for drug development as reactive 

metabolites can not only cause toxicity, but also create drug-drug interactions by inactivation of 

P450s.   

Another issue to consider is the possibility of drug-drug interactions that occur through 

substrate effects with various pharmaceutical agents. The heme group in P450s is known to 

have a low and high spin state that can correlate with metabolism rate. Type I substrates are 
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known to induce a high spin state upon binding to the heme, while Type II have no effect or 

stabilize the low spin state44. Many P450 inhibitors have been shown to be Type II ligands, due 

to their ability to stabilize the low reduction potential of P450 and prevent oxygen binding to 

heme45. However, there are many substrates such as dapsone that do not alter the spin state 

but are still metabolized, thus there must be other alterations made that facilitate electron 

transfer and metabolism. A study by Guengerich and Johnson16 showed that the reduction of 

heme occurred in the absence of substrate in some P450s, and equal reduction rates between 

low and high spin heme were shown. Another proof of this can be seen in a single enzyme 

study by our lab measuring electron transport though CYP2C9, that showed no difference in 

ease of electron transport between flurbiprofen and dapsone despite known opposite effects on 

spin state of the two substrates46. This suggests that much is still unknown about spin states 

impact on metabolism, and that it may not be the best predictor for metabolism kinetics in P450 

substrates.  

Some P450s also display atypical kinetics due to activation, auto activation, partial inhibition, 

substrate inhibition, and biphasic metabolism 47. The work by Korzekwa et al.47 provided a basis 

for multiple binding sites within a P450. This was later proven by Nuclear Magnetic Resonance 

studies done by our lab on CYP2C9, showing that flurbiprofen and dapsone can occupy the 

active site simultaneously48. This allows some substrates to act allosterically as effectors, 

altering metabolic rates for other substrates. For example, dapsone has been shown to be an 

activator of CYP2C9 mediated flurbiprofen metabolism through shifting flurbiprofen into a more 

favorable position for metabolism in the active site17. Furthermore, testosterone has been shown 

to act as its own effector for CYP3A4, with up to two or three able to fit in the active site 

simultaneously49. Currently identification of these pairs or triplets requires time intensive 

metabolism studies50. The possibility of multiple binding site model and allosteric modulation is 

also still under debate51.  
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Given the large percentage of pharmaceuticals metabolized by P450s, many efforts have 

gone into effective ways to study their metabolism in vitro. The two widely used assays are 

solution based systems with either human liver microsomes or purified reconstituted systems. 

Human liver microsomes are purified through ultracentrifugation of homogenized liver tissue52. 

These are useful tools for early drug screening as they contain all the P450s and protein binding 

partners found in vivo. However, the presence of multiple P450 isoforms prevents easy 

determination of metabolism by specific isoforms, and more in depth studies using isoform 

specific inhibitors are generally needed to parse out P450s primarily involved in metabolism53,54.  

For these reasons drug-drug interactions, and protein-protein effects can be difficult to predict 

with these systems. Another approach is the use of reconstituted systems created by adding 

single recombinant P450 isoforms, charged lipids, and protein partners to form a microsomal 

structure55–57. Control of the isoform type, substrates, and protein partners allows interrogation 

of substrate and protein interactions and their effects on metabolism kinetics. 

Using these in vitro solution assays, we are able to study P450 kinetics in vitro utilizing 

mathematical models based on the rate of metabolite formation. A simplified model for P450 

enzymatic substrate conversion is the Michaelis-Menten model: 

𝐸 + 𝑆 
𝐾−1
⇐  

𝐾1   
⇒  [𝐸𝑆]  

𝐾2    
⇒   𝐸 + 𝑃                 (Equation 1.1) 

In this model S represents the substrate, E represents the enzyme, ES represents the 

substrate-enzyme complex, and P represents product of enzymatic conversion of the substrate. 

In this model all reactions are, in principle, reversible, and thus enzymatic conversion must 

occur while enzyme and substrate are complexed. The rate of the reaction is described by the 

kinetic rates above and below the reaction arrows. K1 denotes the rate of formation for the 

enzyme-substrate complex, while K-1 is the dissociation of the substrate enzyme complex 

without enzymatic conversion. Lastly, K2 represents the rate of enzymatic conversion of 
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substrate into metabolite (P) by the enzyme, and is usually the rate limiting step. From this 

model the Michaelis-Menten equation can be derived: 

𝑉 =  
𝑉𝑚𝑎𝑥[𝑆]

𝐾𝑚+[𝑆]
                    (Equation 1.2) 

In this equation V is the velocity of the reaction, S represents the concentration of substrate, and 

Km represents the Michaelis constant, the substrate concentration where half the maximum 

velocity (Vmax) is achieved. This equation results in a hyperbolic graph when velocity is plotted 

against substrate concentration (Figure 1.4). Use of this equation requires the steady state 

assumption and rapid equilibrium conditions, where the enzyme-substrate complex reaches a 

non-changing concentration quickly or d[ES]/dt = 0.  Km is often used as a measure of affinity as 

it is equal to (K-1 + k2)/k1, and thus gives insight on binding of substrate to an enzyme for 

conversion. Michaelis-Menten kinetics are a saturable process, meaning as the substrate 

concentration increases the Vmax can be calculated using the rate limiting step K2 (also known 

as the turnover rate) (Equation 1.3).  

𝑉𝑚𝑎𝑥 = 𝑘2[𝐸]𝑡𝑜𝑡               (Equation 1.3) 
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The kinetic parameters Km and Vmax have important implications in drug discovery and 

development, mainly for correlating in vitro kinetics to in vivo drug clearance. The intrinsic 

clearance (CLint) of a substrate is analogous to the in vivo intrinsic clearance, and is not 

influenced by physiological determinants such as blood flow or drug binding within the matrix58. 

Assuming in vivo that substrate concentration is less than 10% of Km (a typical assumption) and 

that the velocity equals the product of CLint and substrate concentration, we can obtain an 

equation for clearance as shown below: 

𝐶𝐿𝑖𝑛𝑡 =  
𝑉𝑚𝑎𝑥

𝐾𝑚
= 

𝑉

[𝑆]
           (Equation 1.4) 

Determination of CLint is thus the method for making in vitro – in vivo correlations of drug 

clearance to allow estimations for “first dose in man” and in vivo drug disposition. This equation 

also shows the importance of the kinetic constants Vmax and Km, and how they are crucial in 

making these in vitro predictions. Given the importance of these constants, it is essential to 

monitor how substrate interactions and protein interactions affect their values to limit otherwise 

unforeseen substrate toxicity. Different types of inhibition for instance are known to shift Vmax 

and Km values in different ways, and this information can be obtained from in vitro analysis 

using graphical evaluation through different types of reciprocal plots59–61 (Figure 1.5). 

 

 Figure 1.4. Plot detailing Michaelis-Mentin kinetics commonly observed in P450 mediated 

metabolism. Velocity is generally represented as metabolite concentration/time/P450 concentration.   
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1.2 P450-P450 Interaction Effects on Metabolism 

 

Protein-protein interactions with P450s have been observed in multiple microsomal and 

reconstituted systems. P450s have been shown to form homo- and heterooligomers in 

solution62,63, and a range of effects from these interactions can occur. Certain P450s can 

interact with each other and alter catalytic rate64–66. In addition, studies have shown that these 

interactions and effects are isoform dependent67,68. In order to better understand P450 

metabolism, many studies have investigated the nature of these P450-P450 interactions, and 

their implications for in vitro metabolism predictions.  

One of the early steps to understand P450-P450 interactions was to determine the 

mechanism by which they occur. It was proposed that P450s interact with each other through 

electrostatic and/or hydrophobic interactions and thus researchers sought to use detergents to 

disrupt possible binding. Studies using the detergent Emulgen 913 showed that CYP2B4 could 

be brought to monomeric form and that there were alterations (increases) in both Vmax and 

Km
69,70. In contrast, CYP1A2 was found to require much higher concentrations of Emulgen 913 

 

Figure 1.5. Lineweaver-Burk plots of different types of reversible enzyme inhibition. The 

Lineweaver-Burk plot is a double reciprocal plot of the Michaelis-Menten equation that can be used to 

calculate Km and Vmax. In these plots S represents the substrate concentration and I represents the inhibitor 

concentration. The y-intercept equals 1/Vmax, and the x-intercept represents -1/Km. Another use of these 

plots is quick determination of the type of enzyme inhibition based on changes in Km and Vmax. In competitive 

inhibition the Km increases while the Vmax is unchanged, in mixed inhibition the Km increases and Vmax 

decreases, and in non-competitive inhibition the Km is unchanged and the Vmax decreases. 
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to produce monomeric forms, and at the higher detergent concentrations, a loss of 

monooxygenase activity was seen71. However, non-ionic detergents were later shown to 

modulate P450 metabolism at concentrations that would produce no changes in aggregation 

state of the P45072 and thus confound interpretation of data from prior studies utilizing 

detergents.  

To investigate the role of electrostatic interactions on P450-P450 binding, studies as a 

function of ionic strength were also investigated. One study showed that CYP1A2 inhibition of 

CYP2B4 mediated 7-pentoxyresorufin-O-dealkylation was alleviated with increasing ionic 

strength buffers73. Another study showed that synergism of 7-pentoxyresorufin-O-dealkylation 

and 7-ethoxyresorufin-Odeethylation production by CYP1A2- CYP2E1 complexes at 

subsaturating CPR was eliminated at increasing ionic strengths74. However, it has been shown 

that CPR electron transfer is increased in high ionic strength buffers75, and this could supress 

the effect of the P450-P450 interaction. The above results do suggest that P450 heteromeric 

complex formation alters metabolism kinetics of one or both binding partners.  

Several studies have demonstrated that the N-terminus could play a part in aggregation and 

it has been reported that modifications of the N-terminus are necessary to isolate P450s for 

crystallization76. In addition, in vitro studies have shown that the N-terminus is necessary for 

CYP2C8 dimerization77 and the formation of a CYP2C9-CYP3A4 heteromeric complex78. 

Fluoresence studies also show that the N-terminus is necessary for association of CYP2C2 and 

CYP2C1 in the endoplasmic retiuculum of living cells79,80. However, other studies have shown 

that aggregation of some P450 isoforms is independent of the N-terminus. Thus, these results 

taken together suggest that the role of the N-terminus in P450 interactions is isoform 

dependent.  

There are three mechanisms by which P450-P450 interactions are proposed to affect 

catalytic rate of substrate metabolism81.  In the first mechanism, there is no formation of a P450-

P450 complex, and effects are from competition for available CPR. In this case, the binding 
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affinity of CPR to P450 would govern the reaction rate, and effects could be alleviated by 

increased concentration of CPR. The second mechanism consists of the formation of a P450-

P450 complex that alters the binding affinity of the P450s for CPR. In this case, conformational 

changes of the P450s brought about by complex formation may alter CPR affinity and all 

complex formation rates have to be considered in CPR affinity (i.e. binding of CPR to the 

individual P450s and binding of CPR to the complexed P450s). Lastly, formation of a P450-

P450 complex alters the substrate turnover rate for one or both of the P450s. Again, in this 

case, the affect of P450 complexation is dependent upon how the isolated P450 metabolic rate 

compares to that of the complexed P450. Unlike the second mechanism, this response would 

be seen at both subsaturating and saturating CPR concentrations. This substrate turnover could 

be brought about by changes in electron transfer (ET) from CPR to the P450 heme group 

through conformational changes.   

As P450 aggregation occurs more in solution, aggregation effects will be overestimated in 

reconstituted systems giving inaccurate in vivo predictions from in vitro results. Thus far it is not 

understood how oligomer formation alters metabolism, and the effect could be due to a variety 

of factors including conformational changes and alterations in P450 substrate turnover. Another 

important factor is how CPR interacts with monomeric P450s compared to homo/heteromeric 

P450 complexes. There is a lack of information on how CPR binding is changed by aggregation 

of P450s, and how ET would occur. As noted earlier, attempts to prevent P450 aggregation 

have also been shown to alter P450 metabolism (independent of aggregation affects) and thus 

confound interpretation of metabolism kinetics. In order to fully understand P450 metabolism, it 

is necessary to render them in a manner that mimics the in vivo membrane bound environment.  

 

1.3 Applications of Immobilized Protein Platforms 

Proteins have generally evolved over time into structures capable of precise reactions 

including highly-specific substrate recognition, analyte binding, and facile and directional 
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electron tunneling82. In addition, many reactions such as such as photosynthesis, respiration, 

water oxidation, molecular oxygen reduction, and nitrogen fixation are performed by 

metalloproteins, which account for nearly half of all proteins found in nature83,84. Due to their 

ability to catalyze a vast amount of reactions, there has been much interest in harnessing their 

abilities for downstream applications. One desired application is biocatalysis in synthetic organic 

chemistry. The high chemo-, regio-, and stereoselectivity of enzymes negates the need for 

protecting groups, and thus reduces synthetic steps and alleviates work flow85. This is of special 

interest to the pharmaceutical industry as bioreactors, a vessel were chemical reactions are 

carried out by biological components, can efficiently accomplish large scale production of fine 

chemicals86–90, including metabolites of P450 mediated reactions. Another use of biocatalysis is 

bioremediation, or the removal of toxic or hazardous substances by naturally occurring 

organisms91.  

The high specificity of proteins also makes them ideal candidates for use as biosensors. In 

this case they are immobilized to a solid support and act as transducers of an optical92,93 or 

electronic signal that correlates with protein-analyte interaction94. Optimization of the solid 

support has demonstrated that these biosensors can work with low voltage potentials, have high 

sensitivities, exhibit low detection limits, and offer long-term stability for measurements95–97. 

These biosensors are currently being developed for use in drug monitoring98, environmental 

toxin detection99,100, and early disease detection101,102. 

Two studies in 1977 demonstrated the ability of direct electron transfer from an electrode to 

the redox active heme group of cytochrome c103,104. This is known as mediatorless reduction, as 

it obviates the need of electron donors (NADPH) and protein partner (CPR) (Figure 1.6). In 

addition to these studies, works by Scheller et al.105 demonstrated electrochemically driven 

cytochrome P450 hydroxylation without the presence of NADPH. This ability has been used to 

improve biosensors by eliminating the need for costly reagents106 and for the creation of 

bioelectronics devices that exploit proteins unique properties. Using organic molecules as 
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electronic components, first proposed in 1974107, 

has been suggested as a possible solution to the 

physical limitations of micro- and nano-scale 

electronic development.  This is an attractive idea 

because proteins are small (nanoscale) and 

capable of chemomechanical, electromechanical, 

optomechanical, and optoelectronic processes108, 

making them ideal candidates for electronic 

components.  Research has sought to use 

proteins in the design of bioelectronics devices including field effect transistors for sensing109,110, 

bio-molecular transistors for data storage111,112, bio-molecular diodes113, bio-hybrid solar cells114, 

bio-computers115, and enzymatic biofuel cells116–118. There is also an extensive biomedical 

application for devices such as implantable sensors for monitoring chemicals119,120 and the 

creation of artificial retinas109 and noses121.   

Generally, useful properties of proteins are granted by their prosthetic groups, including the 

metal center of metalloproteins such as P450s, and chromophores of photoactive proteins such 

as bacteriorhodopsin122. It has also been well demonstrated that the electrical/conductive 

properties of proteins are reliant on prosthetic groups, as evidenced by differences in electron 

transport (ETp) observed between holo- and apoazurin123. Recently, scientists have sought to 

enhance and optimize use of these proteins through immobilization to various solid state 

materials. The ability to immobilize proteins allows for direct study of electrical properties, 

including ETp124. ETp is defined as the travel of electrons across/through the entire protein, 

while ET is travel of electrons from electronically localized donor and acceptor domains. This is 

of interest not only for bioelectronics, but also because a proteins ETp characteristics have been 

shown to be correlated to its ET and redox potential125,126.  

In order to successfully incorporate proteins into bioelectronics and utilize them, a deep 

 

Figure 1.6. Schematic of P450 adsorbed to a bare 

gold electrode for mediatorless reduction driven by 

the electrode in place of NADPH and CPR. In 

some cases the adsorbed P450 retains metabolic 

activity, and upon heme reduction can hydroxylate 

substrate (dashed line). 
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understanding of electron transfer is crucial. Thus there has been extensive research into 

electron transfer in proteins124,127 and the development of some well characterized model 

systems such as Cytochrome c128. In contrast, there have been fewer studies on ET in P450s. 

Given that ET acts as the gating step for the P450 catalytic cycle, enhanced understanding 

could shed light on P450 function/mechanism and aid in using P450s as biosensors for personal 

drug monitoring129, bioreactors in transformations/metabolic engineering87, and 

bioremediation91.  

Protein immobilization is a powerful tool that is capable of controlling protein aggregation 

and allowing single molecule analysis. However, it is important to consider the effects of 

immobilization on protein structure and function. In order for immobilized proteins to be useful it 

is important that they retain biologic activity and reaction specificity. Several factors that 

determine protein function after immobilization are amino acid composition of the enzyme 

surface, physical and chemical properties of the solid state support, and the kind of interface 

between the protein and the solid state support130. All of these factors play into the structure, 

orientation, and conformation of the immobilized protein.  

