
Graduate Theses, Dissertations, and Problem Reports

2019

Optimal Compression of Point Clouds Optimal Compression of Point Clouds

Benjamin Robert Smith
West Virginia University, bbsmith1@mix.wvu.edu

Follow this and additional works at: https://researchrepository.wvu.edu/etd

 Part of the Other Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Smith, Benjamin Robert, "Optimal Compression of Point Clouds" (2019). Graduate Theses, Dissertations,
and Problem Reports. 4090.
https://researchrepository.wvu.edu/etd/4090

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F4090&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=researchrepository.wvu.edu%2Fetd%2F4090&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/4090?utm_source=researchrepository.wvu.edu%2Fetd%2F4090&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Optimal Compression of Point Clouds

Benjamin R. Smith

Thesis submitted to the
Benjamin M. Statler College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Electrical Engineering

Victor Fragoso, Ph.D., Chair
Powsiri Klinkhachorn, Ph.D.

Nasser Nasrabadi, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2019

Keywords: Computer Vision, Point Clouds, Structure From Motion

Copyright 2019 Benjamin R. Smith

Abstract

Optimal Compression of Point Clouds

Benjamin R. Smith

Image-based localization is a crucial step in many 3D computer vision appli-
cations, e.g ., self-driving cars, robotics, and augmented reality among others.
Unfortunately, many image-based-localization applications require the storage
of large scenes, and many camera pose estimators struggle to scale when the
scene representation is large. To alleviate the aforementioned problems, many
applications compress a scene representation by reducing the number of 3D
points of a point cloud. The state-of-the-art compresses a scene representa-
tion by using a K-cover-based algorithm. While the state-of-the-art selects a
subset of 3D points that maximizes the probability of accurately estimating
the camera pose of a new image, the state-of-the-art does not guarantee an
optimal compression and has parameters that are hard to tune. We propose
to compress a scene representation by means of a constrained quadratic pro-
gram that resembles a one-class support vector machine (SVM). Thanks to
this resemblance, we derived a variant of the sequential minimal optimization,
a widely adopted algorithm to train SVMs. The proposed method uses the
points corresponding to the support vectors as the subset to represent a scene.
Our experiments on publicly large-scale image-based localization show that
our proposed approach delivers four times fewer failed localizations than that
of the state-of-the-art while scaling on average two orders of magnitude more
favorably.

iii

Acknowledgements

Firstly, I would like to thank my collaborators on this project, Dr. Vic-

tor Fragoso and Marcela Mera Trujillo. No amount of distance hindered Dr.

Fragoso’s ability or willingness to aid me with the completion of this project,

being both my research advisor and committee chair. I would also like to

thank Dr. Klinkhachorn and Dr. Nasrabadi for serving as instructors, com-

mittee members, and motivators to push me towards greater limits and accept

nothing short of perfection. Without my committee’s assistance and support,

this Thesis would not have been possible. In addition, a thank you to all of the

faculty and staff of the LANE department for everything they have taught me

over the course of my five years as their student. Finally, I would like to thank

my family for always being supportive of me and giving me the opportunity

to pursue both a Bachelor’s and Master’s degree at West Virginia University.

iv

Contents

List of Figures vi

List of Tables vii

Acronyms viii

1 Introduction 1

2 Related Work 5
2.1 K-cover-based Approaches . 5
2.2 Mixed-integer-QP-based Approaches 6
2.3 Deep-learning-based Approaches 7

3 Background 8
3.1 Structure from Motion . 8

3.1.1 3D Reconstructions . 9
3.1.1.1 Descriptors & Matching 10
3.1.1.2 Examples . 10

3.1.2 Pipelines . 11
3.1.2.1 Theia SfM . 12
3.1.2.2 Bundler . 13

4 Algorithm 14
4.1 Point Scoring . 15

4.1.1 Descriptor Distance . 15
4.1.1.1 Non-Normalized 16
4.1.1.2 Normalized 17

4.1.2 Frequency . 17
4.1.2.1 Number of Images 17
4.1.2.2 Best Point . 18

4.1.3 Combination . 18
4.2 Constrained QP Solver . 18

4.2.1 Relation with One-class SVMs. 21
4.2.2 Efficient SMO-like Solver 22
4.2.3 The Complete Algorithm 26

Contents v

5 Experiments 28
5.1 Datasets . 28

5.1.1 1DSfM . 28
5.2 Integration with Theia & Testing 29

5.2.1 Query View Removal 29
5.2.2 Point Scoring . 30
5.2.3 Point Selection . 30
5.2.4 Point Removal . 30
5.2.5 Localization Metrics 30

5.2.5.1 Re-Localization Failure Rate 31
5.2.5.2 Positional Distance 32
5.2.5.3 Rotational Distance 32

5.3 Results . 33
5.3.1 Query . 33
5.3.2 Validation & Method Comparisons 35

5.3.2.1 Alamo . 38
5.3.2.2 Ellis Island 39
5.3.2.3 Gendarmenmarkt 40
5.3.2.4 Madrid Metropolis 41
5.3.2.5 Notre Dame 42
5.3.2.6 NYC Library 43
5.3.2.7 Piazza del Popolo 44
5.3.2.8 Piccadilly . 45
5.3.2.9 Roman Forum 46
5.3.2.10 Tower of London 47
5.3.2.11 Trafalgar . 48
5.3.2.12 Union Square 49
5.3.2.13 Vienna Cathedral 50
5.3.2.14 Yorkminster 51

6 Conclusions 53
6.1 Future Work . 54

7 Appendices 55
7.1 Appendix A - Dataset Info . 56
7.2 Appendix B - Query Results 57
7.3 Appendix C - Validation Results 58

References 59

vi

List of Figures

1.1 High level depiction of algorithm. 4

3.1 Epipolar triangulation. [10] 9
3.2 Three sample images of one of the structures in Piccadilly. . . 11
3.3 Piccadilly Reconstruction . 11
3.4 Three sample images of the Notre Dame. 12
3.5 Notre Dame Reconstruction 12

5.1 Example of point selection on the Notre Dame. Points to keep
shown in green, points to remove shown in black. 31

5.2 Time taken to select points vs. the size of a point cloud. . . . 37
5.3 Alamo validation error CDF. 39
5.4 Ellis Island validation error CDF. 40
5.5 Gendarmenmarkt validation error CDF. 41
5.6 Madrid Metropolis validation error CDF. 42
5.7 Notre Dame validation error CDF. 43
5.8 NYC Library validation error CDF. 44
5.9 Piazza del Popolo validation error CDF. 45
5.10 Piccadilly validation error CDF. 46
5.11 Roman Forum validation error CDF. 47
5.12 Tower of London validation error CDF. 48
5.13 Trafalgar validation error CDF. 49
5.14 Union Square validation error CDF. 50
5.15 Vienna Cathedral validation error CDF. 51
5.16 Yorkminster validation error CDF. 52

vii

List of Tables

5.1 Chosen parameters based on query results. 34
5.2 Count of scores being best among the datasets. 34
5.3 Count of RBF sigmas being best among the datasets. 34
5.4 Count of CDT sigmas being best among the datasets. 34
5.5 Alamo validation failure rate and time. 38
5.6 Ellis Island validation failure rate and time. 39
5.7 Gendarmenmarkt validation failure rate and time. 40
5.8 Madrid Metropolis validation failure rate and time. 41
5.9 Notre Dame validation failure rate and time. 42
5.10 NYC Library validation failure rate and time. 43
5.11 Piazza del Popolo validation failure rate and time. 44
5.12 Piccadilly validation failure rate and time. 45
5.13 Roman Forum validation failure rate and time. 46
5.14 Tower of London validation failure rate and time. 47
5.15 Trafalgar validation failure rate and time. 48
5.16 Union Square validation failure rate and time. 50
5.17 Vienna Cathedral validation failure rate and time. 51
5.18 Yorkminster validation failure rate and time. 52

7.1 Dataset information for converted, query, and validation recon-
structions. 56

7.2 Number of failed cameras by scoring method by dataset. . . . 57
7.3 Number of failed cameras by algorithm by dataset. 58

viii

Acronyms

API application programming interface. 12

CDF cumulative distribution function. 31, 36

CDT coverage distinctiveness trade-off. 15, 29, 33, 38, 40, 53

QP quadratic program. 12, 15, 21, 22, 30

RANSAC random sample consensus. 8, 35

RBF radial basis function. 14, 19, 21, 24, 29, 33, 35, 54

SfM Structure from Motion. 1–3, 5, 6, 8, 13

SIFT scale-invariant feature transform. 10, 15

SMO sequential-minimal optimization. 2, 22–24, 35

SVM support vector machine. 2, 21, 22

1

Chapter 1

Introduction

Estimating the camera pose (i.e., position and orientation) is a crucial step

in many 3D computer vision applications, such as, self-driving cars [9, 11],

robotics [6], and augmented reality [17, 30] among others. This is because

these applications use camera poses and information from other sensors to

understand where they are in an environment.

While many 3D computer vision systems successfully localize themselves

in an environment, they struggle to scale well when the environment becomes

very large [23]. Their struggle has various reasons. First, the memory and/or

disk space requirements needed to store and represent the environment can be

substantial. This is because the common scene representation can contain a

collection of images, 3D points, and 2D image features with their respective

feature descriptors (e.g ., SIFT [16]). Second, most of these computer vision

systems use pose estimators that require longer time to operate when the

representation of the scene is large. Although there exist efforts that increase

efficiency of pose estimation (e.g ., [2, 3, 31, 32]), they still struggle when the

scene representation is vast.

In order to improve the scalability of these computer vision systems, we

aim to compress scene representations. In particular, we focus on compressing

point clouds computed via Structure from Motion (SfM) pipelines. This is

because SfM point clouds are the most common scene representation for visual-

Chapter 1. Introduction 2

based localization.

The reader must recall that an SfM point cloud has a collection of 3D

points describing the geometry of a scene. Every point in this representa-

tion (typically) has a set of 2D image features and their respective feature

descriptors [15, 22]. The goal of this work is to carefully select a subset of

3D points from an SfM point cloud such that the selection provides enough

information to accurately estimate a camera pose. Consequently, compressing

an SfM point reduces the storage footprint because it prunes “unnecessary”

points. This is useful especially for mobile agents (e.g ., mobile devices, robots,

etc.) that have limited storage and need to self-localize in an environment.

