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Abstract 
 

Hydrologic Response and Erosion Modeling of Geomorphic Landform 

Reclamation in Central Appalachia 

 

Alison Sears 
 

Surface mining and valley-fill practices often lead to environmental impacts including 

headwater stream loss, increased flooding risk, and degraded downstream water quality. 

Geomorphic landform design (GLD) is an innovative reclamation technique proposed to lessen 

the impacts associated with surface mining and valley-fill activities. GLD incorporates mature 

landform shapes and created stream channels on site, imitating the function of the undisturbed 

landscape. The purpose of this research was to model GLDs in mountainous terrain and evaluate 

the hydrologic response and erosion potential of GLD in surface mining application. Computer 

modeling of valley-fill designs using geomorphic landform principles of a study site in southern 

West Virginia was performed. Four enhanced GLDs were created for application on new and 

previously constructed valley fills: 1) regional data GLD for new valley fill, 2) retrofit GLD for 

existing conventional valley fill, 3) regional data GLD enhanced with bench pond retention 

structures, and 4) regional data GLD enhanced with valley pond retention structures.  Soil 

erosion was evaluated using the Revised Universal Soil Loss Equation (RUSLE) for the regional 

data GLD, conventional valley fill, and the undisturbed site during different stages of the 

reclamation process. Soil loss rates were highest (conventional: 123.2 t ha-1 yr-1; GLD: 204.3 t 

ha-1 yr-1) during the post-mining, pre-vegetation condition along the stream channels and steep 

slopes (slope >50%). Erosion rates were lowest for the post-reclamation, long term condition 

(conventional: 35.6 t ha-1 yr-1; GLD: 41.8 t ha-1 yr-1) along the ridges. Model predictions of soil 

erosion rates and spatial distributions illustrated areas of increased erosion potential for future 

minimization and reclamation method/management practices improvement. Hydrologic response 

modeling was performed for a watershed in southern West Virginia disturbed by surface mining 

and valley-fill activities to predict impacts on stream flows at the landscape scale. Incorporation 

of GLD reclamation methods did not result in substantial changes in current (2011-2020) or 

future (2041-2050) stream flowrates (<3.3% difference) or stormflow volumes (<2.1% 

difference).  The differences in flows and volumes could be used for mitigation plans in 

watersheds disturbed by surface mining and valley-fill activities.  
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1 Introduction 

Surface mining and valley-fill activities are the dominant driver of land use/landcover 

change in the central Appalachian ecoregion of the United States (Saylor, 2008; Palmer et al., 

2010).  Surface coal mining involves the removal of vegetation, soil, and rock for the extraction 

of coal reserves.  Overburden produced during the mining process is deposited in nearby 

engineered valley fills with benched fill faces and planar slopes, resulting in the burial of original 

topography and headwater streams (Palmer et al., 2010; Miller and Zegre, 2014).  

Conventional valley-fill construction methods often lead to hydrologic impacts within the 

watershed they are located (Palmer et al., 2010; Miller and Zegre, 2014).  Reclaimed mine land 

is consolidated by heavy equipment, leading to reduced infiltration rates, increases in stormflow 

runoff, and flood frequency, and alterations in the magnitude of downstream flooding (Brun and 

Band, 2000; Negley and Eshleman, 2006; Ferrari et al., 2009; Miller and Zegre, 2014). Valley-

fill construction and the filling of headwater streams also frequently result in detrimental impacts 

to downstream channels, including changes in thermal regime and chemistry, increased 

sedimentation, and elevated conductivity and metal levels (Hartman et al., 2005; Pond et al., 

2008; USEPA, 2005, 2011).  Ecological impacts associated with mining and reclamation 

activities have been identified as disturbances in ecological function, aquatic habitat, riparian 

vegetation, and amphibian and macroinvertebrate populations (Pond et al., 2008; Petty et al., 

2013).  

Valley-fill reclamation designs that implement fluvial geomorphic landform principles 

have the potential to mitigate impacts associated with conventional techniques (Bugosh, 2009; 

Martin-Duque et al., 2010).  This innovative geomorphic landform reclamation technique is an 

innovative alternative to conventional valley-fill reclamation and has been successfully 

implemented in locations outside of Central Appalachia, particularly in semi-arid regions (e.g. 

Toy and Chuse, 2005; Measles and Bugosh, 2007; Martin-Moreno et al., 2008; Martin-Duque et 

al., 2010); however, geomorphic landform design (GLD) has not been implemented in Central 

Appalachia to date due to the steep terrain, increased precipitation, complexity of design and 

construction, and regulation stringencies (Michael et al., 2010; Hopkinson et al., 2015b).  

Purported benefits of GLD including hydrologic balance, reduced erosional adjustments, and on 

site stream mitigation have been identified through modeling and construction (Toy and Chuse, 

2005; Bugosh, 2009; Sears et al., 2013; Hopkinson et al., 2015b). 
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Mining companies are required by law to mitigate stream channel impacts from surface 

mining and valley-fill activities (Palmer and Hondula, 2014).  Original channels buried during 

valley-fill construction are often mitigated nearby through the restoration of degraded streams in 

previously mined watersheds, as opposed to the creation of streams on site due to the complexity 

and difficulty involved (Northington et al., 2011; Palmer and Hondula, 2014). GLD allows the 

creation of streams on site, allowing stream mitigation credits to remain on site. GLD creates 

sub-basins with complex (concave-convex) slope profiles and channelized flow paths and 

hydrologic features include rock ditches along the fill face and perimeter channels around the fill 

crest that are sized to convey a 100-yr, 24-hr storm event (WVDEP, 1993).  However, the 

effectiveness of replacing the undisturbed hydrology with created hydrologic structures on spoil 

material has not been fully researched (USEPA, 2011). 

Previous research on GLD implementation in Central Appalachia has been performed 

through modeling, as no GLD site has been constructed in Appalachia to date.  Modeling 

focusing on slope stability (Russell, 2012; Russell and Quaranta, 2013), storm response (Snyder, 

2013; Hopkinson et al., 2015b), flooding risk (O’Leary, 2014; Hopkinson et al., 2015b), and 

implementation challenges (DePriest et al., 2015). However, GLD prediction modeling of 

erosion at the watershed scale and hydrologic response at the landscape scale have not been 

researched.  Hydrologic analyses of a GLD at the landscape scale compared to the undisturbed 

land condition and a conventional valley-fill design also has not been completed. 

Hydrologic response is the process of rainfall transitioning to runoff and includes 

watershed routing, loss, and storage processes (Kult et al., 2015).  Due to the extensiveness of 

surface mining in Central Appalachia, research on the hydrologic impact at the landscape scale is 

important for determining altered stream flows and volumes within the disturbed area and 

downstream areas (Ferrari et al., 2009).  Hydrologic responses are difficult to accurately predict; 

however, accurate predictions have important implications for the mitigation of potential flood 

damages (Eshleman, 2004; Ferrari et al., 2009). Improved understanding of the hydrologic 

impacts at multiple stages in the surface mining and reclamation process could lead to improved 

mining and reclamation methods in which water quantity and quality problems and ecosystem 

degradation are minimized (Miller and Zegre, 2014).   

Soil erosion is a natural process that occurs on undisturbed and disturbed (mined and 

reclaimed) lands in which surface soil is transported across Earth’s surface, mainly by wind and 
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water forces (Kouli et al., 2009; Demirci and Karaburun, 2012). Soil transported by erosion often 

carries nutrients and contaminants into streams and ground water resources (Nyakatawa et al., 

2001; Kouli et al., 2009).  Surface mining and valley-fill construction methods increase the 

possibility of soil erosion because of the large areas of barren land for prolonged times (Kouli et 

al., 2009).  Excessive soil erosion can lead to changes in the shaping of the landscape and 

sediment load in nearby streams (Chen et al., 2011). Mine soils transported by erosional forces 

often include contaminates such as selenium, copper, and zinc which can also impact the health 

of downstream channels (Miller et al., 2011).  Accurately predicting erosion is important for 

determining the impact on landscape, sediment load, and contaminants in on-site and nearby 

bodies of water (Chen et al., 2011). 

1.1  Research Objective and Questions 

The overall research objective of this project was to evaluate hydrologic response and 

erosion potential of geomorphic landform design application in surface mining reclamation, with 

the expectation to enhance the valley-fill reclamation techniques in Central Appalachia.  The 

following specific research questions were posed to meet the main objective:       

1. Can stream mitigation be implemented on surface mine valley-fill sites in Central 

Appalachia? 

2. Is soil loss altered at the watershed scale by different valley-fill reclamation 

methods? 

3. How is the hydrologic response altered at the landscape scale by different valley-

fill reclamation methods? 

This dissertation was organized as three main research chapters, written as separate 

manuscripts. Chapter 3, Valley-Fill Designs using Geomorphic Landform Principles, addressed 

the first research question.  Alternative valley-fill reclamation designs implementing geomorphic 

landform principles and on-site stream mitigation were illustrated.  Chapter 4, Soil Erosion 

Estimation using Revised Universal Soil Loss Equation (RUSLE) and Geographic Information 

System (GIS), focused on the second research question.  Erosion rates and spatial distribution 

were predicted for multiple reclamation scenarios using RUSLE and GIS.  Chapter 5, Hydrologic 

Response of Valley-Fill Designs at the Landscape Scale, answered the third research question.  
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Stream flows and volumes were predicted at the landscape scale using Hydrologic Simulation 

Response-FORTRAN (HSPF).  Each of the research questions and companion chapters were 

completed to achieve the overall research objective.   Chapter 2, Literature Review, provides an 

extensive literature review for the support of this research.  Chapter 6, reports the main 

conclusions of this research. 
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2 Literature Review 

2.1 Valley-Fill Designs using Geomorphic Landform Principles 

2.1.1 Regulatory Methods 

Surface mine reclamation and valley-fill construction throughout the U.S. are regulated 

according to the Surface Mining Control and Reclamation Act of 1977 (SMCRA).  Prior to the 

SMCRA, surface mining practices were unregulated and resulted in erosion, geotechnical 

stability, seepage, and hydrology issues (Daniels et al., 2004). Since the implementation of 

SMCRA, reclamation by approximate original contour (AOC) design has been the conventional 

method practiced in the U.S.  In West Virginia, AOC guidelines are promulgated by West 

Virginia Surface Mining Reclamation Regulations (WVSMRR), Code of State Regulations 

(CSR) §38 which require reclaimed slope profiles to be constructed by the traditional backfilling 

technique.  The reclamation requirements are comprehensive, covering drainage structures, slope 

consolidation and grading, and revegetation.  The post-mining slope design was intended to 

ensure slope stability, control drainage, complement the drainage pattern of the surrounding 

terrain, and prevent stream sedimentation (Sears et al., 2013).  The State also permits variances 

to the AOC regulations for special circumstances if the post-mining land use is determined to be 

better than the original land use, such as pastureland, commercial use, or school sites.  

Despite the extensive regulations, environmental concerns over the loss of headwater 

stream length and downstream disturbance that are not completely mitigated during reclamation 

have become an ever-growing issue (Palmer et al., 2010; Schnoor, 2010; Lindberg et al., 2011; 

Wickham et al., 2013).  The West Virginia Department of Environmental Protection (WVDEP) 

and the US Environmental Protection Agency (EPA) implement the Clean Water Act of 1972 

through the National Pollution Discharge and Elimination System (NPDES) to provide 

requirements for drainage and sediment control requirements for the quality of the discharged 

runoff.  Surface runoff is regulated on conventional valley-fill reclamation sites by hydrologic 

control structures and Surface Water Runoff Analysis (SWROA) ditches and groin ditches.  

SWROA and groin ditches are typically located along the perimeter of the fill area and down the 

fill face and are designed for a 100-yr, 24-hr storm event.  
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Reclamation revegetation requirements in West Virginia involve the use of select grasses 

and hardwoods that have proven effective in partially concealing the planar slope profiles and 

surface drainage structures.  However, excess consolidation of reclaimed soils, caused by the use 

of heavy machinery, often hinders large tree root development, leading to lower tree canopy 

height than pre-disturbed canopy and rarely acquiring pre-disturbed land cover (Graves et al., 

2000; Miller and Zegre, 2014).      

2.1.2 Geomorphic Landform Design (GLD) 

The need to balance valley-fill stability with hydrologic balance and a natural appearance 

has opened the opportunity to introduce an alternative reclamation design: geomorphic landform 

design (GLD) (Sears, 2012).  Under natural conditions, landforms develop a balance between 

erosive and resistance forces, resulting in a system in hydrologic equilibrium with minimal 

erosion.  The fluvial geomorphic landform design approach attempts to design landforms in this 

steady-state condition, considering long-term climatic conditions, soil types, slopes, and 

vegetation types (Toy and Chuse 2005; Bugosh 2009).   

Recent research presented the use of geomorphic landform principles in an innovative 

reclamation technique for surface mined lands and valley fills with the potential to improve the 

unfavorable impacts within the watershed they are built (Sears, 2012; Russell and Quaranta, 

2013; Sears et al., 2013; Sears et al., 2014).  Geomorphic landform design has the potential to 

mitigate stream loss due to surface mining and valley-fill operations. The technique endeavors to 

design landforms in a steady-state condition with a balance between erosive and resistance 

forces, considering long-term climatic conditions, soil types, slopes, and vegetation types (Toy 

and Chuse 2005; Bugosh 2009).   

2.1.3 Reference Watershed Stream Channel Design 

The geomorphic landform reclamation method uses a reference landform approach which 

requires local geomorphic information. Reference data necessary to inform successful design, 

includes the main channel slope and landform profile shape, drainage density and area, and 

channel characteristics (Toy and Chuse, 2005; Eckels and Bugosh, 2010).  Main channel slope 

represents the watershed slope; as the main channel slope increases, the stream power and 

erosion potential increase (Toy and Chuse, 2005).  Stream characteristics that must be considered 

when designing hydrology that will properly manage both sediment discharge and flow include 
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bankfull width, width-to-depth ratio, meander belt width, A-channel reach length, ridge to head-

of-channel length, and sinuosity (Eckels and Bugosh, 2010).  A-channel reach length is defined 

as the distance of one-half of a meander length in steep channels.  Ridge to head-of-channel 

distance defines the length required to form concentrated flow, while also defining the channel 

head location in reference to the watershed boundary.  The longitudinal profiles of the landforms 

must also be considered as the shape changes among headwater and downstream locations, 

convex to concave.  In mountainous terrain, the slope profiles develop into compound surface 

profiles which exhibit steep convex slopes at the head of the valley and progressively transition 

into a concave form gradually tapering to a uniform profile.  Channels also vary in characteristics 

depending on location within the watershed (Sears et al., 2013).  Headwater streams are often 

steep (>4% slope), characterized as “A” channels as defined by the Rosgen classification system 

(Rosgen, 1994), and relatively straight (sinuosity = 1.0-1.2), and down-stream channels have a 

lower gradient (<4% slope), C-channels, and increased sinuosity (>1.2; Rosgen, 1994). 

The development of natural streams on the complex geomorphic profiles is affected by 

fluvial influence stream cutting, surficial erosion, and rill-to-gully erosion.  To minimize the 

erosive forces, the drainage density for each designed stream must meet the target drainage 

density requirements.  Drainage density is the measure of the average stream channel spacing, is 

calculated as the stream length per watershed area, and results from flow interactions with 

sediment and soil, vegetation, topography, and weather variables (Bugosh, 2004; Toy and Chuse, 

2005).  For a given reference landform, the drainage density describes the drainage network that 

can be supported without significant aggradation or erosion (Bugosh, 2004). However, limited 

landform and stream channel characteristic data were available in West Virginia, especially in 

the southern coal fields (Wiley et al., 2001) prior to the Buckley et al. (2013) study.  Buckley et 

al. (2013) collected reference landform data including ridge to head-of-channel distance (108-

163 m) and drainage density (5.3 km-1) from an undisturbed watersheds in southern West 

Virginia.   

2.1.4 Implementation Challenges 

The geomorphic reclamation method has been used with success in the Southwestern 

USA and outside of the USA and designs landforms, including ridges, valleys, and channels, in 

an erosive steady-state condition (Toy and Chuse, 2005; Martin-Moreno et al., 2008; Bugosh, 
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2009; Martin-Duque et al., 2010). However, this reclamation design method has not been 

adequately analyzed for potential implementation in Central Appalachia, nor have all 

improvements or disadvantages over conventional valley-fill reclamation designs been 

scientifically established (Sears et al., 2014).  Challenges associated with applying the technique 

in Central Appalachia include the steep terrain, current regulation framework, and perceived 

reclamation costs (Michael et al., 2010).    

Challenges associated with the successful implementation of the geomorphic landform 

reclamation method in Central Appalachia extend beyond the difficulty and complexity of 

designing and constructing stable fill structures in steep terrain.  Additional challenges include 

regulation alteration for approval of designs, determining geotechnical stability of designed 

landforms, demonstrating hydrologic responses of design implementation, and complexity of 

earthwork leading to potential extended construction times (Michael et al., 2010).  Perceived 

initial construction costs of geomorphic reclamation designs are greater than traditional 

reclamation; however, long-term costs are proposed to be minimal due to little to no surface 

erosion and maintenance (Bugosh, 2009; Michael et al., 2010). 

Depriest et al. (2015) listed potential challenges of applying geomorphic design 

principles to surface mine reclamation in Central Appalachia that included: 

 “Geomorphic design criteria must be measured locally; 

 Constructing artificial landforms that naturally blend into the steep slopes of the 

surrounding environment may not ensure stability; 

 Shallower, more stable slopes of geomorphic landforms could create greater 

stream burial to maintain fill volumes.” 

In addition to implementation and regulation challenges, the impact on hydrologic response, 

considering surface water, needs to be better understood prior to implementation (Michael et al., 

2010; Depriest et al., 2015). 

2.1.5 Geomorphic Landform Design (GLD) for West Virginia Site 

Sears (2012) created a valley-fill design, an alternative of the conventional design, for a 

study valley-fill site (0.98 km2) in southern West Virginia, USA using geomorphic landform 

principles.  Geomorphic landform design principles are based on the creation of mature, stable 

landforms.  The software design tool Carlson® Natural Regrade® with GeoFluvTM was used with 
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default data inputs due to lack of regional data availability.  The design resulted in sub-basins 

that directed flow to stream channels (main channel and 12 tributaries) that were created as part 

of the design of the new valley fill as opposed to the control structures and SWROA ditches 

typical in conventional design. The stream channels (9,660 m total combined length; 148-1,612 

m length range) were designed to mimic the original dendritic drainage. Elevation of the 

designed site ranged from 350 to 608 m.  Purported features of the design included complex 

slope profiles (concave to convex), improved hydrology and groundwater movement, and 

decreased flooding risk (Sears, 2012).  

2.1.6 Slope Stability 

Slope stability analysis is a critical part of surface mine reclamation design analysis 

because slope failure can have significant ecological impacts (Kenney and Lau, 1985).  Natural 

Regrade with GeoFluvTM software currently bases landform creation on mature, stable landforms 

instead of providing a full slope stability analysis (Sears et al., 2013).  It is important that 

reclamation landforms remain stable when constructed with surface mine overburden for several 

reasons.  Typically, toxic mineralogy exists within the spoil material (Miller et al., 2011).  

Therefore, slope stability becomes a critical analysis that should be performed during the design 

planning process to determine placement of the contaminated soil to minimize water contact.  It 

is especially important to perform slope stability analysis to ensure the durability of the structure 

in Central Appalachia due to the steep, rugged terrain.  All created landforms, whether created 

using conventional or geomorphic principles, should be analyzed in order to limit the steepness 

of slopes and insure the stability of the landforms.  Slope failures can have significant impacts on 

the health and safety of downstream communities as well as the operators constructing the 

structures (Sears et al., 2013). 

Further research on the Sears (2012) GLD included a complete slope stability analysis to 

determine the stability of the landforms created in the geomorphic reclamation designs for 

Central Appalachia.  Initial research suggested that geomorphic landform reclamation was 

comparable to conventional valley fill construction and could provide potential reclamation 

benefits in terms of groundwater seepage and slope stability.  An analysis of the slope stability 

resulted in a factor of safety greater than 2 for the Central Appalachian GLD (Russell and 
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Quaranta, 2013), meeting the requirements of conventional valley fills in West Virginia (WV 

factor of safety = 1.5; WVDEP, 1993).  

2.1.7 Stream Mitigation on Mine Sites in Appalachia  

Mining companies are required to mitigate impacts on streams from mining and valley-

fill activities according to section 404 of the Clean Water Act (Palmer and Hondula, 2014).  The 

U.S. Army Corps of Engineers reviews mining permit applications in which judicial “waters of 

the U.S.” would be impacted and approves mitigation plans.  Compensatory mitigation, 

restoration of streams off site, is relied heavily upon to meet mitigation regulations (Palmer and 

Hondula, 2014).  Many coal companies restore streams located on older mined areas that have 

been impacted by mining-related disturbances, as compensatory mitigation, which is often easier 

than creating stream channels on site for mitigation (Northington et al., 2011).     

Past stream creation practices for mined areas involved constructing channels with 

morphologies mimicking unaffected streams, but the topography, vegetation, soils, hydrology, 

and water chemistry of the site were dramatically altered from the pre-mining state (Palmer et 

al., 2010).  Stream creation on site is an important form of mined land restoration and mitigation; 

however, little is known about the success and efficacy of on-site stream mitigation (Palmer et 

al., 2010; Palmer and Hondula, 2014).  Palmer and Hondula (2014) stated that data from 434 

stream mitigation projects from 117 surface mining permits showed that mitigation efforts 

implemented on southern Appalachia coal mining sites did not meet the objectives of the Clean 

Water Act to replace lost or degraded stream ecosystems and their functions.   

Petty et al. (2013) investigated ecological function through stream flow, aquatic habitat, 

water chemistry, riparian vegetation, and amphibian communities of five reference stream 

channels to five constructed stream channels on reclaimed sites in southern West Virginia.  

Compared to the reference streams, the constructed streams had significantly higher levels of 

conductivity, total dissolved solids, OM retention, OM processing, and dissolved carbon 

concentrations. Macroinvertebrate and amphibian richness were comparable between reference 

and constructed channels.  Petty et al. (2013) also noted that as the reclamation sites matured, 

conductivity slightly declined and total invertebrate richness significantly increased.   

Northington et al. (2011) assessed compensatory stream mitigation on older coal mining 

areas in Virginia.  Six restored and three unrestored streams in the coal mining region of 
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southwest Virginia were studied and compared.  No significant differences were found between 

physicochemical and functional variables or between structural and functional measurements.  

However, invertebrate community metric scores were higher in the unrestored streams compared 

to the restored streams.  Principal components analysis by Northington et al. (2011) implicated 

the importance of physicochemical, structural, and functional variables measurement in future 

restoration efficacy analyses.    

2.1.8 Stream Channel Bed Design on Valley Fills 

Stream channels have been constructed on the surface of valley fills with varied success 

(Petty et al., 2013).  Common stream restoration methods (e.g. natural channel design) are 

currently used to restore existing streams rather than create new channels on the valley fill 

(USEPA, 2011).  Often, original stream channels buried during valley-fill construction are 

mitigated in locations where no original streams were located, resulting in little to no hydrologic 

improvement to the original stream areas (Northington et al., 2011). Creation of streams on 

valley fill surfaces has not had widespread implementation due to the complexity and difficulty 

involved (Northington et al., 2011; Palmer and Hondula, 2014).  Challenges associated with the 

successful implementation of stream channels on top of valley fills in Central Appalachia include 

channel design, placement, and construction materials.  

2.1.9 Constructed Stream Channels on Reclaimed Surface Coal Mines 

Streams and wetlands provide valuable habitat for a plethora of wildlife and vegetative 

species (Balcombe et al., 2005; Finn et al., 2011; Petty et al., 2013).  Headwater streams and 

wetlands provide a complex network of ecological services including flood mitigation and water 

quality improvement (Meyer and Wallace, 2011; Petty et al., 2013).  Surface mining and valley 

fill construction can cause alteration or burial of natural stream channels (USEPA, 2005; Petty et 

al., 2013).  A cumulative loss of stream and wetland functions from surface mining activities can 

cause detrimental impacts to larger bodies of water downstream of impacted waters (Palmer et 

al., 2010; Merriam et al., 2011; Petty et al., 2013).   

Studies of perennial stream channels constructed on surface mines in southern West 

Virginia determined that habitat quality was consistently higher in natural stream channels than 

in constructed channels (Petty et al., 2013).  The principal negative characteristics of the stream 

channels constructed on reclaimed surface mine sites was elevated total dissolved solids (TDS) 
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and electrical conductance (Petty et al., 2013).  Two ways to mitigate the excess TDS and 

electrical conductance in the constructed streams include improved mine spoil handling during 

reclamation and construction of sulfate-reducing wetlands as part of mine reclamation (Petty et 

al., 2013).   

Precipitation can infiltrate quickly into mine spoil causing many stream channels 

constructed on reclamation sites to remain dry a large majority of the year (Petty et al., 2013).  

Traditionally, the only perennial stream channels that are constructed on surface mine 

reclamation sites are low gradient and are located along the mine perimeter adjacent to the 

constructed valley fills (Petty et al., 2013).  Additional research and analysis are required to 

determine a sustainable and cost-effective constructed stream channel sub-base design that 

minimizes surface water infiltration into the base fill layer, poses inherent structural 

sustainability against erosion, subsidence, and suffusion/suffusion, and offers competitive cost 

and installation practicality.     

2.1.10 Stream Bed Design Materials 

Geocells and geogrid mattresses could provide a successful base for the created stream 

channels on valley-fill surfaces.  Geocells are rigid polymer strips and geotextiles that are 

organized vertically in a boxlike fashion, placed horizontally, and filled with soil or sand 

(Koerner, 1998).  Geocells physically confine the soil or stone, resulting in improved granular 

soil shear strength and excellent bearing capacity which is an improvement over relying on 

friction, arching, and entanglements of fiber or mesh for improved soil performance (Koerner, 

1998).  One disadvantage of using geocells is that the dynamic effects of sand and soil particles 

under the geocells and gradually lifting it up out of position has not been tested (Koerner, 1998).   

Another option is the use of three-dimensional mattresses, which consists of a deeper, 

more rigid geocell filled with gravel (Koerner, 1998).  Over the past thirty years geocell 

mattresses have been widely used in soil reinforcement due to their three-dimensional 

configuration, which confine and reinforce the soil and stone within the cell pockets (Zhang et 

al., 2012).  The confinement of the soil and stone provided by the geocell mattress can also 

increase soil stiffness and reduce soil deformation (Zhang et al., 2012).  It has also been observed 

that geocell reinforcements placed at the subgrade-base interface or within the base course can 
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substantially increase load-carrying capacity and decrease footing settlement (Dash et al., 2001; 

Zhou and Wen, 2008; Pokharel et al., 2010; Zhang et al., 2012).   

Koerner (1998) shows an example of a three-dimensional geogrid mattress being filled 

with gravel for landfill bearing capacity over soft mine tailings in Hausham, Germany.  The 

geogrid mattress was 1 m high and was constructed to support a 30 m high landfill over the mine 

tailings which were covered with a nonwoven geotextile and a biaxial geogrid to provide a stable 

working area for construction (Koerner, 1998).  Similar to the geocells filled with soil or sand, 

three-dimensional geogrid mattresses improve global slope stability, increase bearing capacity, 

and decrease lateral extrusion (Koerner, 1998).  Koerner (1998) states: 

“Global slope stability is improved by forcing the potential failure plane through the 

mattress and deeper into the foundation soil.  It is also possible that the foundation soil 

may improve in strength characteristics at greater depths.  Bearing capacity is improved 

in a similar manner to the point where it becomes a nonissue for mattresses greater than 

approximately 30 m in width.  Lateral extrusion (or squeeze-out) is undoubtedly 

decreased because stress concentrations have been largely eliminated via a uniform 

pressure through the relatively stiff geogrid mattress.” 

 Geotextiles would also be valuable for successful stream channel construction on valley-

fill materials in order to provide a barrier between fill material and water in the streams.  

Geotextiles were originally used in erosion control applications as an alternative to granular soil 

filters (Koerner, 1998).  Today, there is a plethora of types of and uses for geotextiles.  