 

1.3.1 Strategies for P450 Immobilization 

The first strategy employed for P450 immobilization was direct absorption to a bare 

electrode. Proteins, including P450s, are generally amphiphilic with hydrophobic amino acids 

forming a protective shell via folding to minimize the exposure of hydrophilic amino acids to 

solvent. Proteins can be absorbed to surfaces through electrostatic interactions of charged 

surface amino acids and the solid surface131, hydrophobic interactions if there are exposed 

hydrophobic regions, or through tethering with a linker molecule (Figure 1.7). As suggested in 

Figure 1.7, direct immobilization allows poor control of orientation and can result in inactive 

protein conformations. It has also been shown that strong interactions can denature “soft” 

proteins that  lack a rigid structure132.  
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Direct absorption of P450s was first described by Hill and coworkers for the immobilization 

of P450cam to edge-plane pyrolytic graphite (EPG) electrodes133.  In this work, the authors 

propose that electrostatic interactions by positively charged amino acids (Arg-72, Arg-112, Lys-

344, and Arg-364) located near the proximal side and close to the heme group with the negative 

charges on EPG allowed for electrochemically driven catalysis yielding formal potentials ranging 

from -428 to -449 mV versus saturated calomel electrode (SCE). Further work by this group 

investigated the ability to achieve site-specific immobilization of P450s using surface cysteines 

to form a thiol bond with gold134. In these studies electrochemistry of WT P450cam was 

compared to mutants with all surface cysteines replaced by inert alanines (surface cysteine free, 

        

Figure 1.7. Enzyme immobilization on different interfaces and possible effects on the enzyme conformation. 
High charge density (above left) or a hydrophobic surface (above right) are possible causes of enzyme conformational 
changes and inactivation. Enzyme co-immobilized with hydrophilic polymers (middle, left) or tethered (middle, right) can 
reduce unfolding and inactivating support–enzyme interactions. Incorrect orientation (below, left) and multilayer 
formation (below, right) may cause reduction of specific activity. Reproduced in part from reference131 with permission of 
The Royal Society of Chemistry. 
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SCF), and a mutant containing only one surface cysteine on the proximal side (SCF-K334C)134. 

The results show that the single cysteine mutant yielded anodic (-50 mV vs SCE) and cathodic 

(-170 mV vs SCE) peaks in cyclic voltammograms, while no difference from background was 

observed in the WT and non-surface cysteine containing mutant. This result suggest the 

possibility of multiple inactive conformations of the WT P450, and that the enhanced 

electroactivity of SCF-K334C may be due to P450 orientation.  

Direct immobilization to bare unmodified electrodes has shown to result in low electron 

transfer and thus limited protein activity upon immobilization135. Thus modification of the 

electrode surface is often used to decrease protein denaturing, enhance electron transfer, and 

allow control of protein orientation. Thin films have been used as one method of modifying 

electrode surfaces to achieve active immobilized protein. A study by Lei et al.136 used sodium 

montmorillonite, a member of the general mineral group of clays, to immobilize P450cam to 

glassy carbon electrodes (GCE). Using this immobilization method, electron transfer rates 

comparable to natural transfer rates from putidaredoxin to P450cam were obtained. Of note in 

the study is the positive shift of the redox potential of adsorbed P450cam (-361 mV vs Ag/AgCl) 

in comparison to P450cam in solution (-525 mV vs Ag/AgCl). The authors hypothesize that 

immobilization may cause partial dehydration of P450cam, excluding water from the heme 

pocket. This could change the coordination of the heme iron, causing a shift from low to high 

spin137. Other clays, such as kaolinite, talc, goethite and orche, have also produced similar 

immobilization results as sodium montmorillonite138. In addition, this immobilization scheme has 

been shown to work for other P450 isoforms, such as CYP2B4, with the addition of Tween 80 to 

eliminate aggregates139. 

Another notable thin film is created by modifying electrodes using lipids to mimic the 

lipophilic membrane environment of the smooth endoplasmic reticulum where P450s reside. 

Lipids such as didodecyldimethylammonium bromide (DDAB), dimeristoyl-l-α-

phosphatidylcholine (DMPC), dilauroylphosphatidylethanolamine (DLPE), and 
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distearoylphosphatidylethanolamine (DSPE) are able to form stable lipid bilayers through 

electrostatic interactions with electrodes to provide a membranous environment to facilitate 

electron transfer140.  Studies by Shukla et al.141 found a redox potential of -41 mV vs normal 

hydrogen electrode (NHE) for CYP2C9, CYP2C18, and CYP2C19 immobilized to EPG 

electrodes modified with DDAB. This study however showed that only 1-3% of the immobilized 

P450s were electroactive, and a broad peak width (150-200 mV) was observed that exceeds 

the theoretical 90 mV width for a single electron transfer, which the authors ascribe to a lack of 

conformational homogeneity on the surface. Of special interest in lipid bilayers is the use of 

Nanodisc® technology to provide a discoidal piece of membrane that is only capable of binding a 

single P450 enzyme, demonstrated for CYP2B4142 or CYP3A4 and CPR143. 

Another approach to enhance immobilization of P450s is the use of layer-by-layer (LbL) 

films of P450 and polyions. In LbL, multiple layers of oppositely charged films of P450s and 

polyions are built up on the electrode surface, providing several active layers. The ability to 

incorporate multiple layers on an electrode increases the effective P450 concentration, and 

would thus enhance downstream applications such as biosensing. Rusling and co-workers have 

demonstrated regular and reproducible layer formation via quartz crystal microbalance analysis 

with P450cam and branched poly(ethyleneimine) (PEI) on gold144. Further work demonstrated 

styrene epoxidation  turnover on a carbon cloth electrode functionalized with multiple layers of 

CYP1A2 and sodium poly(styrenesulfonate) was 2.3 times faster than CYP1A2 mediated 

epoxidation with NADPH and CPR in solution145. Studies by Rusling and co-workers have also 

shown that this adsorption technique works for microsomal P450s, and that the pathway of 

electron transfer in this case is from the electrode to CPR and then to the P450 heme 

group146,147.  

Recently, the covalent attachment of P450s directly to the electrode via a tether has become 

a robust method to control protein adsorption. This allows for a greater degree of control of 

protein orientation on the surface through tailoring the choice of linker and coupling chemistry. 
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This also allows for a bonded P450 that mimics their membrane attachment in vivo11. One 

method is to attach a molecular electronic relay to the P450 surface that allows coupled ET from 

the electrode to the heme group. Shumyantseva et al.148 observed electrode-driven catalysis 

rates comparable to NADPH-driven systems in CYP1A2 or CYP2B4 covalently attached to a 

flavin cofactor that was linked to rhodium-graphite electrodes. Panicco et al.149 also 

demonstrated the ability to measure differences in metabolism of flavin modified CYP2C9 or 

CYP2D6 polymorphisms using an amperometric platform. However, this method requires 

modification of the protein which can be difficult, and may alter protein function and 

conformation150.  

To overcome this problem groups have immobilized unmodified P450s through covalent 

attachment to self-assembled monolayers (SAM). Amphiphilic molecules, such as alkanethiols 

and carboxylic acids, form well-ordered mono-layers on metal and metal oxide surfaces151–154. 

Long chain thiols such as 11-mercaptoundecanoic acid (MUA) and hexanoic acid, and short 

chain thiols such as mercaptoproprionic acid and dithio-bismaleimidoethane have all been used 

to immobilize P450s155. It is important to consider carefully what molecule to use as a linker as 

length124,156 and composition151 have been shown to affect electrical properties. There are 

various techniques that have been used to covalently link proteins to SAMs157, with chemical 

activation using 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide Hydrochloride (EDC) and N-

hydroxysuccinimide (NHS) being commonly used to link P450s to a carboxy-terminated SAM 

via surface exposed amine group.  

Using EDC and NHS coupling, our group has demonstrated attachment of unmodified 

CYP2C9 to a mixed SAM composed of 3:1 octanethiol (OT): MUA bonded to gold158.  

Furthermore, the attached CYP2C9 was shown to metabolize Δ9-tetrahydrocannibinol (THC) to 

11-hydroxy-Δ9-THC in the presence of CPR and NADPH, demonstrating that it retained 

enzymatic activity after immobilization. Later work by our group showed that this immobilization 

scheme also allowed electrode-driven mediatorless CYP2C9 mediated metabolism of warfarin 
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to 7-hydroxywarfarin106. This study showed an anaerobic CV scan of the Au/OT-MUA/2C9 

electrode revealed quasi-reversible reduction and oxidation peaks at a formal potential of -490 

mV and -420 mV vs. Ag/AgCl, well in the range of redox and oxidation peaks of P450s159. 

Finally, the study demonstrated that this platform could work as a CYP2C9 biosensor as 

current-concentration data yielded a fit for Km of warfarin hydroxylation (3 µM) that is in good 

agreement with previous literature values for this reaction160. More recently, Fantuzzi et al.161 

have shown rapid determination of Km for a set of known substrates for CYP3A4, CYP2C9, and 

CYP2D6 using a SAM linked P450-electrode integrated into a microtiter plate format.  

To gain a complete understanding of protein structure and function, and allow exploitation of 

their unique properties for bioelectronics, the ability to study single proteins becomes a 

necessity. The previously mentioned studies all measure a large ensemble of proteins in various 

conformations, and thus the data represents a statistical average that may occlude specific 

features.  This is especially important for P450s which are prone to catalytic changes due to 

aggregation. To this end there have been several studies investigating methods to study single 

proteins. The easiest method for single protein study is the use of electrochemical scanning 

tunneling microscopy (EC-STM), which has been used to investigate electron transport in 

isolated azurin162–164. This method is ideal because the high resolution of EC-STM allows 

visualization of single proteins to be measured. However, this method only allows confirmation 

of isolation, but does not provide a means of controlling aggregation. Secondly, this method 

does not allow multiple studies to be conducted on the same protein, which prevents study of 

how characteristics are altered under different conditions.  

Another nanoscale method to study single proteins involves creation of nano-gap electrodes 

through mechanical breaking165,166 or electromigration techniques167. Our lab has used 

electromigration to create a nanogap electrodes with 5 nm gaps between platinum source and 

drain electrodes deposited on silicon168. This narrow gap allowed isolation and interrogation of 

molecular energy levels of a single molecule of apomyoglobin or myoglobin. The work 
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demonstrates that electrons tunnel through the protein, and that the heme group mediates the 

electron tunneling. The success of this study on heme containing myoglobin is proof that this 

technique could be possible with P450s. However, this technique has several drawbacks that 

prevent it from allowing full interrogation of proteins. Creation of working junctions is inefficient 

and if not performed correctly can result in characteristics of the junction itself being probed, for 

example when metal grains are formed, rather than the molecule of interest168,169.  In addition, 

this technique allows no control over the orientation and conformation of the protein on the 

electrodes.  

As the above methodologies alone do not provide an effective way of isolating unmodified 

protein, labs have sought to use a multifaceted approach by combining techniques. Work by 

Smaali et al.170 demonstrated the creation of an array of gold nanopillars 8 nm in diameter using 

electron beam lithography, which could be functionalized with SAM. Utilizing a similar approach, 

our lab created an indexed array of gold nanopillars that CYP2C9 could be linked to using a 

SAM comprised of 3:1 OT:MUA46. The indexing of the array allowed multiple studies on the 

same P450 enzyme exposed to different substrates. The ability to complete repeated studies on 

the same enzyme demonstrated that ET correlated with rates of metabolism, and that 

competitive inhibitors not only block the active site, but also inhibit transfer of electrons through 

the protein.  

1.3.2 Characterization of Immobilized P450s 

To fully interpret results obtained from immobilized proteins, it is crucial to have a deep 

understanding of the protein layer thickness, the density of adsorbed protein, orientation of the 

protein, secondary and tertiary structure of the adsorbed protein, protein stability, and most 

importantly the effect of adsorption on the biological function of the protein171. As delineated 

earlier, many studies of immobilized P450s utilize electrochemical techniques, in particular 

cyclic voltammetry, are used to ensure P450 electroactivity. These studies can also 

demonstrate the immobilized P450s are capable of substrate turnover when coupled to 
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detection techniques including high performance liquid chromatography and liquid 

chromatography coupled mass spectrometry172. Although these methods offer no information on 

what orientations of immobilized protein exist, the width of voltammogram peaks have been 

used to analyze the homogeneity of adsorbed protein. For example the wide peaks observed by 

Shukla et al.141 point to heterogeneous P450 orientation, whereas narrow peaks seen by Yang 

et al.106 point to a more homogenous P450 orientation. These techniques however, give little 

information on structure and conformation of the protein. 

Generally, information about protein secondary and tertiary structure can be obtained by 

Circular Dichroism (CD) spectroscopy72. CD measurements are generally conducted in solution, 

thus labs have employed the use of nanoparticles to observe how protein adsorption affects 

structure173,174. P450 attributes including heme spin state and binding of substrates can be 

obtained easily with UV-Vis spectroscopy in solution17,175. However, UV-vis spectroscopy can 

only be conducted on adsorbed proteins if they can be immobilized to quartz176. Thus 

information obtained from the protein immobilized to quartz may not hold true for different solid 

platforms. To overcome this limitation, other optical techniques can be employed to determine 

P450 surface coverage and interactions.   

Ellipsometry is a spectroscopic technique that allows the determination of layer thickness. 

By measuring the constructive and destructive interference of light reflecting off the surface or 

traveling through the film, we can obtain the thickness of the film. Ellipsometry is typically for 

films with thickness in the range of nanometers to microns. This technique is useful because it 

can be tailored to study parameters by varying the spectral region of light, which allows protein 

layer thickness determination on the desired solid platform. An example of this is the use of 

ellipsometry to measure increases in CYP11A1 layer thickness on a silicon surface after 

multiple P450 layer applications176. In contrast to optical methods, quartz crystal microbalance 

(QCM) also allows layer thickness determination by measuring changes in oscillating frequency 

of the substrate upon mass load171. Solid support choice in QCM is flexible since the electrodes 
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embedding the piezoelectric crystal can be coated with practically any desired thin film. 

A very useful optical technique is Surface Plasmon Resonance (SPR), which allows label 

free study of biomolecular interactions in real time177,178. In short, P polarized light reflects off of 

the backside of a sensor chip, generally glass with a thin film (~50 nm) of metal deposited on 

top (Figure 1.8). At a specific incidence angle, known as the resonance angle, the light is 

absorbed by the electrons in the metal causing them to resonate, and producing a sharp 

shadow, known as the SPR dip, in the reflected intensity. These resonating electrons are known 

as surface plasmons, and they are highly sensitive to their surrounding environment. Changes 

in mass on the surface will cause changes in the resonance angle, and the shape and location 

of the SPR dip, which can be directly correlated to binding.    

By conducting SPR analysis with various concentrations of analytes, flowed over an 

immobilized protein, a binding dissociation constant KD, the ratio of the association “on” rate (Ka) 

and dissociation “off” rate (Kd), can be obtained. It is important to note that the KD is not 

equivalent to Km, as the KD does not take into account the rate of formation and release of 

product (K2). There are also many well studied binding models that data can be applied to 

interpret observed biomolecular interactions. Studies by Ivanov et al.179 demonstrated 

immobilization of yeast CPR (γCPR) onto functionalized nickel or gold, and evaluated binding of 

FMN and FAD. The study demonstrates specific binding of FAD and FMN to γCPR, and also 

concluded a 1:1 binding ratio based on the maximum binding at saturating analyte 

concentrations. In addition, information about the amount of functionally attached γCPR can be 

inferred from the max signal at saturating analyte conditions. This same methodology could be 

applied to the study of immobilized P450s as evidenced by work on P450cam binding with 

putidaredoxin180. This would thus allow confirmation that immobilized P450 still retain substrate 

binding activity, and could be used to measure protein-protein interactions.  
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Another technique that has been used to measure P450 binding activity and the heme state 

is surface-enhanced resonance raman spectroscopy (SERRS). Raman spectroscopy relies on 

inelastic scattering of laser light upon interaction with a sample181. Photons are absorbed by the 

surface and re-emitted. The frequency of the re-emitted photons undergoes a shift based on the 

vibrational, rotational, and other low frequency transitions in molecules, giving information about 

the surface. SERRS studies conducted on P450cam immobilized to an MUA SAM on Ag 

electrodes showed that both the ferric and ferrous states of the enzyme were in the inactive 

P420 form182. A more recent study demonstrated that CYP2D6 immobilized to an MUA SAM on 

Ag electrodes was able to reversibly bind its substrate dextromethorphan, and retained its 

native structure183. However, they also observed raman shifts indicative of P420 form, and noted 

an inability to reduce CYP2D6. This result is interesting given work in our lab demonstrating 

 

Figure 1.8. Diagram of surface plasmon resonance spectroscopy with a conjugated enzyme system. The black bar 

in the detector represents the resonance angle where the light is absorbed by the electrons in the metal creating the SPR 

dip.  
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metabolically active CYP2D6 adsorbed to MUA SAM on Au, and may reveal surface specific 

differences on immobilized P450 function.  