The problem of compressing an SfM point cloud has been addressed by

previous efforts [4, 15, 28]. The most common approach uses a K-cover-based

methodology. This includes in particular the one that the state-of-the-art [4]

adopts. In simple terms, the K-cover-based methodology aims to find a mini-

mum subset of 3D points such that each database image sees at least K points

in the subset. While this approach effectively compresses an SfM point cloud,

computing this subset is not optimal. Moreover, finding the right K value in

order to reduce the size of an SfM point cloud by a certain factor is not a

trivial task.

In this work, we introduce an approach that selects a subset of 3D points

in an optimal fashion. To do so, we introduce an optimization problem

that is convex and resembles the one-class support vector machine (SVM)

[25]. Thanks to this resemblance, we derive an efficient solver based on the

sequential-minimal optimization (SMO) [19]. The proposed approach aims to

select points that cover sufficiently the surface to represent but at the same

time present a visual distinctiveness. From the SVM perspective, the sup-

port vectors [5, 24] correspond to the 3D-point selection that best represent

a scene. Moreover, the proposed approach has parameters that have intu-

itive meanings, which makes the parameter tuning simpler than that of the

state-of-the art. Our experiments on publicly available large-scale image-based

Chapter 1. Introduction 3

localization datasets demonstrate that our approach compresses an SfM point

cloud efficiently. Additional experimental results show that the compressed

point clouds computed with the proposed approach produces more accurate

pose estimates than those computed using the compressed SfM point clouds

produced by the state-of-the-art while also scaling favorably.

Figure 1.1 depicts how point cloud compression quality is measured. Given

a point cloud, with a set of cameras viewing the points, randomly select cam-

eras to be used as ‘query’ cameras (shown in green in 1.1a). Remove these

cameras from the reconstruction (1.1b). Then, using the desired compres-

sion algorithm, compress the reconstruction to the desired compression factor

(1.1c). Once compressed, attempt to add back and re-localize the ‘query’ cam-

eras to the reconstruction (again shown in green in 1.1d). Failure to localize

a camera, or localization with large error, indicates crucial points have been

removed.

In sum, this work we present the following contributions:

1. Convex formulation for compressing SfM pipelines optimally, which is

easy to tune; and

2. An efficient SMO-based constrained QP solver for compressing SfM

pipelines.

Chapter 1. Introduction 4

(a) Query cameras (green), non-query

cameras (red), and uncompressed point

cloud.

(b) Query cameras removed.

(c) Compressed point cloud. (d) Localized query camera (green) us-

ing compressed point cloud.

Figure 1.1: Starting with a point cloud: select query cameras to be localized (green),

remove the query cameras, compress the reconstruction, and re-localize the query

cameras.

5

Chapter 2

Related Work

The problem of reducing an SfM point cloud has been addressed by means

of K-cover-inspired algorithms, mixed-integer quadratic program (QP) op-

timization methods, and deep-learning-based approaches. We cover related

work that falls under these three different approaches.

2.1 K-cover-based Approaches

Li et al . [15] proposed a K-cover-inspired algorithm to select a minimum

subset of 3D points such that each database image sees at least K points in

the subset. While this approach works well for reducing an SfM point cloud,

computing the subset of 3D points is a challenging combinatorial problem.

Li et al . [15] proposed to compute this minimum subset by incrementally

building it. Their method uses a gain function that allows the algorithm to

select points that contribute to the construction of the subset.

While the K-cover-inspired algorithm [15] reduces an SfM point cloud, it

does not include information about the visual distinctiviness of each of the

selected points. This aspect is important for image-based localization since

visual features (e.g ., SIFT [16]) are crucial to establish 2D-to-3D correspon-

dences which are the input for any pose estimator. To address this issue, Cao

and Snavely [4] proposed an extension to the K-cover-inspired algorithm [15]

Chapter 2. Related Work 6

that considers the coverage and the visual distinctiveness of the points. The

coverage aspect imposes the constraint that the points in the subset are highly

visible, i.e., that a new camera observing the scene has a high probability of

seeing most of the points in the subset. Moreover, their extension also includes

a visual distinctiveness term that favors the selection of points that are easy

to visually identify.

Although the state-of-the-art [4] effectively compresses an SfM point cloud,

it has a few limitations that makes it non-optimal and hard to use. The first

limitation is that the selected subset of points may not be optimal. This is

because the state-of-the-art the K-cover-inspired algorithm is combinatorial.

As such, it is hard to solve efficiently. The second limitation is that it is hard

to find the parameter K such that the state-of-the-art returns a compressed

SfM point cloud by a certain factor. In contrast to the state-of-the-art, the

proposed approach returns an optimal selection of points efficiently and has

parameters that are easy to set given their intuitive meaning.

2.2 Mixed-integer-QP-based

Approaches

An alternative approach to the K-cover-based algorithms is a formulation

using mixed-integer programming. Park et al . [28] proposes a constrained

quadratic program (QP) formulation mimicking the K-cover problem. This

problem aims to compute a binary vector. The i-th entry of this vector is set to

1 when the i-th point is selected, and it is set 0 otherwise. While this approach

ensures an optimal selection of points, solving the formulated constrained QP

is not scalable and requires specialized mixed-integer solvers. This method

struggles to scale due to the n× n matrix that encodes pairwise relationships

among the points; n is the number of points. Clearly, for large-scale datasets

n is large and the scalability of this method depends of the used solver. Al-

Chapter 2. Related Work 7

though the proposed formulation also uses a constrained QP formulation, we

propose an efficient solver that scales well. This is because the proposed QP

formulation shares the structure of a one-class SVM [25] which can be solved

efficiently using a variant of the sequential minimal optimization [19] (SMO)

method.

2.3 Deep-learning-based Approaches

Recently, several approaches [12, 14, 13] based on deep learning [8] have

been proposed to address image-based localization or pose estimation. These

methods can be considered as compression approaches because the learned

weights of the neural network encode the parameters of a scene. Kendall et al .

proposed PoseNet [14], a convolutional neural network (CNN) that estimates

camera poses for relocalization. Walch et al . [33] proposed to use a CNN in

combination with LSTMs [12] to estimate camera poses. While deep-learning-

based approaches have shown impressive results, they still require specialized

equipment (e.g ., GPUs) to train them, and making them work on mobile

devices can be challenging. The proposed compression method does not require

specialized equipment, has an explainable or interpretable compression model,

and allows estimators to compute accurate poses.

8

Chapter 3

Background

The following sections detail high-level information necessary to under-

stand the principle components of the document, including but not limited

to Structure-from-motion (SfM), three-dimensional reconstructions, and cor-

responding pipelines to create 3D reconstructions.

3.1 Structure from Motion

SfM estimates three-dimensional structures from two-dimensional images.

These two-dimensional images may be taken from entirely different cameras (or

perspectives), or from a single camera undergoing motion. The general idea of

SfM is that a three dimensional structure is perceived from moving around it,

viewing the object from multiple angles, to obtain a spatially coherent model.

Internally, SfM algorithms must determine the pixel-wise correspondence be-

tween the images or motion signals and filter the poor correspondences via

algorithms such as random sample consensus (RANSAC) [7]. The three di-

mensional points are then calculated based upon the matched features. The

final result of this process is then a three-dimensional point cloud representing

the structure (a 3D point cloud being a collection of data points (X, Y, Z) in

a defined space).

Chapter 3. Background 9

Figure 3.1: Epipolar triangulation. [10]

3.1.1 3D Reconstructions

In essence, three-dimensional reconstructions consist of points or meshes

in a three-dimensional space representing a physical structure, e.g ., a build-

ing, with cameras viewing the structure. These reconstructions contain the

position and orientation of each of the cameras that imaged the structure.

Cameras represent their position and orientation within a 3 × 4 matrix. The

reconstruction’s points are where multiple images had matching descriptors

that are triangulated into a three dimensional point, shown in Figure 3.1 and

Equation 3.1. Given camera matrices P and P ′, the image points x and x′,

the 3D point X is computed via minimizing the following cost function,

C(X) = d(x, x̂)2 + d(x′, x̂′)2 (3.1)

where d is distance and x̂ is the closest point on the epipole line to x [10].

These reconstructions may either be created via monocular methods or

binocular methods. In the former, only a single viewpoint is used to create

the reconstruction, where shading is used to capture depth. In the latter,

multiple images from different viewing angles are used to form the 3D shape.

The latter is used in the basis of structure from motion.

Chapter 3. Background 10

3.1.1.1 Descriptors & Matching

When a non-ordered set of images are presented to recreate a scene, spa-

tial information is calculated between the images via feature extraction and

matching. Features are identifiable points within the image, such as edges or

corners of an object. Feature vectors, known as descriptors, describe the spa-

tial information of these keypoints. When descriptors are (nearly) the same

across images, there is a strong likelihood those image keypoints are depicting

the same point in three dimensional space.

The descriptors used in our reconstructions are scale-invariant feature

transform (SIFT) [16], which is a normalized 128-dimensional vector describ-

ing a keypoint. While understanding SIFT (or descriptors in general) is not

directly pertinent towards point cloud optimization; we propose to use the dis-

tance between SIFT descriptors as one measure of the distinctiveness a point

has towards the localization of the cameras that see it (see section 4.1 for

greater detail on this point scoring technique).

3.1.1.2 Examples

Two different three dimensional reconstruction examples are given, the Pic-

cadilly Circus and the Notre Dame. Three images each are given as samples

for these two structures, although it should be noted that the actual recon-

structions are comprised of hundreds of images. Figure 3.2 depicts the three

sample images of the corner of the Piccadilly Circus, and Figure 3.3 is the

corresponding reconstruction of one of its structures (the full reconstruction

contains many more buildings). In the reconstruction, the points are simply

colored points in space, and the cameras are red pyramids, where the square

face of the pyramid is the orientation of the camera’s rotation matrix. It should

be noticed that highly volatile objects within the images, such as the changing

billboard, do not provide enough consistent features to create 3D points.

Figure 3.4 are three sample images of the Notre Dame, with its reconstruc-

Chapter 3. Background 11

Figure 3.2: Three sample images of one of the structures in Piccadilly.