Nonwoven geotextiles are primarily used for separation and filtration and typically have a higher 

permeability than woven geotextiles.  Woven geotextiles have been used for years for numerous 

applications such as separation, filtration, drainage, protection, reinforcement, erosion protection, 

and confinement (Tencate, 2014).  The properties and design specifications of the woven 

geotextile determines the application and engineering use(s) such as slope reinforcement, 

water/waste containment, and roadway applications.  Woven geotextiles would be beneficial for 

the construction of stream channels on valley fills by providing a barrier that prevents fill soil 

from migrating into the stream bed materials.  

Geosynthetic clay liners (GCLs) will be beneficial for successful stream channel 

construction on valley-fill materials in order to prevent stream water from infiltrating into the fill 

material. Geosynthetic clay liners have been used for decades in environmental containment 
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applications as an alternative to traditional compacted clay liners (CETCO, 2014).  The sodium 

bentonite within the GCL creates a layer of low permeability which is ideal for use in stream 

channel sub-bases, landfills, and water catchments.  However, one concern is the compatibility 

of the bentonite clay material within the geosynthetic clay liners with the exchangeable cations in 

the fill material must be analyzed to achieve a comprehensive design.  GCLs are geosynthetic 

products which use bentonite as a hydraulic barrier (Quaranta et al., 1997).  Due to the 

construction material of GCLs, high quality sodium bentonite, their placement in a material with 

high concentrations of dissolved calcium ions can affect the long-term hydraulic function of the 

GCL (Quaranta et al., 1997).  The acetic acid permeant enriched with calcium is aggressive in 

increasing the hydraulic conductivity of the bentonite component of GCLs (Quaranta et al., 

1997).  Therefore, the soil at the site must be analyzed to properly determine if soil will affect the 

long-term sustainability of the GCL.  

 Today, GCL technology has evolved and geomembrane supported GCLs are constructed 

to provide the benefits of the swelling and sealing of the bentonite clay with the chemical 

resistance and impermeability of the polyethylene geomembrane (GSE, 2014).  This 

geomembrane supported GCL would also be ideal for stream channel sub-bases, landfills, and 

water catchments with added benefits over traditional GCLs.   

2.2 Soil Erosion Estimation using Revised Universal Soil Loss Equation (RUSLE) 

and Geographic Information System (GIS) 

2.2.1 RUSLE and GIS 

Geographic Information System (GIS) and remote sensing tools have been used 

effectively in cooperation with many different models, such as Revised Universal Soil Loss 

Equation (RUSLE), to predict soil loss (Demirci and Karaburun, 2012).  GIS provides an in-

depth analysis of individual factors such as soil type, slope and land use (all of which contribute 

to soil erosion) and is beneficial when used with RUSLE to estimate soil erosion at the watershed 

level (Demirci and Karaburun, 2012).  Many studies have used GIS and RUSLE to assess and 

predict soil erosion and sedimentation due to land use change, primarily agricultural and 

urbanization, (Fernandez et al., 2003; Ranzi et al., 2011; Demirici and Karaburun, 2012).  
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However, few studies have used these methods to predict soil erosion and sedimentation due to 

surface mining and reclamation land use change (Evans and Loch, 1996). 

2.2.2 RUSLE Factors Controlling Erosion of Mine Soils  

 Evans and Loch (1996) evaluated the effects of site specific mine spoil properties on soil 

erosion rates through the derivation of the Revised Universal Soil Loss Equation (RUSLE) 

parameter inputs for two mine sites in Australia.  It is commonly accepted that soil erosion 

increases as slope steepness and rainfall increase, however, it is also likely that factors such as 

differences in surface characteristics influence erosion and runoff (Evans and Loch, 1996).   

Particle size analyses were performed by Evans and Loch (1996) on bulk soil samples from the 

upper 10 mm of the surface that were collected randomly from the two study sites.  Evan and 

Loch (1996) used the particle size data, the erodibility factor (K) input was determined using the 

Rosewell and Edwards (1988) equation. Slope length and steepness factor (LS) were estimated 

by Evans and Loch (1996) through applying observations of the two sites to Renard et al. (1994) 

LS values. The cover and management factor (C) was calculated using the erosion rate ratio from 

Simanton et al. (1982).  No support practices were implemented at the sites, therefore, the 

conservation practice factor (P) was 1.   

Evans and Loch (1996) concluded that one of the two sites resulted in greater erosion due 

to the increased compaction and higher bulk density of that site.  The studied surface conditions 

of the two sites were not final reclaimed condition of the sites as the site had not undergone 

revegetation.  However, this study would be applicable to soil erosion estimation as mining 

occurred, prior to reclamation.   

2.2.3 Modeled Hydrology and Erosion on Valley Fills (Geomorphic and Traditional) 

 Warner et al. (2009) compared two alternative approaches to valley-fill construction, 

traditional and geomorphic, along with predictive modeling results to an undisturbed 

Appalachian forest.  The program SEDCAD was used for modeling the valley-fill crests for each 

of the scenarios.  The crest was chosen as the focus of the study since it was most affected by the 

alternative valley-fill design techniques.  Selection of model input parameters was predominately 

based on measured values from undisturbed, compacted, and loose-dumped research watersheds 

adjacent to the geomorphic valley fill (Warner et al., 2009).  For the undisturbed scenario model, 

hydrologic data were obtained from an undisturbed, forested watershed approximately 5 km 
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from the study site.  Sedimentologic inputs, including erosivity factor (K), eroded particle 

distribution (EPSD), slope length and steepness factor (LS), and cover factor (C), were obtained 

from the study site or surrounding areas in Kentucky.  Hydrologic and sedimentologic inputs for 

the traditional valley-fill scenario model were estimated using data collected from nearby mine 

sites. 

 Model inputs for the geomorphic valley-fill scenario were difficult to obtain and resulted 

in estimations due to limited available data on hydrologic characteristics of loose-dumped spoil 

material (Warner et al., 2009).  Hydrologic data were estimated based on a few hydrologic 

assessments of loose-dumped spoil sites.  Sedimentological inputs were obtained from research 

sites or estimated from site observations.  Predicted peak flow, runoff volume, sediment load, 

and peak sediment concentration for the crown of the traditional and geomorphic valley-fill 

designs were compared to the undisturbed watershed to determine erosion and hydrologic 

impacts.  Model results indicated that peak flow increased for the traditional fill while peak flow 

decreased for the geomorphic fill compared to the pre-mining condition (Warner et al., 2009).  

Compared to the undisturbed scenario, peak sediment concentration increased approximately 

25% for the traditional fill and was approximately equal for the geomorphic fill (Warner et al., 

2009).  Future research needs were also stated and included hydrologic and sedimentology data 

for traditional and geomorphic valley-fills to be used for future modeling.  This study was a base 

for much needed hydrologic and erosion research for valley-fill sites constructed using 

conventional and geomorphic design methods.  Further research on valley fill hydrology and 

erosion is needed for accurate future modeling and comprehension. 

2.2.4 Soil Erosion Mapping Using RUSLE and GIS 

Chen et al. (2011) applied the Revised Universal Soil Loss Equation (RUSLE), 

geographic information system (GIS), and remote-sensing technique to map the soil erosion risk 

within a watershed (15,788 km2; 150-1,800 m elevation, 488.9 mm annual average rainfall) in 

North China.  The RUSLE was utilized in a GIS environment by creating each of the input 

factors as a data layer and multiplied in GIS to determine the spatial distribution of the soil 

erosion risk within the study watershed.   

The rainfall erosivity factor (R) was calculated using the Bu et al. (2003) equation using 

monthly and annual rainfall totals and rainfall intensities.  The soil erodibility factor (K) was 
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estimated using Wischmeier and Smith (1978) with obtained soil data including dominant 

particle sizes, soil structure, and percentages of clay, silt, sand, organic matter.  The cover factor 

(C) was calculated from the predominant crops using remote-sensing data and the back 

propagation (BP) neural network, an error-based algorithm (Chen et al., 2011).  The slope length 

and steepness factor (LS) was calculated using separate equations for slope gradients of less than 

21% or greater than 21% (Renard et al., 1997).  The conservation practices factor (P) was 

assumed to be 1 because only a very small area of the watershed had conservation practices 

implemented.      

Modeling results showed a spatial distribution of the erosion risk within the study 

watershed.  Chen et al. (2011) stated that in terms of erosion, soils have serious risk due to hilly 

topography, soil conditions (i.e. fine texture, low organic matter, poor plant coverage), and 

excessive land use and land cover changes such as agricultural practices and surface mining.  

Reduction of soil erosion, particularly in headwater areas, was necessary to protect the water 

quality within the watershed.  Through spatial erosion risk results, areas that are at severe erosion 

levels could be identified and management practices could be implemented.  

2.2.5 Average Sediment Yield of Reclaimed Mine Spoil  

Hoomehr et al. (2015) quantified the erodibility of low-compaction, steep-sloped 

reclaimed surface mine lands in the southern Appalachian region.  For the three active coal 

mining study sites in East Tennessee, sediment yield averaged 116 t ha-1 for the three month 

study period (June-August 2009) during which rill development occurred.  Total sediment yield 

averaged 391 t ha-1 for the sites over the entire fourteen month study period (June 2009-July 

2010).   

Hoomehr et al. (2015) also reported sediment yield averages for multiple other studies of 

reclaimed mine spoil sites.  Curtis and Superfesky (1977) reported the sediment yield from a 

36% slope reclamation spoil in East Tennessee during a twenty month study period as 526 t ha-1.  

McIntosh and Barnhisel (1993) documented a sediment yield of 91.5 t ha-1 on a 9% slope in 

Eastern Kentucky.  Sediment yields studied by Carroll et al. (2000), ranged from 314-1120 t ha-1 

over a four year monitoring period for three slope gradients (10, 20, 30%) on three central 

Queensland coal mines.  Each of the studies reported rill development on site immediately 

following reclamation.   
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2.3 Hydrologic Response of Valley-Fill Designs at the Landscape Scale  

2.3.1 Hydrologic Impacts of Land Use Alteration 

Limited research has been performed at the landscape scale (100-1,000 km2) to determine 

the effects of surface mining and valley-fill construction on watershed hydrology, particularly 

the movement and storage of water (Ferrari et al., 2009; Miller and Zegre, 2014).  The limited 

knowledge about the hydrologic impacts of surface mining and reclamation in Central 

Appalachia came from very few studies whose research pales in comparison to other land use 

studies such as urbanization, forest harvesting, and agriculture (Miller and Zegre, 2014).   

It has been suggested that urbanization could be paralleled to mined/reclaimed land 

(Ferrari et al., 2009), but there are limited research results to definitively correlate the two.  

Urbanization often leads to an increase in impervious surfaces, such as parking lots, roads, and 

structures, resulting in increased runoff magnitude and volume and decreased groundwater 

recharge (Miller and Zegre, 2014).  Urbanized areas rapidly convert rainfall to runoff with high 

magnitude storm hydrographs and limited baseflow compared to forested systems (Miller and 

Zegre, 2014).  Ferrari et al. (2009) related the hydrologic impacts of traditional surface mining 

and reclamation to being more similar to urbanization impacts as opposed to forest harvesting 

impacts.  Forest harvesting typically results in reduced infiltration and increased runoff through 

the reduction of canopy interception and transpiration as well as soil compaction from machinery 

use (Miller and Zegre, 2014).  Hydrologic impacts of surface mining and reclamation, depending 

on the site and conditions, may mimic impacts from many different land use alteration scenarios, 

but more research is needed for validation.   

2.3.2 Surface Runoff, Stormflow Response, and Flow Path Impacts 

Surface mining can alter the hydrologic balance of the disturbed area, resulting in a shift 

from subsurface to surface flow.  This leads to changes in rainfall runoff ratios along with 

increased flood frequency and magnitude (Ferrari et al., 2009). Compaction of the spoil material 

during the reclamation process, resulting from the use of large earthmover equipment, also 

attributes to decreased infiltration capacity and tree growth, increased surface runoff, higher 

magnitude stormflows and flooding risk (Miller and Zegre, 2014).  
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Similar to other land use changes, surface mining and reclamation also alter the 

catchment water budget by altering flow paths (Miller and Zegre, 2014).  An overall increase in 

baseflow in surface mine and valley fill impacted areas in Appalachia has been documented by 

Green et al. (2000), Messinger (2003),  and Messinger and Paybins (2003).  Studies by 

Messinger (2003) and Wiley and Brogan (2003) documented increases in stormwater discharge 

in valley-fill watersheds in West Virginia. 

Snyder (2013) and O’Leary (2014) modeled the potential hydrologic response of a GLD 

by evaluating storm response as well as the flooding of the receiving reach of one West Virginia 

valley fill in several construction phases  (i.e., pre-mining, conventional design, GLD). Storm 

hydrographs were generated for the four landform conditions: 1) pre-mining; 2) conventional 

valley fill; 3) GLD during construction; and, 4) GLD post reclamation.  The GLD during 

construction condition resulted in peak flowrates that were more than twice the undisturbed pre-

mining condition (O’Leary, 2014). Peak flowrates reduced to pre-mining conditions over time, 

illustrating that permanent water management structures were not required.  A steady-state HEC-

RAS analysis was completed to compare floodplain extents of the receiving reach of the 

reclamation site.  Results indicated that stormwater control systems would be necessary during 

the construction of the geomorphic landforms (GLD during construction condition) and could be 

removed after vegetation was re-established (GLD post reclamation condition) (Snyder, 2013). 

2.3.3 Flood Response Effects Modeled with HSPF 

Ferrari et al. (2009) estimated surface mining and reclamation effects on flood response 

of watersheds in the central Appalachian Plateau region.  Hydrologic Simulation Program-

Fortran (HSPF) was used to estimate changes in flood response as a function of increased mining 

within a 187 km2 watershed in Maryland.  US Environmental Protection Agency’s Better 

Assessment Science Integrating point and Non-point Sources (BASINS) was used to generate the 

main input file for the HSPF simulations.  Ferrari et al. (2009) calibrated the HSPF model for ten 

years of stream flow data with the input land use/land cover centered within the time span.  

Calculated calibration statistics included Nash-Sutcliffe efficiency and percent differences in 

overall water balance, yearly water balance, monthly water balance, lowest 50% flows, highest 

10% flows, overall flood volume, and peak flood flow.  Flood statistics were calculated for the 

peak flow events for each calibration time period and represented flood response under a wide 
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range of rainfall intensities and soil moisture conditions (Ferrari et al., 2009).  Flood dates were 

determined as the three to five largest runoff events for each year in the calibration period.  Dates 

for each flood event included one or more days prior and several days following each peak flow.  

Results from the study showed that the rate at which flood magnitude increased due to 

increased mining was linear.  The findings indicated that surface mining and reclamation resulted 

in landscape conditions more similar to urbanized areas than areas of deforestation.  Ferrari et al. 

(2009) also questioned the effectiveness of current reclamation practices in terms of returning 

mined areas to the hydrological state that existed prior to mining.  This suggested further 

research through hydrologic modeling of the hydrologic impact of surface mining would be 

beneficial to improve future reclamation practices.    

2.3.4 HSPF Calibration Parameter Examples for West Virginia  

Atkins et al. (2005), in cooperation with the United States Geological Survey (USGS) 

and the West Virginia Department of Environmental Protection (WV DEP) Division of Mining 

and Reclamation, presented HSPF parameters for streamflow simulation of eight watersheds in 

West Virginia disturbed by surface mining and reclamation.  The eight study basins were chosen 

based on their lengthy available streamflow data with both undisturbed and mined periods of 

record.  The areas were also chosen in a manner to provide an aerial distribution across the 

surface mining region in West Virginia.  The study watersheds ranged in size from 79.8 km2 to 

383.3 km2.   

BASINS software was used to develop the initial input files for the basin modeling.  The 

WinHSPF computer program was used to build a WinHSPF project and an initial HSPF 

simulation.  Time series data, including precipitation and evaporation, from each watershed were 

stored in the data management files and used to drive the HSPF streamflow simulations.  Model 

calibration and validation were achieved by using initial parameter values from a previous 

nearby model application, long calibration periods from 9.75 to 15.75 years, and examining 

periods outside of the calibration period (Atkins et al., 2005).  Parameters were adjusted based on 

daily, monthly, and seasonal hydrographs and statistical comparisons to achieved accurate HSPF 

models for each study basin.  The magnitude and relation of model calibration parameters, 

particularly relating to the effects of mining and reclamation, are necessary to facilitate proper 

application and accurate modeling of streamflow.  The model parameters from Atkins et al. 



21 

 

(2005) assist users of HSPF in simulation of streamflow in watersheds impacted by surface 

mining and reclamation in West Virginia.   

2.3.5 Future Hydrologic Research Needs 

Miller and Zegre (2014) completed an extensive review of research studies completed on 

mountaintop removal mining and catchment hydrology.  Following a detailed description of 

mountaintop mining and valley-fill construction methods, a review of potential impacts of 

mountaintop-removal mining and valley fill on hydrology was discussed.  Such impacts included 

land use change, increased runoff, biological impairment, soil compaction, altered or nonexistent 

flow channels, and infiltration.  In addition to the research review, Miller and Zegre (2014) noted 

knowledge gaps and future research needed for better understanding of the hydrologic impacts 

resulted from surface mining reclamation and valley-fill construction.  Discussed future research 

needs were presented in research question form and included (Miller and Zegre, 2014): 

 “What are the dominant runoff generation processes in mountaintop mining 

impacted catchments? 

 How do these processes change with increasing disturbance from mountaintop 

mining? 

 How do these processes change with differing reclamation techniques? 

 How do contemporary valley fills store, route, and release water? 

 What variability exists within forested catchments in the Central Appalachian 

coalfields? 

 What are the effects of legacy disturbances such as timber harvesting and 

underground coal mining?” 

Little progress has been made toward answering these questions and fully understanding the 

hydrologic effects of surface mining and reclamation, especially in Central Appalachia.      
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3 Valley-Fill Designs using Geomorphic Landform Principles 

3.1 Introduction and Objective 

Due to the ever-increasing demand for energy production, surface mining and 

reclamation has been the leading driver of land-use and land cover change in Central Appalachia 

for over fo5rty years (Townsend et al., 2009).  Surface mining of coal in West Virginia has led to 

the production of approximately 50 million tons of coal per year through 2012 with over 40 

million tons coming from mountaintop removal coal mining (WVOMHST, 2012).  The coal 

produced in West Virginia is not only important to meet the increasing demand for the world’s 

energy production, but is also vital to West Virginia’s economy (WVOMHST, 2012).  

Mountaintop removal surface mining involves the removal of overburden material to 

reach and remove coal seams beneath the soil surface. The spoil material is deposited in 

engineered valley fills which result in geotechnically stable structures but also result in the 

alteration of site hydrology including the burial of headwater stream channels. The filling of 

original stream channels with spoil material containing contaminants such as selenium and zinc 

results in altered stormflow response and long-term downstream detrimental impacts including 

elevated sedimentation, conductivity, and contaminant transport (Messinger, 2003; Hartman et 

al., 2005; USEPA, 2005; Negley and Eshleman, 2006; Lindberg et al., 2011; Griffith et al., 

2012).  These detrimental hydrologic impacts along with regulation stringencies have resulted in 

the dramatic reduction of surface mine and valley fill permits, thus resulting in coal mine 

closures, job loss, economic damage, and a push for reclamation design reform in Central 

Appalachia (FACES, 2015; WVOMHS&T, 2015).         

Companies are required by the Clean Water Act and related policies to mitigate stream 

and wetland impacts from fill activities either on site or nearby to minimize ecological impact 

(Palmer and Hondula, 2014).  Compensatory off site mitigation is commonly used by companies 

to mitigate aquatic natural resources degraded or buried by surface mining practices (Palmer and 

Hondula, 2014).  Mining companies often restore steams located on older, previously mined 

landscapes to satisfy mitigation requirements (Northington et al., 2011).  This results in 

transferring the benefits of stream mitigation off site, as opposed to providing ecological benefits 

on the disturbed fill site.     
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The objective of this research was to create alternative surface mine reclamation designs 

that allowed stream mitigation to be implemented on site for a permitted surface mine and valley 

fill site in Central Appalachia. An innovative reclamation technique, geomorphic landform 

design, was implemented to create alternative valley-fill designs for both new valley-fills and 

valley fills previously created using conventional techniques. This alternative reclamation 

technique has the ability to alter current reclamation techniques by creating stream channels on 

site as opposed to the current practice of mitigating buried streams off site. Hydrologic 

characteristics including stream length, drainage density, runoff patterns, and watershed 

configuration (stream channel patterns and topography) were compared among the undisturbed 

topography, conventional reclamation design, and geomorphic reclamation designs of the study 

site to determine the long-term hydrologic benefits and drawbacks of the reclamation 

applications in Central Appalachia.   

3.2 Research Question and Objectives 

Surface mining in the coal mining regions of the Appalachians has impacted hundreds of 

headwater streams (Palmer et al., 2010; Bernhardt and Palmer, 2011).  Large-scale surface 

mining and valley-fill activities degrade streams within the disturbed watershed as well as nearby 

streams (Griffith et al., 2012; Palmer and Hondula, 2014).  Stream mitigation is required; 

however, it is often completed off site, leaving the site hydrology unrestored (Northington et al., 

2011; Palmer and Hondula, 2014).  Therefore, a single research question was posed for this 

chapter:  

 How can stream mitigation be implemented on surface mine valley-fill sites in 

Central Appalachia?   

Two objectives were identified to answer the research question: 

 Create a valley-fill reclamation design using geomorphic landform principles for a 

new valley fill using regional data inputs for on-site stream mitigation 

 Create a valley-fill reclamation design using geomorphic landform principles for a 

valley fill previously constructed using conventional techniques 

3.3 Background: Valley-Fill Design using Geomorphic Landform Principles 

A previously created alternative valley-fill design, as described in Sears (2012), was 

designed for a permitted valley-fill site (0.98 km2) in southern West Virginia using geomorphic 
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landform design principles based on the creation of mature, stable landforms (Figure 3.1). The 

software design tool Carlson® Natural Regrade® with GeoFluvTM was used.  Default data inputs 

were used in this initial design due to lack of regional data necessary for a geomorphic landform 

design (GLD) that accurately mimicked the original landform features. The valley fill GLD 

resulted in sub-basins that directed flow to created stream channels (main channel and 12 

tributaries) as opposed to control structures and Surface Water Run-Off Analysis (SWROA) 

ditches, typical of conventional valley-fill designs.  The designed stream channels (5,466 m total 

combined length; 131-1,440 m channel length range) were designed to mimic the original 

dendritic drainage (Sears et al., 2014). The elevation of the main valley channel ranged from 338 

m to 608 m with a slope of 12.7%.  Proposed features of the design described by Sears (2012) 

included complex slope profiles (concave to convex), improved hydrology and groundwater 

movement, decreased infiltration and contaminant desorption, and decreased flooding risk.  

However, the created GLD required improvement including regional data inputs to accurately 

mimic the undisturbed topography, landform features, and channel pattern.   
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Figure 3.1. Geomorphic landform design of experimental watershed and surrounding area 

in Logan County, WV, created using default design inputs  

3.4 Methods 

3.4.1 Study Site Description 

The study site was located in Logan County, West Virginia, USA and was in the Central 

Appalachian ecoregion (USEPA, 2013). Average precipitation was 1.18 m and the average 

annual temperature was 56oF for the study site (US Climate Data, 2014).  The undisturbed 

topography (Figure 3.2) consisted of steep, complex (concave-convex) slope profiles with slopes 

reaching up to 27.5%. The hydrology was composed of one main perennial channel with four 

contributing tributaries in a dendritic drainage pattern.  The tributaries likely ranged from 

ephemeral to intermittent.  The elevation of the main channel ranged from 338 m to 482 m with a 

slope was 10.1%. The geology was dominated by sandstone (Russell, 2012) and the pre-mining 

vegetation was predominately dense core forest with a dominant land use of forestland (Figure 

3.3).  The experimental area also had sections of grassland/pastureland and the surrounding area 

had extensive mining disturbance and reclamation (Figure 3.3). 
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Figure 3.2. Original topography of experimental watershed and surrounding area in Logan 

County, WV 
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Figure 3.3. Land use/land cover of experimental watershed and surrounding area in Logan 

County, WV 

 

3.4.2 Regional Data Geomorphic Landform Design 

Enhanced valley-fill reclamation designs using geomorphic landform principles were 

created using a software design tool (Carlson® Natural Regrade® with GeoFluvTM) for the study 

site.  Geomorphic landform design inputs include ridge to head-of-channel distance (RHC: 

length required to form concentrated flow), drainage density (DD: measure of the average stream 

channel spacing), and stream channel placement. Regional calibration was used to accurately 

mimic the undisturbed topography of the study site (Buckley et al., 2013; Sears et al, 2014). The 

rainfall settings that were input for modeling were the 2-yr, 1-hr rainfall input of 35.8 mm 

(relates to bankfull stage) and the 50-yr, 6-hr rainfall input of 102.4 mm (imitates flood prone 
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stage), which were obtained within the design tool Natural Regrade.  Regional data obtained by 

Buckley et al. (2013) were used as the GLD inputs in this project and included a DD range of 5.3 

± 20% km-1 and a maximum RHC of 163-220 m.  The previously created valley-fill design 

described in Sears (2012) was created using default inputs, which included a DD range of 

7.5±20% km-1 and a RHC of 24 m, but did not accurately imitate the undisturbed topography.  

The stream channels of the regional data GLD were designed to mimic the original dendritic 

drainage, which is typical for unconsolidated materials (Toy and Chuse 2005; Eckels and Bugosh 

2010).   Fluvial geomorphic principles were then applied to create four complete geomorphic 

landform designs: i) GLD, ii) Retrofit, iii) GLD with bench ponds, and iv) GLD with valley 

ponds.   

The GLD applied geomorphic landform principles following the above method to create 

an alternative valley-fill design for the main subwatershed (0.98 km2) of the study site.  The three 

additional enhanced designs were created to improve the conventional design or further enhance 

the GLD created using regional data.  The retrofit design applied geomorphic landform 

principles to the surface of the conventional valley fill (1.38 km2) at the site to improve 

hydrology on the valley-fill crest by creating stream channels on the fill surface.  The bench 

pond design added surface water retention structures to the regional data GLD (0.98 km2) to 

potentially provide long-term water availability for wildlife and diverse vegetation on the site.  

The valley pond design included adding runoff retention structures to the stream channels of the 

regional data GLD (0.98 km2) for improved hydrology control and the potential of perennial 

streamflow on the site surface.      

3.4.2.1 Retrofit Design 

Traditionally, conventional valley fill crests are surrounded by SWROA ditches to 

capture surface runoff and navigate to National Pollutant Discharge Elimination System 

(NPDES) discharge points.  Required stream mitigation is often completed off site due to the 

difficulty of creating stream channels on valley-fill sites (Palmer and Hondula, 2014; Hopkinson 

et al., 2015b).  Implementation of geomorphic landform design on the crest of conventional 

valley fills could kept stream mitigation benefits on site.  A retrofit valley-fill design was created 

for the experimental site to illustrate the ability to design channelized flow and implement 

mitigation on the conventional fill crest using geomorphic principles. 
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The design tool used (Natural Regrade) required the elevation of the head of a created 

channel be higher than the elevation of the mouth of the same channel for proper drainage and 

concave-to-convex slope profile creation.  Therefore, the study site (1.38 km2; slope=1-2%; crest 

elevation: 505-516 m) had to be divided into sections (four sections; 0.20 km2-0.32 km2), each 

becoming a separate subwatershed drainage basin design by adding increased elevation points 

around the headwater areas, to meet the head elevation requirements for design. The stream 

channels were designed to drain to existing NPDES permit points, one per drainage basin, 

surrounding the permit boundary to maintain a hydrologic balance and comply with regulations. 

Geomorphic landform principles were applied to each section, one at a time, to create a 

completed geomorphic landform design with stream channels in a dendritic drainage pattern for 

each section.   

3.4.2.2 Regional Data GLD with Bench Ponds 

The bench pond runoff retention structures were created on the regional data GLD to 

mimic natural riparian wetlands and enhance the aquatic and wildlife habitat of the study site.  

Three bench ponds were designed within the valley-fill area (0.98 km2) and locations were 

chosen to equally space the ponds throughout the area to maximize wildlife benefit. The bench 

ponds were designed using AutoCAD by creating a closed 2D polyline as the top of dam of a 

specified width, and then projecting inward to model the pond, and outward to model the slopes 

to match to the target surface.  The bench pond structures mimicked wetlands, were designed 

adjacent to the created stream channels, received inflow from the stream (part of total stream 

flow), and discharged pond overflow back into the stream.   