Lastly, scanning probe techniques have revealed a great deal of information about 

immobilized proteins due to their high resolutions.  Scanning tunneling microscopy (STM) and 

electron microscopy have lateral resolutions down to the atomic level, allowing for detailed 

information of adsorbed protein structure. EC-STM is a powerful tool as it akin to combination of 

conventional STM and cyclic voltammetry162. The conductive substrate and STM tip act as 

working electrodes in an electrolyte solution. There are also reference and counter electrodes 

on opposite sides of the tip. The reference electrode is a material, often silver wire, whose 

potential can be measured to obtain an absolute measurement. The counter electrode allows 

the current to flow.  A bipotentiostat allows independent control of the potential of the substrate 

and tip with respect to the reference, and their difference represents the tunneling bias. A bias 

voltage or nuclear configuration fluctuations can cause the energy level of the molecule to be 

brought closer to the Fermi level of the electrodes, allowing an ET sequence to occur.  

In EC-STM electrons tunnel between the protein and the electrodes due to alignment of 

molecular orbital energy levels of the protein with the Fermi level of the contact electrodes. This 

alignment with the Fermi levels can be obtained through application of a bias voltage or nuclear 

fluctuations of the protein 164,184. Utilizing EC-STM, mechanistic data about ET in proteins and 

changes in reduction and conformation can be obtained. Thus with P450s we could conduct 

these studies with different substrates to see what changes in redox state and local confirmation 

of the heme group occur during the process of electron transfer. We could also monitor changes 

in the barrier height of P450 in relation to redox state, as has been done in other studies with 

Azurin163. There is currently a lack of studies utilizing EC-STM to investigate immobilized P450. 

However, work by Hill and co-workers using STM to measure P450cam and its binding to 

putidaredoxin reveal the possibility of P450 EC-STM studies185–187.  
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Atomic Force Microscopy (AFM) is another scanning probe technique that is extensively 

used in protein surface characterization188. AFM measures the topography of a surface using a 

tip consisting of a small probe attached to a cantilever (Figure 1.9). Depending on the AFM 

method, the tip either makes direct contact 

with the surface (contact mode), or 

oscillates being driven at its resonance 

frequency close enough to the surface that 

van der Waals forces cause changes in its 

oscillation (tapping mode). This is 

translated into an image by a laser 

reflecting off the back of the tip to a 

photodiode detector and can be visualized 

in x, y, and z axis. With P450s, AFM has 

been used to monitor CYP2C9 interaction with a lipid bilayer189, determine P450 surface 

coverage158,189, measure P450 isolation by lipid bilayer disc142, and demonstrate P450-P450 

interactions190. Furthermore, a special attachment allows conductive probe atomic force 

microscopy (CPAFM) in contact mode imaging.  In CPAFM, a DC bias differential is applied 

between the tip and the surface, allowing the system to measure the resistance and 

conductance of the sample at the site of tip sample interaction. Our lab has used this technique 

to investigate conductive characteristic of single CYP2C9 molecules immobilized to gold 

nanopillars after exposure to different substrates46. In addition, the work in chapter 3 

demonstrates the unique ability of AFM to measure stability of P450 structure, and the use of 

height analysis to confirm isolation.  

1.4 Project Goals 

The accuracy of in vitro assays in predicting in vivo drug metabolism is of crucial importance 

to avoid interactions that cause non-therapeutic doses of pharmaceuticals. Currently, we use 

 

Figure 1.9. Schematic depiction of atomic force 

microscopy.  
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reconstituted systems that contain the full complement of necessary proteins and co-factors in 

solution to assess kinetic parameters. However, it is well known that the free floating P450 

nature in these systems does not match the membrane bound environment found in vivo. It has 

also been demonstrated that P450s can aggregate into homo/heteromeric complexes in 

solution, which have been shown to alter their catalytic rates. To further complicate things, we 

know that the levels of necessary cofactor CPR are drastically lower than the amount of P450s, 

and our understanding of how electrons are transferred to each P450 is incomplete.  

To address these issues it is necessary to develop methodologies that allow studies of non-

aggregated P450s. Previous attempts to disaggregate P450s using detergents and ionic buffers 

have resulted in changes of P450 catalytic activity due to the disaggregating agent. To improve 

upon this we need to be able to isolate a P450 of interest in an enzymatically unchanged 

manner. Achieving this will allow us to understand inherent properties of metabolism, and how 

they are altered in the presence of effectors. This lends itself to the study of substrate effectors 

as well as P450-P450 interactions. To accomplish this an interdisciplinary approach must be 

taken as a means to control the P450 aggregation state without significant alteration of its native 

state.  

Our long-term goal is to develop methods to gain a better understanding of P450 function, 

and to improve our design and interpretation of in vitro P450 metabolism towards better 

prediction of in vivo P450 metabolism. We intended to accomplish this through the use of P450 

immobilization to control aggregation, yet preserve P450 functionality. This allows for careful 

study of an enzymatically active P450 without the variable of aggregation. In addition, the ability 

to immobilize the P450 grants greater control allowing single molecule studies under different 

and defined conditions.  

Project Aims: 

1) To use an immobilized P450 platform to control aggregation, and allow quantification of 

different P450-P450 interactions and their resulting metabolic effect. 
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2) Create a nanoscale platform for isolation of a single P450, and study its conductive 

properties in the presence of various substrates to gain insight on the critical electron 

transfer process.  

This dissertation will discuss the use of an immobilized platform designed to control P450 

aggregation. The immobilized platform consisting of 3:1 MUA:OT on gold chips was used to 

immobilize CYP2C9. Using this SPR experiments were then conducted to measure 

homo/heteromeric complex formation of P450s in real-time, and obtain kinetic binding 

parameters. The effects of P450 complex formation on CYP2C9 mediated metabolism was 

evaluated using the same immobilized platform as SPR experiments. To gain a greater 

mechanistic understanding of the effects, data was evaluated in conjunction with molecular 

modeling data of P450 binding pairs and regions of interest that might be affected.  

Furthermore, I will discuss the use of a nanoplatform using the same immobilization scheme 

as above to further control P450 aggregation. Using e-beam lithography a chip with isolated 

gold nanopillars of controlled size was created to immobilize single CYP2C9 molecules. This 

array is indexed to allow for repeated studies of the same molecule under varying conditions. I 

demonstrated the use of a CYP2C9-coated nanopillar array platform for the purpose of 

measuring ETp in the absence or presence of various substrates or inhibitors molecules of 

CYP2C9. Ultimately, the development of this platform will allow us to better understand the 

process of electron transfer in P450 enzymes which can enhance our mechanistic 

understanding of P450 metabolism, and allow for better drug design and metabolism 

predictions.  
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Chapter 2 

Immobilized Cytochrome P450 for Monitoring 
of P450-P450 Interactions and 

Metabolism 
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PM.  Immobilized Cytochrome P450 for monitoring of P450-P450 Interactions and Metabolism. 
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2.1 Introduction  

Cytochrome P450s (P450s) are a superfamily of monooxygenases responsible for 

metabolizing 75% of the pharmaceuticals on the market as well as other xenobiotics and 

endobiotics 13. They are found primarily in the liver where they are membrane bound via their 

hydrophobic N-terminus to the smooth endoplasmic reticulum 11. Their mechanism of action is 

dependent upon the sequential transfer of two electrons. The first transfer requires cytochrome 

P450 reductase (CPR), and the second transfer requires CPR or CPR and cytochrome b5 (b5) 

16. While CPR is required for P450 metabolism, b5 is not required for P450-mediated 

metabolism, and its presence, in certain instances, simply enhances metabolism 17–19. In 

microsomes, P450 levels exceed those of CPR by at least five fold 25,26 suggesting enzyme 

mobility may be required 27,28, or multiple P450s utilize a single CPR for the supply of electrons 

from NADPH 29–31.  

The effect of P450-P450 and P450-CPR interactions on liver metabolism is poorly 

characterized. It has been suggested that P450s are clustered rather than being uniformly 

distributed in the endoplasmic reticulum 191 and that there may exist zonal differences 192. Under 

in vitro conditions it has been shown that P450s interact 67,68, and that this interaction modulates 

P450-mediated metabolism 81,193. This effect on metabolism has been seen in multiple 

reconstituted enzyme systems including human CYP2C9-CYP2D6 194,  human CYP2C9-

CYP3A4 78, human CYP2C9-CYP2C19 64, rabbit CYP1A2-CYP2B4 66,195, rabbit CYP1A2-

CYP2E1 74, and human CYP3A4-CYP1A1 and CYP3A4-CYP1A2 18. P450-P450 interactions 

have also been observed in microsomal preparations 68,196,  triple expression systems 65,197,198,  

and homomeric oligomerization of CYP2E1 199 CYP2B4 200 and CYP3A4 143,201. 

While P450-P450 interactions in vitro have been found to affect metabolism, there remains 

some ambiguity as some studies have reported that P450-P450 interactions did not affect 

metabolism. Dutton et al. (1987) reported no effect on P450-mediated testosterone metabolism 
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in the presence of other P450s in rat microsomes 202. Alston et al. (1991) showed the formation 

of heterodimers by some P450s but not others suggesting there is some selectivity for the 

formation of heteromeric P450 complexes. Elucidating the underlying factors controlling P450-

P450 interactions is essential for accurately predicting in vivo P450 substrate clearance rates 

from in vitro data. For example, predictions of clearance are often based on observations in 

single isoform reconstituted systems that, therefore, lack the possibility of observing effects due 

to hetero-aggregate formation. Also, while the aforementioned studies have shown 

oligomerization does occur in solution, the extent and characterization of how P450s interact in 

vivo has yet to be examined.  

There are three main mechanisms by which one P450 can affect the metabolic rate of 

another: competition for CPR binding, the formation of a complex with altered affinity for CPR, 

and the formation of a complex with altered substrate binding or turnover rate 81,193. Recently 

there has been interest in the use of controlled immobilization of P450s to allow better 

understanding of metabolism 143,149,155,158,161,203,204, and the formation of homo/heteromeric 

complexes 193. Our lab has developed a scheme whereby soluble P450 is covalently attached to 

a self-assembled monolayer (SAM) on a gold film. The result retains full metabolic activity and 

uses the normal protein binding partners and cofactors to metabolize substrates 158. This 

platform offers a model system for how P450 is bound in vivo and thus allows for control of 

P450 aggregation. In the present work we assess the interaction of CYP2C9 with three major 

P450 isoforms (CYP2C9, CYP3A4, and CYP2D6) and with CPR, demonstrate the formation of 

homo/heteromeric P450 complexes in real-time, and determine the consequences of these 

complexes on P450-mediated metabolism. The results are also supported by molecular 

modeling studies of the P450 complexes.  

2.2 Materials and Methods 

2.2.1 Chemicals and Reagents 
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 All chemicals were used as purchased. Potassium phosphate, HEPES, sodium chloride, 

11-mercaptoundecanoic acid (MUA), 1-octanethiol (OT), N-(3-dimethylaminopropyl)-N′-

ethylcarbodiimide hydrochloride (EDC), N-hydroxysulfosuccinimide sodium salt (NHS), 

flurbiprofen, dilauroylphosphatidylcholine (DLPC), and beta-nicotinamide adenine dinucleotide 

phosphate reduced form (NADPH), Cetyltrimethylammonium bromide (CTAB), were purchased 

from Sigma-Aldrich (St. Louis, MO). CYP2C9 was prepared by expression in an Escherichia coli 

system, isolated, and purified as described previously 17,205. Human CPR was purchased from 

Invitrogen (Carlsbad, CA). All solutions were prepared in 18 MΩ-cm water unless otherwise 

noted.  Phosphate buffer (40 mM, pH 7.4) contained 150 mM sodium chloride (PBS). HEPES 

buffer (10 mM, pH = 7.4) contained 150 mM sodium chloride, 3 mM EDTA, and 0.005% v/v 

Surfactant P20. Titanium and gold pellets were purchased from Kurt J. Lesker Company 

(Jefferson Hills, PA). Cryobuffer was made from PBS and glycerol (80:20 v/v). 

 

2.2.2 Molecular Modeling 

 Computational modeling was employed to determine possible enzyme binding orientations 

and the relative binding energy of the enzyme pairs CYP2C9-CYP2C9, CYP2C9-CYP3A4, 

CYP2C9-CYP2D6, and CYP2C9-CPR.  To account for conformational changes affecting the 

binding strength and binding site, several CYP2C9 crystal structures were examined including 

1OG2 (without substrate), 1OG5 (with bound warfarin, closed) 206, and 1R9O (with bound 

flurbiprofen, partially open) 207.  Structural similarity was assessed using the MultiSeq module 208 

of VMD.  P450 structures, crystallized without substrate, were used to match the experimental 

conditions: CYP2D6 (Rowland et al., 2006, PDB ID 2F9Q) and CYP3A4 (Yano et al., 2004, PDB 

ID 1TQN). The crystal structure selected for CPR is locked into a conformation adopted when 

binding to a P450 enzyme due to a TGEE truncation in the hinge region (Hamdane et al., 2009, 

PDB ID 3ES9 chain A).   GRAMM-X 212 was used to computationally predict binding modes and 
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the ten lowest potential energy models per enzyme pair were selected for analysis.  All homo- 

and heterodimers were examined in VMD 213 with respect to residues defining areas of interest 

as reported in the literature including the active site and solvent tunnel entrances 214, the CPR 

binding site 211,215,216, and the truncated N-terminus. The relative binding energy for the lowest 

energy GRAMM-X models for each binding pair was calculated using MM GBSA 217 after 

minimization, equilibration and 2 ns molecular dynamics at 300 K using the Amber software 

suite 218–220. 

 

2.2.3 Gold-OT/MUA-CYP2C9 Chip Fabrication 

Two different materials were used as test platforms for the experiments described: gold 

coated silicon wafers for generation of metabolites, and gold coated glass cover slips for SPR 

detection of binding. Both were prepared for surface modification using a Temescal BJD-2000 

(Edwards Vacuum, Phoenix, AZ) system with an Inficon XTC/2 deposition controller (Inficon, 

East Syracuse, NY). Evaporation occurred at a voltage of 10.0 kV.  The current was set so that 

metal vaporization occurred at a rate of 0.03-0.10 nM/s: approximately 50 mA for titanium and 

100 mA for gold. Thin films comprised of titanium, (~5 nm) thick, and then gold (~50 nm) thick, 

were deposited on silicon chips or glass cover slips. Silicon wafer platforms were diced into 4 

mm x 6 mm chips and then were sonicated in a Bransonic 220 (Bransonic, Danbury, CT) (5 

min) and rinsed in succession with acetone, isopropyl alcohol, and water (each, 3X) to ensure a 

clean surface.  Glass platforms were cut into 10 mm x 12 mm rectangles, sonicated (2 min), and 

rinsed with isopropyl alcohol and then water (each, 3X). A self-assembled monolayer (SAM) 

was then formed on the gold surface by first rinsing it with ethanol followed by soaking it in an 

ethanolic solution of OT (7.5 mM) and MUA (2.5 mM), overnight under argon. Excess thiol was 

removed by rinsing, in succession, with absolute ethanol, 95% ethanol, and water (each, 3X). 

Chips were dried under a gentle stream of nitrogen.  
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2.2.4 Surface Plasmon Resosnance Binding Analysis 

Glass platforms coated with gold-SAM as described above were loaded into a Biacore X100 

SPR (GE Healthcare, Pitscataway, NJ) for further surface modification and analysis. The 

surface was then activated with EDC (0.4 M) and NHS (0.1 M) in PBS running buffer as per 

Biacore instructions. CYP2C9 (100 nM) in PBS running buffer was flowed (10 μL/min) over the 

test surface (480 s), capped with ethanolamine (1 M) in PBS running buffer, and then rinsed 

with PBS running buffer alone (480 s). The control surface was prepared by directly capping it 

with ethanolamine. Immobilization levels reaching 70 to 200 response units above the control 

surface, post running buffer rinse, were considered acceptable. Analysis of binding between 

immobilized and soluble enzyme (0, 5, 10, 50, 100, 500 nM) was conducted in PBS running 

buffer at 30 μL/min. After stabilization, contact times for soluble enzyme were 180 s followed by 

900 s dissociation. Flow cells were regenerated with CTAB (3.9 mM). Two concentrations of the 

soluble enzyme (50, 100 nM) were measured twice to ensure reproducibility of data.  Each 

P450 binding pair was run at least three times. Fitting of kinetic data was accomplished using 

both Biacore x100 Evaluation software and Scrubber 2.0 (BioLogic Software, Campbell, 

Australia). CYP2C9, CYP3A4, and CPR were fit using Biacore x100 Evaluation software. 