Figure 3.3: Piccadilly Reconstruction

tion shown in Figure 3.5. Once again, the reconstruction is robust to volatility,

such as from pedestrians. The features the pedestrians provide do not stay

consistent across multiple images, thus resulting in a lack of their presence in

the reconstruction. This is desired for the purposes of our algorithm, as we

will only be optimizing on the points and features relevant to the structure

itself.

3.1.2 Pipelines

The process of creating these three-dimensional reconstructions has been

streamlined into easy to use end-to-end pipelines. The primary library used in

performing localization and point cloud optimization is Theia SfM [29]. Due

to the original datasets (more detail in section 5.1) being created in Bundler

[26], they are first converted into the realm of this library.

Chapter 3. Background 12

Figure 3.4: Three sample images of the Notre Dame.

Figure 3.5: Notre Dame Reconstruction

3.1.2.1 Theia SfM

As mentioned, Theia Structure from Motion is the primary library used

for point cloud compression. The Theia application programming interface

(API) offers an easy to use interface with algorithms implemented necessary

for the goal of this project. The primary benefit to the use of Theia is that

it is easily extendable for our re-localization based tasks. While the quadratic

program (QP) solver (section 4.2) did not directly rely on Theia, the point

scoring, minimization, and localization occurred within the Theia interface

(see section 5.2 for this process). Additionally, Theia’s OpenGL applications

were used in visualization of the three-dimensional reconstructions, both before

Chapter 3. Background 13

and after optimization occurred.

3.1.2.2 Bundler

Bundler is another commonly used pipeline for performing SfM tasks.

When Bundler creates a three dimensional scene, the output is written in

“bundle files,” which is simply the state of the scene. The file contains all

camera information incrementally (including, but not limited to, rotation and

translation information) and then all point information (including the coordi-

nates and a list of all views the point is present in). For each of the datasets

used, these “bundle files” are converted into Theia files, which all subsequent

work is done upon.

14

Chapter 4

Algorithm

The sections below detail the process in which optimal point cloud com-

pression occurs within the proposed algorithm, laid out in several main steps.

First of all, since the 1DSfM [34] dataset (see section 5.1) is stored as “bundle

files,” they must be converted into Theia reconstructions and normalized. The

Bundler structures tended to be heavily transitionally offset from the origin

((x=0 : y=0 : z=0 : w=1)), instead of centered about the origin. Luckily,

Theia has a built in application for both conversion and normalization. Ad-

ditionally, the feature and descriptor information must be re-populated for

every point, as this is not contained within the Bundler files. If no feature is

assigned for a point, it is removed from the reconstruction. Once converted,

query cameras are randomly selected for localization and removed from the

reconstruction. The first step of our algorithm then occurs, point scoring,

to assign a score to every point in the reconstruction. This score may be

computed in a variety of ways, see section 4.1 for more details on its computa-

tion. In essence, the purpose of the score is to serve as a visual distinctiveness

measure for every point in the point cloud; aiming to keep the most visually

distinct points.

Once this point score has been computed, the compression algorithm oc-

curs. The compression algorithm has two main goals: minimize the coverage

of a scene via a radial basis function (RBF) kernel (indirectly maximize the

Chapter 4. Algorithm 15

expected distance between points) and to maximize the visual distinctiveness

of the scene (using the point scores). These are combined into one minimiza-

tion (optimization) function which the constrained QP solver aims to solve, as

explained further in section 4.2.

After the solver has chosen the optimal points to keep, the points not

selected must be removed from the reconstruction, or in other words, the

reconstruction is compressed. To gauge the quality of this compressed recon-

struction, we re-add the previously removed query cameras and attempt to re-

localize them. If successfully localized, the quality of localization is measured

by positional and rotational distance from the ground truth reconstruction to

the new localization. For further detail on this re-localization process, please

see subsection 5.2.5

4.1 Point Scoring

The point scoring process is the first step of the proposed algorithm (aside

from converting the “bundle files” to the proper TheiaSfM files). As previously

mentioned, point scoring is a technique to assign a visual distinctiveness to ev-

ery point in a reconstruction. This distinctiveness measure can be calculated

in a variety of different ways, as the following sections (and subsections) show.

The methods utilized to calculate this score are: descriptor distance (both nor-

malized and non-normalized), the frequency of a point being seen by cameras,

the frequency of a point being seen by cameras w.r.t. the best frequency, and

a combination of both distance and frequency. The re-localization of cameras

was performed with each of the above scoring techniques, while modifying a

scalar controlling coverage distinctiveness trade-off (CDT).

4.1.1 Descriptor Distance

The first method of assigning a visual distinctiveness score is based upon

SIFT descriptor distances. The concept is as follows: for a given point in

Chapter 4. Algorithm 16

the reconstruction, determine which images it is seen by, and obtain those

descriptors. Then, determine the average distance between the descriptors. A

higher distance will imply that the feature is slightly different among images,

whereas a lower distance implies the feature is closer to being the exact same

across images. In other words, this method is determining how different the

feature is for the same point across its images. The formula for this score is

represented by,

score =

∑n−1
i=1 (

∑n
j=i+1 ‖di − dj‖2)

S
(4.1)

where n is the number of images that see that point, di is the appropriate

descriptor of image i, dj is the appropriate descriptor of image j, and S is the

sum of the descriptor distance comparisons. This sum is calculated such that,

S =
(n− 1)n

2
(4.2)

where n is the number of images that see the point. Note that this is the same

as the formula of sum of numbers [1, ..., n − 1] as that is the total number of

comparisons that occur in Equation 4.1.

4.1.1.1 Non-Normalized

The non-normalized version of this descriptor distance remains as-is.

Meaning, a lower score implies the features are similar, whereas a higher

score implies the features are different. We would generally expect this to

run counter-productive to the visual distinctiveness term. Since visual dis-

tinctiveness is being maximized, this non-normalized version will favor a point

where its corresponding coordinate in images have different descriptors. Keep

in mind the descriptors are similar enough to become a three-dimensional point

to begin with. In other words, this will favor a point that is being seen from

different angles (different descriptors).

Chapter 4. Algorithm 17

4.1.1.2 Normalized

The normalized version of descriptor distance adds a normalization func-

tion to the distances, in the form of a negative exponentiation. The scores

become within the range [0, 1], where a score of ‘1’ would be the exact same

descriptors, and conversely a score of ‘0’ would be vastly different descriptors.

The function used for this normalization is,

score = exp

(
−d

2

2

)
(4.3)

where d is the average distance as determined in Equation 4.1. This score will

end up maximizing in favor of descriptors that are exactly the same, opposite

of the non-normalized version.

4.1.2 Frequency

The next method of assigning a score to every point is based upon the

frequency of that point being seen across images. For example, a higher score

will be assigned to a point that is seen from 50 cameras than a point seen

from 10 cameras. We use two different measures for this frequency. The

first is simply the percentage of cameras the point is seen in. The second is

the number of cameras the point is seen in w.r.t. the point with the highest

frequency.

4.1.2.1 Number of Images

This score, as mentioned, is the percentage of a cameras that a particular

point is seen in. A point that is seen from 0 cameras (technically not possible,

it would not exist otherwise), would be assigned a score of ‘0’. A point that is

seen from every camera would be assigned a score of ‘1’. This is represented

by,

score =
ni
N

(4.4)

Chapter 4. Algorithm 18

where the number of cameras seeing a point i is ni, and N is the number of

cameras. Thus, this method of point scoring will cause points seen in numerous

images to be more favored.

4.1.2.2 Best Point

The best point score assigns the score value of the current point w.r.t. the

frequency of the best point. For example, if the best point is seen within 50

views, it will be assigned a score of ‘1’. All other scores will be the proportion

of cameras viewing it, out of 50. This may be modeled by,

score =
ni

max {n1, ..., nP}
(4.5)

where the number of cameras seeing a point i is ni and P is the number of

points.

4.1.3 Combination

The combination based score is computed as a weighted sum between dis-

tance and frequency. The weight is a changeable parameter, but for the pur-

pose of our results, we chose 0.5. This score is simply,

score = w · d+ (1− w) · f (4.6)

where w is the weight, d is the distance score computed in Equation 4.3, and

f is the frequency score computed in Equation 4.5.

4.2 Constrained QP Solver

The proposed problem reduces a point cloud considering two terms: spa-

tial coverage of the scene and visual distinctiveness of each of the 3D points.

Intuitively, we aim to select points that are far away from each other such

that they cover most of the scene and that have good visual distinctiveness.

While these terms are also considered by the state of the art [4], the proposed

Chapter 4. Algorithm 19

approach introduces a novel convex optimization problem that can be solved

efficiently. Unlike the state of the art which builds on the K-cover problem,

the proposed formulation aims to learn a sparse discrete probability distribu-

tion over the set of points. This learned distribution has non-zero values on

the selected points and zero on the points that are discarded.

Mathematically, we aim to learn a sparse distribution α over the m 3D

points of the input point cloud. To formulate this problem mathematically,

we need to define two terms that measure the spatial coverage and visual

distinctiveness of each of the points as a function of α.

In order to measure the coverage of the scene, we propose to use the fol-

lowing term:

C = αᵀKα (4.7)

where the entries of the matrix K ∈ Rm×m are

Kij = k(xi,xj) = exp

(
−‖xi − xj‖2

2σ2

)
, (4.8)

xi,xj ∈ R3 are two point positions, and σ is a parameter that controls when

two points are considered close enough. Because the matrix K is an RBF

kernel [24], the coverage term C ranges between 0 and 1. It decreases when

two points are far away and increases when two points are close to each other.

To fulfill the goal of keeping points that are far apart of each other in order to

cover most of the scene, then we need to minimize C.

The term C can be seen as the expected coverage score via the RBF kernel,

i.e.,

E [k(xi,xj)] =
∑
i,j

k(xi,xj)p(xi,xj)

=
∑
i,j

k(xi,xj)p(xi)p(xj)

=
∑
i,j

k(xi,xj)αiαj

= αᵀKα = C,

(4.9)

Chapter 4. Algorithm 20

where E [·] is the expectation operator, and p(xi,xj) = p(xi)p(xj) is the joint

probability encoding the chances that the pair (xi,xj) of points is selected.

By minimizing C over α, we are indirectly maximizing the expected distance

between the pairs of points in the point cloud. Thus, by minimizing C we

enforce the algorithm to learn a distribution α that aims to maximize the

expected pairwise distance between points in the input point cloud. Since the

algorithm learns a sparse distribution α, the algorithm will learn to select only

a handful of points.

