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ABSTRACT 

Design and Performance Analysis of Electric Vehicles 

Fed by Multiple Fuel Cell Power Sources 

Pardis Khayyer 

Recent advances in fuel cell developments have introduced them to many applications 

such as hybrid electric vehicles and heat/power cogenerations. They bring the advantage of 

clean energy and decrease the dependency on imported oil by providing fuel efficient devices 

in many applications such as electric vehicles. Conventional designs of hybrid fuel cell 

vehicles make use of a single fuel cell power source and a storage device to provide the base 

load and transients in various driving cycles. This thesis proposes a new configuration of 

multiple fuel cell power sources in hybrid fuel cell vehicles. Fuel cells are downsized in this 

new configuration to provide the same amount of power, which brings the advantage of a 

highly fuel economic design. The power control algorithm for this new configuration is 

presented and simulation results are studied for a case of double fuel cell power sources. 

Efficiency analysis for this new configuration is presented and compared with the 

conventional configuration. The main objective of this thesis is to achieve a higher efficiency 

in urban driving cycle. In conventional configurations, the fuel cell is not efficiently loaded 

in urban driving cycles, where small powers were required from the single fuel cell power 

source. Reliability analysis is also presented for this configuration.  
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Chapter 1, 

Energy 

 

Limited fossil fuel resources, increase in pollution, very high energy consumption and 

harmful effects of using non-renewable energy are leading the research and development 

toward new and renewable forms  of energy to overcome the present problems in this regard. 

Fossil fuels and renewable energies are two main sources of energy used for different 

purposes such as transportation, industries, heating and cooling. These two types of energy 

and several main forms of renewable energy, their advantage and disadvantages are briefly 

explained in this chapter. 

 

1.1 Fossil Fuels 

 

Some examples of fossil fuel energy sources are coal, petroleum and natural gas. The 

organic remains of very old (e.g. hundreds of millions of years) plants and animals have 

formed the fossil fuel resources and that is why the name “Fossil Fuel” is selected for this 

type of resources. The energy in fossil fuels is simply released in the burning process.  

Forming of the fossil fuel sources takes a long time, millions of years, and are being 

consumed much faster than formation of their new ones. That is why they are also known as 

non-renewable energy sources. Based on the report of Energy Information Administration, 

86% of the energy consumption in the world in 2005 has been provided by fossil fuels. The 

rest has been provided by hydro 6.3%, nuclear 6.0% and only 0.9% from renewable energy 
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sources. As for the USA, the percentage of fossil fuel energy consumption has been the same, 

which is %86 as it is shown in Figure 1.1.1 (EIA Webpage).  

 

 
Figure 1.1.1, 86% of US energy consumption is fossil fuel (EIA Web Page) 

 

Despite the fast consumption of fossil fuel energy sources and their limited resources, 

consuming fossil fuels has harmful effects to the natural environment. The main concern in 

this regard is the “Greenhouse Effect”. 

Greenhouse gases, such as water vapor, carbon dioxide and methane, in the atmosphere, 

are produced from both natural sources and human activity. These gases cause a process 

which is called the “Greenhouse effect”. The earth absorbs some of the energy received from 

radiations of the sun and sends back infrared (IR) radiation of the sun to the atmosphere. 

Greenhouse gases re-radiate some of these emissions back to the earth while the rest goes 

into space. This procedure results in warming up the earth and is known as the greenhouse 

effect. By overusing fossil fuel energy sources and more industrial carbon dioxide emissions 

from the earth, the greenhouse effect has caused the “Global Warming” (Wikipedia 

Webpage-Greenhouse Gas), (Wikipedia Webpage-Greenhouse Effect). “Global Warming” 

which is the increase in the average temperature of the earth has many harmful effects. By 

continuing of this cycle, ices in the earth poles melt and there is a danger of covering the 

lands by water.  As mentioned, because of limited fossil fuel resources and their harmful 

effects such as global warming and pollution, there is a need for another power energy source 

to replace fossil fuel energy sources. The best replacement is the renewable energy sources. 

In addition of being environmental friendly, renewable energy sources do not have limited 

sources. This type of power sources are explained in the next section. 
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1.2 Renewable Energy Sources 

 

Renewable energy sources, such as solar, wind, fuel cell, hydroelectric, biomass and 

wave/ocean energy, are other types of energy sources. They are not yet widely in use, 

however, because of their many advantages, they have the capacity to fully replace the fossil 

fuel energy sources. To overcome the problems caused by fossil fuels, nowadays more 

attention is toward renewable energy sources. Renewable energy sources are clean and not 

limited in comparison with fossil fuel. However, they have some limitations such as small 

energy production and expensive maintenance costs which should be overcome to make 

renewable energy sources more common in everyday life and an alternative for fossil fuel 

energy. Three main types of renewable energy sources are briefly explained in this section 

(Thinkquest Web Page). 

 

1.2.1 Solar Energy 

 

Solar energy is referred to changing the energy of rays of sun into the forms of heat and 

electricity. To make use of solar energy, collectors or panels and storage units are required. 

The solar panels collect the sun rays which hit the panel’s surface and transform it into heat 

or electric current (Brown. 1988). Collectors can generally be found as flat-plate collectors, 

focusing collectors and passive collectors. Depending upon the application, a collector is 

selected to collect the most possible sun rays and deliver it to the storage. Since the amount 

of energy differs during day time and night, a storage device is required to store the collected 

energy. Figure 1.2.1.1 shows a solar power panel.  

 

 
Figure 1.2.1.1, Solar power panels at a solar power plant, California (Thinkquest Web Page) 
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Solar power is a clean form of energy and has no byproducts. It can be used with other 

renewable energy power sources for different purposes such as heating, transportation and 

electricity generation and is becoming more and more popular. However, some issues such as 

high cost of manufacturing, efficiency and geographical limitation prevented these devices to 

grow fast. Solar panels have efficiency as low as 40% and can generate power only in sunny 

geographical locations (Thinkquest Web Page).  

 

1.2.2  Wind Energy 

 

Clean energy of wind is another type of renewable energy resources. Harvesting the 

energy stored in the wind has roots in history of human being to grind their wheat, pull water 

from the water wells, and push their ships forward in the sea. To produce electricity, wind 

should turn the turbine-generator set. Like solar energy, the energy of wind varies at different 

locations, heights and times of year. Wind energy can be used along with other types of 

renewable energies to obtain and store extra energy during strong gust of winds in the storage 

devices. Low energy production and high maintenance costs are the main drawbacks of the 

wind energy. It is a very good source of energy if used as a supplement to other types of 

energies. Figure 1.2.2.1 shows a windmill farm in California. 

 

 
Figure 1.2.2.1, a windmill farm, northern California (Thinkquest Web Page). 
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1.2.3 Fuel Cell 

 

Fuel cells are electrochemical devices that change the form of chemical energy into 

electrical energy. Fuel cell like a battery consists of an electrolyte layer with two contacts as 

anode and cathode on both sides to carry on the generated current. In a fuel cell, hydrogen as 

a fuel is fed through anode (negative electrode) and oxygen is fed through cathode (positive 

electrode) to facilitate the electrochemical reactions taking place in the electrolyte membrane 

which produces electric current. Fuel cells can produce electrical energy as long as it is 

supplied by fuels and oxidants (Fuel Cell Hand Book. 2000). Figure 1.2.3.1 shows different 

parts of a typical fuel cell. 

 
Figure 1.2.3.1, Different parts of a typical fuel cell (Wikipedia Webpage-Fuel Cell Image). 

 

The only byproducts of fuel cells are water and heat. The voltage produced by one cell in 

the fuel cell is about 0.7 (DC) volts and therefore for high power applications several cells 

are connected in series in one fuel cell to produce the desired power. Fuel cells have 

application in generating electricity and transportation purposes. There are different types of 

fuel cells which will be explained in the next chapter.   
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1.3 Energy for stationary and mobile loads 

 

Generally, the energy consumers can be divided into two main groups of stationary loads 

and mobiles. Stationary loads receive the required energy through their connecting wires, 

pipelines, storage tanks and etc. Whereas mobile applications which require specific 

characteristics of their energy generation devices and consumes almost 28% of the total 

energy in the USA (Figure 1.3.1). Figure 1.3.1 shows Energy consumption in the US by 

buildings, Industry and transportation. The source of energy should be carried on in the 

storage tanks to be converted into the required form during transportation. Polluting fossil 

fuels are required to be replaced by renewable and green energy resources. A solution to 

overcome problems related to using fossil fuel in vehicles is to replace older vehicles with 

vehicles which run on renewable energies and are clean and have the potential to be very 

economic. One of the clean energies is electricity which can be stored in batteries and ultra-

capacitors in vehicles. Current available Battery Electric Vehicles (BEV) have some 

limitations in charging the batteries and providing enough power for long trips. Reasonably 

sized battery units cannot provide high powers and cannot run the vehicle for long time. On 

the other hand, BEV has high maintenance costs.  

To provide green transportation, fuel cells, as one of the best electric energy resources are 

widely in use in fuel cell vehicles (FCV). Fuel cell vehicles have obtained increased attention 

due to their benefits and have taken preference over battery-powered vehicles in recent 

decade. Having a longer driving range is one of the several benefits of fuel cell in 

comparison with battery-powered vehicles. More details on fuel cell vehicles will be 

explained in the next chapters. 

 

 
Figure 1.3.1, Energy consumption in the US by buildings, Industry and transportation (EIA Web Page) 
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1.4 Overview and Objective of Thesis 

 

This research will focus on the fuel efficiency of fuel cell vehicles and provides topologies 

to increase the fuel economy of electric vehicles in different driving cycles. Traditional and 

new system configurations are illustrated and compared with each other for efficiency 

analysis. In the new design, multiple fuel cell systems are connected in parallel to feed the 

load required in different driving cycles. The size reduction and the resultant advantages of 

this technique are illustrated. Efficiency curves of fuel cells are demonstrated and used to 

base the efficiency measurements. Other factors such as reliability of operation and well-to-

wheel efficiencies are introduced and used for new design approaches.  

Fuel cells as source of power are illustrated and their dynamic modeling is discussed in 

chapter 2. Electric vehicles, their configurations and characteristics are presented in chapter 

3. Current configurations of fuel cell vehicles, their characteristics, simulation results and 

their cost discussion are presented in chapter 4. Chapter 5 presents a new configuration with 

the objective of gaining higher fuel efficiency in urban driving cycle, where frequent stop-

start acceleration and deceleration puts the power sources in high tension and imposes 

inefficient fuel economy in most vehicles. Higher system reliability is also obtained as a 

result of implementing the new configuration. Chapter 6 is dedicated to the conclusion and 

future work.  
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Chapter 2, 

Fuel Cell 
 

2.1 Introduction 

 

As mentioned in previous chapter, fuel cells are electrochemical devices that change the 

form of energy from chemical into electrical. The technology is over 150 years old when Sir 

William Grove demonstrated the first fuel cell in 1839. A Schematic of a typical hydrogen 

fuel cell is shown in Figure 2.1.1 which shows the fuels are being fed to the anode (negative 

electrode) and cathode (positive electrode) of the device. Electrodes are separated with an 

electrolyte layer or membrane and carry Hydrogen and Oxygen as main fuels. The 

electrochemical reactions generate electrical current as fuels are carried through the 

electrodes and burnt in the membrane. This reaction can go on for long time and as long as 

the fuel pressure and some more conditions are maintained electrical energy is produced. 

Water and heat are the main byproducts of the electrochemical reactions which make fuel 

cells green sources of energy (Fuel Cell Handbook. 2000). Diesel and gasoline vehicles as 

the main air polluters, are to be considered for fuel cell future applications as the global 

warming and green house effects are becoming more important. 
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Figure 2.1.1, Schematic of a typical fuel cell 

 

In addition to transportation, fuel cells have applications in stationary devices. Dual 

application of fuel cells in mobile and stationary devices makes them ideal for many new and 

innovative devices such as (Acharya. 2004):   

 

• Stationary power such as power generating units, auxiliary units and distributed 

power generation systems. 

• Transportation 

• Portable electronics    

 

The electrochemical reactions result in the governing equations of fuel cells and explain 

their dynamic. In the next section, electrochemical reactions are formulated for dynamical 

behavior explanations of the system.  

 

2.2 Different Types of Fuel Cells 

 

Fuel cells are categorized according to their application, operating temperature and type of 

electrolyte. Some types of fuel cells and their characteristics are shown in Table 2.2.1 

(Greenjobs Web Page). 
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Table 2.2.1: Different types of fuel cells and their characteristics 

 

 

As the table shows, operating temperature is one of the key elements in each application. 

When the temperature is not important, other elements such as power density will make a 

significant difference in applications. Size of the device also limits its application in portable 

supplies. Among all different types of fuel cells, Polymer Electrolyte Membrane (PEM) has 

the lowest weight, operating temperature, and start-up time and therefore is suitable for 

vehicle applications. PEM fuel cell is explained in more details in the coming sections. 

 

2.3 Reactions inside Hydrogen Fuel Cell  

 

As mentioned, fuel cell is made up of two electrodes (Cathode and Anode) with an 

electrolyte membrane in between. When fuels pass the electrodes and react in the membrane, 

protons can easily pass the electrolyte membrane but electrons are blocked. This 

phenomenon generates current of electrons (electric current) outside of the device. Blocked 

by a catalyst, hydrogen fed to the anode is broken up into electrons and positive Hydrogen 

as:  

 

−+ +→ eHH 442 2 .                                          (2.3.1) 
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The hydrogen protons are absorbed by cathode and delivered to the electrolyte, while 

electrons require external circuitry to reach to the anode. On the other hand, reaction of the 

positively charged hydrogen with oxygen results in water production as described in: 

 

OHeHO 22 244 →++ −+ .                                     (2.3.2) 

 

Figure 2.3.1 shows typical reaction of the fuels in the electrodes and membrane of the fuel 

cell (Pukrushpan, Stefanopoulou & Peng. 2004). 