Biacore x100 Evaluation was unable to fit CYP2D6 curves, and Scrubber 2.0 was employed 

instead. Cross analysis between fitting software’s demonstrated consistency.  

 

2.2.5 Immobilization of CYP2C9 Enzyme on Gold/Silicon Platform 

 To bond the CYP2C9 to the SAM, the SAM-coated slides were first activated by immersion 

in an aqueous solution of EDC (2 mM) and NHS (5 mM) (1:1 v/v), each in water, for 2 h at room 

temperature (RT). Activated chips were rinsed with PBS, then soaked (24 h, RT) in a solution 

containing CYP2C9 (100 nM), flurbiprofen (40 µM), and dapsone (40 µM) in PBS, under argon, 
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to covalently bond CYP2C9 to the NHS-esters. We have shown inclusion of substrates 

flurbiprofen and dapsone preserves CYP2C9’s active site integrity, and allows retention of 

enzymatic activity through immobilization158. Chips bearing the bonded enzyme were rinsed with 

PBS to remove substrates from the active site before placing in cryobuffer solution and storing 

at -80°C for at least 8 h prior to use. 

 

2.2.6 Reconstituted CYP2C9 Enzyme Incubation 

 Reconstituted CYP2C9 incubations were run in triplicate. Incubations contained CYP2C9 

(0.25 nM), saturating CPR (1-4 nM), DLPC (10 µg), and flurbiprofen (160 µM) in PBS (40 mM, 

pH 7.4) for a total volume of 250 µL. Immobilized CYP2C9 (CYP2C9i) incubations were 

conducted using two 4 mm x 6 mm gold chips placed back to back (gold coating facing 

outwards). DLPC was omitted in incubations containing CYP2C9 immobilized to the gold 

substrate. Coverage of CYP2C9 on gold chips was estimated based on previous work 106,158. 

Ratios of CYP2C9i to CYP2C9 in solution (CYP2C9s) ranged from 1:1 to 1:4. Ratios of 

CYP2C9/CYP2D6 and CYP2C9/CYP3A4 ranged from 1:0.25 to 1:8 and 1:1 to 1:12, 

respectively, to mimic possible in vivo ratios of these enzymes 221. Incubations were placed on 

ice during the addition of pre-cooled solutions of reactants and then preheated (3 min) at 37 ºC 

before the initiation the incubation by the addition of NADPH (200 µM, final concentration) and 

then incubated at 37 ºC overnight (16 hours). Reactions were terminated by the addition of 10 

µL of 500 ng/mL 2-Fluoro-4-biphenyl acetic acid (Internal Standard) and 30 µL 50% phosphoric 

acid. Incubation mixtures were centrifuged (10 min, 13,400 x g) to pellet proteins, and 

supernatant (135 µl) loaded into LC vials for analysis. 

For incubations containing heterodimers, the effect of the order of mixing of P450s and CPR 

was investigated by i) pre-incubating CYP2C9 (4 nM) with CPR (5 min) prior to the addition of 

CYP3A4 or CYP2D6 or ii) pre-incubating CYP2C9 (4 nM) with CYP3A4 or CYP2D6 (5 min) prior 
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to addition of CPR. In studies investigating the order of addition, CPR was sub-saturating with a 

ratio less than 1 P450:2 CPR. Incubations were placed on ice during the addition of pre-cooled 

solutions of reactants and then preheated (3 min) at 37 ºC before initiation of the incubation by 

the addition of NADPH (200 µM, final concentration) and then incubated at 37 ºC for the 

indicated time. Reactions were terminated by the addition of 10 µL of 500 ng/mL 2-fluoro-4-

biphenyl acetic acid (internal standard) and 30 µL 50% phosphoric acid. Incubation mixtures 

were centrifuged (10 min, 13,400 x g) to pellet proteins, and supernatant (135 µL) loaded into 

LC vials for analysis. All experiments were performed three times on separate days. 

2.2.7 HPLC Assay of 4’-Hydroxyflurbiprofen 

 Metabolite formation, 4’-hydroxyflurbiprofen, was measured by HPLC with fluorescence 

detection. The HPLC system consisted of an Alliance 2695XE pump/autosampler and a 2495 

fluorescence detector (Waters, Milford, MA) set at an excitation wavelength of 280 nm and an 

emission wavelength of 310 nm. The mobile phase consisted of potassium phosphate (20 mM, 

pH 7.4) and acetonitrile (50:50 v/v); 0.75 mL/min flow-rate; 4.6 x 150 mm Zorbax C18 column 

(Agilent, Santa Clara, CA). The retention times of 4’-hydroxyflurbiprofen and the internal 

standard were 4.1 and 7.7 min, respectively. Metabolite concentration was determined using a 

calibration curve of 0-50 ng of 4’-hydroxyflurbiprofen.  

2.2.8 Statistical Analysis 

The results for metabolism studies are expressed as the means (± S.E.) and were analyzed 

by a one-way analysis of variance (ANOVA) followed by Dunnett’s test for multiple comparisons 

with the positive control group. One-way ANOVA with Dunnett's post test was performed using 

GraphPad Prism version 6 for Windows (GraphPad Software, La Jolla California USA, 

www.graphpad.com). 

2.3 Results 

http://www.graphpad.com/
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2.3.1 Computationally Predicted Dimers 

P450s are known to form dimers and multimers and their formation is believed to impact 

metabolic activity. Here, modeling approaches were used to predict the likely binding poses of 

homo- and heterodimers, the consequence of dimer formation on metabolic activity, and the 

stability of the dimers relative to the monomers. The enzyme pairs examined were CYP2C9-

CYP2C9, CYP2C9-CYP3A4, CYP2C9-CYP2D6, or CYP2C9-CPR.  For each pair only the 

CYP2C9 residues involved in binding were considered and, in particular those, involved in CPR 

binding 211,215, the solvent access channel, and the substrate channel entrance 214,222 (Table 2.1).   

 

Table 2.1 CYP2C9 regions of interest and the relevant residues.  

Region of Interest CYP2C9 Residues 

Substrate Access Channela  P37 I42 I45 I47 F69 K72 I74 R97 G98 I99 P101 L102 A106 R108 G109 
P211 N218 P221 I222 H230 V237 288 
 

Solvent Channela  C206 E300 R307 F476 
 

CPR Binding Siteb  K84 D89 E92 K121 R125 R132 K270 K273 K421 K423 K432 E438 
 

P450 Binding Site on CPRc D208 
a223 
b216 
c211,215 

 

 

It has been demonstrated that P450s exist in both open and closed conformations224.  The 

closed conformation is favored upon substrate binding206,210,225 and alters the affinity toward 

enzyme partners216,226. To account for potential conformational changes on the modeling results, 

dimer formation was examined with an open and closed form of CYP2C9.  To select these 

structures, three CYP2C9 crystal structures were considered: 1OG2 (without substrate), 1OG5 

(with bound warfarin)206, and 1R9O (with bound flurbiprofen)207. The 1OG2 and 1OG5 models, 

that represent open and closed states, respectively, were more structurally similar to each other 

than to 1R9O, a partially open conformation. Therefore, further analysis was conducted only on 

the 1OG5 (closed) and 1R9O (partially open) models.  
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For the purpose of generating dimer structures, blind docking, using GRAMMX, was 

performed for each dimer combination. Each of the ten models returned by GRAMMX for the 

homo- and heterodimers were examined and divided into three groups, a) those with at least 

40% of the identified residues in the interface of the dimer, b) less than 40% overlap, and c) 

where dimer formation occurred but remote from the region of interest211.  The occurrence of 

each interaction type and frequency is shown in Table 2.2.  

  
Table 2.2 Dimer Binding Sites Predicted by GRAMMX.a 

CYP2C9 Model Binding Partner 
Active Site Access 
Channelb 

Solvent Access 
Channel(s)b 

CPR Binding Siteb 

1R9O 

CYP2C9c 1 2 2 

CYP3A4 2  2 1 

CYP2D6 2 2 1 

CPR 3 4 0 

1OG5 

CYP2C9c 2 6 0 

CYP3A4 0 5 1  

CYP2D6 0 3 1 

CPR 1  6 0 
aEach dimer contained either 1R90 or 1OG5 and the indicated binding partner.  The structure of the binding partner was obtained 
from 19RO.pdb for CYP2C9, 1TQN.pdb for CYP3A4, 3TBG for CYP2D6, or 3ES9.pdb for CPR. bNumbers indicate number of 
models out of the top ten models displaying interaction in specified region. Interactions for each of the top ten binding models was 
considered. Dimerization involved the solvent or substrate channels 25% of the time and the CPR binding site about 7.5% in 
predicted models. 

 

 

Dimerization most frequently involved the solvent access channel region of CYP2C9 (Table 

2.2).  In the case of the closed CYP2C9 (1OG5) this location was heavily favored.  In the case 

of the partially open model, the solvent access channel region was still the favored site with the 

solvent access channel only slightly less preferred.  In either case, the CPR binding site was the 

least preferred site.  The distinctions between the three sites were greatest for the closed 

model. (Figure 2.1).  
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Figure 2.1. Representation of the top scored interaction predicted by GRAMMX for 1R9O bound to CYP3A4, CYP2C9, CYP2D6, 
and CPR. Residues defining the CPR binding site (green), substrate access channel entrance (orange), and the solvent channel 
entrance (blue), are highlighted while other residues have been removed from view.  Partner molecules are light gray. a) 1R9O-
CYP3A4 solvent channel interface area. Binding as depicted by this model could affect substrate turnover rate. b) 1R9O-CYP2C9 
CPR binding site interface area. Additionally, the partially blocked surface could affect the strength of the CYP2C9-CPR binding 
interaction for the CYP2C9 (white) molecule. c) 1R9O-CYP2D6 active site area. Binding as depicted by this model could affect 
substrate entry and exit into the active site. d) 1R9O-CPR substrate access channel area. Dimerization as depicted in this model 
could affect substrate recognition, binding, and turnover rate. 
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CYP2C9 E92 R125 R132 K421 K432 K84 D89 K121 K270 K273 K423 E438

CYP3A4 Y99 T138 P439 K91 K96 K127 P429 M445

CYP2D6 E96 R133 R140 K429 R440 R88 T93 R129 E278 K281 E431 E446

CPR Binding Site

Models were examined with respect to the relative orientation between the CPR binding 

sites of each monomer (Table 2.3).  Previous work has shown that the affinity of CPR for P450s 

is dependent on P450 dimerization and the relative orientation of the two P450s involved. 

Therefore, the relative orientation of the binding partner P450 with respect to the CYP2C9 

model (1R9O or 1OG5) may affect CPR binding strength and, therefore, the rate of P450 

mediated metabolism relative to the interaction between a monomeric P450 and CPR (Table 

2.4).   

Table 2.3 Residues Involved in CYP2C9 CPR Bindinga 

 

aResidues involved in CYP2C9 CPR binding were mapped onto CYP3A4 and CYP2D6. Those residues exhibiting strong structural 
similarity with Qres values greater than 0.75 are reported. CYP2C9 residues listed in the right hand side of the table were reported 
in the CYP2C9-CPR interface for multiple models, those on the left were reported for a single model.  

 

The orientations that may affect CPR binding strength are shown in Figure 2.2. In this figure 

the CPR binding site is indicated by the ‘notch’ in the circle and the latter represents the rest of 

the P450.  The circle on the left is CYP2C9 (1R9O or 1OG5) and that on the right is the partner 

P450. Basically, the proximity of the CPR binding site on one P450 and the binding site of the 

partner can affect CPR affinity and the orientations shown in Figure 2.2 will alter CPR affinity.  

Planar alignment (aa) of both partner CPR binding sites has been correlated with increased 

CPR binding in comparison to the monomer 216. In contrast, if the resulting dimer leads to total 

(ab) or partial (ao) occlusion of the CPR binding site, we expect reduced CPR binding. Lastly, a 

dimer pair where both CPR binding sites are remote (a-) would be expected to have no effect on 

CPR binding.  
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 Figure 2.2. Relative arrangements of CYP2C9 (1R9O or 1OG5) and partner P450s (CYP2C9, CYP3A4, and CYP2D6).  The 
left-side corresponds to CYP2C9 (1R9O or 1OG5) and the right-hand side to the partner in each pair.  ‘Planar alignment’ refers to a 
line that passes over the CYP2C9 CPR binding site and the partner enzyme.  The abbreviation ‘a’ indicates alignment with the 
partner and implies proximity, ‘b’ indicates one of the two CPR binding sites is blocked in the dimer, ‘o’ indicates partial overlap of 
one P450-CPR binding site in the complex, and a ‘-‘ indicates one of the P450-CPR binding sites is remote from that of its partner. 

 
 
 

Table 2.4. Planar alignment of CPR binding site with dimer partner moleculea 

  1 2 3 4 5 6 7 8 9 10 

1R9O 2C9 - - - - a o - - - - a o - - - - - - - - 

 3A4 - a a b a - - a - a - a - - - - a - a - 

 2D6 a - - b a b - a - a a - a b - - - a - b 

            

1OG5 2C9 a a - - - - a - - - - - a - - - - - - - 

 3A4 - b - - - - - - - a a a a - - a - - - - 

 2D6 a b - - - a a a - - - - - - - a - b a - 
aFor each model number entry, the first character refers to the CPR binding site of either 1R9O or 1OG5 and the second to the 
partner (CYP2C9, CYP3A4, CYP2D6, CPR).  The abbreviations ‘a’, ‘b’, and ‘o’ are explained in Figure 2 and the text. 

 

In approximately 10% of the models the CYP2C9 CPR binding site was in planar alignment 

with its enzyme partner, potentially changing CPR binding affinity. Of those, three alignments 

involved CPR binding regions on both enzyme molecules such as was seen in panel B of Figure 

2.1. None of the models resulting from blind docking of CYP2C9 with CPR involved the residues 

required for a functional CPR-P450 interaction. This result agrees with literature reports that use 

homology modeling and directed docking to visualize P450-CPR functional dimerization 211,216. 

2.3.2. Binding Free Energy in silico 

Computational modeling was employed to determine relative binding energy between four 

enzyme pairs, CYP2C9-CYP2C9, CYP2C9-CYP3A4, CYP2C9-CYP2D6, and CYP2C9-CPR. 

Molecular dynamics were run on these structures (neutralized and fully solvated with explicit 

waters. Binding free energies were calculated using the Molecular Mechanics/Generalized Born 

Surface Area (MM/GBSA) method, which has been shown to be more successful in ranking 

binding affinities than the Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) 

a a a - - a a b a o
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method, though it is less successful in calculating absolute energy values 227. Resultant 

energies are reported in kcal/mol in Table 2.5. Negative values for total binding free energy 

suggest favorable protein-protein complexes. The rank-order of the dimers is, from strongest to 

weakest, CYP2C9-CPR, CYP2C9-CYP2D6, CYP2C9-CYP2C9, and CYP2C9-CYP3A4. 

 

Table 2.5.  MM-GBSA Binding Free Energies for CYP2C9 Dimersa 

Energy Componentb CPR CYP2D6 CYP2C9 CYP3A4 

VDW -124.2 (6.9) 223.9 (9.9) -157.5 (6.4) -115.7 (6.15) 

EEL -500.0 (43.2) -88.9 (28.3) -224.3 (34.6) -238.0 (35.3) 

EGB 548.2 (38.9) 249.8 (28.7) 332.9 (33.5) 324.7 (32.6) 

ESURF -17.23 (0.8) -28.2 (1.2) -20.6 (0.7) -14.5 (0.6) 

G (Gas) -624.3 (42.0) -312.7 (32.8) -381.8 (34.8) -353.7 (35.3) 

G (Sol) 531.0 (38.7) 221.6 (28.0) 312.4 (33.3) 310.2 (32.7) 

G (Total) -93.26 (6.9) -91.1 (8.2) -69.4 (5.9) -43.5 (6.28) 

Calculated binding free energies for top scored interaction predicted by GRAMMX for 1R9O bound to CYP3A4, CYP2C9, CYP2D6, 
and CPR. aAll values are in kcal/mol.  Values in parenthesis are standard deviations.  bVDW = van der Waals contribution from the 
Molecular Mechanical energy, EEL = electrostatic energy, EGB = the electrostatic contribution to the solvation free energy 
calculated by the generalized Born approach, ESURF = nonpolar contribution to the solvation free energy calculated by an empirical 

model, G (gas) = VDW+EEL, G (Sol) = EGB+ESURF, G (total) = G (gas) + G (Sol).   G (total) binding free energy [(G 

Complex) –(G Receptor + G Ligand)]. All values are based on at least 50 snapshots from a single trajectory spaced by 10 ps to 
avoid correlation between models. 

 

2.3.3. Binding affinity in vitro 

CYP2C9 was 

immobilized to a planar 

gold surface via a self-

assembled monolayer 

(SAM) using Surface 

Plasmon Resonance 

(SPR) (Figure 2.3).  