To model the visual distinctiveness, we propose to use the following term:

D = dᵀα, (4.10)

where d ∈ Rm is a vector holding a visual distinctiveness score for every point

in the input point cloud. Our goal is to keep the most visual distinctive points.

Consequently, we need to maximize this term.

The term D also can be interpreted as the expected visual distinctiveness

of the selected points, i.e.,

E [di] =
∑
i

dip(xi) =
∑
i

diαi = dᵀα = D, (4.11)

where di is the visual distinctiveness score for the i-th point, and αi = p(xi)

is the probability of selecting the i-th point.

To put everything together, we want to minimize C (i.e., maximize the

expected coverage) and maximize D (i.e., the expected visual distinctiveness).

We propose the following cost function that fulfills our goals:

J = C − τD = αᵀKα− τdᵀα, (4.12)

where τ is a scalar that controls the trade-off between spatial coverage term

C and the visual distinctiveness D. By minimizing J over α, we minimize C

and maximize D. When visual distinctiveness is more important, then τ must

be high. On the other hand, when the coverage term is more important, then

τ must be near zero.

Chapter 4. Algorithm 21

To learn the sparse distribution α that minimizes J , we propose the fol-

lowing optimization problem:

minimize
α

αᵀKα− τdᵀα

subject to
m∑
i

αi = 1,

0 ≤ αi ≤
1

νm
; i = 1, . . . ,m,

(4.13)

where ν ∈ (0, 1] is a scalar that controls the sparsity of the distribution α. This

parameter thus controls the compression rate. This is because when ν = 1,

then α becomes a uniform distribution, which is equivalent to no compression.

On the other hand, when ν < 1, then we allow the algorithm to put more mass

on a few points. In this case, this is equivalent to select only a few points which

reduces the size of a point cloud.

The problem proposed in Eq. (4.13) is a QP. As such, the proposed problem

is convex. This is because the RBF kernel matrix K is positive-semi-definite

matrix [24], and the proposed problem has linear equality and inequality con-

straints. Any convex solver (e.g ., Newton-like solvers [1]) can be used to find

α. However, it is well known that these methods do not scale well when the

number of data points is large. Nevertheless, we can exploit the intimate rela-

tionship that this problem has with one-class SVM to derive efficient solvers.

4.2.1 Relation with One-class SVMs.

The proposed problem in Eq. (4.13) has a direct relationship to one-class

classifiers. We can obtain the exact one-class SVM dual formulation [25] by

setting τ = 0. With this setting, we omit the linear term D and only keep the

coverage term C. This reveals that the proposed approach with this setting

reduces a point cloud by keeping the support vectors. Recall that the support

vectors have a corresponding non-zero entry in α, and are the points that

allow an SVM to define a decision boundary for recognition.

While this relationship provides insight as to how the proposed algorithm

Chapter 4. Algorithm 22

operates, it also enables an opportunity to derive an efficient solver. This is

because efficient and scalable solvers that train an SVM exist, e.g ., the SMO

[19]. Unfortunately, we cannot directly use the one-class SVM SMO solver for

the proposed problem. There are two reasons that limit the SMO solver for

our proposed problem. The first one is that the original one-class-SVM SMO

solver does not consider a linear term; in our case the distinctiveness term D.

The second reason is that the SMO uses the SVM decision rule to determine

efficient variable updates. Our proposed problem is not a classification one.

As such, our problem does not have a decision rule. Nevertheless, as we discuss

in the next section, it is still possible to derive an SMO-like solver that can

efficiently solve the proposed problem.

4.2.2 Efficient SMO-like Solver

Inspired by the SMO solver, we aim to formulate the simplest sub-problem

that we can sequentially solve at a time. By solving these sub-problems se-

quentially, we can find the solution for the proposed problem. As shown

by Platt [19], the simplest problem that we can solve in an SVM involves

a quadratic program with only two variables. The advantage of solving a

QP problem with two variables is that we can solve it analytically. Conse-

quently, we avoid expensive matrix operations (e.g ., matrix inversions and

multiplications) which are fundamental operations in Newton-based optimiza-

tion methods.

To obtain the simplest QP problem with two variables, we need to al-

gebraically manipulate Eq. (4.12). Recall that the goal is to obtain a cost

function J ′ that focuses on only two variables: αi and αj which are the i-th

and j-th entries of α, respectively, and i 6= j. After algebraic manipulations,

Chapter 4. Algorithm 23

we obtain the following J ′:

J ′(i, j) = α2
i + 2αiαjKij + α2

j

+ 2αi
∑
l 6=i,l 6=j

αjKil + 2αj
∑
l 6=i,l 6=j

αlKjl

− τdiαi − τdjαj + g ({αt : t 6= i, j})

= J,

(4.14)

where g(·) is a function including all the remaining entries {αt : t 6= i, j} in α.

For the full derivation of J ′, we refer the reader to the supp. material.

The original problem shown in Eq. (4.13) aims to learn a probability dis-

tribution α. Since J ′ focuses on only two variables, we need to update the

equality constraints when we only optimize for the two entries αi and αj. To

do this, we need to ensure that the sum of all the entries in α equals to one.

At the same time we still need to ensure the inequality constraints shown

in Eq. (4.13). After considering these aspects, we obtain the following the

problem:

minimize
αi,αj

J ′(i, j)

subject to αi + αj = ∆,

0 ≤ αi ≤
1

νm
; i = 1, . . . ,m,

(4.15)

where ∆ is the joint probability mass between αi and αj. This means that we

can minimize J ′ as long as we maintain the probability mass ∆ between αi

and αj constant. Similar to the SMO, this constraint imposes a solution over

a line αi + αj = ∆ and keeps a valid sum:
∑

i αi = 1. This is because the

solver assumes that the starting probability distribution α is feasible:, i.e., it

sums up to one and satisfies the inequality constraints.

Similar to the SMO algorithm, the proposed algorithm needs to perform

iteration to select a pair of variables αi and αj, and solve the problem shown

in Eq. (4.15). To solve this simplified problem analytically, we can leverage

the equality constraint to set αj = ∆ − αi. Via substitution, we obtain the

Chapter 4. Algorithm 24

following simplified cost function

J ′(αi) = α2
i + 2αi (∆− αi)Kij + (∆− αi)2

+ 2αi
∑
l 6=i,l 6=j

αlKil

+ 2 (∆− αi)
∑
l 6=i,l 6=j

αlKjl

− τ (diαi + dj (∆− αi)) + g ({αt : t 6= i, j})

(4.16)

Given that J ′(αi) is a function of a single variable, we can obtain the

optimal α?i analytically by solving ∂J ′

∂αi
= 0. The analytic solution for this

relationship is:

α?i =
1

2

(
T

(2 (1−Kij) + ∆

)
, (4.17)

where

T = τ ∗ (ci − cj)− 2
∑
l 6=i,l 6=j

alKil + 2
∑
l 6=i,l 6=j

alKjl. (4.18)

Basically we want to maximize the coverage and distinctiveness at the same

time. In other words, we want to select points that are far from each other but

those points must be easy to identify. Inspired by the SMO [19] algorithm,

the solver aims to solve this problem by solving simpler problem. Consider

the derivation of the sub-problem in terms of α1 and α2 for optimization,

k(xi, xj) = k(xj, xi) because is a RBF kernel and a shorthand of kij = k(xi, xj).

Therefore, the coverage term is the sum of the all elements in the following

matrix:
α2
1 α1α2k12 . . . α1αmk1m

α2α1k21 α2
2 . . . α2αmk2m

...
...

. . .
...

αmα1km1 αmα2km2 . . . α2
m

where αi is the ith alpha entry for the ith point. The coverage term can be

Chapter 4. Algorithm 25

rewritten as follows:

coverage =
∑
i

α2
i + 2

m∑
i=1

m∑
j=i+1

αiαjkij (4.19)

= α2
1 + 2α1α2k12 + α2

2 + 2α1

m∑
j=3

αjk1j

+ 2α2

m∑
j=3

αjk2j + φ

(4.20)

where φ =
∑

i=3

∑
j=3 αiαjkij. In terms of α1 and α2, the distinctiveness

term is:

distinctiveness =
∑
i

Ciαi (4.21)

= C1α1 + C2α2 + γ (4.22)

where γ =
∑m

i=3Ciαi. We can discard φ and γ since is independent of α1

and α2.

Thus the total cost function to minimize emphasizing the two α1 and α2 is

Z(α1, α2) = α2
1 + 2α1α2k12 + α2

2 + 2α1

∑
j=3

αjk1j

+ 2α2

∑
j=3

αjk2j − τC1α1 − τC2α2

(4.23)

Then, the subproblem to solve is

minimize
α

Z(α1, α2)

subject to α1 + α2 = ∆,

0 ≤ αi ≤
1

νm
; i = 1, 2.

(4.24)

Using the linear constraint to get α2 as a function of α1 (i.e α2 = ∆−α1).

We use this relationship to get the cost function of the subproblem as a function

of α1 only.

Z(α1) = α2
1 + 2α1(∆− α1)k12 + (∆− α1)

2

+ 2α1

∑
j=3

ajk1j + 2(∆− α1)
∑
j=3

ajk2j

− τC1α1 − τC2(∆− α1)

(4.25)

Chapter 4. Algorithm 26

Solving the problem at the optimal point and then solving for α1, we get:

∂Z

∂α1

= 2α1 + 2(∆− 2α1)k12 − 2(∆− α1)

+ 2
∑
j=3

ajk1j − 2
∑
j=3

ajk2j

− τC1 + τC2

(4.26)

α1optimal = 0.5

(
T

2(1− k12)
+ ∆

)
(4.27)

where T = τ(C1 − C2)− 2
∑

j=3 ajk1j + 2
∑

j=3 ajk2j.

Since we are solving a box constrained problem we have that

α1 = max

(
0,min

(
min

(
1

νm
,∆

)
, α1optimal

))
(4.28)

Consequently, α2 = ∆− α1.