 

 
Figure 2.3.1, Schematic of reactions inside fuel cell 

 

The reaction of hydrogen and oxygen is a heat generating process; however, heat can be 

increased through the electric loss in the device resistances. Different conduction paths and 

their losses are explained in details in this chapter.   

 

2.4 Fuel Cell Performance 

 

Like other power sources, the performance of the hydrogen fuel cells is measured 

according to some criteria such as open circuit voltage, voltage drops, ohmic and activation 

losses, and mass transport. In this section, variables that express the behavior of hydrogen 

fuel cells are defined and explained. 

 

 



 12 

2.4.1 Open Circuit Voltage (OCV) 

 

The open circuit voltage of a fuel cell is defined as 

 

F

g
E

f

2

∆−
=  ,                                                   (2.4.1.1) 

 

where E is the electromotive force (EMF), F is the Faraday constant and fg∆ is the Gibbs 

energy release. By using this equation, a theoretical OCV of 1.2V  is obtained for a device 

operating at temperature below C°100 . In actual fuel cells the theoretical OCV of  1.2V  is not 

obtained due to losses in the fuel cell (Larminie & Dicks. 2003). 

 

2.4.2 Voltage Drop 

 

As the loading on the fuel cell increases, the output voltage drops in two different linear 

and nonlinear regions of the V-I characteristic curve of the fuel cell (Larminie & Dicks. 

2003). The V-I characteristic curve of a typical fuel cell is shown in Figure 2.4.2.1 (Fuel Cell 

Handbook. 2000). In the beginning, the voltage drops rapidly to follow a linear curve down 

to a critical value. If the load of the cell increases, the voltage will drop rapidly again and 

follows a nonlinear variation.  

 
Figure 2.4.2.1, The V-I characteristic curve of a typical fuel cell, theoretical and actual (Fuel Cell 

Handbook. 2000) 
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The main causes of the voltage drops are as (Fuel Cell Handbook. 2000), (Larminie & 

Dicks.2003):  

 

• Activation losses 

• Ohmic losses 

• Concentration losses or mass transport.  

 

Each of these effects is described in the following subsections.  

 

2.4.3 Activation Losses 

 

Initial voltage drop in the fuel cell from the OCV is because of the activation loss in the 

cell. Figure 2.4.2.1 shows the activation loss with a significant drop on the voltage as the 

loading starts from zero. Activation loss is a major issue on the fuel cells operating at low 

and medium temperatures and mostly occurs at the cathode. The activation voltage drop 

follows the Tafel equation as 

 

                                                                    )ln(
0i

i
AV °= ,                                                  (2.4.3.1) 

where 0A is a constant, i stands for the current density, 0i  is the current density where the 

voltage begins to drop and V  is the voltage drop. Tafel equation is valid for 0ii >  (Larminie 

& Dicks.2003). 

 

2.4.4 Ohmic Losses 

 

The flow of electrons and ions through Ohmic resistance of electrodes and electrolyte 

generates Ohmic losses. The voltage drop in this region is easily obtained by the Ohm’s 

law, IRV = , and is proportional to the current. Making the electrolyte membrane as thin as 

possible with an optimal design of electrodes with high conductivity materials will reduce the 

Ohmic losses.  
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2.4.5 Concentration Losses or Mass Transport 

 

In many fuel cells, air is used as the source of oxygen as fuel. High oxygen consumption 

at heavy loads will decrease the oxygen concentration in air around the electrode. This 

sudden reduction of oxygen concentration around cathode depends on the quality of air 

compression and amount of oxygen consumption. Oxygen concentration in that region is also 

proportional to the partial pressure of the air in that region. A drop in oxygen concentration 

leads to the drop in partial pressure of the oxygen in that region. The same scenario may 

happen to hydrogen in the anode, based on the current taken from the fuel cell and the 

hydrogen flow to anode, there might be a reduction in hydrogen concentration in that region 

and following that a reduction in the partial pressure of hydrogen.  

The concentration drop both for oxygen and hydrogen results in a voltage drop and is 

known as the concentration loss. The region of concentration drop in the V-I curve is shown 

in Figure 2.4.2.1. The voltage drop resulting from the concentration loss can be computed, 

considering a constant oxygen pressure and that the hydrogen pressure varies from P1 to P2, 

as (Larminie & Dicks.2003), 

 

                                                      







=∆

1

2ln
2 P

P

F

RT
V ,                                               (2.4.5.1) 

 

where R  is the universal gas constant, T  is the operating temperature, F  is the faraday 

constant and 1P  and 2P  are the hydrogen pressure in two different cases. 

Considering the maximum current 1i  is taken from a fuel cell and that occurs when all of 

the supplied hydrogen is consumed by the cell, then at 1i  pressure P2 becomes zero. If we 

assume that 1P  is the pressure when current density 1i  is zero, and at the maximum current 

density of 1i  the pressure drops to zero, then the pressure 2P  at any current density can be 

obtained as 

 

                                                   







−=

1
12 1

i

i
PP .                                           (2.4.5.2) 
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Substituting equation (2.4.5.2) into (2.4.5.1), the voltage drop due to mass transport losses 

is obtained as 

 

                                                







−=∆

1

1ln
2 i

i

F

RT
V .                                           (2.4.5.3)               

 

If the oxygen is supplied through the air in the fuel cell, a significant amount of nitrogen is 

also fed to the system which surrounds the cathode and limits the oxygen from reaching to 

the electrode and increases the mass transport loss. In addition, high time constant of 

mechanical valves delays the supply of required hydrogen and increases the concentration 

losses (Larminie & Dicks.2003). 

  

2.5 PEM Fuel Cell 

 

As mentioned earlier, Polymer Electrolyte Membrane (PEM) fuel cells have advantages 

over their classical counterparts. They come with capabilities that best suit the vehicle 

industry needs; therefore, they are exclusively designed, used and modified in transportation, 

distributed power, heat production and back-up power systems of Electric vehicles.  

Fuel cell vehicles are in much interest since they do not emit pollutants and have high 

power density and quick start-up (Yuvarajan & Yu. 2004), (Wang, Nehrir & Shaw. 2005). 

Other significant reasons for much attention to PEM fuel cells are their low working 

temperature, compactness, and easy and safe operational modes (Wang, Nehrir & Shaw. 

2005), (Na, Gou & Diong. 2005). Figure 2.5.1, shows a schematic of a typical PEM fuel cell 

(Fuel Economy Web Page). 
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Figure 2.5.1, PEM Fuel Cell and its operating procedure (Fuel Economy Web Page). 

 

The electrolyte used in PEM fuel cell is an ion-conducting polymer. Since the electrolyte 

used in PEM fuel cell is solid, this type of fuel cell is safer than the fuel cells with liquid 

electrolyte. Hydrogen and oxygen molecules are separated by the electrolyte membrane and 

therefore no combustion happens in the fuel cell. Electrodes are located on both sides of the 

electrolyte membrane and all are connected in series using bipolar plates in most cases. 

Because of low working temperatures of polymer electrolytes, the PEM fuel cell has short 

start-up time compare to other types. In room temperature about 50% of the maximum power 

of the fuel cell is available. The anode-electrolyte-cathode assembly of the PEM fuel cell is 

thin and therefore this property makes it possible to have very small and compact fuel cells 

available (Larminie & Dicks.2003), (Greenjobs Web Page).  

Since membrane conducts protons, it requires a humid layer for better conductivity. Water 

management system in fuel cells with operating temperature less than that of boiling water 

such as PEM fuel cells does the humidification of the membrane layer to maintain a suitable 

conductivity (Mikkola. 2001). Amount of water that exist in the system is also very 

important. While the fuel cell should be humidified for better membrane conductivity, the 

water content in the system should not increase to block the pores of the electrodes. 

Interested readers can find more information on water management in (Larminie & 

Dicks.2003).  
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Humidity control and water management can increase the performance of PEM fuel cells 

and provide cost effective devices (Larminie & Dicks.2003), (Greenjobs Web Page). 

 

2.5.1 Modeling of PEM Fuel Cells 

 

To apply fuel cell as a part of a larger system in the real world, first it is necessary to see 

the modeling of the fuel cell system and its interaction with other connections such as power 

electronic devices, critical loads and control systems. In most fuel cell applications, fuel cell 

is a sub-system of a larger system; therefore, accurate electrical modeling of the fuel cell 

plays a significant role in studying applications of fuel cells. Previous research has 

highlighted the significance of dynamic and circuit modeling of PEM fuel cells based on 

electrochemical reactions in (Famouri & Gemmen. 2003), (Wang, Nehrir & Shaw. 2005) 

and, (Hernandez & Diong. 2005). Modeling of PEM fuel cells using small signal equivalent 

circuits are studied in (Pasricha & Shaw. 2006) and electrical circuit modeling of PEM fuel 

cells are presented in (Yu & Yuvarajan. 2004). Application based modeling of PEM fuel 

cells are presented in (Yu, Srivastava, Choe & Gao. 2006), (Grasser & Rufer. 2007) and, 

(Granier, Pera, Hissel, Harel, Candusso, Glandut, Diard, De Bernardinis, Kauffmann & 

Coquery. 2003). 

To achieve the most accurate performance evaluations of the overall system in which the 

fuel cell is considered as a sub-system, dynamic modeling of the system is the best technique. 

Dynamic modeling is obtained with interpretation of the electrochemical reactions in fuel 

cells as mathematical equations that also express the transient conditions. Accurate transient 

modeling benefits the systems such as electric vehicles in which the whole design depends on 

the systems reaction.  

The very first and most important step in modeling of the fuel cell is obtaining the 

equivalent circuits from the chemical equations. Furthermore, electric circuits representing 

these chemical reactions are carried out. This modeling approach is also used to derive the 

stack voltage in each cell and to illustrate its steady state and transient behavior during the 

load variation.  
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2.5.1.1 Stack Voltage  

 

In the first step the stack voltage of a fuel cell is computed. Fuel cell open circuit voltage, 

based on the Nernst Equation, can be described as (Wang, Nehrir & Shaw. 2005) 

 

                               celldOHcellcell Epp
F

RT
EE ,22,0 .ln

2
−



+= ,                (2.5.1.1.1) 

 

where cellE  (V) is the open circuit voltage of the fuel cell, cellE ,0  is the reference potential of 

the cell, celldE ,  is the potential for the overall effect of the fuel and oxidant delay, R  is the 

gas constant, T  is the temperature (K), F  is the Faraday constant, 2Hp  is hydrogen partial 

pressure (Pa), and 2Op  is the oxygen partial pressure, (Pa). cellE ,0 , the reference potential of 

the cell, is expressed as 

                                            )298(,0,0 −−= TkEE E
o

cellcell ,                                 (2.5.1.1.2) 

 

where o

cellE ,0  is the standard reference potential at the standard state of 298 0K and 1-atm 

pressure. As it is shown in equations (2.5.1.1.3) and (2.5.1.1.4), at normal operating 

conditions,  the output voltage of the fuel cell is less than  the open circuit voltage of the fuel 

cell, cellE , which is affected by the activation loss, ohmic resistance voltage drop and 

concentration overpotential which are represented by actV , ohmV  and concV , respectively (all in 

volts). The cell and stack voltages are (Wang, Nehrir & Shaw. 2005) 

 

                                cellconccellohmcellactcellcell VVVEV ,,, −−−= ,                      (2.5.1.1.3) 

                                concohmactcellcellStack
VVVEVNV −−−== .                       (2.5.1.1.4) 

 

Therefore, equations (2.5.1.1.1), (2.5.1.1.3) and (2.5.1.1.4) result in the output or stack 

voltage summarized as (Famouri & Gemmen. 2003) 
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where stackV  is the stack voltage (V), N is the number of cells, 0E  is the standard state 

voltage (V), R  is the universal gas constant, T  is the operating temperature (K), n  is the 

molar flow rate (gm-mol/sec), F  is the Faraday constant, 2HP  is Hydrogen partial pressure 

(Pa), OHP 2  is water vapor partial pressure (Pa), 2OP  is the Oxygen partial pressure (Pa), Z  is 

the cell impedance (ohm), I  is the cell current (A), eh  is the electrochemical overpotential 

(V) and Dh  is the diffusion overpotential (V).  

 

2.5.1.2 Oxygen and Hydrogen Conservation 

 

The next step toward fuel cell modeling is calculating the conservation of oxygen and 

hydrogen. Anode’s mole conservation is expressed as  
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and Cathode’s mole conservation as 
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ρ& ,                      (2.5.1.2.2) 

 

where aV  is the anode fuel cell volume (m3), cV  is the cathode fuel cell volume (m3), R  is the 

universal gas constant, T  is the operating temperature (K), 2HP  is the hydrogen partial 

pressure (Pa), 2OP  is the oxygen partial pressure (Pa), inHm _2&  is the input hydrogen mole 

flow rate, inOm _2&  is the input oxygen mole flow rate, 2Hρ  is the hydrogen gas density, 2Oρ  is 

Generation 
(Nernst Factor) 

Loss  
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the oxygen gas density (gm-mol/m3), U is the velocity (m/sec), A  is the channel flow area 

(m2), I  is the cell current (A) and F  is the Faraday constant (Famouri & Gemmen. 2003).    

 

2.5.1.3 Input Gas Flow Rate 

 

The input gas flows of the fuel cell are determined as 

 

UAPKmin ρρ =∆=& ,                                 (2.5.1.3.1)    

  

where P∆  is the pressure difference between humidifier and stack. Following equation can 

be used to determine the humidifier pressures in the anode and cathode.   

 

),( ohih
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&& −=                                (2.5.1.3.2) 

 
Now that the basics of the circuits are obtained, the equivalent electric circuits are 

presented in the next section. 