 

Figure 2.3. Self assembled monolayers of 3:1 OT:MUA were formed on planar 

gold. Carboxylic groups on MUA were activated by EDC/NHS to allow binding to 

N-terminus methionine or surface exposed lysines of CYP2C9. 
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Binding was assessed via surface plasmon resonance (SPR) showing reproducible 

immobilization levels of 70-200 response units relative to the ethanolamine capped control 

surface (Figure 2.4). This low immobilization level was targeted in order to allow kinetic 

measurements of the system 228,229. 

Figure 2.4. Representative sensorgram of CYP2C9 
immobilization. Using a HEPES running buffer from 
time = 0 s the platform is subjected to EDC/NHS to 
activate the carboxylic acid groups in the SAM (t = 
140 s), CYP2C9 (t = 900 s), ethanolamine to cap 
the unreacted NHS-esters (t = 1490 s), and finally 
washed with CTAB to remove any non-specifically 
binding P450 molecules (t = 2140 s).This procedure 
is followed in the control flow cell with the reversal 
of the ethanolamine and CYP2C9 injections to 
ensure both surfaces are subjected to identical 
conditions. The immobilized response was 
calculated from the final response level – baseline 
response of the experimental flow cell subtracting 
the values observed in the reference flow cell. 

 

Immobilized CYP2C9 (CYP2C9i) was exposed to soluble CYP2C9, CYP2D6 and CYP3A4 

to analytically determine equilibrium dissociation constants for each dimer pair. A control flow 
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Figure 2.5. SPR sensorgram obtained from system comprised of soluble CYP2D6 binding to immobilized 

CYP2C9.  Both the observed response (black) and the Scrubber 2.0 fitted lines (orange) are shown for CYP2D6 

concentrations of 5, 10, 50, 100, and 500 nM. Concentrations 50 and 100 nM were repeated to ensure 

reproducibility. CYP2D6 in PBS was flowed over the surface from t=0-180 s and then PBS, only, for t=180-900 s 

at a flow rate of 30 μL/min.  Immobilized CYP2C9 was bonded to the surface of the sample cell and ethanolamine 

capped SAM served as the control.in the control cell, at 30 μL/min. 
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cell was used to ensure that binding observations were not a result of non-specific interaction 

with the immobilization platform. A representative fitted sensorgram is shown in Figure 2.5. 

These results suggest that dimers are likely being formed as no other binding model adequately 

fit the data. 

Binding equilibrium dissociation constants were calculated based on a 1:1 binding 

model.  Ranked in order from strongest to weakest binding affinity are enzyme pairs CYP2C9-

CYP2D6, CYP2C9-CYP2C9, CYP2C9-CPR, and CYP2C9-CYP3A4 (Table 2.6).  

Table 2.6 SPR Derived CYP2C9 equilibrium dissociation constants (KD).a 

Partner CYP2D6 CYP2C9 CYP3A4 CPR 

KD 1.1 ± 0.5 nM 2.6 ± 1.0 nM 18.1 ± 3.0 nM 7.3 ± 2.2 nM 
aKD  values are for the binding of CYP2C9 with the indicated partner and were calculated by fitting the SPR sensorgrams with both 

the Biacore Evaluation or Scrubber 2.0 software and assuming 1:1 stoichiometry. 

 

The binding affinity between immobilized CYP2C9 and CPR determined here is in the range of 

previously reported values for soluble CYP2C9-CPR binding which are 2.3 +/- 1.0 nM 230 and 

32.8 +/- 0.2 nM 231.  

2.3.4. CYP2C9 effect on CYP2C9i-Mediated Flurbiprofen Metabolism 

We next investigated the effects of 

P450-P450 interactions on metabolism 

utilizing our immobilized platform. To 

estimate the amount of immobilized enzyme 

we relied upon our previous work 106,158 and 

our SPR immobilization to obtain a coverage 

of 2 ng/48 mm2 on chips prepared in a 

fashion identical to that used here. The effect 

 

Figure 2.6. Effect of solution CYP2C9 on immobilized 
CYP2C9 (2C9i)-mediated metabolism of flurbiprofen at 
three ratios of 2C9i to lipidless CYP2C9 (2C9) and 
saturating CPR (P450(total): P450: 4 CPR, 1:4), 
incubated for 16 hours. A significant activation (p < .01) 
is seen at a 2C9i:2C9 ratio of 1:2. Single-factor analysis 
of variance was used for statistical comparisons. 
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of various amounts of CYP2C9 coincubated with CYP2C9i on flurbiprofen metabolism are 

presented in Figure 2.6. 

Figure 2.6 shows the amounts of metabolite formed from CYP2C9i-mediated 

metabolism of flurbiprofen in the presence of three concentrations of lipidless CYP2C9 (2C9) in 

solution at a total P450:CPR ratio of 1:4. Metabolism by lipidless CYP2C9, alone, did not 

significantly differ from negative control (data not shown) and thus metabolite formation is due 

entirely to CYP2C9i. CPR was added prior to the addition of lipidless CYP2C9 followed by the 

addition of NADPH. When the ratio of CYP2C9i:CYP2C9 was 1:2 we observed significant 

activation of flurbiprofen metabolism. CYP2C9i –mediated metabolism of flurbiprofen was not 

significantly different from positive control at ratios above 1:2 (Figure 2.6).  

2.3.5. Effect of CYP3A4 and CYP2D6 on CYP2C9-mediated metabolism of flurbiprofen 

The effect of various amounts of CYP3A4 and CYP2D6 coincubated with CYP2C9i on 

metabolite formation from flurbiprofen are presented in Figures 2.7 and 2.8.The presence of 

CYP3A4 had no effect on CYP2C9-mediated metabolism of flurbiprofen when CYP2C9 was in 

solution with lipid (Figure 2.7a) or when CYP2C9 was immobilized (Figure 2.7b) with ratios of up 

to P450(total):CPR of 1:8. In both cases, CPR was added prior to the addition of CYP3A4. 

a)              b) 

                  

Figure 2.7. Effect of CYP3A4 on CYP2C9-mediated metabolism of flurbiprofen. a) Metabolite formation in solution incubations 

containing CYP3A4 and CYP2C9, reconstituted in lipid, and with saturating CPR (P450(total):CPR, 1:8), incubated for 16 hours. 

b) Metabolite formation in incubations containing CYP3A4 (solution), immobilized CYP2C9-mediated flurbiprofen metabolism at 

saturating CPR (P450(total):CPR, 1:8), incubated for 16 hours. Single-factor analysis of variance was used for statistical 

comparisons. 
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In contrast, the presence of CYP2D6 significantly affected CYP2C9-mediated metabolism of 

flurbiprofen as suggested by the data shown in Figure 2.8. In particular, in solution, CYP2C9-

mediate metabolism of flurbiprofen was enhanced by the presence of CYP2D6 and in a 

concentration-dependent manner when CPR was present at saturating concentrations 

(P450(total):CPR, 1:8) and added prior to addition of CYP2D6 (Figure 2.8a). This activation 

saturated at a CYP2C9:CYP2D6 ratio of 1:4 and increased metabolite production by ~400%. In 

contrast, immobilized CYP2C9-mediated metabolism of flurbiprofen in the presence of CYP2D6 

resulted in a concentration-dependent inhibition of CYP2C9-mediated metabolism of flurbiprofen 

 (Figure 2.8b). CYP2D6 inhibition of CYP2C9i metabolism saturated at 75% inhibition and 

did not change up to a ratio of CYP2C9i:CYP2D6 of 1:8. 

2.3.6. Influence of the order of addition of enzymes on CYP2C9-mediated metabolism 

Figure 2.9 displays the amount of metabolite formed as a function of the order of addition of 

either CYP3A4 or CYP2D6 P450 and CPR from CYP2C9-mediated metabolite production. 

a)                       b) 

          

Figure 2.8. Effect of CYP2D6 on CYP2C9-mediated flurbiprofen metabolism. a) Effect of CYP2D6 on solution metabolism of 

CYP2C9 reconstituted in lipid with saturating CPR (1 total P450 : 8 CPR), incubated for 16 hours. Significant activation (p < .05) 

is observed at a ratio of 1 2C9 : 0.25 2D6, and (p < .01) for ratios higher than 1 2C9 : 0.25 2D6. b) Effect of CYP2D6 on 

immobilized CYP2C9-mediated flurbiprofen metabolism at saturating CPR (1 total P450 : 8 CPR), incubated for 16 hours. 

Significant inhibition (p < .05) is seen for 2C9i:2D6 ratios greater than 1:0.25. Single-factor analysis of variance was used for 

statistical comparisons of variance was used for statistical comparisons. 
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Figure 2.9a shows that there is no effect of CYP3A4 on CYP2C9-mediated metabolism when 

CPR is added first and allowed to preincubate which is in agreement with the results presented 

in Figure 2.6a. In contrast, when CYP3A4 is allowed to preincubate with CYP2C9, a significant 

inhibition up to 34%, of CYP2C9-mediated metabolism of flurbiprofen at a CYP2C9:CYP3A4 

ratio of 1:2 is observed. The effect on metabolite production by CYP2D6 in shown in Figure 2.9b 

and shows that the presence of CYP2D6 strongly inhibits CYP2C9 metabolism (up to 98%) 

regardless of the order the components are added prior to initiating the incubation. There is no 

significant difference between metabolite production at the 1 CYP2C9 : 2 CYP2D6 ratio when 

CPR is added before or after CYP2D6.  

2.4. Discussion 

Protein aggregation between P450s in solution has been shown to occur and can activate or 

inhibit P450-mediated metabolism. Previous work has demonstrated that the consequences of 

P450-P450 interactions are not universal, and some specificity between partners may be 

a)             b) 

       

Figure 2.9. Order of addition of CPR and CYP3A4 or CYP2D6 effect on CYP2C9 mediated flurbiprofen metabolism. a) 

Effect of CYP3A4 on solution metabolism of CYP2C9 reconstituted in lipid with sub-saturating CPR (1 total P450 : 1.5 

CPR), incubated for 1 hour. 1 2C9 : 2 3A4 CPR represents preincubation of CYP2C9 and CPR for 5 minutes prior to 

CYP3A4 addition. All other columns represent CYP3A4 preincubation for 5 minutes prior to addition of CPR. A significant 

inhibition at 2C9 : 3A4 ratio of 1:1 (p < .05) and (p < .01) at a ratio of 1:2 is seen in the presence of preincubated 

CYP3A4, but not when CPR is preincubated. b) Effect of CYP2D6 on solution metabolism of CYP2C9 reconstituted in 

lipid with sub-saturating CPR (1 total P450 : 1.5 CPR), incubated for 1 hour. 1 2C9 : 2 2D6 CPR represents preincubation 

of CYP2C9 and CPR for 5 minutes prior to CYP2D6 addition. All other columns represent CYP2D6 preincubation for 5 

minutes prior to addition of CPR. A significant inhibition (p < .001) is seen in the presence of CYP2D6. There was no 

significant difference between preincubating the CPR or CYP2D6 with CYP2C9 at the ratio of 1 2C9 : 2 2D6. Single-

factor analysis of variance was used for statistical comparisons. 
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involved 67,74,81. In the present study, we show the formation of both homomeric (CYP2C9-

CYP2C9) and heteromeric (CYP2C9-CYP3A4, CYP2C9-CYP2D6, CYP2C9-CPR) P450 

complexes with different binding affinities. We reveal for the first time activation of CYP2C9 

metabolism by homomeric complex formation. Furthermore, we show that controlling the 

aggregation state of CYP2C9 through immobilization changes the effect of P450-P450 

interactions has on metabolism. Lastly, we show that order of addition and concentration of 

CPR modulates inhibition of CYP2C9-mediated metabolism by CYP2D6 and CYP3A4.  

Computational modeling was used as a tool to predict the conformation of dimer formation 

and how the complex may affect P450-P450 modulation of metabolism.  Models were 

generated using PDB ID’s 1OG5 and 1R9O that represent two different conformations of the 

CYP2C9 enzyme that may be adopted during enzyme-mediated metabolism, the closed and 

partially open forms. The data shown in Table 2 indicates that dimerization can involve the 

solvent or substrate channels and the CPR binding site in about 25% and 7.5%, respectively, of 

the predicted models. We investigated both the closed conformation of CYP2C9 (1OG5) and 

partially open conformation (1R9O), as they both exist in vitro and in vivo upon substrate 

binding and release during the catalytic cycle. The closed conformation involved the solvent 

channel region more frequently, while the partially open conformation involved all regions of 

interest uniformly.  

In particular, metabolism is more likely to be affected due to dimerization occurring at the 

solvent channel for CYP2C9 and CYP3A4, thus changing binding or turnover rate, as compared 

to CYP2D6.  In the dimer models generated, a binding conformation wherein the CPR binding 

site was aligned planar with the partner enzyme occurred in 12% of the models, or about 1.6 

times more frequently than when the CPR site was blocked, suggesting that altered affinity for 

CPR enzyme could be an important contributor to changes in enzyme metabolism (Table 2.4). 

MMGBSA calculations were conducted to ensure the predicted GRAMMX dimers were 
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favorable and to compare binding between the different complexes. The results demonstrate 

that each dimer is energetically favorable, and we observe the most favorable ΔG for CYP2C9-

CPR (Table 2.5). The favorable ΔG observed for CYP2C9-CPR, a known 1:1 complex, helps 

validate our GRAMMX results. 

Currently, there are very few experimental methods that measure or demonstrate P450-

P450 complex formation, despite the large amount of evidence of P450 interactions. Thus far, 

co-immunoprecipitation studies 67,78 and fluorescently-labeled P450 fluorescent energy transfer 

studies 80,195 confirm P450-P450 complex formation. Optical sensors, such as SPR, have been 

used previously to measure complex formation between P450cam and putidaredoxin 180. In the 

present study we used SPR to measure binding of analyte P450s to immobilized CYP2C9 in 

real-time. CYP2C9 was immobilized and the binding partner flowed over in the absence of 

substrate, conditions that favor the partially open conformation. The KD values determined for 

the binding of CPR to CYP2C9 is in line with previously reported values by Wei et al. 2003 and 

Locuson et al. 2007, demonstrating the likely validity and accuracy of this methodology. The 

high affinity binding which occurs between CYP2C9-CYP2C9 and CYP2C9-CYP2D6 is likely 

relevant to the results of metabolism assays as they bind to one another more strongly than 

either does to CPR (Table 2.6). We also show that CYP3A4 forms a heteromeric complex with 

CYP2C9, but its KD, 2.5 times that of CPR (Table 2.6), and suggests CYP3A4 competition for 

the CPR binding site is unlikely to factor into metabolism effects; however, this does not 

preclude the possibility of CYP3A4 altering CYP2C9’s affinity for CPR. Our results also offer an 

in vitro validation of our modeling results showing good agreement with our predicted binding 

between P450s, with the only deviation being that CYP2C9-CPR binding is predicted to be 

slightly more favorable than CYP2C9-CYP2D6. Furthermore, the immobilization scheme is the 

same used for our metabolism studies, allowing for direct interpretation of complex formation 

effect on metabolism.  
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P450 aggregation can affect metabolism via altered CPR affinity, substrate binding, or 

turnover rate 81. Altered CPR affinity can occur through blocking CPR binding sites and 

preventing association and inhibiting metabolism.  Alternatively, a planar alignment of CPR 

binding sites with dimer partners may increase CPR binding tightness and thereby enhance 

metabolism. In the present study, we use our controlled immobilization platform to show for the 

first time the activation of immobilized CYP2C9 metabolism through homomeric complex 

formation (Figure 2.6). It is possible that dimerization of CYP2C9 restores activity to CYP2C9 

that is in solution (lipid free); however, if this was the case we would expect the metabolite 

generation to saturate at the highest level. Instead, we note a decrease back to the control at 

ratios greater than 1:2 (Figure 2.6). Increased affinity for CPR is one possibility for activation 

given the aligned CPR binding sites in one of our predicted homodimers (Table 2.4). Another 

factor could be interaction with solvent access channels promoting substrate binding and exit 

(Table 2.2) 232. The lack of activation at increased ratios might be due to larger aggregate 

formation that alters the synergistic kinetics.  However, the SPR model suggests that only dimer 

formation occurs so further study is needed to evaluate the source of this effect.  

In solution, it has been shown that protein-protein interactions between CYP2C9 and 

CYP3A4 yield a protein dose-dependent inhibition of CYP2C9 metabolism when incubated with 

CYP3A4 prior to CPR addition 78. Here we show CYP2C9 pre-incubation with CPR does not 

lead to inhibition by CYP3A4 with solution or immobilized CYP2C9 (Figure 2.7) regardless of 

CPR concentration (Figure 2.9a). Furthermore, the work by Subramanian et al. (2010) showed 

that the CYP2C9-CYP3A4 interaction could be eliminated by truncation of the N-terminus of 

either binding partner. We show however, that if both P450s are truncated interaction can still 

occur (Table 2.6), and that this binding can result in decreased solution CYP2C9 metabolism 

when pre-incubated with CYP3A4 (Figure 2.9a). The order of addition of protein binding 

partners and cofactors has been shown to be important when evaluating the effects of P450-
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P450 interactions 194,233. The order of addition effect on CYP3A4 inhibition points towards the 

formation of a quasi-irreversible heteromeric complex (Figure 2.9a).  

