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ABSTRACT 

Constructing gene expression based prognostic models to predict recurrence and lymph node 
metastasis in colon cancer 

Ramakanth Reddy Mettu 

The main goal of this study is to identify molecular signatures to predict lymph node metastases and 
recurrence in colon cancer patients. Recent advances in microarray technology facilitated building of 
accurate molecular classifiers, and in depth understanding of disease mechanisms. 

Lymph node metastasis cannot be accurately estimated by morphological assessment. Molecular markers 
have the potential to improve prognostic accuracy. The first part of our study presents a novel technique 
to identify molecular markers for predicting stage of the disease based on microarray gene expression 
data. In the first step, random forests were used for variable selection and a 14-gene signature was 
identified. In the second step, the genes without differential expression in lymph node negative versus 
positive tumors were removed from the 14-gene signature, leading to the identification of a 9-gene 
signature. The lymph node status prediction accuracy of the 9-gene signature on an independent colon 
cancer dataset (n=17) was 82.3%. Area under curve (AUC) obtained from the time-dependent ROC 
curves using the 9-gene signature was 0.85 and 0.86 for relapse-free survival and overall survival, 
respectively. The 9-gene signature significantly stratified patients into low-risk and high-risk groups (log-
rank tests, p<0.05, n=73), with distinct relapse-free survival and overall survival. Based on the results, it 
could be concluded that the 9-gene signature could be used to identify lymph node metastases in patients. 
We further studied the 9-gene signature using correlation analysis on CGH and RNA expression datasets. 
It was found that the gene ITGB1 in the 9-gene signature exhibited strong relationship of DNA copy 
number and gene expression. Furthermore, genome-wide correlation analysis was done on CGH and 
RNA data, and three or more consecutive genes with significant correlation of DNA copy number and 
RNA expression were identified. These results might be helpful in identifying the regulators of gene 
expression. 

The second part of the study was focused on identifying molecular signatures for patients at high-risk for 
recurrence who would benefit from adjuvant chemotherapy. The training set (n=36) consisted of patients 
who remained disease-free for 5 years and patients who experienced recurrence within 5 years. The 
remaining patients formed the testing set (n=37). A combinatorial scheme was developed to identify gene 
signatures predicting colon cancer recurrence. In the first step, preprocessing was done to discard 
undifferentiated genes and missing values were replaced with k=30 and k=20 using the k-nearest 
neighbors algorithm. Variable selection using the random forests algorithm was applied to obtain gene 
subsets. In the second step, InfoGain feature selection technique was used to drop lower ranked genes 
from the gene subsets based on their association with disease outcome. A 3-gene and a 5-gene signature 
were identified by this technique based on different missing value replacement methods. Both of the 
recurrence gene signatures stratified patients into low-risk and high-risk groups (log-rank tests, p<0.05, 
n=73), with distinct relapse-free survival and overall survival. A recurrence prediction model was built 
using LWL classifier based on the 3-gene signature with an accuracy of 91.7% on the training set (n=36). 
Another recurrence prediction model was built using the random tree classifier based on the 5-gene 
signature with an accuracy of 83.3% on the training set (n=36). The prospective predictions obtained on 
the testing set using these models will be verified when the follow-up information becomes available in 
the future. The recurrence prediction accuracies of these gene signatures on independent colon cancer 
datasets were in the range 72.4% to 88.9%. These prognostic models might be helpful to clinicians in 
selecting more appropriate treatments for patients who are at high-risk of developing recurrence. When 
compared over multiple datasets, the 3-gene signature had improved prediction accuracy over the 5-gene 
signature. The identified lymph node and recurrence gene signatures were validated on rectal cancer data. 
Time-dependent ROC and Kaplan-Meier analysis were done producing significant results. These results 
support the fact that the developed prognostic models could be used to identify patients at high-risk of 
developing recurrence and get an estimate of the survival times in rectal cancer patients. 
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Chapter 1 

Introduction 

Colon cancer is the third most common cause of cancer in Europe and the United States, with ~300,000 

new cases and 200,000 deaths each year. It is the second most common site (after lung) to cause cancer 

death1. The primary treatment for colon cancer is the surgical removal of a part of colon or the entire 

colon. Chemotherapy after surgery can prolong the survival in patients if the cancer has spread to nearby 

lymph nodes. Prognosis is the estimation of disease outcome i.e., the chance that a patient will recover or 

have a recurrence (return of the cancer)2

 In the recent years, advances in genetic technologies such as cDNA microarrays allowed for 

measuring the expression of tens of thousands of genes simultaneously. The research carried out in this 

area over the past few years has demonstrated that the gene expression data could be used to solve a 

variety of problems like tumor classification and prediction of treatment response. Machine learning and 

statistical techniques have been successfully applied on the gene expression datasets to identify 

biomarkers, predict recurrence or disease outcome, distinguish between tumor and normal tissue samples, 

build prognostic predictors and predict treatment response (1). Currently, two gene expression based tests 

are being used in clinical trials for breast cancer prognosis. The MammaPrint

. The most important factors that affect the colon cancer 

prognosis are the histology, location, and stage of the disease (the extent to which the cancer has spread). 

Doctors cannot be absolutely certain about the outcome for a particular patient based on the traditional 

morphological assessment. 

3

                                                      
1 http://en.wikipedia.org/wiki/Colorectal_cancer 
2 http://colon-cancer.emedtv.com/colon-cancer/colon-cancer-prognosis.html 
3 http://usa.agendia.com/en/mammaprint.html 

 test classifies tumors into 
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low or high-risk of recurrence. The Oncotype DX4

Staging is an important prognostic factor in determining treatment options. Earlier stages of colon 

cancer (stage I and stage II) have good chances of prognosis compared to later stages (stage III and stage 

IV)

 test determines the likelihood of recurrence. There are 

no gene tests available for colon cancer prognosis at present. 

5

 The first part of our study aims at building prognostic models based on the microarray gene 

expression data to predict lymph node metastasis (stage). The colon cancer microarray data used in this 

study contained 73 tumor samples of which 33 samples were stage II tumors and 40 samples were stage 

III tumors (2). The data was preprocessed by applying t-tests

. When a patient is diagnosed with cancer, various clinical parameters are used to assess the risk of 

metastasis and death in the patient. However, despite numerous advances in this area, the ability to 

accurately estimate the risk of morbidity is limited. Tumors that appear indistinguishable under the 

microscope can have different outcome and different treatment response. This could be due to the 

differences in the genetic profiles of the tumors. With the advent of cDNA microarray technology, it is 

possible to measure the expression levels of thousands of genes simultaneously and the differences 

between tumors at the molecular level can be detected. Thus molecular markers identified based on the 

cDNA microarray expression data have the potential to improve prognostic accuracy significantly. The 

disease prognosis can be assessed preoperatively through a tissue obtained from a colonoscopic biopsy 

specimen or post operatively from a resected tumor. 

6

                                                      
4 http://www.genomichealth.com/oncotype/default.aspx 
5http://medicineworld.org/cancer/colon/colon-cancer-staging.html 
6 http://www.socialresearchmethods.net/kb/stat_t.php 

 on genes that had missing values in more 

than 5 samples. Genes passing the t-tests along with all genes having less than 5 missing values, a total of 

10,220 genes, were included for further analysis. This data was randomly split in 2:1 ratio as training and 

testing sets. The training set contained 10,220 genes and 50 samples. A 9-gene lymph node status 

signature was identified by a novel technique from the training set. In this technique, firstly, variable 

selection using random forests (3) was done and a 14-gene signature was identified. In the next step, z-
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tests7 were applied on the 14-gene signature to discard the genes without differential expression in lymph 

node negative versus positive tumor samples. This resulted in a 9-gene signature. The performance of the 

9-gene signature was evaluated by cross validation on independent colon cancer data sets. A number of 

machine learning algorithms were applied on validation datasets, but none of the algorithms gave 

consistent results on all the validation datasets. So, classifiers with highest prediction accuracy on each 

dataset were chosen. J48, Naïve Bayes, Decision stump and Threshold selector were the classifiers used 

for validation of independent datasets. The 9-gene signature was used to predict lymph node status on 

Koinuma et al data (n=17), recurrence on Barrier et al data (PMID 16091735) (n=12), Barrier et al data 

(PMID 16966692) (n=50), Barrier et al data (PMID 17043639) (n=24), and drug response on NCI-608

 Recurrence is the reappearance of a tumor or the return of symptoms after treating for cancer. 

Adjuvant chemotherapy is the main treatment given to Duke’s stage C patients (node-positive disease). In 

Duke’s stage B patients (node negative disease) no adjuvant chemotherapy is used after surgery, although 

25% to 40% of patients usually develop recurrence (5). It is not clear whether adjuvant chemotherapy 

should be given to Duke’s stage B patients as not all the patients would benefit from it. Partitioning 

patients into low-risk and high-risk groups would allow in “more aggressive” and accurate treatment 

strategies for the patients at high-risk of recurrence, and spare the patients in the low-risk group from the 

“aggressive treatment” through which they are unlikely to be benefited. The TNM (tumor-node-

metastasis) staging system is the main tool for identifying prognostic differences (6), but this system is 

 

data (n=34). Further time-dependent ROC analysis was done to get an estimate of the discriminatory 

power of the identified biomarker. Kaplan-Meier analysis generated significant patient stratification into 

subgroups (p<0.05, n=73, log-rank tests) with distinct relapse-free survival and overall survival, 

respectively. Correlation analysis was done on CGH and RNA data to identify cDNA copy numbers 

correlated with gene expression data. The locations of these genes might be important in identifying the 

regulators of the gene expression (4). 

                                                      
7 http://en.wikipedia.org/wiki/Z-test 
8 http://discover.nci.nih.gov/cellminer/loadDownload.do 
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not sufficient for predicting recurrence in Duke’s stage B patients (7). Thus, there are limitations for 

predicting recurrence by using traditional methods. So there is a need to identify patients at high-risk of 

recurrence who would develop relapse in the Duke’s B group.  

 
The second part of our study specifically aims at identifying patients at high-risk of recurrence by 

building prognostic models for stage II (Duke’s stage B) and stage III (Duke’s stage C) colon cancer 

patients. This is achieved by a novel combinatorial feature selection scheme. The missing values in the 

gene expression data were replaced by k-nearest neighbors algorithm with k=30 and k=20, separately. In 

the first step, variable selection using random forests is done on the training set which comprised of 36 

patients. This step obtained two recurrence gene signatures based on different missing value replacement 

methods. In the second step, InfoGain feature selection technique (12) was applied to further reduce the 

dimensionality, and this led to the identification of the 3-gene signature and the 5-gene signature on 

datasets generated with different missing value replacements. The performances of both gene signatures 

were evaluated by cross validation on independent colon cancer data sets. A number of machine learning 

algorithms have been tested for the validation of these signatures, but no particular scheme gave 

consistent results on all the datasets. So, classifiers with highest prediction accuracy on each dataset were 

chosen. LWL and Random Tree were the classifiers chosen to build prediction models using 3-gene and 

5-gene signatures, respectively. KStar, AD Tree, IB1 and Threshold selector were the classifiers used for 

validation of independent datasets. The 3-gene and 5-gene recurrence signatures were used to predict 

lymph node status on Koinuma et al data (n=17), recurrence on Barrier et al data (PMID 16091735) 

(n=12), Barrier et al data (PMID 16966692) (n=50), Barrier et al data (PMID 17043639) (n=24), and 

drug response on NCI-609 data (n=34) independently. Further, time-dependent ROC analysis was done to 

get an estimate of the discriminatory powers of the identified gene signatures. Prediction models were 

built with the 3-gene signature and the 5-gene signature using classifiers in Weka10

                                                      
9 http://discover.nci.nih.gov/cellminer/loadDownload.do 
10 http://www.cs.waikato.ac.nz/ml/weka/ 

 to predict recurrence 

in patients from the testing set. Kaplan-Meier analysis using the 3-gene signature generated significant 
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patient stratification into low-risk and high-risk groups (p < 0.05, n=73, log-rank tests,) with distinct 

relapse-free survival and overall survival, respectively. Kaplan-Meier analysis using the 5-gene signature 

generated significant patient stratification into low-risk and high-risk groups (p < 0.05, n=73, log-rank 

tests) with distinct relapse-free survival and overall survival, respectively. When the 3-gene and 5-gene 

signatures were compared over multiple datasets the 3-gene signature had improved prediction accuracy. 

But the difference in the prediction accuracies was not statistically significant. From these results it can be 

concluded that it is possible to build prognostic models based on the microarray gene expression data to 

identify patients at high-risk of recurrence. The identified gene signatures were validated on rectal cancer 

data and they generated significant patient stratification into low-risk and high-risk groups. 

  
This thesis is organized as follows. Chapter 2 discusses the background of our study. Chapter 3 

describes the experimental details of the identification and validation of the 9-gene signature and the 

validation results. Chapter 4 describes the experimental details of identification and validation of the 3-

gene and 5-gene recurrence signatures. Chapter 5 discusses the validation results of all the gene signatures 

on rectal cancer data, and Chapter 6 concludes this study. 
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Chapter 2 

Background 

2.1 Introduction 

Gene signatures can be used to aid clinical decision-making in personalized therapy. They can also be 

used to stratify patients who would experience recurrence and who would not. The goal of our study is to 

identify a small subset of genes that could potentially be used to predict the likelihood of lymph node 

metastases (stage) and recurrence in patients with colon cancer. Prognostic models can be built based on 

these gene signatures to identify patients at high-risk of recurrence. These gene signatures have the 

potential for improving diagnostic classification, treatment selection, and prognostic assessment. 

 The advent of high-throughput technologies such as DNA microarrays is currently 

revolutionizing biology and medicine. Machine learning techniques are playing a pivotal role in analyzing 

the generated microarray data. Machine learning algorithms are very useful in cancer research and several 

machine learning algorithms have already been successfully applied on microarray gene expression data 

to classify tumors, predict disease outcome and treatment response (8). Unsupervised machine learning 

approaches such as, self-organizing maps (SOM) were used to organize genes into biologically relevant 

clusters in leukemia (11), and hierarchical clustering was used to classify colon cancer tissues into 

cancerous and non-cancerous based on the gene expression (9). Supervised machine learning techniques 

such as Support vector machines (SVMs) were used for multi-class cancer diagnosis (10). Nearest 

shrunken centroids were used for diagnosing cancer (38). Decision trees and feed-forward neural 

networks were used for lung cancer classification (39). 

 The remainder of this chapter is organized as follows. Section 2.2 describes the feature selection 

techniques utilized in this study. Section 2.3 describes the classification algorithms used in this study. 

Section 2.4 explains the survival analysis techniques. Section 2.5 describes the correlation coefficient 
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analysis. Section 2.6 presents the related work performed in previous studies. Section 2.7 discusses the 

open problems in this area, and Section 2.8 summarizes this chapter. 

2.2 Feature selection techniques 

Two of the most important problems in microarray data analysis relate to the dimensionality of the data 

and noise. In many bioinformatics problems, the number of features is significantly larger than the 

number of samples (high feature to sample ratio). Moreover, not all the features are necessary for 

classification purposes. Inclusion of all the features would contribute noise and introduce an error. 

 Feature selection is the process of systematically reducing the dimensionality of a dataset to an 

optimal subset of attributes for classification purposes. The main idea of feature selection is to choose a 

subset of input variables. Feature selection can significantly improve the comprehensibility of the 

resulting classifier models by eliminating features with little or no predictive information. Several 

commonly used feature selection techniques like Random forests, Information gain attribute evaluator, 

CfsSubset evaluator, GainRatio evaluator, and ReliefF attribute evaluator are described as follows. 

2.2.1 Variable selection using Random forests 
 
Random forests are an ensemble method that combines several individual classification trees. In order to 

grow these ensembles, random vectors are generated that govern the growth of each tree in the ensemble. 

The basic step of random forests is to form diverse tree classifiers from a single training set. Each tree is 

built upon a “bootstrap sample” taken from the training set. A random subset from the whole set of 

variables are used for splitting the tree nodes. The classification decision of a new case is obtained by 

majority voting over all trees unless the cut-off value is user defined. In random forests, about one-third 

of the cases in the bootstrap sample are not used in growing the tree. These cases are called “out-of-bag” 

(OOB) cases and are used in evaluating the performance of the algorithm.  

Random forest returns several measures of variable importance. The most reliable measure is the 

“mean decrease in accuracy”. Mean decrease in accuracy considers the importance of an mth variable as 
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the difference between the “out-of-bag” error rate for the randomly permuted mth variable (the error rate 

obtained by randomly rearranging the values of the mth variable for the out-of-bag set, for each tree, 

and getting new classifications for the forest, by putting this permuted set down the tree) and the 

original “out-of-bag” error rate (41). Based on the “mean decrease in accuracy” measure, backward 

elimination was used to identify the gene subset with the smallest “out-of-bag” error rate. The OOB error 

rate was used to choose the final set of genes, not to obtain estimates of the error rate. This procedure was 

implemented using the varSelRF11 package in R12

2.2.2 Information gain attribute evaluator 

 software. 

 

 
Information gain (InfoGain) attribute evaluator is a supervised attribute filter for selecting attributes. This 

method evaluates the attributes by measuring information gain with respect to class. Numeric attributes 

are first discretized using the MDL-based discretization method13

                                                                                          (Equation 1) 

where  H(X) is the entropy of X, H(Y) is the entropy of Y, and H(X,Y)  is the joint entropy of  X and Y. 

. This method treats missing value as a 

separate value or distributes the counts among other values in proportion to their frequency. It is used in 

conjunction with the Ranker which ranks attributes by their individual evaluations. It is only capable of 

generating attribute rankings (12). The user can specify the number of attributes to retain and the 

threshold can be adjusted to discard the attributes.  

The information gain of a given attribute X with respect to the class attribute Y is given by: 

2.2.3 CfsSubset evaluator 

Subset evaluators take a subset of attributes and return a numeric measure that guides the search. 

CfsSubset evauator assesses the predictive ability of each attribute individually and the degree of 

                                                      
11 http://cran.r-project.org/web/packages/varSelRF/index.html 
12 http://www.r-project.org/ 
13 http://de.scientificcommons.org/20784480 
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redundancy among them, preferring sets of attributes that are highly correlated with the class but having 

low inter-correlation. Conditional entropy is used to provide a measure of the correlation between features 

and class and between features. If H(X) is the entropy of a feature X and H(X|Y) the entropy of a feature X 

given the occurrence of feature Y, the correlation between two features X and Y can then be calculated 

using the symmetrical uncertainty as follows: 

                                                                                                                (Equation 2) 

The class of an instance is considered to be a feature. The goodness of a subset is then determined as: 

                                                 (Equation 3) 

where k is the number of features in a subset, rci is the mean feature correlation with the class and rii is the 

mean feature correlation. 

2.2.4 GainRatio attribute evaluator 

GainRatio attribute evaluator evaluates attributes by measuring their gain ratio with respect to the class. 

If X represents the attribute and Y represents the class the GainRatio is given by the following equation: 

                                                                                                        (Equation 4) 

where H(Y) is the entropy of Y, H(X) is the entropy of X, and H(Y/X) is the entropy of Y given X. 

Missing value counts can be distributed across other values in proportion to their frequency or they can be 

treated as separate values. 

2.2.5 ReliefF attribute evaluator 

ReliefF attribute evaluator evaluates the worth of an attribute by repeatedly sampling an instance and 

considering the value of the given attribute for the nearest instance of the same and different class. It can 

operate on both discrete and continuous class data. ReliefF generalizes the behavior of Relief to 
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classification. It finds one nearest neighbor of I1 from every class. On these neighbors Relief evaluates the 

relevance of every feature f Є F accumulating it into W[f]. The nearest neighbor from the same class is a 

hit H, and from a different class is a miss M(C) of class C. At the end W[f] is divided by m to get the 

average evaluation in [–1, 1].  

 

           (Equation 5) 

The function diff (f;I1; I2) calculates the difference between the values of the attribute A for two instances 

I1 and I2. For nominal attributes it is defined as: 

                                                                     (Equation 6) 

For numerical attributes it is defined as: 

                                                                                      (Equation 7) 

2.3 Classification algorithms 

Machine learning is a subfield of Artificial Intelligence dealing with the development of algorithms that 

learn from past experience. Machine learning techniques are extensively applied to microarray data, 

particularly for diagnostic purposes. Especially in cancer diagnostics, microarray classification tools are 

used for cancer subtype discrimination and outcome prediction. The following section describes the 

machine learning algorithms that we have used in our research for predicting disease subtype and 

outcome, and building prognostic models. 

2.3.1 Bagging 
 
Bagging stands for bootstrap aggregating. Given a training set, the original training data is altered by 

deleting some instances and replicating others. Instances are randomly sampled with replacement from 
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the original dataset to create a new one of the same size. Instead of obtaining independent datasets from 

the domain, bagging just resamples the original training data. Then, a learning scheme like a decision tree 

is applied to each of these derived datasets and the classifiers generated from them vote for the class to be 

predicted. All models receive equal weights and bagging produces a combined model that often performs 

significantly better than the single model built on the original training data (12).  

2.3.2 Naive Bayes 
 
The classifier is named so, because it is based on Baye’s rule and assumes that the attributes are 

independent “naively”. It is particularly suitable when the dimensionality of the inputs is high. Despite its 

simplicity, Naive Bayes can often outperform more sophisticated classification methods. If the data is 

redundant, Naive Bayes classifier works well with some attribute selection procedures that eliminate 

redundant data. The Bayes rule is described as follows. 

If H is the hypothesis and E is the evidence that bears on that hypothesis, then 

 P (H|E) = P(E|H) P(H) / P(E)                       (Equation 8) 

                                             or                                 (Equation 9) 

2.3.3 Threshold selector 
 
Threshold selector is a Meta classifier that selects a threshold on the probability distribution output by a 

classifier. The threshold is set so that a given performance measure is optimized. The performance 

measure is the F-measure14

                                                    (Equation 10) 

 (Equation 3). Performance can be measured either on the training data, on a 

hold-out set, or using cross-validation (12).  

 

 
                                                      
14 http://en.wikipedia.org/wiki/Information_retrieval 
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2.3.4 Locally Weighted Learning (LWL)  
 
LWL belongs to the class of instance-based learners. It assigns weights using an instance-based method 

and builds a classifier from the weighted instances. Attribute normalization is turned on by default. The 

base classifier can be selected by the user. Naive Bayes is a good choice for classification problems. 

Other parameters that can be adjusted are k-nearest neighbor (KNN). This method determines the number 

of neighbors used to determine the width of the weighting function, and the kernel shape to use for 

weighting, which can be linear, inverse, constant or Gaussian (12). 

2.3.5 Multilayer Perceptron 
 
Multilayer Perceptron is a neural network classifier. It belongs to the class of supervised neural networks. 

It is one of the most important and widely used network models. The multi-layer perceptron neural 

network model consists of a network of processing elements or nodes arranged in layers, usually 

interconnected in a feed-forward way. Each neuron in one layer has directed connections to the neurons 

of the subsequent layer. This classifier uses back propagation technique for learning. In MLPs, learning is 

supervised with separate training and recall phases. 

1. The network produces an output pattern for each input pattern. 

2. The actual output is compared with the known output from the training set and the error is 

calculated. 

3. The weights are adjusted to reduce the error. 

4. The steps 1-3 are repeated many times for every instance in the training set until the error is 

minimized. 

Once the network has been trained, the weights are then fixed. The testing set is fed into the network and 

the network output is compared with the desired output. 
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2.3.6 J48  
 
The Weka package implements its own version of C4.5 known as J48. This algorithm induces decision 

trees for classification by using the greedy technique. A decision-tree model is built by analyzing the 

training data and that model is used to classify testing data. If the test data is not available, J48 performs a 

cross-validation using the training data. 

2.3.7 IB1 
 
The IB1 classifier is a 1-nearest neighbor instance-based classifier. It is the simplest instance-based 

learning algorithm. It uses a simple distance measure to find the training instance closest to the given test 

instance and assigns the same class as that of the training instance. If multiple closest instances are found, 

the first one found is used. Generally the distance measure used is the Euclidean distance. An advantage 

of instance-based learning over many other machine learning methods is that new examples can be added 

to the training set at any time. Though instance-based learning is simple and works very well, it is often 

slow (12).  

2.3.8 KStar  
 
KStar is an instance-based classifier, meaning that the class of a test instance is based upon the class of 

those training instance(s) that resemble it most. The resemblance is calculated by using the distance 

function. KStar uses an entropy-based distance function. This way it differs from other instance-based 

classifiers. It belongs to the class of k-nearest neighbor classifiers because it classifies each instance by 

looking at the nearest k data points and determining the class by the one which is the most common in the 

nearest k data points (13). KStar has an option to specify the blend factor which specifies how the 

distance function used to compute the k-nearest neighbors acts. If the blend factor is set to 0%, the 

distance function performs like a standard nearest neighbor classifier by selecting just one instance to 

classify the test instance. If the blend factor is set to 100%, the distance function takes many instances and 

then classifies by the most common class. 
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2.3.9 Alternating Decision Tree (AD Tree) 
 
Alternating decision tree is a generalized representation of both voted stumps and decision trees. It uses 

boosting as a method for learning data. AD Tree supports only two-class problems. The number of 

boosting iterations can be manually tuned to suit the dataset and the desired complexity/accuracy tradeoff. 