 

2.5.2 Circuit Modeling 

 

In equivalent circuit modeling, shown in Figure 2.5.2.1, voltage represents the pressure 

and current represents the mole flow. The capacitor 1C  shows the effect of the constant
RT

V
. 

 

 
Figure 2.5.2.1, The main circuit model for fuel cell (Famouri & Gemmen. 2003). 
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In the circuit, Nernst factor, electrochemical overpotential and concentration (diffusion) 

overpotential are represented by three nonlinear current controlled voltage sources, 

)(),( 21 IfIf  and )(3 If  respectively and are expressed as  
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Figure 2.5.2.2 represents the humidifier’s equivalent circuit model where the output of the 

circuit is the voltage of the fuel cell stack.  

 

 
Figure 2.5.2.2, Humidifier circuit models (Famouri & Gemmen. 2003). 

 

The input fuel and air mole rates are represented by the independent currents sources in 

the circuit, Figure 2.5.2.2. Figure 2.5.2.3 shows the circuit modeling for mole conservation 

for oxygen, hydrogen and water.   
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Figure 2.5.2.3, Circuit modeling for mole conservation for oxygen, hydrogen and water (Famouri & Gemmen. 2003). 

 

Now that the equations of the modeled fuel cell system are derived and the relative 

circuits are obtained, the whole model of the fuel cell can be simulated. In the next section, 

the fuel cell model is simulated using MATLAB/Simulink, and the results are discussed. 

 

2.5.3 PEM Fuel Cell Simulation in MATLAB/Simulink 

 

The circuit model obtained in previous section is completely modeled in this part using 

MATLAB/Simulink. The input hydrogen and oxygen mole flow rate is presented by a 0-5 

volts input in the model.  Number of cells in the model is 60=N and the channel flow area is 

19.4 2cm . The output is the fuel cell stack voltage which is connected to a load where in the 

simulation the load is considered purely resistive. The V-I characteristic curve of this fuel 

cell is shown in Figure 2.5.3.1. As it can be seen in this figure, the V-I characteristic of the 

fuel cell model is as expected and similar to that of a real fuel cell. The activation, ohmic and 

concentration losses can be seen in the V-I characteristic of the fuel cell model. 
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Figure 2.5.3.1, V-I characteristic curve of the fuel cell model in Matlab 

 
The output of the fuel cell (the stack voltage) variation at full input flow rate is shown in 

Figure 2.5.3.2. 

 
Figure 2.5.3.2, The output of the fuel cell at 100% input flow rate 

 

The size of the fuel cell, which is defined by the output power of the fuel cell, is 

proportional to the channel flow area and the fuel inlet capacity of the fuel cell. Another 

parameter which affects the output power of the fuel cell is the number of the cells.  

The V-I characteristic curve of a fuel cell with a double increase in size than that of the 

first fuel cell is shown in Figure 2.5.3.3. 
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Figure 2.5.3.3, V-I characteristic curve of the larger fuel cell model in Matlab 

 

Figure 2.5.3.4 shows the V-I characteristic curve of both fuel cells in one graph. 

 
Figure 2.5.3.4, V-I characteristic curve of the large and small fuel cell models 

 

Dynamic modeling of PEM fuel cells considers more details such as power and design 

parameters in application based analysis of these devices.  

As it was shown, the fuel cell model demonstrates very similar results to the actual fuel 

cell system. Interested readers can find more information on the fuel cell model in Simulink 

in appendix A.  
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2.6 Drawbacks of Fuel Cell Power Sources 

 
High prices of fuel cells can be lowered in mass productions; however, there are problems 

in their application and fueling which are described in this section. 

The hydrogen fuel is produced from fossil fuels, mostly from natural gas, which is one of 

the main issues in hydrogen production which itself still demands for more hydrocarbons. 

Hydrogen can be easily obtained from electrolyzing of water in the solar energy converters.  

Another drawback of hydrogen fuel cell is the hydrogen storage. Hydrogen gas is very 

explosive and dangerous; therefore, safe storage and operations should be carefully 

scrutinized. Any hydrogen leakage should be prevented in the design. To store only 3 kg of 

pressurized hydrogen in a safe tank, the tank itself would weight 400 kg which makes it very 

heavy and not economic. On the other hand, liquidizing hydrogen in low temperatures 

requires high tech facilities and is costly. The technology should overcome these hurdles to 

see fuel cell vehicles on roads (Columbia University Web Page) & (Masstech Web Page). 
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Chapter 3, 

 

Electric & Hybrid Electric Vehicles 
 

3.1 Introduction 

 

Nowadays, imagining life without transportation apparatus of all kinds such as cargo 

trucks, trains, planes, and personal vehicles is almost impossible. Personal vehicles made 

short and long trips possible for summer vacations, daily shopping and work trips. Most of 

these vehicles made use of internal combustion engines to make fast-start and ease of 

processing fuels. The main questions remaining for today are, how efficient these engines are 

and what environmental impacts these engines can have. Certainly, today’s problems that the 

earth is struggling with have been caused by excessive and inefficient consumption of fossil 

fuels. Therefore, the need for an alternative fuel in lieu to the fossil versions is heavily 

sensed. Electricity can be generated from new and renewable energy resources and can be 

somewhat independent from hydrocarbons. If this source of energy is accessible enough to be 

used in vehicles, that can reduce a high percentage of air pollutant fossil energy consumed in 

vehicles every day. The first electric vehicle was built in 1881 with the help of electric motor 

propulsion. The source of energy was a battery unit equipped in the vehicle and could only 

provide enough energy for short distance trips. Brake Energy harvesting technique could 

provide more regenerative power for the vehicle and longer the trips since 1897. This 

technique becomes even more efficient if the driving cycle includes frequent stop-starts such 

as urban driving cycle. 

More acceleration power, flexibility and ease of use made gasoline vehicles popular 

compared to electric vehicles. Electric vehicles, on the other hand, are clean, vibrate less, 
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generate low noise pollution and are manufactured mechanically simple. However, their 

driving range is limited for the same given energy content. Batteries in electric vehicle weigh 

more than the liquid fuel in traditional vehicles. The main hurdle in fast development of 

electric vehicles is the battery storage technology. Almost all different types of batteries have 

lower energy density than liquid fuels. High performance batteries are required in electric 

vehicles to meet the fast acceleration power demands. 

This chapter describes the application and benefits of electric vehicles, their dynamics and 

road behavior. Different configurations of series and parallel hybrid systems are described. 

 

3.2 Vehicle Fundamentals 

 

Based on Newton’s second law, the equation for vehicle acceleration can be written as 

 

M

FF

dt

dV trt

δ

Σ−Σ
=

,                                                    (3.2.1) 

 

where V  is the speed of vehicle, tFΣ  is the total tractive effort of vehicle, trFΣ  is the total 

resistance, M  is the total mass of the vehicle and δ  is the mass factor which includes the 

effect of the rotating components in the power train. Therefore, considering the Newton’s 

second law, the maximum power required (power command) for the vehicle to reach to a 

certain speed and maintain that speed considering the rolling resistance is obtained as  

 

( ) ( ) 







+++=

dt

dv
MMgvACMg

v
P fDa θρθµ

η
sin5.0cos

1000
2

max ,                  (3.2.2) 

 

where v  is the velocity of the vehicle 








s

m , η  is the motor efficiency, M is the vehicle’s 

mass (kg), g is the gravity acceleration 
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m , µ  is the coefficient of rolling resistance, 

aρ  is the air mass density 
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202.1
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Kg , DC  is the aerodynamic drag coefficient of the vehicle, 

fA  is the front area of the vehicle ( )2m , θ  is the grade of the road and P  is the power in Kw . 
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The total resistance, trFΣ , for the vehicle is composed of tire rolling resistance, aerodynamic 

drag and uphill resistance to stop the vehicle from movement. In (3.2.2), ( )25.0 vAC fDaρ  

represents the aerodynamic drag, ( )( )θµ cosMg  represents the rolling resistance, ( )( )θsinMg  

represents the grading resistance and 








dt

dv
M  represents the vehicle’s acceleration (Ehsani, 

Gao, Gay, Emadi. 2005). Figure 3.2.1 shows the forces entered to a vehicle on the road with 

angle α . Each of these forces is described in details in the following sections. 

 

 
Figure 3.2.1, Forces acting on a vehicle (Abedini & Nasiri. 2006) 

 

3.2.1 Rolling Resistance 

 

The deformations of the wheel or tire in addition to the deformation of the ground are the 

main reasons of the rolling resistance. The primary cause of rolling resistance is the 

hysteresis effect in tire materials, which varies while rolling on different roads. Table 3.2.1.1 

shows examples of rolling resistance coefficients on various roads (Wikipedia Web Page-

Rolling Resistance). The effects of rolling resistance on the vehicle are heat and sound.  

 

 

 

 

 

 

 



 29 

Table 3.2.1.1, examples of rolling resistance coefficients on various roads 

Rolling resistance 
coefficient 

Description 

0.001 to 0.0025 Train steel on steel with tatz-mounted electric traction. 0.001 is considered to be 

the theoretical limit achievable. 

0.0015 to 0.0025 Low resistance tubeless radial tire used for solar cars/eco marathon cars as 

specially made by Michelin 

0.005 Tram-rails standard dirty with straights and curves 

0.0055 Typical BMX bicycle tire used for solar cars 

0.006 to 0.01 Low rolling resistance car tire on a smooth road and truck tires on a smooth road 

0.010 to 0.015 Ordinary car tires on concrete  

0.020 Car on stone plates 

0.030 Car/bus on tar/asphalt 

 

3.2.2 Aerodynamic Drag 

 

The resistance to the movement of the vehicle caused by the surrounding air is called the 

aerodynamic drag. Aerodynamic drag is a function of the vehicle speed, vehicle frontal area, 

shape of the vehicle and air density. In equation 3.2.2, aerodynamic drag is shown by 

term ( )25.0 vAC fDaρ . Table 3.2.2.1 shows the aerodynamic coefficient, DC , for a few types 

of vehicle body shapes (Ehsani, Gao, Gay, Emadi. 2005). 

 

Table 3.2.2.1: Aerodynamic coefficient for different vehicle body shapes 

Vehicle type Aerodynamic coefficient 

Open convertible 0.5-0.7 

Van body 0.5-0.7 

Ponton body 0.4-0.55 

Wedge-shaped body; headlamp and bumpers are integrated 

into the body, covered underbody, optimized cooling air flow 

0.3-0.4 

K-shaped (small breakway section) 0.23 

Optimum streamlined design 0.15-0.20 

Trucks, road trains 0.8-1.5 

Buses 0.6-0.7 

Streamlined buses 0.3-0.4 

Motorcycles 0.6-0.7 
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3.3 Driving Cycle 

 

A series of data representing the speed of a vehicle versus time is called a “Driving 

Cycle”. Different countries have published and produced driving cycles in order to evaluate 

the performance of their vehicles in different aspects. For instance, emission test is 

performed on dynamometer. Driving cycles are also used for vehicle simulations. Driving 

cycles of the FTP (federal Test Procedure Revisions) are shown below (Wikipedia Web 

Page-Driving Cycle), (EPA Web Page). 

City or Urban driving Test (FTP75) represents urban driving conditions in which a vehicle 

is started with the engine cold and driven in stop-and-go rush hour traffic. The driving cycle 

for the test includes idling, and the vehicle averages about 20 mph. Figure 3.3.1 shows 

different driving cycles and their speed profile requirement. Figure 3.3.1.a shows the urban 

driving cycle which is also used in this research for test of the electric vehicles. Figure 

3.3.1.b is the actual test of the vehicle in urban driving cycle which includes cold and hot 

start conditions. 3.3.1.c is the supplement of the urban driving condition to simulate the 

highway driving conditions.   
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(3.3.1.a), EPA Urban Dynamometer Driving Schedule (FTP-75) 

 
(3.3.1.b), EPA Federal Test Procedure 

 
(3.3.1.c), US06 or Supplemental FTP Driving Schedule 

Figure (3.3.1), a. Urban Driving Cycle, b. Actual test of Urban Driving Cycle, c. Highway Driving Cycle 

 

3.4 Electric Vehicle 

 

Electric vehicles, as mentioned earlier, make use of electric energy to provide enough 

traction for the vehicle. Different types of electric sources such as chemical batteries, 

ultracapacitors, fuel cells and flywheels are used as energy sources in electric vehicles. 

Electric vehicles also make use of an electric motor which has different designs depending 

upon the application. As mentioned before, electric vehicles have many advantages over the 



 32 

internal combustion engine vehicle. For instance, they do not consume fossil fuel, operate 

quietly, do not emit pollutants and are efficient (Ehsani, Gao, Gay, Emadi. 2005), (Wikipedia 

Web Page-Electric Vehicle).  

First designs of electric vehicles just removed the gas engine and fuel tanks and replaced 

them with electric motors and battery units. This configuration is heavy and inefficient in 

general. The single type power storage provides limited power to the vehicle and limits the 

driving distance. Battery unit should provide all the energy which increases the size of the 

battery and consequently the weight. Figure 3.4.1 shows this type of electric vehicle 

configuration. 

 

 
Figure 3.4.1, Old electric vehicle power train 

 

As the figure shows, the power train system contains one source of energy (battery in this 

case), electric motor and mechanical transmission. In order to improve the efficiency of the 

system several configurations have been introduced. Figure 3.4.2 shows the general 

configuration for a modern electric vehicle, (EV). The power train generally consists of three 

units namely as:  

i. Electric propulsion unit  

ii. Energy source unit 

iii. Auxiliary unit  
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Figure 3.4.2, General EV configuration (Ehsani, Gao, Gay, Emadi. 2005) 

 

The electric propulsion unit consists of the vehicle controller, power electronic converter, 

electric motor, mechanical transmission and wheels. The power converter receives the 

interfaced control signals from the brake and accelerator. The controller manages the power 

flow to the electric motor from the energy source and allows power regeneration from the 

brake conditions. This can boost the stored energy in the battery units and extends the battery 

charge while driving. Higher efficiency operations are obtained in this case.  