3.4.2.3 Regional Data GLD with Valley Ponds 

The valley pond surface runoff retention structures were created to potentially provide 

perennial streamflow downstream of the structures.  Three valley ponds were spaced over the 

0.98 km2 area and were located on the stream channels. Locations of the ponds within the site 

were chosen based on ample stream length both upstream of the ponds and downstream of the 

ponds to an outlet or another pond. The structures retain surface water runoff traveling 

downstream in the channelized flow paths, creating ponds. Each pond was designed using 

AutoCAD by creating a 2D polyline on the created GLD for each valley pond location. The 2D 
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polyline represented the crest of the dam crossing a low area in the topography.  The dam was 

then projected inward and outward to model the sloped structure.      

3.5 Results 

3.5.1 Regional Data Geomorphic Landform Design 

The alternative valley-fill design (Figure 3.4), created using regional data inputs, 

consisted of ridges, valleys, and stream channels that mimicked the undisturbed topography and 

was designed using geomorphic landform design principles.  Instead of control structures and 

SWROA ditches, created sub-basins directed flow to stream channels (main channel and 12 

tributaries) on the fill surface. Created stream channels (5,466 m total combined length; 131-

1,440 m channel length range) mimicked the pre-disturbed dendritic drainage pattern of the site. 

Main valley slope was 12.7% and the elevation ranged from 354 m to 608 m. Overall resulting 

drainage density of the site was 5.6 km-1, within the target range of 5.3 + 20% km-1 as suggested 

by Sears et al. (2014), suggesting site hydrologic balance.  Additionally, the drainage density of 

each individual channel (4.2-5.9 km-1) was within the targeted range, creating a purported 

balanced design with hydrologic equilibrium.   
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Figure 3.4. Geomorphic landform design of experimental watershed in Logan County, WV, 

created using regional data design inputs 

 

3.5.2 Retrofit Design 

The retrofit valley-fill design (Figure 3.5), created by applying geomorphic reclamation 

techniques to a conventional valley fill, resulted in stream channels, ridges, and valleys on the 

valley-fill crest previously flat (slope=1-2%). The conventional fill design prior to geomorphic 

reclamation did not include any drainage channels except SWROA ditches located around the 

perimeter of the fill crest.  The retrofit design resulted in 8,345 m of stream length (124-927 m 

length range; Table 3.1) on the fill crest surface. Streams for each section were characterized by 

a main channel and tributary channels forming a dendritic drainage pattern and helped control 

drainage on the property through the channelization of runoff (Figure 3.5).  All of the channels 
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were checked to have a drainage density within the targeted default range of 6.0-9.0 km-1 and the 

retrofit design had an overall drainage density range of 7.1-8.9 km-1 (Table 3.1).  Default design 

inputs were used for the retrofit design because the purpose of the design was to remove runoff 

from the surface faster and mitigate stream channels on site, not to mimic the original 

topography features.  The design corresponded with government regulations (West Virginia 

Surface Mining Reclamation Regulations, Code of State Regulations §38) including no flow 

over valley-fill face and draining to NPDES points.  A close-up of the GLD of section 1 (Figure 

3.6) illustrated GLD features of complex (concave-convex) slope profiles, ridges, valleys, and 

stream channels.    
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Figure 3.5. Retrofit design of experimental watershed in Logan County, WV, created with 

geomorphic landform design on conventional valley-fill crest (1.5 m contours for design 

watersheds; 15.2 m contours surrounding area)  
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Figure 3.6. Close-up of section 1 of retrofit design of experimental watershed in Logan 

County, WV showing drainage pattern and topography 

 

Table 3.1. Retrofit design specifications 

Section Area (km
2
) 

# of 

Channels 

Total 

Channel 

Length (km) 

Channel Length 

Range (m) 
Drainage 

Density (km
-1

) 

1 0.26 6 1.9 137.5-552.2 7.1 

2 0.28 7 2.3 125.2-635.6 8.0 

3 0.32 6 2.4 266.6-927.2 8.9 

4 0.20 7 1.8 124.2-468.7 7.6 

 

3.5.3 Regional Data GLD with Bench Ponds 

The regional data geomorphic valley fill design with bench ponds was created by 

designing runoff retention structures on the fill surface (Figure 3.7). The three bench pond 

structures were designed to mimic natural and riparian wetlands and were located beside stream 

channels that were created on the valley-fill site.  Three bench ponds were spaced over the 0.98 
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km2 area and ranged in depth from 1.2 m to 4.4 m (Table 3.2).  Pond depths were minimized to 

increase the probability of diverse vegetative species indicative of natural wetland habitats such 

as reed canary grass, three-square bulrush, sedges, and wild rice, which typically thrive in water 

depths up to 0.3 m (Interagency Core Group, 1998).  Flow from the channels fill the ponds 

during storm events and sustain plant and animal life (Hunt, 1996; Interagency Core Group, 

1998). Maximum pond storage for bench ponds 1, 2, and 3 were 12 m3, 14 m3, and 28 m3 

respectively (Table 3.2).  

 
 

Figure 3.7. Geomorphic landform design with bench ponds of experimental watershed and 

surrounding area in Logan County, WV, created using regional design inputs (15.2 m 

contours for watershed; 0.3 m contours for ponds): A) bench pond 1; B) bench pond 2; and 

C) bench pond 3  
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Table 3.2. Regional data GLD with bench ponds design specifications 

  
  

Top of Dam 

Elev. (m) 
Bottom of 

Pond Elev. (m) 
Cut/Fill 

Slope (%) 
Pond Max. 

Depth (m) 
Pond Storage at 

Max. Depth (m
3
) 

Bench Pond 1 455.1 453.9 30 1.2 12 

Bench Pond 2 396.2 394.9 30 1.3 14 

Bench Pond 3 380.8 376.4 30 4.4 280 

3.5.4  Regional Data GLD with Valley Ponds 

The regional data geomorphic valley fill design with valley ponds was created by 

designing runoff retention structures on the fill surface (Figure 3.8). Three valley ponds were 

designed to illustrate that the creation of channelized streamflow and retention structures on the 

geomorphic fill with no groundwater connection, could potentially provide perennial streamflow 

on the site surface.  The valley ponds were spaced over the 0.98 km2 area, with ample stream 

length both upstream (0.93-2.4 km) and downstream (0.38-0.44 km), and ranged in depth from 

12.5-13.4 m (Table 3.3). The structures were designed to retain surface water runoff traveling 

downstream in the channelized flow paths, creating ponds. Each pond was designed to have a 

small storage area, as deep ponds would be a stability concern through buildup of pore-water 

pressure. Maximum pond storage for valley ponds 1, 2, and 3 were 1.1x104 m3, 2.1x104 m3, and 

1.6x104 m3 respectively (Table 3.3).   
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Figure 3.8. Geomorphic landform design with valley ponds of experimental watershed and 

surrounding area in Logan County, WV, created using regional design inputs (15.2 m 

contours for watershed; 0.3 m contours for ponds): A) valley pond 1; B) valley pond 2; and 

C) valley pond 3  
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Table 3.3. Regional data GLD with valley ponds design specifications  

 

  Valley Pond 

  1 2 3 

Top of Dam Elev. (m) 440.4 387.1 429.8 

Bottom of Dam Elev. (m) 427.9 374.3 416.4 

Upstream Slope Length (km) 2.4 1.1 0.93 

Downstream Slope Length (km) 0.38 0.42 0.44 

Cut/Fill Slope (%) 50 50 50 

Pond Max Depth (m) 12.5 12.8 13.4 

Pond Storage at Max Depth (m
3
) 1.1x104 2.1x104 1.6x104 

 

3.5.5 Design Comparison 

All four GLDs provided enhanced alternatives to traditionally constructed valley fills.  

Features of the created designs include complex slope profiles and dendritic drainage patterns, 

potentially providing methods to implement stream mitigation on the fill site.  Hydrologic 

characteristics including stream length, drainage density, runoff patterns, and watershed 

configuration (stream channel patterns and topography) of the four created designs and the 

conventional design were compared (Table 3.4).   

The drainage density is the measure of the average stream channel spacing in the 

watershed.  The regional data GLD, bench pond GLD, and valley pond GLD had an overall 

drainage density of 5.6 km-1, which was within the range 5.3 + 20% km-1 suggested by Sears et 

al. (2014) for regional inputs.  Each stream channel had a drainage density (4.2-5.9 km-1) within 

the suggested range, which was important for site hydrologic balance and the minimization of 

soil erosion and aggradation.  The stream channels for the retrofit design had drainage densities 

of 7.1 km-1 to 8.9 km-1, which were within the 6.0 km-1 to 9.0 km-1 default range.  Default design 

inputs were used for the retrofit design to remove runoff from the surface faster and because the 

surface was not intended to imitate the original topography.  The conventional valley-fill design 

did not have a calculated drainage density because the design included SWROA ditches along 

the perimeter of the fill crest as opposed to stream channels on site. 
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The created drainage patterns of the regional data GLD, bench pond GLD, and valley 

pond GLD imitated the dendritic drainage pattern of the undisturbed watershed.  The retrofit 

GLD drainage pattern was improved from the SWROA ditches along the perimeter of the fill 

crest to dendritic drainage patterns with the four created subwatersheds.  The traditional valley-

fill design filled the original dendritic drainage pattern surface and resulted in SWROA ditches 

along the perimeter of the fill crest (Table 3.4).   

The GLDs (regional data, retrofit, bench pond, and valley pond) replaced the steep, 

rugged terrain with complex (concave-convex) slopes, while the conventional design resulted in 

a benched fill face (11 benches; 6.1-6.4 m wide every 15.2 vertical m in elevation) and slightly 

sloping (1-2%) crest (WVDEP, 2011).  The GLDs also resulted in increased stream channel 

length within the experimental watershed (regional data, bench pond, valley pond: 5,466 m; 

retrofit: 8345 m) compared to the original stream length (3,130 m) of the site.  The traditional 

valley-fill design did not include any stream channels on site except for the 3,109 m of perimeter 

SWROA ditches (Table 3.4).   

The traditional valley-fill design, regional data GLD, bench pond GLD, and valley pond 

GLD each integrated 5.3x107 m3 of fill material, which included the 4.4x107 m3 of cut material 

after a swell factor of 1.2 (Sears et al., 2013) was applied.  The retrofit design included 1.5x107 

m3 of cut and fill material and the use of spoil material required no swell factor.  The cut and fill 

volumes were balanced for the retrofit design so that no additional material would need acquired 

or disposed (Table 3.4).   
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Table 3.4. Comparison of Traditional and GLD (Regional, Retrofit, Bench Pond, and 

Valley Pond) Parameters 

  Traditional Regional Data Retrofit Bench Pond Valley Pond 

Drainage density range, km-1 N/A 4.2-5.9 7.1-8.9 4.2-5.9 4.2-5.9 

Drainage density overall, km-1 N/A 5.6 N/A 5.6 5.6 

Base surface drainage pattern Dendritic Dendritic SWROA Dendritic Dendritic 

Designed drainage pattern 

Perimeter 

SWROA 

Ditches 

Dendritic Dendritic Dendritic Dendritic 

Base surface topography Steep/Rugged Steep/Rugged Steep/Rugged Steep/Rugged Steep/Rugged 

Designed topography 
Benched face/ 

Level top 

Complex 

slopes 

Complex 

slopes 

Complex 

slopes 

Complex 

slopes 

Water retention structure type 
SWROA/   

Toe Ponds 
N/A N/A Bench ponds Valley ponds 

Original stream length, m 3,130 3,130 3,109* 3,130 3,130 

Created stream length, m N/A 5,466 8,345 5,466 5,466 

Created stream length range, m N/A 131-1,440 124-927 131-1,440 131-1,440 

Created Rosgen channel type N/A A, C A, C A, C A, C 

Cut volume, m3 (yd3) 
4.4x107 

(5.7x107) 

4.4x107 

(5.7x107) 

1.5x107 

(2.0x107) 

4.4x107 

(5.7x107) 

4.4x107 

(5.7x107) 

Fill volume, m3 (yd3) 
5.3x107** 

(6.9x107)** 

5.3x107** 

(6.9x107)** 

1.5x107 

(2.0x107) 

5.3x107** 

(6.9x107)** 

5.3x107** 

(6.9x107)** 

Note: GLD = Geomorphic Landform Design, SWROA = Surface Water Runoff Analysis 

ditches, N/A = Not Applicable 

*Original stream length was SWROA ditch length 

**Fill volume calculated using a swell factor of 1.2    

   

3.6 Discussion 

Current valley-fill reclamation practices in Central Appalachia involve the creation of 

engineered structures for mine spoil, resulting in the burial of headwater streams as well as 

hydrologic impacts to waters on site and the surrounding area (Palmer et al., 2010; Bernhardt and 

Palmer, 2011; Griffith et al., 2012).  Section 404 of the Clean Water Act requires that companies 

perform compensatory mitigation to offset impacts of mining and valley-fill construction 

activities.  Compensatory mitigation activities are designed to restore ecological services in 

stream channels either on the disturbed site or at an offsite location (Bonham and Stephenson, 

2004).  The objective of this research was to create alternative surface mine reclamation designs 

that allowed stream mitigation to be implemented on site for a permitted surface mine and valley 

fill site in Central Appalachia.   
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An innovative geomorphic reclamation technique was implemented to create the 

alternative valley-fill designs for both new valley-fills and valley fills previously created using 

conventional techniques. Four alternative valley-fill reclamation designs were created for the 

experimental site in Logan County, WV: i) GLD using region specific inputs; ii) retrofit design 

with geomorphic landforms on conventional valley-fill crest; iii) regional data GLD with bench 

ponds; and iv) regional data GLD with valley ponds.   

The geomorphic landform reclamation approach, applied to each design, has the potential 

to alter current reclamation techniques and improve site hydrology by incorporating stream 

networks into valley-fill reclamation design.  The creation of stream channels on reclaimed 

valley fills has not had widespread implementation due to complexity, steep terrain, varied long-

term results, and stringent regulation framework (Michael et al., 2010; Hopkinson et al., 2015b).  

Often, original stream channels buried during valley-fill construction are mitigated in locations 

where no original streams were located, resulting in little to no hydrologic improvement to the 

original stream areas (Northington et al., 2011).  The four geomorphic valley-fill designs allowed 

the creation of stream channels on site, thus adding ecological benefits back to the disturbed site 

as opposed to other offsite locations.  

Design i illustrated a valley-fill reclamation alternative created using geomorphic 

landform principles and regional data inputs that consisted of ridges, valleys, and stream 

channels that mimicked the undisturbed topography of the Central Appalachian site.  Hydrology 

of the site consisted of sub-basins that directed runoff to channels on the fill surface that 

mimicked the pre-disturbed dendritic drainage pattern, as opposed to hydrologic control 

structures and SWROA ditches that are typical of conventional valley-fill designs. The GLD 

resulted in 5,466 m of created stream channel length within the experimental watershed and each 

stream channel ranged in length from 131 m to 1,440 m.  Design i illustrated the ability to design 

a new valley fill using geomorphic landform principles that implemented stream mitigation on 

site through the addition of 13 channels to the design.  However, future research on stream 

channel construction materials and methods would need to be completed for geomorphic 

reclamation designs prior to design implementation.  

Design ii, the retrofit design, applied geomorphic landform principles to the surface of 

the conventional valley fill at the study site to show the application of geomorphic reclamation 

techniques and stream mitigation to conventional valley fills.  This retrofit design illustrated the 
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ability to implement stream mitigation to previously created valley fills, abandoned valley fills, 

and failing valley fills that require widespread restoration. The conventional valley-fill site 

hydrology was dramatically altered from no hydrologic structures except SWROA ditches along 

the perimeter of the fill crest and ponds at the toe of the fill to 26 stream channels (8,345 m total 

added stream length) on top of the fill crest. In addition to the implementation of channelized 

flow paths on the crest, the retrofit design altered slopes on the conventional valley fill crest to 

closer resemble natural topography.      

The reclamation process of applying geomorphic landform principles to valley fills 

constructed using conventional techniques could be a revolutionary way to improve pre-existing 

mined lands and valley fills with respect to the addition of on-site stream channels.  Many areas 

surface mined prior to the implementation of the SMCRA in 1977 were not reclaimed and often 

result in abandoned and failing sites.  West Virginia has extensive areas that were mined prior to 

SMCRA (Figure 3.94).  The Office of Abandoned Mine Lands and Reclamation (AML&R) was 

created in 1981 to manage the reclamation of land and waters affected by mining prior to 

SMCRA.  The retrofit design method illustrated a potential technique for the Office of AML&R 

to improve the abandoned and failing surface mine sites. 
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Figure 3.9. Pre-Surface Mining Control and Reclamation Act (SMCRA) mining activity 

areas in West Virginia and Logan County, WV (inset)  

 

Designs iii and iv included surface storage on the regional data GLD fill, design i, in 

addition to the created stream channels and on-site mitigation. The bench pond design (iii) 

included retention structures on the fill with the purpose of mimicking natural wetlands and their 

hydrologic and ecological benefits.  Three bench ponds were located adjacent to the created 

stream channels and included inflow from the stream to the pond and outflow from the pond 

back to the stream. Bench pond locations were chosen to equally space the ponds throughout the 

area to maximize wildlife and aquatic benefits.  Streamflow to and from the ponds would occur 

mainly during storm events and could provide perennial pond water as well as diverse vegetation 

and wildlife nourishment. High quality stream and wetland habitat disturbed by mining and 

valley-fill activities could be mitigated by constructed riparian wetland habitat (Harms et al., 

2010; Rahe et al., 2015).  Creating the correct balance of water flow, water quality, and 

temperature in the pond could be challenging but could result in the natural benefits of wetlands, 

including erosion and flooding control, wildlife habitat, and contaminated water treatment, but 

would require future research on sizing and construction (Hunt, 1996; USEPA, 1999).  
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The valley pond design (iv) was created by designing runoff retention structures on the 

regional data GLD fill surface with the purpose of illustrating that the addition of channelized 

streamflow and valley ponds on the geomorphic fill surface could potentially provide 

intermittent or perennial streamflow on valley fills with no groundwater connection. Three valley 

ponds were located on the created stream channels and were designed to have a small storage 

area, as deep ponds would be a stability concern through buildup of pore-water pressure. The 

valley pond design provided the opportunity for stream mitigation on site, diverse habitats for 

wildlife and vegetation, and potential long-term streamflow downstream of the ponds.  However, 

further analysis of stream channel and pond design, including sizing and construction materials, 

would be necessary prior to design implementation.   

This research illustrated the implementation of geomorphic landform reclamation in 

minefields in mountainous terrain.  Each of the four designs demonstrated the ability to 

implement stream mitigation on site for both new and completed valley fills.  Three of the 

designs (ii, iii, and iv) illustrated additional application sites, abandoned and failing sites, as well 

as runoff retention structure design for potential long-term stream flow and high-quality habitat 

on site.  These alternative reclamation designs illustrate the potential for improvement needed for 

the approval of future surface mine and valley-fill permits in Central Appalachia as well as other 

mountainous terrain.  
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4 Soil Erosion Estimation using Revised Universal Soil Loss Equation 

(RUSLE) and Geographic Information System (GIS) 

4.1 Introduction  

Soil erosion is a complex, dynamic process that includes detachment and transportation 

of surface soil across Earth’s surface (Demirci and Karaburun, 2012).  Soil erosion can occur by 

many means, including wind and water, with water being the main erosional force acting in 

Central Appalachia.  Land use change, especially surface mining and valley-fill construction, 

increases the possibility of soil erosion and surface runoff due to the removal of vegetation, 

movement of burden material, excessively compacted soils, and prolonged soil exposure prior to 

re-vegetation (Warner et al, 2009; Hoomehr et al., 2015). Changes in erosion could lead to long-

term changes in the shaping of the landscape and the sediment load in nearby bodies of water 

(Chen et al., 2011).  Rill and gully development and the inability of vegetation to establish are 

signs of water erosion and are of particular concern on mine reclamation sites in Central 

Appalachia due to the steep, complex topography of the sites and changes in soil characteristics 

(Carroll et al., 2000; Yao et al., 2008; Berger et al., 2010).  Rill growth typically stabilizes once 

vegetation, typically grass, has been re-established (Hoomehr et al., 2015); however, long-term 

erosion and impacts can continue to occur on the reclamation sites.   

The detrimental impacts of soil erosion on soil degradation, hydrology, and water quality 

have been identified as causing long-term economic and environmental damages (Chen et al., 

2011).   Erosion and degradation can lead to decreased land productivity, decreased slope 

stability of impacted landforms, and increased sedimentation and suspended solids in 

downstream channels (Fernandez et al., 2003). Soil transported by erosion can carry nutrients 

and contaminants into streams, bodies of water, and groundwater resources (Kouli et al., 2009). 

This issue can be particularly important for reclamation sites with contaminant rich soils.      

Regulations require surface mine reclamation to minimize erosion on disturbed sites.  

Effective control of erosion is often achieved with effective landform design management, 

surface soil cover and established vegetation, which are essential components of successful 

mining reclamation practices (Nicolau, 2002; Toy and Chuse, 2005; Martin-Moreno et al., 2013).  

Improving reclamation approaches on surface coal mining sites in steep, mountainous regions is 

necessary to reduce environmental impacts from extreme soil erosion (Carroll et al., 2000; 
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Nicolau, 2002; Espigares et al., 2011).  Proper understanding of both erosion rates and spatial 

distribution is needed to accurately manage surface mine sites that have been reclaimed using 

different reclamation practices.  However, no research has been documented on modeling 

predicted soil loss of valley-fill reclamation sites in Central Appalachia.  

4.2 Research Question and Objectives 

Better understanding of soil loss rates and spatial distribution within a watershed altered 

by surface mining and reclamation would be beneficial for the improvement of future erosion, 

reclamation methods, and conservation practices in Central Appalachia (Fernandez et al., 2003; 

Fu et al., 2005).  Therefore, a single research question was posed for this chapter:  

 How is soil loss altered at the watershed scale by different valley-fill reclamation 

methods?   

Two objectives were identified to answer the research question: 

 Predict average annual soil loss rates for multiple valley-fill reclamation practices  

 Estimate the spatial distribution of erosion for multiple valley-fill reclamation 

conditions   

4.3 Background: Sediment Load using Revised Universal Soil Loss Equation 

(RUSLE) in a GIS Framework 

The Revised Universal Soil Loss Equation (RUSLE) is a set of mathematical equations 

that estimate average annual soil loss.  RUSLE is a practical and prevalent tool used for many 

applications, including surface mining reclamation plans and post-reclamation site evaluations 

(Toy et al., 1999).  RUSLE estimates average annual soil loss by sheet and rill erosion, not 

concentrated flow, on the portions of landscape profiles where erosion is occurring (Renard et 

al., 1991) using the empirical equation: 

 

𝐴 = 𝑅 ∗ 𝐾 ∗ 𝐿𝑆 ∗ 𝐶 ∗ 𝑃                      (4.1) 

 

where A is the average soil loss per unit area during a unit period of time, R is the rainfall-runoff 

erosivity factor, K is the soil erodibility factor, LS is the slope length and steepness factor, C is 

the cover-management factor and P is the supporting practices factor (Renard et al., 1991). 
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GIS and remote sensing tools have been used effectively in cooperation with RUSLE to 

predict soil loss (Demirci and Karaburun, 2012).  GIS provides an analysis of individual factors 

such as soil type, slope, and land use, all of which contribute to soil erosion, and is beneficial 

when used with RUSLE to estimate soil erosion at the watershed level (Demirci and Karaburun, 

2012).   

4.4 Methods 

 The Revised Universal Soil Loss Equation (RUSLE) was utilized in a distributed GIS 

framework to assess erosion and estimate the spatial soil loss for each of five design scenarios: 

i.) undisturbed, pre-mining condition; ii.) conventional valley fill post-mining, pre-revegetation 

condition; iii.) conventional valley fill post-reclamation, long term condition; iv.) GLD post-

mining, pre-revegetation condition; v.) GLD post-reclamation, long term condition.  The values 

of the factors were determined from the soil survey, topography, meteorological data, land cover, 

land use, and literature pertaining to the study watershed and surrounding area, as detailed in the 

following sections.  The spatial distribution of erosion rates within the experimental watershed 

were quantified using RUSLE in a GIS environment following the methods of Chen et al. (2011) 

and Demirci and Karaburun (2012).        

4.4.1 Study Site 

The study site was located in Logan County, West Virginia, USA and undisturbed 

topography consisted of steep, complex slope profiles with slopes reaching up to 27.5% (Figure 

4.1A).  Elevation of the site ranged from 338 m to 608 m and the slope gradient ranged from 

0.5% to 205.7% (Figure 4.2A).  The area was in the Central Appalachian ecoregion (USEPA, 

2013) with an average annual temperature of 13oC and average precipitation of 1.18 m (US 

Climate Data, 2014).  The pre-mining watershed hydrology included one main perennial channel 

with four contributing tributaries likely ranging from ephemeral to intermittent (Buckley et al., 

2013).  The main valley slope was 10.1% and the pre-mining vegetation was predominately 

dense core forest with a dominant land use of forestland.  The geology of the site was dominated 

by sandstone (Russell, 2012).   
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Figure 4.1. a) Original topography of experimental watershed in Logan County, WV, b) completed conventional valley-fill 

design for experimental watershed, c) completed geomorphic landform design using regional data inputs for experimental 

watershed  
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Figure 4.2. Slope (%) of the experimental watershed: a) original topography, b) completed conventional valley-fill, c) 

completed geomorphic landform design 
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4.4.2 Conventional Valley Fill  

The permitted valley-fill design (1.4 km2; 6.9x106 m3 fill material) for the site consists of 

conventional valley-fill features including a benched valley fill face (11 benches: 6.1-6.4 m wide 

every 15.2 vertical meters in elevation), rock core underdrain, and Surface Water Runoff 

Analysis (SWROA) ditches located around the perimeter of the fill (Figure 4.1B). Elevation of 

the site ranged from 338 m to 608 m and slope ranged from 0.1% to 101.2% (Figure 4.2B). The 

top of the fill was reclaimed to a planar surface that sloped away from the fill face (1-2%) in 

accordance with an Approximate Original Contour (AOC) variance permit to support the post-

reclamation land use of pastureland.  The pastureland (commercial cow-calf operation) was 

present in 65% of the fill area and was predominately reclaimed vegetation of grass. The 

remaining 35% of fill area was permitted to be reclaimed forestland.  The conventional fill 

resulted in the burial of approximately 3,130 m of original stream length. 

4.4.3 Geomorphic Landform Design (GLD) Valley Fill 

An alternative valley-fill design based on geomorphic landform design (GLD) principles 

and included on-site stream channels, as described in Chapter 3 (Valley-Fill Designs using 

Geomorphic Landform Principles) and Sears et al. (2014), was created for the study site (0.98 

km2) (Figure 4.1C).  The software design tool (Carlson® Natural Regrade® with GeoFluvTM) and 

regional data inputs (Sears et al., 2014; Buckley et al., 2013) were used for attempting the 

creation of mature, stable landforms. The GLD resulted in sub-basins that directed flow to stream 

channels (main channel and 12 tributaries) as opposed to the control structures and SWROA 

ditches in the conventional design. The stream channels (5,466 m total combined length; 131-

1,440 m length range; type A and type C (Rosgen, 1994)) were designed to mimic the original 

dendritic drainage (Sears et al., 2014). The elevation ranged from 338 m to 608 m, the slope 

gradient ranged from 0% to 264.3% (Figure 4.2C), and the main valley slope was 12.7%.  

4.4.4 RUSLE Factor Determination Methods 

4.4.4.1 Rainfall Erosivity Factor, R 

Rainfall erosivity is the intensity of the rainfall to cause erosional effects on the land.  In 

RUSLE, the rainfall-runoff erosivity factor, R, represents the erosivity occurring from rainfall 
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and runoff at a particular location (Renard et al., 1991; Demirci and Karaburun, 2012).  In many 

studies, the R factor has been determined to be the most related to soil loss and erosion (Renard 

and Freimund, 1994; Yu and Rosewell, 1996; Kouli et al., 2009).  