4.2.3 The Complete Algorithm

From the above mentioned, the whole proposed method algorithm is as

follow:

Initialization of proposed method algorithm [20] For the fraction of the

compression factor ν, the values for αi where i is in that fraction are:

αi =

1
νm

if νm is integer

(0, 1
νm

) Otherwise
(4.29)

Otherwise, the values for αi = 0

Chapter 4. Algorithm 27

Algorithm 1: Simple-SMO algorithm
Input : m-by-4 matrix M - 3D point and their aggregated confidence

score

Output : a vector of alphas, α

Parameters: Compression factor ν, Coverage and Distinctiveness trade-off

factor τ , Sigma value for RBF

Upper bound = 1
νm

Initialization for αi

Main function:

for (i = 1 ... number of iterations) do

Generate pair (α1, α2) randomly;

function Solver for α1 (α1, α2);

function Update Alpha pair (α1optimal);

end

Function Solve for α1 (α1, α2);

if (α1 = α2) then
return;

end

∆ = α1 + α2;

28

Chapter 5

Experiments

5.1 Datasets

In order to measure the quality of our proposed algorithm compared to

other baseline algorithms, we use the 1DSfM datasets [34]. These datasets each

contain a 3D reconstruction, including the camera positions and orientations,

as well as the original images used to create said reconstruction.

5.1.1 1DSfM

1DSfM presents fourteen large-scale reconstructions that includes the im-

ages used to compute the reconstructions, 2-view matches, and epipolar ge-

ometry. This information is present in the form of “bundle files” which must

first be converted into a format usable by TheiaSfM. This is done by an ap-

plication that comes existing with Theia out of the box. Additionally, the

feature/descriptor information of each point must be repopulated. Using a

reprojection error threshold of 8 pixels, each point was assigned the proper

feature for each view it was seen within. Any tracks that were never assigned

a feature were removed from the reconstruction

The fourteen models contain within the dataset are of varying large-scale

sizes, real world structures, and features. It is important to realize that the

Bundler model coming with the models is not an “exact” ground truth. As

Chapter 5. Experiments 29

in, it should not be considered a perfect 1-to-1 reconstruction of these real

world objects. However, it is sufficient to use as a general ground truth for our

optimization purposes. Please see section 7.1 for information on the models,

such as the number of images and the number of points, for both query and

validation tests.

5.2 Integration with Theia & Testing

The algorithm must be tested against the baseline algorithms to measure

its performance. The entire testing procedure is described in the following

steps:

1. Convert the 1DSfM “bundle files” to a Theia reconstruction.

2. Normalize the reconstruction about the origin, and repopulate features.

3. Randomly select 10% of the cameras to be removed, and remove them.

4. Perform point scoring on the reconstruction (or perform any other nec-

essary information retrieval for running baselines).

5. Select the points to be kept and removed from the reconstruction.

6. Compress the reconstruction by removing undesired points.

7. Perform localization; add back the previously removed cameras. This

process returns the success metrics.

5.2.1 Query View Removal

As mentioned, 10% of views are removed, optimization occurs, then those

10% of views are attempted to be re-localized. We measure the re-localization

performance when varying point scoring techniques, RBF sigma, and CDT

values to obtain the optimal parameters. Upon testing, a different subset of

views need to be used as to not “learn to the test set.” To account for such, a

Chapter 5. Experiments 30

subset of 10% are chosen for query and another 10% are chosen for validation,

with absolutely no overlap between the two sets. The query set is used to see

which techniques are best, while the validation set is used to compare to the

other baseline algorithms (which are also using validation). The proper view

set (query or validation) is then removed, and saved into their own respective

Theia files.

5.2.2 Point Scoring

As section 4.1 discussed all the various techniques, an application was

added to Theia’s interface to perform this scoring. The desired technique may

be selected, and point scoring occurs, ultimately outputting a file of every

point such that it reads, (xi, yi, zi, scorei), where i is the point in question.

5.2.3 Point Selection

The point selection process for our algorithm is the QP solver (section 4.2).

The format for the output file must be parse-able such that it contains the

points to be removed (or kept) in a text file, one point index per row. An

example of point selection is shown in Figure 5.1, where the 20% of points to

keep are shown in green and the remaining points to remove shown in black.

5.2.4 Point Removal

An application was added to Theia such that when presented with a list

of points, they are removed from the reconstruction. The resulting minimized

reconstruction is saved into a separate file, and does not overwrite the non-

compressed pruned reconstruction.

5.2.5 Localization Metrics

There are three primary metrics by which the success of the algorithm is

measured, compared to the baselines. These metrics are: failure rate upon re-

Chapter 5. Experiments 31

Figure 5.1: Example of point selection on the Notre Dame. Points to keep

shown in green, points to remove shown in black.

localization, the positional distance from re-localization to ground-truth, and

rotational distance from re-localization to ground-truth. The positional and

rotational measures are graphed as a cumulative distribution function (CDF)

of error vs. the fraction of cameras re-localized. The CDF allows seeing clear

distance outliers upon re-localization.

5.2.5.1 Re-Localization Failure Rate

This metric is fairly self-explanatory, it is simply the percentage of cameras

that were able to be re-localized after compression occurred. One important

thing to note about this is that when a camera could not be localized, its

positional and rotational distance will be not be recorded for the CDF plots.

This was done because there is no “maximum” distance value that could be

applied. For example, if every camera fails to be localized (which should be a

clear indicator the point selection was terrible), it will record no positional or

rotational distances. Thus, a general, but not strict rule, is that this should

be used as the primary indicator for localization success, and distances as “tie

Chapter 5. Experiments 32

breakers.”

5.2.5.2 Positional Distance

The positional distance metric is calculated as the L2 (Euclidean) distance

between two points. Please remember all coordinate points should be on the

same homogeneous scale when computing distance (the fourth value for 3D

points). The formula is simply,

distance =

√√√√ 3∑
i=1

(pi − qi)2 (5.1)

where p and q are three dimensional points.

5.2.5.3 Rotational Distance

The rotational distance may be computed one of two ways. Rotation ma-

trices have the property that they are orthogonal matrices with determinant

1. Meaning: for any n-dimensional rotation matrix R in Rn, Rᵀ = R−1. Thus,

if the re-localized rotation matrix is exactly equal to the ground truth rotation

matrix,

RgtR
ᵀ
rl = I (5.2)

where Rgt is the ground truth matrix, Rrl is the re-localized matrix, and I

is the identity matrix. We can compute the rotational distance then as the

norm of this multiplication minus to the identity matrix, or in other words,

the distance from being the identity matrix. This resultant formula is,

distance = ||I −RgtR
ᵀ
rl|| (5.3)

which is the first rotational metric. The second metric is to convert the ma-

trices into quaternions, the dot product of which corresponds to the cosine of

the half angle between them. More specifically:

distance = 2 ∗ arccos (|Qgt ·Qrl|) (5.4)

Chapter 5. Experiments 33

where the distance is in radians, Qgt is the ground truth quaternion, and Qrl

is the re-localized quaternion. This second metric (converted to degrees) was

used in our experiments, however an option exists to choose either.

5.3 Results

5.3.1 Query

The views for each dataset (section 5.1) were broken into three sets each,

as described in subsection 5.2.1: 10% for query, 10% for validation, and the

remainder 80%, with no overlap between the sets. For the query set, the point

scoring technique (section 4.1), RBF sigma, and CDT were empirically mod-

ified to choose the optimal values. In order to accomplish this, first the RBF

sigma value was modified with a CDT of 0, to isolate itself from the different

scoring techniques (a CDT of 0 does not use distinctiveness as shown in Equa-

tion 4.12). The RBF sigma is modified from 1.0 to 10.0 in 0.5 increments.

Once the RBF is chosen and held constant, the CDT is modified from 0.2 to

2.0 in 0.2 increments for each of the scoring techniques. The best combination

of these values is then chosen, as determined by the metrics in subsection 5.2.5.

This chosen set of parameters is then used for the validation set of views, for

the actual testing and comparison against the other baseline methods.

The chosen parameters for each model are given in Table 5.1, and the

broken down counts are given in Table 5.2 through Table 5.4.

A breakdown of the query failure rates, with respect to the different scor-

ing techniques may be seen in Table 7.2 in section 7.2. Across the datasets,

658 cameras were queried for localization for each scoring method, with each

camera under going five trials of localization. Distance without normaliza-

tion failed 1.19%, distance normalize failed 1.08%, frequency based on number

of images failed 34.50%, frequency based on best point failed 81.44%, com-

bination failed 1.69%, and only RBF (no distinctiveness) failed 1.16%. The

Chapter 5. Experiments 34

Model RBF Sigma CDT Score

Alamo 1 0.4 Combo

Ellis Island 1 0 (any)

Gendarmenmarkt 4 1.8 Distance Norm

Madrid Metropolis 5 1.8 Combo

Notre Dame 8.5 1.0 Combo

NYC Library 2.5 0.4 Distance Norm

Piazza del Popolo 1.5 1.0 Combo

Piccadilly 2 0.4 Distance Norm

Roman Forum 9 1.2 Distance Norm

Tower of London 4 0.6 Distance Norm

Trafalgar 3 0.2 Distance Norm

Union Square 9.5 1.6 Distance Norm

Vienna Cathedral 3 1.2 Combo

Yorkminster 7.5 1.4 Distance Norm

Table 5.1: Chosen parameters based on query results.

Score
Distance

Non-Norm

Distance

Norm

Freq.

Num. Imgs.

Freq.

Best Pt.
Combo

any

(0 cdt)

Count 0 8 0 0 5 1

Table 5.2: Count of scores being best among the datasets.

Sigma 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Count 2 1 1 1 2 0 2 0 1 0

Sigma 6 6.5 7 7.5 8 8.5 9 9.5 10

Count 0 0 0 1 0 1 1 1 0

Table 5.3: Count of RBF sigmas being best among the datasets.

CDT 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Count 1 1 3 1 0 2 2 1 1 2 0

Table 5.4: Count of CDT sigmas being best among the datasets.

Chapter 5. Experiments 35

frequency based scoring metrics failed drastically more often than the other

three scoring methods, with the normalized distance metric performing the

best.

5.3.2 Validation & Method Comparisons

The validation set of views are used in comparison between the different

baseline methods, once the optimal parameters for our algorithm have been

chosen. The methods used are:

1. “Ground Truth.” The selected views are removed, no compression

occurs, and the selected views are relocalized. The purpose behind not

compressing is that some views may be challenging, or even impossible,

to localize due to us having to manually repopulate the features per

track. Some dataset models may be ‘bad’ or too small, with very few

features assigned. Thus it provides a good metric of what the (general)

upper limit should be, aside from the inherent randomness of RANSAC

based localization.