The energy source unit contains a source of energy, energy refueling unit and energy 

management unit. The energy management unit and vehicle controller are both involved with 

the process of regenerative braking.  

The auxiliary unit contains the power steering unit, auxiliary power supply and hotel 

climate control unit. The auxiliary units in electric vehicles are fed by the auxiliary power 

unit. 

These units can connect together in numerous topologies and provide a rich system 

configuration in electric vehicles  (Ehsani, Gao, Gay, Emadi. 2005). 
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Battery powered electric vehicles (EV) provide some advantages to protect the 

environment; however, their inefficient design, poor performance of batteries and low energy 

content required new designs to overcome these problems.  

 

3.5 Hybrid Electric Vehicle 

 

As mentioned earlier, relying upon one single source of power, mainly battery pack, has 

made the design inefficient. To overcome this problem, other sources of energy are required 

to provide enough energy to the system in different driving conditions. Hybrid vehicles in 

this regard make use of two or more power sources, one as the primary power source and the 

others as the secondary power sources. If a hybrid vehicle makes use of electric power 

sources and energy converters (electric power train) it is called Hybrid Electric Vehicle 

(HEV). Hybrid electric vehicles not only possess the advantages of electric vehicles but also 

they can overcome the poor characteristics of the electric vehicles. They have shown a 

definite better fuel economy and lower emissions compare to internal combustion engines. 

Brake power regenerative system can also contribute to the efficiency increment of the 

vehicle. 

In a hybrid vehicle, the drive train usually consists of at most two power trains. Each of 

these power trains can either provide tractions to the vehicle or be used to harvest the brake 

power or both. Therefore, several combinations of these power trains can provide various 

system topologies with different performances. For instance they can both provide traction 

power or switch alternatively to harvest the regenerative energy (Ehsani, Gao, Gay, Emadi. 

2005). The main topologies in hybrid electric vehicles are explained in following sections. 

 

3.5.1 Series Hybrid Electric Drive Trains 

 

In a series hybrid electric drive train, there exist two power sources and an electric traction 

motor. Battery unit is one of the power sources while another source can be provided by the 

main engine which can be an internal combustion engine. This engine drives an electric 

generator which can charge the battery unit and power up an electric motor at the same time. 

In case of heavy loads, the electric motor is fed electrically both from the batteries and the 
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generator. Figure 3.5.1.1 shows the common configuration of hybrid series drive train 

(Wikipedia Web Page-Hybrid Vehicle Drivetrain). 

 
Figure 3.5.1.1, Common topology of hybrid series electric drive train (Wikipedia Web Page-Hybrid Vehicle Drivetrain) 

 

In this configuration, there is no direct mechanical connection between the internal 

combustion engine and the wheels. The engine runs at its optimal point all the time, feeding 

the motor and charging the battery and therefore, low fuel consumption and high efficiency 

are main advantages of this method. 

In series hybrid electric drive configuration the engine is decoupled from the traction 

system, therefore, it can be tuned to operate at the maximum efficiency all the time and it 

reduces the control system’s complexity. In addition, since the speed of electric motors can 

be controlled continuously, there is no need to have a complex multi-gear transmission 

system. 

In this configuration, since the energy is converted from mechanical engine to electrical 

and to mechanical the resultant system might have low efficiency and this will increase the 

loss in the system. The vehicle requires a powerful traction motor to provide enough 

acceleration and power to the vehicle.  
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3.5.2 Parallel Hybrid Electric Drive Trains 

 

As mentioned earlier, the power trains can join together and provide a parallel source of 

power for the traction system. This allows a direct connection of the engine to the traction 

system which was avoided in series configuration. The electric motor can also contribute to 

the power traction system in several configurations, all of which require accurate control 

systems to provide an efficient overall system. These combinations provide torque-coupling, 

speed-coupling, and torque and speed coupling in parallel hybrid electric drive trains. 

At low speeds, where Internal Combustion Engine (ICE) is not efficient, the electric motor 

can solely provide enough traction for the vehicle. The internal combustion engine is 

connected to the traction system while the electric motor can be used as a generator to charge 

the batteries at high speeds, noting that ICE is more efficient at high speeds. In other 

power/speed combinations both ICE and electric motor can be used to provide an efficient 

energy for the vehicle (Wallén. 2004). Figure 3.5.2.1 shows the common topology of a 

hybrid parallel electric drive train. 

 

 
Figure 3.5.2.1, Common topology of hybrid parallel electric drive train (Ehsani, Gao, Gay, Emadi. 2005), (Wikipedia Web 

Page-Hybrid Vehicle Drivetrain)   

 

In parallel hybrid power train, at each time instant, the most efficient operating point of 

ICE and electric motor can be selected so that the whole system is in the best operating 

condition. Parallel configuration for hybrid electric vehicle has the lowest loss in comparison 

with other topologies of hybrid electric vehicles (Wallén. 2004).  
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3.5.3 Series-Parallel Hybrid Electric Drive Trains 

 

In previous sections, distinctive designs of series and parallel were explained. A possible 

combination of these techniques together provides a powerful and efficient design for hybrid 

electric vehicles called series-parallel hybrid electric vehicle. Figure 3.5.3.1 shows the 

common topology of hybrid parallel-series electric drive train. This configuration has the 

potential of having the advantages of both series and parallel configurations.  However, it is 

relatively more expensive than the former configurations (Emadi, Rajashekara, Williamson 

& Lukic. 2005)  In the parallel-series power train, two main configurations, among different 

possible configurations of electric motor and internal combustion engine, are electric-heavy 

and engine-heavy configurations. In electric-heavy configuration, the electric motor is more 

active for propulsion in comparison with the internal combustion engine. The same concept 

is true for the engine-heavy configuration whereas the internal combustion engine is more 

active than electric motor for propulsion. In both electric-heavy and engine-heavy groups, the 

electric motor is used at the start while the engine is off. For the engine-heavy group, during 

the normal driving cycles, the engine propels the vehicle while in same case for the electric-

heavy group the electric motor propels the vehicle. During acceleration both electric motor 

and the engine are used to provide the required power for the vehicle in either groups. In case 

of braking, the electric motor acts as a generator to charge the battery in regenerative braking 

conditions (Wallén. 2004). 

 
Figure 3.5.3.1, Common topology of hybrid parallel-series electric drive train (Emadi, Rajashekara, Williamson & Lukic. 

2005). 
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3.6 Conclusion 

 

As mentioned earlier in this chapter, the electric vehicles are a strong alternative for 

internal combustion engine vehicles. They bring the advantage of clean energy consumption 

and result in higher efficiency applications. They require additional source of power to 

produce electricity in the system and run electric motors. The electric energy sources are 

mainly battery units, on board generators and motor/generators. Other sources of energy can 

be found that provide cleaner energy and do not weight as much as batteries. Fuel cells are a 

good replacement of heavy generators and battery units. In the next chapter, fuel cells are 

applied in the vehicles to generate electricity. Different combination of these devices and 

electric motor or internal combustion engine are described and developed for efficiency 

improvements.  
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Chapter 4, 

Fuel cell vehicle 
 

4.1 Introduction 

 

Recent advancements in fuel cell technology have made them suitable candidates for 

portable applications and specifically in vehicles. Electric vehicles take the most advantage 

of fuel cells in different configurations. They bring the advantage of longer driving range 

compare to battery-powered vehicles and increase the performance of the system by 

providing fuel-economy configurations. Electric vehicles use fuel cells either as the only 

source of energy or they are connected to a backup source of power such as battery or 

ultracapacitors to configure non-hybrid or hybrid electric vehicles respectively. 

Configuration and characteristics of these vehicles are investigated in this chapter.  

 

4.2 Non-hybrid Fuel Cell Vehicle 

 

Electric vehicles that use fuel cells in their power train are often called fuel cell vehicles. 

As mentioned earlier, if fuel cells are the only source of power in the vehicle the 

configuration is a non-hybrid fuel cell vehicle. This vehicle has a fuel cell to provide electric 

power, a DC/DC convertor to boost up the low output voltage of the fuel cell and an inverter 

to feed the required waveforms to the electric motor. Figure 4.2.1 shows schematic of a non-

hybrid fuel cell vehicle. The fuel cell can provide a range of power in minimum min−fcP and 
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maximum MaxfcP − . This range of power can also be controlled by the power electronic 

converters in the vehicle to obtain a faster response to the command. In different driving 

cycles the fuel cell is also controlled to lower the fuel consumption. Like other power 

sources, fuel cells have an optimum operating point that generates maximum efficient power 

and increases the fuel-economy. The best design is the one that powers up the system while 

maintaining the optimal operating point of the fuel cell. The power demand has a huge 

impact on operation of the fuel cells. To meet the demand in non-hybrid fuel cell vehicles, 

the nominal power of the fuel cell is chosen at the maximum possible power of the vehicle. 

Therefore, depend upon the driving conditions, the fuel cell may not necessarily operate in 

optimal conditions, specifically when it is operating in urban driving cycle while lower loads 

are required from a huge fuel cell.    

 

 
Figure 4.2.1, Non-hybrid Fuel cell vehicle. 

 
 
4.2.1 Control Strategy 

 

The power management algorithm for this type of vehicle is shown in Figure 4.2.1.1. In 

this algorithm commP  stands for the command power (also known as the maximum required 

power Pmax as (3.2.2)), MaxfcP − is the rated (maximum) power of the fuel cell, min−fcP is the 

minimum power of the fuel cell. This algorithm explains a comparison-based technique to 

determine the command power according to the fuel cell capabilities. If the power is out of 

the range, it is limited to the fuel cell power capabilities, and if it is in range the command 

power is the power required from the fuel cell.    

 



 41 

 
Figure 4.2.1.1, power flow algorithm for the non-hybrid fuel cell vehicle 

 

To simulate the control algorithm for different driving cycles, an Sport Utility Vehicle 

(SUV) with parameters listed in Table 4.2.1.1. is chosen and equipped with fuel cell and 

electric traction system as shown in Figure 4.2.1.  

 
Table 4.2.1.1: Simulated vehicle parameters (Amrhein & Krein. 2005) 

Parameter Value Unit 

Vehicle Mass, M 1800 Kg 

Gravity, g 9.81 2s

m  

Rolling Resistance Coefficient, µ  0.008  

Air Mass Density, aρ  1.202 3
m

Kg  

Aerodynamic Drag Coefficient, CD 0.26  

Front Area, Af 2.8 m
2 

 

Figure 4.2.1.2 shows the simulation results for the non-hybrid fuel cell vehicle in standard 

FTP-75 urban driving cycle (grade zero). The command power and the power provided by 

the fuel cell are overlaid in each graph (Figure 4.2.1.2) to facilitate the fuel cell and 

command power required in each case. As it is shown in Figure 4.2.1.2, (a), a 30 kW fuel cell 
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is incapable of providing enough power for the vehicle to meet the demand. However, it 

mainly operates at a high percentage of its nominal power. A size increment to 50 kW will 

provide enough power for the vehicle and lowers the loading percentage on the fuel cell. This 

technique shows a low efficiency in power generation of fuel cell and is generally not a 

recommended topology. The power generation and command signals are shown in Figure 

4.2.1.2, (b).  

 
                                         (a)                                                                                (b)  
Figure 4.2.1.2, Command power and fuel cell power for non-hybrid fuel cell vehicle in urban driving cycle 

for two sizes of 30 (a) and 50 kW (b) fuel cell. 
 
Highway driving cycle US06 demands even higher powers from the fuel cell, such that the 

recently increased size of fuel cell falls short in providing enough power for the vehicle. 

Figure 4.2.1.3 (a) shows this fact, where fuel cell power do not match the power command. 

Increasing the size of the fuel cell to 120 kW will provide enough power in the vehicle 

however this drastically lowers the loading percentage of the fuel cell if used in urban driving 

cycle. Efficiency analysis of low loading percentage is provided in chapter 5.  

 
                                         (a)                                                                               (b) 

Figure 4.2.1.3, Command power and fuel cell power for non-hybrid fuel cell vehicle in US06 highway 
driving cycle for two sizes of 50 and 120 kW fuel cell 
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In general, application of a fuel cell in non-hybrid fuel cell vehicles puts the device in 

non-optimum operating conditions and results in poor fuel economy. Lowering the loading 

percentage is the main cause of lowering the system’s efficiency. It is not fuel-economic to 

increase the size of fuel cell to meet some peak power demands. Therefore, other energy 

sources are required to meet the transient loads and lower the demand on the fuel cell.  

 

4.3 Hybrid Fuel Cell Vehicle 

 

Fuel cell vehicles are equipped with a fast response source of power to compensate for 

transient conditions, therefore, they are called hybrid fuel cell vehicles. Figure 4.3.1 shows a 

typical schematic of a hybrid fuel cell vehicle. Schematic of a hybrid fuel cell vehicle (shown 

in Figure 4.3.1) consists of a fuel cell, a backup or storage source of power, and power 

electronic blocks as that of non-hybrid. The backup source of power can be an ultracapacitor 

or battery for high energy density and fast response. The structure and modeling of the 

battery and ultracapacitors are illustrated in the next section.    

 

 

Figure 4.3.1, Traditional hybrid fuel cell vehicle topology 

 

4.3.1 Storage Devices 

 

Two common types of storage devices that are applicable in electric vehicles are 

ultracapacitors and battery units. These devices can store high amount of energy and release 

it in short time. Each of these devices has their own dynamical behavior. Ultracapacitors 

have high performance while battery units provide large storage capability. Specific 

characteristics of these devices are described in the following. 
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4.3.1.1 Ultracapacitor 

Ultracapacitor or supercapacitor is a storage device known for its high energy density that 

makes it suitable in electric vehicles. They can store the energy harvested from regenerative 

braking and assist in providing power to the vehicle during transient conditions such as 

acceleration and hill climbing. Using ultracapacitors in regenerative braking enhances the 

fuel efficiency and saves energy specifically in urban driving cycle where the vehicle makes 

frequent start-stops. Ultracapacitor is the only storage device that can save great amounts of 

energy and release it quickly for acceleration. Ultracapacitor has the ability to store 

electrostatic energy up to 20 times more than usual capacitors. However, high performances 

are obtained at specific powers. It can be charged and discharged numerous times without 

any change in its performance.  Figure 4.3.1.1.1 shows an ultracapacitor module, its 

schematic and an individual ultracapacitor cell (Dixon & Ortlizar. 2002), (NREL Web page).  