The R factor is typically calculated using long-term annual rainfall records as the sum of 

EI30 for each storm where E is the storm energy (MJ ha-1 mm-1) and I30 is the maximum 30 

minute intensity (mm h-1).  However, lack of storm energy and intensity data require the use of 

monthly and annual rainfall data to calculate R (MJ mm ha-1 h-1 year-1).  The value of the R-

factor was calculated from the collected rainfall data as well as the Modified Fournier’s Index 

(MFI), a widely used parameter for rainfall erosivity (Arnoldus, 1980; Renard and Freimund, 

1994; Demirci and Karaburun, 2012).  MFI was calculated (Eq. 4.2) as the sum of the squared 

monthly precipitation divided by the annual precipitation (Renard and Freimund, 1994).   

 

                                                            𝑀𝐹𝐼 =
∑ 𝑝𝑖

212
𝑖=1

𝑃
              (4.2) 

 

where pi (mm) is the average monthly precipitation and P (mm) is the average annual 

precipitation (Kouli et al., 2009; Arnoldus, 1980).   

 Hourly precipitation data from the nearest weather station (WV465353; Logan, WV; 19 

km from study site) were used.  Twenty-three years (1986-2009) of hourly rainfall data were 

collected and used for the calculation of MFI and R (Figure 4.3).  
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Figure 4.3. Hourly precipitation data from WV465353 meteorological station in Logan, WV  
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Renard and Freimund (1994) proposed two equations for the calculation of the R-factor, 

using P or MFI, in the continental United States based on data from 132 stations. First, the R-

factor was calculated using P in Eq. 4.3 (Renard and Freimund, 1994).  

 

𝑅 = 587.8 − (1.219 ∗ 𝑃) + (0.004105 ∗ 𝑃2)            (4.3) 

 

for P>850mm, where R (MJ mm ha-1 h-1 year-1) is the rainfall-erosivity factor and P is the mean 

annual precipitation (mm).  Then, the R-factor was calculated using MFI in Eq. 4.4 (Renard and 

Freimund, 1994). 

 

𝑅 = 95.77 − (6.081 ∗ 𝑀𝐹𝐼) + (0.477 ∗ 𝑀𝐹𝐼2)                        (4.4) 

 

for P>850mm, where R (MJ mm ha-1 h-1 year-1) is the rainfall-erosivity factor and MFI is the 

Modified Fournier’s Index (mm). 

4.4.4.2 Soil Erodibility Factor, K 

The soil erodibility factor, K, represents the erodibility of the soil or surface material at 

the study location (Renard et al., 1991; Demirci and Karaburun, 2012).  The K-factor is a 

quantitative value that is determined based on soil texture, structure, organic matter content, and 

permeability (Demirci and Karaburun, 2012; Kouli et al., 2009).  The K-factor is calculated 

using the soil erodibility nomograph (Wischmeier and Smith, 1978).  The soil erodibility 

nomograph solves Eq. 4.5 for soils containing less than 70% silt and very fine sand. 

 

100𝐾 = 2.1𝑀1.14(10−4)(12 − 𝑎) + 3.25(𝑏 − 2) + 2.5(𝑐 − 3)                 (4.5) 

 

where a is the percent organic matter, b is the soil structure code used in soil classification (1-

very fine granular; 2-fine granular; 3-medium or coarse granular; 4-blocky, platy, or massive), c 

is the profile permeability class (1-rapid; 2-moderate to rapid; 3-moderate; 4-slow to moderate; 

5-slow; 6-very slow), and M is the particle size parameter defined as: 
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𝑀 = (𝑠𝑖 + 𝑣𝑓𝑠) ∗ (100 − 𝑐𝑙)             (4.6) 

 

where si is the percent of silt (0.002-0.05 mm), vfs is the percent of very fine sand (0.05-0.1 

mm), and cl is the  percent clay (<0.002 mm) (Wischmeier and Smith, 1978). 

Soil properties of the undisturbed soil were estimated using the soil survey and literature. 

The undisturbed soil at the study site was classified as Matewan-Highsplint-Guyandotte in the 

soil survey with an estimated 35% Matewan soil (channery sandy loam; 8-15% clay; 35% 

sandstone rock fragments), 30% Highsplint soil (channery loam; <18% clay; 50% mixed rock 

fragments), and 20% Guyandotte soil (channery loam; <15% clay; 55% rock fragments) (NRCS, 

2013; USDA, 2014).  Percent sand and silt ranges (50%-85% and 0%-50% respectively) were 

obtained from the soil texture triangle for sandy loam and used in the nomograph calculation of 

the K-factor. An organic matter percentage, a, was estimated using literature findings of organic 

matter in undisturbed soil and spoil material (Evans and Loch, 1996; Warner et al., 2009).  The 

soil structure code, b, was determined by the dominate percentages (35%-55%) of rock 

fragments in the soils.  The profile permeability class, c, was determined from the soil survey 

and verified by relating the range of percent possible clay in the soil, from the soil texture 

triangle, to c (Chen et al., 2011).            

Soil properties of the spoil were obtained from Russell (2012).  The grain size 

distribution of the spoil (Russell, 2012) was used to obtain nomograph inputs including percent 

silt and very fine sand of 4%, percent clay of 1%, percent sand (0.1-2.0 mm) of 25%.  The spoil 

permeability (0.0029 µm/s) was also obtained from Russell (2012) and was correlated to c 

according to the USDA (1951) classification.  The amount of organic matter (a) in the spoil was 

unknown and therefore was estimated using Evans and Loch (1996) for spoil material.  The soil 

structure code was determined by relating the spoil organic matter to the soil structure (Chen et 

al., 2011) and was verified using Evans and Loch (1996).   

4.4.4.3 Slope Length and Steepness Factor, LS  

The overall topography contributes two factors to soil erosion in RUSLE including the 

length factor, L, and the steepness factor, S (Renard et al., 1997; Demirci and Karaburun, 2012).  

The LS-factor depends on slope percentage and length and is defined as a ratio of soil loss under 

given conditions to those at the study site (Demirci and Karaburun, 2012).   The LS-factor was 
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calculated in a GIS environment using separate equations for slope gradient <21% (Eq. 4.7 as 

given in USLE) and for slope gradient >21% (Eq. 4.8 as incorporated in RUSLE) (Chen et al, 

2011; Renard et al., 1997). 

 

𝐿𝑆 = (𝑄𝐴𝑐𝑐 ∗
𝑋

22.13
)𝑚 ∗ (65.41 ∗ 𝑠𝑖𝑛2𝜃 + 4.56 ∗ 𝑠𝑖𝑛𝜃 + 0.065)                     (4.7) 

 

𝐿𝑆 = (𝑄𝐴𝑐𝑐 ∗
𝑋

22.13
)0.7 ∗ (6.432 ∗ sin(𝜃0.79) ∗ 𝑐𝑜𝑠𝜃)                             (4.8) 

 

where QAcc was the grid layer of flow accumulation expressed as the number of grid cells, X was 

the length of a cell side or cell resolution (10.58 m), m is 0.5 if the percent slope was 5%-21%, 

and θ was angle of the slope.  The LS-factor was computed from the DEM of the study site in 

ArcGIS (Fernandez et al., 2003; Chen et al., 2011).   

4.4.4.4 Cover and Management Factor, C 

The cover and management factor represents the effects of management practices and 

ground cover on the soil erosion rate (Demirci and Karaburun, 2012).  Values for the C-factor 

range from near zero for a very well protected soil to 1.5 for a finely tilled, ridged surface that 

produces large amounts of runoff and leaves the soil highly susceptible to rill erosion (Renard et 

al., 1991).  Values for the C-factor are a weighted average of soil loss ratios (SLRs) that 

represent the soil loss for a given condition at a given time and vary throughout the year as soil 

and land cover change (Renard et al., 1991).  In RUSLE, SLRs are computed as a function of 

four subfactors: prior land use, canopy, ground cover, and within-soil effects (Renard et al., 

1991; Wischmeier and Smith, 1978).  The C-factor was determined by matching the vegetative 

cover, type, and percent ground cover of the study area with the C-factor values in the 

Wischmeier and Smith (1978) C-factor determination tables.  

4.4.4.5 Supporting Practices Factor, P 

The supporting practices factor, P, represents how surface conditions affect flow paths 

and flow hydraulics (Renard et al., 1991).  The P-factor values were determined by the extent of 

individual conservation practices including contouring, strip cropping, and terracing or a 

combination of these (Fernandez et al., 2003).  Implemented conservation practices typically 
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decreased the erosive impact of rainfall and runoff and therefore were accounted for in the P-

factor (Renard et al., 1997; Fernandez et al., 2003).   

4.4.5 Methods and Inputs of Modeled Conditions   

4.4.5.1 Undisturbed, Pre-Mining Condition Methods 

The R-factor remained constant over the entire study area for every condition because the 

rainfall data was collected from a single meteorological station located closest to the study 

watershed (Figure 4.4; Table 4.1).  The rainfall data were assumed to be similar throughout the 

entire study area and remain unchanged during the five study conditions.  The R-factor was 

calculated using the calculated MFI of 116.9 mm, resulted in a value of 5,906.9 MJ mm ha-1 h-1 

yr-1. The R-factor of 5,906.9 MJ mm ha-1 h-1 yr-1 was implemented because of the extended, 

accepted use of MFI to calculate R-factor values in published literature (Renard and Freimund, 

1993; Yu and Rosewell, 1996).  This R-factor was used for each condition for the entire study 

area.  

Land cover and canopy cover were estimated from valley-fill field studies in Central 

Appalachia (Hopkinson et al., 2014a).  A C-factor of 0.003 was estimated assuming 70% of area 

covered by canopy of trees and undergrowth and 80% of area covered by duff at least two inches 

deep.  No supporting practices were implemented within the study site; therefore, the P-factor 

was equal to one for this study for all modeling scenarios.  The organic matter (a) was 1.5% for 

undisturbed Central Appalachian soils.  The soil structure code (b) was 4 (blocky, platy, or 

massive) according to the dominate percentages (35-55%) of rock fragments in the soils. The 

profile permeability class (c) was 2 (moderate to rapid). Using the nomograph method and the 

soil property inputs, the K-factor was calculated as 0.22 for the undisturbed soil.  

The LS-factor varied over the study area with a spatial mean value of 9.1 and a standard 

deviation of 17.1.  Low LS values (minimum value of 0) occurred mainly along ridgelines.  High 

LS-factors (maximum value of 424.3) were located at stream channel locations (Figure 4.4).  
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Figure 4.4. RUSLE input factors used for the undisturbed, pre-mining condition of the 

experimental watershed  

 

 

Table 4.1. RUSLE input factors for each modeled condition of the experimental watershed 

Condition 

R  C P K LS [-] 

[MJ mm ha-1 

h-1 year-1] 
[-] [-] [-] Range Mean 

Std. 

Dev. 

Undisturbed, Pre-

Mining 
5906.9 0.003 1 0.22 0-424.3 9.1 17.1 

Conventional Valley Fill 

Post Mining, Pre-

Vegetation 

5906.9 
0.003, 

0.12 
1 

0.16, 

0.22 
0-487.7 7.8 18.7 

Conventional Valley Fill 

Post Reclamation, Long 

Term 

5906.9 

0.003, 

0.012, 

0.038 

1 
0.16, 

0.22 
0-487.7 7.8 18.7 

GLD Post-Mining, Pre-

Vegetation 
5906.9 

0.003, 

0.12 
1 

0.16, 

0.22 
0-409.4 9.7 18.1 

GLD Post-Reclamation, 

Long Term 
5906.9 

0.003, 

0.12 
1 

0.16, 

0.22 
0-409.4 9.7 18.1 
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4.4.5.2 Conventional Valley Fill Post-Mining, Pre-Vegetation Condition Methods 

The K-factor was a single value for all of the reclaimed conditions (conventional and 

GLD) due to the same spoil (predominately weathered sandstone) used for each scenario.  The 

K-factor for all of the undisturbed, surrounding area also remained a single value (0.22) for each 

of the scenarios (Figure 4.5).  The spoil organic matter (a) was 0.5% and the soil structure code 

(b) was 4 (blocky, platy, or massive).  Spoil permeability (c) was 6 (very slow) due to soil 

properties, compaction, and rock fragments.  The particle size parameter (M) was calculated to 

be 396.  Using these inputs, the K-factor was calculated (Eq. 4.5) to be 0.16 (Figure 4.5; Table 

4.1), which coincided with the K-factor range published by Evans and Loch (1996).        

A C-factor of 0.12 was determined using the straw or hay mulching rate of 1.5 tons/acre 

(WVDEP, 2011). The C-factor for the undisturbed area surrounding the disturbed land was given 

the same value (0.003) as the undisturbed forest determined in 4.4.10 (Undisturbed, Pre-Mining 

Condition Methods).   

The LS-factor varied over the study area with a mean value of 7.8 and a standard 

deviation of 18.7.  Low LS values (minimum value of 0) occurred mainly along ridgelines.  High 

LS-factors (maximum value of 487.8) were located at stream channel locations and valley-fill 

face (Figure 4.5). 

 

Figure 4.5. RUSLE input factors used for the conventional valley fill, pre-vegetation 

condition of the experimental watershed 

 



59 

 

4.4.5.3 Conventional Valley Fill Post-Reclamation, Long Term Condition Methods 

The C-factor for the pastureland (65% of reclaimed area) was estimated to be 0.038 using 

vegetative canopy of 25% cover of tall weeds or short brush with average drop fall height of 20 

in and 60% type G (cover at surface is grass, grasslike plants, decaying compacted duff, or liter 

at least 2 in deep) ground cover as described in Hopkinson et al. (2014a) (Figure 4.6; Table 4.1).  

A C-factor value of 0.012 was estimated for the reclaimed forest land (35% of reclaimed area) 

using vegetative canopy of 50% appreciable brush or bushes with average drop fall height of 6.5 

ft and 80% type G ground cover as described in Hopkinson et al. (2014a).  The C-factor for the 

undisturbed area surrounding the reclaimed land was given the same value (0.003) as the 

undisturbed forest determined in 4.4.10 (Undisturbed, Pre-Mining Condition Methods). 

The LS-factor varied over the study area with a mean value of 7.8 and a standard 

deviation of 18.7.  Low LS values (minimum value of 0) occurred mainly along ridgelines.  High 

LS-factors (maximum value of 487.8) were located at stream channel locations and valley-fill 

face (Figure 4.6). 

 

Figure 4.6. RUSLE input factors for the conventional valley fill, post-reclamation, long 

term condition of the experimental watershed 

 

4.4.5.4 GLD Post-Mining, Pre-Vegetation Condition Methods 

A C-factor value of 0.12 (Figure 4.7; Table 4.1) was assigned to the GLD post-mining, 

pre-vegetation condition due to the same straw or hay mulching conditions (WVDEP, 2011) used 

in determining the C-factor in 4.4.11 (Conventional Valley Fill Post-Mining, Pre-Revegetation 

Condition Methods).  The C-factor for the undisturbed area surrounding the disturbed land was 
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given the same value (0.003) as the undisturbed forest determined in 4.4.10 (Undisturbed, Pre-

Mining Condition Methods).   

The LS-factor varied over the study area with a mean value of 9.7 and a standard 

deviation of 18.1.  Low LS values (minimum value of 0) occurred mainly along ridgelines.  High 

LS-factors (maximum value of 409.4) were located at stream channel locations and valley-fill 

face (Figure 4.7). 

 

Figure 4.7. RUSLE input factors for the geomorphic valley fill, pre-vegetation condition of 

the experimental watershed  

 

4.4.5.5 GLD Post-Reclamation, Long Term Condition Methods 

The C-factor for the GLD post-reclamation, long term condition was assigned the same 

value (0.012; Figure 4.8; Table 4.1) as the reclaimed forest land determined in 4.4.12 

(Conventional Valley Fill Post-Reclamation, Long Term Condition Methods). The C-factor for 

the undisturbed area surrounding the reclaimed land was given the same value (0.003) as the 

undisturbed forest determined in 5.4.10 (Undisturbed, Pre-Mining Condition Methods).  

The LS-factor varied over the study area with a mean value of 9.7 and a standard 

deviation of 18.1.  Low LS values (minimum value of 0) occurred mainly along ridgelines 

(Figure 4.8).  High LS-factors (maximum value of 409.4) were located at stream channel 

locations and valley-fill face. 
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Figure 4.8. RUSLE input factors for the geomorphic valley fill, long term condition of the 

experimental watershed 

 

4.5 Results 

The rainfall-runoff factor, soil erodibility factor, slope length and steepness factors, cover 

and management factor, and supporting practices factor were created as raster layers in a GIS 

environment and multiplied together using the RUSLE formula (Eq. 4.1) to estimate the average 

annual soil loss rate, spatial erosion means, and areas of increased erosion potential for the study 

area.  Erosion analysis for the five design scenarios (i. undisturbed, pre-mining condition; ii. 

conventional valley fill post-mining, pre-vegetation condition; iii. conventional valley fill post-

reclamation, long term condition; iv. GLD post-mining, pre-vegetation condition; v. GLD post-

reclamation, long term condition) was completed and a comparison of the results were 

performed. 

4.5.1 Undisturbed, Pre-Mining Condition Results 

The undisturbed, pre-mining condition resulted in an estimated average annual soil loss 

rate (A) of 35.4 t ha-1 yr-1. The lowest erosion rates (<30 t ha-1 yr-1) occurred along ridgelines, 

following the location patterns of the low LS-factor values (Figure 4.4). The highest soil loss 

rates (>100 t ha-1 yr-1; maximum of 1,654.3 t ha-1 yr-1) mimicked the highest LS-factor locations 

along the stream channels and valleys (Figure 4.9).  The undisturbed area had approximately 

4480 m of ridgelines (35-1,240 m range) and 6210 m of valleys/channels (35-860 m range) 

identified in the LS-factor and soil loss rate distributions (Figure 4.4; Figure 4.9).     
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Figure 4.9. Average annual soil loss rate (A) for the undisturbed, pre-mining condition of 

the experimental watershed 

 

4.5.2 Conventional Valley Fill Post-Mining, Pre-Vegetation Condition Results 

The study site as the conventional valley fill post-mining, pre-vegetation condition had an 

estimated average annual soil loss rate (A) of 123.2 t ha-1 yr-1 (standard deviation of 726.9 t ha-1 

yr-1). Low soil loss rates (<30 t ha-1 yr-1) occurred along the ridgelines and the valley-fill crest 

(Figure 4.5). The highest erosion rates (>100 t ha-1 yr-1; maximum of 47,538.7 t ha-1 yr-1) were 

estimated to be at the entire valley-fill face, Surface Water Run-Off Analysis (SWROA) ditch 

locations, and highwall locations (Figure 4.10).  The area surrounding the conventional fill had 

approximately 2,475 m of ridgelines (35-450 m range) and 4,950 m of valleys/channels (30-435 

m range) identified in the LS-factor and soil loss rate distributions (Figure 4.5; Figure 4.10).  The 
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conventional fill area had 3,109 m of SWROA ditches along the perimeter of the fill and the area 

did not have any ridgelines. 

 

Figure 4.10. Average annual soil loss rate (A) for the conventional valley fill, pre-vegetation 

condition of the experimental watershed 

 

4.5.3 Conventional Valley Fill Post-Reclamation, Long Term Condition Results 

The conventional valley fill post-mining, long term condition resulted in a predicted 

average annual soil loss rate (A) of 35.6 t ha-1 yr-1 with a standard deviation of 89.7 t ha-1 yr-1. 

Low erosion rates (<30 t ha-1 yr-1) occurred along the ridgelines and the valley-fill crest (Figure 

4.6), which mimicked the low soil loss locations in the conventional valley fill, pre-vegetation 

condition. The highest soil loss rates (>100 t ha-1 yr-1; maximum of 4,627.7 t ha-1 yr-1) were 
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estimated to be at the entire valley-fill face, SWROA ditches, highwalls, and stream channels 

(Figure 4.11). 

 

Figure 4.11. Average annual soil loss rate (A) for the conventional valley fill, post-

reclamation, long term condition of the watershed 

 

4.5.4 Undisturbed and Conventional Valley Fill Comparison 

The conventional valley fill soil erosion rate distributions (Figure 4.10; Figure 4.11) were 

separated into the areas used for RUSLE inputs (reclaimed forest, reclaimed pastureland, and 

undisturbed surrounding area; Figure 4.5; Figure 4.6) for better analysis of the spatial 

distributions and rates (Figure 4.12).  The undisturbed, pre-mining soil erosion rate distribution 

(Figure 4.9) was also divided into the same areas for comparison.  
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The erosion rate spatial mean of the reclaimed forest area (included fill face) for the post 

mining, pre-vegetation scenario (928.9 t ha-1 yr-1) was approximately thirty times the spatial 

mean of the undisturbed, pre-mining condition (30.2 t ha-1 yr-1). The maximum erosion rate for 

the pre-vegetation scenario (47538.7 t ha-1 yr-1) was approximately forty times the spatial mean 

of the undisturbed, pre-mining condition (1151.3 t ha-1 yr-1).  The post reclamation, long term 

condition erosion rate spatial mean (93.2 t ha-1 yr-1) was three times the spatial mean of the 

undisturbed, pre-mining condition.  The maximum erosion rate for the long term scenario 

(4627.7 t ha-1 yr-1) was approximately four times the spatial mean of the pre-mining condition 

(Table 4.2). 

The erosion rate spatial mean of the reclaimed pastureland area (included fill crest) for 

the pre-vegetation scenario (138.2 t ha-1 yr-1) was approximately five times the spatial mean of 

the undisturbed, pre-mining condition (25.8 t ha-1 yr-1). The maximum erosion rate for the pre-

vegetation scenario (2993.0 t ha-1 yr-1) was approximately 3.7 times the spatial mean of the 

undisturbed condition (810.8 t ha-1 yr-1).  The post reclamation, long term condition erosion rate 

spatial mean (42.9 t ha-1 yr-1) was 1.7 times the spatial mean of the undisturbed, pre-mining 

condition.  The maximum erosion rate for the long term scenario (927.0 t ha-1 yr-1) was 

approximately 1.1 times the spatial mean of the pre-mining condition (Table 4.2). 

The undisturbed area surrounding the conventional fill resulted in an erosion rate spatial 

mean of 27.4 t ha-1 yr-1 and an erosion rate range of 0-1463 t ha-1 yr-1.  The erosion rate and 

spatial distribution did not change throughout the scenarios because the land remained 

undisturbed and the RUSLE inputs remained constant (Figure 4.12; Table 4.2).   
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Figure 4.12. Average annual soil loss rates (A) spatial distribution for the undisturbed pre-

mining condition, conventional valley fill post mining pre-vegetation condition, and 

conventional valley fill post-reclamation long term condition of the watershed separated 

into comparison areas (reclaimed forest, reclaimed pastureland, and undisturbed 

surrounding area). (Not to scale) 
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Table 4.2. Average annual soil loss rates (A) and ranges for the undisturbed pre-mining 

condition, conventional valley fill post mining pre-vegetation condition, and conventional 

valley fill post-reclamation long term condition of the watershed separated into comparison 

areas (total area, reclaimed forest, reclaimed pastureland, and undisturbed surrounding 

area) 

    A  [t ha-1 yr-1] 

Condition Area Range 
Spatial 

Mean 
Std. Dev. 

Undisturbed, Pre-Mining 

Total Area 0-424.3 35.4 66.6 

Reclaimed 

Forest  
0-1151.3 30.2 51.0 

Reclaimed 

Pastureland  
0-810.8 25.8 36.4 

Surrounding 

Area 
0-1463.2 27.4 59.3 

Conventional Valley Fill          

Post Mining, Pre-Vegetation 

Total Area 0-47538.7 123.2 726.9 

Reclaimed 

Forest  
0-47538.7 928.9 2324.4 

Reclaimed 

Pastureland  
0-2993.0 138.2 200.4 

Surrounding 

Area 
0-1463.2 27.4 59.3 

Conventional Valley Fill         

Post Reclamation, Long 

Term 

Total Area 0-4627.7 35.6 89.7 

Reclaimed 

Forest  
0-4627.7 93.2 230.4 

Reclaimed 

Pastureland  
0-927.0 42.9 62.3 

Surrounding 

Area 
0-1463.2 27.4 59.3 

 

4.5.5 GLD Post-Mining, Pre-Vegetation Condition Results 

The study site as the GLD post-mining, pre-vegetation condition had an estimated 

average annual soil loss rate (A) of 204.3 t ha-1 yr-1 (standard deviation of 956.7 t ha-1 yr-1). Low 

soil loss rates (<30 t ha-1 yr-1) occurred along the ridgelines, which mimicked the low LS-factor 

value locations. High erosion rates (>100 t ha-1 yr-1; maximum of 40,030.7 t ha-1 yr-1) occurred 

along the original and created stream channels as well as the steep slopes (slope >50%) within 

the geomorphic valley fill.  The GLD fill area had approximately 1,420 m of ridgeline (50-865 m 
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range) and 2,040 m of valleys/channels (30-440 range) identified in the LS-factor and soil loss 

rate distribution (Figure 4.7; Figure 4.13). The area surrounding the GLD fill had approximately 

3,670 m of ridgelines (35-520 m range) and 5,300 m of valleys/channels (35-430 m range) 

recognized in the LS-factor and soil loss rate distributions (Figure 4.7; Figure 4.13). 

 

Figure 4.13. Average annual soil loss rate (A) for the geomorphic valley fill, pre-vegetation 

condition of the experimental watershed 

 

4.5.6 GLD Post-Reclamation, Long Term Condition Results 

The study site as the GLD post-reclamation, long term condition had an estimated 

average annual soil loss rate (A) of 41.8 t ha-1 yr-1 (standard deviation of 102.0 t ha-1 yr-1). Low 

erosion rates (<30 t ha-1 yr-1) occurred along the ridgelines, which mimicked the low LS-factor 

value locations. High soil loss rates (>100 t ha-1 yr-1; maximum of 3,896.8 t ha-1 yr-1) occurred 
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along the original and created stream channels as well as the steep slopes (slope >50%) within 

the geomorphic valley fill (Figure 4.8; Figure 4.14). 

 

 

Figure 4.14. Average annual soil loss rate (A) for the geomorphic valley fill, long term 

condition of the experimental watershed 

 

4.5.7 Undisturbed and GLD Valley Fill Comparison 

The GLD valley fill soil erosion rate distributions (Figure 4.13; Figure 4.14) were 

separated into the areas used for RUSLE inputs (GLD and undisturbed surrounding area; Figure 

4.7; Figure 4.8) for better analysis of the spatial distributions and rates (Figure 4.15).  The 
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undisturbed, pre-mining soil erosion rate distribution (Figure 4.9) was also divided into the same 

areas for comparison.  

The erosion rate spatial mean of the GLD fill area for the post mining, pre-vegetation 

scenario (986.4 t ha-1 yr-1) was approximately 33 times the spatial mean of the undisturbed, pre-

mining condition (30.2 t ha-1 yr-1). The maximum erosion rate for the pre-vegetation scenario 

(40030.7 t ha-1 yr-1) was approximately 35 times the spatial mean of the undisturbed, pre-mining 

condition (1151.3 t ha-1 yr-1).  The post reclamation, long term condition erosion rate spatial 

mean (96.1 t ha-1 yr-1) was three times the spatial mean of the undisturbed, pre-mining 

condition.  The maximum erosion rate for the long term scenario (3896.8 t ha-1 yr-1) was 

approximately 3.4 times the spatial mean of the pre-mining condition (Table 4.3). 

The undisturbed area surrounding the GLD fill resulted in an erosion rate spatial mean of 

36.3 t ha-1 yr-1 and an erosion rate range of 0-654.3 t ha-1 yr-1.  The erosion rate and spatial 

distribution did not change throughout the scenarios because the land remained undisturbed and 

the RUSLE inputs remained constant (Figure 4.15; Table 4.3). 
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Figure 4.15. Average annual soil loss rates (A) spatial distribution for the undisturbed pre-

mining condition, GLD post mining pre-vegetation condition, and GLD post-reclamation 

long term condition of the watershed separated into comparison areas (reclaimed forest, 

reclaimed pastureland, and undisturbed surrounding area). (Not to scale) 
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Table 4.3. Average annual soil loss rates (A) and ranges for the undisturbed pre-mining 

condition, GLD post mining pre-vegetation condition, and GLD post-reclamation long 

term condition of the watershed separated into comparison areas (total area, reclaimed 

forest, reclaimed pastureland, and undisturbed surrounding area) 

    A  [t ha-1 yr-1] 

Condition Area Range 
Spatial 

Mean 
Std. Dev. 