More boosting iterations result in larger and potentially more accurate trees, but make the learning 

process slower (12). Each of the iterations adds three nodes to the tree (one split node and two prediction 

nodes) unless merging occurs. The default search method is an exhaustive search. Heuristic search 

methods can be used to speed up learning but they are not guaranteed to find an optimal solution. The 

instance data can be saved for visualization. 

2.3.10 AdaboostM1 
 
AdaboostM1 is a variant of Adaboost technique for multi-class problems. Adaboost stands for adaptive 

boosting. Boosting is one type of meta-learning scheme that tries to build a good learning algorithm based 

on a group of weak classifiers. In boosting, weighting is used to give more weight to more successful 

models. It can be applied to any classification learning algorithm. By weighting the instances, the learning 

algorithm can be forced to concentrate on a particular set of instances with more weight. Such instances 

are important because there is a greater incentive to classify them correctly (12). 

2.3.11 Decision Stump 
 
Decision Stump is a weak learner consisting of one-level binary decision tree. It is usually used in 

conjunction with a boosting algorithm. It implements regression based on the mean-squared error or 

classification based on the entropy. 

2.3.12 Multiboost AB 
 
Multiboosting is an extension to the Adaboost technique for forming decision committees. It can be 

viewed as a combination of Adaboost and wagging (a variant of bagging) techniques, combining the high 
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bias of Adaboost technique and variance reduction property of wagging. This technique produces lower 

error than Adaboost or wagging. C4.5 is used as the base learner (14).  

2.3.13 JRip 
 
JRip implements a propositional rule learner called the ripper algorithm, an acronym for repeated 

incremental pruning to produce error reduction including heuristic global optimization of the rule set. 

Classes are examined in increasing size and an initial set of rules for the class is generated using 

incremental reduced-error pruning.  

2.3.14 Random Committee 
 
Random Committee builds an ensemble of randomized base classifiers and averages their predictions. 

Each base classifier is based on the same data but uses a different random number seed. This only makes 

sense if the base classifier is randomized, otherwise all classifiers would be the same (12).  

2.3.15 Logistic Regression 
 
This algorithm implements a multinomial logistic regression model with a ridge estimator. Logistic 

regression is a model used for prediction of the probability of occurrence of an event by fitting data into a 

logistic curve. There are some modifications in the implementation compared to the original logistic 

regression which does not deal with instance weights. The algorithm is modified a little bit to handle the 

instance weights (15). Ridge regression is a good method for obtaining more stable parameter estimates 

for the logistic regression model. 

2.4 Survival Analysis 

Survival analysis is a branch of statistics dealing with the death in biological organisms and failure in 

mechanical systems. Survival analysis examines and models the time it takes for events to occur. In our 

context, death from diseases can be considered as an event in the survival analysis. Survival models can 
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be imagined to consist of two parts: the underlying hazard function describes how hazard (risk) changes 

over time and the effect parameters describe how hazard relates to other factors such as the choice of 

treatment, as in a medical scenario. When applied in the area of bioinformatics, survival analysis attempts 

to answer questions such as: what fraction of a population is expected to survive past a certain time? Of 

those that survive, at what rate will they die? Can multiple causes of death be taken into account? How do 

particular circumstances or characteristics increase or decrease the odds of survival? 15

2.4.1 Cox proportional hazards model 

 

Proportional hazards models are a sub-class of survival models in statistics, based on the assumption that 

effect parameters multiply hazard. For example, if taking drug X halves the hazard at time 0, it also 

halves the hazard at time 1, or at time t for any value of t. The effect parameters estimated by any 

proportional hazards model can be reported as hazard ratios. Sir David Cox observed that if the 

proportional hazards assumption holds (or, is assumed to hold) then it is possible to estimate the effect 

parameter(s) without any consideration of the hazard function16

                                                              (Equation 11) 

The baseline hazard function is given as α (t) = log h0(t) 

The above equation represents a semi-parametric model as the baseline hazard model. It can take any 

form where i represents the subscript for observation, x represents the covariates, constant α represents the 

log-baseline hazard. 

. This approach to survival data is called 

application of the Cox proportional hazards model. It is a broadly applicable and the most widely used 

method of survival analysis for exploring the relationship between the survival of a patient and several 

explanatory variables (16).  

                                                      
15 http://en.wikipedia.org/wiki/Survival_analysis 
16 http://en.wikipedia.org/wiki/Cox_regression 

http://en.wikipedia.org/wiki/Hazard_function�
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                                 or                        (Equation 12) 

Consider two observations i and i’ that differ in their x-values, with the corresponding linear predictors as 

follows:                                   

                                                                                  (Equation 13) 

                                           (Equation 14) 

The hazard ratio for these two observations is as follows: 

                                                      (Equation 15) 

                                                                       (Equation 16) 

Given the survival times, status (alive or dead) and one or more covariates, Cox proportional hazards 

model produces a baseline survival curve, covariate coefficient estimates and their standard errors, risk 

ratios, 95% confidence intervals, and significance levels. A positive regression coefficient implies that the 

hazard is higher and thus the prognosis is worse for higher values. Conversely, a negative regression 

coefficient implies a better prognosis for patients with higher values of that variable. 

2.4.2 Kaplan-Meier curves 
 
Survival curves plot percentage of survival as a function of time. The Kaplan-Meier method is one of the 

techniques used for plotting survival curves. It is used to find out the proportion of the patients living for 

a certain amount of time after the treatment. The advantage of the Kaplan-Meier curve is that it takes into 

account, the “censored” data. A plot of the Kaplan-Meier estimate of the survival function is a series of 

horizontal steps of declining magnitude. In the Kaplan-Meier method, survival is recalculated every time 

a patient dies (17). 
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 To calculate the fraction of patients who survived in a particular interval of time, divide the 

number alive at the end of the interval by the number alive at the beginning of the interval (excluding any 

censored patient in that interval from both the numerator and the denominator). This method 

automatically accounts for censored patients, as both the numerator and denominator are reduced for the 

interval when a patient is censored (18). 

2.4.2.1 Kaplan-Meier estimator 

Consider that a cohort has n individuals and t1 , t2, t3........denote the actual times of death of the n 

individuals  and d1, d2, d3 …… denote the number of deaths that occur at each of these times. Let n1, n2 

,n3…….be the corresponding number of patients remaining in the cohort. 

                                                 (Equation 17) 

The above equation represents the Kaplan-Meier estimator of the survival function S(t). 

2.4.2.2 Interpretation of Kaplan-Meier Curves 

• The Y- axis represents the estimated probability of survival.  

• Precision of estimates depends on the number of observations, so the estimates on the left-hand 

side are more precise than the ones on the right-hand side. This is due to the less number of 

deaths and censored cases. 

• But if a patient dies during the trial, then the survival curve reflects the patient's death at the 

appropriate time interval with a step down. 

• The curve takes a step down every time a patient dies. 

• The small blips or vertical tick-marks on the curve indicate when (time) the patient has been 

censored. 

• Probability of surviving to any point is estimated from cumulative probability of surviving in 

each of the preceding time intervals (calculated as the product of preceding probabilities). 
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• There is another effect of censoring on the curve. As the patients are censored it reduces the 

number of patients contributing to the curve, so each death occurring after censoring represents a 

higher proportion of the remaining patients, and so every step down afterwards will be a bit larger 

than it would have been. 

2.4.3 Log-rank test 
 
Log-rank test is used to compare the survival of two groups of patients. Consider a survival plot showing 

two survival curves, one for low-risk group and the other for high-risk group. Looking at the curves, one 

can arrive at a conclusion that the low-risk group differs from the high-risk group (or vice versa) at an 

arbitrary time point, but nothing can be said about the two groups looking at the total survival time span. 

So we use the log-rank test which tells us whether the two groups differ significantly or not. The log-rank 

test is used to test the null hypothesis that there is no difference between the populations in the probability 

of an event (e.g. death) at any time point. A value of p < 0.05 indicates that the difference between the 

two groups is statistically significant. The log-rank test assumes that censoring is unrelated to the 

prognosis, and the survival probabilities are the same for subjects irrespective of the times when they 

were enrolled in the study. It is only a test of significance and it cannot provide an estimate of the 

difference between the groups or a confidence interval (19). 

2.4.4 Time-dependent ROC curves 
 
ROC curves display sensitivity and specificity of a continuous diagnostic marker for a binary disease 

variable. Time-dependent ROC curves take the disease outcome into account and vary as a function of 

time. In our study the binary disease variable R(t) = 1, if the patient had recurrence prior to time t, 

otherwise R(t) = 0. For a diagnostic marker M, both sensitivity and specificity are defined as a function of 

time t, as follows:   

  Sensitivity(c,t)=P{M>c|R(t)=1}                                                                                  (Equation 18) 

              Specificity(c,t)=P{M≤c|R(t)=0}                                                                                  (Equation 19) 
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A time-dependent ROC curve is a plot of 1 – specificity(c, t) versus sensitivity(c, t) for all possible values 

of threshold c. Sensitivity and specificity can be used to quantify the diagnostic ability of the test. 

Sensitivity is the probability that the test is positive, given that the person has the disease. Specificity is 

the probability that the test is negative, given that the person does not have the disease (20). The higher 

the ROC curve, the better is its capacity for discriminating diseased from non diseased subjects. ROC 

curves can also be used for comparing the discriminatory capacity of different diagnostic markers. In our 

study, the disease status changes with time. Some patients die as time progresses due to the disease or 

recurrence. So, we use time-dependent ROC curves instead of the classical ROC curves. There are 

different estimators for the ROC curves. We use the Kaplan-Meier based simple estimator in our ROC 

analysis. 

2.5 Correlation coefficient 

Correlation coefficient17

                                                 (Equation 20) 

If we have a series of n  measurements of X  and Y  written as xi  and yi  where i = 1, 2, ..., n, then the 

Pearson product-moment correlation coefficient can be used to estimate the correlation of X  and Y . The 

Pearson correlation coefficient is given by the formula mentioned below. 

 indicates the strength of the relationship between two random variables. The 

correlation coefficient ρX,Y between two random variables X and Y with expected values μX and μY and 

standard deviations σX and σY is defined as: 

                                                                                      (Equation 21) 

Correlation analysis is frequently used in microarray data analysis to measure the association between the 

variables. In our research, correlation analysis is used in validating cDNA microarray data by finding the 
                                                      
17 http://en.wikipedia.org/wiki/Correlation 
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correlation between the gene copy number and RNA expression. This might be useful in understanding 

the genomic and proteomic level alterations in patients. 

2.6 Related studies 

Machine learning techniques and algorithms have been applied on microarray data from long time for 

tumor classification, prognosis prediction, and drug response prediction. This section describes some of 

the studies in the areas of tumor classification and prognosis prediction which are relevant to our research.  

 The study by Kwon et al (21) identified the genes involved in the carcinogenesis and progression 

of colorectal cancer by analyzing the gene-expression profiles of colorectal cancer cells using cDNA 

microarray. The samples and genes were classified by using a two way clustering analysis which 

identified genes that were differentially expressed in the cancerous and noncancerous tissues. Genes 

associated with lymph node metastasis were identified by using the k-nearest neighbors method. A 60-

gene predictor correctly classified 10 of 12 patients (83.3%) as having colorectal cancer with lymph node 

metastasis versus those without metastasis. 

 The study by Koehler et al (22) created gene expression profiles from 25 colorectal carcinomas, 

corresponding normal colonic mucosa, and 14 liver metastases using cDNA arrays containing 1176 

cancer related genes. Hierarchical clustering clearly distinguished carcinomas from non-cancerous tissues, 

separated tumors into high-stage and low-stage groups, and correlated with the histopathological 

classification in 87.0% of the cases. Statistical analysis (Mann–Whitney U test) revealed 40 tumor-

specific genes which allowed identification of malignant tissue samples by clustering analysis. A specific 

expression signature in matching metastases was not found, but a set of 23 genes with statistically 

significant expression patterns (p < 0.001) in high and low stage tumors were identified.  

 
 The study by Croner et al (23) calculated the prediction rates for lymphatic metastasis using 

conventional clinicopathological parameters, gene expression data, and a combination of both. Prediction 



 
 

22 
 

error, specificity, and sensitivity were analyzed using six different statistical classifiers. Analysis of 

conventional parameters produced a positive prediction rate that ranged between 53% and 61%. 

Microarray prediction rates were between 62.0% and 67.0% for lymphatic metastasis. It was concluded 

that the prediction of lymphatic metastasis can be improved by gene expression profiling of the primary 

tumor biopsy alone, or in combination with conventional parameters.  

 The study by Barrier et al (24) aimed at building a prognosis predictor that could be used for both 

stage II and stage III colon cancer patients to identify patients at high-risk of recurrence. The k-nearest 

neighbor classifier was used as a predictor. The main parameters of this classifier, the number of 

informative genes and the nearest neighbors k were chosen using cross validation. For both types of 

predictors (non-neoplastic mucosa and tumor based), 150 different pairs of parameters were considered 

and the performance of the corresponding predictors was assessed using six-fold cross-validation. Based 

on the results of cross validation, a 30-gene tumor based predictor and a 70-gene non-neoplastic mucosa 

based predictor were built on the whole set of patients. As a second set of independent samples was not 

available, a double cross-validation design was used, with an ‘inner level’ six-fold cross-validation for 

parameter selection and an ‘outer level’ three-fold cross-validation for performance assessment of the 

selected predictor. The estimated accuracy of the 30-gene tumor based predictor was 78.0% and that of 

the 70-gene non-neoplastic mucosa based predictor was 83.0%. 

 The study by Barrier et al (25) focused on identifying a subgroup of patients at high-risk of 

recurrence who were more likely to benefit from adjuvant chemotherapy based on non-neoplastic mucosa 

microarray gene expression measures of 24 patients (10 with a metachronous metastasis, 14 with no 

recurrence), for stage II colon cancer patients. The gene expression data of 24 patients was profiled using 

the Affymetrix HGU133A Gene Chip. A 70-gene prognosis predictor was identified, by selecting the 70 

most differentially expressed genes (the number of genes to include was set to 70 based on the previous 

results) (24). A prognosis predictor was constructed by applying linear discriminant analysis on the 70-
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gene set with a mean prognosis prediction accuracy of 81.8%, a sensitivity of 73.0%, and a specificity of 

87.1% on the validation set.  

 
 The study by Bandres et al (5) aimed at identifying patients at high-risk of recurrence within the 

group of Duke’s stage B patients. Tumor gene expression profiles from patients with Duke’s B colorectal 

cancer were analyzed by high density oligonucleotide microarrays. The results showed that a subset of 48 

genes were differentially expressed with an associated probability P < 0.001 in the t-test18

2.7 Open Problems 

. Another 11 

genes, separating both the groups were identified using the Fisher criterion. Finally, 8 genes common in 

both the subsets were selected. The 8-gene signature was associated with relapse in Duke’s stage B colon 

cancer patients, and it was able to discriminate between relapsed and non-relapsed patients. Furthermore, 

the differential expression of five genes (CHD2, RPS5, ZNF148, BRI3 and MGC23401) in colon cancer 

progression was confirmed by real-time PCR in an independent set of patients of Duke’s B and C stages. 

Microarray gene expression data is high dimensional, typically containing tens of thousands of features 

and a small sample size. Many of the genes contain irrelevant information which is not necessary for 

classification of the disease or phenotypes. Inclusion of these irrelevant genes increases the 

dimensionality of the dataset, introduces noise, and increases the computation time due to the complex 

search space. The data we analyzed in this study consisted of 73 observations of the expression levels of 

each of the 10,220 genes. Due to the very few observations and many features, innovative feature 

selection schemes need to be developed. Most of the studies described in the previous section explored 

the microarray gene expression data by using a single feature selection technique. Usually, a single 

feature selection technique is not enough to identify powerful gene signatures predicting the disease 

outcome given the high dimensional nature of the microarray data. Hence, we developed a combinatorial 

scheme to identify gene signatures. In the first step, we use random forests for variable selection. In the 

                                                      
18 http://www.socialresearchmethods.net/kb/stat_t.php 



 
 

24 
 

second step, different attribute selection schemes in Weka such as CfsSubset, GainRatio, InfoGain and 

Relief were tested to reduce the feature set size by dropping some lower ranked features. It was found that 

the combination of random forests and InfoGain yielded the best results. This combinatorial feature 

selection scheme using random forests and InfoGain yields an optimal feature subspace which 

differentiates well between the classes in our study. 

2.8 Summary 

This chapter described the variable selection methods using random forests, various classification 

algorithms used in the study, the techniques used in survival analysis, the correlation coefficient analysis, 

related studies and open problems. The following chapters describe in detail how these techniques were 

applied on Ried et al colon cancer data to identify gene signatures, and results on independent colon 

cancer and rectal cancer datasets. 
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Chapter 3 

Lymph node metastasis prediction model 

3.1 Introduction 

Accurately predicting the lymph node status or the stage of a cancer patient helps in selecting the optimal 

treatment. Staging is an important prognostic factor in determining the treatment options. The 5-year 

survival rate19

 Microarray gene expression data is highly correlated and many of the genes contain irrelevant 

information which is not necessary for classification of the disease or phenotypes. So, t-test

 in colon cancer patients with stage II tumors is ~78% and stage III tumors is ~64%. When 

a patient has been diagnosed with cancer, various clinical parameters are used to assess the risk of 

metastasis and death. In spite of the numerous advances in this area, tumor stage cannot be accurately 

determined by morphological assessment. With the advent of cDNA microarray technology, it is possible 

to measure the expression levels of thousands of genes simultaneously. Molecular markers identified 

based on the cDNA microarray gene expression data, have the ability to detect differences between the 

tumors at the molecular level (38). They offer improved prognostic accuracy when compared to the 

traditional methods. Patients at high-risk of metastasis can be identified and treated aggressively, while 

sparing other patients from the harmful effects of the invasive treatment. This chapter focuses on the 

identification and validation of the 9-gene lymph node status signature based on the microarray gene 

expression data in colon cancer patients. 

20

                                                      
19 http://www.webmd.com/colorectal-cancer/guide/treatment-stage 
20 http://www.socialresearchmethods.net/kb/stat_t.php 

 was done on 

genes with more than 5 missing values to evaluate the difference in proportions of missing values in node 

positive versus negative groups. Genes passing the t-test along with all genes having less than 5 missing 

values, a total of 10,220 genes were included for further analysis. We used a novel technique to identify 

biomarkers predicting the cancer stage. In the first step, variable selection using random forests was done 
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which identified a set of 14 genes. In the next step, the genes that did not have differential expression in 

lymph node negative versus positive tumors were discarded, leading to the identification of the 9-gene 

signature.  

 The discriminatory power of the 9-gene signature was evaluated by time-dependent ROC. The 

area under curve (AUC) was 0.85 and 0.86 for relapse-free survival (RFS) and overall survival (OS), 

respectively. The 9-gene signature generated significant patient stratification into low-risk and high-risk 

groups with distinct (p=1e-04, n=73, log-rank tests) and (p=0.043, n=73, log-rank tests) relapse-free 

survival (RFS) and overall survival (OS), respectively. 

 The remainder of this chapter is organized as follows. Section 3.2 introduces the data sets used 

for validation in the experiments. Section 3.3 introduces our study design and experiments in detail. 

Section 3.4 describes the validation results on multiple colon cancer datasets. Section 3.5 describes the 

correlation analysis, and Section 3.6 summarizes this chapter. 

3.2 Description of the data sets 

Ried et al PMID 17210682: The colon cancer microarray data from Ried et al contained 22,464 genes 

and 73 patient samples, all of them treated for primary adenocarcinomas of the colon. Of these 33 tumor 

samples were stage II (lymph node negative) and 40 tumor samples were stage III (lymph node positive). 

The relapse-free survival (RFS), overall survival (OS), and recurrence information was available for each 

of the patients in this dataset (2).  

Koinuma et al PMID 16247484: The data used in this study was obtained from 10 specimens from each 

group (MSI - and MSI +) subjected to gene expression profiling with microarrays. Affymetrix Gene Chip 

Human Genome U133 Array Set HG-U133 A and B was used in this analysis. The clinical information 

consisted of the Duke’s stage for each of the patients (27).  

Duke’s Stage A      lymph node negative (class b) 
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Duke’s Stage B      lymph node negative (class b) 

Duke’s Stage C      lymph node positive (class a) 

Duke’s Stage D     these samples were not considered for leave-one-out cross validation. 

Barrier et al PMID 16091735: This colon cancer data set consisted of 18 patient samples and 22,283 

genes. The recurrence status (yes/no) was the available clinical information. Nine of the 18 patients 

developed a distant metastasis in the follow-up and the other nine patients remained disease-free for at 

least 5 years. All the patients were operated on for colonic adenocarcinomas. Ten patients had no lymph 

node metastasis (stage II) and did not receive any chemotherapy. The other eight patients had lymph node 

metastasis (stage III) and received 6-month adjuvant chemotherapy with fluorouracil (FU) and 

levamisole (24).  

Barrier et al PMID 16966692: This colon cancer data set consisted of 50 patient samples and 22,283 

genes. The recurrence status (yes/no) within 5 years was available in clinical data. Twenty-five patients 

developed a distant metastasis in the follow-up and the other 25 patients remained disease-free for at least 

5 years. All the fifty patients were operated on for a stage II colon adenocarcinoma and none of the 

patients received any adjuvant chemotherapy (28).  

Barrier et al PMID 17043639: This colon cancer data set consisted of 24 patients and 22,283 genes. The 

recurrence status (yes/no) within 5 years was also given. Ten patients developed a liver metastasis after 

surgery and the other 14 patients remained disease-free for at least 5 years. All the twenty-four patients 

were operated on for stage II colon adenocarcinomas and none of these 24 patients received any adjuvant 

chemotherapy (25).  

NCI-60 data: The NCI-6021

                                                      
21 http://discover.nci.nih.gov/cellminer/loadDownload.do 

 data contains a panel of 60 diverse human cancer cell lines used by the 

Developmental Therapeutics Program of the U.S. National Cancer Institute to screen >100,000 

compounds and natural products. The RNA expression data for the cell lines is available under the 



 
 

28 
 

Affymetrix HG-U133A and HG-U133B chips. The drug activity data of 5-FU (fluorouracil) on all the 60 

cell lines is available for download online22

                                                      
22 http://discover.nci.nih.gov/nature2000/data/selected_data/dataviewer.jsp?baseFileName=a_matrix118&nsc=2&dataStart=3 

.  

Defining drug sensitivity and resistance: The drug activity profiles of 118 cancer agents including 5-FU 

are available online. 5-FU is the drug frequently used in colon cancer treatment. The recorded drug 

activities (log10 GI50) were available for the 60 human cancer cell lines. Specifically, for each drug, log10 

(GI50) values were normalized across the 60 cell lines. Cell lines with log10 (GI50) at least 0.5 SD above 

the mean were defined as resistant to the drug. Those with log10  (GI50) at least 0.5 SD below the mean 

were defined as sensitive to the drug. The remaining cell lines with log10 (GI50) within 0.5 SD were 

defined as intermediate in the range of drug responses (41). Specifically, 17 cell lines were sensitive, 26 

cell lines were intermediate, and the other 17 cell lines were resistant to the drug Fluorouracil (5-FU). 
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3.3 Study Design for the 9-gene signature 

 
 

 

 

 

 

  

 

 

 

 

 

 

  

 
 

 

 

 

 

Figure 3.1 Block diagram of the study for 9-gene signature. 

Applying random forests using varSelRF package 
in R software on the training set  

 

Colon cancer data from Ried et al (n=73) 

Applying t-test on genes having > 5 missing values to determine differential gene 
expression in lymph node negative versus positive patients 

 

Missing value replacement using knn algorithm 
on the training set (k=10) 

Randomly splitting data in 2:1 ratio as training 
(n=50) and testing sets (n=23) 

Selecting the genes passing t-test and all other genes 
with ≤ 5 missing values 

14-gene signature 

Validation on testing dataset and other colon cancer datasets, 
plotting Time-dependent ROC, Kaplan-Meier plots 

Removing the genes that did not have differential expression 
between node positive and negative patients 

9-gene signature 
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3.3.1 Experimental procedure 
 
Data Source The colon cancer microarray data from Ried et al. (2) contained 22,464 genes and 73 patient 

samples, all of them treated for primary adenocarcinomas of the colon. Of these 33 tumor samples were 

stage II (lymph node negative) and 40 tumor samples were stage III (lymph node positive). 

Log Ratio Every spot on the microarray provides two intensity values each of them associated with a 

specific channel. Dividing one intensity by the other gives the expression ratio. We use log ratios as they 

are lot easier to work with than the regular ratios. The log ratio (532/635) was considered for this analysis. 

It is the log (base 2) transformation of the ratio of medians at wavelengths of 532nm and 635 nm.  

Data Preprocessing - t test We investigated whether the observed difference between the two groups 

(node positive versus negative) represents a real difference in the total study population from which the 

sample was drawn, or whether it just occurred by chance (due to sampling variation), by using t-test. The 

number of missing values for each gene was found and t-test was done on genes with more than 5 missing 

values to evaluate the difference in the proportions of missing values in node positive versus negative 

groups.  The genes passing the t-test (p < 0.05, two-sided) were included along with all genes having less 

than 5 missing values for further processing. A total of 10,220 genes satisfied this condition. 