 

 

Figure 4.3.1.1.1, ultracapacitor module, its schematic and an individual ultracapacitor cell (NREL Web 

page) 

 

Terminal voltage of ultracapacitors at various current rates is a good measure of 

performance of an ultracapacitor. The equivalent circuit of an ultracapacitor is shown in 

Figure 4.3.1.1.2 with three parameters to model electric potential CV , series resistance sR , and 

dielectric leakage resistance LR  and C  the capacitance of an ultracapacitor. 
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Figure 4.3.1.1.2, Equivalent circuit for Ultracapacitor 

 

The terminal voltage tV is expressed as 

 

SCt iRVV −= .                                          (4.3.1.1.1) 

 

Moreover, the electric potential of a capacitor is obtained as 
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Therefore based on the above equations, the analytical solution for CV  can be found as 
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where i  is the discharge current and a function of time. This equation shows a high voltage 

drop in large discharge currents (Ehsani, Gao, Gay, Emadi. 2005). 
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4.3.1.2 Battery Units 

 

Electrochemical batteries, or generally named battery units are energy storage devices 

widely used in hybrid electric vehicles. Batteries convert chemical energy into electrical 

energy in small cells. Each cell contains two electrodes that are placed into an electrolyte. 

Hybrid electric fuel cell vehicles use different types of batteries such as conventional lead 

acid, lithium-ion,  propulsion and advanced lead acid batteries known as valve regulated lead 

acid (VRLA) (Ehsani, Gao, Gay & Emadi. 2005), (NREL Web Page), (Burke. 2007). Figure 

4.3.1.2.1 shows a battery module and its schematic in an individual battery cell (NREL Web 

Page). 

 

 

Figure 4.3.1.2.1, battery module, its schematic and an individual battery cell (NREL Web page) 

 

Propulsion batteries are made of high energy density material nickel-Metal Hydride 

(NiMH) and are used for long cycles (NREL Web Page). 

Battery and ultracapacitors are combined to provide a high-performance large-capacity 

device which requires low maintenance and replacement costs of the battery and extends the 

life of the battery. This can also reduce the size of the battery and provide more energy for 

the vehicle during high peak powers. This combination may be costly since it requires 

additional DC/DC power electronics in the system (NREL Web Page).  
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4.3.2 Control Strategy 

 

The control algorithm for a hybrid fuel cell vehicle is designed to make use of an 

ultracapacitor or battery in peak or transient conditions. In “hybrid” mode of operation both 

fuel cell and UC/BU provide the power demand.  

During acceleration three possible conditions are:  

Case a), when command power is in the range of fuel cell 

Case b), when command power is less than min−fcP  

Case c), where command power is larger than MaxfcP −  

Energy level of the battery also needs to be considered in the algorithm to charge or 

discharge of the battery.  When the stored energy is high enough, the battery is in service and 

can provide energy to the system, but when the storage is below the minimum level then the 

battery needs to be recharged. The control algorithm for hybrid fuel cell vehicles is shown in 

Figure 4.3.2.1 (Gao & Ehsani. 2001), where commP  is the command power, MaxfcP −  is the rated 

power of the fuel cell, min−fcP  is the minimum power of the fuel cell, eDechP arg  is the power 

provided by storage device during traction, eChP arg  is the recharging power of the storage 

device, E is the energy level of the storage device, minE is the minimum acceptable level of 

energy in the storage device and fcP  is the power provided by the fuel cell. 
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Figure 4.3.2.1, Control algorithm for hybrid fuel cell vehicle (Gao & Ehsani. 2001) 
 
Power management performance of standard urban driving cycle FTP75 for the vehicle 

introduced in section 4.2.1 Table 4.2.1.1. is shown in Figure 4.3.2.2.a. As mentioned earlier, 

total power of 50 kW is required for urban driving cycle. Figure 4.3.2.2.b shows the power 

sharing between the fuel cell and battery unit. The size of fuel cell is 30 kW and battery 

storage device 20 kW. When the power command exceeds the maximum power of fuel cell, 

battery unit contributes to the power. Hybridizing the vehicle decreases the size of the fuel 

cell required in the system and results in lower total cost of vehicle. In addition, transient 

response is enhances by application of a fast storage device.  
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                                     (a)                                                                                 (b) 
Figure 4.3.2.2, (a), Command power and total power of fuel cell and storage. (b) Load sharing between two 

sources. 
 

In highway driving cycle US06 a 70 kW fuel cell can provide the base power of the 

system. This shows a 50 kW reduction in size of the fuel cell. Figure 4.3.2.3.a shows the 

simulation results of the hybrid fuel cell vehicle for highway driving cycle. Figure 4.3.2.3.b 

shows the load sharing between fuel cell and storage device. Figure 4.3.2.3.a shows the 

system base power and transient response improvements by having an additional storage 

system parallel to the fuel cell.  

 

 
                                    (a)                                                                                  (b) 
Figure 4.3.2.3, (a), Command power and total power of fuel cell and storage. (b) Load sharing between two 

sources. 
 
Different configuration of fuel cells and battery units may change the overall cost of the 

system. Next section investigates the cost variation of these systems in hybrid and non-hybrid 

fuel cell vehicles.  
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4.4 Cost Analysis 

 

Cost analysis may help us to have a better comparison between different configurations in 

fuel cell vehicles. In this section, the hybrid fuel cell vehicle is compared to the non-hybrid 

fuel cell vehicle from economics point of view. Also, a comparison between hybrid fuel cell 

vehicle which uses battery as storage device and the one in which ultracapacitor is used as 

the storage device is conducted. One of the main obstacles in development of the fuel cell 

vehicles is the cost of the vehicle. Despite their many advantages, fuel cell units are still too 

expensive for vehicle applications. Choosing the right storage devices and downsizing fuel 

cells can make significant improvements in the vehicular industry.  

As it was mentioned earlier, hybrid fuel cell vehicle makes use of a fuel cell power source 

and an additional storage device which can either be an ultracapacitor or a battery unit. To 

evaluate the economic improvement of hybrid fuel cell vehicle in comparison with the non-

hybrid fuel cell vehicle, the price of each power unit and later, the overall power unit in each 

case is calculated and compared. 

 

4.4.1 Cost of Different Fuel Cell System Configurations  

 

Rapidly developing fabrication of fuel cells have made them easy to purchase and 

affordable in vehicle applications. There are several scattered predictions on the future of fuel 

cells; however, majority of scientists and companies agree on lower prices in mass 

production of next generation of fuel cells.  The current trend of a fuel cell is about $3000 to 

$4500/kW (Bauman & Kazerani. 2008). However, predictions for the mass-production vary 

from $225/kW to $400/kW by the end of the decade. (Wu & Gao. 2006) has predicted a cost 

of $325/kW for the fuel cell which is also used in this research. 

 

4.4.2 Cost of Battery 

 

As it was mentioned earlier, most propulsion batteries are made of nickel-metal hydride 

(NiMH) batteries which have twice more capability of holding energy than lead acid batteries 

(NREL Web Page). However, lithium-ion batteries have been rapidly developed recently that 
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are now more considered to be used in the vehicles rather than nickel-metal or lead acid types 

(Bauman & Kazerani. 2008), (Burke. 2007). The battery chosen for cost analysis in this 

section is the new high power lithium ion ANR26650MI cell (A123systems). The per kW 

cost for this battery is about $82.90/kW, reported in 2008 (Bauman & Kazerani. 2008).  

 

4.4.3 Cost of Ultracapacitor 

 

Much research has been conducted to develop ultracapacitor technology since 1990. 

Ultracapacitors are durable storage devices in comparison with batteries by providing of 

about 500,000 cycles of deep discharging. Currently several companies such as Maxwell, 

Ness, EPCOS, Nippon Chem-Con and Power Systems produce ultracapacitor devices (single 

cells and modules) with capacitance of 1000-5000 F (Burke. 2007). The ultracapacitor in this 

study is assumed to be BMOD0058 15-V pack ultracapacitor of Maxwell and estimated to 

have the cost of $59.65/kW (Bauman & Kazerani. 2008).   

 

Table 4.4.3.1: Per kW cost assumptions for power sources in vehicle 

Power Source Cost Per kW 

PEM Fuel Cell $325 

Battery (lithium ion ANR26650MI cell) $82.90 

Ultracapacitor (Maxwell BMOD0058 15-V pack) $59.65 

  

Table 4.4.3.2 shows the results of the cost each of power source also used in this research 

for simulations. 

Considering the price of the components listed in Table 4.4.3.2 the cost (just the battery, 

ultracapacitor and fuel cell) of a non-hybrid fuel cell vehicle introduced in section 4.2.2 is 

about $16,250 if designed for urban driving cycle and $39,000 if highway driving cycle is 

also considered. By hybridizing the vehicle by either ultracapacitor or battery there is a 

significant reduction in the cost of the power sources. In the urban design the overall cost of 

power sources choosing battery is about $11,408 which shows a $4,842 reduction in 

comparison with the non-hybrid vehicle. If ultracapacitors are deployed in urban design 

another $465 reduction in the cost is obtained and total saving is about $5307. In US06 
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driving cycle overall cost of a hybrid vehicle is about $26,895 by battery and is $25,732 in 

case of ultracapacitor, a $12,105 reduction from the non-hybrid to the battery hybrid and 

another $1,163 reduction from the battery hybrid to the ultracapacitor hybrid is obtained. 

 

 Table 4.4.3.2, Cost analysis for the simulated hybrid and non-hybrid fuel cell vehicles 

COST 

Configuration 

Vehicle 

Type &  

Drive Cycle 

Fuel 

Cell 

(KW) 

Storage  

(KW) 

Storage 

Device Fuel 

Cell 

Storage 

Device 
Total 

Non-Hybrid 
FCV 

50 - - $16,250 - $16,250 

Hybrid FCV 30 20 Battery $9,750 $1,658 $11,408 

Hybrid FCV 

City 
Vehicle-

Urban Cycle 
30 20 Ultracapacitor $9,750 $1,193 $10,943 

Non-Hybrid 
FCV 

120 - - $39,000 - $39,000 

Hybrid FCV 70 50 Battery $22,750 $4,145 $26,895 

Hybrid FCV 

Normal 
Vehicle-

US06 Cycle 
70 50 Ultracapacitor $22,750 $2,982 $25,732 

 

Despite cost, other important goals to achieve for fuel cell vehicles are maximizing the 

efficiency, reliability and performance of the system. Next chapter will focus on the issues.  
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Chapter 5, 

 

Application of Multiple Fuel Cells in Hybrid Electric 

Vehicles 
 

5.1 Introduction 

 

Recent advances in fuel cell structures have introduced them to many applications such as 

hybrid electric vehicles and heat/power cogenerations. They bring the advantage of clean 

energy and decrease the dependency on imported oil by providing fuel efficient devices in 

many applications such as electric vehicles.  

Efficiency of the electric vehicles depends on the size and efficiency of the fuel cell, 

power electronics and electric motor applied in them. Significant research has been 

conducted to improve the performance of electric vehicles by introducing more efficient fuel 

cell and battery configurations, power converters (Drolia, Jose & Mohan. 2003), (Di Napoli, 

Crescimbini, Giulii, Capponi & Solero. 2002), (Hasan & Husain. 2005) and dynamic 

modeling of the vehicle (Amrhein & Krein. 2005) in addition to studies on their system 

interface, loss and control of different topologies studied in (Gao. 2005), (Mehrjerdi & 

Ghouili. 2006), (Abedini & Nasiri. 2006),  (Copparapu, Zinger & Bose. 2006), (Anstrom, 

Zile, Smith, Hofmann & Batra. 2005), (Van Mierlo, Cheng,  Timmermans &  Van den 

Bosschet. 2006), (Ozatay, Zile, Anstrom & Brennan. 2004) & (Vahidi, Stefanopoulou & 

Peng. 2006). Traditional designs of hybrid electric cars utilize a single fuel cell and battery 

backup. Figure 5.1.1 shows the schematic illustration of the fuel cell powered vehicle 
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containing a fuel cell, battery unit, power electronics, electric motor and transmission 

systems as major components.   

 

 

Figure 5.1.1, the schematic configuration of the fuel cell powered vehicle (Gao & Ehsani. 2001)  

 

The system provides the total power required for the vehicle at each time instant. The 

response time of fuel cells is considered negligible. The fact is that the response times of fuel 

cells vary by the size and operating conditions, i.e. smaller size fuel cells have short start-up 

time and they operate efficiently at higher percentage of their nominal power. Therefore, 

downsizing of a high power fuel cell offers an efficient and fast unit. 

In this chapter efficiency curves of fuel cells are investigated and a new configuration of 

fuel cells in electric vehicles is introduced to improve the efficiency and reliability of the 

system.  

 

5.2 Efficiency Evaluation 

 

As mentioned so far there are different configurations of electric vehicles which benefit 

the transportation industry and surrounding environment. Studies have shown that 

application of fuel cells in vehicle can reduce the energy consumption by 60% and eliminate 
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55% of the CO2 emitted from the vehicle compare to internal combustion engines. Efficiency 

of these vehicles can be measured by different means. 