Undisturbed, Pre-Mining 

Total Area 0-424.3 35.4 66.6 

GLD 0-1151.3 30.2 51.0 

Surrounding 

Area 
0-1654.3 36.3 70.1 

GLD Valley Fill                     

Post Mining, Pre-Vegetation 

Total Area 0-40030.7 204.3 956.7 

GLD 0-40030.7 986.4 2066.9 

Surrounding 

Area 
0-1654.3 36.3 70.1 

GLD Valley Fill                         

Post Reclamation, Long 

Term 

Total Area 0-3896.8 41.8 41.8 

GLD 0-3896.8 96.1 96.1 

Surrounding 

Area 
0-1654.3 36.3 70.1 

 

4.6 Discussion 

Soil erosion is a natural process in which forces including water and wind transport earth 

materials across a given surface (Kouli et al., 2009).  Surface mining and reclamation processes 

are understood to alter land uses and land covers; however, better understanding of how different 

reclamation methods effect soil erosion at mined sites is necessary for further advancement of 

reclamation and maintenance methods (Miller and Zegre, 2014).  Soil loss rates and spatial 

distributions were estimated at the watershed scale of two valley-fill reclamation designs, the 

conventional design and an alternative geomorphic design, as well as the undisturbed land to 

predict potential impacts.  The soil loss estimated to occur in the geomorphic landform design 

(GLD), conventional valley-fill design, and undisturbed watershed were compared (Table 4.4) to 

identify areas of increased erosion throughout the mining and reclamation practices. 
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Table 4.4. Average annual soil loss rates for each modeled condition of the experimental 

watershed 

Condition 

A    [t ha-1 yr-1] 

Range 
Spatial 

Mean 

Std. 

Dev. 

Undisturbed, Pre-Mining 0-424.3 35.4 66.6 

Conventional Valley Fill 

Post Mining,                   

Pre-Vegetation 

0-47538.7 123.2 726.9 

Conventional Valley Fill 

Post Reclamation,        

Long Term 

0-4627.7 35.6 89.7 

GLD Post Mining,            

Pre-Vegetation 
0-40030.7 204.3 956.7 

GLD Post Reclamation,         

Long Term 
0-3896.8 41.8 102.0 

    

 

Stages in the mining and reclamation process when soil is completely void of protection 

from water and wind is when the soil is predicted to be at the highest risk for erosion and 

increased soil loss rates (Carroll et al., 2000).  Therefore, barren soil is seeded and covered with 

straw mulch (WVDEP, 2011), but the soil remains susceptible to increased soil erosion until 

vegetation is established. The post-mining, pre-vegetation conditions which modeled the study 

site seeded and covered with straw mulch, resulted in very high maximum estimated soil loss 

rates for both the conventional and GLD reclamation scenarios due to no protection for the 

exposed soil except straw mulch (conventional: 47,538.7 t ha-1 yr-1; GLD: 40,030.7 t ha-1 yr-1; 

Table 4.4).  As expected, long-term maximum estimated soil loss rates were decreased for the 

post-reclamation, long term conditions due to the established vegetation that protected the soil 

from surface erosion forces (conventional: 4,627.7 t ha-1 yr-1; GLD: 3,896.8 t ha-1 yr-1; Table 

4.4).  Post-reclamation, long term conditions resulted in maximum estimated soil loss rates that 

were reduced from the post-mining, pre-vegetation conditions by a factor of ten.  However, the 

maximum estimated erosion rates for the post-reclamation, long term conditions were still a 
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factor of ten higher than the undisturbed pre-mining condition soil loss rate estimate (424.3 t ha-1 

yr-1; Table 4.1).   

These results followed documented trends that showed soil erosion was highest when soil 

was completely bare and erosion decreased as time progressed and permanent vegetation was 

established (Hoomehr et al., 2015).  Hoomehr et al. (2015) quantified the erodibility and 

erosivity of low-compaction, steep-sloped (>20°) reclaimed surface mine lands in the three 

active coal mining study sites in East Tennessee.  Sediment yield averaged 116 t ha-1 for the 

three month study period (June-August 2009) during which rill development occurred and total 

sediment yield averaged 391 t ha-1 for the sites over the entire study period (June 2009-July 

2010). 

The substantial difference among the estimated soil loss rates, A, of the pre-vegetation 

conditions and long term conditions resulted from the RUSLE C-factor value inputs.  The C-

factor values for the GLD scenarios were 0.12 for the pre-vegetation condition and 0.012 for the 

long term condition.  The GLD pre-vegetation scenario resulted in an erosion rate spatial mean 

4.9 times higher than the long term condition and a maximum soil loss rate 10.3 times higher 

than the long term condition.  C-factor values for the conventional reclamation scenarios were 

0.12 for the pre-vegetation condition and 0.038 and 0.012 for the long term condition.  The 

conventional fill pre-vegetation scenario resulted in an erosion rate spatial mean 3.5 times higher 

than the long term condition and a maximum soil loss rate 10.3 times higher than the long term 

condition (Table 4.4).      

 Spatial means of the predicted erosion rates resulted in substantial difference among the 

undisturbed condition and the post-mining, pre-vegetation conditions for both the conventional 

and GLD reclamation scenarios. The conventional fill pre-vegetation scenario resulted in an 

erosion rate spatial mean 3.5 times higher than the undisturbed condition. The GLD pre-

vegetation scenario resulted in an erosion rate spatial mean 5.8 times higher than the undisturbed 

condition.  However, there was no considerable difference among the spatial means of the 

predicted erosion rates of the undisturbed, pre-mining condition (35.4 t ha-1 yr-1) and the 

conventional (35.6 t ha-1 yr-1) and GLD (41.8 t ha-1 yr-1) post-reclamation, long term conditions 

(Table 4.4).   

Predicted erosion spatial means of the post-mining, pre-vegetation conditions 

(conventional: 123.2 t ha-1 yr-1; GLD: 204.3 t ha-1 yr-1; Table 4.4) were similar to previously 
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documented soil loss rates of reclaimed spoil (91.5 t ha-1 yr-1 to 391 t ha-1 yr-1; Curtis and 

Superfesky, 1977; McIntosh and Barnhisel, 1993; Carroll et al., 2000; Hoomehr et al., 2015).  

Curtis and Superfesky (1977) reported the sediment yield from a 36% slope reclamation spoil in 

East Tennessee during a twenty month study period as 526 t ha-1.  McIntosh and Barnhisel 

(1993) documented a sediment yield of 91.5 t ha-1 on a 9% slope in Eastern Kentucky.  Sediment 

yields studied by Carroll et al. (2000), ranged from 314-1120 t ha-1 over a four year monitoring 

period for three slope gradients (10, 20, 30%) on three central Queensland coal mines.  Each of 

the studies reported rill development on site immediately following reclamation. Both the 

conventional (123.2 t ha-1 yr-1) and GLD (204.3 t ha-1 yr-1) pre-vegetation spatial means were 

lower than the 315.6 t ha-1 yr-1 erosion rate reported by Curtis and Superfesky (1977), higher than 

the 91.5 t ha-1 soil loss reported by McIntosh and Barnhisel (1993), and within the sediment yield 

range of 78.5 t ha-1 yr-1 to 280 t ha-1 yr-1 reported by Carroll et al. (2000).  

Spatial distribution patterns of the soil loss of the GLD conditions had similar patterns to 

the original topography due to the similar pattern of stream channels, topography, and slope 

gradients (Figure 4.15).  Both the undisturbed topography and the GLD topography had ridges 

(undisturbed: 4,480 m; GLD: 5,090 m), valleys (undisturbed: 6,210 m; GLD: 7,340 m), stream 

channels (undisturbed: 3,130 m; GLD: 5,466 m; dendritic drainage pattern), and slopes 

(undisturbed: slope 0.5-205%; GLD: slope 0-264%) in similar locations. Low soil loss rates for 

both the undisturbed condition and GLD conditions (<30 t ha-1 yr-1) occurred along the 

ridgelines.  High erosion rates (>100 t ha-1 yr-1) occurred along the valleys, stream channels, and 

steep slopes (slope >50%).  However, RUSLE could have overestimated the erosion rates in 

channels due to not modeling concentrated flow, only sheet and rill flow.       

The soil loss patterns of the conventional reclamation designs identified areas with 

increased erosion rates (>100 t ha-1 yr-1), which included the valley-fill face, SWROA ditches, 

and highwalls (Figure 4.12).  The valley-fill face and highwalls had increased soil loss rates, 

potentially due to their steep (2:1 slopes), planar surfaces (11 benches; 6.1-6.4 m wide every 15.2 

vertical m in elevation).  SWROA ditch locations were poetentially more susceptible to erosion 

because of the geometric construction, with sides perpendicular to the fill surface, unlike natural 

channels.  Also, RUSLE could have overestimated the soil loss rates in the SWROA ditches due 

to the model not incorporating any riprap or additional structures implemented in the SWROA 
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ditch designs. Future maintenance could be targeted to high erosion areas and design methods 

could be improved by decreasing the high erosion areas in future designs.   

Increases in soil loss and sedimentation and the resulting economic and environmental 

impacts have made erosion one of the most serious watershed problems to date (Demirci and 

Karaburun, 2012).  Demirci and Karaburun (2012) used RUSLE in a GIS framework to predict 

soil erosion risks in a watershed in Istanbul, Turkey disturbed by deforestation, overgrazing and 

incorrect agricultural activities.  Reduction of soil erosion through the implementation of 

improved reclamation methods and limiting high erosion areas would reduce the excess sediment 

load that typically occurs downstream of mining and reclamation sites.  Excess sedimentation 

can clog stream channels, contribute to contamination, and increase maintenance costs.  

Increased sedimentation causes loss of aquatic biodiversity in rivers and reservoirs by pollution, 

eutrophication, and turbidity (Wang et al., 2009, Dimirci and Karaburun, 2012).  Therefore, 

minimization of excess sediment load caused by erosion as a result of mining is important for 

future improvement of reclamation methods.   

This research provided estimated soil loss rates and spatial distribution patterns caused by 

multiple surface mining and reclamation techniques in Central Appalachia minefields.  The soil 

loss prediction technique used in this study has the potential to be applied to many reclamation 

simulations with differing soil characteristics and land uses.  These soil erosion prediction 

models illustrate the importance of reclamation design improvement needed for the surface 

mining industry in Central Appalachia.  
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5 Hydrologic Response of Valley-Fill Designs at the Landscape Scale  

5.1 Introduction  

The leading cause of landscape disturbance and land use change in Central Appalachia is 

due to surface mining and reclamation (Ferrari et al., 2009; Miller and Zegre, 2014).  Surface 

coal mining relies on fill construction to facilitate the extracted spoil material and mineral 

source.  Valley-fill construction using traditional techniques involves end-dumping overburden 

material into nearby valleys, creating engineered fill structures with planar slopes and benched 

faces.  Mining and valley-fill reclamation methods including vegetation removal, prolonged soil 

exposure, and predominant re-vegetation of grass often lead to altered hydrologic responses 

within the watershed for which they are located as documented by Bonta et al. (1997), Ferrari et 

al. (2009), and Miller and Zegre (2014).   

Hydrologic response is often defined as the process of rainfall transitioning to runoff and 

includes watershed routing, loss, and storage processes (Kult et al., 2015).  Proper understanding 

of hydrologic responses have important implications for the mitigation of possible flood damage 

to human life, property, and wildlife (Eshleman, 2004).  Surface mining and reclamation 

practices can change hydrologic response within the watershed by burying headwater streams 

and altering flow paths, peak runoff, total runoff, infiltration, and evapotranspiration (Zhang et 

al., 2009; Miller and Zegre, 2014).   

Geomorphic landform design has been identified as a potential reclamation practice for 

surface mined lands and valley fills in Central Appalachia (Russell and Quaranta, 2013; Sears et 

al., 2013; Sears et al., 2014) due to its successful implementation in areas outside of Central 

Appalachia, particularly in semi-arid regions of the southwestern U.S. (Measles and Bugosh, 

2007; Martin-Moreno et al., 2008; Martin-Duque et al., 2009).  Research studies for geomorphic 

landform design (GLD) in Central Appalachia have focused on establishing design protocol 

(Sears et al., 2012; Sears et al., 2013), testing slope stability (Russell et al., 2014), evaluating 

flooding and stormwater movement of a single reclaimed valley fill (Snyder, 2013; O’Leary, 

2014), and identifying implementation challenges (Depriest et al., 2015).  Limited research has 

been completed to quantify the effects of surface mining and valley-fill construction on 

hydrologic response at the landscape scale (>100km2) (Ferrari et al., 2009; Miller and Zegre, 

2014).         
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5.2 Research Question and Objectives 

Improved understanding of the hydrologic processes altered by mining and reclamation at 

the landscape scale would be beneficial for the mitigation of possible flood damage and for 

reclamation practice improvement in Central Appalachia.  Therefore, a single research question 

was posed for this chapter:  

 How is the hydrologic response altered at the landscape scale by different valley-

fill reclamation methods?   

Two objectives were identified to answer the research question: 

 Compare changes in streamflows and volumes among the traditional reclamation 

and GLD reclamation for the current condition (2011-2020)   

 Compare changes in streamflows and volumes among the undisturbed land, 

traditional reclamation, and the GLD reclamation for the future condition (2041-

2050)  

5.3 Background: Hydrologic Simulation Program-FORTRAN 

Hydrologic Simulation Program-FORTRAN (HSPF) is a comprehensive, conceptual, 

dynamic watershed scale model which simulates non-point source hydrology and water quality, 

combines it with point source contributions, and performs flow and water quality routing in the 

watershed reaches (Singh et al., 2004).  The three main modules in HSPF simulate the 

hydrologic processes and water quality on pervious and impervious land surfaces, free-flow 

reaches, and mixed reservoirs for extended periods of time.  HSPF requires data on the physical 

measurements and related parameters that describe the land area, channels, and reservoirs.  

Additional data needed for the watershed simulation includes meteorological records of 

precipitation, estimates of potential evapotranspiration, and data for the water quality simulation 

such as surrounding land activity (agriculture, urbanization, etc.) and weather (air temperature, 

wind, humidity, solar radiation, etc.) (Atkins et al., 2005).     

HSPF has one of the most complex mechanisms for simulation of subsurface water 

quality processes in both saturated and unsaturated zones.  The water quality procedures for 

sediment erosion, pollutant interaction, and groundwater quality, as well as the ability to 

comprise many types of land uses and pollutant sources provide an advantage when using HSPF 

with large, complex watersheds (Donigian and Huber, 1991).  HSPF is also the core watershed 
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simulation module for BASINS software (Ferrari et al., 2009).  BASINS is generally used to 

compile input data and create the User Control Input (UCI) file to perform the HSPF simulations.  

HSPF has been used to assess the effects of land-use change (Brun and Band, 2000; Singh et al, 

2004; Ferrari et al., 2009), mining (Ferrari et al., 2009; Zhang et al., 2009), and reclamation 

practices (Ferrari et al., 2009).   

Ferrari et al. (2009) estimated surface mining and reclamation effects on flood response 

in a disturbed 187 km2 Maryland watershed using HSPF. Results from the study indicated that 

surface mining and reclamation resulted in landscape conditions more similar to urbanized areas 

than areas of deforestation.  Zhang et al. (2009) reviewed the abilities of HSPF and GIS to 

evaluate land use/land cover changes from phosphate mining and reclamation activities in China 

and the U.S.  The review verified the capability of HSPF with GIS to simulate land cover 

changes through hydrologic modeling.  Brun and Band (2000) used HSPF and GIS to investigate 

relationships between runoff ratio and baseflow as a function of impervious cover and soil 

saturation for a 91 km2 watershed in Maryland undergoing urbanization. Study results showed 

baseflow decreased by 20% and no substantial changes in runoff ratio occurred between pre-

urbanization and urbanization (approximately 18% impervious cover due to urban development).  

Singh et al. (2004) used HSPF and Soil and Water Assessment Tool (SWAT) to model the 

hydrology of a 5570 km2 Illinois watershed for urban and agriculture restoration effort 

assessment.  Results from the study indicated that both HSPF and SWAT generally predicted 

daily, average monthly, and annual stream flows close to the respective observed stream flows 

for the experimental watershed.    

5.4 Methods 

HSPF was used in conjunction with BASINS to predict streamflow and volume for an 

experimental watershed in Central Appalachia.  Two time periods, 2011-2020 and 2041-2050, 

and three valley-fill reclamation conditions were modeled to predict hydrologic response 

changes in streamflow and volume.  The three reclamation conditions were modeled by altering 

land use inputs and included: i) no land disturbance occurred; ii) all valley fills reclaimed using 

traditional techniques; and iii) all valley fills reclaimed using GLD methods.  
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5.4.1 Study Area and Land Use   

The experimental watershed was located in Boone County, West Virginia, USA and was 

in the Central Appalachian ecoregion (USEPA, 2013).  The watershed was serviced by USGS 

03198350 Clear Fork at Whitesville, WV (Lat 37°57’58”, Long 81°31’28”) and had a drainage 

area of 166.8 km2.  The elevation of the site ranged from 52 m to 297 m.  Average annual 

precipitation was 1.23 m and the average annual temperature was 11 oC (Idcide, 2015).  The 

undisturbed topography consisted of complex slope profiles (concave-convex) with ridges, 

valleys, and type A and C stream channels as defined by Rosgen (1994).  The hydrology of the 

site included a main perennial channel with contributing tributaries, likely ephemeral to 

intermittent, in a dendritic drainage pattern.  The experimental watershed was delineated into 

nine subwatersheds using BASINS (Fig. 5.1).    
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Figure 5.1. Clear Fork experimental watershed, delineated with labeled subwatersheds 

 

The undisturbed vegetation of the study watershed consisted of predominately deciduous 

forest with the dominant land use of forestland (Fig. 5.2); however, 31% of the site area in 2011 

was a combination of barren and grassland.  The dominant land use alteration cause was assumed 

to be surface mining and valley-fill reclamation practices due to the mining activity in the 

surrounding areas.  Within the experimental watershed in 2011, 21% of the disturbed area 

(barren and grassland) or 6.6% of the total watershed area was classified as valley fills.   

The 2001 land use areas for the study watershed were consolidated into six primary land 

use/land cover conditions (forest, grass/reclaimed land, agriculture pasture, barren/mining land, 

wetlands/water, and developed/urban land) for model inputs (Figure 5.2).  All land use 

conditions were estimated to be permeable.  The urban or built-up land condition was estimated 
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to be 50% pervious and 50% impervious due to roadways, buildings, parking lots, etc. (Appendix 

A).   

 

  

Figure 5.2. Clear Fork experimental watershed, delineated with 2001 land use 

 

5.4.2 Watershed Modeling Using BASINS and HSPF 

HSPF was used with BASINS to predict the hydrologic responses of the experimental 

watershed for multiple valley-fill reclamation conditions.  Site specific data including elevation, 

precipitation, and streamflow were downloaded within BASINS to create the user control input 

(UCI) file for the HSPF simulations.  The data compiled for the HSPF modeling of the study 

watershed are identified in Table 5.1.   
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Table 5.1. HSPF model input data and sources 

   Description Source 

   3-m Digital Elevation Model (DEM) BASINS 

   Mining Permit Boundaries WV DEP Technical Applications and GIS Unit 

   Meteorological Stations and Data BASINS 

   Land Use 
BASINS; Multi-Resolution Land Characteristics 

Consortium (MRLC) 

   Streamflow BASINS; USGS 

 

5.4.3 Model Calibration 

The HSPF model calibration process was a test of the model with known input and output 

information that were used to adjust or estimate factors for which data were not available (Duda 

et al., 2012).  Meteorological data for the Dry Creek weather station (approximately 13 miles 

from study watershed) was available for 2000-2009 and were vital for hydrologic modeling.  

Nine years of precipitation data (Figure 5.3) were used to incorporate a wide range of 

meteorological conditions including periods of below average and above average precipitation 

(Figure 5.4). Average precipitation for the Dry Creek watershed in 2002 was 31% less than the 

historical average precipitation; however, in 2004, the average precipitation was 37% higher than 

the historical average precipitation.  Precipitation data for years 2001 and 2009 were omitted 

from analysis due to not having a full year of precipitation data available.    
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Figure 5.3 Dry Creek weather station average hourly precipitation from 06-01-2000 to 03-31-2009
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Figure 5.4. Dry Creek average annual hourly precipitation (2002-2008) and historical 

average precipitation comparison 

 

Calibration followed standard modeling procedures as advised by established criteria 

(Atkins et al., 2005; Ferrari et al., 2009).  The calibration period, June 2000 through December 

2004, was simulated with land use parameters from 2001. The error allowances described in 

Atkins et al. (2005) and Ferrari et al. (2009) (Table 5.2) were used as criteria for model 

calibration and validation acceptance.  
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Table 5.2. HSPF calibration criteria and error allowances 

Calibration Criteria Limit or Range 

Total Flow Error (%) 
 

+ 10 

Lowest 50% Flow Error (%) 
 

+ 10 

Highest 10% Flow Error (%) 
 

+ 15 

Mean Storm Volume Error (%) 
 

+ 15 

Mean Storm Peak Flow Error (%) 
 

+ 15 

Overall Water Balance Error (%) 
 

-1.3-32.9* 

Mean Yearly Water Balance Error (%) 
 

-2.1-27.8* 

Mean Monthly Water Balance Error (%) 

Nash Sutcliffe Efficiency  

0.7-83.9* 

0.61-0.78** 

     Note: Adapted from Atkins et al. (2005) and Ferrari et al. (2009) 

 *Water balance error limits were not specified in Atkins et al. (2005) or Ferrari et al. (2009), 

so published values of these errors were used   

**Nash Sutcliffe Efficiency range from Ferrari et al. (2009) and Kim and Ryu (2014) 

 

Initially, HSPF input parameters were implemented into WinHSPF based on the input 

parameters used in Atkins et al. (2005) for the USGS Clear Fork station at Clear Fork, WV 

which is 61 km from the study watershed.  However, calibration errors exceeded allowances, 

except for the total flow error (Table 5.3; Figure 5.5). Therefore, further calibration of input 

parameters was completed. 

   

Table 5.3. Initial model run calibration criteria and model run results  

Calibration Criteria    Limit or Range 
Model 

Results 

Total Flow Error  + 10% 8.87% 

Lowest 50% Flow Error   + 10% 49.70% 

Highest 10% Flow Error   + 15% -23.81% 

Mean Storm Volume Error   + 15% 15.04% 

Mean Storm Peak Flow Error   + 15% 32.06% 

Overall Water Balance Error   -1.3-32.9  *  

Mean Yearly Water Balance Error   -2.1-27.8  *  

Mean Monthly Water Balance Error  

Nash Sutcliffe Efficiency 

 0.7-83.9 

0.61-0.78 

* 
0.53 

      * Water Balance not calculated due to other error allowances not met  
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Figure 5.5. Initial model run observed and modeled daily flow comparison (modeled flow in red and observed flow in blue)
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Parameters including AGWRC (groundwater recession rate parameter), CEPSC 

(interception storage capacity), INFILT (index to the infiltration capacity of the soil), INTFW 

(interflow inflow parameter), IRC (interflow recession parameter), LSUR (length of the assumed 

overland flow plane), LZETP (lower zone evapotranspiration parameter), and NSUR (Manning’s 

n for the overland flow plane) were altered from the initial input values during the calibration 

process to meet error allowances.  The groundwater recession rate parameter, AGWRC, was the 

ratio of current groundwater discharge to that from 24 hours earlier and was a relatively sensitive 

calibration parameter (USEPA, 2000).  The overall watershed recession rate was a complex 

function of watershed conditions such as climate, topography, soils, and land use (USEPA, 

2000).  Both Laroche et al., (1996) and Fontaine and Jacomino (1997) reported a calibrated 

optimized value of 0.99 which was used as the calibrated AGWRC value for this study.   

The amount of rainfall that is retained by vegetation, never reaches the land surface, and 

is eventually evaporated is known as the interception storage capacity and represented by the 

very sensitive CEPSC calibration parameter (USEPA, 2000).  Typical maximum values for 

CEPSC grassland (2.54 mm), cropland (6.35 mm) and forest (5.08 mm), provided in Donigian 

and Davis (1978) were used as the calibrated CEPSC values for this study. 

The INFILT parameter was the parameter that effectively controlled the overall division 

of available moisture from precipitation into surface and subsurface flow and storage 

components, known as the index to mean soil infiltration rate, and was a fairly sensitive 

calibration parameter (USEPA, 2000).  High values of INFILT produced more water in the lower 

zone and groundwater resulting in higher baseflow while low values of INFILT produced more 

upper zone and interflow storage water resulting in greater direct overland flow and interflow 

(USEPA, 2000).  Laroche et al. (1996) described the range of INFILT as 0.10 to 5.84 mm/hr 

while USEPA (2000) listed typical values as 0.25 to 6.35 mm/hr.  These values were used for the 

calibration process for this study.  

The coefficient that determined the amount of water which entered the ground from 

surface detention storage and became interflow, as opposed to direct overland flow and upper 

zone storage, was the fairly sensitive calibration parameter INTFW (USEPA, 2000).  The 

INTFW parameter had an influence on storm hydrographs and affected the timing of runoff by 

affecting the division of water between interflow and surface processes (USEPA, 2000).  
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Increasing INTFW increased the amount of interflow and decreased direct overland flow while 

shifting and delaying the flow to later in time (USEPA, 2000).  Decreasing INTFW had the 

opposite effect on the storm hydrographs.  For this study, the INTFW parameter was varied to 

simulate storm hydrographs based upon the typical and possible values provided by the USEPA 

(2000).  

The interflow recession coefficient parameter, IRC, was the ratio of the current daily 

interflow discharge to the interflow discharge on the previous day and was documented as a very 

sensitive calibration parameter by USEPA (2000).  IRC affected the rate at which interflow was 

discharged from storage and affected the hydrograph shape in the recession region of the curve 

between the peak stormflow and baseflow (USEPA, 2000).  The USEPA (2000) listed the 

maximum values for IRC as 0.3 to 0.85, which was used for the calibration of this study.  

The length of the assumed overland flow plane was the LSUR parameter in this study and 

approximated the average length of travel form water to reach any drainage path or stream reach 

and was documented as a relatively insensitive calibration parameter in USEPA (2000).  For this 

study, LSUR was estimated to be 60.93 m or half of the typical ridge to head-of-channel distance 

or the typical distance between stream channels (Buckley et al., 2013).   

The index to lower zone evapotranspiration or LZETP parameter affected 

evapotranspiration from the lower zone which symbolized the primary soil moisture storage and 

root zone of the soil profile and was a relatively sensitive calibration parameter (USEPA, 2000).  

The USEPA (2000) stated the ranges for LZETP for various vegetation (grassland: 0.4-0.6; 

forest: 0.6-0.8; barren: 0.1-0.4; and wetlands: 0.6-0.9) and these values were used for the 

calibration of LZERP in this study.    

The NSUR parameter represented the Manning’s n for overland flow plane and was 

documented as a relatively insensitive calibration parameter in USEPA (2000).  Manning’s n 

values for overland flow were considerably higher than the more commonly published values for 

flow through a channel (USEPA, 2000).  Typical NSUR values have been determined for 

different land surface conditions by Donigian and Davis (1978) and Donigian et al. (1983) and 

were used in the calibration process in this study. 

Following the changes in each of the calibration parameters, the HSPF model was run to 

determine the calibration errors with relation to the error allowances described in Table 5.2.  If 

the model run did not meet the error allowances, calibration parameters were further altered.  A 
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single calibration parameter was manipulated until maximum model improvement (modeled flow 

closest to observed flow) was obtained.  Then, the next input parameter was manipulated to 

achieve model improvement.  This process continued, resulting in eleven model runs (Appendix 

C), until each of the calibration error allowances were met (Table 5.4; Table 5.5), indicating a 

successful model calibration and proper modeling of the study watershed hydrology (Figure 5.6; 

Figure 5.7). 