Training dataset The data obtained in the above step was randomly split in 2:1 ratio as training set and 

testing set. The expression data of the 10,220 genes and 50 patients constituted the training set. 

Missing value replacement The training dataset contained missing values. They were replaced using the 

EMV23

                                                      
23 http://cran.r-project.org/web/packages/EMV/index.html 

 package in R software with k=10. This technique estimates the missing values based on the k-

nearest neighbors algorithm. This algorithm selects the k nearest rows that do not contain any missing 

values to the one containing at least one missing value based on the Euclidian distance. Then the missing 

values are replaced by the average of the neighbors. 
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Biomarker identification VarSelRF24

Table 3.1 The 14-gene lymph node status signature. 

 package in R was used in a series of steps on the training dataset 

to find the important features. Lymph node status was used as the class variable. In the first step, a forest 

with N trees was built and the features were ranked according to the importance of the variables. In the 

second step, 20% of the variables that were least important were removed and a new forest was 

constructed with K trees. This step was repeated till there were two genes left. In the experiment, a value 

of N = 2000 and K =1000 were considered, because a large number of trees in the initial forests is likely 

to produce stable importance measures (23). After fitting all forests, the OOB error rates from all the 

fitted random forests were examined and a set of 15 genes leading to the smallest error rate were selected. 

There was a control gene in the identified 15 genes which was discarded leaving 14 genes. Table 3.1 

shows the 14 genes. 

GENE NAME ID 
SNRPD3-small nuclear  ribonucleoprotein H200000411 
IFRG28-28kD interferon responsive pro H200004627 
PDCD5-programmed cell death 5 H200007687 
PLXNB2-plexin B2, mRNA H200000861 
HIST1H3I-histone 1,H3i,m H200013045 
DC50-hypothetical protein DC50 H200019106 
SR140-U2-associated SR140 protein H200020644 
FLJ11078-hypothetical protein FLJ1107 H200016227 
MGC16044-hypothetical protein MGC1604 H200020589 
RNF6-ring finger protein (C3H2C3 type) H200004174 
POU6F2-POU domain, class 6,transcript H200015474 
LAMB1-laminin,beta 1(LAMB1), mRNA H200006892 
ITGB1-integrin,beta1 (fibronectin) H200021334 
HIST1H2BO-histone 1, H2bo HIST1H2BO H200013772 
 

 

 

 

                                                      
24 http://cran.r-project.org/web/packages/varSelRF/index.html 
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3.3.2 Differentially expressed genes 

Differentially expressed genes or discriminator genes are the genes with significantly different expression 

in the two user defined groups or between samples obtained under different conditions in a gene 

expression experiment. These gene signatures or disease associated markers are relevant to biological 

processes. To find the differentially expressed genes, the mean expression values for each of the 14 genes 

were calculated for lymph node negative and positive tumor groups separately. If the gene had a higher 

value in node positive versus negative samples it was over expressed and vice versa. Table 3.2 shows the 

over expressed and under expressed genes, and p-values for each gene obtained using the z-test25

Table 3.2 Over expressed and under expressed genes in the 14-gene signature between lymph node 
positive and negative patients. 

. The 

genes that did not have differential expression among lymph node negative and positive patients, namely, 

PDCD5, HIST1H3I, SR140, LAMB1, and HIST1H2BO in the 14-gene signature were removed. Table 3.3 

shows the remaining 9 genes. 

GENE NAME Category in lymph 
node positive group p-value Significance 

SNRPD3-small nuclear  ribonucleoprotein Under expressed 0.041134 Yes 
IFRG28-28kD interferon responsive pro Under expressed 0.044768 Yes 
PDCD5-programmed cell death 5 Under expressed 0.062525 No 
PLXNB2-plexin B2, mRNA Under expressed 0.038442 Yes 
HIST1H3I-histone 1,H3i,m Under expressed 0.103315 No 
DC50-hypothetical protein DC50 Under expressed 0.003831 Yes 
SR140-U2-associated SR140 protein Over expressed 0.152485 No 
FLJ11078-hypothetical protein FLJ1107 Under expressed 0.002202 Yes 
MGC16044-hypothetical protein MGC1604 Over expressed 0.006503 Yes 
RNF6-ring finger protein (C3H2C3 type) Over expressed 0.008206 Yes 
POU6F2-POU domain, class 6,transcript Over expressed 0.002299 Yes 
LAMB1-laminin,beta 1(LAMB1), mRNA Under expressed 0.166319 No 
ITGB1-integrin,beta1 (fibronectin) Over expressed 0.012588 Yes 
HIST1H2BO-histone 1, H2bo HIST1H2BO Under expressed 0.053911 No 
 

 

 
                                                      
25 http://en.wikipedia.org/wiki/Z-test 
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Table 3.3 The 9-gene signature for predicting lymph node metastasis. 

GENE NAME ID 
SNRPD3-small nuclear  ribonucleoprotein H200000411 
IFRG28-28kD interferon responsive pro H200004627 
PLXNB2-plexin B2, mRNA H200000861 
DC50-hypothetical protein DC50 H200019106 
FLJ11078-hypothetical protein FLJ1107 H200016227 
MGC16044-hypothetical protein MGC1604 H200020589 
RNF6-ring finger protein (C3H2C3 type) H200004174 
POU6F2-POU domain, class 6,transcript H200015474 
ITGB1-integrin,beta1 (fibronectin) H200021334 

3.4 Results 

3.4.1 Validation of the 9-gene signature on testing data (n=23) 

The original data was split in 2:1 ratio as training and testing datasets, respectively. The testing data 

consisted of 23 tumor samples. Eleven tumor samples were lymph node negative and the other 11 

samples were lymph node positive. The data used for validation consisted of the expression of the 9-gene 

signature in the 23 patient samples. Weka software was used for validation and lymph node status 

(negative/positive) was predicted. Different classification schemes including J48, Logistic regression, 

KStar, Threshold selector, and Multilayer perceptron were applied to this dataset to find the best scheme. 

Table 3.4 shows the comparison between J48 and some of the classifiers used for validation on other 

datasets. J48 classifier performed better than the other classifiers. It had a sensitivity of 75.00%, a 

specificity of 81.80%, and an overall accuracy of 78.26%. Table 3.5 shows the confusion matrix for J48 

classifier. The difference in overall accuracy between J48 and other classifiers was not statistically 

significant due to the small sample size. 
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Table 3.4 Comparison of accuracies obtained from different classifiers for predicting lymph node 
status using the 9-gene signature. The improved overall accuracy of the prediction with the J48 
classifier compared with other methods was assessed by significance testing (N = 23). 

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity+ 
Specificity)/2 

(%) 

Overall 
Accuracy 

(%) 
P-value 

J48 75.00 81.80 78.40 78.26  
Logistic regression 66.70 54.50 60.60 60.86 <0.11 

KStar 66.70 54.50 60.60 60.86 <0.11 
Threshold selector 58.30 72.70 65.50 65.21 <0.17 

Multilayer perceptron 66.70 45.50 56.10 56.52 <0.06 
 

Table 3.5 Confusion matrix obtained from the J48 classifier for predicting lymph node status using 
the 9-gene signature. 

Actual/Predicted a (node negative) b (node positive) 
a (node negative) 9 2 
b (node positive) 3 9 

 

3.4.2 Time-dependent ROC analyses on data from Ried et al (n=73) 

To explore whether the 9-gene lymph node signature could predict patient disease-free survival and 

overall survival, the survival and status information along with the expression data of the 9 genes are used 

for getting the time-dependent ROC plots. The accuracy of 5-year relapse-free survival prediction using 

these 9 genes is 0.85 and 5-year overall survival prediction is 0.86, as represented by the AUC. 

             
 

Figure 3.2 Time-dependent ROC plots on data from Ried et al (n=73) for relapse-free survival and 
overall survival using the 9-gene signature. 
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3.4.3 Kaplan-Meier analyses on data from Ried et al (n=73) 

The Cox model based on the expression of the 9-gene signature was used to get recurrence risk scores for 

all the 73 patients. The choices for choosing a cut-off value for patient stratification are the peak value 

from histogram, mean risk score or median risk score. In this analysis, the peak value from histogram was 

chosen as cut-off as it resulted in best patient stratification. Cut-off values of 4.0 and 0.5 were chosen for 

relapse-free survival and overall survival, respectively. The pamr package in R was used to plot the 

Kaplan-Meier curves, for relapse-free survival and overall survival. The low-risk and high-risk groups 

had distinct relapse-free survival (p = 1e-04, n=73, log-rank tests) and overall survival (p = 0.043, n=73, 

log-rank tests). 

             

Figure 3.3 Histograms of risk scores obtained from Cox model for relapse-free survival and overall 
survival using the 9-gene signature. 
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Figure 3.4 Kaplan-Meier plots on data from Ried et al (n=73) for relapse-free survival and overall 
survival using the 9-gene signature. 

 
Out of the 73 patients in the colon cancer data from Ried et al, 26 patients remained relapse-free for more 

than 5 years and 10 patients experienced recurrence within 5 years after surgery. To test the performance 

of the identified 9-gene signature, the subgroups obtained for the above group of 36 patients from the Cox 

model were compared with their actual clinical outcomes. Table 3.6 shows the different parameters 

obtained from the Cox model, using the 9-gene signature for relapse-free survival and overall survival, 

respectively. Tables 3.7 and 3.8, show the comparison of predicted clinical outcome for patients with their 

actual follow-up information, for relapse-free survival and overall survival, respectively. The Cox model 

had a sensitivity of 60.0%, a specificity of 92.3%, and an overall accuracy of 83.3%, for predicting 

relapse-free survival. In predicting overall survival, it had a sensitivity of 75.0%, a specificity of 45.8%, 

and an overall accuracy of 59.0%.  
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Table 3.6 Different parameters obtained from the Cox model using the 9-gene signature for 
predicting relapse-free survival and overall survival. 
 

Relapse-free survival Overall survival 
Gene 

Symbol coef exp 
(coef) 

se 
(coef) 

z-
score 

p-
value coef exp 

(coef) 
se 

(coef) 
z-

score 
p-

value 
SNRPD3 2.661 14.304 1.326 2.006 0.045 0.065 1.068 0.793 0.082 0.93 
IFRG28 0.769 2.157 0.382 2.012 0.044 0.122 1.131 0.235 0.521 0.60 
PLXNB2 -3.121 0.044 1.305 -2.391 0.017 -0.516 0.597 0.596 -0.866 0.39 

DC50 -2.476 0.084 0.797 -3.107 0.001 -0.535 0.586 0.459 -1.166 0.24 
FLJ11078 0.600 1.822 0.584 1.028 0.300 0.002 1.002 0.362 0.005 1.00 

MGC16044 0.525 1.690 0.380 1.382 0.170 0.145 1.157 0.269 0.542 0.59 
RNF6 -1.163 0.312 0.815 -1.426 0.150 0.145 0.574 0.465 -1.193 0.23 

POU6F2 0.869 2.384 1.179 0.737 0.460 0.596 1.816 0.581 1.026 0.30 
ITGB1 1.612 5.013 1.237 1.303 0.190 0.465 1.592 0.603 0.771 0.44 

 

Table 3.7 Comparison of the sub groups predicted from the Cox model using the 9-gene signature 
with the actual subgroups for relapse-free survival. 
 

 Recurrence No recurrence Sensitivity (%) Specificity (%) Overall accuracy (%) 
Recurrence 6 4 60.0 92.3 83.3 No recurrence 2 24 

 

Table 3.8 Comparison of the sub groups predicted from the Cox model using the 9-gene signature 
with the actual subgroups for overall survival. 
 

 Death Alive Sensitivity (%) Specificity (%) Overall accuracy (%) 
Death 15 5 75.0 45.8 59.0 Alive 13 11 

 

The Cox model was used for stratifying all the 73 patients in Ried et al data, into low-risk and high-risk 

groups, based on the 9-gene signature. Out of the 73 patients, a total of 37 did not have recurrence with 

survival times less than 5 years. Twenty-nine patients had overall survival times less than 5 years without 

any event (death). The relapse outcome for the 37 patients and the overall survival outcome for the 29 

patients is currently unknown. Table 3.9 shows the prospective prognostic predictions of these patients 

obtained from the Cox model for relapse-free survival and overall survival, respectively. The follow-up 

information for these patients is being collected. When it becomes available in the future, the predictions 

can be validated with it.  
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Table 3.9 Patient subgroups obtained from the Cox model for relapse-free survival and overall 
survival using the 9-gene signature. 

 
 

 

 

Serial 
Number Patient ID Predicted group by     

Cox model (RFS) Patient ID Predicted group by 
 Cox model (OS) 

1  CC-P1 Low Risk CC-P1 Low Risk 
2 CC-P2 Low Risk CC-P4 Low Risk 
3 CC-P4 Low Risk CC-P7 High Risk 
4 CC-P7 Low Risk CC-P8 Low Risk 
5 CC-P8 Low Risk CC-P9 Low Risk 
6 CC-P10 High Risk CC-P11 High Risk 
7 CC-P13 Low Risk CC-P13 Low Risk 
8 CC-P18 Low Risk CC-P16 Low Risk 
9 CC-P20 Low Risk CC-P18 Low Risk 

10 CC-P21 Low Risk CC-P20 Low Risk 
11 CC-P22 Low Risk CC-P21 Low Risk 
12 CC-P23 Low Risk CC-P22 Low Risk 
13 CC-P25 Low Risk CC-P25 Low Risk 
14 CC-P28 Low Risk CC-P28 Low Risk 
15 CC-P29 High Risk CC-P31 High Risk 
16 CC-P31 Low Risk CC-P35 High Risk 
17 CC-P34 Low Risk CC-P36 High Risk 
18 CC-P35 Low Risk CC-P37 High Risk 
19 CC-P37 Low Risk CC-P38 Low Risk 
20 CC-P38 Low Risk CC-P40 High Risk 
21 CC-P40 High Risk CC-P48 High Risk 
22 CC-P42 Low Risk CC-P50 High Risk 
23 CC-P44 Low Risk CC-P51 Low Risk 
24 CC-P46 Low Risk CC-P60 Low Risk 
25 CC-P47 Low Risk CC-P62 Low Risk 
26 CC-P48 Low Risk CC-P66 High Risk 
27 CC-P50 Low Risk CC-P71 High Risk 
28 CC-P51 Low Risk CC-P72 Low Risk 
29 CC-P55 Low Risk CC-P73 High Risk 
30 CC-P56 Low Risk   
31 CC-P60 Low Risk   
32 CC-P62 Low Risk   
33 CC-P66 Low Risk   
34 CC-P68 Low Risk   
35 CC-P70 Low Risk   
36 CC-P71 Low Risk   
37 CC-P72 Low Risk   
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3.4.4 External validation of the 9-gene signature on other colon cancer data 
 
This part of the study sought to explore the extent to which the 9-gene signature could be used for 

prediction of lymph node status, recurrence, and drug response in publicly available independent datasets. 

More than 50 classifiers available in Weka software were tested using a leave-one-out cross validation 

technique on each of the independent datasets to find a suitable classification scheme for validation. Due 

to the different number of attributes (matching genes), sample sizes and prediction variables one specific 

scheme could not be used for validation on all the datasets. Different classifiers had to be employed on 

the validation datasets to get fair prediction accuracy. As far as possible the same set of classifiers were 

presented in the comparison tables of validation datasets to provide a fair evaluation of the performance. 

The exact same set of classifiers could not be compared over all the validation datasets due to poor 

performances of classifiers on some datasets and good performances on other datasets. The following 

sections discuss the validation results and comparisons of various classifiers on the independent datasets 

in detail. 

3.4.4.1 Predicting lymph node status by leave-one-out cross validation on data from 
Koinuma et al (n=17) PMID 16247484 
 
The data from Koinuma et al (Affymetrix HG U133 A platform) consisted of 20 patient samples of which 

3 patients were Duke’s stage D. The Duke’s stage D patients were not considered for validation. The 

search for matching genes was done using the Affymetrix ids. There were 7 matching genes (Table 3.10). 

The data used for validation consisted of the expression of these 7 genes in the 17 patients. Weka 

software was used for cross validation and the lymph node status (positive/negative) was predicted. 

Different classification schemes including Naïve Bayes, LWL, JRip, Bagging, and KStar were applied to 

this dataset to find the best scheme. Table 3.11 shows the comparison between Naïve Bayes and some of 

the classifiers used for validation on other datasets. Naive Bayes classifier performed better than the other 

classifiers. It had a sensitivity of 100.00%, a specificity of 75.00%, and an overall accuracy of 82.35%. 
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Table 3.12 shows the confusion matrix for Naïve Bayes classifier. The difference in overall accuracy 

between Naïve Bayes and other classifiers was not statistically significant due to the small sample size. 

Table 3.10 Matching genes in Koinuma et al data. 

GENE NAME  ID 
SNRPD3-small nuclear  ribonucleoprotein H200000411 
IFRG28-28kD interferon responsive pro H200004627 
PLXNB2-plexin B2, mRNA H200000861 
FLJ11078-hypothetical protein FLJ1107 H200016227 
RNF6-ring finger protein (C3H2C3 type) H200004174 
POU6F2-POU domain, class 6,transcript H200015474 
ITGB1-integrin,beta1 (fibronectin)  H200021334 
 

Table 3.11 Comparison of accuracies obtained from different classifiers for predicting lymph node 
status using the 9-gene signature. The improved overall accuracy of the prediction with the Naïve 
Bayes classifier compared with other methods was assessed by significance testing (N = 17). 

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity+ 
Specificity)/2 

(%) 

Overall 
Accuracy 

(%) 
P-value 

Naïve Bayes 100.00 75.00 87.50 82.35  
LWL 71.40 70.00 70.70 70.58 < 0.21 
JRip 57.10 70.00 63.55 64.70 < 0.13 

Bagging 57.10 70.00 63.55 64.70 < 0.13 
KStar 42.90 70.00 56.45 58.82 < 0.07 

 

Table 3.12 Confusion matrix obtained from the Naïve Bayes classifier for predicting lymph node 
status using the 9-gene signature. 

Actual/Predicted a (node positive) b (node negative) 
a (node positive) 7 0 
b (node negative) 3 7 

 
3.4.4.2 Predicting recurrence by leave-one-out cross validation on data from Barrier et al 
(n=18) PMID 16091735 
 
The data from Barrier et al (PMID 16091735) consisted of 22,283 genes and 18 patient samples. The 

search for matching genes was done using the Affymetrix ids. There were 7 matching genes (Table 3.13). 

The data used for validation consisted of the expression of these 7 genes in the 18 patient samples. Weka 

software was used for validation and recurrence (yes/no) was predicted. Different classification schemes 
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including Naïve Bayes, KStar, Multilayer perceptron, JRip, and Logistic regression were applied to this 

dataset to find the best scheme. Table 3.14 shows the comparison between Naïve Bayes and some of the 

classifiers used for validation on other datasets. Naive Bayes classifier performed better than the other 

classifiers. It had a sensitivity of 100.00%, a specificity of 88.90%, and an overall accuracy of 94.44%. 

Table 3.15 shows the confusion matrix for Naïve Bayes classifier. The difference in overall accuracy 

between Naïve Bayes and other classifiers was not statistically significant due to the small sample size. 

Table 3.13 Matching genes in Barrier et al data. 

GENE NAME  ID 
SNRPD3-small nuclear  ribonucleoprotein H200000411 
IFRG28-28kD interferon responsive pro H200004627 
PLXNB2-plexin B2, mRNA H200000861 
FLJ11078-hypothetical protein FLJ1107 H200016227 
RNF6-ring finger protein (C3H2C3 type) H200004174 
POU6F2-POU domain, class 6,transcript H200015474 
ITGB1-integrin,beta1 (fibronectin) H200021334 
 

Table 3.14 Comparison of accuracies obtained from different classifiers for predicting recurrence 
using the 9-gene signature. The improved overall accuracy of the prediction with the Naïve Bayes 
classifier compared with other methods was assessed by significance testing (N = 18).  

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity+ 
Specificity)/2 

(%) 

Overall 
Accuracy 

(%) 
P-value 

NaiveBayes 100.00 88.90 94.45 94.44  
KStar 100.00 66.70 53.35 83.33 < 0.15 

Multilayer perceptron 88.90 77.80 83.35 83.33 < 0.15 
JRip 88.90 66.70 77.80 77.77 < 0.08 

Logistic regression 88.90 66.70 77.80 77.77 < 0.08 
 

Table 3.15 Confusion matrix obtained from the Naïve Bayes classifier for predicting recurrence 
using the 9-gene signature. 

Actual/Predicted a (recurrence) b (no recurrence) 
a (recurrence) 9 0 

b (no recurrence) 1 8 
 

 



 
 

42 
 

3.4.4.3 Predicting recurrence by leave-one-out cross validation on data from Barrier et al 
(n=50) (PMID 16966692) 
 
The data from Barrier et al (PMID 16966692) consisted of 22,283 genes and 50 patient samples. The 

search for matching genes was done using the Affymetrix ids. There were 7 matching genes (Table 3.16). 

The data used for validation consisted of the expression of these 7 genes in the 50 patient samples. Weka 

software was used for validation and recurrence (yes/no) was predicted. Different classification schemes 

including Decision stump, Naïve Bayes, IB1, Logistic regression, and Multilayer perceptron were applied 

to this dataset to find the best scheme. Table 3.17 shows the comparison between Decision stump and 

some of the classifiers used for validation on other datasets. Decision stump classifier performed better 

than the other classifiers. It had a sensitivity of 76.00%, a specificity of 88.00%, and an overall accuracy 

of 82.00%. Table 3.18 shows the confusion matrix for Decision stump classifier. The difference in overall 

accuracy between Decision stump and other classifiers was not statistically significant due to the small 

sample size. 

Table 3.16 Matching genes in Barrier et al data. 

GENE NAME  ID 
SNRPD3-small nuclear  ribonucleoprotein H200000411 
IFRG28-28kD interferon responsive pro H200004627 
PLXNB2-plexin B2, mRNA H200000861 
FLJ11078-hypothetical protein FLJ1107 H200016227 
RNF6-ring finger protein (C3H2C3 type) H200004174 
POU6F2-POU domain, class 6,transcript H200015474 
ITGB1-integrin,beta1 (fibronectin)  H200021334 
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Table 3.17 Comparison of accuracies obtained from different classifiers for predicting recurrence 
using the 9-gene signature. The improved overall accuracy of the prediction with the Decision 
stump classifier compared with other methods was assessed by significance testing (N = 50).  

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity 
+Specificity)/2 

(%) 

Overall 
Accuracy 

(%) 
P-value 

Decision stump 76.00 88.00 82.00 82.00  
NaiveBayes 68.00 92.00 80.00 80.00 < 0.40 

IB1 84.00 64.00 74.00 74.00 < 0.16 
Logistic regression 68.00 72.00 70.00 70.00 < 0.08 

Multilayer perceptron 68.00 72.00 70.00 70.00 < 0.08 
 

Table 3.18 Confusion matrix obtained from the Decision stump classifier for predicting recurrence 
using the 9-gene signature. 

Actual/Predicted a (no recurrence) b (recurrence) 
a (no recurrence) 22 3 

b (recurrence) 6 19 

 
3.4.4.4 Predicting recurrence by leave-one-out cross validation on data from Barrier et al 
(n=24) (PMID 17043639) 
 
The data from Barrier et al (PMID 17043639) consisted of 22,283 genes and 24 patient samples. The 

search for matching genes was done using the Affymetrix ids. There were 7 matching genes (Table 3.19). 

The data used for validation consisted of the expression of these 7 genes in the 24 patient samples. Weka 

software was used for validation and recurrence (yes/no) was predicted. Different classification schemes 

including Naïve Bayes, LWL, AD Tree, Random committee, and Multiboost AB were applied to this 

dataset to find the best scheme. Table 3.20 shows the comparison between Naïve Bayes and some of the 

classifiers used for validation on other datasets. Naive Bayes classifier performed better than the other 

classifiers. It had a sensitivity of 50.00%, a specificity of 100.00%, and an overall accuracy of 79.16%. 

Table 3.21 shows the confusion matrix for Naïve Bayes classifier. The difference in overall accuracy 

between Naïve Bayes and other classifiers was not statistically significant due to the small sample size. 
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Table 3.19 Matching genes in Barrier et al data. 

GENE NAME  ID 
SNRPD3-small nuclear  ribonucleoprotein H200000411 
IFRG28-28kD interferon responsive pro H200004627 
PLXNB2-plexin B2, mRNA H200000861 
FLJ11078-hypothetical protein FLJ1107 H200016227 
RNF6-ring finger protein (C3H2C3 type) H200004174 
POU6F2-POU domain, class 6,transcript H200015474 
ITGB1-integrin,beta1 (fibronectin)  H200021334 
 

Table 3.20 Comparison of accuracies obtained from different classifiers for predicting recurrence 
using the 9-gene signature. The improved overall accuracy of the prediction with the Naïve Bayes 
classifier compared with other methods was assessed by significance testing (N = 24).  