2. “Random (5).” This method is simply the random minimization of the

reconstruction five times, plotting their concatenated errors. Essentially,

the purpose of this method is to verify our algorithm has achieved the

goal of meaningfully compressing a point cloud (by simply beating this

method).

3. “Minimal Scene.” As mentioned in chapter 2, this is an extension of the

K-cover-inspired algorithm that considers coverage and distinctiveness

of the points [4].

4. “Simple-SMO (Ours).” Our algorithm as described in chapter 4 aims to

compressed by means of an RBF kernel and visual distinctiveness, solved

in SMO-like means.

Chapter 5. Experiments 36

For all methods, five trials occur for each localization step. Meaning, each

camera is attempted to be re-localized five times for a given compression.

This was done to alleviate a ‘poor’ localization at the hands of randomness,

and to achieve more accurate results.

Figure 5.2 shows the timing to select points of our algorithm (Simple-

SMO) vs. Minimal Scene. The plot’s timing y-axis (seconds) is shown on the

logarithmic scale, with a trend line fit to the points. An important aspect

to note about these plots is that it only includes the point selection time

of both algorithms, for the proper parameters (it does not include the time

needed to obtain the files to run the algorithms). For example, in the Minimal

Scene algorithm, the compression factor is non-deterministic. As such, the

algorithm was ran numerous times, varying the K-cover value until the desired

compression was met; only the time of the proper compression factor was

plotted. The plot also does not account for the fact Minimal Scene failed to

meet the compression factor for some datasets (The K-cover should have been

higher, resulting in more time to select points). The exact timings for each

dataset, and the number of points, are shown in their corresponding section.

It may be noted that the “Ground Truth” and the “Random (5)” were not

timed, as the time “Ground Truth” has no compression and the “Random (5)”

will be the insignificant amount of time to randomly generate numbers.

The following subsections discuss the differences between the baselines ap-

plied to the different models. As mentioned, in subsection 5.2.5, the local-

ization metrics used are: re-localization failure rate, positional distance, and

rotational distance where CDFs were computed for the distances. These more

clearly illustrate how many of the cameras are ‘difficult’ to localize, by see-

ing at which data fraction the error increases. An important aspect to note

about these errors, is that upon a failed localization, no error is added to the

graphs (as explained in subsubsection 5.2.5.1), as there is no good metric for

a ‘maximum’ error to give. Thus, it is possible a high fail rate may appear to

be better graph wise, but that is simply because no error was assigned. Mean-

Chapter 5. Experiments 37

Figure 5.2: Time taken to select points vs. the size of a point cloud.

ing, instead of localizing poorly and being an outlier, it does not affect the

cumulative distribution graph at all. Additionally, as a reiteration, the failure

rate should be examined prior to the positional and rotational distances. The

inability to localize a camera is worse than a successful localization with some

error associated with it.

Table 7.3 in section 7.3 shows the number of localization failures for each

dataset for each algorithm in one concise table. Our method failed 0.76%

of localizations, while the Minimal Scene algorithm failed 4.8 times as many

localizations (3.65% failure).

Chapter 5. Experiments 38

5.3.2.1 Alamo

Table 5.5 and Figure 5.3 detail the specifics of the Alamo dataset. As pre-

viously mentioned, Ground Truth and the average of Random (5) will always

take a relatively insignificant amount of time and were not measured. Due

to Minimal Scene’s non-deterministic compression algorithm, the number of

points used in the compression will vary slightly off from the desired 20%,

while remaining within 1% of the desired value (unless the dataset entirely

fails to meet compression i.e., that is the maximum obtainable compression

factor for the dataset). As it may be seen in the CDT of rotational errors,

our algorithm remained close to the (general) ground truth max, outperform-

ing the other two baseline methods; while also being significantly faster than

Minimal Scene.

Ground

Truth

Min

Scene

Simple-

SMO

Random (5)

Average

Failure Rate (%) 5.2632 5.2632 5.2632 5.2632

Number of Points 31249 6270 6250 6249

Time to Select Points

for Compression (s)
N/A 146.14 5.23 N/A

Table 5.5: Alamo validation failure rate and time.

Chapter 5. Experiments 39

Figure 5.3: Alamo validation error CDF.

5.3.2.2 Ellis Island

For the Ellis Island model, the Minimal Scene algorithm failed to meet

desired compression, with it maxing out at 84 points selected. Our algorithm

once again outperformed the others on the rotational front, but had an outlier

with regards to position. This model was small scale and only had 3 cameras

used for validation queries.

Ground

Truth

Min

Scene

Simple-

SMO

Random (5)

Average

Failure Rate (%) 0 0 0 0

Number of Points 2009 84* 402 401

Time to Select Points

for Compression (s)
N/A 1.40 0.25 N/A

*Failed to meet desired compression

Table 5.6: Ellis Island validation failure rate and time.

Chapter 5. Experiments 40

Figure 5.4: Ellis Island validation error CDF.

5.3.2.3 Gendarmenmarkt

With regards to the rotational CDT, the Minimal Scene and Random algo-

rithms were right in line with one another. Our algorithm was more accurate

for the majority fraction of data. All methods came together for a similar large

error at the final cameras, suggesting those cameras were particularly hard to

localize.

Ground

Truth

Min

Scene

Simple-

SMO

Random (5)

Average

Failure Rate (%) 0 0 0 0

Number of Points 27683 5557 5537 5536

Time to Select Points

for Compression (s)
N/A 68.31 1.15 N/A

Table 5.7: Gendarmenmarkt validation failure rate and time.

Chapter 5. Experiments 41

Figure 5.5: Gendarmenmarkt validation error CDF.

5.3.2.4 Madrid Metropolis

Our proposed algorithm for this model both failed less localizations and was

less error prone than the other methods. Minimal Scene failed twice as many

localizations as ours, and was only slightly better than the randomization

method. There were 19 query cameras for this, with random minimization

failing 1 or 2, on each of its 5 trials.

Ground

Truth

Min

Scene

Simple-

SMO

Random (5)

Average

Failure Rate (%) 5.2632 10.5263 5.2632 7.3684

Number of Points 21245 4260 4249 4249

Time to Select Points

for Compression (s)
N/A 109.97 4.81 N/A

Table 5.8: Madrid Metropolis validation failure rate and time.

Chapter 5. Experiments 42

Figure 5.6: Madrid Metropolis validation error CDF.

5.3.2.5 Notre Dame

All models performed similarly on this dataset, most likely due to the pro-

portion of cameras to points (hundreds of points for each camera). Thus, even

with compression a large number of points remained to perform localization.

For all methods, 75% of the data had a rotation error of less than 2 degrees.

There were, however, large outliers w.r.t. the positional distance. The primary

difference between our method and Minimal Scene comes from the time as-

pect. It took our algorithm 15 seconds to select points for minimization, but

took Minimal Scene over 5.5 hours.

Ground

Truth

Min

Scene

Simple-

SMO

Random (5)

Average

Failure Rate (%) 0 0 0 0

Number of Points 459555 91481 91911 91911

Time to Select Points

for Compression (s)
N/A 20112.20 15.69 N/A

Table 5.9: Notre Dame validation failure rate and time.

Chapter 5. Experiments 43

Figure 5.7: Notre Dame validation error CDF.

5.3.2.6 NYC Library

The NYC Library model featured relatively high errors across the board for

rotation and position. With only 30% of the data added, the Ground Truth

already had an error of 90 degrees. The only difference in models with respect

to the CDF comes with a small fraction of the data, where Random is the

fastest to accrue error. Additionally, Minimal Scene did not meet compression

for this model and likely, as a result of this, features a localization failure rate

of 20%.

Ground

Truth

Min

Scene

Simple-

SMO

Random (5)

Average

Failure Rate (%) 0 20 0 0

Number of Points 11903 1158* 2381 2380

Time to Select Points

for Compression (s)
N/A 4.95 2.96 N/A

*Failed to meet desired compression

Table 5.10: NYC Library validation failure rate and time.

Chapter 5. Experiments 44

Figure 5.8: NYC Library validation error CDF.

5.3.2.7 Piazza del Popolo

Once again, Minimal Scene was slightly below the desired compression

factor, and featured the largest rotational error. Our proposed algorithm per-

formed similarly to the Ground Truth in both distance metrics.

Ground

Truth

Min

Scene

Simple-

SMO

Random (5)

Average

Failure Rate (%) 0 0 0 0

Number of Points 7959 1203* 1592 1591

Time to Select Points

for Compression (s)
N/A 5.03 0.57 N/A

*Failed to meet desired compression

Table 5.11: Piazza del Popolo validation failure rate and time.

Chapter 5. Experiments 45

Figure 5.9: Piazza del Popolo validation error CDF.

5.3.2.8 Piccadilly

Again, our proposed algorithm outperformed the other two on the rota-

tional metric, but had an outlier on the positional metric. Minimal Scene

performed similar to the Random algorithm, however it failed 3 of the 88

queries, while the other algorithms failed 0.

Ground

Truth

Min

Scene

Simple-

SMO

Random (5)

Average

Failure Rate (%) 0 3.4091 0 0

Number of Points 26536 5283 5308 5307

Time to Select Points

for Compression (s)
N/A 61.18 3.32 N/A

Table 5.12: Piccadilly validation failure rate and time.

Chapter 5. Experiments 46

Figure 5.10: Piccadilly validation error CDF.

5.3.2.9 Roman Forum

All algorithms for the Roman Forum had varying failure rates. The Ground

Truth failed 2 of the 83 queries, ours failed 3, Minimal Scene failed 4, and

Random failed a varying amount. In terms of error, our algorithm stayed

close to the Ground Truth for the entirety of the queries, while Random and

Minimal Scene were slightly more error prone.

Ground

Truth

Min

Scene

Simple-

SMO

Random (5)

Average

Failure Rate (%) 2.4096 4.8193 3.6145 2.6506

Number of Points 81040 16364 16208 16208

Time to Select Points

for Compression (s)
N/A 128.35 3.15 N/A

Table 5.13: Roman Forum validation failure rate and time.

Chapter 5. Experiments 47

Figure 5.11: Roman Forum validation error CDF.