 

Table 5.4. Initial and calibrated HSPF model calibration runs parameters 

Parameter Description Initial  Calibrated Units 

AGWRC groundwater recession rate parameter 0.038 0.038-0.039 1/mm 

CEPSC  interception storage capacity 0-5.16 0.05-5.08* mm 

INFILT index to the infiltration capacity of the soil 0.025-4.06 0.04 mm/day 

INTFW interflow inflow parameter 0.05-2.5 5.5 none 

IRC interflow recession parameter 0.02-0.1 0.3-0.52* 1/day 

LSUR length of the assumed overland flow plane 15-91 61 m 

LZETP  lower zone E-T parameter 0.228-0.402 0.1-0.7* none 

NSUR Manning's n for the overland flow plane 0.02-0.35 0.2-0.35 none 

Note: Adapted from Ferrari et al. (2009), Additional model inputs in Appendix B 

*Parameter varied monthly 

 

 

Table 5.5. Calibrated model run calibration criteria and model run results 

Calibration Criteria    Limit or Range Model Results 

Total Flow Error   + 10% 6.84% 

Lowest 50% Flow Error   + 10% 9.33% 

Highest 10% Flow Error   + 15% 3.50% 

Mean Storm Volume Error   + 15% 5.11% 

Mean Storm Peak Flow Error   + 15% -0.83% 

Overall Water Balance Error   -1.3-32.9 7.24% 

Mean Yearly Water Balance Error   -2.1-27.8 3.30% 

Mean Monthly Water Balance Error  

Nash Sutcliffe Efficiency 

 0.7-83.9 

0.61-0.78 

 -78.23%* 

0.61 

*Excessive mean monthly water balance error due to single day error outlier of -4941%; Mean 

monthly water balance = 11.83% excluding outlier   
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Figure 5.6. Calibrated model run observed and modeled daily flow comparison (modeled flow in red and observed flow in 

blue) 
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Figure 5.7. Modeled and observed daily flow comparison for HSPF model calibration 

(2001-2004)  

 

5.4.4 Model Validation   

The validation process was an extension of the calibration process, and its purpose was to 

ensure the calibrated model properly assessed all the variables and conditions that could affect 

model results (Duda et al., 2012).  Independently derived discharge data for the USGS station 

Clear Fork at Whitesville, WV were used for validation of the calibrated HSPF model.  The 

model was validated with the 2006 land-use condition for years 2005-2009, and the same input 

parameters used for the calibration were used for the validation.  The same error allowances 

described in Table 5.2 were used for the validation process.  

All of the error allowances were met with the exception of the lowest 50% flow error and 

the Nash Sutcliffe efficiency was lower than similar published literature values (Table 5.6). This 

error difference could have been attributed in part to the large differences in the average annual 
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precipitation for the nine year span compared to the overall historical average annual 

precipitation of the site (Figure 5.4; 0.80-1.59 m average annual precipitation for 2002-2008; 

1.16 m historical average annual precipitation).  Other probable error difference contributions 

include comparing a fixed land use (due to HSPF modeling capabilities) to empirical data over a 

period with non-stationary land use, meteorological data used may not accurately reflect the 

weather pattern of the watershed due to being located approximately 20.9 km away from 

meteorological station, and HSPF relies heavily on calibration and may not adequately reflect 

watershed processes (Brun and Band, 2000; Ferrari et al., 2009).  The validation model (Figure 

5.8; Figure 5.9) was accepted because of the error justification.   

 

Table 5.6. Validated model run validation criteria and model run results 

Validation Criteria Limit or Range Model Results 

Total Flow Error   + 10% 3.12% 

Lowest 50% Flow Error   + 10% 52.11% 

Highest 10% Flow Error   + 15% -12.93% 

Mean Storm Volume Error   + 15% -3.11% 

Mean Storm Peak Flow Error   + 15% 3.62% 

Overall Water Balance Error   -1.3-32.9 9.74%  

Mean Yearly Water Balance Error   -2.1-27.8 5.74% 

Mean Monthly Water Balance Error  

Nash Sutcliffe Efficiency 

 0.7-83.9 

0.61-0.78 

25.28% 

0.52 
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Figure 5.8. Validated model run observed and modeled daily flow comparison (modeled flow in red and observed flow in blue) 
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Figure 5.9. Modeled and observed daily flow comparison for HSPF model validation (2005-

2009)  

 

5.4.5 HSPF Model Predictions 

Five prediction models were performed to estimate the current (2011-2020) and future 

(2041-2050) hydrologic response of the watershed and included: 1) current hydrologic response 

given conventionally reclaimed valley fills; 2) current hydrologic response given GLD valley 

fills; 3) future hydrologic response given conventionally reclaimed valley fills; 4) future 

hydrologic response given GLD valley fills; and 5) future hydrologic response given no land 

disturbance occurred in the watershed.  Prediction simulations were performed using the nine 

years of meteorological data available from 2000 to 2009.  A nine year span was selected to 

incorporate a wide variety of atmospheric driving conditions for hydrologic response, 

specifically for peak flow events (Figure 5.3; Figure 5.4). 

HSPF model land use parameters were altered for each prediction scenario to mimic the 

proposed land use conditions.  This research study focused on valley-fill reclamation; therefore, 
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only valley-fill areas were altered from one land use condition to another.  Mining land use was 

assumed to become reclaimed land and therefore diminished over time.  It was assumed that 

mining within the watershed would decrease over time as reserves were depleted, but valley fills 

from past mining would be reclaimed.  Therefore, HSPF modeling demonstrated these assumed 

alteration trends.   

Valley fills reclaimed using traditional techniques were estimated to respond similar to 

grassland, while valley fills reclaimed using geomorphic landform principles were estimated to 

respond similar to forest (Snyder, 2013).  The no land disturbance scenario included modeling all 

disturbed land as forest, the pre-disturbed land use.  Each prediction simulation began with the 

2011 estimated land use for the watershed, then the barren, forest, and grassland land uses were 

altered.  All remaining land use areas remained unchanged.  

 Total flow, lowest 50% flow, highest 10% flow, mean storm volume, and mean storm 

peak flow were calculated for each modeled scenario. Annual storm peak flow was determined 

by adding all of the flows that occurred when flow increased or if flow increased more than one 

consecutive day, the maximum flow prior to flow decreasing for each year.  The mean storm 

peak flow was calculated by dividing the sum of the annual storm peak flows by the number of 

stormflow events. Mean storm volume was determined by adding the calculated volume of flow 

for each of the annual peak storm events, which were the single peak flow event each year plus 

the flow for the two consecutive days prior and the five consecutive days after. 

The results from prediction scenarios 1 and 2 were compared to determine the current 

hydrologic impact within the watershed between the two reclamation methods. The percent 

differences of total flow, lowest 50% flow, highest 10% flow, mean storm volume, and mean 

storm peak flow were calculated using: 

 

𝐷% =
𝑋1,𝑇𝑟𝑎𝑑−𝑋2,𝐺𝐿𝐷

𝑋2,𝐺𝐿𝐷
         (Eq. 5.1) 

 

where X1,Trad=variable from simulation 1; X2,GLD=variable from simulation 2. 

The results from prediction scenarios 3 and 4 were compared to determine the current 

hydrologic impact within the watershed between the two reclamation methods. The percent 

differences of total flow, lowest 50% flow, highest 10% flow, mean storm volume, and mean 

storm peak flow were calculated using: 
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𝐷% =
𝑋3,𝑇𝑟𝑎𝑑−𝑋4,𝐺𝐿𝐷

𝑋4,𝐺𝐿𝐷
           (Eq. 5.2) 

 

where X3,Trad=variable from simulation 3; X4,GLD=variable from simulation 4. 

The results from prediction scenarios 3 and 5 were compared to determine the current 

hydrologic impact within the watershed between the traditional reclamation method and the no 

land disturbance scenario. The percent differences of total flow, lowest 50% flow, highest 10% 

flow, mean storm volume, and mean storm peak flow were calculated using: 

 

𝐷% =
𝑋3,𝑇𝑟𝑎𝑑−𝑋5,𝑁𝐿𝐷

𝑋5,𝑁𝐿𝐷
       (Eq. 5.3) 

 

where X3,Trad=variable from simulation 3; X5,NLD=variable from simulation 5. 

The results from prediction scenarios 4 and 5 were compared to determine the current 

hydrologic impact within the watershed between the GLD reclamation method and the no land 

disturbance scenario. The percent differences of total flow, lowest 50% flow, highest 10% flow, 

mean storm volume, and mean storm peak flow were calculated using: 

 

𝐷% =
𝑋4,𝐺𝐿𝐷−𝑋5,𝑁𝐿𝐷

𝑋5,𝑁𝐿𝐷
      (Eq. 5.4) 

 

where X4,GLD=variable from simulation 3; X5,NLD=variable from simulation 5. 

5.4.5.1 HSPF Model Predictions 1 and 2 

The first two model predictions performed in HSPF estimated the hydrologic responses 

of the study watershed in its current land use and land cover condition.  Each of the predictions 

were modeled from 2011 to 2020 and used the total area of constructed valley fills within the 

watershed in 2014 (167 km2) for land use input alteration (Fig. 5.10).   
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Figure 5.10. Clear Fork experimental watershed, delineated with labeled subwatersheds, 

and 2014 valley-fill areas  

 

The 2011 land use area inputs were altered for prediction simulations 1 and 2 based on 

the reclamation technique being modeled, traditional or GLD (Table 5.7).  The HSPF scenario of 

traditional valley-fill reclamation was modeled by changing the valley-fill area within each 

subwatershed from barren land use to the reclaimed land use of grassland (Snyder, 2013).  If the 

barren land use area was depleted before all of the valley-fill area was subtracted, the remaining 

valley-fill area was subtracted from the forest land use area, assuming the disturbance occurred 

after 2011 and was classified as forest land use in 2011 (Table 5.8).   

The GLD valley-fill reclamation scenario was modeled using the same land use alteration 

technique except the barren land use area was changed to the reclaimed land use of forest 

(Snyder, 2013).  If the barren land use area was depleted, the remaining valley-fill area was 
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subtracted from grassland, assuming the land had been re-vegetated and was classified as 

grassland in 2011 (Table 5.9).   

 

Table 5.7. HSPF model predictions 1 (traditional) and 2 (GLD): land use alteration 

methods 

Model 

Prediction  

Meteorological 

Data Years 

Simulation 

Years 

VF Area 

Date 

Land 

Use Date 

Reclamation 

Technique 

How Land Use 

Was Altered 

If Land Use 

Depleted 

1 2000-2009 2011-2020 2014 2011 Traditional 

VF area subtracted 

from barren and 

added to grassland 

Remaining VF 

area subtracted 

from forest 

2 2000-2009 2011-2020 2014 2011 GLD 
VF area subtracted 

from barren and 

added to forest 

Remaining VF 
area subtracted 

from grassland 

Note: VF = Valley Fill, N/A = Not Applicable, GLD=Geomorphic Landform Design 

 

 

Table 5.8. HSPF model prediction 1 (traditional): current land use inputs 

Model Prediction 1: Traditional 2011-2020, all valley fills grassland 

Subwatershed 
Area 

(km2) 

Valley Fill 

Area 

(km2) 

No. of 

Valley 

Fills 

Barren Area (km2) Grassland Area (km2) Forest Area (km2) 

2011 
Projected 

2014 
2011 

Projected 

2014 
2011 

Projected 

2014 

1 15.70 0.72 9 0.47 0.00 0.35 1.07 14.87 14.61 

2 27.08 2.94 13 0.11 0.00 12.13 15.08 14.65 11.81 

3 13.59 1.87 17 2.02 0.15 4.49 6.35 7.09 7.09 

4 10.70 0.02 2 0.68 0.66 4.00 4.03 5.55 5.55 

5 26.36 0.92 5 0.82 0.00 2.66 3.58 22.88 22.78 

6 7.30 0.00 0 0.12 0.12 1.22 1.22 5.86 5.86 

7 6.63 0.67 3 1.17 0.50 0.28 0.95 5.13 5.13 

8 31.78 2.65 12 1.22 0.00 14.79 17.43 15.26 13.83 

9 27.68 1.21 6 4.04 2.83 1.63 2.85 21.31 21.31 

Total 166.82 11.00 67 10.64 4.26 41.57 52.56 112.60 107.99 
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Table 5.9. HSPF model prediction 2 (GLD): current land use inputs 

Model Prediction 2: GLD 2011-2020, all valley fills forested 

Subwatershed 
Area 

(km2) 

Valley Fill 

Area 

(km2) 

No. of 

Valley 

Fills 

Barren Area (km2) Grassland Area (km2) Forest Area (km2) 

2011 
Projected 

2014 
2011 

Projected 

2014 
2011 

Projected 

2014 

1 15.70 0.72 9 0.47 0.00 0.35 0.10 14.87 15.59 

2 27.08 2.94 13 0.11 0.00 12.13 9.30 14.65 17.59 

3 13.59 1.87 17 2.02 0.15 4.49 4.49 7.09 8.96 

4 10.70 0.02 2 0.68 0.66 4.00 4.00 5.55 5.58 

5 26.36 0.92 5 0.82 0.00 2.66 2.56 22.88 23.79 

6 7.30 0.00 0 0.12 0.12 1.22 1.22 5.86 5.86 

7 6.63 0.67 3 1.17 0.50 0.28 0.28 5.13 5.80 

8 31.78 2.65 12 1.22 0.00 14.79 13.37 15.26 17.90 

9 27.68 1.21 6 4.04 2.83 1.63 1.63 21.31 22.52 

Total 166.82 11.00 67 10.64 4.26 41.57 36.96 112.60 123.59 

 

5.4.5.2 HSPF Model Predictions 3, 4, and 5     

HSPF model predictions 3, 4, and 5 estimated the hydrologic responses of the study 

watershed in an estimated future land use and land cover condition of the study watershed.  Each 

of the predictions were modeled from 2041 to 2050.  Future valley-fill areas and land use 

conditions were estimated on the valley-fill construction rate within the watershed.  Aerial 

photography was used to evaluate the year major land use changes began within the study 

watershed (Google Earth, 2014).  Surface mining land disturbance and valley-fill construction 

began in approximately 1996 within the study watershed, still occurs today, and was projected to 

occur in the future.  The valley-fill construction rate that occurred from 1996 to 2014 was 

predicted to remain steady for future decades.  Therefore, the projected (2050) valley-fill area 

was estimated to be the current (2014) valley-fill area (WVDEP TAGIS, 2014) for each 

subwatershed multiplied by three (Table 5.10).   
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Table 5.10. Current (2014) and projected (2050) valley-fill areas in experimental 

subwatersheds 

Subwatershed Valley Fill Area (km2) 

  Area (km2) Current (2014) Projected (2050) 

1 15.7 0.7 2.2 

2 27.1 2.9 8.8 

3 13.6 1.9 5.6 

4 10.7 0.02 0.1 

5 26.4 0.9 2.7 

6 7.3 0.0 0.0 

7 6.6 0.7 2.0 

8 31.8 2.6 7.9 

9 27.7 1.2 3.6 

Total 166.9 10.9 32.9 

 

 

The traditional and GLD valley-fill reclamation scenarios 3 and 4 were modeled using 

the same principles applied for the 2011-2020 prediction models.  The 2011 land use area inputs 

for prediction simulations 3 and 4 were altered based on the reclamation technique modeled, 

traditional or GLD, or if no land disturbance occurred (Table 5.11).  The traditional reclamation 

model land use inputs were altered by changing the predicted valley-fill area from barren to 

grassland.  If the barren land use area was depleted, the remaining valley-fill area was subtracted 

from the forest area, assuming the disturbance occurred after 2011 and was classified as forest 

land use in 2011 (Table 5.12).  The GLD reclamation model land use inputs were altered by 

changing the predicted valley-fill area from barren to forest.  If the barren land use area was 

depleted, the remaining valley-fill area was subtracted from grassland, assuming the land had 

been re-vegetated and was classified as grassland in 2011 (Table 5.13).   
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Table 5.11. HSPF model predictions 3 (traditional) and 4 (GLD): land use alteration 

methods 

Model 

Prediction  

Meteorological 

Data Years 

Simulation 

Years 

VF Area 

Date 

Land 

Use Date 

Reclamation 

Technique 

How Land Use 

Was Altered 

If Land Use 

Depleted 

3 2000-2009 2041-2050 
Projected 

2050 
2011 Traditional 

VF area subtracted 

from barren and 

added to grassland 

Remaining VF 

area subtracted 

from forest 

4 2000-2009 2041-2050 
Projected 

2050 
2011 GLD 

VF area subtracted 
from barren and 

added to forest 

Remaining VF 
area subtracted 

from grassland 

Note: VF = Valley Fill, N/A = Not Applicable, GLD=Geomorphic Landform Design 

 

 

Table 5.12. HSPF model prediction 3: land use inputs 

Model Prediction 3: Traditional 2041-2050, all valley fills grassland 

Subwatershed 
Area 

(km2) 

Valley Fill 

Area (km2) 

Barren Area (km2) Grassland Area (km2) Forest Area (km2) 

2011 
Projected 

2014 
2011 

Projected 

2014 
2011 

Projected 

2014 

1 15.70 2.16 0.47 0.00 0.35 2.51 14.87 13.17 

2 27.08 8.83 0.11 0.00 12.13 20.96 14.65 5.93 

3 13.59 5.60 2.02 0.00 4.49 10.09 7.09 3.51 

4 10.70 0.07 0.68 0.61 4.00 4.08 5.55 5.55 

5 26.36 2.75 0.82 0.00 2.66 5.41 22.88 20.94 

6 7.30 0.00 0.12 0.12 1.22 1.22 5.86 5.86 

7 6.63 2.01 1.17 0.00 0.28 2.29 5.13 4.30 

8 31.78 7.94 1.22 0.00 14.79 22.73 15.26 8.54 

9 27.68 3.63 4.04 0.41 1.63 5.27 21.31 21.31 

Total 166.82 32.99 10.64 1.14 41.57 74.55 112.60 89.12 
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Table 5.13. HSPF model prediction 4: land use inputs 

Model Prediction 4: GLD 2041-2050, all valley fills forested 

Subwatershed 
Area 

(km2) 

Valley Fill 

Area (km2) 

Barren Area (km2) Grassland Area (km2) Forest Area (km2) 

2011 
Projected 

2014 
2011 

Projected 

2014 
2011 

Projected 

2014 

1 15.70 2.16 0.47 0.00 0.35 0.00 14.87 15.69 

2 27.08 8.83 0.11 0.00 12.13 3.41 14.65 23.48 

3 13.59 5.60 2.02 0.00 4.49 0.91 7.09 12.69 

4 10.70 0.07 0.68 0.61 4.00 4.00 5.55 5.62 

5 26.36 2.75 0.82 0.00 2.66 0.73 22.88 25.62 

6 7.30 0.00 0.12 0.12 1.22 1.22 5.86 5.86 

7 6.63 2.01 1.17 0.00 0.28 0.00 5.13 6.58 

8 31.78 7.94 1.22 0.00 14.79 8.07 15.26 23.19 

9 27.68 3.63 4.04 0.41 1.63 1.63 21.31 24.95 

Total 166.82 32.99 10.64 1.14 41.57 19.99 112.60 143.68 

 

 

The 2011 land use area inputs for prediction simulation 5 was altered based on if no land 

disturbance had occurred within the watershed (Table 5.14).  The HSPF scenario of no land 

disturbance was modeled by altering the barren, grassland, and forest land use areas within each 

subwatershed.  All of the barren and grassland areas were depleted and added to the forest area to 

simulate no land disturbance had occurred within the study watershed through 2050 (Table 5.15).   

 

Table 5.14. HSPF model prediction 5: land use alteration 

Model 

Prediction  

Meteorological 

Data Years 

Simulation 

Years 

VF Area 

Date 

Land 

Use Date 

Reclamation 

Technique 

How Land Use 

Was Altered 

If Land Use 

Depleted 

5 2000-2009 2041-2050 N/A 2011 N/A 

All barren and 

grassland depleted 

and added to forest 

N/A 

Note: VF = Valley Fill, N/A = Not Applicable 
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Table 5.15. HSPF model prediction 5: land use inputs 

Model Prediction 5: NLD 2041-2050, no barren or grassland, all forest 

Subwatershed 
Area 

(km2) 

Valley Fill 

Area (km2) 

Barren Area (km2) Grassland Area (km2) Forest Area (km2) 

2011 
Projected 

2014 
2011 

Projected 

2014 
2011 

Projected 

2014 

1 15.70 0.00 0.47 0.00 0.35 0.00 14.87 15.69 

2 27.08 0.00 0.11 0.00 12.13 0.00 14.65 26.89 

3 13.59 0.00 2.02 0.00 4.49 0.00 7.09 13.59 

4 10.70 0.00 0.68 0.00 4.00 0.00 5.55 10.24 

5 26.36 0.00 0.82 0.00 2.66 0.00 22.88 26.36 

6 7.30 0.00 0.12 0.00 1.22 0.00 5.86 7.21 

7 6.63 0.00 1.17 0.00 0.28 0.00 5.13 6.58 

8 31.78 0.00 1.22 0.00 14.79 0.00 15.26 31.27 

9 27.68 0.00 4.04 0.00 1.63 0.00 21.31 26.99 

Total 166.82 0.00 10.64 0.00 41.57 0.00 112.60 164.81 

 

5.5 Results 

5.5.1 HSPF Model Evaluation  

Calibration (2000-2004) and validation (2005-2009) of the Clear Fork watershed HSPF 

model resulted in similar Nash Sutcliffe efficiency (NSE) and daily flow errors (Table 5.5: 

NSE=0.61; Table 5.6: NSE=0.52).  The observed and modeled data for the seven year simulation 

period (2001-2008) were compared with observations using log Pearson III flood frequency 

analysis (Table 5.16; Figure 5.11).  Data from simulation years 2000 and 2009 were excluded 

due to lack of full year data availability.  Observed and modeled annual peak stormflows were 

used to determine 2-, 5-, 10-, 25-, 50-, 100-, and 200-yr stormflows for the experimental 

watershed.  Stormflow trends were similar for the observed and modeled simulations (Figure 

5.11).    
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Table 5.16. Flood frequency calculations using log-Pearson type III analysis for observed 

and modeled simulations 

  Observed Modeled 

Return 
Period 
(Years) 

Skew 
Coefficient 
K(0.1506) 

Discharge 
Q (m3/s) 

Skew Coefficient     
K(-0.0815) 

Discharge 
Q (m3/s) 

2 -0.025 0.0 0.003 0.1 
5 0.833 19.6 0.843 21.1 

10 1.297 547.6 1.280 485.5 
25 1.802 20572.7 1.745 13647.5 

50 2.133 222381.6 2.044 117138.5 
100 2.436 1959191.3 2.312 803759.2 

200 2.717 14686882.7 2.559 4709418.6 

 

 

 

Figure 5.11. Flood frequency analysis for Clear Fork watershed using log-Pearson type III 

analysis using observed and modeled annual peak stormflow values (log-log scale) 
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5.5.2 HSPF Prediction Model Results 

The HSPF model predicted the hydrologic impact of altering the traditional valley-fill 

reclamation to the innovative geomorphic landform reclamation approach.  Five hydrologic 

response prediction simulations were completed, 1) current hydrologic response given 

conventionally reclaimed valley fills; 2) current hydrologic response given GLD valley fills; 3) 

future hydrologic response given conventionally reclaimed valley fills; 4) future hydrologic 

response given GLD valley fills; and 5) future hydrologic response given no land disturbance 

occurred in the watershed, and the results were compared based on reclamation type and time 

frame.   

5.5.2.1 HSPF Prediction Model Results: Predictions 1 and 2 

Model simulations 1 and 2 predicted the current hydrologic responses within the study 

watershed for GLD valley-fill reclamation and traditional reclamation methods (Figure 5.12).  

Results indicated no substantial difference (<1.1% difference) in daily flow or volume when the 

two valley-fill reclamation techniques were compared.  The total flow, lowest 50% flow, highest 

10% flow, mean storm volume, and mean storm peak flow were lower (-0.27% to -1.10% 

difference) for the watershed when geomorphic valley-fill reclamation was modeled as opposed 

to conventional valley-fill reclamation (Table 5.17).  
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Figure 5.12. Model predictions 1 and 2 daily flow comparison for 2011-2020 (traditional flow in blue and GLD flow in red) 
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Table 5.17. Model predictions 1 (traditional) and 2 (GLD) comparison 

Prediction Criteria  D% 

Total Flow    -0.57 

Lowest 50% Flow    -0.27 

Highest 10% Flow    -0.85 

Mean Storm Volume    -0.67 

Mean Storm Peak Flow    -1.10 
        Note: D%=(X1,Trad-X2,GLD)/X2,GLD; where X1,Trad=variable 

from simulation 1; X2,GLD=variable from simulation 2 

  

 Flood frequency analysis was performed for the prediction scenarios compared to the 

observed values (Table 5.18; Figure 5.13).  Observed annual peak stormflow values, using daily 

flow data, were used to determine 5-, 10-, 25-, 50-, 100-, and 200-year stormflows for the 

experimental watershed.  Predicted annual peak stormflow values, from daily flow data, were 

used to predict the same year stormflows for model predictions 1 and 2. No substantial difference 

(0-18 m3/s) resulted among the traditional and GLD predicted 5-, 10-, 25-, and 50-yr stormflows.  

However, the GLD 100- and 200-yr stormsflows were substantial higher than the traditional 

stormflows (100-yr: 90.1 m3/s difference; 200-yr: 368.1 m3/s difference) (Table 5.18).  Flood 

discharge trends were similar for the observed, current traditional, and current GLD simulations 

(Figure 5.13).    
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Table 5.18. Flood frequency calculations using log-Pearson type III analysis for observed 

and model predictions 1 (traditional) and 2 (GLD) 

  Observed Traditional GLD 

Return 
Period 
(Years) 

Skew 
Coefficient 
K(0.1506) 

Discharge 
(m3/s) 

Skew Coefficient     
K(-0.1747) 

Discharge 
(m3/s) 

Skew 
Coefficient     
K(-0.1747) 

Discharge 
(m3/s) 

5 0.833 19.6 0.855 23.1 0.855 23.1 
10 1.297 547.6 1.225 327.4 1.225 327.5 

25 1.802 20572.7 1.590 4505.2 1.590 4507.8 
50 2.133 222381.6 1.811 21961.9 1.811 21979.9 

100 2.436 1959191.3 1.999 84725.2 1.999 84815.3 
200 2.717 14686882.7 2.163 275496.4 2.163 275864.5 

 

 

 

Figure 5.13. Flood frequency analysis for Clear Fork watershed using log-Pearson type III 

analysis using observed, current traditional predicted, and current GLD predicted annual 

peak stormflow values (log-log scale) 
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Average annual flows, annual peak stormflows, and average daily flow ranges were 

analyzed for prediction models 1 (traditional) and 2 (GLD).  Average annual flows, based on 

daily flow values, were slightly reduced (0.1-0.2 m3/s) for the GLD prediction compared to the 

conventional prediction.  Average annual flows over the nine year model varied substantially 

(2011: 0.84-0.86 m3/s; 2014: 4.52-4.53 m3/s) (Table 5.19).   

Estimated GLD annual peak stormflows were 0.07-0.57 m3/s lower than the traditional 

simulation.  Annual peak stormflows from one year to another varied greatly.  Estimated peak 

stormflow for 2011 was 9.69 m3/s for the traditional reclamation and 9.48 m3/s for the GLD 

reclamation.  However, the 2014 peak stormflow was estimated to be 66.49 m3/s for the 

traditional reclamation and 65.98 m3/s for the GLD scenario (Table 5.19).   

Average daily flow ranges indicated no substantial difference (0-0.57m3/s) among 

traditional and GLD conditions when compared to one another on a yearly basis. However, daily 

flow ranges varied substantially between years, as demonstrated by significant differences in 

peak stormflows over the nine year period (Traditional: 9.69-66.49 m3/s; GLD: 9.48-65.98 m3/s).  

Minimum daily flows remained relatively constant (0-0.37 m3/s) throughout the nine year 

simulation for both reclamation practices (Table 5.19).       

 

Table 5.19. Model predictions 1 (traditional) and 2 (GLD) average annual flow, annual 

peak stormflow, and average daily flow range 

  Average Annual Flow Annual Peak Stormflow Average Daily Flow Range 

 

Traditional GLD Traditional GLD 
Traditional-

GLD 
Traditional GLD 

Year (m3/s) (m3/s) (m3/s) (m3/s) (m3/s) (m3/s) (m3/s) 

2011 0.86 0.84 9.69 9.48 0.21 0.01-9.69 0.00-9.48 
2012 2.52 2.50 56.81 56.28 0.53 0.08-56.81 0.08-56.28 

2013 2.54 2.52 25.45 25.39 0.07 0.04-25.45 0.04-25.39 
2014 4.53 4.52 66.49 65.98 0.51 0.35-66.49 0.34-65.98 

2015 4.21 4.19 61.63 61.41 0.22 0.14-61.63 0.15-61.41 
2016 2.01 1.99 18.00 17.75 0.25 0.05-18.00 0.06-17.75 

2017 2.45 2.44 33.13 32.84 0.29 0.21-33.13 0.23-32.84 
2018 1.84 1.82 50.97 50.40 0.57 0.06-50.97 0.05-50.40 

2019 2.43 2.41 30.05 29.59 0.46 0.06-30.05 0.05-29.59 
2020 3.65 3.66 33.46 32.97 0.49 0.35-33.46 0.37-32.97 
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 Estimated average monthly flows and monthly flow ranges were also evaluated.  There 

was no substantial difference (0.00-0.03 m3/s) among traditional and GLD average monthly 

flows; however, average monthly flows varied from month to month with the highest average 

monthly flow in April (Traditional: 4.16 m3/s; GLD: 4.15 m3/s) and the lowest in August 

(Traditional: 1.18 m3/s; GLD: 1.17 m3/s) (Table 5.20).   