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity 
+Specificity)/2 

(%) 

Overall 
Accuracy 

(%) 
P-value 

NaiveBayes 50.00 100.00 75.00 79.16  
LWL 60.00 78.60 69.30 70.83 < 0.26 

AD Tree 40.00 92.90 66.45 70.83 < 0.26 
Random committee 40.00 85.70 62.85 66.66 < 0.17 

Multiboost AB 50.00 71.40 60.70 62.50 < 0.11 
 

Table 3.21 Confusion matrix obtained from the Naïve Bayes classifier for predicting recurrence 
using the 9-gene signature. 

Actual/Predicted a (no recurrence) b (recurrence) 
a (no recurrence) 14 0 

b (recurrence) 5 5 
 

3.4.4.5 Predicting the response of cell lines in NCI-60 (n=34) (U133A GCRMA) data by 
leave-one-out cross validation 
 
This dataset26

                                                      
26 http://discover.nci.nih.gov/cellminer/loadDownload.do 

 

 consisted of 21,225 genes and 60 cell lines (41). Our focus was on the sensitive and 

resistant cell lines, so cell lines with intermediate response were not considered for validation. A total of 

34 cell lines (17 sensitive and the other 17 resistant to the drug 5-FU) were used in validation. The search 

for matching genes was done using the gene symbols. There were 5 matching genes (Table 3.22). The 
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data used for validation consisted of the expression of these 5 genes in the 34 cell lines. Weka software 

was used for validation and the response (sensitive/resistant) to the drug 5-FU (fluorouracil) was 

predicted. Different classification schemes including Threshold selector, IB1, Logistic regression, 

Random Tree, and Multilayer perceptron were applied to this dataset to find the best scheme. Table 3.23 

shows the comparison between Threshold selector and some of the classifiers used for validation on other 

datasets. Threshold selector performed better than the other classifiers. It had a sensitivity of 94.10%, a 

specificity of 76.50%, and an overall accuracy of 85.29%. Table 3.24 shows the confusion matrix for 

Threshold selector classifier. The difference in overall accuracy between Threshold selector and IB1 (p < 

0.01), Logistic regression (p < 0.01), Random Tree (p < 0.01), Multilayer perceptron (p < 0.01) was 

statistically significant. 

Table 3.22 Matching genes in NCI-60 U133A data. 

GENE NAME  ID 
SNRPD3-small nuclear  ribonucleoprotein H200000411 
PLXNB2-plexin B2, mRNA H200000861 
RNF6-ring finger protein (C3H2C3 type) H200004174 
POU6F2-POU domain, class 6,transcript H200015474 
ITGB1-integrin,beta1 (fibronectin)  H200021334 
 

Table 3.23 Comparison of accuracies obtained from different classifiers for predicting drug 
response using the 9-gene signature. The improved overall accuracy of the prediction with the 
Threshold selector classifier compared with other methods was assessed by significance testing (N = 
34).  

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity 
+Specificity)/2 

(%) 

Overall 
Accuracy 

(%) 
P-value 

Threshold selector 94.10 76.50 85.30 85.29  
IB1 58.80 52.90 55.85 55.88 < 0.01 

Logistic regression 52.90 47.10 50.00 50.00 < 0.01 
Random Tree 47.10 52.90 50.00 50.00 < 0.01 

Multilayer perceptron 35.30 41.20 38.25 38.23 < 0.01 
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Table 3.24 Confusion matrix obtained from the Threshold selector classifier for predicting drug 
response using the 9-gene signature. 

Actual/Predicted a (sensitive) b (resistant) 
a (sensitive) 16 1 
b (resistant) 4 13 

 

3.4.4.6 Predicting the response of cell lines in NCI-60 (n=34) (U133B GCRMA) data by 
leave-one-out cross validation 

This dataset27

Table 3.25 Matching genes in NCI-60 U133B data. 

 consisted of 17910 genes and 60 cell lines (41). Our focus was on the sensitive and resistant 

cell lines, so cell lines with intermediate response were not considered for validation. A total of 34 cell 

lines (17 sensitive and the other 17 resistant to the drug 5-FU) were used in validation. The search for 

matching genes was done using the gene symbols. There was 1 matching gene (Table 3.25). The data 

used for validation consisted of the expression of this gene in the 34 cell lines. Weka software was used 

for validation and the response (sensitive/resistant) for the drug 5-FU (fluorouracil) was predicted. 

Different classification schemes including Threshold selector, Random Tree, Random committee, 

Decision stump, and AD Tree were applied to this dataset to find the best scheme. Table 3.26 shows the 

comparison between Threshold selector and some of the classifiers used for validation on other datasets. 

Threshold selector performed better than the other classifiers. It had a sensitivity of 82.40%, specificity of 

76.50%, and an overall accuracy of 79.41%. Table 3.27 shows the confusion matrix for Threshold 

selector classifier. The difference in overall accuracy between Threshold selector and Random tree (p < 

0.02), Random committee (p < 0.02), Decision stump (p < 0.01), AD Tree (p < 0.01) was statistically 

significant. 

GENE NAME  ID 
POU6F2-POU domain, class 6,transcript H200015474 
 

                                                      
27 http://discover.nci.nih.gov/cellminer/loadDownload.do 
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Table 3.26 Comparison of accuracies obtained from different classifiers for predicting drug 
response using the 9-gene signature. The improved overall accuracy of the prediction with the 
Threshold selector classifier compared with other methods was assessed by significance testing (N = 
34).  

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity 
+Specificity)/2 

(%) 

Overall 
Accuracy 

(%) 
P-value 

Threshold selector 82.40 76.50 79.45 79.41  
Random Tree 64.70 47.10 55.90 55.88 < 0.02 

Random committee 64.70 47.10 55.90 55.88 < 0.02 
Decision stump 94.10 11.80 52.95 52.94 < 0.01 

AD Tree 52.90 47.10 50.00 50.00 < 0.01 
 

Table 3.27 Confusion matrix obtained from the Threshold selector classifier for predicting drug 
response using the 9-gene signature. 

Actual/Predicted a (sensitive) b (resistant) 
a (sensitive) 14 3 
b (resistant) 4 13 

 

3.4.5 Summary of validation results of 9-gene signature  
 

Table 3.28 shows the details of different validation datasets, predicted variables, classifiers used and 

different accuracies obtained using the 9-gene signature. For each dataset the classifier with the highest 

overall accuracy was reported.  
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Table 3.28 Summary of validation results of 9-gene signature on Ried et al data, independent colon 
cancer datasets and NCI-60 data. 

Dataset Classifier Predicted 
variable 

Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity + 
Specificity)/2 

(%) 

Overall 
accuracy 

(%) 
Ried et al testing set 

(n=23)  
PMID 17210682 

J48 Lymph 
node status 75.00 81.80 78.40 78.26 

Koinuma et al 
(n=17) 

PMID 16247484 

Naïve 
Bayes 

Lymph 
node status 100.00 75.00 87.50 82.35 

Barrier et al 
(n=18) 

PMID 16091735 

Naïve 
Bayes Recurrence 100.00 88.90 94.45 94.44 

Barrier et al 
(n=50) 

PMID 16966692 

Decision 
stump Recurrence 76.00 88.00 82.00 82.00 

Barrier et al 
(n=24) 

PMID 17043639 

Naïve 
Bayes Recurrence 50.00 100.00 75.00 79.16 

NCI 60 U133A 
(n=34) 

Threshold 
selector 

Drug 
response 
(5-FU) 

94.10 76.50 85.30 85.29 

NCI 60 U133B 
(n=34) 

Threshold 
selector 

Drug 
response 
(5-FU) 

82.40 76.50 79.45 79.41 

 
3.5 Correlation analysis on CGH and RNA data 

3.5.1 Description of the data sets 

CGH (Comparative genomic hybridization) data: The array CGH data was available only for 29 of the 

73 patient samples. The data consisted of probe name, chromosome name, start and stop coordinates, 

feature number, and description of the genes.  

RNA (Ribonucleic acid) data: The RNA data consisted of 22,464 genes and 73 tumor samples. 

3.5.2 Correlation coefficient analysis on the 9-gene signature 

This study focused on identifying genes in the 9-gene signature whose cDNA copy number was 

correlated with the RNA expression data. The CGH data was checked for matching genes with the 9-gene 
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signature and 89 matched probes were found. The same 29 patient samples available in the array CGH 

data were selected from RNA data. The 9-gene signature and 29 sample RNA expression data versus 9-

gene signature and 29 sample CGH data was used to compute the correlation coefficient for each of the 

genes. After computing the correlation coefficient for each of the matching gene pairs, the genes with 

absolute value of correlation coefficient > 0.36 were considered to be significant (p < 0.05). The gene 

ITGB1 satisfied this condition and Table 3.29 shows the details. These genes might be helpful in 

identifying the regulators of gene expression. 

Table 3.29 Genes with correlation coefficient > 0.36 in the CGH versus RNA data. 

Probe name Chromosome 
name 

Start 
location 

Stop 
location 

Feature 
number 

Gene 
symbol 

Correlation 
coefficient 

A_14_P128618 10 33274603 33274662 22571 ITGB1 0.4767 

A_14_P201824 10 33284494 33284553 22255 ITGB1 0.4321 

 

3.5.3 Genome wide correlation analysis on CGH and RNA data 

Our aim was to identify the cDNA copy numbers of the genes that were correlated with RNA expression 

data. The 29 tumor samples that were available in the CGH data were selected from the RNA data for the 

analysis. The genes in the CGH data were matched with the genes in the RNA data. Correlation 

coefficient was calculated for each of these matched gene pairs across the 29 tumor samples. The 

obtained correlation coefficients for each of the genes were converted to their absolute values, and all 

genes which with correlation coefficient values < 0.36 were removed. From the remaining set of genes, 3 

or more different consecutive genes were selected. Table 3.30 shows in detail the identified genes. The 

chromosome locations of these genes might be important in identifying the regulators of gene expression. 
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Table 3.30 Details of the genes identified by genome-wide correlation analysis. 

Chromosome 
name Start Stop Feature 

number 

Number of 
consecutive 

genes 
Consecutive genes (count) 

1 11788695 11788743 144635 6 MTHFR (2)  CLCN6 (4) 

1 23864785 23864839 162971 5 LYPLA2 (1)  GALE (1)   MGCL (3) 

1 35990614 35990665 51144 6 EIF2C4 (1)  EIF2C1 (5) 

1 94617936 94617995 64611 10 ABCD3 (8)    F3 (2) 

1 1.13E+08 1.13E+08 79186 3 MOV10 (1)    RHOC (2) 

9 1.09E+08 1.09E+08 4486 5 ACTL7A (1)    IKBKAP (4) 

9 1.24E+08 1.24E+08 1752 6 NEK6 (1)    PSMB7 (5) 

9 1.37E+08 1.37E+08 81538 3 MGC14141 (2)     KIAA1984 (1) 

11 18374755 18374806 146020 3 LDHA (2)     LDHC (1) 

12 54789993 54790052 78424 3 PA2G4 (1)    RPL41 (2) 

14 75183472 75183531 75020 3 C14orf58 (1)     C14orf1 (2) 

14 95918447 95918506 126315 6 C14orf129 (1)     AK7 (5) 

16 23557994 23558053 42174 3 FLJ21816 (1)      MGC3248 (2) 

17 7232718 7232766 159975 3 TNK1 (2)    PLSCR3 (1) 

17 18160066 18160125 44369 5 SMCR8 (1)    SHMT1 (4) 

17 35087534 35087593 67698 8 PERLD1 (2)  ERBB2 (5) C17orf37 (1) 

20 17499809 17499868 161401 5 DSTN (4)     RRBP1 (1) 

20 32972022 32972071 118483 5 ACAS2 (2)      GSS (3) 

20 34697094 34697153 63618 8 SLA2 (2)      NDRG3 (6) 

20 43442415 43442474 29649 7 C20orf35 (5)      PIGT (2) 

20 60315571 60315630 19595 4 ADRM1 (2)     LAMA5 (2) 

21 26011625 26011684 70488 6 ATP5J (3)      GABPA (3) 

X 48506958 48507011 181787 3 TIMM17B (2)      PQBP1 (1) 
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3.6 Summary 

In this chapter, we identified a 9-gene signature to predict lymph node metastasis in colon cancer patients 

based on the microarray gene expression data. This was achieved by, firstly preprocessing the data to 

discard undifferentiated genes using the t-test, secondly replacing missing values with the k-nearest 

neighbors algorithm, and thirdly applying variable selection using random forests. In the next step, the 

genes without differential expression in lymph node negative versus positive tumors were removed in 

order to retain only the discriminator genes and obtained the 9-gene signature. The Kaplan-Meier plots of 

the 9-gene signature on Ried et al data (n=73) generated significant patient stratification into, low-risk 

and high-risk groups (log-rank tests, p < 0.05), with distinct relapse-free survival (RFS) and overall 

survival (OS). Out of the 73 patients in Ried et al data, 26 patients remained relapse-free for more than 5 

years and 10 patients experienced relapse within 5 years after surgery. In these patients, the Cox model 

had a sensitivity of 60.0% and a specificity of 92.3%. The 9-gene lymph node signature was cross 

validated on independent colon cancer data sets. The drug response to 5-FU (fluorouracil) on the NCI-60 

cell line data was predicted. Our results showed that it is feasible to predict the lymph node status of the 

patients with the 9-gene signature and it might be used for tailored treatments for patients in the high-risk 

group. Correlation analysis was done between the CGH and RNA data using the 14 gene signature and 

the gene ITGB1 was identified which exhibited strong relationship between the two groups. Genome 

wide correlation analysis was done to identify DNA copy numbers of the genes that were correlated with 

RNA expression data. These results might be useful in identifying the regulators of gene expression. 
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Chapter 4 
 

Prediction models for recurrence in colon cancer 
 

4.1 Introduction 

Recurrence or relapse is the reappearance of a tumor or the return of symptoms after treating for cancer. 

Postoperative treatment given to Duke’s stage B and Duke’s stage C colon cancer patients is highly 

debatable (24). It is uncertain whether adjuvant chemotherapy should be given to Duke’s stage B patients 

because not all the patients benefit from it. So, there is a need to identify patients at high-risk of 

recurrence who would develop relapse in the Duke’s B group so that they can be given aggressive 

treatment, and patients at low-risk of recurrence would be spared from the invasive treatment. Our study 

aims at identifying patients at low and high-risks of recurrence by building prognostic models for stage II 

(Duke’s stage B) and stage III (Duke’s stage C) colon cancer patients. 

The training set comprised of 36 patients (10 patients having recurrence within 5 years after 

surgery and 26 patients remaining relapse free for more than 5 years). The remaining 37 patients formed 

the testing set. The missing values in the gene expression data were replaced using the k-nearest 

neighbors algorithm with k=30. A combinatorial scheme was used to identify biomarkers predicting the 

recurrence. In the first step, variable selection using random forests was applied on the training set and a 

4-gene subset was obtained. In the second step, InfoGain feature selection technique was applied to 

further reduce the dimensionality by dropping lower ranked genes, and hence obtained the 3-gene 

signature. The same procedure was repeated again by replacing missing values in the preprocessed data 

with k-nearest neighbors algorithm (k=20) and obtained the 5-gene signature. 

The performance of these signatures was evaluated by cross validation on independent colon 

cancer data sets. The discriminatory powers of the identified gene signatures were evaluated by the time- 

dependent ROC technique, and these signatures could effectively stratify patients into low-risk and high-
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risk groups. Prediction models were built with the 3-gene signature and the 5-gene signature using 

classifiers in Weka software to predict recurrence in patients from the testing set. These gene signatures 

were also cross validated on independent colon cancer datasets to evaluate their performance. 

The remainder of this chapter is organized as follows. Section 4.2 introduces our study design and 

describes the experiment in detail. Section 4.3 describes the validation results. Section 4.4 discusses the 

study design of 5-gene signature and describes the experiment in detail. Section 4.5 describes the 

validation results. Section 4.6 compares the 3-gene and 5-gene signatures, and Section 4.7 provides a 

summary of this chapter. 

 

 

 

 

 

 

 

 

 

 

 



 
 

54 
 

4.2 Study Design for the 3-gene signature 
 

 

 

 

  

 

 

 

 

 

 

  

   

 

 

  

  

 

  

 

 

 

 

 

 

Figure 4.1 Block diagram of the study for 3-gene signature. 

Validation on Ried et al data, plotting Time-
dependent ROC and Kaplan Meier plots 

Building recurrence prediction model and cross validation 
on other colon cancer datasets  

3-gene signature 

Colon cancer data from Ried et al (n=73) 

Missing value replacement using knn 
algorithm on training set (k=30) 

Applying random forests using VarSelRF 
package using R software 

4-gene signature 

Using Infogain attribute selection in Weka to discard the 
gene with lowest rank (LOC114659-KIAA0563) 

Splitting data into training (n=36) and testing sets (n=37) 

 

Applying t-test on genes having > 5 missing values to determine differential gene 
expression in lymph node negative versus positive patients 

 

Selecting genes passing t-test and all other genes 
with ≤ 5 missing values 
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4.2.1 Experimental procedure  
 
Data Source The colon cancer microarray data from Ried et al. (13) contained 22,464 genes and 73 

patient samples, all of them treated for primary adenocarcinomas of the colon. Of these 33 tumor samples 

were stage II (lymph node negative) and 40 tumor samples were stage III (lymph node positive). 

Log Ratio Every spot on the microarray provides two intensity values each of them associated with a 

specific channel. Dividing one intensity by the other gives the expression ratio. We used log ratios as they 

are lot easier to work with than the regular ratios. The log ratio (532/635) was considered for this analysis. 

It is the log (base 2) transformation of the ratio of medians at wavelengths of 532nm and 635 nm. 

Data Preprocessing-t test We investigated whether the observed difference between the two groups 

(node positive versus negative) represents a real difference in the total study population from which the 

sample was drawn, or whether it just occurred by chance (due to sampling variation), by using t-test. The 

number of missing values for each gene was found and t-test was done on genes with more than 5 missing 

values to evaluate the difference in the proportions of missing values in node positive versus negative 

groups.  The genes passing the t-test (p < 0.05, two-sided) along with all other genes were selected for 

further processing. A total of 10,220 genes satisfied this condition. 

Training dataset The training dataset consisted of the patient samples having recurrence within 5 years 

after surgery, survival time ≥ 60 months selected based on the clinical data available for the dataset. The 

expression data of the 10,220 genes and 36 patients, constituted the training set. The remaining patients 

formed the testing set.   

Missing value replacement The training dataset contained missing values. They were replaced using the 

EMV 28

                                                      
28 http://cran.r-project.org/web/packages/EMV/index.html 

 package in R software with k=30. This technique estimates the missing values based on the k-

nearest neighbors algorithm. This algorithm selects the k nearest rows that do not contain any missing 
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values to the one containing at least one missing value based on the Euclidian distance. Then the missing 

values are replaced by the average of the neighbors. 

Biomarker identification VarSelRF29

Table 4.1 The 3-gene signature for predicting colon cancer recurrence. 

 package in R was used in a series of steps on the training dataset 

to find the important features. The recurrence status was used as the class variable. In the first step, a 

forest with N trees was built and the features were ranked according to the importance of the variables. In 

the second step, 20% of the variables that were least important were removed and a new forest was 

constructed with K trees. This step was repeated till there were two genes left. In the experiment, a value 

of N = 2000 and K =1000 were considered, because a large number of trees in the initial forests is likely 

to produce stable importance measures (23). After fitting all forests, the OOB error rates from all the 

fitted random forests were examined and a set of 4 genes leading to the smallest error rate were selected. 

InfoGain attribute selection technique was applied to drop the least ranked gene, LOC114659--KIAA0563, 

giving us the 3-gene signature. Table 4.1 shows the 3-gene signature. 

GENE NAME  ID 
LRRC14-leucine rich repeat containing H200014103 
E2F2-E2F transcription factor 2 (E2F2) H200012309 
SLC25A5-solute carrier family 25 H200006643 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                      
29 http://cran.r-project.org/web/packages/varSelRF/index.html 
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4.3 Results 

4.3.1 Building prediction model using Weka 
 
The training set consisted of expression data of the 3-gene signature in 36 patients (10 patients having 

recurrence within 5 years after surgery and 26 patients having survival time more than 5 years without 

recurrence). The remaining patients formed the testing set. Weka software was used for 10 fold cross 

validation on the training dataset. Different classification schemes in Weka were applied to this dataset to 

find the best scheme. Table 4.2 shows the top five classifiers including LWL, AD Tree, Multialyer 

perceptron, IB1, and Logistic regression based on their prediction accuracies. LWL classifier performed 

better than the other classifiers. It had a sensitivity of 80.00%, a specificity of 96.20%, and an overall 

accuracy of 91.66%. Table 4.3 shows the confusion matrix for LWL classifier. The difference in overall 

accuracy between LWL and other classifiers was not statistically significant due to the small sample size. 

The LWL classifier model was saved and used to predict class (recurrence/no recurrence) for patients in 

the testing set. Table 4.4 shows the predicted class for patients in the testing set using the LWL model and 

compares it with the class predictions obtained from the Cox model. 

Table 4.2 Comparison of accuracies obtained from different classifiers for predicting recurrence 
using the 3-gene signature. The improved overall accuracy of the prediction with the LWL 
classifier compared with other methods was assessed by significance testing (N = 36).  

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity 
+Specificity)/2 

(%) 

Overall 
accuracy 

(%) 
P-value 

LWL 80.00 96.20 88.10 91.66  
AD Tree 60.00 96.20 78.10 83.33 < 0.14 

Multilayer perceptron 60.00 92.30 76.15 83.33 < 0.14 
IB1 40.00 92.30 66.15 77.77 < 0.06 

Logistic regression 30.00 96.20 63.10 77.77 < 0.06 
 

Table 4.3 Confusion matrix obtained from the LWL classifier for predicting recurrence using the 3-
gene signature. 

Actual/Predicted a (recurrence) b (no recurrence) 
a (recurrence) 8 2 

b (no recurrence) 1 25 
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Table 4.4 Predicting recurrence in patients from the testing dataset using the 3-gene signature. 

Serial 
No 

Patient 
Number 

Prediction by 
LWL 

Prediction by 
Cox model Match 

1 CC-P1 No recurrence No recurrence Y 
2 CC-P2 No recurrence No recurrence Y 
3 CC-P4 No recurrence No recurrence Y 
4 CC-P7 Recurrence Recurrence Y 
5 CC-P8 No recurrence No recurrence Y 
6 CC-P10 No recurrence No recurrence Y 
7 CC-P13 No recurrence No recurrence Y 
8 CC-P18 Recurrence Recurrence Y 
9 CC-P20 No recurrence No recurrence Y 

10 CC-P21 No recurrence No recurrence Y 
11 CC-P22 No recurrence No recurrence Y 
12 CC-P23 No recurrence No recurrence Y 
13 CC-P25 No recurrence No recurrence Y 
14 CC-P28 No recurrence No recurrence Y 
15 CC-P29 Recurrence Recurrence Y 
16 CC-P31    Recurrence No recurrence - 
17 CC-P34 No recurrence No recurrence Y 
18 CC-P35 No recurrence Recurrence - 
19 CC-P37 No recurrence No recurrence Y 
20 CC-P38 No recurrence Recurrence - 
21 CC-P40 No recurrence No recurrence Y 
22 CC-P42 No recurrence No recurrence Y 
23 CC-P44 No recurrence No recurrence Y 
24 CC-P46 No recurrence Recurrence - 
25 CC-P47 No recurrence No recurrence Y 
26 CC-P48 No recurrence No recurrence Y 
27 CC-P50 Recurrence Recurrence Y 
28 CC-P51 Recurrence Recurrence Y 
29 CC-P55 No recurrence Recurrence - 
30 CC-P56 No recurrence Recurrence - 
31 CC-P60 Recurrence No recurrence - 
32 CC-P62 No recurrence No recurrence Y 
33 CC-P66 No recurrence No recurrence Y 
34 CC-P68 Recurrence Recurrence Y 
35 CC-P70 Recurrence No recurrence - 
36 CC-P71 Recurrence No recurrence - 
37 CC-P72 Recurrence No recurrence - 
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4.3.2 Plotting Kaplan-Meier curves based on the patient subgroups obtained from 
LWL prediction model on data from Ried et al (n=73) using the 3-gene signature 
 
The LWL recurrence prediction model discussed in the previous section generated two subgroups of 

patients, no recurrence and recurrence, on the training and testing data sets. Kaplan-Meier curves were 

plotted based on the expression data of 3-gene signature in the 73 patient samples (Ried et al data) and the 

patient subgroups obtained from LWL prediction model. The Kaplan-Meier plots generated significant 

patient stratification into no recurrence and recurrence groups (p < 0.05, n=73, log-rank tests), with 

distinct relapse-free survival. Figure 4.2 shows the survival probabilities for each of the patient subgroups 

for relapse-free survival. 

 

 

Figure 4.2 Kaplan-Meier plots on data from Ried et al (n=73) for relapse-free survival using the 3-
gene signature based on the patient subgroups obtained from LWL recurrence prediction model. 

 

4.3.3 Time-dependent ROC analyses data from Ried et al (n=73) 
 
To explore whether the 3-gene recurrence signature could predict patient disease-free survival and overall 

survival, the survival and status information along with the expression data of the 3 genes were used for 

getting the time-dependent ROC curves. The accuracy of 5-year relapse-free survival prediction using 

these 3 genes is 0.80 and 5-year overall survival prediction is 0.79, as represented by the AUC. 
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Figure 4.3 Time-dependent ROC plots on data from Ried et al (n=73) for relapse-free survival and 
overall survival using the 3-gene signature. 