 

5.2.1 Well-to-Wheels 

 

Well-to-wheels efficiency analysis is one of the criteria to measure and compare the 

efficiency of vehicles together (Moghbelli, Halvaei Niasar & Langari. 2006). The well-to-

wheel efficiency analysis is the product of well-to-tank efficiency and tank-to-wheel 

efficiency values. The fuel cycle up to storage at retail and emissions is called the well-to-

tank efficiency while efficiency and emission analysis resulted from vehicle operation is 

referred to tank-to-wheel efficiency. Studies show that Direct Hydrogen Fuel Cell Vehicle 

has the highest efficiency in well-to-wheel and hybrid electric and battery electric vehicles 

provide good efficiency performance. Battery operated electric vehicles have shown poor 

efficiency in long distances driving cycles (Moghbelli, Halvaei Niasar & Langari. 2006). 

Hybrid electric vehicle’s efficiency highly depends on topology and system configuration. 

Studies have shown that parallel hybrid electric vehicles have higher well-to-wheel 

efficiency (Plotkin.Argonne National Laboratory. 2002). It should be noted that hybridizing 

makes significant improvement in achieving higher efficiency and fuel economy. Fuel cell 

vehicles have the advantage of no pollution; they operate quietly and generate less noise than 

hybrid electric vehicles.  

 

5.2.2 Efficiency Curves 

 

Efficiency curves express the efficiency of fuel cells with respect to their loading 

percentage. These curves have two distinctive regions to model the dynamics of the cell in 

light and heavy loading conditions. According to DOE targets, efficiency of fuel cells can 

reach to a fixed maximum while they show the same value for full load conditions (Zolot, 

Pesaran. 2004). For instance, Fuel cells can all reach to a maximum efficiency of 60% and 

full load efficiency of 50%. In addition, a 40% peak efficiency fuel cell implies that the peak 

efficiency value is obtained at 40% of the nominal power.  

Equation (5.2.2.1) introduces the efficiency of a fuel cell up to the peak value of peakη  as  
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)1.()( /τητ P
peak eE

−−= ,                                         (5.2.2.1) 

 

where peakη  is the peak achievable efficiency value occurs at for instance 60% of the full 

load capacity of the fuel cell, P is a percentage of nominal power and τ  is a constant 

determined by fuel cell internal characteristics such as compressors and pumps. 

The second part of the efficiency curve is a linear interpolation from the point of peak 

value (e.g. 60%) of efficiency to the full load efficiency value (e.g. 50%) (Zolot, Pesaran. 

2004). Figure 5.2.2.1 shows efficiency curves of three types of fuel cells with maximum 

efficiencies occur at 10%, 25% and 40% of their nominal power respectively. The main 

difference between these curves is due to the powers required by ancillary loads of the 

system such as pumps and valves. Therefore, based on the system loads, their losses and 

power consumption, different efficiency curves are obtained (Zolot, Pesaran. 2004). In this 

research the 40% full power fuel cell is assumed in vehicle simulations. 

 

 
Figure 5.2.2.1, Fuel cell system efficiency characteristics curve for %10, %25 and %40 peak efficiency fuel 

cell (Zolot, Pesaran. 2004) 

 

Driving cycles demand various power from the traction system and often put their 

operation in an inefficient mode of operation. For instance, in highway driving cycle high 
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powers are required for long period of time which increases the load percentage of the fuel 

cell and results in efficient loading condition. However, the same size fuel cell when operates 

in urban driving cycle, FTP-75 lower power demand decreases the loading percentage and 

causes inefficient driving conditions.  

Low efficiency of a large size fuel cell and its slow dynamic in transient conditions 

suggest for an alternate design topology to enhance the performance of the system and 

improve the transient response at the same time.   

This chapter illustrates the application of multiple fuel cells in hybrid electric vehicles. 

Energy management algorithm for a combination of two downsized fuel cells and battery 

storage is simulated and compared with conventional design of single fuel cell and battery 

backup units.  

 

5.3 Multi Fuel Cell-Battery Configuration for Electric Vehicle 

 

Efficiency curves of fuel cells in downsized devices show a significant improvement in 

fuel economy by providing higher loading percentage on fuel cells. Therefore, breaking 

down the size of a large fuel cell increases the loading and efficiency of vehicle. In either 

cases of single or multiple fuel cell configurations, power sources should provide enough 

power for the vehicle to accelerate and maintain the required speed in different driving cycles 

satisfactorily. Multiple fuel cells are connected in parallel and are controlled to provide 

power for the engine while operating in high efficiency conditions. They make use of a 

battery backup to release power in transient conditions. Downsizing of a large size fuel cell 

also increases the efficiency of the operation over a wider range of load variation. A system 

with several fuel cells and backup storage requires a different control strategy to keep the 

fuel cells at the optimum operation and the overall system economic. Figure 5.3.1 

demonstrates a double fuel cell configuration of an electric vehicle.  
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Figure 5.3.1, Multiple downsized fuel cell vehicle topology 

 

5.4 Vehicle Power Management Strategy 

5.4.1 Power and Loading Percentage 

 

The required power in the vehicle is presented by commP  which either could carry 

acceleration or braking command obtained from 3.2.2. The power required for the vehicle 

includes the grading, rolling resistance and acceleration which is determined by driver. 

Power management system balances the power generation of fuel cells with the power 

demand. The loss of the power conversion is neglected in this research. 

Loading percentage of a fuel cell vehicle in urban driving cycle is shown in Figure 5.4.1.1. 

This figure demonstrates the probability of occurrence of a specific percent of the nominal 

power. The same graph for high way driving cycle is shown in Figure 5.4.1.2. Comparing 

these figures shows a shift in the mean value and probability of the mode power in highway 

with respect to urban driving cycle. When efficiency curves and percentage loading bars are 

plotted on the same graph, the mean power value determines the efficiency of the fuel cell 

system.  
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Figure 5.4.1.1, Statistical power demand of the vehicle of table 4.2.1.1 in urban driving cycle 

 

Figure 5.4.1.2, Statistical power demand of the vehicle of table 4.2.1.1 in highway driving cycle 

 

5.4.2 Control Algorithm 

 

In this section, control strategy of a multiple fuel cell vehicle with reduced size devices is 

illustrated and enhancement in efficiency of the device is investigated. The control strategy is 
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implemented for a double fuel cell electric vehicle and can easily be expanded to other 

systems.  

In order to enable the regenerative energy harvesting, the level of energy in the storage 

device should be measured continuously (Gao & Ehsani. 2001). This feature is enabled in the 

control algorithm design. The overall control algorithm (flowchart) is shown in Figure 

5.4.2.1. 

 

Figure 5.4.2.1, Power control algorithm developed for the hybrid fuel cell vehicle with two fuel cell power 

sources 

 

This algorithm examines the power command of commP  against limitations of one or two 

fuel cells combined with storage device and determines the right category that the command 

belongs to. Then an appropriate command is sent to the fuel cell considering the level of the 

battery storage device. If there is enough storage energy in the battery, then it is being used in 

transients, otherwise a charging power request is being sent to the first available and not fully 

loaded fuel cell. The priority is given to the first fuel cell and the second fuel cell is turned on 
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when the power command exceeds the power limit of the first fuel cell. Battery is used in 

transients.  This way only one of the power sources consumes energy, and more importantly 

the fuel consumption is efficient due to higher loading percentage in downsized fuel cell. The 

size of power sources and battery backup ensures enough energy available for the vehicle in 

urban and highway driving cycles individually. Algorithm explains each of these steps 

individually where MaxfcP −1 is the rated power of the first fuel cell, MaxfcP −2  is the rated power 

of the second fuel cell, min1−fcP is the minimum power of fuel cell #1, min2−fcP  is the minimum 

power of fuel cell #2, eDechP arg is the power required for the acceleration of the vehicle in 

transients, eChP arg is the storing rate of power in the storage device when not fully charged or 

its energy level falls below the minimum value. E  is the energy available in the storage 

device with minimum at minE . The instantaneous fuel cell powers are 1fcP and 2fcP for fuel 

cell #1 and fuel cell #2 respectively. 

Power demand can fall into four distinctive regions of operation as 

• Less than min1−fcP  

• More than min1−fcP and less than MaxfcP −1   

• More than MaxfcP −1  and less than MaxfcMaxfc PP −− + 21  

• More than MaxfcMaxfc PP −− + 21   

 

5.5 Power Management 

 

The power control algorithm developed in previous section is simulated for hybrid electric 

fuel cell vehicle of Table 4.2.1.1 in driving cycles with grading zero and three. The outcome 

of the algorithm is the power required from each fuel cell and the battery to feed the power 

demand in each driving cycle.  

Total power from fuel cell is shared between two downsized fuel cells of 30 and 85 kW 

and a battery unit of 50 kW. 

Matlab/Simulink was used for simulations in two standard driving cycles of FTP-75 and 

US06. Fuel cells are sized to perform economic operation in urban driving cycle and to 

provide enough power in full load conditions, Therefore, the performance of system is 
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investigated in the standard FTP75 (urban driving cycle) and standard US06 (high speed 

test). Driving cycle profiles are shown in Figure 3.3.1. In urban driving cycle (FTP-75) 

frequent stop-starts decrease the average speed compare to the highway driving cycle which 

increases the optimum operation of the first fuel cell and battery backup. Figure 5.5.1 

illustrates the total and shared power among fuel cells and battery backup in urban driving 

cycle on a grade zero road. 

As Figure 5.5.1 shows, the load of fuel cell #1 varies as the power command varies. The 

second fuel cell is almost OFF during the driving period which saves energy and fuel. The 

average power provided by fuel cell # 2 is only 0.108 kW which is negligible in comparison 

with its size. Therefore, fuel cell # 1 provides the majority of the power for the vehicle in this 

case.    

 
Figure 5.5.1, Simulation results for standard FTP-75 urban driving cycle on a grade zero road. 

 

Figure 5.5.2 shows the simulation results of urban driving cycle in road grade three. In 

this case fuel cell # 1 provides more power to meet the required command power by the 

vehicle. The power provided by fuel cell # 2 is still negligible (average 0.472 kW) and 

battery stays off. Therefore, it can be said that the loading conditions of the fuel cells are still 

in the economic and energy saving region. 
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Figure 5.5.2, Simulation results for standard FTP-75 urban driving cycle on a grade three road. 

 

In highway driving cycle (US06), the second fuel cell is ON and provides energy to the 

system. In this driving cycle higher power is demanded and all power generating sources 

generate their share of the load while the control system still keeps the first fuel cell 

economically loaded. Simulation results for US06 driving cycle on a grade zero road is 

shown in Figure 5.5.3. The required power is provided by the power sources.  

 
Figure 5.5.3, Simulation results for standard US06 Highway driving cycle on a grade zero road. 
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In higher grade roads, power management shares are shown in Figure 5.5.4. In this case, 

fuel cell #1 is operating in the high efficiency conditions and fuel cell #2 provides more 

power comparing to the previous case. This situation also helps fuel cell #2 to operate in the 

efficient region of operation. Storage device provides the transient power and is standing by 

in most cases. This design provides longer life time for the device and requires less 

maintenance cost while helping two other power sources in transients and high power 

demands. 

 
Figure 5.5.4, Simulation results for standard US06 Highway driving cycle on a grade zero three. 

 

As these figures show, urban driving cycle can become more energy efficient by 

downsizing the fuel cells while providing enough power in highway driving cycle.  

 
5.6 Efficiency Analysis of Multiple Fuel cell Configuration 

 

As mentioned earlier, the main purpose of multiple fuel cell applications in electric 

vehicles is to reduce the fuel consumption while increasing the efficiency of the system. 

Suitable sizing and loading of two fuel cell sources, battery backup and economic loading of 

each fuel cell in several driving cycles are investigated in this section.  
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5.6.1 Efficiency Enhancement Evaluations  

 

Efficiency curves introduced in section 5.2.2 are used to investigate the efficiency of a 

fuel cell in different load percentage. In this regard, demographic loading chart of single fuel 

cell and multiple cells are plotted and compared for several downsized fuel cells to 

demonstrate the efficiency enhancement obtained by the new topology. The main purpose is 

to enhance the fuel economy of the vehicle in urban driving cycle; however, efficiency of 

fuel cells in highway driving cycle US06 is also investigated for possible improvements.  

 

5.6.2 Road Grade Factor 

 

Power command is greatly influenced by grade factor of the road. Increasing the grade of 

the road shifts the average power toward higher loads and changes the power demographic to 

higher loading percentage. Higher grade roads can be found in both urban and highway 

driving cycles. Therefore, we investigate power efficiency in two low and high grades.  

As shown earlier, Figure 3.3.1 shows the speed variation in urban driving cycle. Figure 

5.6.2.1 shows the power demand variation in grade zero and three. As the figure shows, in 

higher grades higher powers are demanded for the vehicle. A SUV vehicle was considered 

for efficiency enhancement investigations with parameters listed in Table 4.2.1.1 shown 

earlier.  

 
Figure 5.6.2.1, The power demand variation in grade zero and three in FTP-75 driving cycle 
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5.7 Efficiency  

 

Efficiency improvements of the new design (double fuel cell) are illustrated in this 

section. A large size of 115 kW fuel cell is replaced with two downsized devices of 30 and 

85 kW to increase the fuel economy of the vehicle. Note that the total power of these fuel 

cells is still 115kW the same as a single fuel cell configuration. The main difference is the 

load sharing in different driving cycles between fuel cells and to keep their loading at the 

economic loading percentage. Battery backup is also a 50 kW storage unit. The power 

management algorithm is designed to start the first fuel cell in light loads and the second fuel 

cell in heavy power demands which might happen in higher grade driving conditions or 

highways for the vehicle of Table 4.2.1.1. 