Predicted monthly flow ranges for traditional and GLD scenarios resulted in no 

substantial difference (0.00-0.14 m3/s).  However, monthly flow ranges varied when compared to 

other months as was the trend with the average monthly flows. Variances in monthly flow ranges 

were demonstrated by considerable differences in peak monthly flows over the twelve months.  

Peak monthly flow for August was 2.80 m3/s for the traditional reclamation and 2.79 m3/s for the 

GLD reclamation.  However, peak monthly flow for November was 9.84 m3/s for the traditional 

reclamation and 9.81 m3/s for the GLD scenario (Table 5.20).  

 

Table 5.20. Model predictions 1 (traditional) and 2 (GLD) average monthly flow and 

monthly flow range 

 

Average Monthly Flow Monthly Flow Range 

 

Traditional GLD Traditional GLD 

Month (m3/s) (m3/s) (m3/s) (m3/s) 

January 3.51 3.50 1.36-6.97 1.34-6.98 
February 3.44 3.44 1.08-8.57 1.11-8.53 

March 2.71 2.71 0.15-4.20 0.14-4.20 
April 4.16 4.15 0.78-7.10 0.74-7.09 

May 3.48 3.48 0.75-9.19 0.74-9.13 
June 2.25 2.25 0.26-6.64 0.27-6.63 

July 2.28 2.25 0.60-6.48 0.61-6.39 
August 1.18 1.17 0.18-2.80 0.18-2.79 

September 1.75 1.73 0.12-6.71 0.12-6.68 
October 1.44 1.41 0.10-4.06 0.10-4.00 

November 2.68 2.65 0.16-9.84 0.16-9.81 
December 3.00 2.97 0.82-4.94 0.78-4.80 

 

5.5.2.2 HSPF Prediction Model Results: Predictions 3, 4, and 5 

Prediction simulations 3 and 4 estimated the future hydrologic responses within the 

experimental watershed with conventional and GLD valley-fill reclamation.  Model predictions 3 
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and 4 resulted in no substantial difference in daily flow or volume (Fig. 5.14).  Total flow, lowest 

50% flow, highest 10% flow, mean storm volume, and mean storm peak flow decreased (-0.34% 

to -3.33% difference) for the geomorphic valley-fill reclamation compared to the traditional 

valley-fill reclamation (Table 5.21).  Prediction simulations 3 and 4, resulted in larger differences 

(-0.34% to -3.33% difference) in flow and volume compared to prediction simulations 1 and 2, 

percent differences (-0.27% to -1.1% difference; Table 5.17).     
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Figure 5.14. Model predictions 3, 4 and 5 daily flow comparison for 2041-2050 (traditional flow in blue, GLD flow in red, and NLD 

flow in green)
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Table 5.21. Model predictions 3 (traditional) and 4 (GLD) comparison  

Prediction Criteria D% 

Total Flow  -1.72 
Lowest 50% Flow  -0.34 
Highest 10% Flow  -2.64 

Mean Storm Volume -2.11 
Mean Storm Peak Flow  -3.33 

Note: D%=(X3,Trad-X4,GLD)/X4,GLD; where 

X3,Trad=variable from simulation 3; X4,GLD=variable 

from simulation 4 

 

Flood frequency analysis was performed using log-Pearson type III analysis for the 

observed model and model predictions 3 (traditional), 4 (GLD), and 5 (NLD) (Table 5.22; Figure 

5.15).  Observed annual peak stormflow values, using daily flow data, were used to determine 5-, 

10-, 25-, 50-, 100-, and 200-year stormflows for the experimental watershed.  Predicted annual 

peak stormflow values were used to predict the stormflows for model predictions 3, 4, and 5. The 

predicted 100- and 200-yr stormsflows for the traditional, GLD, and NLD scenarios varied 

substantially.  The 100-yr GLD stormflow was 5,003 m3/s greater than the 100-yr traditional 

stormflow and 4,969 m3/s less than the 100-yr NLD stormflow.  The 100-yr GLD stormflow was 

20,852 m3/s greater than the 100-yr traditional stormflow and 20,993 m3/s less than the 100-yr 

NLD stormflow (Table 5.22). Flood frequency trends were similar for the observed, future 

traditional, future GLD, and future NLD simulations (Figure 5.15). 
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Table 5.22. Flood frequency calculations using log-Pearson type III analysis for observed 

and model predictions 3 (traditional), 4 (GLD), and 5 (no land disturbance) 

  Observed Traditional GLD NLD 

Return 
Period 
(Years) 

Skew 
Coefficient 
K(0.1506) 

Discharge 
(m3/s) 

Skew 
Coefficient     
K(-0.4315) 

Discharge 
(m3/s) 

Skew 
Coefficient     
K(-0.4212) 

Discharge 
(m3/s) 

Skew 
Coefficient     
K(-0.4115) 

Discharge 
(m3/s) 

2 -0.025 0.0 0.071 0.1 0.070 0.1 0.068 0.1 
5 0.833 19.6 0.855 23.1 0.855 23.0 0.855 23.0 

10 1.297 547.6 1.226 330.7 1.228 334.4 1.229 337.9 
25 1.802 20572.7 1.594 4622.8 1.598 4758.0 1.602 4889.0 

50 2.133 222381.6 1.816 22804.3 1.822 23786.0 1.827 24749.0 
100 2.436 1959191.3 2.006 88968.6 2.013 93972.0 2.020 98940.9 

200 2.717 14686882.7 2.172 292947.1 2.181 313799.2 2.190 334791.8 

 

 

 

Figure 5.15. Flood frequency analysis for Clear Fork watershed using log-Pearson type III 

analysis using observed, future traditional predicted, future GLD predicted, and future 

NLD predicted annual peak stormflow values (log-log scale) 

 

Prediction simulations 3 and 5 resulted in similar future hydrologic responses within the 

study watershed for conventional valley-fill reclamation compared to the no land disturbance 
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(NLD) simulation (Fig. 5.14). The total flow, lowest 50% flow, highest 10% flow, mean storm 

volume, and mean storm peak flow were higher for the watershed when conventional valley-fill 

reclamation was modeled as opposed to no land disturbance (0.32% to -4.36% difference; Table 

5.23). 

 

Table 5.23. Model predictions 3 (traditional) and 5 (no land disturbance) comparison 

Prediction Criteria D%  

Total Flow  2.26 
Lowest 50% Flow  0.32 
Highest 10% Flow  3.53 

Mean Storm Volume  2.88 
Mean Storm Peak Flow  4.36 

   Note: D%=(X3,Trad-X5,NLD)/X5,NLD; where 

X3,Trad=variable from simulation 3; X5,NLD=variable 

from simulation 5 

 

A comparison of prediction simulations 4 and 5 showed the future hydrologic impact was 

similar for the valley fills reclaimed using geomorphic reclamation methods compared to the no 

land disturbance simulation (Fig. 5.14). The total flow, highest 10% flow, mean storm volume, 

and mean storm peak flow were higher for the watershed when geomorphic valley-fill 

reclamation was modeled as opposed to if no land disturbance had occurred in the watershed 

(0.51% to 0.89% difference; Table 5.24). The lowest 50% flow was lower for the geomorphic 

valley-fill model compared to the no land disturbance model (-0.03% difference; Table 5.24). 
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Table 5.24. Model predictions 4 (GLD) and 5 (No Land Disturbance) comparison 

Prediction Criteria GLD vs NLD 

Total Flow  0.51% 

Lowest 50% Flow  -0.03% 

Highest 10% Flow  0.79% 

Mean Storm Volume  0.70% 

Mean Storm Peak Flow  0.89% 
Note: D%=(X4,GLD-X5,NLD)/X5,NLD; where 

X4,GLD=variable from simulation 4; X5,NLD=variable 

from simulation 5 

 

Average annual flows and annual peak stormflows were analyzed for prediction models 3 

(traditional), 4 (GLD), and 5 (NLD) (Table 5.25).  Average annual flows, based on daily flow 

values, were slightly increased (0.00-0.02 m3/s) for the GLD prediction compared to the NLD 

prediction for all simulation years (2041-2050) except 2050.  For 2050, the GLD average annual 

flow was 0.03 m3/s lower than the NLD condition.  Average annual flows were slightly greater 

(0.01-0.10 m3/s) for the traditional reclamation prediction compared to the NLD prediction for 

all model years (2041-2050) except 2050.  The traditional average annual flow was 0.07 m3/s 

lower than the NLD model.  Although the average annual flows resulted in no substantial 

difference when compared on a yearly basis (0.01-0.10 m3/s), average annual flows varied 

substantially over the nine year model simulation (2041: 0.78-0.86 m3/s; 2044: 4.5-4.52 m3/s) 

(Table 5.25).   

Annual peak stormflows for the traditional valley-fill reclamation simulation were greater 

(0.86-2.12 m3/s) than the NLD model for all simulation years (2041-2050).  Estimated GLD 

annual peak stormflows were 0.08-0.54 m3/s lower than the NLD simulation.  Annual peak 

stormflows varied greatly (8.90-66.75 m3/s) over the nine year model period (2041-2050) (Table 

5.25).  
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Table 5.25. Model predictions 3 (traditional), 4 (GLD), and 5 (no land disturbance) average 

annual flow and annual peak stormflow 

  
Average Annual Flow Annual Peak Stormflow 

 

Conventional GLD NLD Conventional GLD NLD 

Year (m3/s) (m3/s) (m3/s) (m3/s) (m3/s) (m3/s) 

2041 0.86 0.80 0.78 9.78 9.14 8.90 
2042 2.52 2.47 2.46 57.23 55.62 55.16 

2043 2.54 2.48 2.47 25.37 24.81 24.73 
2044 4.52 4.51 4.51 66.75 65.21 64.82 

2045 4.21 4.17 4.15 61.77 61.10 60.91 
2046 2.02 1.94 1.92 18.14 17.39 17.22 

2047 2.44 2.41 2.40 33.06 32.15 31.85 
2048 1.85 1.78 1.76 51.45 49.73 49.33 

2049 2.43 2.38 2.36 30.24 28.78 28.24 
2050 3.63 3.67 3.70 33.85 32.41 32.10 

 

 

Modeled average monthly flows and monthly flow ranges for the nine year simulation 

(2041-2050) were also evaluated (Table 5.26).  There was no substantial difference (0.00-0.15 

m3/s) among traditional, GLD, and NLD average monthly flows.  For January, average monthly 

flows were lowest (3.49 m3/s) for the GLD simulation and highest (3.50 m3/s) for the NLD and 

traditional models.  Average monthly flow for February was lowest (3.43 m3/s) for the traditional 

reclamation scenario and highest (3.45 m3/s) for the NLD simulation.  For March, average 

monthly flow was lowest (2.70 m3/s) for the traditional and GLD scenarios and highest (2.71 

m3/s) for the NLD model.  Average monthly flows for April through December were highest for 

the traditional reclamation simulation and lowest for the NLD model.  Over the nine year 

simulation period (2041-2050), average monthly flows varied on a monthly basis with the 

highest average monthly flow in April (4.14-4.16 m3/s) and the lowest in August (1.11-1.18 

m3/s) (Table 5.26).   

Predicted monthly flow ranges for traditional, GLD, and NLD scenarios resulted in no 

substantial difference (0-0.15 m3/s).  However, monthly flow ranges varied greatly over the nine 

year simulation as was the trend with the average monthly flows. Variances in monthly flow 

ranges were demonstrated by large differences in peak monthly flows over the twelve months.  

Peak monthly flow for August was 2.79 m3/s for the traditional and 2.76 m3/s for the GLD and 
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the NLD.  However, peak monthly flow for November was 9.86 m3/s for the traditional, 9.75 

m3/s for the GLD, and 9.71 m3/s for the NLD (Table 5.26). 

 

Table 5.26. Model predictions 3 (traditional), 4 (GLD), and 5 (no land disturbance) average 

monthly flow and monthly flow range 

 

Average Monthly Flow Monthly Flow Range 

 

Traditional GLD NLD Traditional GLD NLD 

Month (m3/s) (m3/s) (m3/s) (m3/s) (m3/s) (m3/s) 

January 3.50 3.49 3.50 1.38-6.94 1.30-7.00 1.28-7.03 

February 3.43 3.44 3.45 1.05-8.59 1.14-8.49 1.18-8.46 
March 2.70 2.70 2.71 0.15-4.20 0.12-4.20 0.12-4.21 

April 4.16 4.14 4.14 0.82-7.09 0.68-7.08 0.66-7.08 
May 3.47 3.46 3.46 0.75-9.23 0.71-9.03 0.71-8.96 

June 2.24 2.23 2.22 0.24-6.64 0.28-6.60 0.27-6.59 
July 2.29 2.18 2.14 0.58-6.53 0.51-6.23 0.44-6.11 

August 1.18 1.13 1.11 0.18-2.79 0.17-2.76 0.17-2.76 

September 1.76 1.68 1.64 0.10-6.73 0.10-6.63 0.09-6.60 

October 1.44 1.37 1.34 0.09-4.09 0.09-3.92 0.09-3.90 

November 2.70 2.59 2.56 0.16-9.86 0.16-9.75 0.16-9.71 

December 3.01 2.93 2.90 0.85-5.06 0.72-4.65 0.67-4.68 

 

5.6 Discussion 

Predictions 1 (current 2011-2020 conventional fill) and 2 (current 2011-2020 GLD fill) 

were modeled for comparison of the current hydrologic impact within the experimental 

watershed if geomorphic reclamation was implemented in place of traditional valley-fill 

reclamation.  Stream flows and volumes were compared among the scenarios 1 and 2.  Results 

indicated no substantial difference (<1.1% difference) in daily flow or volume (Table 5.17). 

Average annual flows were slightly reduced (0.1-0.2 m3/s) for the GLD prediction compared to 

the conventional prediction. Annual peak stormflows were 0.07-0.57 m3/s lower for the GLD 

simulation compared to the traditional simulation. The minimal difference between the flows 

modeled for simulations 1 and 2 could be attributed to the focus on valley-fill reclamation areas 

only (11 km2; 6.6% of experimental watershed), as opposed to all mining/disturbed areas within 

the watershed (52 km2; 31% of the experimental watershed).  During model predictions, only 
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valley-fill areas were altered from one land use condition to another (Table 5.8; Table 5.9). 

Mined land (barren land) was assumed to become reclaimed land (grassland) within the 

watershed over time.  The small amount of land use change (6.6%) within the model indicates 

the minimal change in modeled flows for simulations 1 and 2.   

Over the nine year model, average annual flows (2011: 0.84-0.86 m3/s; 2014: 4.52-4.53 

m3/s) and annual peak stormflows (2011: 9.48-9.69 m3/s; 2014: 65.98-66.49 m3/s) varied 

substantially for simulations 1 and 2 (Table 5.17). The large differences in flows over the model 

study period could be attributed to the substantial average annual precipitation variances over the 

simulation period.  Average precipitation for the Dry Creek watershed in 2002 was 31% less than 

the historical average precipitation; however, in 2004, the average precipitation was 37% higher 

than the historical average precipitation (Figure 5.3; Figure 5.4).   

There was no substantial difference (0.00-0.03 m3/s) in monthly flows among simulation 

1 and 2.   However, average monthly flows varied from month to month with the highest average 

monthly flow in April (Traditional: 4.16 m3/s; GLD: 4.15 m3/s) and the lowest in August 

(Traditional: 1.18 m3/s; GLD: 1.17 m3/s).  Differences in monthly flows could be attributed to 

seasonal precipitation variability.  Figure 5.3 illustrated the variableness of hourly precipitation 

at the Dry Creek weather station. The highest average monthly flows could be attributed to snow 

melt and increased precipitation that could be expected in the experimental watershed in the 

Spring season (Figure 5.3). The lowest average monthly flows could be attributed decreased 

precipitation in the watershed as shown in Figure 5.3.     

Predictions 3 (future 2041-2050 conventional fill), 4 (future 2041-2050 GLD fill), and 5 

(future 2041-2050 no land disturbance) were modeled for comparison of the future hydrologic 

impact within the experimental watershed if geomorphic reclamation was implemented in place 

of traditional valley-fill reclamation and if no land disturbance had occurred.  No substantial 

difference occurred in future stream flows or volumes for the watershed when GLD and 

conventional valley-fill reclamation were compared to the NLD (conventional: 0.32% to -4.36% 

difference, Table 5.23; GLD: 0.51% to 0.89% difference, Table 5.24). Predicted stream flows 

and volumes decreased (-0.34% to -3.33% difference) for the geomorphic valley-fill reclamation 

compared to the traditional valley-fill reclamation (Table 5.21).  Prediction simulations 3 and 4, 

resulted in larger differences (-0.34% to -3.33% difference) in flow and volume compared to 

prediction simulations 1 and 2 (-0.27% to -1.1% difference; Table 5.17). The minimal 
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differences between future flows and volumes when traditional and GLD valley-fill reclamation 

techniques were compared.  This could be attributed to the emphasis on valley-fill areas (33 km2; 

19.8% of experimental watershed), as opposed to the total disturbed areas within the watershed 

(76 km2; 46% of the experimental watershed).  Mining land use was assumed to become 

reclaimed land and diminish over time as reserves within the watershed depleted.  It was also 

assumed that valley fills from past mining activity would require extended periods of time to be 

reclaimed.  However, future mining and reclamation trends are difficult to predict and further 

HSPF modeling might be necessary to determine if mining practices within the watershed were 

to greatly increase in the future.  Minimal differences in future hydrologic responses could also 

be attributed to the long-term hydrologic models (prediction simulations 3, 4, and 5) not 

incorporating any alterations of the landscape due to long-term erosional changes. 

Average annual flows were slightly increased for prediction 3 (0.01-0.10 m3/s greater) 

and prediction 4 (0-0.02 m3/s larger) compared to prediction 5 for all simulation years (2041-

2050) except 2050.  For 2050, the traditional average annual flow was 0.07 m3/s lower than the 

NLD simulation and the GLD average annual flow was 0.03 m3/s lower than the NLD condition. 

Although the average annual flows resulted in no substantial difference when compared on a 

yearly basis (0-0.10 m3/s), average annual flows varied substantially over the nine year model 

simulation (2041: 0.78-0.86 m3/s; 2044: 4.5-4.52 m3/s) (Table 5.25).   

Annual peak stormflows for the traditional valley-fill reclamation simulation were 0.86-

2.12 m3/s greater than the NLD annual peak stormflows and GLD annual peak stormflows were 

0.08-0.54 m3/s lower than the NLD simulation.  Similar to the modeled current annual peak 

stormflows, the modeled future annual peak stormflows varied greatly (8.90-66.75 m3/s) over the 

nine year model period (2041-2050; Table 5.25). The substantial differences in average annual 

precipitation over the simulation period could be the cause of the large differences in annual 

peak stormflows (Figure 5.4).      

No substantial difference (0.00-0.15 m3/s) resulted among the average monthly flows of 

simulations 3, 4, and 5.  However, monthly flows varied greatly from month to month and could 

be due to seasonal precipitation and temperature variability.  Over the nine year simulation 

period (2041-2050), average monthly flows varied on a monthly basis with the highest average 

monthly flow in April (4.14-4.16 m3/s) and the lowest in August (1.11-1.18 m3/s) (Table 5.26).  

Figure 5.3 illustrated the variableness of hourly precipitation at the closest weather station. 
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Predicted monthly flow ranges for simulations 3, 4, and 5 resulted in no substantial 

difference (0-0.15 m3/s).  However, monthly flow ranges varied greatly over the nine year 

simulation as was the trend with the average monthly flows. Variances in monthly flow ranges 

were demonstrated by large differences in peak monthly flows over the twelve months.  Peak 

monthly flow for August was 2.79 m3/s for the traditional and 2.76 m3/s for the GLD and the 

NLD.  However, peak monthly flow for November was 9.86 m3/s for the traditional, 9.75 m3/s 

for the GLD, and 9.71 m3/s for the NLD (Table 5.26).   

Flood frequency analysis resulted in no substantial difference (0-18 m3/s) among the 

predicted 2-, 5-, 10-, 25-, and 50-yr stormflows for simulations 1 and 2.  However, the current 

GLD 100- and 200-yr storms flows were greater than the traditional stormflows (100-yr: 90.1 

m3/s difference; 200-yr: 368.1 m3/s difference) (Table 5.18).  No substantial difference resulted 

among the 2-, 5-, 10-, 25-, 50-, 100-, and 200-year stormflows for simulations 3, 4, and 5.  

However, the predicted 100- and 200-yr stormflows for the future traditional, GLD, and NLD 

scenarios varied greatly.  The 100-yr GLD stormflow was 5,003 m3/s greater than the 100-yr 

traditional stormflow and 4,969 m3/s less than the 100-yr NLD stormflow.  The 100-yr GLD 

stormflow was 20,852 m3/s greater than the 100-yr traditional stormflow and 20,993 m3/s less 

than the 100-yr NLD stormflow (Table 5.22).  The change in stormflows between the 

simulations could be attributed to the land use/land cover change within the watershed for each 

of the reclamation practices.    

Hydrologic response modeling through HSPF was used to identify differences and trends 

in flows and volumes that could be used for mitigation plans in a disturbed experimental 

watershed.  One school and two Army Corp. of Engineers’ dams are located within the impacted 

watershed and would have the potential to be damaged during flooding, resulting in possible 

property damage, economical loss, and loss of life.  Predicted hydrologic response impacts 

would provide knowledge on flood mitigation in the study watershed and other watersheds 

impacted by surface mining and reclamation.  These results and trends are expected to be similar 

across watersheds in Central Appalachia and the hydrologic prediction technique used has the 

potential to be applied to many reclamation simulations with differing land uses and valley-fill 

areas.  
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6 Conclusions 

6.1 Valley-Fill Designs using Geomorphic Landform Principles 

Alternative and retrofit valley-fill designs were created for a valley-fill reclamation site in 

southern West Virginia using the design tool Carlson® Natural Regrade® with GeoFluvTM and 

geomorphic landform principles. The alternative geomorphic reclamation design was created 

using regional field data to more accurately mimic the undisturbed topography.  The GLD 

topography had a permit area of 0.98 km2 and was comprised of ridges, valleys, and channels, 

resembling the pre-mined topography.  Overall resulting drainage density of the site was 5.6 km-

1, within the target range of 5.3 + 20% km-1, suggesting site hydrologic balance. Additionally, the 

drainage density of each channel was within the targeted range as to create a balanced design.  

Created channels (13 stream channels; 5,466 m total combined length; 131-1,440 m length 

range; type A and type C (Rosgen, 1994)) mimicked the pre-disturbed dendritic drainage pattern 

of the site.  Main valley slope was 12.7% and the elevation ranged from 354 m to 608 m. The 

regional data GLD implemented stream channel mitigation on site and allowed the mitigation 

credits to remain on the disturbed area.   

The retrofit reclamation design applied geomorphic landform principles to the top of a 

valley fill constructed using conventional methods.  The conventional valley fill consisted of a 

slightly sloping (1-2%) crest with surrounding SWROA drainage ditches.  The geomorphic 

retrofit design resulted in 8,345 m of stream length (124-927 m length range) on the fill crest 

surface. Streams for each section were characterized by a main channel and tributary channels 

forming a dendritic drainage pattern and helped control drainage on the property through the 

channelization of runoff. All of the channels were checked to have a drainage density within the 

targeted default range of 6.0-9.0 km-1 and the retrofit design had an overall drainage density 

range of 7.1-8.9 km-1. The design corresponded with government regulations including no flow 

over the valley-fill face. The retrofit design has the ability to be applied to previously 

constructed, bond failing, and un-reclaimed valley fills and allows stream channel mitigation on 

site.   

Two additional enhanced geomorphic reclamation design were created by implementing 

surface runoff retention structures on the regional data GLD.  The GLD design surface was used 

as the base for the surface water retention designs, which included a design with three bench 
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ponds and a design with three valley ponds.  The bench pond design included retention structures 

that mimicked riparian wetlands and were located beside the GLD channels. The implementation 

of bench ponds on geomorphic valley fills could result in benefits of riparian wetlands, including 

diverse wildlife and vegetative habitat.  Three valley ponds were designed on the regional data 

GLD to potentially provide perennial streamflow on the site surface. The structures were 

designed to retain surface water runoff traveling downstream in the channelized flow paths, 

creating ponds. The geomorphic design with stream channels and valley ponds could provide 

hydrologic and ecological benefits, diverse habitat for wildlife and vegetation, and potential 

perennial streamflow downstream of the ponds if sized correctly.   

6.2 Sediment Load using Revised Universal Soil Loss Equation (RUSLE) 

The Revised Universal Soil Loss Equation (RUSLE) was utilized in a distributed GIS 

framework to predict erosion rates and spatial distributions for the GLD and conventional valley-

fill designs during multiple stages in the mining and reclamation process (post-mining pre-

vegetation and post-reclamation long term). The rainfall-runoff factor, soil erodibility factor, 

slope length and steepness factors, cover and management factor, and supporting practices factor 

were created as raster layers in a GIS environment and multiplied together using the RUSLE 

formula to estimate the average annual soil loss rates and spatial distribution patterns for the 

study area.  The results for the five design scenarios were determined and a comparison of the 

results was performed to determine areas of high erosion risk.  The pre-vegetation conditions 

resulted in high soil loss spatial means for both the conventional and GLD reclamation scenarios 

(conventional: 928.9 t ha-1 yr-1; GLD: 986.4 t ha-1 yr-1). Spatial means of the predicted erosion 

rates resulted in substantial difference among the undisturbed condition and the pre-vegetation 

conditions for both the conventional and GLD reclamation scenarios. The conventional fill pre-

vegetation scenario resulted in an erosion rate spatial mean 3.5 times higher than the undisturbed 

condition. The GLD pre-vegetation scenario resulted in an erosion rate spatial mean 5.8 times 

higher than the undisturbed condition.   

The long-term soil loss spatial means were substantially lower than the pre-vegetation 

conditions due to established vegetation that protected the soil from surface erosion forces 

(conventional: 93.2 t ha-1 yr-1; GLD: 96.1 t ha-1 yr-1).  There was no considerable difference 

among the spatial means of the predicted erosion rates of the undisturbed, pre-mining condition 
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(35.4 t ha-1 year-1) and the conventional (35.6 t ha-1 year-1) and GLD (41.8 t ha-1 year-1) post-

reclamation, long term conditions (Table 4.4).   

Low soil loss rates for both the undisturbed condition and GLD conditions (undisturbed: 

<20 t ha-1 yr-1; GLD: <30 t ha-1 yr-1) occurred along the ridgelines.  High erosion rates 

(undisturbed: >50 t ha-1 yr-1; GLD pre-vegetation: >100 t ha-1 yr-1; GLD long term: >150 t ha-1 

yr-1) occurred along the valleys, stream channels, and steep slopes (slope >50%).  The soil loss 

patterns of the conventional reclamation designs showed increased erosion risk (>100 t ha-1 yr-1) 

for the valley-fill face and SWROA ditches.  Future maintenance could be targeted to high 

erosion areas and design methods could be improved by decreasing the high erosion risk areas in 

future designs.   

6.3 Hydrologic Response of Valley-Fill Designs at the Landscape Scale 

An HSPF model was calibrated for a watershed in southern West Virginia that has been 

disturbed by surface mining and valley-fill activities.  The HSPF model was used to predict the 

current and future hydrologic responses of the watershed if the valley fill was reclaimed using 

traditional or geomorphic landform techniques or if no land disturbance had occurred.  Five 

prediction models were performed to estimate the current (2011-2020) and future (2041-2050) 

hydrologic response of the watershed during different stages in the mining and reclamation 

process and included: 1) current hydrologic response given conventionally reclaimed valley fills; 

2) current hydrologic response given GLD valley fills; 3) future hydrologic response given 

conventionally reclaimed valley fills; 4) future hydrologic response given GLD valley fills; and 

5) future hydrologic response given no land disturbance occurred in the watershed. Predictions 

were completed by changing the HSPF model land use parameters to mimic the proposed land 

use conditions for each of the scenarios.  The estimated hydrologic responses were compared to 

assist in the determination of the hydrologic impacts and could be used for flood mitigation plans 

within the disturbed experimental watershed. 