 

4.3.4 Kaplan-Meier analyses on data from Ried et al (n=73) 
 
The Cox model based on the expression of the 3-gene signature was used to get recurrence risk scores for 

all the 73 patient samples. The choices for choosing a cut-off value for patient stratification are the peak 

value from histogram, mean risk score or median risk score. In this analysis, the peak value from 

histogram was chosen as cut-off as it resulted in best patient stratification. Cut-off values of 2.0 and 1.0 

were chosen for relapse-free survival and overall survival, respectively. The pamr package in R was used 

to plot the relapse-free survival probability of low-risk and high-risk groups. The low-risk and high-risk 

groups had distinct relapse-free survival (p = 1e-04, n=73, log-rank tests). The low-risk and high-risk 

groups had distinct overall survival (p = 0.011, n=73, log-rank tests). 
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Figure 4.4 Histograms of risk scores obtained from Cox model for relapse-free survival and overall 
survival using the 3-gene signature 

 

                                                 
 

Figure 4.5 Kaplan-Meier plots on data from Ried et al (n=73) for relapse-free survival and overall 
survival using the 3-gene signature 

 

Out of the 73 patients in the colon cancer data from Ried et al, 26 patients remained relapse-free for more 

than 5 years and 10 patients had recurrence within 5 years after surgery. To test the performance of the 3-

gene signature, the subgroups obtained for the above group of 36 patients from the Cox model were 

compared with their actual clinical outcomes. Table 4.5 shows the different parameters obtained from 

Cox model using the 3-gene signature, for relapse-free survival and overall survival, respectively. Tables 
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4.6 and 4.7, show the comparison of predicted clinical outcome for patients with their actual follow-up 

information, for relapse-free survival and overall survival, respectively. The Cox model had a sensitivity 

of 80.0%, a specificity of 96.1%, and an overall accuracy of 91.7%, for predicting relapse-free survival. 

In predicting overall survival, it had a sensitivity of 40.0%, a specificity of 95.9%, and an overall 

accuracy of 70.4%.  

Table 4.5 Different parameters obtained from Cox model using the 3-gene signature for relapse-
free survival and overall survival 

Relapse-free survival Overall survival 
Gene 

Symbol coef exp 
(coef) 

se 
(coef) 

z-
score 

p-
value coef exp 

(coef) 
se 

(coef) 
z-

score 
p-

value 
LRRC14 0.449 1.647 0.529 0.943 0.350 0.213 1.238 0.376 0.568 0.570 

E2F2 -1.500 0.223 0.586 -2.561 0.010 -0.666 0.513 0.335 -1.988 0.047 
SLC25A5 0.375 1.455 0.216 1.738 0.082 0.081 1.085 0.179 0.455 0.650 

 

Table 4.6 Comparison of the sub groups predicted from the Cox model using the 3-gene signature 
with the actual subgroups for relapse-free survival 

 
 Recurrence No recurrence Sensitivity (%) Specificity (%) Overall accuracy (%) 

Recurrence 8 2 80.0 96.1 91.7 No recurrence 1 25 
 

Table 4.7 Comparison of the sub groups predicted from the Cox model using the 3-gene signature 
with the actual subgroups for overall survival 

 Death Alive Sensitivity (%) Specificity (%) Overall accuracy (%) 
Death 8 12 40.0 95.9 70.4 Alive 1 23 

 

The Cox model was used for stratifying all the 73 patient samples in Ried et al data into low-risk and 

high-risk groups, based on the 3-gene signature. Out of the 73 patients, a total of 37 patients had no 

recurrence with survival times less than 5 years. Twenty-nine patients had overall survival times less than 

5 years without any event (death). The relapse outcome for the 37 patients and the overall survival 

outcome for the 29 patients is currently unknown. Table 4.8 shows the prospective prognostic predictions 

of these patients obtained from the Cox model for relapse-free survival and overall survival, respectively. 
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The follow-up information for these patients is being collected. When it becomes available in the future, 

the predictions can be validated with it. 
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Table 4.8 Patient subgroups obtained from the Cox model for relapse-free survival using the 3-gene 
signature 

 

Serial  
Number Patient ID 

Predicted group by 
Cox model (RFS) Patient ID Predicted group by 

Cox model (OS) 
1 CC-P1 Low Risk CC-P1 Low Risk 
2 CC-P2 Low Risk CC-P4 Low Risk 
3 CC-P4 Low Risk CC-P7 Low Risk 
4 CC-P7 High Risk CC-P8 Low Risk 
5 CC-P8 Low Risk CC-P9 Low Risk 
6 CC-P10 Low Risk CC-P11 Low Risk 
7 CC-P13 Low Risk CC-P13 Low Risk 
8 CC-P18 High Risk CC-P16 Low Risk 
9 CC-P20 Low Risk CC-P18 High Risk 

10 CC-P21 Low Risk CC-P20 Low Risk 
11 CC-P22 Low Risk CC-P21 Low Risk 
12 CC-P23 Low Risk CC-P22 Low Risk 
13 CC-P25 Low Risk CC-P25 Low Risk 
14 CC-P28 Low Risk CC-P28 Low Risk 
15 CC-P29 High Risk CC-P31 Low Risk 
16 CC-P31 Low Risk CC-P35 High Risk 
17 CC-P34 Low Risk CC-P36 High Risk 
18 CC-P35 High Risk CC-P37 Low Risk 
19 CC-P37 Low Risk CC-P38 Low Risk 
20 CC-P38 High Risk CC-P40 Low Risk 
21 CC-P40 Low Risk CC-P48 Low Risk 
22 CC-P42 Low Risk CC-P50 High Risk 

         23 CC-P44 Low Risk CC-P51 High Risk 
24 CC-P46 High Risk CC-P60 Low Risk 
25 CC-P47 Low Risk CC-P62 Low Risk 
26 CC-P48 Low Risk CC-P66 Low Risk 
27 CC-P50 High Risk CC-P71 Low Risk 
28 CC-P51 High Risk CC-P72 Low Risk 
29 CC-P55 High Risk CC-P73 High Risk 
30 CC-P56 High Risk   
31 CC-P60 Low Risk   
32 CC-P62 Low Risk   
33 CC-P66 Low Risk   
34 CC-P68 High Risk   
35 CC-P70 Low Risk   
36 CC-P71 Low Risk   
37 CC-P72 Low Risk   
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4.3.5 Independence of 3-gene recurrence signature of tumor stage 
 
Improved prediction of recurrence can profoundly affect clinical decisions. However, following the 

current clinical guidelines, few of the lymph node-negative patients (stage II) are offered adjuvant 

chemotherapy. Because 25% to 40% of the patients would develop tumor relapse, the prognosis signature 

can be a powerful tool to select the patients who are at high-risk and ensure that they receive adjuvant 

treatment. This part of the study was focused on verifying if the recurrence predictions obtained on Ried 

et al data were statistically significant when validated separately in Stage II and Stage III patients. It was 

seen that the 3-gene signature could stratify the patients into low-risk and high-risk groups in Stage II and 

Stage III samples individually with distinct relapse-free survival. The patient subgroups were obtained 

based on the Cox model. The patients belonging to the low-risk group had higher survival probabilities 

than those belonging to the high-risk group. Based on the predictions from LWL model using the 3-gene 

signature, Kaplan-Meier plots were plotted in Stage II and Stage III samples separately. But the patient 

stratification was not statistically significant and the results were not reported. So it can be said that Cox 

model is the best model for predicting recurrence using the 3-gene signature. These results confirm that 

the 3-gene recurrence signature might be applicable to prognostic categorization for the clinical 

management of colon cancer. 

                             

Figure 4.6 The 3-gene signature stratifies patients in Stage II tumors and Stage III tumors into 
distinct low-risk and high-risk groups for relapse-free survival based on the Cox model. 
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4.3.6 External validation of the 3-gene signature on other colon cancer data 
 
This part of the study sought to explore the extent to which the 3-gene signature could be used for 

prediction of lymph node status, recurrence, and drug response in publicly available independent datasets. 

More than 50 classifiers available in Weka software were tested using a leave-one-out cross validation 

technique on each of the independent datasets to find a suitable classification scheme for validation. Due 

to the different number of attributes (matching genes), sample sizes and prediction variables one specific 

scheme could not be used for validation on all the datasets. Different classifiers had to be employed on 

the validation datasets to get fair prediction accuracy. As far as possible the same set of classifiers were 

presented in the comparison tables of validation datasets to provide a fair evaluation of the performance. 

The exact same set of classifiers could not be compared over all the validation datasets due to poor 

performances of classifiers on some datasets and good performances on other datasets. The following 

sections discuss the validation results and comparisons of various classifiers on the independent datasets 

in detail. 

4.3.6.1 Predicting lymph node status by leave-one-out cross validation on data from 
Koinuma et al. (n=17) (PMID 16247484) 
 
The data from Koinuma et al (Affymetrix HG U133 A platform) consisted of 20 patient samples of which 

3 patients were Duke’s stage D. The Duke’s stage D patients were not considered for validation. The 

search for matching genes with the 3-gene signature was done using the Affymetrix ids. There were 3 

matching genes (Table 4.9). The data used for validation consisted of the expression of these 3 genes in 

the 17 patient samples. Weka software was used for validation and lymph node status (positive/negative) 

was predicted. Different classification schemes including Multilayer perceptron, Decision stump, Logistic 

regression, JRip, and Adaboost M1 were applied to this dataset to find the best scheme. Table 4.10 shows 

the comparison between Multilayer perceptron and some of the classifiers used for validation on other 

datasets. Multilayer perceptron classifier performed better than the other classifiers. It had a sensitivity of 

71.40%, a specificity of 90.00%, and an overall accuracy of 82.35%. Table 4.11 shows the confusion 
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matrix for Multilayer perceptron classifier. The difference in overall accuracy between Multilayer 

perceptron and other classifiers was not statistically significant due to the small sample size. 

Table 4.9 Matching genes in Koinuma et al data 

GENE NAME  ID 
LRRC14-leucine rich repeat containing H200014103 
E2F2-E2F transcription factor 2 (E2F2) H200012309 
SLC25A5-solute carrier family 25 H200006643 
 

Table 4.10 Comparison of accuracies obtained from different classifiers for predicting lymph node 
status using the 3-gene signature. The improved overall accuracy of the prediction with the 
Multilayer perceptron classifier compared with other methods was assessed by significance testing 
(N = 17). 

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity+ 
Specificity)/2 

(%) 

Overall 
Accuracy 

(%) 
P-value 

Multilayer perceptron 71.40 90.00 80.70 82.35  
Decision stump 42.90 100.00 71.45 76.47 < 0.33 

Logistic regression 57.10 80.00 68.55 70.58 < 0.21 
JRip 14.30 100.00 57.15 64.70 < 0.13 

Adaboost M1 28.60 80.00 54.30 58.82 < 0.06 
 

Table 4.11 Confusion matrix obtained from the Multilayer perceptron classifier for predicting 
lymph node status using the 3-gene signature. 

Actual/Predicted a (positive) b (negative) 
a (positive) 5 2 
b (negative) 1 9 

  

4.3.6.2 Predicting recurrence by leave-one-out cross validation on data from Barrier et al. 
(n=18) (PMID 16091735) 
 
The data from Barrier et al (PMID 16091735) consisted of 22,283 genes and 18 patient samples. The 

search for matching genes with the 3-gene signature was done using the Affymetrix ids. There were 3 

matching genes (Table 4.12). The data used for validation consisted of the expression of these 3 genes in 

the 18 patient samples. Weka software was used for validation and recurrence (yes/no) was predicted. 

Different classification schemes including Threshold selector, AdaboostM1, LWL, Multilayer perceptron, 
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and IB1 were applied to this dataset to find the best scheme. Table 4.13 shows the comparison between 

Threshold selector and some of the classifiers used for validation on other datasets. Threshold selector 

classifier performed better than the other classifiers. It had a sensitivity of 88.90%, a specificity of 

77.80%, and an overall accuracy of 83.33%. Table 4.14 shows the confusion matrix for Threshold 

selector classifier. The difference in overall accuracy between Threshold selector and other classifiers was 

not statistically significant due to the small sample size. 

Table 4.12 Matching genes in Barrier et al data. 

GENE NAME  ID 
LRRC14-leucine rich repeat containing H200014103 
E2F2-E2F transcription factor 2 (E2F2) H200012309 
SLC25A5-solute carrier family 25 H200006643 
 

Table 4.13 Comparison of accuracies obtained from different classifiers for predicting recurrence 
using the 3-gene signature. The improved overall accuracy of the prediction with the Threshold 
selector classifier compared with other methods was assessed by significance testing (N = 18). 

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity+ 
Specificity)/2 

(%) 

Overall 
Accuracy 

(%) 
P-value 

Threshold selector 88.90 77.80 83.35 83.33  
AdaboostM1 77.80 77.80 77.80 77.77 < 0.34 

LWL 77.80 77.80 77.80 77.77 < 0.34 
Multilayer perceptron 77.80 66.70 72.25 72.22 < 0.22 

IB1 66.70 66.70 66.70 66.66 < 0.13 
 

Table 4.14 Confusion matrix obtained from the Threshold selector classifier for predicting 
recurrence using the 3-gene signature 

Actual/Predicted a (recurrence) b (no recurrence) 
a (recurrence) 8 1 

b (no recurrence) 2 7 
 

4.3.6.3 Predicting recurrence by leave-one-out cross validation on data from Barrier et al. 
(n=50) (PMID 16966692) 
 
The data from Barrier et al (PMID 16966692) consisted of 22,283 genes and 50 patient samples. The 

search for matching genes with the 3-gene signature was done using the Affymetrix ids. There were 3 
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matching genes (Table 4.15). The data used for validation consisted of the expression of these 3 genes in 

the 50 patient samples. Weka software was used for validation and recurrence (yes/no) was predicted. 

Different classification schemes including IB1, LWL, Multilayer perceptron, Random committee, and 

AdaboostM1 were applied to this dataset to find the best scheme. Table 4.16 shows the comparison 

between IB1 and some of the classifiers used for validation on other datasets. IB1 classifier performed 

better than the other classifiers. It had a sensitivity of 76.00%, a specificity of 80.00%, and an overall 

accuracy of 78.00%. Table 4.17 shows the confusion matrix for IB1 classifier. The difference in overall 

accuracy between IB1 and other classifiers was not statistically significant due to the small sample size. 

Table 4.15 Matching genes in Barrier et al data. 

GENE NAME  ID 
LRRC14-leucine rich repeat containing H200014103 
E2F2-E2F transcription factor 2 (E2F2) H200012309 
SLC25A5-solute carrier family 25 H200006643 
 

Table 4.16 Comparison of accuracies obtained from different classifiers for predicting recurrence 
using the 3-gene signature. The improved overall accuracy of the prediction with the IB1 classifier 
compared with other methods was assessed by significance testing (N = 50). 

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity+ 
Specificity)/2 

(%) 

Overall 
Accuracy 

(%) 
P-value 

IB1 76.00 80.00 78.00 78.00  
LWL 68.00 84.00 76.00 76.00 < 0.41 

Multilayer perceptron 80.00 68.00 74.00 74.00 < 0.32 
Random committee 68.00 72.00 70.00 70.00 < 0.18 

AdaboostM1 56.00 80.00 68.00 68.00 < 0.12 
 

Table 4.17 Confusion matrix obtained from the IB1 classifier for predicting recurrence using the 3-
gene signature. 

Actual/Predicted a (no recurrence) b (recurrence) 
a (no recurrence) 20 5 

b (recurrence) 6 19 
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4.3.6.4 Predicting the response of cell lines in NCI-60 (U133A GCRMA) data (n=34) by 
leave-one-out cross validation on data 
 
This dataset30

Table 4.18 Matching genes in NCI-60 U133A data. 

 consisted of 21,225 genes and 60 cell lines (41). Our focus was on the sensitive and 

resistant cell lines, so cell lines with intermediate response were not considered for validation. A total of 

34 cell lines (17 sensitive and the other 17 resistant to the drug 5-FU) were used in validation. The search 

for matching genes was done using the gene symbols. There were 3 matching genes (Table 4.18). The 

data used for validation consisted of the expression of these 3 genes in the 34 cell lines. Weka software 

was used for validation and the response (sensitive/resistant) for the drug 5-FU (fluorouracil) was 

predicted. Different classification schemes including Threshold selector, Multilayer perceptron, IB1, 

LWL, and Logistic regression were applied to this dataset to find the best scheme. Table 4.19 shows the 

comparison between Threshold selector and some of the classifiers used for validation on other datasets. 

Threshold selector classifier performed better than the other classifiers. It had a sensitivity of 94.10%, a 

specificity of 88.20%, and an overall accuracy of 91.17%. Table 4.20 shows the confusion matrix for 

Threshold selector classifier. The difference in overall accuracy between Threshold selector and 

Multilayer perceptron (p < 0.01), IB1 (p < 0.01), LWL (p < 0.01), Logistic regression (p < 0.01) was 

statistically significant. 

GENE NAME  ID 
LRRC14-leucine rich repeat containing H200014103 
E2F2-E2F transcription factor 2 (E2F2) H200012309 
SLC25A5-solute carrier family 25 H200006643 
 

 

 

 

 

                                                      
30 http://discover.nci.nih.gov/cellminer/loadDownload.do 
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Table 4.19 Comparison of accuracies obtained from different classifiers for predicting drug 
response using the 3-gene signature. The improved overall accuracy of the prediction with the 
Threshold selector classifier compared with other methods was assessed by significance testing (N = 
34). 

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity+ 
Specificity)/2 

(%) 

Overall  
Accuracy 

(%) 
P-value 

Threshold selector 94.10 88.20 91.15 91.17  
Multilayer perceptron 70.60 41.20 55.90 55.88 < 0.01 

IB1 64.70 47.10 55.90 55.88 < 0.01 
LWL 82.40 29.40 55.90 55.88 < 0.01 

Logistic regression 35.30 58.80 47.05 47.05 < 0.01 
 

Table 4.20 Confusion matrix obtained from the Threshold selector classifier for predicting drug 
response using the 3-gene signature. 

Actual/Predicted a (sensitive) b (resistant) 
a (sensitive) 16 1 
b (resistant) 2 15 

 

4.3.6.5 Predicting the response of cell lines in NCI-60 (U133B GCRMA) data (n=34) by 
leave-one-out cross validation on data 
 
This dataset31

                                                      
31 http://discover.nci.nih.gov/cellminer/loadDownload.do 

 consisted of 17910 genes and 60 cell lines (41). Our focus was on the sensitive and resistant 

cell lines, so cell lines with intermediate response were not considered for validation. A total of 34 cell 

lines (17 sensitive and the other 17 resistant to the drug 5-FU) were used in validation. The search for 

matching genes was done using the gene symbols. There was 1 matching gene (Table 4.21). The data 

used for validation consisted of the expression of this gene in the 34 cell lines. Weka software was used 

for validation and the response (sensitive/resistant) for the drug 5-FU (fluorouracil) was predicted. 

Different classification schemes including Threshold selector, IB1, Multilayer perceptron, LWL, and 

Bagging were applied to this dataset to find the best scheme. Table 4.22 shows the comparison between 

Threshold selector and some of the classifiers used for validation on other datasets. Threshold selector 

classifier performed better than the other classifiers. It had a sensitivity of 88.23%, a specificity of 
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88.23%, and an overall accuracy of 88.23%. Table 4.23 shows the confusion matrix for Threshold 

selector classifier. The difference in overall accuracy between Threshold selector and IB1 (p < 0.01), 

Multilayer perceptron (p < 0.01), LWL (p < 0.01), Bagging (p < 0.01) was statistically significant. 

Table 4.21 Matching genes in NCI-60 U133B data. 

GENE NAME  ID 
E2F2-E2F transcription factor 2 (E2F2) H200012309 
 

Table 4.22 Comparison of accuracies obtained from different classifiers for predicting drug 
response using the 3-gene signature. The improved overall accuracy of the prediction with the 
Threshold selector classifier compared with other methods was assessed by significance testing (N = 
34). 

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity+ 
Specificity)/2 

(%) 

Overall 
Accuracy 

(%) 
P-value 

Threshold selector 88.23 88.23 88.23 88.23  
IB1 47.10 52.90 50.00 50.00 < 0.01 

Multilayer perceptron 11.80 82.40 47.10 47.05 < 0.01 
LWL 29.40 58.80 44.10 44.11 < 0.01 

Bagging 35.30 47.10 41.20 41.17 < 0.01 
 

Table 4.23 Confusion matrix obtained from the Threshold selector classifier for predicting drug 
response using the 3-gene signature. 

Actual/Predicted a (sensitive) b (resistant) 
a (sensitive) 15 2 
b (resistant) 2 15 
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4.3.7 Summary of validation results of 3-gene signature 
 
Table 4.24 shows the details of different validation datasets, predicted variables, classifiers used and 

different accuracies obtained using the 3-gene signature. For each dataset the classifier with the highest 

overall accuracy was reported.  

Table 4.24 Summary of validation results of 3-gene signature on Ried et al data, independent colon 
cancer datasets and NCI 60 data. 

Dataset Classifier Predicted 
variable 

Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity + 
Specificity)/2 

(%) 

Overall 
accuracy 

(%) 
Ried et al training set 

(n=36)  
PMID 17210682 

LWL Recurrence 80.00 96.20 88.10 91.66 

Ried et al training set 
(n=36)  

PMID 17210682 

Cox 
model Recurrence 80.00 96.20 88.10 91.66 

Koinuma et al 
(n=17) 

PMID 16247484 

Multilayer 
perceptron 

Lymph 
node status 71.40 90.00 80.70 82.35 

Barrier et al 
(n=18) 

PMID 16091735 

Threshold 
selector Recurrence 88.90 77.80 83.35 83.33 

Barrier et al 
(n=50) 

PMID 16966692 
IB1 Recurrence 76.00 80.00 78.00 78.00 

NCI 60 U133A 
(n=34) 

Threshold 
selector 

Drug 
response 
(5-FU) 

94.10 88.20 91.15 91.17 

NCI 60 U133B 
(n=34) 

Threshold 
selector 

Drug 
response 
(5-FU) 

88.23 88.23 88.23 88.23 
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4.4 Study Design for the 5-gene signature 
 

 

 

 

  

 

 

 

 

 

  

  

  

 

 

  

  

 

  

 

 

 

 

 

 

Figure 4.7 Block diagram of the study for 5-gene signature 

Validation on Ried et al data, plotting Time-
dependent ROC and Kaplan Meier plots 

Building recurrence prediction model and cross validation 
on other colon cancer datasets 

5-gene signature 

Colon cancer data from Ried et al (n=73) 

Missing value replacement using knn 
algorithm on training set (k=20) 

Applying random forests using VarSelRF 
package using R software 

8-gene signature 

Using Infogain attribute selection in Weka to rank the 
genes and discarding the 3 genes with lowest ranks 

 

 

Splitting data into training (n=36) and testing sets (n=37) 

 

Applying t-test on genes having > 5 missing values to determine differential gene 
expression in lymph node negative versus positive patients 

 

Selecting genes passing t-test and all other genes 
with ≤ 5 missing values 
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4.4.1 Experimental procedure 
 
Data Source The colon cancer microarray data from Ried et al. (13) contained 22,464 genes and 73 

patient samples, all of them treated for primary adenocarcinomas of the colon. Of these 33 tumor samples 

were stage II (lymph node negative) and 40 tumor samples were stage III (lymph node positive). 

Log Ratio Every spot on the microarray provides two intensity values each of them associated with a 

specific channel. Dividing one intensity by the other gives the expression ratio. We used log ratios as they 

are lot easier to work with than regular ratios. The log ratio (532/635) was considered for this analysis 

which is log (base 2) transformation of the ratio of medians at wavelengths of 532nm and 635 nm.  

Data Preprocessing - t test We investigated whether the observed difference between the two groups 

(node positive versus negative) represents a real difference in the total study population from which the 

sample was drawn, or whether it just occurred by chance (due to sampling variation), by using t-test.  The 

number of missing values for each gene was found and t-test was done on genes with more than 5 missing 

values to evaluate the difference in the proportions of missing values in node positive versus negative 

groups. The genes passing the t-test (p < 0.05, two-sided) were included along with all genes having less 

than 5 missing values for further processing. A total of 10,220 genes satisfied this condition. 

Training dataset The training dataset consisted of the patient samples with recurrence, survival time ≥ 60 

months selected based on the clinical data available for the dataset. The expression data of the 10,220 

genes and 36 patients, constituted the training set. The remaining patients formed the testing set. 

Missing value replacement The training dataset contained missing values. They were replaced using the 

EMV 32

                                                      
32 http://cran.r-project.org/web/packages/EMV/index.html 

 package in R software with k=20. This technique estimates the missing values based on the k 

nearest neighbors algorithm. This algorithm selects the k nearest rows that do not contain any missing 
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values to the one containing at least one missing value, based on the Euclidian distance. Then the missing 

values are replaced by the average of the neighbors. 