 

5.7.1 Case 1 (Urban Driving Cycle & Grade Zero) 

 

Figures 5.7.1.1, and 5.7.1.2 demonstrate the efficiency improvement from single to double 

fuel cell power sources with downsized rated power in grade zero of urban driving cycle. The 

average power is considered as a measure of efficiency improvements. Figure 5.7.1.1 shows, 

the probability of occurrence as a function of power percentage for a single fuel cell of power 

115 kW in urban driving cycle. As the figure shows, the average power density of this system 

is located at efficiency of 28.1%. An increase of 27.3% is obtained by splitting this power 

source into a set of double fuel cells and total efficiency of 55.40% is achieved. Figure 

5.6.3.1.2 shows the efficiency of the proposed technique to improve the fuel economy of a 

fuel cell vehicle introduced in Table 4.2.1.1.  
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Figure 5.7.1.1, Single Fuel Cell Efficiency configuration (28.1%) 

 
Figure 5.7.1.2, Efficiency improvements of a double fuel cell configuration (55.4%) 

 

5.7.2 Case 2 (Urban Driving Cycle & Grade 3) 

 

In this case, the overall efficiency of a single fuel cell system is about 43.5%. Figure 

5.7.2.1 shows the efficiency of a single fuel cell vehicle. In higher grade roads, extra power 
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demand increases the power percentage and its average which results in higher efficiency 

values. Downsizing provides 16.1% improvement in addition to what was obtained from 

higher loading percentage in grade 3 and makes the system more efficient about 59.6%. 

Figure 5.7.2.2 shows the efficiency improvements of a double fuel cell configuration. As the 

figure shows, higher loading percentage puts the system in efficient mode of operation.   

 

 
Figure 5.7.2.1, Single Fuel Cell Efficiency (43.5%)  
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Figure 5.7.2.2, Efficiency improvements of a double fuel cell configuration (59.6%) 

 

5.7.3 Highway Driving Cycle 

 

Fuel economy is very important in both urban and highway driving cycles. The main goal 

of downsizing of fuel cells was to achieve a high fuel economy and efficient vehicle in urban 

driving cycle. In this section the effects of downsizing and application of double fuel cell is 

investigated in highway driving conditions. The standard US06 driving cycle imposes the 

speed variation as shown earlier in Figure 3.3.1.C. which demands powers as shown in 

Figure 5.7.3.1 in different grading conditions. As the figure shows, higher grade require 

higher power from the power generators. Under these conditions, the second fuel cell is 

turned on to generate power and feed the electric engine and accelerate the vehicle.  
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Figure 5.7.3.1, Power command in Highway driving cycle in grades zero and three.  

 

5.7.4 Fuel Economy in US06 Driving Cycle 

 

In highway driving cycles, due to higher power demands, a high power fuel cell operates 

close to the optimum point. However, since we have replaced a large fuel cell with two 

downsized devices the efficiency of the system should almost be the same. In grade zero, fuel 

cell #1 is fully loaded which results in a 58.2% efficiency and as for the second device due to 

the light loading it provides 36.10% efficiency. Fuel cell #1 is operating better than a single 

fuel cell with efficiency of %56.105. Efficient operation of both fuel cells #1 and #2 are 

shown in Figure 5.7.4.1 and 2. 
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Figure 5.7.4.1, Loading and efficiency of fuel cell #1  

 

 
Figure 5.7.4.2, Loading and efficiency of fuel cell #2  

 

In higher grade roads i.e. grade 3, higher power is shifted towards the second fuel cell and 

results in efficiency improvements of the second fuel cell by 18.4%. First fuel cell has a 

higher average which results in a decline in its efficiency by 2.7%. The overall system is 
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almost as efficient as a single fuel cell; however, it was not aimed in the purpose of 

downsizing and double power source. This is demonstrated in Figure 5.7.4.3 for fuel cells 1 

and Figure 5.7.4.4 shows the efficiency of the second fuel cell.   

 
Figure 5.7.4.3, Loading and efficiency of fuel cell #1  

 

 
 Figure 5.7.4.4, Loading and efficiency of fuel cell #2  
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Figures 5.7.4.5-6 show the operation and efficiency analysis of a single fuel cell 

configuration of SUV in highway driving conditions in grade 0 and 3, respectively. As these 

figures show, when the average power grows it becomes closer to the economic operation 

point.  

 
Figure 5.7.4.5, Efficiency analysis of a single fuel cell in grade zero.  

 

 
Figure 5.7.4.6, Efficiency analysis of a single fuel cell in grade three.  
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Economic operation and efficiency enhancement of the double fuel cell configuration in 

SUV proposed in this section are listed in Table 5.6.4.1.1. This table also demonstrates a 

comparison of efficiency improvement in urban and highway driving conditions.  

 

Table 5.7.4.1, Economic operation and efficiency enhancement of double fuel cell configuration 

Efficiency at Average Power 
Driving 
Cycle 

Grade Single FC 
(115kW) 

Downsized FC 1 
(30kW) 

Downsized FC 2 
(85kW) 

Urban 0 28.10% 55.40% - 

Urban 3 43.50% 59.60% - 
US06 0 56.10% 58.20% 36.10% 
US06 3 59.30% 55.50% 54.50% 

 

Double fuel cell is an economic topology in electric vehicles. It enhances the efficiency of 

the system by 27.3 % in the best conditions and stays efficient in different grades of driving 

cycles. The new configuration demonstrates a significant improvement in fuel economy of 

urban driving cycle; however it provides suitable operating conditions in standard highway 

driving cycles of grade 0 and 3. 

 

5.8 Reliability of a Double Fuel Cell System 

 

Efficiency enhancement and other benefits of multiple fuel cell configurations have been 

demonstrated in previous sections. Another benefit of this configuration as a parallel source 

of energy is the reliability improvements. One of the major obstacles in commercialization of 

fuel cell vehicles is their low reliability of operation (Marchesoni & Savio. 2005) which 

results in a huge reduction in overall system reliabilities. (Marchesoni & Savio. 2005) & (Wu 

& Li. 2006), have conducted research on overall reliability of fuel cell vehicle. Reliability 

analysis of a single PEM fuel cell system is studied in (Mangoni, Pagano & Velotto. 2007) 

and (Feitelberg, Stathopoulos & Qi. 2005). (Aydinli, Sisworahardjo & Alam. 2007) has 

focused on the reliability analysis of a single Direct Methanol Fuel Cell.  

In the following sections, reliability enhancement of a double fuel cell power source is 

compared with the traditional designs. The reliability is introduced and used for various 

system configurations.  
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5.8.1 Reliability 

 

“Reliability is the probability that an item will perform its function adequately for the 

desired period of time when operated according to specified conditions” (Dhillon. 1983). 

Reliability is defined mathematically as 

∫
∞

=
t

dxxftR )()( ,                                                   (5.8.1.1) 

where )(xf is the failure probability density function and t is the time period. )(tF , the 

cumulative probability distribution function which is also called the failure probability, is 

defined as   

∫
∞−

=
t

dxxftF )()( ,                                                 (5.8.1.2) 

In reliability analysis, it is assumed that the system have the chance to operate without failure 

during a specific period of time. A fuel cell is a two state device which either operates or fails 

during its operation. Configuration of components in the system can categorize a network 

into four distinctive cases of series, parallel, k-out-of-m unit network and standby redundant 

system. These systems are defined for the convenience of readers.  

 

5.8.2 Series Network 

 

If the devices/subsystems of a network are connected in series, it is called a series 

network. In such network, failure of any of the components leads to failure of the whole 

system. In the series network, overall reliability of this network consisting of k components 

is calculated by  

{ }{ }{ } { })(1...)(1.)(1.)(1)( 321 tFtFtFtFtR ks −−−−= ,                      (5.8.2.1) 

where )(tRi  is the ith unit/component reliability and )(tFi is the ith component failure 

probability for ki ,....2,1=  and is defined as, 

{ } )()(1 tRtF ii ≡−                                                   (5.8.2.2) 
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5.8.3 Parallel Network 

If the devices/subsystems of a network are connected in parallel, the network is called a 

parallel network. This type of system only fails when all its components/subsystems fail to 

operate; therefore, this configuration is used to increase reliability of the overall system. The 

reliability of the overall system is calculated by 

∏
=

−=
k

i

ip tFtR
1

)(1)( .                                                 (5.8.3.1) 

 

5.8.4 k-out-of-m Unit Network 

 

This type of network contains m units and operates if k parallel units operate. The reliability 

is defined as 

[ ] [ ] iki
m

ki im
k tRtRmtR

−

=
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,                                      (5.8.4.1) 

where )(tR is the unit reliability, m is the total number of system units and k is the number of 

units required for the function of the system. 

 

5.8.5 Standby Redundant System 

 

In a standby redundant system, k units are on standby while one unit functions. The 

system reliability in this case is calculated by 

1

0

)(

0

)!().()( 0 −

=

−

∑ ∫
∫









= iedtttR
k

i

dtt
i

t

s

t

λ

λ ,                                 (5.8.5.1) 

where λ is the hazard rate or instantaneous failure rate and is defined as “the rate of change 

of the failed components quantity divided by number of survived components at time t” 

(Dhillon. 1983).  
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5.8.6 Weibull Distribution 

 

Different distributions such as Weibull, Normal, Exponential Uniform, Extreme value, 

etc. have applications in reliability engineering analysis. Weibull distribution is commonly 

used for reliability analysis related to PEM fuel cell systems (Feitelberg, Stathopoulos & Qi. 

2005). The hazard rate for the Weibull distribution is defined as, 

BAtt =)(λ .                                                   (5.8.6.1) 

More details are defined as 
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where β  is defined as the shape parameter, θ  is the characteristic life or scale parameter and 

0t is the location parameter. The probability density function of Weibull distribution is 

expressed as, 
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The reliability function is expressed as 

β

θ
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Weibull distribution becomes an exponential case when 1=β  (the failure rate is 

independent of age). In the next section the system reliability analysis for the proposed 

configuration of multiple fuel cells in hybrid fuel cell vehicle is presented. 

 

5.9 Reliability Analysis for Multiple Fuel Cell System 

 

In this section, reliability analysis of one fuel cell is formulated and is expanded for a 

parallel network. The probability of a single fuel cell is considered “1” at the start of 

operation and decreases as time increases. In (5.8.6.4), β  equals 1 (Åström, Fontell & 
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Virtanen. 2007) which results in a constant failure rate of
θ

λ
1

= , and 0t is zero for a brand 

new fuel cell unit (Relex Web Page).  

Figure 5.9.1 shows the reliability of individual fuel cells and the resultant parallel network 

of double power sources for different failure rate values. This figure illustrates a case where 

failure rate of fuel cell #1 is more than failure rate of fuel cell 2; therefore, the reliability of 

fuel cell #1 decays faster. This figure shows an improvement in the overall reliability of the 

system which is more than each of fuel cells individually. This demonstrates higher 

reliability of the multiple fuel cell configuration proposed in this research.  

 

 
Figure 5.9.1, Each fuel cell and the parallel system reliability curves for 21 λλ >  

 
 

Figure 5.9.2 shows the reliability evaluation of fuel cells with the same failure rate values. 

In this case both fuel cell reliability curves decay with the same rate; however, the overall 

reliability of the parallel system is higher than the cells individually. 
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Figure 5.9.2, Each fuel cell and the parallel system reliability curves for 21 λλ =  

 

Simulations indicate that by using the multiple fuel cell configuration not only higher 

efficiency is gained for the system in urban driving cycles, but also, a more reliable system is 

achieved by implementing the new topology. 
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Chapter 6, 

Conclusion and Future Work 
 

6.1 Conclusion 

 

Conventional designs of hybrid fuel cell vehicles make use of a single fuel cell power 

source and a storage device to provide the base load and transients in various driving cycles. 

This research proposed a new configuration of multiple fuel cell power sources in hybrid fuel 

cell vehicles. Multiple fuel cells were downsized to provide the same amount of power, 

which brought the advantage of a highly fuel economic design. Highly efficient driving 

conditions in urban applications were obtained which also resulted in more reliable system 

configurations. The proposed power management for this new configuration was presented 

and the simulation results for a double fuel cell configuration showed the predicted response 

of power sources. Fuel cells were efficient while they operated in their higher loading 

percentage. Efficiency curves were introduced and used for efficiency analysis. To gain 

higher efficiencies in hybrid fuel cell vehicles, fuel cells should be loaded in their efficient 

region of operation. The main objective of this thesis was to achieve a higher efficiency in 

urban driving cycle. In conventional configurations, the fuel cell was not efficiently loaded in 

urban driving cycles, where small powers were required from the single fuel cell power 

source. In that case, the fuel cell was usually loaded in its low efficient region which made 

the whole system inefficient. By utilizing the new configuration, fuel cells could be loaded in 

their efficient region in urban driving cycles and provided a fuel economic vehicle. 
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Efficiency simulations showed that in standard urban driving cycle (FTP75), efficiency was 

enhanced for almost 27.3% in urban driving cycle which showed.  

 

6.2 Future work 

 
• Power Control Strategy Changes with Accordance to the Loading Condition 

 

To enhance better efficiencies in the configuration of multiple fuel cell vehicle different 

control strategies can be implemented in different cases. The power control management can 

be composed of two algorithms. One can be used in low range of speeds where the power can 

be fed by the first fuel cell and storage device while keeping the second fuel cell idle to avoid 

low efficiencies in the second fuel cell. The power management can be switched to a new 

program in case of high speeds where the second fuel cell is turned on and battery is kept off 

except for transients. Higher efficiencies are expected from this technique.  

 
• Experimental Results 

 

Experimental results are always the ultimate demonstration of an applied method. Practical 

implementation of the control algorithm with two smaller size fuel cells and battery backup 

should attest the results obtained from the simulations.  

 
• Power Management Algorithms for More than Two Fuel Cells. 

 

Double fuel cell configuration as the potential design of an economic system was examined 

in this research. Optimal numbers of power sources are required to be determined to achieve 

the highest efficiency and fuel economy. Higher number of fuel cell power sources connected 

in parallel increase the reliability of the overall system.    