5.3.2.10 Tower of London

The Random algorithm failed 1 camera on 4 of its 5 attempts, while the

other algorithms did not fail any of the localizations. Once again, our algo-

rithm is 2nd only to the Ground Truth, with Minimal Scene and Random

performing similar (aside from Random’s failed localization).

Ground

Truth

Min

Scene

Simple-

SMO

Random (5)

Average

Failure Rate (%) 0 0 0 3.6364

Number of Points 32119 6438 6424 6423

Time to Select Points

for Compression (s)
N/A 45.14 4.13 N/A

Table 5.14: Tower of London validation failure rate and time.

Chapter 5. Experiments 48

Figure 5.12: Tower of London validation error CDF.

5.3.2.11 Trafalgar

Both the Ground Truth and Simple-SMO algorithms performed similarly

on this model, beating both Minimal Scene and Random compression. Con-

sidering the Ground Truth failed a localization, but Simple-SMO did not, at

least one of the points that camera saw must have been ‘bad’. As in, the

reconstruction had the camera see a point that it should not have, and the

removal of that point ended up helping localization.

Ground

Truth

Min

Scene

Simple-

SMO

Random (5)

Average

Failure Rate (%) 0.3846 0.3846 0 0.4615

Number of Points 51373 10358 10275 10274

Time to Select Points

for Compression (s)
N/A 919.93 1.86 N/A

Table 5.15: Trafalgar validation failure rate and time.

Chapter 5. Experiments 49

Figure 5.13: Trafalgar validation error CDF.

5.3.2.12 Union Square

This algorithms overall performed poorly on this model. The original re-

construction only contained 696 three-dimensional points (which is not inher-

ently bad), but led to overall difficulty in compression. Minimal Scene was

only able to choose 53 points, which ultimately led to it failing all 11 of the

query localizations. Random failed approximately 1/4 of the localizations,

which could explain why its CDF appears better than Ground Truths (there

should be a greater fraction of data with high errors that entirely failed). The

same reasoning as in Trafalgar may be used for why Ground Truth failed a lo-

calization while Simple-SMO did not. Regardless of reasoning, our algorithm

did out perform the others on this model.

Chapter 5. Experiments 50

Ground

Truth

Min

Scene

Simple-

SMO

Random (5)

Average

Failure Rate (%) 9.0909 100 0 25.4545

Number of Points 696 53* 140 139

Time to Select Points

for Compression (s)
N/A 4.58 0.22 N/A

*Failed to meet desired compression

Table 5.16: Union Square validation failure rate and time.

Figure 5.14: Union Square validation error CDF.

5.3.2.13 Vienna Cathedral

All datasets had similar positional errors, but varying rotational errors.

The Ground Truth had an error of approximately 2 degrees for 40% of the

dataset, before succumbing to higher errors. For approximately half the data,

Simple-SMO had less error than Minimal Scene and Random. At that 50%

data fraction mark, all algorithms had similar errors.

Chapter 5. Experiments 51

Ground

Truth

Min

Scene

Simple-

SMO

Random (5)

Average

Failure Rate (%) 0 0 0 0

Number of Points 37653 7568 7531 7530

Time to Select Points

for Compression (s)
N/A 115.97 4.54 N/A

Table 5.17: Vienna Cathedral validation failure rate and time.

Figure 5.15: Vienna Cathedral validation error CDF.

5.3.2.14 Yorkminster

Once again, Minimal Scene failed to meet desired compression. However,

despite this its positional distance was just as good as all other algorithms,

but its rotational distance suffered. Our algorithm stayed close to the Ground

Truth the entire time, with only one large deviation at the 35% rotation mark.

Overall, our algorithm out performed the other two on this model.

Chapter 5. Experiments 52

Ground

Truth

Min

Scene

Simple-

SMO

Random (5)

Average

Failure Rate (%) 0 0 0 0

Number of Points 5076 88* 1016 1015

Time to Select Points

for Compression (s)
N/A 1.87 0.57 N/A

*Failed to meet desired compression

Table 5.18: Yorkminster validation failure rate and time.

Figure 5.16: Yorkminster validation error CDF.

53

Chapter 6

Conclusions

Our proposed algorithm not only fails fewer localizations compared to the

Minimal Scene and Random (5) algorithms, it is also more accurate and faster.

The Random algorithm failed 188% more localizations than ours, Minimal

Scene failed 480% more, while our algorithm failed no more than the Ground

Truth. Minimal Scene was on average 144.48 times slower than our algorithm

at selecting the points to localize (see Figure 5.2 for time plot). Across all

tested datasets, our algorithm nearly always outperformed Random (5) and

Minimal Scene. There were a few instances of the CDT plots which one of the

other algorithms ‘caught up to’ ours (such as nearing 100% data fraction), but

at no point was our algorithm significantly surpassed. Numerous CDT’s give

clear indication of superiority, such as Alamo and Roman Forum. Overall, the

algorithms performed the best on Notre Dame and the worst on Union Square,

which suggests feature population played a drastic role in the results. (Union

Square had 7,742 of 8,456 points removed due to all the cameras that saw

those points failing to repopulate features within 8 pixels, while Notre Dame

had only 2 of 530,774 removed. It is likely the remainder of Union Square’s

points were not assigned all features for all cameras).

As per the scoring methods the two frequency based methods performed

poorly compared to the other methods. As detailed in subsection 5.3.1, best

point frequency failed up to 81.44% of localizations while normalized distance

Chapter 6. Conclusions 54

failed only 1.08%. Since normalized distance outperformed only RBF (no

distinctiveness), it is safe to assume that the coverage term did in fact improve

performance in that case.

6.1 Future Work

The next step of continuing this research task is to test the algorithms

on lower compression factors than 20%; for example 5%, 1%, or 0.1%. As a

greater and greater amount of points are removed, the difficulty to localize

increases. Our hypothesis is that our algorithm will outperform by an even

greater margin at these highly compressed reconstructions. Another possibility

for the future is to devise new scoring metrics, or tune the combination scoring

metric (currently set at 50% normalized distance, 50% best point frequency).

55

Chapter 7

Appendices

The following sections contain supplemental information towards the

project.

Chapter 7. Appendices 56

7.1 Appendix A - Dataset Info

D
a
ta

se
t

C
o
n
v
e
rt
e
d

R
e
c
o
n

w
it
h

E
m
p
ty

V
ie
w
s
R
e
m
o
v
e
d

P
ru

n
e
d

-

R
e
m
o
v
e
Q
u
e
ry

1
0
%

P
ru

n
e
d

-

R
e
m
o
v
e
V
a
li
d
a
ti
o
n

1
0
%

N
u
m

Im
a
g
e
s

N
u
m

P
o
in
ts

N
u
m

Im
a
g
e
s

N
u
m

P
o
in
ts

N
u
m

Im
a
g
e
s

N
u
m

P
o
in
ts

A
la
m
o

19
2

32
9
6
2

1
7
3

3
0
3
0
7

1
7
3

3
1
2
4
9

E
ll
is

Is
la
n
d

38
22

3
0

3
5

2
1
6
4

3
5

2
0
0
9

G
e
n
d
a
rm

e
n
m
a
rk

t
51

9
30

9
1
8

4
6
8

2
7
8
7
2

4
6
8

2
7
6
8
3

M
a
d
ri
d

M
e
tr
o
p
o
li
s

19
2

22
8
0
8

1
7
3

2
0
2
3
1

1
7
3

2
1
2
4
5

N
o
tr
e
D
a
m
e

55
3

53
0
7
7
4

4
9
8

4
6
0
8
5
1

4
9
8

4
5
9
5
5
5

N
Y
C

L
ib
ra

ry
10

3
12

5
1
4

9
3

1
0
4
2
0

9
3

1
1
9
0
3

P
ia
z
z
a
d
e
l
P
o
p
o
lo

11
1

83
8
9

1
0
0

7
5
5
2

1
0
0

7
9
5
9

P
ic
c
a
d
il
ly

88
0

28
2
7
4

7
9
2

2
6
6
2
3

7
9
2

2
6
5
3
6

R
o
m
a
n

F
o
ru

m
83

1
86

8
3
7

7
4
8

8
0
1
7
8

7
4
8

8
1
0
4
0

T
o
w
e
r
o
f
L
o
n
d
o
n

22
8

33
9
4
4

2
0
6

3
2
3
8
7

2
0
6

3
2
1
1
9

T
ra

fa
lg
a
r

26
04

54
4
8
6

2
3
4
4

5
1
3
8
3

2
3
4
4

5
1
3
7
3

U
n
io
n

S
q
u
a
re

11
1

71
4

1
0
0

6
7
1

1
0
0

6
9
6

V
ie
n
n
a
C
a
th

e
d
ra

l
23

3
42

1
9
7

2
1
0

3
9
0
1
3

2
1
0

3
7
6
5
3

Y
o
rk

m
in
st
e
r

38
50

9
6

3
5

4
5
0
8

3
5

5
0
7
6

Table 7.1: Dataset information for converted, query, and validation recon-

structions.

Chapter 7. Appendices 57

7.2 Appendix B - Query Results

D
a
ta

se
t

N
u
m
.
Q
u
e
ry

Im
a
g
e
s

A
v
e
ra

g
e
N
u
m
b
e
r
o
f
Q
u
e
ry

C
a
m
e
ra

s
F
a
il
e
d

to
L
o
c
a
li
z
e

D
is
ta

n
c
e

N
o
n
-N

o
rm

D
is
ta

n
c
e

N
o
rm

F
re

q
.
N
u
m
.

Im
a
g
e
s

F
re

q
.
B
e
st

P
o
in
t.

C
o
m
b
o

O
n
ly

R
B
F

A
la
m
o

19
0.

00
0
.0

0
1
4
.1

0
14

.0
0

0
.0

0
0
.0

0

E
ll
is

Is
la
n
d

3
0.

00
0
.0

0
1
.0

0
1.

0
0

0
.0

0
0
.0

0

G
e
n
d
a
rm

e
n
m
a
rk

t
51

0.
00

0
.0

0
1
2
.0

0
42

.4
0

0
.0

0
0
.0

0

M
a
d
ri
d

M
e
tr
o
p
o
li
s

19
0.

00
0
.7

0
1
2
.3

0
13

.0
0

0
.1

0
0
.0

0

N
o
tr
e
D
a
m
e

55
0.

00
0
.0

0
0
.0

0
0.