Biomarker identification VarSelRF33

Table 4.25 The 5-gene signature for predicting colon cancer recurrence. 

 package in R was used in a series of steps on the training dataset 

to find the important features. The recurrence status was used as the class variable. In the first step, a 

forest with N trees was built and the features were ranked according to the importance of the variables. In 

the second step, 20% of the variables that were least important were removed and a new forest was 

constructed with K trees. This step was repeated till there were two genes left. In the experiment, a value 

of N = 2000 and K =1000 were considered, because a large number of trees in the initial forests is likely 

to produce stable importance measures (23). After fitting all forests, the OOB error rates from all the 

fitted random forests were examined and a set of 8 genes leading to the smallest error rate were selected. 

The InfoGain attribute selection technique was used to drop three least ranked genes (LOC114659--

KIAA0563, cDNA DKFZp564O1172, and NET1) and obtained the 5-gene signature. Table 4.25 shows the 

5-gene signature. 

GENE NAME  ID 
TPD52L2-tumor protein D52-like2 H200013992 
CDNA FLJ44020 fis, clone TESTI4026295 H200020685 
ZNF187-zinc finger protein 187 (ZNF187) H200015602 
HSPA14-heat shock 70kDa protein 14 H200018991 
SLC25A5-solute carrier family 25 H200006643 
 

 
 
 
 
 
 
 

                                                      
33 http://cran.r-project.org/web/packages/varSelRF/index.html 
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4.5 Results 

4.5.1 Building prediction model using Weka 
 
The training set consisted of expression data of the 5-gene signature in 36 patients (10 patients having 

recurrence within 5 years after surgery and 26 patients having survival time more than 5 years without 

recurrence). The remaining patients formed the testing set. 10-fold cross validation was used on the 

training dataset. Different classification schemes in Weka were applied on the training set to find the best 

scheme. Table 4.26 shows the top five classifiers including Random Tree, KStar, AD Tree, IB1, and 

Multilayer perceptron based on their prediction accuracies. Random Tree classifier performed better than 

the other classifiers. It had a sensitivity of 70.00%, a specificity of 88.46% and an overall accuracy of 

83.33%. Table 4.27 shows the confusion matrix for Random Tree classifier. The difference in overall 

accuracy between Random Tree and other classifiers was not statistically significant due to the small 

sample size. The Random Tree classifier model was saved and used to predict class (recurrence/no 

recurrence) for patients in the testing set. Table 4.28 shows the predicted class for patients in the testing 

set using the Random Tree prediction model and compares it with the class predictions obtained from the 

Cox model. 

Table 4.26 Comparison of accuracies obtained from different classifiers for predicting recurrence 
using the 5-gene signature. The improved overall accuracy of the prediction with the Random Tree 
classifier compared with other methods was assessed by significance testing (N = 36). 

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity+ 
Specificity)/2 

(%) 

Overall 
Accuracy 

(%) 
P-value 

Random Tree 70.00 88.46 79.23 83.33  
KStar 40.00 92.30 66.15 77.77 < 0.28 

AD Tree 50.00 84.60 67.30 75.00 < 0.19 
IB1 30.00 88.50 59.25 72.22 < 0.13 

Multilayer perceptron 30.00 84.60 57.30 69.44 < 0.08 
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Table 4.27 Confusion matrix obtained from the Random Tree classifier for predicting recurrence 
using the 5-gene signature. 

Actual/Predicted a (no recurrence) b (recurrence) 
a (no recurrence) 23 3 

b (recurrence) 3 7 
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Table 4.28 Predicting recurrence in patients from the testing dataset using the 5-gene signature. 

Serial. 
No 

Patient 
Number 

Prediction by 
Random Tree 

Prediction by 
Cox model Match 

1 CC-P1 No recurrence No recurrence Y 
2 CC-P2 No recurrence Recurrence - 
3 CC-P4 No recurrence No recurrence Y 
4 CC-P7 No recurrence No recurrence Y 
5 CC-P8 No recurrence Recurrence - 
6 CC-P10 No recurrence No recurrence Y 
7 CC-P13 No recurrence No recurrence Y 
8 CC-P18 No recurrence Recurrence - 
9 CC-P20 No recurrence Recurrence - 

10 CC-P21 No recurrence No recurrence Y 
11 CC-P22 Recurrence Recurrence Y 
12 CC-P23 No recurrence No recurrence Y 
13 CC-P25 No recurrence No recurrence Y 
14 CC-P28 No recurrence Recurrence - 
15 CC-P29 No recurrence Recurrence - 
16 CC-P31 Recurrence No recurrence - 
17 CC-P34 No recurrence Recurrence - 
18 CC-P35 No recurrence Recurrence - 
19 CC-P37 No recurrence No recurrence Y 
20 CC-P38 No recurrence No recurrence Y 
21 CC-P40 No recurrence No recurrence Y 
22 CC-P42 No recurrence No recurrence Y 
23 CC-P44 No recurrence No recurrence Y 
24 CC-P46 No recurrence No recurrence Y 
25 CC-P47 No recurrence No recurrence Y 
26 CC-P48 No recurrence No recurrence Y 
27 CC-P50 No recurrence No recurrence Y 
28 CC-P51 Recurrence No recurrence - 
29 CC-P55 No recurrence No recurrence Y 
30 CC-P56 No recurrence No recurrence Y 
31 CC-P60 No recurrence No recurrence Y 
32 CC-P62 No recurrence No recurrence Y 
33 CC-P66 No recurrence No recurrence Y 
34 CC-P68 No recurrence No recurrence Y 
35 CC-P70 No recurrence Recurrence - 
36 CC-P71 Recurrence Recurrence Y 
37 CC-P72 No recurrence Recurrence - 
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4.5.2 Plotting Kaplan-Meier curves based on the patient subgroups obtained from 
Random Tree prediction model on data from Ried et al (n=73) using the 5-gene 
signature 
 
The Random Tree recurrence prediction model discussed in the previous section generated two subgroups 

of patients, recurrence and no recurrence on the training and testing data sets. Kaplan-Meier curves were 

plotted based on the expression data of 5-gene signature in the 73 patient samples (Ried et al) and the 

patient subgroups obtained from Random Tree prediction model. The Kaplan-Meier plots generated 

significant patient stratification into no recurrence and recurrence groups (p < 0.05, n=73, log-rank tests), 

with distinct relapse-free survival. Figure 4.8 shows the survival probabilities for each of the patient 

subgroups for relapse-free survival. 

 

Figure 4.8 Kaplan-Meier plots on data from Ried et al (n=73) for relapse-free survival using the 5-
gene signature, based on patient subgroups obtained from Random Tree recurrence prediction 
model. 

 

4.5.3 Time-dependent ROC analyses on data from Ried et al (n=73) 
 
To explore whether the 5-gene recurrence signature could predict patient disease-free survival and overall 

survival, the survival and status information along with the expression data of the 5 genes were used for 

getting the time-dependent ROC curves. The accuracy of 5-year relapse-free survival prediction using 

these 5 genes is 0.73 and 5-year overall survival prediction is 0.73, as represented by the AUC. 
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Figure 4.9 Time-dependent ROC plots on data from Ried et al (n=73) for relapse-free survival and 
overall survival using the 5-gene signature. 

 

4.5.4 Kaplan-Meier analyses on data from Ried et al (n=73) 
 
The Cox model based on the expression of the 5-gene signature was used to get recurrence risk scores for 

all 73 patient samples. The choices for choosing a cut-off value for patient stratification are the peak value 

from histogram, mean risk score or median risk score. In this analysis, the peak value from histogram was 

chosen as cut-off as it resulted in best patient stratification. Cut-off values of 0.25 and -0.5 were chosen 

for relapse-free survival and overall survival, respectively. The pamr package in R was used to plot the 

relapse-free survival probability of low-risk and high-risk groups. The low-risk and high-risk groups had 

distinct relapse-free survival (p = 0.01, n=73, log-rank tests). The low-risk and high-risk groups had 

distinct overall survival (p = 0.04, n=73, log-rank tests). 
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Figure 4.10 Histograms of risk scores obtained from Cox model for relapse-free survival and 
overall survival using the 5-gene signature. 

 

                                                                
 

Figure 4.11 Kaplan-Meier plots on data from Ried et al (n=73) for relapse-free survival and overall 
survival using the 5-gene signature. 

 
Out of the 73 patients in the colon cancer data from Ried et al, 26 patients remained relapse-free for more 

than 5 years and 10 patients had recurrence within 5 years after surgery. To test the performance of the 5-

gene signature the subgroups obtained for the above group of 36 patients from the Cox model were 

compared with their actual clinical outcomes. Table 4.29 shows the different parameters obtained from 

the Cox model using the 5-gene signature, for relapse-free survival and overall survival, respectively. 

Tables 4.30 and 4.31, show the comparison of predicted clinical outcome for patients with their actual 
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follow-up information, for relapse-free survival and overall survival, respectively. The Cox model had a 

sensitivity of 70.0%, a specificity of 80.8%, and an overall accuracy of 77.8%, for predicting relapse-free 

survival. In predicting overall survival, it had a sensitivity of 30.0%, a specificity of 91.7%, and an overall 

accuracy of 63.6%.  

Table 4.29 Different parameters obtained from Cox model using the 5-gene signature for relapse-
free survival and overall survival. 

Relapse-free survival Overall survival 

Gene symbol coef exp 
(coef) 

se 
(coef) z-score p-

value coef exp 
(coef) 

se 
(coef) 

z-
score 

p-
value 

TPD52L2 1.0024 2.725 0.571 1.7548 0.079 0.519 1.680 0.325 1.596 0.11 
CDNAFLJ44020 0.6445 1.905 0.483 1.3351 0.180 0.389 1.476 0.278 1.398 0.16 

ZNF187 -0.0248 0.975 0.266 -0.0935 0.930 0.081 1.084 0.075 1.079 0.28 
HSPA14 0.0749 1.078 0.344 0.2181 0.830 -0.159 0.853 0.214 -0.742 0.46 

SLC25A5 -0.1238 0.884 0.349 -0.3547 0.720 -0.092 0.912 0.249 -0.368 0.71 
 

Table 4.30 Comparison of the sub groups predicted from the Cox model using the 5-gene signature 
with the actual subgroups for relapse-free survival. 

 Recurrence No recurrence Sensitivity (%) Specificity (%) Overall Accuracy (%) 
Recurrence 7 3 70.0 80.8 77.8 No recurrence 5 21 

 

Table 4.31 Comparison of the sub groups predicted from the Cox model using the 5-gene signature 
with the actual subgroups for overall survival. 

 Death Alive Sensitivity (%) Specificity (%) Overall Accuracy (%) 
Death 6 14 30.0 91.7 63.6 Alive 2 22 

 

The Cox model was used for stratifying all the 73 patient samples in Ried et al data into low-risk and 

high-risk groups based on the 5-gene signature. Out of the 73 patients, a total of 37 patients had no 

recurrence with survival times less than 5 years. Twenty-nine patients had overall survival times less than 

5 years without any event (death). The relapse outcome for the 37 patients and the overall survival 

outcome for the 29 patients is currently unknown. Table 4.32 shows the prospective prognostic 

predictions of these patients obtained from the Cox model for relapse-free survival and overall survival, 
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respectively. The follow-up information for these patients is being collected. When it becomes available 

in the future, the predictions can be compared with it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

85 
 

Table 4.32 Patient subgroups obtained from the Cox model for relapse-free survival using the 5-
gene signature. 

 

Serial  
Number Patient ID 

Predicted group by 
Cox model (RFS)          Patient ID Predicted group by 

Cox model (OS) 
1 CC-P1 Low Risk CC-P1 Low Risk 
2 CC-P2 High Risk CC-P4 Low Risk 
3 CC-P4 Low Risk CC-P7 Low Risk 
4 CC-P7 Low Risk CC-P8 Low Risk 
5 CC-P8 High Risk CC-P9 Low Risk 
6 CC-P10 Low Risk CC-P11 High Risk 
7 CC-P13 Low Risk CC-P13 Low Risk 
8 CC-P18 High Risk CC-P16 Low Risk 
9 CC-P20 High Risk CC-P18 Low Risk 
10 CC-P21 Low Risk CC-P20 Low Risk 
11 CC-P22 High Risk CC-P21 Low Risk 
12 CC-P23 Low Risk CC-P22 High Risk 
13 CC-P25 Low Risk CC-P25 Low Risk 
14 CC-P28 High Risk CC-P28 High Risk 
15 CC-P29 High Risk CC-P31 Low Risk 
16 CC-P31 Low Risk CC-P35 Low Risk 
17 CC-P34 High Risk CC-P36 Low Risk 
18 CC-P35 High Risk CC-P37 Low Risk 
19 CC-P37 Low Risk CC-P38 Low Risk 
20 CC-P38 Low Risk CC-P40 Low Risk 
21 CC-P40 Low Risk CC-P48 Low Risk 
22 CC-P42 Low Risk CC-P50 Low Risk 
23 CC-P44 Low Risk CC-P51 Low Risk 
24 CC-P46 Low Risk CC-P60 Low Risk 
25 CC-P47 Low Risk CC-P62 Low Risk 
26 CC-P48 High Risk CC-P66 Low Risk 
27 CC-P50 Low Risk CC-P71 High Risk 
28 CC-P51 Low Risk CC-P72 Low Risk 
29 CC-P55 Low Risk CC-P73 Low Risk 
30 CC-P56 Low Risk   
31 CC-P60 Low Risk   
32 CC-P62 Low Risk   
33 CC-P66 Low Risk   
34 CC-P68 Low Risk   
35 CC-P70 High Risk   
36 CC-P71 High Risk   
37 CC-P72 High Risk   
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4.5.5 Independence of 5-gene recurrence signature of tumor stage 

This part of the study was focused on verifying if the recurrence predictions obtained on Ried et al data 

were statistically significant when validated separately in Stage II and Stage III patients. It was seen that 

the 5-gene signature could stratify the patients into low-risk and high-risk groups in Stage II and Stage III 

samples individually with distinct relapse-free survival. The patient subgroups were obtained based on the 

Random Tree model. The patients belonging to the low-risk group had higher survival probabilities than 

those belonging to the high-risk group. Based on the predictions from Cox model using the 5-gene 

signature, Kaplan-Meier plots were plotted in Stage II and Stage III samples separately. But the patient 

stratification was not statistically significant and the results were not reported. So it can be said that 

Random Tree model is the best model for predicting recurrence using the 5-gene signature. These results 

confirm that the 5-gene recurrence signature might be applicable to prognostic categorization for the 

clinical management of colon cancer.  

                          

Figure 4.12 The 5-gene signature stratifies patients in Stage II tumors and Stage III tumors into 
distinct low-risk and high-risk groups for relapse-free survival using the random tree model. 
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4.5.6 External validation of the 5-gene signature on other colon cancer data 

This part of the study sought to explore the extent to which the 5-gene signature could be used for 

prediction of lymph node status, recurrence, and drug response in publicly available independent datasets. 

More than 50 classifiers available in Weka software were tested using a leave-one-out cross validation 

technique on each of the independent datasets to find a suitable classification scheme for validation. Due 

to the different number of attributes (matching genes), sample sizes and prediction variables one specific 

scheme could not be used for validation on all the datasets. Different classifiers had to be employed on 

the validation datasets to get fair prediction accuracy. As far as possible the same set of classifiers were 

presented in the comparison tables of validation datasets to provide a fair evaluation of the performance. 

The exact same set of classifiers could not be compared over all the validation datasets due to poor 

performances of classifiers on some datasets and good performances on other datasets. The following 

sections discuss the validation results and comparisons of various classifiers on the independent datasets 

in detail. 

4.5.6.1 Predicting lymph node status by leave-one-out cross validation on data from 
Koinuma et al. (n=17) PMID 16247484 
 
The data from Koinuma et al (Affymetrix HG U133 B platform) consisted of 20 patient samples of which 

3 patients were Duke’s stage D. The Duke’s stage D patients were not considered for validation. The 

search for matching genes with the 5-gene signature was done using the Affymetrix ids. There were 2 

matching genes (Table 4.33). The data used for validation consisted of the expression of these 2 genes in 

the 17 patient samples. Weka software was used for validation and lymph node status (positive/negative) 

was predicted. Different classification schemes including KStar, Random Tree, Threshold selector, 

Multilayer perceptron, and AD Tree were applied to this dataset to find the best scheme. Table 4.34 

shows the comparison between KStar and some of the classifiers used for validation on other datasets. 

KStar classifier performed better than the other classifiers. It had a sensitivity of 57.10%, a specificity of 

70.00%, and an overall accuracy of 64.70%. Table 4.35 shows the confusion matrix for KStar classifier. 
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The difference in overall accuracy between KStar and other classifiers was not statistically significant due 

to the small sample size. 

Table 4.33 Matching genes in Koinuma et al data. 

GENE NAME  ID 
HSPA14-heat shock 70kDa protein 14 H200018991 
SLC25A5-solute carrier family 25 H200006643 
 

Table 4.34 Comparison of accuracies obtained from different classifiers for predicting lymph node 
status using the 5-gene signature. The improved overall accuracy of the prediction with the KStar 
classifier compared with other methods was assessed by significance testing (N = 17). 

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity+ 
Specificity)/2 

(%) 

Overall 
Accuracy 

(%) 
P-value 

KStar 57.10 70.00 63.55 64.70  
Random Tree 57.10 60.00 58.55 58.82 < 0.37 

Threshold selector 85.70 40.00 62.85 58.82 < 0.37 
Multilayer perceptron 28.60 50.00 39.30 41.17 < 0.09 

AD Tree 28.60 50.00 39.30 41.17 < 0.09 
 

Table 4.35 Confusion matrix obtained from the KStar classifier for predicting lymph node status 
using the 5-gene signature. 

Actual/Predicted a (positive) b (negative) 
a (positive) 4 3 
b (negative) 3 7 

 

4.5.6.2 Predicting recurrence by leave-one-out cross validation on data from Barrier et al. 
(n=18) PMID 16091735 
 
The data from Barrier et al (PMID 16091735) consisted of 22,283 genes and 18 patient samples. The 

search for matching genes with the 5-gene signature was done using the Affymetrix ids. There were 4 

matching genes (Table 4.36). The data used for validation consisted of the expression of these 4 genes in 

the 18 patients. Weka software was used for validation and recurrence (yes/no) was predicted. Different 

classification schemes including AD Tree, Random Tree, Threshold selector, KStar, and Multilayer 

perceptron were applied to this dataset to find the best scheme. Table 4.37 shows the comparison between 

AD Tree and some of the classifiers used for validation on other datasets. AD Tree classifier performed 
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better than the other classifiers. It had a sensitivity of 88.88%, a specificity of 88.88%, and an overall 

accuracy of 88.88%. Table 4.38 shows the confusion matrix for AD Tree classifier. The difference in 

overall accuracy between AD Tree and other classifiers was not statistically significant due to the small 

sample size. 

Table 4.36 Matching genes in Barrier et al data. 

GENE NAME  ID 
TPD52L2-tumor protein D52-like2 H200013992 
ZNF187-zinc finger protein 187 (ZNF187) H200015602 
HSPA14-heat shock 70kDa protein 14 H200018991 
SLC25A5-solute carrier family 25 H200006643 
 

Table 4.37 Comparison of accuracies obtained from different classifiers for predicting recurrence 
using the 5-gene signature. The improved overall accuracy of the prediction with the AD Tree 
classifier compared with other methods was assessed by significance testing (N = 18). 

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity+ 
Specificity)/2 

(%) 

Overall 
Accuracy 

(%) 
P-value 

AD Tree 88.88 88.88 88.88 88.88  
Random Tree 66.66 66.66 66.66 66.66 < 0.06 

Threshold selector 77.80 66.70 72.25 72.22 < 0.10 
KStar 77.80 55.60 66.70 66.66 < 0.06 

Multilayer perceptron 77.80 77.80 77.80 77.77 < 0.18 
 

Table 4.38 Confusion matrix obtained from the AD Tree classifier for predicting recurrence using 
the 5-gene signature. 

Actual/Predicted a (recurrence) b (no recurrence) 
a (recurrence) 8 1 

b (no recurrence) 1 8 
 
 
4.5.6.3 Predicting recurrence by leave-one-out cross validation on data from Barrier et al. 
(n=50) (PMID 16966692) 
 
The data from Barrier et al (PMID 16966692) consisted of 22,283 genes and 50 patient samples. The 

search for matching genes with the 5-gene signature was done using the Affymetrix ids. There were 4 

matching genes (Table 4.39). The data used for validation consisted of the expression of these 4 genes in 
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the 50 patient samples. Weka software was used for validation and recurrence (yes/no) was predicted. 

Different classification schemes including Threshold selector, KStar, IB1, AD Tree, and Multilayer 

perceptron were applied to this dataset to find the best scheme. Table 4.40 shows the comparison between 

Threshold selector and some of the classifiers used for validation on other datasets. Threshold selector 

classifier performed better than the other classifiers. It had a sensitivity of 84.00%, a specificity of 

68.00%, and an overall accuracy of 76.00%. Table 4.41 shows the confusion matrix for Threshold 

selector classifier. The difference in overall accuracy between Threshold selector and other classifiers was 

not statistically significant due to the small sample size. 

Table 4.39 Matching genes in Barrier et al data. 

GENE NAME  ID 
TPD52L2-tumor protein D52-like2 H200013992 
ZNF187-zinc finger protein 187 (ZNF187) H200015602 
HSPA14-heat shock 70kDa protein 14 H200018991 
SLC25A5-solute carrier family 25 H200006643 
 

Table 4.40 Comparison of accuracies obtained from different classifiers for predicting recurrence 
using the 5-gene signature. The improved overall accuracy of the prediction with the Threshold 
selector classifier compared with other methods was assessed by significance testing (N = 50). 

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity+ 
Specificity)/2 

(%) 

Overall 
Accuracy 

(%) 
P-value 

Threshold selector 84.00 68.00 76.00 76.00  
KStar 80.00 68.00 74.00 74.00 < 0.40 
IB1 76.00 72.00 74.00 74.00 < 0.40 

AD Tree 76.00 64.00 70.00 70.00 < 0.24 
Multilayer perceptron 60.00 68.00 64.00 64.00 < 0.09 

 

Table 4.41 Confusion matrix obtained from the Threshold selector classifier for predicting 
recurrence using the 5-gene signature. 

Actual/Predicted a (no recurrence) b (recurrence) 
a (no recurrence) 17 8 

b (recurrence) 4 21 
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4.5.6.4 Predicting recurrence by leave-one-out cross validation on data from Barrier et al. 
(n=24) (PMID 17043639) 
 
The data from Barrier et al (PMID 17043639) consisted of 22,283 genes and 24 patient samples. The 

search for matching genes was done using the Affymetrix ids. There were 4 matching genes (Table 4.42). 

The data used for validation consisted of the expression of these 4 genes in the 24 patient samples. Weka 

software was used for validation and recurrence (yes/no) was predicted. Different classification schemes 

including Threshold selector, Logistic regression, LWL, Multilayer perceptron, and AD Tree were 

applied to this dataset to find the best scheme. Table 4.43 shows the comparison between Threshold 

selector and some of the classifiers used for validation on other datasets. Threshold selector classifier 

performed better than the other classifiers. It had a sensitivity of 50.00%, a specificity of 92.90%, and an 

overall accuracy of 75.00%. Table 4.44 shows the confusion matrix for Threshold selector classifier. The 

difference in overall accuracy between Threshold selector and other classifiers was not statistically 

significant due to the small sample size. 

Table 4.42 Matching genes in Barrier et al data. 

GENE NAME  ID 
TPD52L2-tumor protein D52-like2  H200013992 
ZNF187-zinc finger protein 187 (ZNF187) H200015602 
HSPA14-heat shock 70kDa protein 14 H200018991 
SLC25A5-solute carrier family 25 H200006643 
 

Table 4.43 Comparison of accuracies obtained from different classifiers for predicting recurrence 
using the 5-gene signature. The improved overall accuracy of the prediction with the Threshold 
selector classifier compared with other methods was assessed by significance testing (N = 24). 

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity+ 
Specificity)/2 

(%) 

Overall 
Accuracy 

(%) 
P-value 

Threshold selector 50.00 92.90 47.63 75.00  
Logistic regression 60.00 78.60 69.30 70.83 < 0.38 

LWL 70.00 71.40 70.70 70.83 < 0.38 
Multilayer perceptron 60.00 78.60 69.30 70.83 < 0.38 

AD Tree 70.00 64.30 67.15 66.66 < 0.27 
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Table 4.44 Confusion matrix obtained from the Threshold selector classifier for predicting 
recurrence using the 5-gene signature. 

Actual/Predicted a (no recurrence) b (recurrence) 
a (no recurrence) 13 1 

b (recurrence) 5 5 
 

4.5.6.5 Predicting the response of cell lines in NCI-60 (U133A GCRMA) data (n=34) by 
leave-one-out cross validation 
 
This dataset34

Table 4.45 Matching genes in NCI-60 U133A data. 

 consisted of 21,225 genes and 60 cell lines (41). Our focus was on the sensitive and 

resistant cell lines, so cell lines with intermediate response were not considered for validation. A total of 

34 cell lines (17 sensitive and the other 17 resistant to the drug 5-FU) were used in validation. The search 

for matching genes was done using the gene symbols. There were 4 matching genes (Table 4.45). The 

data used for validation consisted of the expression of these 4 genes in the 34 cell lines. Weka software 

was used for validation and the response (sensitive/resistant) for the drug 5-FU (fluorouracil) was 

predicted. Different classification schemes including Threshold selector, Multilayer perceptron, Random 

Tree, KStar, and AD Tree were applied to this dataset to find the best scheme. Table 4.46 shows the 

comparison between Threshold selector and some of the classifiers used for validation on other datasets. 