 Studies have also shown that there is a protein concentration-dependent inhibition of 

CYP2C9 metabolism when co-incubated with CYP2D6 at sub-saturating CPR concentrations 

194. Interestingly, we note drastically different effects of CYP2D6 on CYP2C9 metabolism 

depending on study parameters. Our result of 94% inhibition of CYP2C9 in solution by CYP2D6 

at a 1:1 ratio (Figure 2.9b) is in reasonable agreement with the 50-80% reported previously 194. 

The difference in maximum inhibition could possibly be due to differences in lipid:protein ratios 

between the two studies. However, we show that at saturating CPR concentrations CYP2C9 in 

solution metabolism is activated by CYP2D6 (Figure 2.8a). Even more compelling, is that when 

CYP2C9 is immobilized, CYP2D6 is once again inhibiting despite that excess CPR is being 

allowed to preincubate with the immobilized CYP2C9 (Figure 2.8b). Competition for CPR is 

unlikely to be a factor as the reported KD for CYP2D6-CPR interaction (20 nM) 234 is almost 

three times that of CYP2C9-CPR (Table 2.6).  

One possible explanation for the solution metabolism results could be a dual effect of 

CYP2D6 on CYP2C9 metabolism. If the CYP2D6-CYP2C9 complex has a faster substrate 

turnover rate, but lower CPR affinity, we would expect to see activation of metabolism when 

CPR is well in excess and the faster turnover rate dominates the kinetics but inhibition when 

CPR is sub-saturating and electron transfer becomes the limiting step. Another factor to 

consider is the difference between solution and immobilized platform results (Figure 2.8). 

Immobilization of CYP2C9 controls its aggregation, with the majority being monomeric 158,204. 

Therefore, the inhibition in CYP2C9 metabolism could be a result of the lack of competition of 

homomeric complex (CYP2C9-CYP2C9) formation with heteromeric complex (CYP2C9-

CYP2D6) formation, evidenced by the close KD values for both interactions (Table 2.6). On the 

immobilized platform the binding modes and conformations may also be limited or otherwise 
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different compared to solution and CYP2D6 may prevent CPR from associating with CYP2C9, 

thus limiting metabolism.  

The current study demonstrates the utilization of an immobilized platform to better 

understand P450-P450 interactions. Being able to immobilize an enzymatically active P450, we 

are able to study both P450-P450 complex formation and the resultant metabolic modulation. 

We show that CYP2C9 forms both homomeric and heteromeric complexes, and that these 

complexes have the ability to activate or inhibit CYP2C9 metabolism. Future studies using this 

platform can further explain intricacies of these interactions, and can be expanded to probe 

whether effects are due to changes in CPR affinity or substrate turnover. 

 

2.5 Contributions  

Molecular modeling data, computationally predicted dimers and binding free energy in silico, was 

provided by Dr. Katherine M. Hickey.  SPR binding constants for CYP2C9-CYP2D6 and CYP2C9-

CYP3A4 were provided by Dr. Lance A. Wollenberg and Dr. Katherine M. Hickey respectively. 
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Chapter 3 

Nanoscale electron transport measurements of 

immobilized cytochrome P450 proteins  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adapted from Bostick, C.D., Gannett, P.M., Flora, D.R., Tracy, T.S., and Lederman, David. 

Nanoscale Electron Transfer Measurements of Immobilized Cytochrome P450 Proteins. 

Nanotechnology 2015, 26(15), 155102 
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3.1 Introduction 

The electron transfer (ET) properties of heme-thiolate monooxygenases have been extensively 

studied and, as a result, the ET process for a subset of these proteins has been well 

characterized127. One example of such a protein is cytochrome c, which has become a model for 

studying biological ET128. There have been comparatively fewer studies of electron transfer on 

monooxygenases involved in metabolic processes. The cytochrome P450s (P450s) are 

monooxygenases and part of a large family of heme containing proteins found primarily in the 

liver where they are bound to the smooth endoplasmic reticulum11. The main function of P450s is 

to metabolize substrates into more water-soluble and readily excretable forms, primarily via 

oxidation (e.g., insertion of an oxygen atom, typically into a C-H bond, to form a hydroxylated 

product or demethylation). The transfer of an electron from a donor (cytochrome P450 reductase, 

CPR) to the P450 heme group is the controlling step for the initiation of the catalytic cycle.15 A 

better understanding of ET in P450s would allow exploitation of their unique properties for use in 

new biomedical applications, for example, in bioreactors for bio-transformations/metabolic 

engineering86,87,106, biosensors for personal drug monitoring129,149,161,or bioremediation91.  

Several factors have been suggested to affect ET, such as substrate binding and protein 

aggregation. Substrate binding has been observed to alter the spin state of the heme iron in 

P450s44. Spin state has been measured using absorption spectroscopy and some degree of 

correlation has been observed between changes in spin state and metabolic activity17,30. Type II 

ligands to P450 enzymes, are often inhibitors and not metabolized and have no effect on spin 

state, or stabilize the enzyme in the low spin state.44 Moreover, there are many substrates, such 

as dapsone, that alter the spin state very little, but are nevertheless metabolized. The reduction 

of heme can also occur in the absence of substrate in some P450s, and equal reduction rates 

between low and high spin heme species have been measured16. This suggests that other factors 

may be modulating ET other than spin-state changes caused by substrate binding.  
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P450s are known to aggregate, forming homo- and hetero-oligomers in solution, and a range 

of effects from these interactions can occur, such as alteration in catalytic rate or degree of binding 

to the binding partner CPR64–66,68,194,196. Attempts to prevent this aggregation using detergents, 

salts, and lipids have been shown to affect ET57,72,235. Due to these difficulties, it has not been 

possible to determine, how oligomer formation alters metabolism, and it is very possible that 

aggregation affects ET. A related factor is whether CPR binding to P450s, an obligatory step in 

the P450 catalytic cycle, alters ET. For example, it is possible that the binding of CPR to a P450 

may induce a conformational change that facilitates ET147,236–238. It is also possible that substrate 

binding causes  conformational changes that affect ET from CPR to P45030,239, and by combined 

processes may also modulate ET.   

The literature suggests that the binding of substrates may be key for facilitating ET in 

P450s182,240,241, and a correlation between the rate of substrate metabolism and the ease of ET 

has been proposed159,172,242,243. One approach used to explore this issue has been to immobilize 

P450 to an electrode in an attempt to achieve direct electron supply from the redox electrode to 

the redox active group of the P45098. A variety of techniques have been used to achieve 

immobilization, including the direct wiring of a flavin cofactor to the heme244, confining P450s 

inside thin films on electrodes141, and tethering of modified P450s245. These attachment 

procedures have permitted the use of electrochemical methods, including cyclic voltammetry, 

square wave voltammetry, and amperometry, thus providing a way to measure critical parameters 

relevant to the redox processes in the proteins (e.g., the redox potential Eo) under a variety of 

conditions135. However, these electrochemical measurements tend to alter protein conformation 

and function182, cause interactions of the heme with the electrode137, and there is ambiguity of the 

aggregation state of the enzyme as a consequence of immobilization. Consequently, the results 

have not established a clear correlation between metabolism or metabolic rate and ET242. 

Recently, immobilization of unmodified P450s on electrodes using various self-assembled 

monolayers (SAM) has allowed the use of electrochemistry approaches to study P450s that retain 
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their metabolic activity106,149,161. Nanoscale approaches have also been used to probe single 

enzyme electron transport (ETp), including scanning probe microscopy162, mechanical break 

junctions166, and conductive probe atomic force microscopy (CPAFM)246. We recently developed 

a methodology to measure the properties of non-aggregated P450s using CPAFM that allows the 

study of the same individual P450 enzyme in response to different bound substrates46. In this 

approach, electron beam lithography is used to pattern four 21 x 21 gold nanopillar arrays on 

doped silicon. The lateral dimensions of the nanopillars are in the range of 20 to 40 nm, allowing 

isolation of the P450 of interest through bonding to a SAM bonded to the gold nanopillar. Here, 

the SAM was comprised of ω-thioundecanoic acid which selectively bonds to gold and not silicon 

when dissolved in ethanol152, ensuring attachment of the P450 to gold pillars and not the 

surrounding silicon. Other laboratories have made similar arrays using analogous methods170. 

Using this indexed array of gold nanopillars unmodified cytochrome P450 2C9 (CYP2C9) was 

selectively immobilized, the electrical conductance measured with CPAFM on the same enzyme 

molecule under different conditions, and a correlation between ET, ETp, and enzyme metabolic 

activity was found46.   

Here we describe important advances in our CPAFM measurement technique. By measuring 

changes in pillar height prior to and after attachment, we confirm that the nanopillars have single 

layer P450 coverage, and not an aggregated enzyme. In addition, we demonstrate how the AFM 

tip force modulates the conductance of the proteins on the gold nanopillars. Finally, we 

demonstrate that the CYP2C9 inhibitor sulfaphenazole reduces ET, in agreement with our 

previous results with another inhibitor (aniline)46.   

3.2. Materials and Methods 

3.2.1. General 

All chemicals were purchased from Sigma Aldrich (Milwaukee, WI) and were of analytical 

reagent grade and used without further purification unless otherwise noted. Acetone, isopropanol, 

methyl isobutyl ketone, mercaptoundecanoic acid (MUA), 8-octanethiol (OT), N-((3-
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dimethylamino)propyl)-N-ethylcarbodiimide hydrochloride (EDC), N-hydroxysulfosuccinimide 

(NHS), flurbiprofen, dapsone, and potassium phosphate-buffer (Kpi, 40 mM, pH 7.4, prepared 

from potassium mono- and dibasic phosphate). Ethanol (100%) was purchased from Pharmco-

Aaper (Brookfield, CT). The 300 MIF developers, 495K poly(methyl methacrylate) (PMMA) and 

950K PMMA, were obtained from Micro Chem (Newton, MA). Boron-doped [100] silicon wafers 

were obtained from University Wafer (South Boston, MA). AZ 5214 photoresist was obtained from 

AZ Electronic Materials (Capitol Scientific, Austin, TX). Cytochrome P450 2C9 enzyme (CYP2C9) 

was prepared by expression in an E. coli system, isolated, and purified as described previously247. 

Deionized water was obtained from a Nanopure Ultrapure (Thermo Scientific, Waltham, MA) 

water system and had a resistivity of 18.2 MΩ-cm.  

3.2.2. Chip Cleaning and Preparation  

Silicon wafers were cleaned by immersion in Buffered Oxide Etch (BOE) 1:10 hydrofluoric acid 

(49%):deionized water solution for 3 min and rinsed in a cascading water bath for 10 min. The 

wafers were then blown dry with nitrogen, and immediately spin coated with PMMA to prevent 

silicon oxidation. The wafers were placed in a Laurell WS-400B-6NPP/LITE spin-coater (North 

Wales, PA), and spincoated with 495K PMMA (4% in anisole) (5000 rpm, 30 s), placed on a hot 

plate (180 °C, 2 min) to evaporate solvent, and cooled to room temperature. Samples were then 

spin-coated with 950K PMMA (4% in anisole) (5000 rpm, 30 s), placed on a hot plate (180 °C, 2 

min) to evaporate solvent, and cooled to room temperature.  

3.2.3. Electron Beam Lithography 

Electron beam lithography was then performed to pattern the PMMA using a JEOL JSM-7600F 

field emission analytical scanning electron microscope (Tokyo, Japan) equipped with Nanometer 

Pattern Generating System software from JC Nabity Lithography Systems (Bozeman, MT). The 

working conditions were chamber pressure ≤9.6 × 10−5 Torr, electron beam accelerating voltage 

30.0 kV, working distance 8.0 mm, and probe current 40−45 pA. To index the nanopillars, a 

fiducial marker was made via a diagonal scratch, from one corner, on the PMMA. After focusing, 
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the pattern was written under software control at the end of the fiducial scratch. Upon completion 

of electron beam lithography, samples were developed by rinsing in a solution of 1:3 methyl 

isobutyl ketone:isopropyl alcohol (70 s), then in 100% isopropyl alcohol (20 s), and then deionized 

water (10 s).  

3.2.4. Electron Beam Evaporation  

A Temescal BJD-2000 system (Edwards Vacuum, Phoenix, AZ) with an Inficon XTC/2 

deposition controller (East Syracuse, NY) was used for metal evaporation. Chamber pressures 

were ≤1.0 × 10−5 Torr. Samples were rotated (3 rpm) and monitored for metal thickness using a 

crystal monitor with gold-coated 6 MHz quartz piezoelectric crystals (Kurt J. Lesker Co., Clairton, 

PA). Rates of 0.3−0.5 Å/s were maintained during the deposition of a titanium adhesion layer (2 

nm) and a gold layer (15 nm). After deposition, samples were cooled to room temperature before 

being removed from the chamber. Lift-off of the photoresist was performed by scoring chips with 

a razor blade, on opposite side of pillar writing, to allow acetone to reach under metal and PMMA 

layer. Then samples were placed in warm acetone (60-70 °C) for 45 minutes to an hour, with 

periodic spraying with RT acetone from squirt bottle. SEM images of the nanopillar arrays are 

shown in Figure 3.1. Steps of PMMA spin coating, metal deposition, and lift-off were all conducted 

in a 24 hour period to yield best results. 

3.2.5. Scanning Electron Microscopy and Atomic Force Microscopy Imaging 

SEM imaging was performed using a JEOL JSM-7600F (Peabody, MA) field emission analytical 

scanning electron microscope with a pressure inside the chamber of  ≤9.6 × 10−5 Torr. AFM 

imaging was performed using an Asylum MFP 3D-BIO AFM (Santa Barbara, CA) in tapping mode 

using Asyelec-01 silicon tips (Asylum Research, Santa Barbara, CA). Height images were taken 

in tapping mode to minimize tip effects. Gwyddion version 2.37 (Gwyddion.net) was used for 

analysis of taping mode height images248. Height analysis was done by using a grain threshold to 

highlight the pillars and obtain a distribution of pillar height. This distribution was then fit to a 

Gaussian model to obtain a mean pillar height from the peak center.  
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3.2.6. Immobilization of CYP2C9 to Gold via Self Assembled Monolayer 

Samples were washed in acetone, methanol, and deionized water, each, for 5 min, washed 

with ethanol, and immersed in an ethanolic solution of OT (10 mM) and MUA (2.5 mM) (18 h), 

and rinsed with ethanol and then 40 mM potassium phosphate buffer pH 7 (Kpi), three times each. 

Samples were immersed in Kpi containing EDC (2 mM) and NHS (5mM) for 2 h, and then 

immersed in a Kpi solution containing CYP2C9 (50 nM), flurbiprofen (40 μM), and dapsone (40 

μM) for 24 h. After the CYP2C9 was attached, the samples were rinsed with 3.9 mM 

Cetyltrimethylammonium Bromide (CTAB) for 5 minutes to remove non-specific binding, then Kpi, 

and then blown dry with nitrogen.  

3.2.7. Conductive Probe Atomic Force Microscopy Measurements 

Prior to CPAFM measurements, the tip cantilever spring constants were measured in 

accordance with the manufacturer’s instructions on freshly stripped mica for all RMN 25Pt300B 

tips (Rocky Mountain Nanotechnology, Salt Lake City, UT) used. Spring constant calculations 

were used to apply the same force or modulation of force during all CPAFM measurements. 

Fiducial scratches were used to orient our samples to take measurements on the same 

nanopillars for each CPAFM measurement. CPAFM scans were taken in-air by starting the bias 

at 0 V, moving linearly to maximum bias (3 to 4 V), then linearly to minimum bias (−3 to −4 V), 

and finally returning to 0 V. Curves shown for each sample are the average of at least five scans 

taken from the maximum to the minimum voltage cycle. Substrates were applied by immersing 

chips with immobilized CYP2C9 in a Kpi solution containing 40 μM of flurbiprofen and 40 μM 

dapsone, or 40 μM sulfaphenazole, and then blown dry with nitrogen. Between CPAFM 

experiments, samples were rinsed in deionized water for at least 1 h to wash small molecules 

(flurbiprofen, dapsone, or sulfaphenazole) from the enzyme. All processes were performed in an 

argon atmosphere at room temperature. 