 Stream flows were compared among the scenarios 1 and 2.  Results indicated no 

substantial difference in daily flow (<1.1% difference) or monthly flow (0.00-0.03 m3/s 

difference). Average annual flows were slightly reduced (0.1-0.2 m3/s) for the GLD prediction 

compared to the conventional prediction. Annual peak stormflows were 0.07-0.57 m3/s lower for 

the GLD simulation compared to the traditional simulation. Over the nine year model, average 
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annual flows (2011: 0.84-0.86 m3/s; 2014: 4.52-4.53 m3/s) and annual peak stormflows (2011: 

9.48-9.69 m3/s; 2014: 65.98-66.49 m3/s) varied substantially for simulations 1 and 2.  

 Stream flows were compared among scenarios 3, 4, and 5. No substantial difference 

occurred in future stream flows or volumes for the watershed when GLD and conventional 

valley-fill reclamation were compared to the NLD (conventional: 0.32% to -4.36% difference; 

GLD: 0.51% to 0.89% difference). Predicted stream flows and volumes decreased (-0.34% to -

3.33% difference) for the geomorphic valley-fill reclamation compared to the traditional valley-

fill reclamation.  Average annual flows were slightly increased for prediction 3 (0.01-0.10 m3/s 

greater) and prediction 4 (0-0.02 m3/s larger) compared to prediction 5 for all simulation years 

(2041-2050) except 2050.  For 2050, the traditional average annual flow was 0.07 m3/s lower 

than the NLD simulation and the GLD average annual flow was 0.03 m3/s lower than the NLD 

condition. Annual peak stormflows for the traditional valley-fill reclamation simulation were 

0.86-2.12 m3/s greater than the NLD annual peak stormflows and GLD annual peak stormflows 

were 0.08-0.54 m3/s lower than the NLD simulation. No substantial difference (0.00-0.15 m3/s) 

resulted among the average monthly flows of simulations 3, 4, and 5.   
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7 Implications of the Study 

Proposed Contributions to the Body of Knowledge 

The overall contribution of this research to the body of knowledge is providing hydrologic 

and modeling analysis of the implementation of geomorphic landform valley-fill reclamation 

designs in Central Appalachia.   

1. This research illustrated enhanced valley-fill reclamation designs can be created 

using geomorphic landform principles for both pre-existing valley fills and future 

valley fills in Central Appalachia. The designs implemented stream mitigation on 

site through the creation of stream channels on the fill. Design features included 

slope profile complexity, enhanced water retention structures, and wildlife and 

vegetative habitat.     

2. This research predicted the impact of different valley-fill reclamation techniques 

on soil loss rates and spatial distributions in a watershed in southern West 

Virginia.  Model predictions illustrated the areas of high erosion risk and soil 

loss rates for the designed conventional valley fill and geomorphic valley fill at 

multiple stages in the mining and reclamation process.  The soil loss prediction 

technique and results have the potential to be applied to many reclamation 

simulations with differing soil characteristics and land uses. 

3. This research predicted current and future changes in hydrologic responses of 

different valley-fill reclamation techniques during multiple stages in the mining 

and reclamation process to provide understanding of the hydrologic processes 

altered by mining and reclamation at the landscape scale. Changes in stream 

flows and volumes were predicted by hydrologic modeling of a watershed in 

southern West Virginia disturbed by surface mining and valley-fill activities. The 

results could be projected throughout disturbed watersheds in Central Appalachia 

to improve flood mitigation, reclamation methods, and conservation practices. 
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8 Limitations of Study and Future Research Recommendations 

8.1 Valley-Fill Designs using Geomorphic Landform Principles 

The geomorphic landform design research was limited by not having a reference 

geomorphic valley fill in Central Appalachia for comparison of research results.  Future research 

should include a small scale construction project of a region specific geomorphic landform 

design in Central Appalachia to demonstrate success of application and prior research findings.  

Future research should also include long-term monitoring of hydrology, erosion, groundwater 

movement, stability, cost, and maintenance of the constructed site.  Extensive research should 

also be completed on the stream channels constructed on the GLD site including long-term 

monitoring of materials, erosion, maintenance, cost, aquatic species, and aquatic habitat.   

8.2 Sediment Load using Revised Universal Soil Loss Equation (RUSLE) 

The RUSLE modeling was limited by the lack of documented soil erosion rates and 

spatial distributions for mined sites in southern West Virginia for result comparison.  The 

RUSLE model has a number of subjective judgements that must be made when assigning 

parameters (Evans and Loch, 1996).  Therefore, great care must be taken when estimating input 

parameters and proper documentation must be made to document all parameter justifications.  

This subjectivity can lead to skewed results or inaccurate conclusions.  Soil erosion data 

collected from additional study sites, including a constructed GLD in Central Appalachia, would 

be beneficial for result validation and improved knowledge of erosion rates and distribution.   

8.3 Hydrologic Response of Valley-Fill Designs at the Landscape Scale 

The HSPF modeling was limited by the lack of meteorological data from the study 

watershed and surrounding area.  The meteorological data used may not have accurately 

reflected the weather pattern of the study area due to the watershed being located approximately 

21 km away from the closest meteorological station.  The modeled predictions could be further 

improved if the meteorological data inputs more accurately represented the meteorological 

events within the experimental watershed.  Future research should include HSPF modeling of a 

watershed, near the watershed modeled in this study, to verify the hydrologic impact predictions 

and expand prediction data for disturbed watersheds in southern West Virginia.       
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Another limitation of the HSPF modeling was the focus of this study on future valley-fill 

construction with limited future mining.  Future HSPF modeling should include future valley-fill 

construction as well as increased mining/land use change to determine changes in hydrologic 

response at the landscape scale for these conditions.  Increased mining and valley-fill activity in 

the watershed could lead to substantial hydrologic impacts.   
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Appendix A: HSPF land use/land cover areas within each subwatershed 

Table A.1. HSPF land use/land cover areas within each subwatershed 
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Appendix B: HSPF Calibration Parameters 

B1: HSPF parameters for simulation of pervious land segments (PERLNDs), group 1 

subroutine named “PWATER” used in this study for Clear Fork Watershed at Whitesville, 

WV: (HSPF Manual v. 12.2; Atkins et al., 2005) 

CSNOFG was chosen to be 1 because snow accumulation and melt are being considered.  

Therefore, HSPF will expect the time series produced by the section SNOW are available either 

internally or from external sources.  

RTOPFG selects the algorithm for computing overland flow.  RTOPFG was selected to be 1 due 

to routing of overland flow being done the same way as in predecessor models HSPX, ARM, and 

NPS.   

UZFG selects the method for computing inflow to the upper zone.  UZFG was determined to be 

1 due to the upper zone inflow being computed in the same way as in the predecessor models 

HSPX, ARM, and NPS. 

Parameters flags beginning with “V” indicate whether or not the parameters will vary on a 

monthly basis as opposed to a yearly or daily basis.  If the parameter flag is chosen to be 1, the 

parameter will vary on a monthly basis.  If the parameter flag is chosen to be 0, the parameter 

will not vary on a monthly basis.   

VCSFG determines if the interception storage capacity varies on a monthly basis.  The 

interception storage capacity was chosen to vary on a monthly basis for agricultural land, forest 

land, wetland/water, and barren/mined land but VCSFG was chosen to not vary monthly for 

urban/developed land.   

VUZFG determines if the upper zone nominal storage varies on a monthly basis.  The upper 

zone nominal storage was chosen to vary on a monthly basis for agricultural land and forest land, 

but VUZFG was chosen to not vary monthly for wetland/water, and barren/mined land 

urban/developed land.  

VNNFG determines if Manning’s n for the overland flow plane varies on a monthly basis.  

Manning’s n for the overland flow plane was chosen to not vary on a monthly basis for all 

landuse/land cover types used for this analysis.   

VIFWFG determines if the interflow inflow parameter varies on a monthly basis.  The interflow 

inflow parameter was chosen to not vary on a monthly basis for all landuse/land cover types used 

for this analysis.   

VIFCFG determines if the interflow recession constant varies on a monthly basis.  The interflow 

recession constant was chosen to not vary on a monthly basis for all landuse/land cover types 

used for this analysis.   
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VLEFG determines if the lower zone evapotranspiration (E-T) parameter varies on a monthly 

basis.  The lower zone evapotranspiration (E-T) parameter was chosen to vary on a monthly 

basis for all landuse/land cover types used for this analysis.  Therefore, monthly values for the 

lower zone evapotranspiration (E-T) parameter must be supplied in the corresponding monthly 

table. 

IFFCFG determines if the effect of frozen ground on the infiltration rate is computed from the 

amount of ice in the snow pack (PACKI).  The effect of frozen ground on the infiltration rate 

was chosen to be computed from the amount of ice in the snow pack for all landuse/land cover 

typed used for this analysis.   

HWTFG determines if the high water table and low land surface gradient conditions (i.e. 

wetlands) are prevalent on the land segment.  The high water table and low land surface gradient 

conditions were determined to not be prevalent on the land segment for all landuse/land cover 

types except the wetland/water type.   

IRRGFG determines if the irrigation module will be used and selects the method used to 

determine demands in the irrigation module.  The irrigation module was chosen to not be used 

for this simulation for any of the landuse/land cover types.   

IFRGFG determines which method of infiltration distribution is used.  The standard method of 

infiltration distribution was chosen to be used for this analysis for all of the landuse/land cover 

types. 

Table B.1. HSPF parameters for simulation of pervious land segments (PERLNDs), group 

1 subroutine named “PWATER” used in this study for Clear Fork Watershed at 

Whitesville, WV 

  

 

 

HSPF parameters for simulation of pervious land segments (PERLNDs), group 2 

subroutine named “PWATER” used in this study for Clear Fork Watershed at Whitesville, 

WV: (HSPF Manual v. 12.2; Atkins et al., 2005) 

Studies determining the types of vegetative cover, fraction of land covered by forest transpiring 

in winter, soil properties, and flow and storage values have not been performed at the Clear Fork 
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watershed at Whiteville, WV.  Therefore, group 2 subroutine “PWATER” values were taken 

from the USGS calibration parameters for the Clear Fork at Clear Fork, WV analysis in HSPF 

(Atkins et al., 2005).  This was determined to be acceptable due to the close proximity of the two 

watersheds (approximately 38 miles), similar topography, and surface mining occurring in both 

watersheds. 

FOREST is the fraction of pervious land segment which is covered by forest transpiring in 

winter and is only relevant if the SNOW module is being considered.   

LZSN is the lower zone nominal storage. 

INFILT is an index to the infiltration capacity of the soil.   

LSUR is the length of the assumed overland flow plane. 

SLSUR is the slope of the overland flow plane. 

KVARY is a parameter which affects the behavior of groundwater recession flow, enabling it to 

be non-exponential in its decay with time. 

AGWRC is the interflow recession parameter.  If inflow is zero, AGWRC is the rate of flow 

today divided by the rate of flow yesterday.    

Table B.2. HSPF parameters for simulation of pervious land segments (PERLNDs), group 

2 subroutine named “PWATER” used in this study for Clear Fork Watershed at 

Whitesville, WV 
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HSPF parameters for simulation of pervious land segments (PERLNDs), group 3 

subroutine named “PWATER” used in this study for Clear Fork Watershed at Whitesville, 

WV: (HSPF Manual v. 12.2; Atkins et al., 2005) 

PETMAX is the air temperature below which E-T will be reduced below the value obtained from 

the input time series and is only relevant if the SNOW module is being considered. PETMAX 

was chosen to be 40°F which is suggested by HSPF documentation. 

PETMIN is the air temperature below which E-T will be zero regardless of the value in the input 

time series and is only relevant if the SNOW module is being considered.  PETMIN was chosen 

to be 35°F which is suggested by HSPF documentation. 

INFEXP is the exponent in the infiltration equation.  INFEXP was chosen to be 2, which is 

suggested by HSPF documentation.   

INFILD is the ratio between the maximum and mean infiltration capacities over the pervious 

land segment (PLS).  INFILD was chosen to be 2, which is suggested by HSPF documentation.   

DEEPFR is the fraction of groundwater inflow which will enter deep (inactive) groundwater and 

be lost from the system as it is defined in HSPF.  DEEPFR was chosen to be 0, which is 

suggested by HSPF documentation. 

BASETP is the fraction of remaining potential E-T which can be satisfied from baseflow 

(groundwater outflow) if enough is available.  BASETP was chosen to be 0, which is suggested 

by HSPF documentation. 

AGWETP is the fraction of remaining potential E-T which can be satisfied from active 

groundwater storage if enough is available.  AGWETP was chosen to be 0, which is suggested 

by HSPF documentation. 

Table B.3. HSPF parameters for simulation of pervious land segments (PERLNDs), group 

3 subroutine named “PWATER” used in this study for Clear Fork Watershed at 

Whitesville, WV 
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HSPF parameters for simulation of pervious land segments (PERLNDs), group 4 

subroutine named “PWATER” used in this study for Clear Fork Watershed at Whitesville, 

WV: (HSPF Manual v. 12.2; Atkins et al., 2005) 

Values in group 4 subroutine named “PWATER” should only be supplied for parameters which 

do not vary through the year.   

Studies determining flow and storage properties/values have not been performed at the Clear 

Fork watershed at Whiteville, WV.  Therefore, group 2 subroutine “PWATER” values were 

taken from the USGS calibration parameters for the Clear Fork at Clear Fork, WV analysis in 

HSPF (USGS, 2005).  This was determined to be acceptable due to the close proximity of the 

two watersheds (approximately 38 miles), similar topography, and surface mining occurring in 

both watersheds. 

CEPSC is the interception storage capacity. 

UZSN is the upper zone nominal storage. 

NSUR is Manning’s n for the overland flow plane. 

INTFW is the interflow inflow parameter 

IRC is the interflow recession parameter.  Under zero inflow, this is the ratio of today’s interflow 

outflow rate to yesterday’s rate. 

LZTP is the lower zone E-T parameter.  It is an index to the density of deep-rooted vegetation. 

Table B.4. HSPF parameters for simulation of pervious land segments (PERLNDs), group 

4 subroutine named “PWATER” used in this study for Clear Fork Watershed at 

Whitesville, WV 
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HSPF parameters for simulation of air temperature (ATEMP), subroutine named 

“ATEMP-DAT” used in this study for Clear Fork Watershed at Whitesville, WV: (HSPF 

Manual v. 12.2; Atkins et al., 2005) 

ELDAT is the difference in elevation between the temperature gage and the PERLND and is 

used to estimate the temperature over the segment by application of a lapse rate.  ELDAT is 

positive if the segment is higher than the gage and is negative if the segment is lower than the 

gage.  An elevation of the PERLND was determined to be 923 ft and the elevation of the gage at 

Whitesville, WV was determined to be 823 ft.  Therefore, ELDAT was estimated to be 100 ft. 

AIRTMP is the initial air temperature over the land segment at the starting time of the RUN.  

The average air temperature was determined to be 72.5 °F for Whitesville, WV for the month of 

June (Weather, 2014). 

Table B.5. HSPF parameters for simulation of air temperature (ATEMP), subroutine 

named “ATEMP-DAT” used in this study for Clear Fork Watershed at Whitesville, WV 

 

 

 

HSPF parameters for simulation of snow (SNOW): (HSPF v.12.2; HSPF Manual v. 12.2; 

Atkins et al., 2005) 

Studies determining the types of vegetative cover, fraction of land shaded from solar radiation, 

and the maximum snowpack have not been performed at the Clear Fork watershed at Whiteville, 

WV.  Therefore, subroutine “SNOW” values were taken from the default values provided by the 

HSPF program (version 12.2), from values suggested by the HSPF manual v. 12.2, or from 

USGS calibration parameters for the Clear Fork at Clear Fork, WV analysis in HSPF (Atkins et 

al., 2005).  This was determined to be acceptable due to the close proximity of the two 

watersheds (approximately 38 miles), similar topography, and surface mining occurring in both 

watersheds. 
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HSPF parameters for simulation of snow (SNOW), subroutine named “ICE-FLAG” used 

in this study for Clear Fork Watershed at Whitesville, WV: (HSPF v.12.2; HSPF Manual v. 

12.2; Atkins et al., 2005) 

ICEFG determines if the ice formation in the snow pack will be simulated or not.  0 means that 

the ice formation will not be simulated and 1 means that ice formation will be simulated. 

Table B.6. HSPF parameters for simulation of snow (SNOW), subroutine named “ICE-

FLAG” used in this study for Clear Fork Watershed at Whitesville, WV 

 

 

 

HSPF parameters for simulation of snow (SNOW), subroutine named “SNOW-FLAGS” 

used in this study for Clear Fork Watershed at Whitesville, WV: (HSPF v.12.2; HSPF 

Manual v. 12.2; Atkins et al., 2005) 

SNOPFG selects the method for computing snowmelt.  0 means the energy balance method will 

be used, requiring input of air temperature, wind, dewpoint, and solar radiation.  1 means the 

temperature index method will be used, requiring only air temperature.    

VKMFG determines if the degree-day factor KMELT used in the temperature index method is 

assumed to vary through the year on a monthly basis.  0 means that KMELT does not vary and 1 

means that KMELT does vary.  
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Table B.7. HSPF parameters for simulation of snow (SNOW), subroutine named “SNOW-

FLAG” used in this study for Clear Fork Watershed at Whitesville, WV 

 

 

 

HSPF parameters for simulation of snow (SNOW), subroutine named “SNOW-PARM1” 

used in this study for Clear Fork Watershed at Whitesville, WV: (HSPF v.12.2; HSPF 

Manual v. 12.2; Atkins et al., 2005) 

LAT is the latitude of the pervious land segment (PLS).  LAT is positive for the northern 

hemisphere and negative for the southern hemisphere. LAT is only used when SNOPFG=0. 

MELEV is the mean elevation of the PLS above sea level.  MELEV is only used when 

SNOPFG=0. 

SHADE is the fraction of the PLS which is shaded from solar radiation, by trees or other objects.  

SHADE is only used when SNOPFG=0. 

SNOWCF is the factor by which the input precipitation data will be multiplied, if the simulation 

indicates it is snowfall, to account for poor catch efficiency of the gage under snow conditions. 

COVIND is the maximum snowpack (water equivalent) at which the entire PLS will be covered 

with snow. 

KMELT is the constant degree-day factor for the temperature index snowmelt method, to be 

used when SNOPFG=1 and VKMFG=0. 

TBASE is the reference temperature for the temperature index method when SNOPFG=1. 
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Table B.8. HSPF parameters for simulation of snow (SNOW), subroutine named “SNOW-

PARM1” used in this study for Clear Fork Watershed at Whitesville, WV 

 

 

 

HSPF parameters for simulation of snow (SNOW), subroutine named “SNOW-PARM2” 

used in this study for Clear Fork Watershed at Whitesville, WV: (HSPF v.12.2; HSPF 

Manual v. 12.2; Atkins et al., 2005) 

RDCSN is the density of cold, new snow relative to water.  RDCSN applies to snow falling at air 

temperatures lower than or equal to 0 °F.  At higher temperature, the density of snow is adjusted. 

TSNOW is the air temperature below which precipitation will be snow under saturated 

conditions.  Under non-saturated conditions, the temperature is adjusted slightly. 

SNOEVP is a parameter which adapts the snow evaporation (sublimation) equation to the field 

conditions.  SNOEVP is only used when SNOPFG=0. 

CCFACT is a parameter which adapts the snow condensation/convection melt equation to the 

field conditions.  SNOEVP is only used when SNOPFG=0. 

MWATER is the maximum water content of the snowpack in depth of water per depth of water. 

MGMELT is the maximum rate of snowmelt by ground heat in depth of water per day.  

MGMELT is the value that is applied when the pack temperature is at the freezing point. 
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Table B.9. HSPF parameters for simulation of snow (SNOW), subroutine named “SNOW-

PARM2” used in this study for Clear Fork Watershed at Whitesville, WV 

 

References 

Atkins, J.T., J.B. Wiley, and K.S. Paybins, 2005. Calibration parameters used to simulate 

streamflow from application of the Hydrologic Simulation Program-FORTRAN model 

(HSPF) to mountainous basins containing coal mines in West Virginia. USGS Scientific 

Investigations Report, 2005-5099. 

HSPF Version 12.2 User’s Manual; prepared by AQUA TERRA Consultants of Mountain View, 

CA under sponsorship of the EPA under Contract No. 68-C-01-037 
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Appendix C: HSPF Calibration Trials 

 

Figure C.1. Trial 2 model run observed and modeled daily flow comparison (modeled flow 

in red and observed flow in blue) 

 

Table C.1. Model run results for calibration trial 2 

Calibration Criteria    Limit or Range 
Model 

Results 

Total Flow Error  + 10% -0.40% 

Lowest 50% Flow Error   + 10% -5.41% 

Highest 10% Flow Error   + 15% 35.81% 

Mean Storm Volume Error   + 15% 14.36% 

Mean Storm Peak Flow Error   + 15% -37.12% 

Overall Water Balance Error   -1.3-32.9  *  

Mean Yearly Water Balance Error   -2.1-27.8  *  

Mean Monthly Water Balance Error   0.7-83.9 * 

      * Water Balance not calculated due to other error allowances not met 
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Figure C.2. Trial 3 model run observed and modeled daily flow comparison (modeled flow 

in red and observed flow in blue) 

 

 Table C.2. Model run results for calibration trial 3 

Calibration Criteria    Limit or Range 
Model 

Results 

Total Flow Error  + 10% 0.60% 

Lowest 50% Flow Error   + 10% -24.36% 

Highest 10% Flow Error   + 15% 39.88% 

Mean Storm Volume Error   + 15% 15.21% 

Mean Storm Peak Flow Error   + 15% -41.66% 

Overall Water Balance Error   -1.3-32.9  *  

Mean Yearly Water Balance Error   -2.1-27.8  *  

Mean Monthly Water Balance Error   0.7-83.9 * 

      * Water Balance not calculated due to other error allowances not met  
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Figure C.3. Trial 4 model run observed and modeled daily flow comparison (modeled flow 

in red and observed flow in blue) 

 

Table C.3. Model run results for calibration trial 4 

Calibration Criteria    Limit or Range 
Model 

Results 

Total Flow Error  + 10% 3.02% 

Lowest 50% Flow Error   + 10% -11.39% 

Highest 10% Flow Error   + 15% 41.07% 

Mean Storm Volume Error   + 15% 14.98% 

Mean Storm Peak Flow Error   + 15% -41.44% 

Overall Water Balance Error   -1.3-32.9  *  

Mean Yearly Water Balance Error   -2.1-27.8  *  

Mean Monthly Water Balance Error   0.7-83.9 * 

      * Water Balance not calculated due to other error allowances not met  
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Figure C.4. Trial 5 model run observed and modeled daily flow comparison (modeled flow 

in red and observed flow in blue) 

 

Table C.4. Model run results for calibration trial 5 

Calibration Criteria    Limit or Range 
Model 

Results 

Total Flow Error  + 10% 0.63% 

Lowest 50% Flow Error   + 10% -6.09% 

Highest 10% Flow Error   + 15% 38.32% 

Mean Storm Volume Error   + 15% 13.65% 

Mean Storm Peak Flow Error   + 15% -38.31% 

Overall Water Balance Error   -1.3-32.9  *  

Mean Yearly Water Balance Error   -2.1-27.8  *  

Mean Monthly Water Balance Error   0.7-83.9 * 

      * Water Balance not calculated due to other error allowances not met 
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Figure C.5. Trial 6 model run observed and modeled daily flow comparison (modeled flow 

in red and observed flow in blue) 

 

Table C.5. Model run results for calibration trial 6 

Calibration Criteria    Limit or Range 
Model 

Results 

Total Flow Error  + 10% 1.05% 

Lowest 50% Flow Error   + 10% 0.57% 

Highest 10% Flow Error   + 15% 19.36% 

Mean Storm Volume Error   + 15% 11.86% 

Mean Storm Peak Flow Error   + 15% -23.55% 

Overall Water Balance Error   -1.3-32.9  *  

Mean Yearly Water Balance Error   -2.1-27.8  *  

Mean Monthly Water Balance Error   0.7-83.9 * 

      * Water Balance not calculated due to other error allowances not met 
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Figure C.6. Trial 7 model run observed and modeled daily flow comparison (modeled flow 

in red and observed flow in blue) 

 

Table C.6. Model run results for calibration trial 7 

Calibration Criteria    Limit or Range 
Model 

Results 

Total Flow Error  + 10% 1.14% 

Lowest 50% Flow Error   + 10% 0.71% 

Highest 10% Flow Error   + 15% 13.24% 

Mean Storm Volume Error   + 15% 10.53% 

Mean Storm Peak Flow Error   + 15% -20.09% 

Overall Water Balance Error   -1.3-32.9  *  

Mean Yearly Water Balance Error   -2.1-27.8  *  

Mean Monthly Water Balance Error   0.7-83.9 * 

      * Water Balance not calculated due to other error allowances not met 



160 

 

 
Figure C.7. Trial 8 model run observed and modeled daily flow comparison (modeled flow 

in red and observed flow in blue) 

 

 

Table C.7. Model run results for calibration trial 8 

Calibration Criteria    Limit or Range 
Model 

Results 

Total Flow Error  + 10% 1.20% 

Lowest 50% Flow Error   + 10% 0.69% 

Highest 10% Flow Error   + 15% 8.98% 

Mean Storm Volume Error   + 15% 7.35% 

Mean Storm Peak Flow Error   + 15% -17.27% 

Overall Water Balance Error   -1.3-32.9  *  

Mean Yearly Water Balance Error   -2.1-27.8  *  

Mean Monthly Water Balance Error   0.7-83.9 * 

      * Water Balance not calculated due to other error allowances not met 
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Figure C.8. Trial 9 model run observed and modeled daily flow comparison (modeled flow 

in red and observed flow in blue) 

 

 

Table C.8. Model run results for calibration trial 9 

Calibration Criteria    Limit or Range 
Model 

Results 

Total Flow Error  + 10% 7.73% 

Lowest 50% Flow Error   + 10% 0.49% 

Highest 10% Flow Error   + 15% 11.15% 

Mean Storm Volume Error   + 15% 5.79% 

Mean Storm Peak Flow Error   + 15% -16.05% 

Overall Water Balance Error   -1.3-32.9  *  

Mean Yearly Water Balance Error   -2.1-27.8  *  

Mean Monthly Water Balance Error   0.7-83.9 * 

      * Water Balance not calculated due to other error allowances not met 
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Figure C.9. Trial 10 model run observed and modeled daily flow comparison (modeled flow 

in red and observed flow in blue) 

 

Table C.9. Model run results for calibration trial 10 

Calibration Criteria    Limit or Range 
Model 

Results 

Total Flow Error  + 10% 8.10% 

Lowest 50% Flow Error   + 10% 9.98% 

Highest 10% Flow Error   + 15% 4.25% 

Mean Storm Volume Error   + 15% 5.65% 

Mean Storm Peak Flow Error   + 15% -1.26% 

Overall Water Balance Error   -1.3-32.9  *  

Mean Yearly Water Balance Error   -2.1-27.8  *  

Mean Monthly Water Balance Error   0.7-83.9 * 

      * Water Balance not calculated due to other error allowances not met 
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Figure C.10. Trial 11 model run observed and modeled daily flow comparison (modeled 

flow in red and observed flow in blue) 

 

Table C.10. Model run results for calibration trial 11 

Calibration Criteria    Limit or Range 
Model 

Results 

Total Flow Error  + 10% 7.40% 

Lowest 50% Flow Error   + 10% 9.62% 

Highest 10% Flow Error   + 15% 3.84% 

Mean Storm Volume Error   + 15% 5.17% 

Mean Storm Peak Flow Error   + 15% -0.98% 

Overall Water Balance Error   -1.3-32.9  *  

Mean Yearly Water Balance Error   -2.1-27.8  *  

Mean Monthly Water Balance Error   0.7-83.9 * 

      * Water Balance not calculated due to other error allowances not met 
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