0
0

0
.0

0
0
.0

0

N
Y
C

L
ib
ra

ry
10

0.
00

0
.0

0
7
.8

0
8.

3
0

0
.0

0
0
.0

0

P
ia
z
z
a
d
e
l
P
o
p
o
lo

11
0.

00
0
.0

0
7
.0

0
6.

9
0

0
.0

0
0
.0

0

P
ic
c
a
d
il
ly

88
1.

10
1
.0

0
7
2
.6

0
88

.0
0

0
.7

0
1
.1

1

R
o
m
a
n

F
o
ru

m
83

2.
80

3
.0

0
4
8
.0

0
78

.9
0

0
.7

0
2
.6

8

T
o
w
e
r
o
f
L
o
n
d
o
n

22
0.

80
0
.4

0
1
8
.6

0
21

.4
0

1
.3

0
0
.7

4

T
ra

fa
lg
a
r

26
0

1.
00

1
.9

0
7
.7

0
22

8
.7

0
0
.2

0
1
.1

1

U
n
io
n

S
q
u
a
re

11
1.

40
0
.1

0
3
.3

0
10

.3
0

8
.1

0
1
.4

7

V
ie
n
n
a
C
a
th

e
d
ra

l
23

0.
70

0
.0

0
2
2
.6

0
23

.0
0

0
.0

0
0
.5

3

Y
o
rk

m
in
st
e
r

3
0.

00
0
.0

0
0
.0

0
0.

0
0

0
.0

0
0
.0

0

T
O
T
A
L

(C
O
U
N
T
)

65
8

7.
80

7
.1

0
2
2
7
.0

0
53

5
.9

0
1
1
.1

0
7
.6

3

T
O
T
A
L

(P
E
R
C
E
N
T
)

10
0

1.
19

1
.0

8
3
4
.5

0
81

.4
4

1
.6

9
1
.1

6

Table 7.2: Number of failed cameras by scoring method by dataset.

Chapter 7. Appendices 58

7.3 Appendix C - Validation Results

D
a
ta

se
t

N
u
m
.
Q
u
e
ry

Im
a
g
e
s

A
v
e
ra

g
e
N
u
m
b
e
r
o
f
Q
u
e
ry

C
a
m
e
ra

s
F
a
il
e
d

to
L
o
c
a
li
z
e

G
ro

u
n
d

T
ru

th
S
im

p
le
-S

M
O

M
in
im

a
l
S
c
e
n
e

R
a
n
d
o
m

5

A
la
m
o

19
1
.0

0
1
.0

0
1
.0

0
1
.0

0

E
ll
is

Is
la
n
d

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0

G
e
n
d
a
rm

e
n
m
a
rk

t
51

0
.0

0
0
.0

0
0
.0

0
0
.0

0

M
a
d
ri
d

M
e
tr
o
p
o
li
s

19
1
.0

0
1
.0

0
2
.0

0
1
.4

0

N
o
tr
e
D
a
m
e

55
0
.0

0
0
.0

0
0
.0

0
0
.0

0

N
Y
C

L
ib
ra

ry
10

0
.0

0
0
.0

0
2
.0

0
0
.0

0

P
ia
z
z
a
d
e
l
P
o
p
o
lo

11
0
.0

0
0
.0

0
0
.0

0
0
.0

0

P
ic
c
a
d
il
ly

88
0
.0

0
0
.0

0
3
.0

0
0
.0

0

R
o
m
a
n

F
o
ru

m
83

2
.0

0
3
.0

0
4
.0

0
2
.2

0

T
o
w
e
r
o
f
L
o
n
d
o
n

22
0
.0

0
0
.0

0
0
.0

0
0
.8

0

T
ra

fa
lg
a
r

26
0

1
.0

0
0
.0

0
1
.0

0
1
.2

0

U
n
io
n

S
q
u
a
re

11
1
.0

0
0
.0

0
1
1
.0

0
2
.8

0

V
ie
n
n
a
C
a
th

e
d
ra

l
23

0
.0

0
0
.0

0
0
.0

0
0
.0

0

Y
o
rk

m
in
st
e
r

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0

T
O
T
A
L

(C
O
U
N
T
)

65
8

6
.0

0
5
.0

0
2
4
.0

0
9
.4

0

T
O
T
A
L

(P
E
R
C
E
N
T
)

10
0

0
.9

1
0
.7

6
3
.6

5
1
.4

3

Table 7.3: Number of failed cameras by algorithm by dataset.

59

References

[1] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge univer-
sity press, 2004. 21

[2] F. Camposeco, A. Cohen, M. Pollefeys, and T. Sattler. Hybrid camera
pose estimation. In Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition, 2018. 1

[3] F. Camposeco, T. Sattler, and M. Pollefeys. Minimal solvers for general-
ized pose and scale estimation from two rays and one point. In Proc. of
the European Conf. on Computer Vision, 2016. 1

[4] S. Cao and N. Snavely. Minimal scene descriptions from structure from
motion models. In Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition, 2014. 2, 5, 6, 18, 35

[5] C. Cortes and V. Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995. 2

[6] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. Monoslam:
Real-time single camera slam. IEEE Transactions on Pattern Analysis &
Machine Intelligence, (6):1052–1067, 2007. 1

[7] M. Fischler and R. Bolles. Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartog-
raphy. Communications of the ACM, 24(6):381–395, 1981. 8

[8] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning,
volume 1. MIT press Cambridge, 2016. 7

[9] C. Häne, L. Heng, G. H. Lee, F. Fraundorfer, P. Furgale, T. Sattler, and
M. Pollefeys. 3d visual perception for self-driving cars using a multi-
camera system: Calibration, mapping, localization, and obstacle detec-
tion. Image and Vision Computing, 68:14–27, 2017. 1

[10] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vi-
sion. Cambridge University Press, New York, NY, USA, 2 edition, 2003.
vi, 9

[11] G. Hee Lee, F. Faundorfer, and M. Pollefeys. Motion estimation for self-
driving cars with a generalized camera. In Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition, 2013. 1

References 60

[12] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997. 7

[13] A. Kendall, R. Cipolla, et al. Geometric loss functions for camera pose
regression with deep learning. In Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition, 2017. 7

[14] A. Kendall, M. Grimes, and R. Cipolla. Posenet: A convolutional network
for real-time 6-dof camera relocalization. In Proc. of the IEEE Interna-
tional Conf. on Computer Vision, 2015. 7

[15] Y. Li, N. Snavely, and D. P. Huttenlocher. Location recognition using
prioritized feature matching. In Proc. of the European Conf. on Computer
Vision, 2010. 2, 5

[16] D. G. Lowe. Object recognition from local scale-invariant features. In
Proc. of the IEEE International Conf. on Computer vision, 1999. 1, 5, 10

[17] S. Middelberg, T. Sattler, O. Untzelmann, and L. Kobbelt. Scalable 6-
dof localization on mobile devices. In Proc. of the European Conf. on
computer vision, 2014. 1

[18] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval
with large vocabularies and fast spatial matching. In Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition, 2007.

[19] J. Platt. Sequential minimal optimization: A fast algorithm for training
support vector machines. 1998. 2, 7, 22, 24

[20] J. C. Platt, J. Shawe-Taylor, A. J. Smola, R. C. Williamson, et al. Esti-
mating the support of a high-dimensional distribution. Neural computa-
tion, 13(7):1443–1471, 2001. 26

[21] T. Sattler, M. Havlena, F. Radenovic, K. Schindler, and M. Pollefeys.
Hyperpoints and fine vocabularies for large-scale location recognition. In
Proc. of the IEEE International Conf. on Computer Vision, 2015.

[22] T. Sattler, B. Leibe, and L. Kobbelt. Fast image-based localization using
direct 2d-to-3d matching. In Proc. of the IEEE International Conf. on
Computer Vision, 2011. 2

[23] T. Sattler, A. Torii, J. Sivic, M. Pollefeys, H. Taira, M. Okutomi, and
T. Pajdla. Are large-scale 3d models really necessary for accurate visual
localization? In Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition, 2017. 1

[24] B. Schölkopf, A. J. Smola, et al. Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2002. 2,
19, 21

[25] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and J. C.
Platt. Support vector method for novelty detection. In Proc. of the Conf.
on Advances in Neural Information Processing Systems, pages 582–588,
2000. 2, 7, 21

Appendix 61

[26] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: Exploring photo
collections in 3d. In ACM SIGGRAPH 2006 Papers, SIGGRAPH ’06,
pages 835–846, New York, NY, USA, 2006. ACM. 11

[27] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: Exploring photo
collections in 3d. ACM Trans. Graph., 25(3):835–846, July 2006.

[28] H. Soo Park, Y. Wang, E. Nurvitadhi, J. C. Hoe, Y. Sheikh, and M. Chen.
3d point cloud reduction using mixed-integer quadratic programming. In
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
Workshops, 2013. 2, 6

[29] C. Sweeney. Theia multiview geometry library: Tutorial & reference.
http://theia-sfm.org. 11

[30] C. Sweeney, J. Flynn, B. Nuernberger, M. Turk, and T. Höllerer. Efficient
computation of absolute pose for gravity-aware augmented reality. In
Proc. of the IEEE International Symposium on Mixed and Augmented
Reality, 2015. 1

[31] C. Sweeney, V. Fragoso, T. Höllerer, and M. Turk. gdls: A scalable solu-
tion to the generalized pose and scale problem. In Proc. of the European
Conf. on Computer Vision, 2014. 1

[32] C. Sweeney, V. Fragoso, T. Höllerer, and M. Turk. Large scale sfm with
the distributed camera model. In Proc. of the IEEE International Conf.
on 3D Vision, 2016. 1

[33] F. Walch, C. Hazirbas, L. Leal-Taixe, T. Sattler, S. Hilsenbeck, and
D. Cremers. Image-based localization using lstms for structured feature
correlation. In Proc. of the IEEE International Conf. on Computer Vi-
sion, 2017. 7

[34] K. Wilson and N. Snavely. Robust global translations with 1dsfm. In
Proceedings of the European Conference on Computer Vision (ECCV),
2014. 14, 28

[35] W. Zhang and J. Kosecka. Image based localization in urban environ-
ments. In 3DPVT, volume 6, pages 33–40. Citeseer, 2006.

http://theia-sfm.org

	Optimal Compression of Point Clouds
	Recommended Citation

	tmp.1562600390.pdf.CskTR