 
 



 82 

References 

 
A123systems: http://www.a123systems.com 

Abedini, A. and Nasiri, A. (2006). Modeling and Analysis of Hybrid Fuel Cell Systems for Vehicular Applications. IEEE Vehicle 

Power and Propulsion Conference, pp.1-6, Sept. 2006. 

Acharya, P. R. (2004). An Advanced Fuel Cell Simulator. Master Thesis, Texas A&M University, August 2004. 

Amrhein, M. & Krein, P. T. (2005). Dynamic simulation for analysis of hybrid electric vehicle system and subsystem 

interactions, including power electronics. IEEE Transactions on Vehicular Technology, vol. 54, No. 3, pp.825-836, May 

2005. 

Anstrom, J. R., Zile, B., Smith, K., Hofmann, H. and Batra, A. (2005). Simulation and field-testing of hybrid ultra-

capacitor/battery energy storage systems for electric and hybrid-electric transit vehicles. Twentieth Annual IEEE Applied 

Power Electronics Conference and Exposition, vol. 1, pp.491-497, March 2005. 

Åström, K., Fontell, E. & Virtanen, S. (2007). Reliability analysis and initial requirements for FC systems and stacks. Journal of 

Power Sources, Volume 171, Issue 1, 19 September 2007, Pages 46-54 

Aydinli, G., Sisworahardjo, N.S. & Alam, M.S. (2007). Reliability and Sensitivity Analysis of Low Power Portable Direct 

Methanol Fuel Cell. The International Conference on "Computer as a Tool"EUROCON, 2007. 9-12 Sept. 2007, pp. 1457 – 

1462. 

Bauman, J. & Kazerani, M. (2008) A Comparative Study of Fuel-Cell–Battery, Fuel-Cell–Ultracapacitor, and Fuel-Cell–

Battery–Ultracapacitor Vehicles. IEEE Transactions on Vehicular Technology. vol. 57,  issue 2,  pp. 760 – 769, March 2008.  

Brown, E. W.  (1988). An introduction to solar energy. Available: http://www.ccs.neu.edu/home/feneric/solar.html 

Burke, A. F. (2007). Batteries and Ultracapacitors for Electric, Hybrid, and Fuel Cell Vehicle. Proceedings of the IEEE , vol. 95,  

issue 4,  pp. 806 – 820, April 2007. 

Columbia University Web Page: http://www.columbia.edu/~ajs120/hydrogen/ 

Copparapu, R., Zinger, D. and Bose, A. (2006). Energy Storage Analysis of a Fuel Cell Hybrid Vehicle with Constant Force 

Acceleration Profile. North American Power Symposium, pp.43-47, Sept. 2006. 

Dhillon, B. S. (1983). Reliability Engineering in Systems Design and Operation. Publisher: Van Nostrand Reinhold Company 

Inc. 

Di Napoli, A., Crescimbini, F., Giulii Capponi, F. & Solero, L. (2002). Control strategy for multiple input DC-DC power 

converters devoted to hybrid vehicle propulsion systems. IEEE International Symposium on Industrial Electronics, vol. 3, 

pp.1036 – 1041, May 2002. 

Dixon, J. W and Ortlizar, M. E. (2002). Ultracapacitors + DC-DC Converters in Regenerative Braking System. IEEE AESS 

System Magazine, pp.16-21, Aug. 2002. 

Drolia, A., Jose, P. &  Mohan, N. (2003). An approach to connect ultracapacitor to fuel cell powered electric vehicle and 

emulating fuel cell electrical characteristics using switched mode converter.  

The 29th Annual Conference of the IEEE Industrial Electronics Society, 2003. IECON '03,vol. 1, pp. 897 – 901, Nov. 2003. 

Ehsani, M., Gao, Y., Gay, E. S. & Emadi, A. (2005). Modern electric, hybrid electric and fuel cell vehicles. Fundamentals, theory 

and design (1st ed.). CRC press. 

EIA Webpage: http://www.eia.doe.gov/ 

Emadi, A., Rajashekara, K., Williamson, S. S. & Lukic, S. M. (2005). Topological Overview of Hybrid Electric and Fuel Cell 

Vehicular Power System Architectures and Configurations. IEEE Transactions on Vehicular Technology, vol. 54, no. 3, MAY 

2005 

EPA Web Pgae: http://www.epa.gov/otaq/sftp.htm 

Famouri, P. & Gemmen, R. S. (2003). Electrochemical circuit model of a PEM fuel cell. In Proc. of IEEE Power Eng. Soc. 

Summer Meeting, Toronto, ON, Canada, July. 2003. 

Feitelberg, S. A., Stathopoulos, J. & Qi, Z. (2005). Reliability of Plug Power GenSysTM Fuel Cell Systems. Journal of Power 

Sources, vol. 147, Issues 1-2, 9 September 2005, pp. 203-207. 



 83 

Fuel Economy Webpage: http://www.fueleconomy.gov/feg/fcv_PEM.shtml 

Fuel Cell Handbook. (2000). EG & G Services, Parsons Inc. (5th ed.). DEO of Fossil Energy, National  

Energy Technology Lab. Oct. 2000. Morgantown, WV. Available: www.fuelcells.org/info/library/fchandbook.pdf 

Garnier, J., Pera, M.C., Hissel, D., Harel, F., Candusso, D., Glandut, N., Diard, J.P., De Bernardinis, A., Kauffmann, J.M. & 

Coquery, G. (2003). Dynamic PEM fuel cell modeling for automotive applications. IEEE 58th Vehicular Technology 

Conference, 2003. vol. 5,  6-9 Oct. 2003, pp.3284 – 3288. 

Gao, W. (2005). Performance comparison of a fuel cell-battery hybrid powertrain and a fuel cell-ultracapacitor hybrid 

powertrain. IEEE Transactions on Vehicular Technology, vol. 54, No. 3, pp.846-855, May 2005. 

Gao, Y. and Ehsani, M. (2001). Systematic design of fuel cell powered hybrid vehicle drive train. IEEE International Electric 

Machines and Drives Conference, pp.604 – 611, 2001. 

Grasser, F. & Rufer, A. (2007). A fully analytical PEM fuel cell system model for control applications.  

IEEE Transactions on Industry Applications, vol. 43, issue 6, Nov.-Dec. 2007, pp.1499 -1506. 

Green Jobs Web Page: http://www.greenjobs.com/Public/images/fuel-cell-types-1.gif 

Hasan, S.M.N. & Husain, I. (2005). Power electronic interface with ultracapacitors and motor control for a fuel cell electric 

vehicle. IEEE Conference on Vehicle Power and Propulsion, pp. 815-822, 2005. 

Hernandez, E. & Diong, B.  (2005). A Small-Signal Equivalent Circuit Model for PEM Fuel Cells. vol.1, pp.121-126, 6-10 March, 

2005. 

Larminie, J. & Dicks, A. (2003). Fuel Cell Systems Explained. (2nd ed.). Wiley. 

Mangoni, V., Pagano, M. & Velotto, G. (2007). Fuel Cell Reliability Model based on Uncertain Data. International Conference 

on Clean Electrical Power, 2007. ICCEP '07. 21-23 May 2007. pp. 730 – 735. 

Marchesoni, M. & Savio, S. (2005). Reliability Analysis of a Fuel Cell Electric Car. 2005 European Conference on Power 

Electronics and Applications, 11-14 Sept. 2005. 10 pp. 

Masstech Web Page: http://masstech.org/cleanenergy/fuelcell/impactenv.htm 

Mehrjerdi, H. and Ghouili, J. (2006). Strategies Comparison for Optimization of Multi Objective Function in a Fuel Cell 

Electrical vehicle. Canadian Conference on Electrical and Computer Engineering, pp. 1337 – 134, May 2006. 

Mikkola, M. (2001), Experimental Studies on Polymer Electrolyte Membrane Fuel Cell Stacks. Master Thesis, Helsinki 

University of Technology, Finland, 2001. 

Moghbelli, H., Halvaei Niasar, A. &Langari, R. (2006). New Generation of Passenger Vehicles: FCV or HEV?. IEEE 

International Conference on Industrial Technology, ICIT 2006. , 15-17 Dec. 2006, pp.452 – 459. 

Na, W. K., Gou, B. & Diong, B. (2005). Nonlinear Control of PEM Fuel Cells by Exact Linearization. IEEE Transactions on 

Industry Applications, vol. 43, issue 6,  pp. 2937-2943, Nov.-Dec. 2007. 

NREL Web Page (UC): http://www.nrel.gov/vehiclesandfuels/energystorage/ultracapacitors.html 

NREL Web Page (Battery): http://www.nrel.gov/vehiclesandfuels/energystorage/batteries.html 

Ozatay, E., Zile, B., Anstrom, J. and Brennan, S. (2004). Power distribution control coordinating ultracapacitors and batteries 

for electric vehicles. Proceedings of the 2004 American Control Conference, vol. 5, pp.4716 – 4721, 30 June-2 July 2004. 

Pasricha, S. & Shaw, S. R. (2006). A Dynamic PEM Fuel Cell Model. IEEE Transactions on Energy Conversion. vol.21, no.2, 

June 2006. 

Plotkin, S. (2002). Argonne National Lab. Available: http://www.transportation.anl.gov/transtech/v1n4/hev-report.html 

Pukrushpan, J. T., Stefanopoulou, A. G. & Peng, H. (2004). Control of Fuel Cell Power Systems: Principles, Modeling, Analysis 

and Feedback Design. (1st ed.). Springer.  

Relex Web Page: http://www.relex.com/resources/art/art_weibull3.asp 

Thinkquest Webpage: http://library.thinkquest.org/20331/ 

Vahidi, A., Stefanopoulou, A. and Peng, H. (2006). Current management in a hybrid fuel cell power system: a model-predictive 

control approach. IEEE Transactions on Control Systems Technology, vol. 14, No. 6, November 2006. 

Van Mierlo, J., Cheng, Y., Timmermans, J.M and Van den Bosschet, P. (2006). Comparison of Fuel Cell Hybrid Propulsion 

Topologies with Super-Capacitor. 12th International Power Electronics and Motion Control Conference, pp.501-505, Aug. 

2006. 



 84 

Wallén, J. (2004). Modelling of Components for Conventional Car and Hybrid Electric 

Vehicle in Modelica. Master Thesis, Linköping University, Sweden, May 2004. Available:  

http://www.ep.liu.se/undergraduate/abstract.xsql?dbid=2367 

Wang, C., Nehrir, M. H. & Shaw, S. R. (2005). Dynamic Models and Model Validation for PEM Fuel Cells Using Electrical 

Circuits. IEEE Transactions on Energy Conversion, vol.20, no.2, pp. 442-451 June 2005. 

Wikipedia Webpage (Driving Cycle): http://en.wikipedia.org/wiki/Driving_cycle 

Wikipedia Webpage (Electric Vehicle): http://en.wikipedia.org/wiki/Electric_vehicle 

Wikipedia Webpage (Fuel Cell Image): http://en.wikipedia.org/wiki/Image:Fuelcell.en.JPG  

Wikipedia Webpage (Greenhouse Effect): http://en.wikipedia.org/wiki/Greenhouse_effect 

Wikipedia Webpage (Greenhouse Gas): http://en.wikipedia.org/wiki/Greenhouse_gas 

Wikipedia Webpage (Hybrid Vehicle Drivetrain): http://en.wikipedia.org/wiki/Hybrid_vehicle_drivetrain 

Wikipedia Web page- (Reliability): http://en.wikipedia.org/wiki/Reliable_system_design 

Wikipedia Webpage (Rolling Resistance): http://en.wikipedia.org/wiki/Rolling_resistance 

Wu, L. & Li, H. (2006). The Reliability Work in Fuel Cell Vehicle’s Road Test. IEEE International Conference on Vehicular 

Electronics and Safety, 2006. ICVES 2006.  

13-15 Dec. 2006. pp. 481 – 484. 

Wu, Y. & Gao, H. (2006) Optimization of Fuel Cell and Supercapacitor for Fuel-Cell Electric Vehicles. IEEE Transactions on 

Vehicular Technology . vol. 55,  issue 6,  pp.1748 – 1755, Nov. 2006.  

Yu. D, & Yuvarajan, S. (2004). A Novel Circuit Model for PEM Fuel Cells. Nineteenth Annual IEEE Applied Power Electronics 

Conference and Exposition, 2004. pp. 362-366. 

Yu, Q., Srivastava, A.K., Choe, S. Y. & Gao, W. (2006). Improved Modeling and Control of a PEM Fuel Cell Power System for 

Vehicles. Proceedings of the IEEE SoutheastCon. 2006. pp. 331-336. 

Yuvarajan, S. & Yu, D. (2004). Characteristics and Modeling of PEM Fuel Cells.  

Proceedings of the 2004 IEEE International Symposium on Circuits and Systems ISCAS '04. vol. 5. (pp. 880-883), 23-26 

May 2004. 

Zolot, M., Markel, T. & Pesaran, A. (2004). Analysis of Fuel Cell Hybridization and Implications for Energy Storage Devices, 

4th International Advanced Automotive Battery Conference, San Francisco, California, June 2-4, 2004  



 85 

APPENDIX A 
Fuel cell model in MATLAB/Simulink: 
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Fuel cell sub-model in MATLAB/Simulink: 

 

 
 
 
 
Fuel Cell Model Details: 

 
R= 8.314, universal gas constant, [joule/gm-mol-K] 
N= 60, number of cells 
F= 96439, Faraday Constant [Coulombs per mol] 
Va= 0.985, anode fuel cell volume [m3] 
Vc= 1.68, cathode fuel cell volume [m3] 
T= 333, operating temperature [K] 
Ac= 19.4, Channel flow area [cm2] 
E0= 0.98, standard state voltage [V] 
n= 2, molar flow rate [gm-mol/sec] 
VH2= 0.0149, hydrogen volume [m3] 
VO2= 0.0224, oxygen volume [m3] 
r= 0.1734, mole density [gm-mol/m3] 
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