Threshold selector classifier performed better than the other classifiers. It had a sensitivity of 82.40%, a 

specificity of 64.70%, and an overall accuracy of 73.52%. Table 4.47 shows the confusion matrix for 

Threshold selector classifier. The difference in overall accuracy between Threshold selector and 

Multilayer perceptron (p < 0.01), KStar (p < 0.04), AD Tree (p < 0.02) was statistically significant. 

GENE NAME  ID 
TPD52L2-tumor protein D52-like2 H200013992 
ZNF187-zinc finger protein 187 (ZNF187) H200015602 
HSPA14-heat shock 70kDa protein 14 H200018991 
SLC25A5-solute carrier family 25 H200006643 
 

 
                                                      
34 http://discover.nci.nih.gov/cellminer/loadDownload.do 
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Table 4.46 Comparison of accuracies obtained from different classifiers for predicting drug 
response using the 5-gene signature. The improved overall accuracy of the prediction with the 
Threshold selector classifier compared with other methods was assessed by significance testing (N = 
34). 

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity+ 
Specificity)/2 

(%) 

Overall 
Accuracy 

(%) 
P-value 

Threshold selector 82.40 64.70 73.55 73.52  
Multilayer perceptron 52.90 35.30 44.10 44.11 < 0.01 

Random Tree 58.80 52.90 55.85 55.88 < 0.07 
KStar 64.70 41.20 52.95 52.94 < 0.04 

AD Tree 41.20 52.90 47.05 47.05 < 0.02 
 

Table 4.47 Confusion matrix obtained from the Threshold selector classifier for predicting drug 
response using the 5-gene signature. 

Actual/Predicted a (sensitive) b (resistant) 
a (sensitive) 14 3 
b (resistant) 6 11 

 

4.5.6.6 Predicting the response of cell lines in NCI-60 (U133B GCRMA) data (n=34) by 
leave-one-out cross validation 
 
This dataset35

                                                      
35 http://discover.nci.nih.gov/cellminer/loadDownload.do 

 consisted of 17910 genes and 60 cell lines (41). Our focus was on the sensitive and resistant 

cell lines, so cell lines with intermediate response were not considered for validation. A total of 34 cell 

lines (17 sensitive and the other 17 resistant to the drug 5-FU) were used in validation. The search for 

matching genes was done using the gene symbols. There was 1 matching gene (Table 4.48). The data 

used for validation consisted of the expression of this gene in the 34 cell lines. Weka software was used 

for validation and the response (sensitive/resistant) for the drug 5-FU (fluorouracil) was predicted. 

Different classification schemes including Threshold selector, AD Tree, Random Tree, IB1, and KStar 

were applied to this dataset to find the best scheme. Table 4.49 shows the comparison between Threshold 

selector and some of the classifiers used for validation on other datasets. Threshold selector classifier 

performed better than the other classifiers. It had a sensitivity of 82.35%, a specificity of 82.35%, and an 
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overall accuracy of 82.35%. Table 4.50 shows the confusion matrix for Threshold selector classifier. The 

difference in overall accuracy between Threshold selector and AD Tree (p < 0.05), Random Tree (p < 

0.01), IB1 (p < 0.05), KStar (p < 0.01) was statistically significant. 

Table 4.48 Matching genes in NCI-60 U133B data. 

GENE NAME  ID 
HSPA14-heat shock 70kDa protein 14 H200018991 
 

Table 4.49 Comparison of accuracies obtained from different classifiers for predicting drug 
response using the 5-gene signature. The improved overall accuracy of the prediction with the 
Threshold selector classifier compared with other methods was assessed by significance testing (N = 
34). 

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity+ 
Specificity)/2 

(%) 

Overall 
Accuracy 

(%) 
P-value 

Threshold selector 82.35 82.35 82.35 82.35  
AD Tree 64.70 64.70 64.70 64.70 < 0.05 

Random Tree 52.90 58.80 55.85 55.88 < 0.01 
IB1 52.90 47.10 50.00 50.00 < 0.01 

KStar 58.80 29.40 44.10 44.11 < 0.01 
 

Table 4.50 Confusion matrix obtained from the Threshold selector classifier for predicting drug 
response using the 5-gene signature. 

Actual/Predicted a (sensitive) b (resistant) 
a (sensitive) 14 3 
b (resistant) 3 14 
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4.5.7 Summary of validation results of 5-gene signature 

Table 4.51 shows the details of different validation datasets, predicted variables, classifiers used and 

different accuracies obtained using the 5-gene signature. For each dataset the classifier with the highest 

overall accuracy was reported.  

Table 4.51 Summary of validation results of 3-gene signature on Ried et al data, independent colon 
cancer datasets and NCI 60 data. 

Dataset Classifier Predicted 
variable 

Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity + 
Specificity)/2 

(%) 

Overall 
accuracy 

(%) 
Ried et al training set 

(n=36)  
PMID 17210682 

Random 
Tree Recurrence 70.00 88.46 79.23 83.33 

Ried et al training set 
(n=36)  

PMID 17210682 

Cox 
model Recurrence 70.00 80.80 75.40 77.80 

Koinuma et al 
(n=17) 

PMID 16247484 
KStar Lymph 

node status 57.10 70.00 63.55 64.70 

Barrier et al 
(n=18) 

PMID 16091735 
AD Tree Recurrence 88.88 88.88 88.88 88.88 

Barrier et al 
(n=50) 

PMID 16966692 

Threshold 
selector Recurrence 84.00 68.00 76.00 76.00 

Barrier et al 
(n=24)  

PMID 17043639 

Threshold 
selector Recurrence 50.00 92.90 47.63 75.00 

NCI 60 U133A 
(n=34) 

Threshold 
selector 

Drug 
response 
(5-FU) 

82.40 64.70 73.55 73.52 

NCI 60 U133B 
(n=34) 

Threshold 
selector 

Drug 
response 
(5-FU) 

82.35 82.35 82.35 82.35 
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4.6 Comparison of 3-gene and 5-gene signatures 

This part of the study discusses the 3-gene and 5-gene recurrence signatures and compares them. The 

gene SLC25A5 was common in both the gene signatures. Based on the prediction accuracies obtained 

from the independent validation datasets, it can be seen that the 3-gene signature performs better than the 

5-gene signature. But the patient stratification in Stage II and Stage II tumor samples, by both the gene 

signatures were statistically significant. It can be concluded that both the 3-gene and 5-gene signatures 

could be used to predict recurrence and identify patients at high-risk of recurrence. Table 4.52 shows the 

comparison between 3-gene signature and 5-gene signature in detail. The difference in the prediction 

accuracies obtained from 3-gene and 5-gene signature on NCI-60 U133A data was statistically 

significant, whereas the results on other datasets were not significant. 

Table 4.52 Comparison of prediction accuracies obtained from 3-gene and 5-gene signatures on 
independent datasets. The improved overall accuracy of the prediction with the 3-gene signature 
compared with the 5-gene signature was assessed by significance testing. 

Dataset 

Ried et al 
training 
dataset 
(n=36) 

Ried et al 
training 
dataset 
(n=36) 

Koinuma 
et al data 

(n=17) 

Barrier 
et al data 

(n=18) 

Barrier 
et al data 

(n=50) 

NCI-60 
U133A 

data 
(n=34) 

NCI-60 
U133B 

data 
(n=34) 

Predicted 
variable Recurrence Recurrence Lymph 

node status Recurrence Recurrence Drug 
response 

Drug 
response 

3-
ge

ne
 si

gn
at

ur
e 

Classifier LWL Cox model Multilayer 
perceptron 

Threshold 
selector IB1 Threshold 

selector 
Threshold 
selector 

Sensitivity 
(%) 80.00 80.00 71.40 88.90 76.00 94.10 88.23 

Specificity 
(%) 96.20 96.10 90.00 77.80 80.00 88.20 88.23 

Overall 
accuracy 

(%) 
91.66 91.70 82.35 83.33 78.00 91.17 88.23 

5-
ge

ne
 si

gn
at

ur
e 

Classifier Random 
Tree Cox model KStar AD Tree Threshold 

selector 
Threshold 
selector 

Threshold 
selector 

Sensitivity 
(%) 70.00 70.00 57.10 88.88 84.00 82.40 82.35 

Specificity 
(%) 88.46 80.80 70.00 88.88 68.00 64.70 82.35 

Overall 
accuracy 

(%) 
83.33 77.80 64.70 88.88 76.00 73.52 82.35 

P-value < 0.15 < 0.06 < 0.13 < 0.31 < 0.41 < 0.03 < 0.25 
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4.7 Summary 

In this chapter, we described how the recurrence gene signatures were identified. A combinatorial scheme 

was utilized for feature selection. Firstly, variable selection using random forests was applied on the 

preprocessed data to identify gene subsets, and secondly, InfoGain attribute selection technique was 

applied to reduce the dimensionality of the gene signatures without decreasing the predictive power. Two 

prediction models were built independently with the 3-gene and the 5-gene signatures using classifiers in 

Weka software to predict the risk stage of the patients in the testing set (patients whose recurrence status 

is currently unknown). The subgroups of patients without recurrence and survival time more than 5 years, 

and the patients having recurrence within 5 years after surgery obtained from the Cox model had a 

sensitivity of 80.0% and a specificity of 96.1%, using the 3-gene signature. Using the 5-gene signature, 

the sensitivity was 70.0% and the specificity was 80.8%. The Kaplan-Meier plots for the 3-gene signature 

and the 5-gene signature on Ried et al data obtained based on the Cox model stratified patients into 

distinct low-risk and high-risk groups. Both the gene signatures were cross validated on independent 

colon cancer data sets. The drug response of 5-FU (fluorouracil) on the NCI-60 cell line data was 

predicted. To confirm the prognostic applicability of the recurrence gene signatures, Kaplan Meier curves 

were plotted separately for Stage II and Stage III patients based on the predicted subgroups. The 

stratification was statistically significant (log-rank tests, p<0.05) for the 3-gene and 5-gene signatures. 

This confirms that it is feasible to predict recurrence in the Stage II and Stage III tumors with the 3-gene 

and 5-gene signatures.  
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Chapter 5 

Validation of the identified gene signatures on rectal cancer data 

5.1 Introduction 

As colon cancer and rectal cancer are anatomically related, this part of the study sought to explore 

whether the identified colon cancer gene signatures could predict lymph node metastasis and generate 

significant patient stratification into low-risk and high-risk groups on rectal cancer data. The rectal cancer 

data was obtained from Ried et al (n=29) (PMID 16397240) (32). The 29 patients included in this study 

were all participants in a multicenter, randomized prospective phase III clinical trial treated at the 

Department of General Surgery, University Medical Center Gottingen, Germany. This data set of 29 

carcinomas and 20 mucosa biopsies includes 12 patient-matched pairs of biopsies from tumor and normal 

mucosa. The lymph node status, chemoradiotherapy response, disease-free survival, and overall survival 

information was available for all the patients. All the patients received a dose of 50.4Gy of radiation 

accompanied by FU (Fluorouracil). The following sections describe the validation results of the 9-gene 

lymph node status signature, 3-gene and 5-gene recurrence signatures on rectal cancer data including 

time-dependent ROC and Kaplan-Meier analyses. 

5.2 Validation results of the 9-gene signature on rectal cancer data 

5.2.1 Predicting lymph node status by leave-one-out cross validation on cDNA 1 files 
 
The cDNA 1 data files from Ried et al (PMID 16397240) consisted of 23 patient samples. The search for 

matching genes was done using the gene symbols. There were 3 matching genes (Table 5.1). The data 

used for validation consisted of the expression of these 3 genes in the 23 patient samples. Weka software 

was used for validation and lymph node status (negative/positive) was predicted. Different classification 

schemes including AdaboostM1, Multiboost AB, Random Tree, IB1, and Multilayer perceptron were 

applied to this dataset to find the best scheme. Table 5.2 shows the comparison between AdaboostM1 and 
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some of the classifiers used for validation on other datasets. AdaboostM1 classifier performed better than 

the other classifiers. It had a sensitivity of 87.50%, a specificity of 57.10%, and an overall accuracy of 

78.26%. Table 5.3 shows the confusion matrix for AdaboostM1 classifier. The difference in overall 

accuracy between AdaboostM1 and other classifiers was not statistically significant. 

Table 5.1 Matching genes in Ried et al rectal cancer data. 

GENE NAME  ID 
SNRPD3-small nuclear  ribonucleoprotein H200000411 
PLXNB2-plexin B2, mRNA H200000861 
ITGB1-integrin,beta1 (fibronectin) H200021334 
 

Table 5.2 Comparison of accuracies obtained from different classifiers for predicting lymph node 
status using the 9-gene signature. The improved overall accuracy of the prediction with the 
AdaboostM1 classifier compared with other methods was assessed by significance testing (N = 23). 

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity 
+Specificity)/2 

(%) 

Overall 
Accuracy 

(%) 
P-value 

AdaboostM1 87.50 57.10 72.30 78.26  
Multiboost AB 81.30 28.60 54.95 65.21 <0.17 
Random Tree 81.30 28.60 54.95 65.21 <0.17 

IB1 87.50 42.90 65.20 73.91 <0.35 
Multilayer perceptron 81.30 28.60 54.95 65.21 <0.17 
 

Table 5.3 Confusion matrix obtained from the AdaboostM1 classifier for predicting lymph node 
status using the 9-gene signature. 

Actual/Predicted a (node negative) b (node positive) 
a (node negative) 4 3 
b (node positive) 2 14 

 

5.2.2 Predicting lymph node status by leave-one-out cross validation on cDNA2 files 
 
The cDNA 2 data files from Ried et al (PMID 16397240) consisted of 23 patient samples. The search for 

matching genes was done using the gene symbols. There were 3 matching genes (Table 5.4). The data 

used for validation consisted of the expression of these 3 genes in the 23 patient samples. Weka software 

was used for validation and lymph node status (negative/positive) was predicted. Different classification 
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schemes including AdaboostM1, Multiboost AB, Random Tree, IB1, and JRip were applied to this dataset 

to find the best scheme. Table 5.5 shows the comparison between AdaboostM1 and some of the classifiers 

used for validation on other datasets. AdaboostM1 classifier performed better than the other classifiers. It 

had a sensitivity of 93.80%, a specificity of 42.90%, and an overall accuracy of 78.26%. Table 5.6 shows 

the confusion matrix for AdaboostM1 classifier. The difference in overall accuracy between AdaboostM1 

and other classifiers was not statistically significant due to the small sample size. 

Table 5.4 Matching genes in Ried et al rectal cancer data. 

GENE NAME  ID 
SNRPD3-small nuclear  ribonucleoprotein H200000411 
PLXNB2-plexin B2, mRNA H200000861 
ITGB1-integrin,beta1 (fibronectin) H200021334 
 

Table 5.5 Comparison of accuracies obtained from different classifiers for predicting lymph node 
status using the 9-gene signature. The improved overall accuracy of the prediction with the 
AdaboostM1 classifier compared with other methods was assessed by significance testing (N = 23). 

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity+ 
Specificity)/2 

(%) 

Overall 
Accuracy 

(%) 
P-value 

AdaboostM1 93.80 42.90 68.35 78.26  
Multiboost AB 75.00 14.30 44.65 56.52 <0.06 
Random Tree 68.80 28.60 48.70 56.52 <0.06 

IB1 68.80 42.90 55.85 60.86 <0.11 
JRip 93.80 28.60 61.20 73.91 <0.37 

 

Table 5.6 Confusion matrix obtained from the AdaboostM1 classifier for predicting lymph node 
status using the 9-gene signature. 

Actual/Predicted a (node negative) b (node positive) 
a (node negative) 3 4 
b (node positive) 1 15 

 
5.2.3 Predicting lymph node status by leave-one-out cross validation on tumor 
biopsies 1 files 
 
The tumor biopsies 1 data files from Ried et al (PMID 16397240) consisted of 17 patient samples. The 

search for matching genes was done using the gene symbols. There were 9 matching genes (Table 5.7). 
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The data used for validation consisted of the expression of these 9 genes in the 17 patient samples. Weka 

software was used for validation and lymph node status (negative/positive) was predicted. Different 

classification schemes including Decision stump, Multilayer perceptron, Random Tree, AdaboostM1, and 

IB1 were applied to this dataset to find the best scheme. Table 5.8 shows the comparison between 

Decision stump and some of the classifiers used for validation on other datasets. Decision stump classifier 

performed better than the other classifiers. It had a sensitivity of 75.00%, a specificity of 80.00%, and an 

overall accuracy of 76.47%. Table 5.9 shows the confusion matrix for Decision stump classifier. The 

difference in overall accuracy between Decision stump and Multilayer perceptron (p < 0.04), Random 

Tree (p < 0.04) was statistically significant. 

Table 5.7 Matching genes in Ried et al rectal cancer data. 

GENE NAME  ID 
SNRPD3-small nuclear  ribonucleoprotein H200000411 
IFRG28-28kD interferon responsive pro H200004627 
PLXNB2-plexin B2, mRNA H200000861 
DC50-hypothetical protein DC50 H200019106 
FLJ11078-hypothetical protein FLJ1107 H200016227 
MGC16044-hypothetical protein MGC1604 H200020589 
RNF6-ring finger protein (C3H2C3 type) H200004174 
POU6F2-POU domain, class 6,transcript H200015474 
ITGB1-integrin,beta1 (fibronectin)  H200021334 
 

Table 5.8 Comparison of accuracies obtained from different classifiers for predicting lymph node 
status using the 9-gene signature. The improved overall accuracy of the prediction with the 
Decision stump classifier compared with other methods was assessed by significance testing (N = 
17). 

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity+ 
Specificity)/2 

(%) 

Overall 
Accuracy 

(%) 
P-value 

Decision stump 75.00 80.00 77.50 76.47  
Multilayer perceptron 58.30 20.00 39.15 47.05 <0.04 

Random Tree 58.30 20.00 39.15 47.05 <0.04 
AdaboostM1 66.70 20.00 43.33 52.94 <0.08 

IB1 58.30 40.00 49.15 52.94 <0.08 
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Table 5.9 Confusion matrix obtained from the Decision stump classifier for predicting lymph node 
status using the 9-gene signature. 

Actual/Predicted a (node positive) b (node negative) 
a (node positive) 9 3 
b (node negative) 1 4 

 

5.2.4 Predicting lymph node status by leave-one-out cross validation on tumor 
biopsies 2 files 
 
The tumor biopsies 2 data files from Ried et al (PMID 16397240) consisted of 17 patient samples. The 

search for matching genes was done using the gene symbols. There were 9 matching genes (Table 5.10). 

The data used for validation consisted of the expression of these 9 genes in the 17 patient samples. Weka 

software was used for validation and lymph node status (negative/positive) was predicted. Different 

classification schemes including J48, Random Tree, Adaboost M1, Multiboost AB, and Multilayer 

perceptron were applied to this dataset to find the best scheme. Table 5.11 shows the comparison between 

J48 and some of the classifiers used for validation on other datasets. J48 classifier performed better than 

the other classifiers. It had a sensitivity of 75.00%, a specificity of 60.00%, and an overall accuracy of 

70.58%. Table 5.12 shows the confusion matrix for J48 classifier. The difference in overall accuracy 

between J48 and other classifiers was not statistically significant due to the small sample size. 

Table 5.10 Matching genes in Ried et al rectal cancer data. 

GENE NAME  ID 
SNRPD3-small nuclear  ribonucleoprotein H200000411 
IFRG28-28kD interferon responsive pro H200004627 
PLXNB2-plexin B2, mRNA H200000861 
DC50-hypothetical protein DC50 H200019106 
FLJ11078-hypothetical protein FLJ1107 H200016227 
MGC16044-hypothetical protein MGC1604 H200020589 
RNF6-ring finger protein (C3H2C3 type) H200004174 
POU6F2-POU domain, class 6,transcript H200015474 
ITGB1-integrin,beta1 (fibronectin)  H200021334 
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Table 5.11 Comparison of accuracies obtained from different classifiers for predicting lymph node 
status using the 9-gene signature. The improved overall accuracy of the prediction with the J48 
classifier compared with other methods was assessed by significance testing (N = 17). 

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity+ 
Specificity)/2 

(%) 

Overall 
Accuracy 

(%) 
P-value 

J48 75.00 60.00 67.50 70.58  
Random Tree 75.00 40.00 57.50 64.70 <0.36 
Adaboost M1 66.70 40.00 53.35 58.82 <0.24 

Multiboost AB 75.00 20.00 47.50 58.82 <0.24 
Multilayer perceptron 66.70 40.00 53.35 58.82 <0.24 

 

Table 5.12 Confusion matrix obtained from the J48 classifier for predicting lymph node status 
using the 9-gene signature. 

Actual/Predicted a (node positive) b (node negative) 
a (node positive) 9 3 
b (node negative) 2 3 

 

5.2.5 Predicting chemoradiotherapy response by leave-one-out cross validation on 
cDNA 1 files 
 
The cDNA 1 data files from Ried et al (PMID 16397240) consisted of 23 patient samples. The search for 

matching genes was done using the gene symbols. There were 3 matching genes (Table 5.13). The data 

used for validation consisted of the expression of these 3 genes in the 23 patient samples. Weka software 

was used for validation and chemoradiotherapy response (yes/no) was predicted. Different classification 

schemes including JRip, J48, AdaboostM1, Random Tree, and Multilayer perceptron were applied to this 

dataset to find the best scheme. Table 5.14 shows the comparison between JRip and some of the 

classifiers used for validation on other datasets. JRip classifier performed better than the other classifiers. 

It had a sensitivity of 55.60%, a specificity of 85.70%, and an overall accuracy of 73.91%. Table 5.15 

shows the confusion matrix for JRip classifier. The difference in overall accuracy between JRip and J48 

(p < 0.04) was statistically significant. 
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Table 5.13 Matching genes in Ried et al rectal cancer data. 

GENE NAME  ID 
SNRPD3-small nuclear  ribonucleoprotein H200000411 
PLXNB2-plexin B2, mRNA H200000861 
ITGB1-integrin,beta1 (fibronectin)  H200021334 
 

Table 5.14 Comparison of accuracies obtained from different classifiers for predicting 
chemoradiotherapy response using the 9-gene signature. The improved overall accuracy of the 
prediction with the JRip classifier compared with other methods was assessed by significance 
testing (N = 23). 

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity+ 
Specificity)/2 

(%) 

Overall 
Accuracy 

(%) 
P-value 

JRip 55.60 85.70 70.65 73.91  
J48 33.30 57.10 45.20 47.82 <0.04 

AdaboostM1 44.40 78.60 61.50 65.21 <0.27 
Random Tree 44.40 71.40 57.90 60.86 <0.18 

Multilayer perceptron 55.60 64.30 59.95 60.86 <0.18 
 

Table 5.15 Confusion matrix obtained from the JRip classifier for predicting response using the 9-
gene signature. 

Actual/Predicted a (response) b (no response) 
a (response) 5 4 

b (no response) 2 12 
 
 

5.2.6 Predicting chemoradiotherapy response by leave-one-out cross validation on 
cDNA2 files 
 
The cDNA 2 data files from Ried et al (PMID 16397240) consisted of 23 patient samples. The search for 

matching genes was done using the gene symbols. There were 3 matching genes (Table 5.16). The data 

used for validation consisted of the expression of these 3 genes in the 23 patient samples. Weka software 

was used for validation and chemoradiotherapy response (yes/no) was predicted. Different classification 

schemes including JRip, AdaboostM1, IB1, AD Tree, and Multiboost AB were applied to this dataset to 

find the best scheme. Table 5.17 shows the comparison between JRip and some of the classifiers used for 

validation on other datasets. JRip classifier performed better than the other classifiers. It had a sensitivity 

of 77.80%, a specificity of 85.70%, and an overall accuracy of 82.60%. Table 5.18 shows the confusion 
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matrix for JRip classifier. The difference in overall accuracy between JRip and other classifiers was not 

statistically significant due to the small sample size. 

Table 5.16 Matching genes in Ried et al rectal cancer data. 

GENE NAME  ID 
SNRPD3-small nuclear  ribonucleoprotein H200000411 
PLXNB2-plexin B2, mRNA H200000861 
ITGB1-integrin,beta1 (fibronectin)  H200021334 
 

Table 5.17 Comparison of accuracies obtained from different classifiers for predicting 
chemoradiotherapy response using the 9-gene signature. The improved overall accuracy of the 
prediction with the JRip classifier compared with other methods was assessed by significance 
testing (N = 23). 

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity+ 
Specificity)/2 

(%) 

Overall 
Accuracy 

(%) 
P-value 

JRip 77.80 85.70 81.75 82.60  
AdaboostM1 66.70 78.60 72.65 73.91 <0.24 

IB1 44.40 71.40 57.90 60.86 <0.06 
AD Tree 55.60 78.60 67.10 69.56 <0.15 

Multiboost AB 55.60 71.40 63.50 65.21 <0.10 
 

Table 5.18 Confusion matrix obtained from the JRip classifier for predicting response using the 9-
gene signature. 