3.3. Results and Discussion 
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A unique aspect of the nanopillar array is that it allows for sequential measurements under 

different conditions to be conducted on the same bonded CYP2C9 molecule.  This, in part, was 

made possible by using a scratch as a fiducial marker which allowed us to find the same nanopillar 

with the same CYP2C9 molecule in subsequent studies. Scanning electron microscopy (SEM) 

images of the nanopillar platform are shown in Figure 3.1. The images show that each nanopillar 

was between 20 and 40 nm in diameter. CYP2C9 was attached to the nanopillars as described 

in Jett et al46. Briefly, a self-assembled monolayer was bonded to the gold nanopillars containing 

ω-mercaptoundecanoic acid. The carboxyl groups of the SAM were activated toward amide 

formation such that the CYP2C9 was bonded to the gold nanopillars through the SAM. Bonding 

to the SAM can occur through the N-terminus or any surface accessible lysine of CYP2C9. While 

it has been suggested that the orientation of the heme (controlled by the orientation of the enzyme 

with respect to the pillar) plays an important role in ET249, the reproducibility of our results indicate 

that our enzyme is either able to adopt a similar conformation across pillars or that heme 

orientation is inconsequential. Previous cyclic voltammetry studies done by our lab utilizing the 

same attachment scheme of CYP2C9 on a gold film revealed a peak width characteristic of a 

prevalent orientation of our bonded enzyme106, and we hypothesize attachment is on a lysine near 

the N-terminus due to pKa and steric constraints158. In addition, because of this experimental 

construct minimal changes are expected in conformation when measuring the same pillar under 

different conditions (except for changes caused by changes in force). One question about this 

immobilized system is whether the CYP2C9 that is bonded to the gold is still active, and able to 

metabolize substrate. Previous work in our laboratory and the current work have demonstrated 

that this system maintains the ability to carry out CYP2C9-mediated metabolism of compounds 

known to be substrates, when endogenous co-factors and protein partners (i.e., NADPH and 

CPR) are present158. Therefore, the ETp studies conducted here are on immobilized CYP2C9 

proteins that retain their in vivo activity.  
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Since aggregation of the P450 proteins may alter the ET and ETp processes, to obtain 

unconfounded information about the P450 ET process, aggregation effects need to be identified 

or removed. Thus, studies like those herein which employ isolated P450 can be used to minimize 

aggregation and its effect on ET. The nanopillar lateral dimensions, on average, are 

approximately 30 nm and the diameter of a single CYP2C9 enzyme is approximately 6 nm6. 

Based on previous studies in our lab, we expect approximately 50% coverage depending on the 

CYP2C9 concentration used, on the top of each nanopillar. Thus, it is expected that a maximum 

of 13 CYP2C9 molecules could bind to the top of a nanopillar158. 

Monolayer attachment would show that we are not measuring through multiple enzymes, and 

leave only the possibility of lateral enzyme interaction(s). Changes in pillar height were used to 

evaluate attachment and aggregation of CYP2C9. While conductive studies were completed in 

contact mode, height images were obtained in tapping mode to avoid possibly moving  bonded 

CYP2C9 off the pillar top during raster scanning250. Maximal z-axis resolution of AFM has been 

shown to be ~0.1 nm188, which is more than sufficient for distinguishing between a single CYP2C9 

or two CYP2C9s stacked on top of another. Parameters to obtain monolayer coverage were 

evaluated on gold films, and height was assessed by scratching a small area clean in contact 

mode at a high force (160 nN), and re-imaging in tapping mode with a new tip251. This showed a 

height change of ~1.1 nm for SAM, and ~7 nm for SAM/CYP2C9, which is in good agreement 

with monolayer coverage (Figure 3.2).  

 

 

Figure 3.1. SEM image showing a section of one of the four nanopillar 
arrays created by electron beam lithography (left) and zoomed in to 
show the size of the nanopillars (right). 

 



63 
 

  

 

Figure 3.2. a) AFM tapping mode height image of Au film with attached SAM, and b) with attached 

SAM/CYP2C9 after a small 2 μm x 2 μm section was scratched clean by contact mode imaging at 

high force (160 nN). A new tip was used to obtain the tapping mode image from the one used to 

perform the contact mode scratch cleaning. c) Section graph, red box in a), of the Au film with 

attached SAM across the contact and non-contacted cleaned area showing a height difference of 

~ 1.1 nm. d)  Section graph, red box in b), of the Au film with attached SAM/CYP2C9 across the 

contact and non-contact cleaned area showing a height difference of ~ 7 nm. Data from the other 

sides of the contact cleaned area are in good agreement with those reported in c) and d) (data not 

shown). 
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Figure 3.3 depicts an AFM height image of our platform with pillars highlighted through grain 

analysis in Gwyddion software. A height 

threshold was chosen to select only for 

the gold pillars and not the silicon 

surface, as our attachment scheme will 

only allow bonding of our enzyme to gold 

through amide bond formation with the 

SAM. A height distribution was extracted 

for an entire array (441 nanopillars) and 

fit to a Gaussian line shape to find the 

peak center. An overlay of the height 

distributions for bare gold pillars and 

pillars with SAM/CYP2C9 attached can be seen in Figure 3.3. A shift in pillar height of 3.5 nm 

from bare gold pillars to CYP2C9 immobilized pillars can be easily observed in the data. In 

addition, the peak width increased from 3.7 nm for bare gold pillars to 6.7 nm for SAM/CYP2C9 

attached pillars. The increase in pillar height with attached SAM/CYP2C9 is in good agreement with 

attachment of CYP2C9 to approximately 50% of our pillars given the proteins spherical diameter 

of 6 nm6. This is further validated by the increase seen in the peak width, which implies that, after 

attachment, an increase in heterogeneity is observed on our arrays. This is consistent with some 

pillars bearing attached protein and some remaining without bonded protein. Furthermore, the 

change in height and peak width is too small to support the case where multiple proteins would 

be stacking on top of one another, providing strong evidence that we are measuring ETp through 

a single P450 layer.  

 

Figure 3.3 Height distributions for pillars before (blue squares) and 
after (red circles) CYP2C9 attachment. Fittings to a Gaussian model 
gives a peak center of 11.2 nm with a width of 3.7 nm for bare gold 
pillars (blue curve), and a peak center of 14.7 nm with a width of 5.9 
nm after CYP2C9 attachment (red curve). Inset: AFM Height image of 
pillar array with SAM/CYP2C9 attached. Pillars (highlighted in red) 
were selected for height analysis through grain height thresholding.  
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CPAFM I-V curves provide conductance information which occurs through pathways known to 

dominate the ETp process252. Previously we observed that our gold nanopillars yield an ohmic 

response when voltage is applied, and that attachment of SAM leads to insulating behavior that 

is slightly reversed by bonding of CYP2C946. To obtain data for CYP2C9, at least five curves were 

averaged, all of them going from a maximum 

positive to a minimum negative voltage. The 

I-V curves measured as a function of applied 

force for P450 attached to a gold nanopillar 

are shown in Figure 3.4 for the enzyme alone 

and in the presence of substrate 

(flurbiprofen). In both cases, the current 

increased with probe force, as expected for 

an organic medium251,253. In contrast, no 

force dependent increase in current was 

observed for I-V curves taken on the silicon 

surrounding the pillars. 

Force dependent studies demonstrate that 

a reliable electrical contact to our protein is 

made at 16 nN. At 32 nN the I-V curves 

indicate a significant loss in resistance, implying a large degree of compression254. Therefore, 16 

nN was chosen as the applied force to obtain I-V data of CYP2C9 under various conditions.   

 

Figure 3.4. Measured I-V curves as a function of force for two 
nanopillars with attached CYP2C9. Pillar A contains CYP2C9 
alone, Pillar B contains CYP2C9 with substrate flurbiprofen 
attached. Data obtained from two different samples. 
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Figure 3.5 shows substrates/inhibitor used in our CPAFM studies of three different nanopillars 

whose I-V data are graphed in Figure 3.6. All I-V measurements listed for nanopillars were made 

on the same pillar and thus the same 

CYP2C9 enzyme and with the same applied 

tip force (16 nN). To vary the substrate bound 

to the CYP2C9, the nanopillar was treated 

with substrate solutions under saturating 

conditions. Once a series of measurements 

were made, the substrate was washed out by 

immersion in phosphate buffer, and then 

immersed in a solution containing a different substrate at a saturating concentration in phosphate 

buffer.   

Substrates that enter the active site in solution cannot escape once the sample is removed from 

solution and blown dry, and thus they are stuck in the active site during the in-air CPAFM 

measurements. We note that curves were consistent over sequential measurements after 

removal and re-insertion of samples (data not shown), and that the platform provided reproducible 

curves in the case of no substrate/inhibitor presence within the active site (Figure 3.7). 

 

Figure 3.6. I-V curves measured for three nanopillars of (a) CYP2C9 alone, (b) CYP2C9 with flurbiprofen and dapsone, and (c) 
CYP2C9 with inhibitor sulfaphenazole.  

 

 

Figure 3.5. Structures of the CYP2C9 substrates flurbiprofen and 
dapsone and the CYP2C9 inhibitor sulfaphenazole. 
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Here we compare CYP2C9, flurbiprofen/dapsone (metabolized by CYP2C9, see Figure 3.6) 

and sulfaphenazole (a CYP2C9 inhibitor, see Figure 3.6). First, I-V data were obtained on 

CYP2C9 by itself (Figure 3.6a). Next, the nanopillar array was immersed in a mixture of 

flurbiprofen and dapsone.  Flurbiprofen and dapsone are substrates readily metabolized by 

CYP2C9. We have previously demonstrated that flurbiprofen and dapsone can occupy the active 

site simultaneously48. The I-V data demonstrate that with both flurbiprofen and dapsone present 

with CYP2C9, the enzyme conductance is increased (Figure 3.6b), in good agreement with our 

previous findings of simultaneous binding of both substrates in the active site46. We have 

previously demonstrated that flurbiprofen metabolism is activated by the presence of dapsone50. 

Thus, the I-V data showing increased conductance agree with the hypothesis that the rate of 

P450-mediated metabolism accelerates as ET becomes easier. 

Following the I-V measurements of the CYP2C9-flurbiprofen/dapsone system, the nanopillars 

were rinsed with water and treated with a solution of sulfaphenazole (Figure 3.6c) under saturating 

conditions. Sulfaphenazole is a known inhibitor of CYP2C9-mediated metabolism, that is 

 

Figure 3.7. Measured I-V curves of three different nanopillars after different incubations with substrate/inhibitor.  Measurements 

were taken in separate sessions up to 24 hours apart, and included removal of sample from AFM, followed by treatment with 

substrate/inhibitor, and finally re-insertion of sample into AFM and measurement. The left graph shows unchanging curves after 

treatment with substrate shown in studies to increase conductance, but shows reduced conductance with inhibitor. The middle 

graph shows unchanging I-V curves for all conditions, but demonstrates reproducibility of measurement. The right graph shows 

unchanging I-V curves denoting no entry by inhibitor aniline, and demonstrating reproducibility of measurement. These data 

exhibit the possible lack of substrate/inhibitor into the active site in some immobilized enzymes, and show strong reproducibility 

in I-V curves in successive measurements. 
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purported to stabilize the heme iron in the low spin state45. The I-V data for CYP2C9 with 

sulfaphenazole bound indicates that ETp is more difficult than the CYP2C9 alone or when readily 

metabolized substrates are bound (Figure 3.6c). This is in agreement with our previous data 

regarding aniline, another inhibitor of CYP2C9. Like sulfaphenazole, aniline is a Type II 

competitive inhibitor purported to stabilize the heme iron in the low spin state45, and thus when 

bound to CYP2C9, it reduced the ease of ET. We have previously demonstrated that the ease of 

P450 reduction and spin state are not well correlated, as CYP2C9 complexes with either 

flurbiprofen or dapsone had identical conductance profiles46, despite flurbiprofen being known to 

stabilize the high spin state, and dapsone having little effect on spin state. In addition, ETp was 

much easier for dapsone than aniline, despite neither altering spin state. Our results with 

sulfaphenazole indicate that inhibitors may also block ETp. This result presented herein is now 

the second example of this type of behavior. It is also a novel result because P450 inhibitors are 

thought to act only by binding to the active site and blocking access to it, and/or stabilizing the 

heme iron in the low spin state. Finally, we note that sulfaphenazole was chosen due to its similar 

inhibitory properties in comparison to aniline. However, sulfaphenazole binds tightly to CYP2C9 

while aniline binds only weakly45. Therefore, the strength of binding does not seem to affect the 

inhibitor’s ability to block ET. 

A quantitative analysis was undertaken to better understand the information embedded in the 

I-V curves. While the Simmons model is generally used for CPAFM analysis at low bias253,254, this 

was not a suitable model for this system due to the low conductivity near VB = 0.  Measurements 

of conductivity near bias voltage VB = 0 were zero, and remained zero (to within the noise floor of 

the data, ±3 pA) until the conductance turned on at a critical voltage (see Figure 3.6). This 

indicates that the tunneling barrier for the electrons transferred from the gold nanopillar to the 

CPAFM tip was large in energy. Instead, the data were fit with the Poole-Frenkel (PF) emission 

model255 to compare with our previous findings and look for reproducible trends. In the PF 

emission model electrons are trapped in localized states and conduct by hopping from one 
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localized state to another within an insulating layer. This model is appropriate for our system in 

which the protein-SAM, the insulator, and various functional groups within the protein serve as 

areas where localized states may occur and trap electrons between them6,24,152,158.  

In the PF model, the current to voltage ratio I/V is expected to behave as 

                    ln(𝐼/𝑉) = ln 𝐶 −
𝑞Φ𝐵

𝑘𝑇
+

𝑞

𝑘𝑇
(

𝑞

𝜋𝑑𝜖0𝜖𝑆
)
1/2

𝑉1/2 ,      (1) 

where V is the applied (bias) voltage, q is the charge of an electron, Φ𝐵 is the effective voltage 

barrier that the electron must overcome to move from one localized state to another, d is the 

distance across which the voltage is applied, ε0 is the permittivity of free space, and εs is the 

relative permeability of the material (in this case CYP2C9 and SAM) at high frequencies, 

assuming that there is no local polarization induced. Also, k is the Boltzmann’s constant, T is the 

absolute temperature, C is a constant that depends on the intrinsic mobility of the charge carriers, 

the effective area of the electrical contact, and the effective distance d across which V is applied. 

A plot of ln(I/V) as a function of V1/2 should therefore yield a straight line with the y-intercept 

proportional to ΦB . The slope should be sensitive to changes in the effective size (d) of the protein 

and its effective dielectric constant. As shown previously46, although it is not possible to solve for 

ΦB because the value of C is unknown, it is possible to obtain relative changes in d and ΦB 

assuming that C remains unchanged upon binding of different substrates.  
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Figure 3.8 contains a plot of ln(I/V) as a function of V1/2 for the positive bias data for the 

nanopillars shown in Figure 3.6. The data were fit to Equation 1 for V > 1 V. Data from smaller 

voltages were poorly fit by the model as was observed in our previous work46,and it is possible 

another mechanism is at play in this region. The quantitative results are presented in Table 3.1, 

where ΔΦB is the shift of barrier height from the run in which there was no substrate bound in the 

active site of CYP2C9. The fractional change Δd/d0, where d0 is the distance between hopping 

sites, was also calculated. The data in Table 3.1 reveal that the slopes for all conditions were 

similar, implying that d and εs were similar in all runs as hypothesized. Thus observed differences 

in the y-intercept should be due to changes seen in ΦB .  

 

Figure 3.8. Poole−Frenkel plot for the data obtained for positive bias voltages for nanopillars in Figure 3.6. CYP2C9 alone (black), 
CYP2C9 with flurbiprofen and dapsone (red), and CYP2C9 with inhibitor sulfaphenazole (blue). The symbols are the data and the 
lines are fits to a straight line. 
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Table 3.1 shows that for all nanopillars, the addition of flurbiprofen and dapsone decreased the 

barrier height. In contrast, the addition of sulfaphenazole does not decrease the barrier height, 

and might slightly increase it. The general trend for the width of the barrier is that of an increase 

in the addition of substrate, except for sulfaphenazole in nanopillar 2. These trends are consistent 

with the general properties of CYP2C9 and how it interacts with these particular substrates. The 

reduction of CYP2C9 is easier in the presence of metabolized substrates (flurbiprofen and 

dapsone), but more difficult in the presence of inhibitor (sulfaphenazole). 

Table 3.1 Results of the Fits to the I-V data with the Poole-Frenkel model.a 

 CYP2C9 Flurbi+Dap Sulfaphenazole 

Pillar 1    

Intercept -11.38 -8.59 -12.97 

Slope 6.10 4.92 5.96 

B 0 -0.07 0.04 

d/d0 0 0.39 0.04 

Pillar 2    

Intercept -9.76 -8.88 -12.01 

Slope 5.32 5.25 5.65 

ΦB 0 -0.02 0.06 

d/d0 0 0.03 -0.12 

Pillar 3    

Intercept -10.90 -9.40 -10.77 

Slope 5.64 5.09 4.77 

ΦB 0 -0.04 -0.003 

d/d0 0 0.19 0.31 

aThe units are ln(nS)/V1/2 for the slope, ln(nS) for the y-intercept, eV for ΔΦB, and dimensionless for Δd/do. Abbreviations: Flurbi, 
flurbiprofen; Dap, dapsone. bA value of T = 300k was used to calculate ΔΦB. The error for intercept and slope values were < 4%. 
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Figure 3.9 depicts a plot of ln (I/V) as a function of V1/2 for the positive bias data for the 

nanopillars presented in Figure 3.4. The data were fit to Equation 1 for V > 1 V as was done in 

Figure 3.8. For the enzyme alone (pillar A), measured with the largest force (32 nN), the plot 

reveals a possible phase transition as seen by the multiple linear regions. We fit all three possible 

linear regions to avoid biasing the data (Figure 3.10). The lack of phase transition observed in the 

presence of flurbiprofen could be explained by the known stabilizing effect of substrate binding 

within P450s256. The quantitative results are plotted in Figure 3.11 with the same description of 

variables found in Table 3.1. The relatively large error bars for the Pillar B at 8 nN data are due 

to a limited linear regime to fit the PF model (see Figure 3.9). Using the low force (2-3 nN) data 

as the baseline, a decrease in the barrier height with increased applied force (both pillars) is 

observed. Fit 1 for Pillar A at 32 nN is in good agreement with the trend seen in Pillar B. Fit 2 and 

3 both result in an increase in barrier height, which disagrees with the general trend that a 

decrease in barrier height is associated with an increased applied force253. We thus believe that 

Fit 1 is the correct region to analyze.  

 

Figure 3.9.  Poole−Frenkel plot for the data obtained for positive bias voltages for nanopillars in Figure 3.4 using same color code. 
Force was modulated with measurements (a) at 2-3 nN, (b) at 8 nN, (c) at 16 nN, and (d) at 32 nN. The symbols are the data and 
the lines are fits to a straight line. 32 nN on Pillar A was fit for all three linear regimes, with Fit 1 between 1.6 to 1.8 V1/2, Fit 2 
between 1.2 to 1.6 V1/2, and Fit 3 between 1 to 1.2 V1/2 (see Figure 3.10). 
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In both pillars there is no change in slope until the highest force is applied (32 nN). This 

difference in slope implies a change in d or εs, in contrast to our substrate/inhibitor analysis 

conducted at a single force, where only minimal changes in slope were observed. Using Fit 1 

again for Pillar A at 32 nN, good agreement with Pillar B is obtained for Δd/do values. 

Under increased force we expect the protein to become compressed253,254. Compression of 

proteins has also been shown to correlate with a decrease in barrier height257, which agrees with 

our results in Figure 3.11a. Interestingly, Figure 3.11b shows an increase in the spacing of 

localized states with increased force. This would indicate that even though the P450 is being 

compressed, the spacing between localized states within the P450 increases on average.  

 

 

Figure 3.10. Poole-Frenkel plot for I-V curves taken at 32 

nN on Pillar A. All three linear regions were fit to obtain 

values of barrier height and barrier width in Figure 3.11. 
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These results can be explained by a zig-zag path of electron flow through the protein’s different 

motifs between localized that are not aligned the vertical direction, as shown in Figure 3.12. This 

can be demonstrated by noting that the distance between two hopping sites is 𝑑 = √𝑎2 + 𝑐2, 

where a is the in-plane component and c is the vertical component of the vector d which extends 

from one state to the other.  Small changes in a and c would result in a small change in d with 

respect to the change in c of 

                                                                 
𝛿𝑑

𝛿𝑐
=

𝑐

𝑑
+

𝑎

𝑑

𝛿𝑎

𝛿𝑐
 .                                             (2) 

We now assume that the volume of the protein that contains the two hopping sites is proportional 

to 𝑉 ∝ 𝑎2𝑐, and that this volume remains constant when the protein is compressed, that is, the 

protein deforms when it is pressed by the tip from above.  Mathematically, this means that the 

change in volume 

                                                                           𝛿𝑉 ∝ 2𝑎𝑐𝛿𝑎 + 𝑎2𝛿𝑐 = 0                 (3) 

 

Figure 3.11 a) Change in barrier height as a function of force. Lowest force used as the baseline to generate barrier height values. 
b) Change in d/do as a function of force with lowest force used as a baseline to determine values. Data calculated using Poole-
Frenkel as done in Table 3.1. 
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Solving equation 4 to obtain a relation between 𝛿𝑎 and 𝛿𝑐, and combining this result with equation 

3, yields a change of the total distance between hopping sites with respect to the change in vertical 

distance of 

  
𝛿𝑑

 𝛿𝑐
 =

2𝑐2−𝑎2

2𝑑𝑎
 .                      (4) 

Equation 5 shows that decreasing the vertical distance (𝛿𝑐 < 0) leads to either an increase or 

decrease is d depending on whether 2𝑐2 − 𝑎2 is negative or positive, respectively.  Our data seem 

to indicate that, on average, the hopping sites are located such that 𝑎 > √2𝑐.  Currently there is 

no way to determine which specific functional groups in the protein serve as these impurities in 

order to model their positions under compression by the AFM tip, and further work is necessary 

to elucidate this process. In any case, the force data further validate that our choice of 16 nN is 

appropriate and does not lead to large changes in our enzyme size due to CPAFM tip interaction. 

3.4 Conclusions 

We have developed an effective platform to measure the conductance of immobilized proteins 

that eliminates aggregation effects on ET studies. The data demonstrate that for immobilized 

CYP2C9 proteins, a correlation exists between the energy barrier height between hopping sites, 

ΦB, and CYP2C9 metabolic activity. An inverse correlation between ΦB  and tip force was also 

observed which agrees with other prior work.  Interestingly, the data indicate that the protein is 

 

Figure 3.12 Simplified depiction of electron transfer through hopping sites (red circles) within a protein immobilized to gold 
under non-compressed (left) and compressed (right) conditions.  The vector d determines the relative position between the top 
two hopping sites and a and c indicate the horizontal and vertical distance components, respectively.  The values of δd, δa and 

δc are the changes in the vector and distance components when the protein is compressed by the tip.   
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more stable in the presence of a substrate when subjected to a high tip force. This agrees with 

the substrate entry into the active site helping to stabilize enzyme conformation. For large forces, 

the relative distance between hopping sites Δd/do also increases, possibly because protein 

secondary structures such as alpha helices and beta sheets often serve as pathways for ET127, 

and thus there are numerous ways in which electrons could travel through P450s to obtain this 

change in Δd/do.  

Another inhibitor (sulfaphenazole), in addition to the previously studied aniline, was found to 

increase the barrier height for ETp and thereby makes CYP2C9 reduction more difficult and 

inhibits metabolism. Although P450 inhibitors are thought to compete for binding to the active site 

and not be metabolized258, our findings suggest that P450 Type II ligands may also decrease the 

ease of ET processes in the enzyme. Overall we show that our nanopillar platform allows for 

repetitive and reproducible studies of the same unmodified immobilized molecule in sequential 

studies. Future studies can be undertaken with this platform to identify protein-protein effects 

using hetero or homo-dimers259, as well as substrate motifs important for metabolism using 

substrate analogs260. 
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Chapter 4 

Summary 
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4.1 Summary 

In this work the effectors of P450 mediated metabolism were studied using an immobilized 

platform to control P450 aggregation. Controlled immobilization of P450s to a SAM on gold allows 

for an enzymatically active P450 that mimics its in vivo conformation. Utilizing this methodology, 

the nature of P450-P450 interactions was investigated in Chapter 2. CYP2C9 was immobilized to 

gold via SAM and hetero/homomeric complexes of CYP2C9-CYP2C9, CYP2C9-CYP2D6, 

CYP2C9-CYP3A4, and CYP2C9-CPR were evaluated. SPR binding analysis revealed potent 

binding between all of the aforementioned complexes, and demonstrated P450-P450 complexes 

formed more readily than P450-CPR interactions in the case of CYP2C9-CYP2D6 and CYP2C9-

CYP2C9.  

Using this same immobilization scheme, the effect of P450-P450 interaction on metabolism 

was evaluated, and compared to the standard solution based reconstituted system with non-

immobilized protein. Given that P450s are membrane bound in vivo, it is likely the amount of 

aggregation observed in solution based reconstituted systems is not indicative of the in vivo 

environment. This is of great importance for predicting in vivo metabolism from in vitro data, as it 

has been well documented that P450 interactions can alter P450 catalytic rates. Studies revealed 

that metabolic outcomes resulting from P450-P450 interactions were isoform specific, and 

resulted in both activation and inhibition of CYP2C9 mediated metabolism. It is also 

demonstrated, by order of addition studies, that the mechanism causing these effects is isoform 

specific.  

Lastly, this study demonstrated, for the first time, the homomeric activation of CYP2C9 

mediated metabolism. The controlled immobilization of enzymatically active CYP2C9 confers the 

unique ability to measure homo-dimerization effects on metabolism, shedding light on possible 

P450 mechanisms. This is made possible due to hindered metabolism of lipidless P450s in 

solution. We also demonstrate differences in the effect of P450-P450 interactions in our 
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immobilized platform compared to a solution based reconstituted system.  We observe strong 

activation of CYP2C9 metabolism in the presence of CYP2D6 in the solution based assay, but 

inhibition when CYP2C9 is immobilized. Given that the magnitude of the effects were equivalent 

at similar CYP2C9:CYP2D6 ratios, we can surmise that the differences in effect are correlated to 

the different binding modes available between the P450 binding partners. This result signifies the 

importance of understanding the mechanism of P450 interactions in drug metabolism predictions 

as our linked model is likely the more correct interpretation of the same parameters.  

We further developed an understanding of these P450 interactions using molecular modeling 

to assess possible binding modalities. Our molecular modeling predictions are in good agreement 

with our in vitro SPR results, demonstrating the ability to predict possible P450 interactions in 

silico. P450 binding interactions were shown to form stable complexes that rarely involved the 

CPR binding site. Thus it is likely that P450 interaction influences on metabolism are due to 

resultant conformational changes altering P450 binding to CPR or substrate, rather than direct 

competition for the CPR binding site. 

In Chapter 3, a nanopillar platform was employed to further control P450 aggregation. The 

fabrication of nanopillars of small radius (20-40 nm) and the use of a SAM allow isolation of a 

single or small group of immobilized CYP2C9. We demonstrate through height analysis that 

immobilization of our enzyme produces a single layer of CYP2C9 on top of the pillar and note that 

changes in height show approximately 50% of pillars containing CYP2C9, in good agreement with 

previous estimates of CYP2C9 coverage on gold films in our laboratory. These results 

demonstrated that our measurements were on a single P450 vertically, and only lateral 

interactions are possible. Given this, are ETp results would be on a single molecule as the easiest 

path for the current would be through a single protein.  

We also demonstrated force dependent conductance in CYP2C9 using CPAFM. Our results 

indicated that CYP2C9 experiences compression at higher forces leading to enhanced 



80 
 

conductance. This agrees with literature theory and results of compression of organic layers 

leading to enhanced conduction due to shorter electron transfer path. We also observed a 

difference in the stability of CYP2C9 conductance under force in the presence and absence of 

flurbiprofen. This demonstrated our platforms ability to measure the known enhanced stability of 

P450 upon substrate binding. We observed an increase in the distance of ETp under higher force, 

which is easily explained by a zig zag ETp path that is extended with P450 compression (Figure 

3.12). 

This platform was also indexed to allow study of the same molecule of CYP2C9 upon different 

substrate exposure. Given the importance of ET in P450 mediated metabolism, we investigated 

how ETp was influenced by the presence of different substrates and inhibitors with known 

metabolic profiles. Flurbiprofen and dapsone were chosen for investigation as we previously 

showed increases in CYP2C9 ETp due to simultaneous occupancy of both substrates within the 

active site. Our previous study also demonstrated the novel finding of aniline lowering ETp, 

indicating a possible secondary mechanism of CYP2C9 inhibition. In this report we demonstrated 

that sulfaphenazole, another competitive inhibitor like aniline, also decreased ETp through 

CYP2C9. This finding could be of interest as to why some molecules are not metabolized by 

P450s based on structure motifs, and could be implemented in better small molecule drug design. 

The ability to study immobilized proteins on nanopillars offers reduced variability in repeated 

studies, giving more precise details when measured.  

4.2 Future Directions 

Future studies on this immobilized platform could provide answers to questions about P450 

interactions that have thus far eluded researchers. P450-P450 interactions modulate metabolism 

by either competing for CPR, altering CPR affinity, or altering substrate turnover. Thus it would be 

of interest to further explore how dimerization modulates CPR and substrate binding. An initial 

step would be to take the dimer complexes created in Chapter 2, and model the stability of 
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substrate in the active site, in comparison to being in the active site of the monomeric P450. This 

could show how P450 complex formation may shift the position of the substrate in the active site 

and reveal mechanisms by which substrate turnover can be affected.  

Another study could also be conducted on CPR affinity for a P450 complex. CPR could be 

blind docked utilizing GRAMMX to the dimer complexes obtained in Chapter 2 to reveal 

favorability of binding compared to CPR binding to monomeric P450s. This study could then be 

expanded in vitro by using homo/heteromeric fusion proteins to obtain binding constants via SPR. 

SPR also has the ability to measure kinetic binding constants for two different analytes 

simultaneously, which would allow us to measure, in real time, how CPR binding to an 

immobilized P450 changes in the presence of free competing P450. These studies would give us 

a clear understanding of how P450 interactions modulate CPR ET, and allow for us to better 

incorporate these effects into in vitro predictions of in vivo metabolism.  

We obtained novel results for our CPAFM study, but to further investigate P450 ETp it is 

important that we understand the orientation of the P450. To figure out which lysines are bonded, 

we could conduct a proteomic study digesting bonded CYP2C9 and analyzing with mass 

spectrometry. When comparing enzyme fragments obtained from P450s not attached to the SAM, 

to those digested after immobilization to gold, we could determine which lysines are bonded by 

looking for an increase in molecular weight due to the attachment of MUA. This would give us the 

exact orientation of P450 in our immobilization scheme, and would allow studies such as the 

modeling of electron flow from the gold surface through the SAM and to the P450 heme group. 

Another interesting study would be to compare ETp between mutant forms of P450s with that 

of normal P450 forms. For example, a mutation in the CYP2C9 gene causes the expression of 

three allelic variants (CYP2C9*1, CYP2C9*2, and CYP2C9*3). Both CYP2C9*2 and CYP2C9*3 

have been shown to have altered kinetics for metabolism of warfarin a CYP2C9 substrate. We 

could use our knowledge of the rate of metabolism of these substrates to determine ETp 
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correlation in CPAFM measurements. From our current studies we would expect to see a more 

conductive ETp profile for allelic variants that metabolize warfarin at a faster rate. This could 

enhance our understanding of why these single nucleotide polymorphisms cause such drastic 

changes in substrate metabolic profile. In addition, conducting CPAFM with immobilized fusion 

proteins of homodimers or heterodimers could show if modulation of ET plays a role in P450-P450 

interactions. We could probe ET on these fusion proteins alone and in the presence of the 

substrates mentioned above to interrogate effects on ET, and whether they result from protein 

interactions, substrate interactions, or a combination of both.   

In contrast to the CPAFM results presented in Chapter 3, ETp measurements conducted in 

solution using a closed cell would allow study of the dynamic environment that would closer model 

the physiological process where the substrate is not tightly bound in the active site, and can also 

be metabolized completely by the addition of electrons. Utilizing EC-STM, we could obtain 

mechanistic data about ET in immobilized P450s, and observe changes in heme reduction and 

conformation. EC-STM would also provide us with Eº value, a direct measure of the ease of ET. 

Eº values obtained for the enzyme alone could be compared with the values obtained upon 

administration of substrates. The high resolution of EC-STM would allow for single protein 

evaluation of substrate effects on the ease of heme reduction.  

In order for ET to occur from CPR favorably there needs to be an anodic shift in the redox 

potential of P450. Thus if we see an anodic shift in Eº due to the presence of substrate we can 

infer that it is creating a more favorable situation for ET, and thus making itself easier for P450 

metabolism. The choice of our substrates will show what factors are correlated with Eº changes. 

Lastly, ECSTM would provide a study without force modulation of the protein through tip contact 

that we could obtain I-V curves to compare with the CPAFM studies in Chapter 3 to observe how 

conformational change due to tip interaction alters ET. This would enhance our understanding of 

our obtained results. 
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4.3 Conclusion  

It has been well documented that solution based P450 assays offer poor control of P450 

aggregation. We demonstrate that our immobilized P450 platform allows study of a 

metabolically active monomeric enzyme. This allows interrogation of ETp, protein-protein 

interactions, substrate-protein interactions, and atypical enzyme kinetics with a P450 

attachment that mimics the in vivo environment. Ability to control aggregation of P450s allows 

enhanced understanding of metabolic effectors, and may help improve in vivo substrate 

metabolism predictions in vitro.  
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