Actual/Predicted a (response) b (no response) 
a (response) 7 2 

b (no response) 2 12 
 
 

5.2.7 Predicting chemoradiotherapy response by leave-one-out cross validation on 
tumor biopsies 1 files 
 
The tumor biopsies 1 data files from Ried et al (PMID 16397240) consisted of 17 patient samples. The 

search for matching genes was done using the gene symbols. There were 9 matching genes (Table 5.19). 

The data used for validation consisted of the expression of these 9 genes in the 17 patient samples. Weka 

software was used for validation and chemoradiotherapy response (yes/no) was predicted. Different 

classification schemes including Random committee, Multiboost AB, IB1, Multilayer perceptron, and 
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KStar were applied to this dataset to find the best scheme. Table 5.20 shows the comparison between 

Random committee and some of the classifiers used for validation on other datasets. Random committee 

classifier performed better than the other classifiers. It had a sensitivity of 90.00%, a specificity of 

28.60%, and an overall accuracy of 64.70%. Table 5.21 shows the confusion matrix for Random 

committee classifier. The difference in overall accuracy between Random committee and other classifiers 

was not statistically significant due to the small sample size. 

Table 5.19 Matching genes in Ried et al rectal cancer data. 

GENE NAME  ID 
SNRPD3-small nuclear  ribonucleoprotein H200000411 
IFRG28-28kD interferon responsive pro H200004627 
PLXNB2-plexin B2, mRNA H200000861 
DC50-hypothetical protein DC50 H200019106 
FLJ11078-hypothetical protein FLJ1107 H200016227 
MGC16044-hypothetical protein MGC1604 H200020589 
RNF6-ring finger protein (C3H2C3 type) H200004174 
POU6F2-POU domain, class 6,transcript H200015474 
ITGB1-integrin,beta1 (fibronectin)  H200021334 
 

Table 5.20 Comparison of accuracies obtained from different classifiers for predicting 
chemoradiotherapy response using the 9-gene signature. The improved overall accuracy of the 
prediction with the Random committee classifier compared with other methods was assessed by 
significance testing (N = 17). 

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity+ 
Specificity)/2 

(%) 

Overall 
Accuracy 

(%) 
P-value 

Random committee 90.00 28.60 59.30 64.70  
Multiboost AB 80.00 14.30 47.15 52.94 <0.25 

IB1 70.00 42.90 56.45 58.82 <0.37 
Multilayer perceptron 50.00 28.60 39.30 41.17 <0.09 

KStar 70.00 42.90 56.45 58.82 <0.37 
 

Table 5.21 Confusion matrix obtained from the Random committee classifier for predicting 
response using the 9-gene signature. 

Actual/Predicted a (response) b (no response) 
a (response) 9 1 

b (no response) 5 2 
 



 
 

107 
 

5.2.8 Predicting chemoradiotherapy response by leave-one-out cross validation on 
tumor biopsies 2 files 
 
The tumor biopsies 2 data files from Ried et al (PMID 16397240) consisted of 17 patient samples. The 

search for matching genes was done using the gene symbols. There were 9 matching genes (Table 5.22). 

The data used for validation consisted of the expression of these 9 genes in the 17 patient samples. Weka 

software was used for validation and chemoradiotherapy response (yes/no) was predicted. Different 

classification schemes including Logistic regression, IB1, AdaboostM1, Multilayer perceptron, and 

Threshold selector were applied to this dataset to find the best scheme. Table 5.23 shows the comparison 

between Logistic regression and some of the classifiers used for validation on other datasets. Logistic 

regression classifier performed better than the other classifiers. It had a sensitivity of 80.00%, a specificity 

of 71.40%, and an overall accuracy of 76.47%. Table 5.24 shows the confusion matrix for Logistic 

regression classifier. The difference in overall accuracy between Logistic regression and AdaboostM1 (p 

< 0.04) was statistically significant. 

Table 5.22 Matching genes in Ried et al rectal cancer data. 

GENE NAME  ID 
SNRPD3-small nuclear  ribonucleoprotein H200000411 
IFRG28-28kD interferon responsive pro H200004627 
PLXNB2-plexin B2, mRNA H200000861 
DC50-hypothetical protein DC50 H200019106 
FLJ11078-hypothetical protein FLJ1107 H200016227 
MGC16044-hypothetical protein MGC1604 H200020589 
RNF6-ring finger protein (C3H2C3 type) H200004174 
POU6F2-POU domain, class 6,transcript H200015474 
ITGB1-integrin,beta1 (fibronectin)  H200021334 
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Table 5.23 Comparison of accuracies obtained from different classifiers for predicting 
chemoradiotherapy response using the 9-gene signature. The improved overall accuracy of the 
prediction with the Logistic regression classifier compared with other methods was assessed by 
significance testing (N = 17). 

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity+ 
Specificity)/2 

(%) 

Overall 
Accuracy 

(%) 
P-value 

Logistic regression 80.00 71.40 75.70 76.47  
IB1 80.00 42.90 61.45 64.70 <0.23 

AdaboostM1 60.00 28.60 44.30 47.05 <0.04 
Multilayer perceptron 70.00 57.10 63.55 64.70 <0.23 

Threshold selector 40.00 85.70 62.85 58.82 <0.13 
 

Table 5.24 Confusion matrix obtained from the Logistic regression classifier for predicting 
response using the 9-gene signature. 

Actual/Predicted a (response) b (no response) 
a (response) 8 2 

b (no response) 2 5 

 

5.2.9 Time-dependent ROC analyses on rectal cancer data from Ried et al (n=23) 
using the 9-gene lymph node status signature 
 
To explore whether the 9-gene lymph node status signature could predict patient disease-free survival and 

overall survival, the survival and status information along with the expression data of the matching genes 

are used for getting the time-dependent ROC curves. There were 3 matching genes with the 9-gene 

signature. The expression data of these 3 genes in the 23 patient samples along with the survival 

information was used to plot the time-dependent ROC curves. The accuracy of 5-year disease-free 

survival prediction is 0.72 and 5-year overall survival prediction is 0.76, as represented by AUC for 

cDNA 1 data files. The accuracy of 5-year disease-free survival prediction is 0.79 and 5-year overall 

survival prediction is 0.75, as represented by AUC for cDNA 2 data files. 
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Figure 5.1 Time-dependent ROC plots on rectal cancer data (n=23) for disease-free survival and 
overall survival using the 9-gene signature in cDNA1 data files. 

 

 

                           

 

Figure 5.2 Time-dependent ROC plots on rectal cancer data (n=23) for disease-free survival and 
overall survival using the 9-gene signature in cDNA 2 data files. 
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5.2.10 Kaplan-Meier analyses on Ried et al rectal cancer data (n=23) using the 9-
gene lymph node status signature 
 
The cDNA 1 files in rectal cancer data were checked for matching genes with the 9-gene signature. There 

were 3 matching genes. The Cox model based on the expression of these 3 genes was used to get 

recurrence risk scores for the 23 patients. The choices for choosing a cut-off value for patient 

stratification are the peak value from histogram, mean risk score or median risk score. In this analysis, the 

median risk score was chosen as cut-off as it resulted in best patient stratification. Cut-off values of 0.41 

and 0.09 were chosen for relapse-free survival and overall survival in cDNA 1 files, respectively. The 

pamr package in R was used to plot the Kaplan-Meier curves. The low-risk and high-risk groups, had 

distinct relapse-free survival (p = 0.014, n=23, log-rank tests) and distinct overall survival (p = 0.043, 

n=23, log-rank tests), respectively for the data in cDNA1 files. Table 5.25 shows the different parameters 

obtained from the Cox model using the 9-gene signature for disease-free survival and overall survival in 

cDNA 1 data files. 

Table 5.25 Different parameters obtained from Cox model using the 9-gene signature for disease-
free survival and overall survival in cDNA 1 data files. 

Disease-free survival Overall survival 
Gene 

Symbol coef exp 
(coef) 

se 
(coef) 

z-
score 

p- 
value Coef exp 

(coef) 
se 

(coef) 
z- 

score 
p-

value 
SNRPD3 -0.541 0.582 0.548 -0.987 0.32 0.476 1.61 0.84 0.567 0.57 
PLXNB2 1.955 7.070 1.363 1.435 0.15 1.335 3.80 1.91 0.699 0.48 
ITGB1 0.009 1.010 0.758 0.013 0.99 0.217 1.24 1.32 0.164 0.87 
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Figure 5.3 Kaplan-Meier plots on rectal cancer data (n=23) for disease-free survival and overall 
survival using the 9-gene signature in cDNA 1 files. 

 

The cDNA 2 files in rectal cancer data were checked for matching genes with the 9-gene signature. There 

were 3 matching genes. The Cox model based on the expression of these 3 genes was used to get 

recurrence risk scores for the 23 patients. The choices for choosing a cut-off value for patient 

stratification are the peak value from histogram, mean risk score or median risk score. In this analysis, the 

median risk score was chosen as cut-off as it resulted in best patient stratification. Cut-off values 0.27 and 

-0.48 were chosen for relapse-free survival and overall survival in cDNA 2 files, respectively. The pamr 

package in R was used to plot the Kaplan-Meier curves. The low-risk and high-risk groups, had distinct 

relapse-free survival (p = 0.041, n=23, log-rank tests) and distinct overall survival (p = 0.0436, n=23, 

log-rank tests), respectively for the data in cDNA 2 files. Table 5.26 shows the different parameters 

obtained from the Cox model using the 9-gene signature for disease-free survival and overall survival in 

cDNA 2 data files. 
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Table 5.26 Different parameters obtained from Cox model using the 9-gene signature for disease-
free survival and overall survival in cDNA 2 files. 

Disease-free survival Overall survival 
Gene 

Symbol coef exp 
(coef) 

se 
(coef) 

z-
score 

p-
value coef exp 

(coef) 
se 

(coef) 
z-

score 
p-

value 
SNRPD3 -0.122 0.885 0.671 -0.182 0.86 0.876 2.401 0.89 0.984 0.32 
PLXNB2 1.262 3.531 1.247 1.012 0.31 -0.973 0.378   2.11 -0.461 0.65 
ITGB1 -0.823 0.439 0.882 -0.933 0.35 -1.844 0.158 1.67 -1.104 0.27 

 

 

                         

 

Figure 5.4 Kaplan-Meier plots on rectal cancer data (n=23) for disease-free survival and overall 
survival using the 9-gene signature in cDNA 2 data files. 

 

5.2.11 Summary of validation results of 9-gene signature on rectal cancer data 
 
Table 5.27 shows the details of validation results on rectal cancer data in different groups of files. For 

each dataset the classifier with the highest overall accuracy was reported. The time-dependent ROC and 

Kaplan-Meier analyses on tumor biopsies data were not reported as they were not significant. 
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Table 5.27 Summary of validation results of 9-gene signature on rectal cancer data. 

Rectal cancer 
data Classifier Predicted variable Sensitivity 

(%) 
Specificity 

(%) 

(Sensitivity + 
Specificity)/2 

(%) 

Overall 
accuracy 

(%) 
cDNA1 files AdaboostM1 Lymph node status 87.50 57.10 72.30 78.26 

cDNA2 files AdaboostM1 Lymph node status 93.80 42.90 68.35 78.26 

Tumor biopsies 
1 files 

Decision 
stump Lymph node status 75.00 80.00 77.50 76.47 

Tumor biopsies 
2 files J48 Lymph node status 75.00 60.00 67.50 70.58 

cDNA1 files JRip Chemoradiotherapy 
response 55.60 87.50 70.65 73.91 

cDNA2 files JRip Chemoradiotherapy 
response 77.80 85.70 81.75 82.60 

Tumor biopsies 
1 files 

Random 
Committee 

Chemoradiotherapy 
response 90.00 28.60 59.30 64.70 

Tumor biopsies 
2 files Logistic Chemoradiotherapy 

response 80.00 71.40 75.70 76.47 

 

5.3 Validation results of the 3-gene signature on rectal cancer data 

5.3.1 Predicting lymph node status in tumor biopsies 2 files 
 
The tumor biopsies 2 data files from Ried et al (PMID 16397240) consisted of 17 patient samples. The 

search for matching genes was done using the gene symbols. There were 2 matching genes (Table 5.28). 

The data used for validation consisted of the expression of these 2 genes in the 17 patient samples. Weka 

software was used for validation and lymph node status (positive/negative) was predicted. Different 

classification schemes including KStar, Logistic regression, AD Tree, AdaboostM1, and Threshold 

selector were applied to this dataset to find the best scheme. Table 5.29 shows the comparison between 

KStar and some of the classifiers used for validation on other datasets. KStar classifier performed better 

than the other classifiers. It had a sensitivity of 83.33%, a specificity of 60.00%, and an overall accuracy 

of 76.47%. Table 5.30 shows the confusion matrix for KStar classifier. The difference in overall accuracy 

between KStar and other classifiers was not statistically significant due to the small sample size. 
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Table 5.28 Matching genes in Ried et al rectal cancer data. 

GENE NAME  ID 
E2F2-E2F transcription factor 2 (E2F2) H200012309 
SLC25A5-solute carrier family 25  H200006643 
 

Table 5.29 Comparison of accuracies obtained from different classifiers for predicting lymph node 
status using the 3-gene signature. The improved overall accuracy of the prediction with the KStar 
classifier compared with other methods was assessed by significance testing (N = 17). 

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity 
+Specificity)/2 

(%) 

Overall 
Accuracy 

(%) 
P-value 

KStar 83.33 60.00 71.66 76.47  
Logistic regression 83.30 40.00 61.65 70.58 <0.35 

AD Tree 66.70 60.00 63.35 64.70 <0.23 
AdaboostM1 58.30 60.00 59.15 58.82 <0.14 

Threshold selector 41.70 80.00 60.85 52.94 <0.08 
 

Table 5.30 Confusion matrix obtained from the KStar classifier for predicting lymph node status 
using the 3-gene signature. 

Actual/Predicted a (node positive) b (node negative) 
a (node positive) 10 2 
b (node negative) 2 3 

 

5.3.2 Predicting chemoradiotherapy response in tumor biopsies 2 files 
 
The tumor biopsies 2 data files from Ried et al (PMID 16397240) consisted of 17 patient samples. The 

search for matching genes was done using the gene symbols. There were 2 matching genes (Table 5.31). 

The data used for validation consisted of the expression of these 2 genes in the 17 patient samples. Weka 

software was used for validation and chemoradiotherapy response (yes/no) was predicted. Different 

classification schemes including Decision stump, Multiboost AB, AdaboostM1, Logistic regression, and 

AD Tree were applied to this dataset to find the best scheme. Table 5.32 shows the comparison between 

Decision stump and some of the classifiers used for validation on other datasets. Decision stump classifier 

performed better than the other classifiers. It had a sensitivity of 90.00%, a specificity of 57.10%, and an 

overall accuracy of 76.47%. Table 5.33 shows the confusion matrix for Decision stump classifier. The 
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difference in overall accuracy between Decision stump and AD Tree (p < 0.04) was statistically 

significant. 

Table 5.31 Matching genes in Ried et al rectal cancer data. 

GENE NAME  ID 
E2F2-E2F transcription factor 2 (E2F2) H200012309 
SLC25A5-solute carrier family 25  H200006643 
 

Table 5.32 Comparison of accuracies obtained from different classifiers for predicting 
chemoradiotherapy response using the 3-gene signature. The improved overall accuracy of the 
prediction with the Decision stump classifier compared with other methods was assessed by 
significance testing (N = 17). 

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity+ 
Specificity)/2 

(%) 

Overall 
Accuracy 

(%) 
P-value 

Decision stump 90.00 57.10 73.55 76.47  
Multiboost AB 90.00 28.60 59.30 64.70 <0.23 
AdaboostM1 70.00 42.90 56.45 58.82 <0.14 

Logisitc regression 70.00 28.60 49.30 52.94 <0.08 
AD Tree 50.00 42.90 46.45 47.05 <0.04 

 

Table 5.33 Confusion matrix obtained from the Decision stump classifier for predicting response 
using the 3-gene signature. 

Actual/Predicted a (response) b (no response) 
a (response) 9 1 

b (no response) 3 4 
 

5.3.3 Summary of validation results of 3-gene signature on rectal cancer data 
 
Table 5.34 shows the details of validation results of 3-gene signature on rectal cancer data in different 

groups of files. For each dataset the classifier with the highest overall accuracy was reported. The 

validation results on cDNA data files, time-dependent ROC and Kaplan-Meier analyses were not reported 

as they were not significant. 
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Table 5.34 Summary of validation results of 3-gene signature on rectal cancer data. 

Rectal cancer 
data Classifier Predicted variable Sensitivity 

(%) 
Specificity 

(%) 

(Sensitivity + 
Specificity)/2 

(%) 

Overall 
accuracy (%) 

Tumor biopsies 
2 files KStar Lymph node status 83.33 60.00 71.66 76.47 

Tumor biopsies 
2 files 

Decision 
stump 

Chemoradiotherapy 
response 90.00 57.10 73.55 76.47 

 

5.4 Validation results of the 5-gene signature on rectal cancer data 

5.4.1 Predicting lymph node status in tumor biopsies 2 files 
 
The tumor biopsies 2 data files from Ried et al (PMID 16397240) consisted of 17 patient samples. The 

search for matching genes was done using the gene symbols. There were 2 matching gene (Table 5.35). 

The data used for validation consisted of the expression of these 2 genes in the 17 patient samples. Weka 

software was used for validation and lymph node status (positive/negative) was predicted. Different 

classification schemes including Multiboost AB, Logitboost, Random Tree, Multilayer perceptron, and 

LWL were applied to this dataset to find the best scheme. Table 5.36 shows the comparison between 

Multiboost AB and some of the classifiers used for validation on other datasets. Multiboost AB classifier 

performed better than the other classifiers. It had a sensitivity of 83.30%, a specificity of 40.00%, and an 

overall accuracy of 70.58%. Table 5.37 shows the confusion matrix for Multiboost AB classifier. The 

difference in overall accuracy between Multiboost AB and other classifiers was not statistically 

significant due to the small sample size. 

Table 5.35 Matching genes in Ried et al rectal cancer data. 

GENE NAME  ID 
TPD52L2-tumor protein D52-like2 H200013992 
ZNF187-zinc finger protein 187  H200015602 
SLC25A5-solute carrier family 25  H200006643 
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Table 5.36 Comparison of accuracies obtained from different classifiers for predicting lymph node 
status using the 5-gene signature. The improved overall accuracy of the prediction with the 
Multiboost AB classifier compared with other methods was assessed by significance testing (N = 
17). 

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity+ 
Specificity)/2 

(%) 

Overall 
Accuracy 

(%) 
P-value 

Multiboost AB 83.30 40.00 61.65 70.58  
Adaboost M1 83.30 20.00 51.65 64.70 <0.36 
Random Tree 58.30 20.00 39.15 47.05 <0.09 

Random committee 75.00 20.00 47.50 58.82 <0.24 
LWL 75.00 20.00 47.50 58.82 <0.24 

 

Table 5.37 Confusion matrix obtained from the Multiboost AB classifier for predicting lymph node 
status using the 5-gene signature. 

Actual/Predicted a (node positive) b (node negative) 
a (node positive) 10 2 
b (node negative) 3 2 

 

5.4.2 Predicting chemoradiotherapy response in tumor biopsies 2 files 
 
The tumor biopsies 2 data files from Ried et al (PMID 16397240) consisted of 17 patient samples. The 

search for matching genes was done using the gene symbols. There were 3 matching genes (Table 5.38). 

The data used for validation consisted of the expression of these 3 genes in the 17 patient samples. Weka 

software was used for validation and chemoradiotherapy response (yes/no) was predicted. Different 

classification schemes including J48, AD Tree, IB1, Logistic regression, and AdaboostM1 were applied to 

this dataset to find the best scheme. Table 5.39 shows the comparison between J48 and some of the 

classifiers used for validation on other datasets. J48 classifier performed better than the other classifiers. 

It had a sensitivity of 90.00%, a specificity of 57.10%, and an overall accuracy of 76.47%. Table 5.40 

shows the confusion matrix for J48 classifier. The difference in overall accuracy between J48 and 

Logistic regression (p < 0.04) was statistically significant. 
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Table 5.38 Matching genes in Ried et al rectal cancer data. 

GENE NAME  ID 
TPD52L2-tumor protein D52-like2  H200013992 
ZNF187-zinc finger protein 187  H200015602 
SLC25A5-solute carrier family 25  H200006643 
 

Table 5.39 Comparison of accuracies obtained from different classifiers for predicting 
chemoradiotherapy response using the 5-gene signature. The improved overall accuracy of the 
prediction with the J48 classifier compared with other methods was assessed by significance testing 
(N = 17). 

Classifier Sensitivity 
(%) 

Specificity 
(%) 

(Sensitivity+ 
Specificity)/2 

(%) 

Overall 
Accuracy 

(%) 
P-value 

J48 90.00 57.10 73.55 76.47  
AD Tree 80.00 42.90 61.45 64.70 <0.23 

IB1 50.00 57.10 53.55 52.94 <0.08 
Logistic regression 60.00 28.60 44.30 47.05 <0.04 

AdaboostM1 70.00 42.90 56.45 58.82 <0.14 
 

Table 5.40 Confusion matrix obtained from the J48 classifier for predicting response using the 5-
gene signature. 

Actual/Predicted a (response) b (no response) 
a (response) 9 1 

b (no response) 3 4 
 

5.4.3 Kaplan-Meier analyses on Ried et al rectal cancer data (n=23) using the 5-gene 
signature 
 
The cDNA 2 files in rectal cancer data were checked for matching genes with the 5-gene signature. There 

were 3 matching genes. The Cox model based on the expression of these 3 genes was used to get 

recurrence risk scores for the 23 patients. The choices for choosing a cut-off value for patient 

stratification are the peak value from histogram, mean risk score or median risk score. In this analysis, the 

median risk score was chosen as cut-off as it resulted in best patient stratification. Cut-off values of 0.17 

and -1.16 were chosen for relapse-free survival and overall survival, respectively. The pamr package in R 

was used to plot the Kaplan-Meier curves. The low-risk and high-risk groups, had distinct relapse-free 

survival (p = 0.043, n=23, log-rank tests), and distinct overall survival (p = 0.036, n=23, log-rank tests), 
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respectively for the data in cDNA2 files. Table 5.41 shows the different parameters obtained from the 

Cox model using the 9-gene signature for disease-free survival and overall survival in cDNA 2 data files. 

Table 5.41 Different parameters obtained from Cox model using the 5-gene signature for relapse-
free survival and overall survival. 

Disease-free survival Overall survival 
Gene 

Symbol coef exp 
(coef) 

se 
(coef) z-score p-

value coef exp 
(coef) 

se 
(coef) 

z-
score 

p-
value 

ZNF187 -0.2148 0.807 1.237 -0.1737 0.86 1.633 5.117 1.96 0.834 0.40 

SLC25A5 -0.0006 0.999 0.825 -0.0007 1.00 -0.604 0.547 1.52 -0.398 0.69 

 

                         

Figure 5.5 Kaplan-Meier plots on rectal cancer data (n=23) for disease-free survival and overall 
survival using the 5-gene signature in cDNA 2 data files. 

 

5.4.4 Summary of validation results of 5-gene signature on rectal cancer data 

Table 5.42 shows the details of validation results of 5-gene signature on rectal cancer data in different 

groups of files. For each dataset the classifier with the highest overall accuracy was reported. The time-

dependent ROC, Kaplan-Meier analyses and validation results on cDNA data files were not reported as 

they were not significant. 
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Table 5.42 Summary of validation results of 5-gene signature on rectal cancer data. 

Rectal 
cancer data Classifier Predicted variable Sensitivity 

(%) 
Specificity 

(%) 

(Sensitivity + 
Specificity)/2 

(%) 

Overall 
accuracy 

(%) 
Tumor 

biopsies 2 
files 

MultiboostAB Lymph node status 83.30 40.00 61.65 70.58 

Tumor 
biopsies 2 

files 
J48 Chemoradiotherapy 

response 90.00 57.10 73.55 76.47 

 

5.5 Conclusion 

The 9-gene lymph node status signature on the whole had optimal prediction accuracy on the rectal cancer 

data set. The 9-gene signature might be used for predicting lymph node status and chemoradiotherapy 

response in rectal cancer data and to stratify patients into low-risk and high-risk groups. The 3-gene 

signature can be used to predict lymph node status and chemoradiotherapy response of the patients in 

tumor biopsies 2 data. The 5-gene signature can be used to stratify patients into low-risk and high-risk 

groups, predict lymph node status and chemoradiotherapy response in tumor biopsies 2 data.  
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Chapter 6 

6.1 Conclusions 

The advents of high throughput technologies, such as DNA microarrays are revolutionalizing the field of 

medicine. DNA microarrays are a powerful means of monitoring thousands of gene expression levels at 

the same time. Machine learning techniques are playing a pivotal role in analyzing the generated 

microarray data. Recent studies have successfully applied the machine learning approaches to predict the 

cancer stage, treatment outcome, drug response, and promise treatments tailored to the patients. Presently 

there are no gene tests available for clinical usage in colon cancer while there are gene tests like 

MammaPrint and Oncotype DX for breast cancer prognosis. Our study was focused in the direction of 

identifying important biomarkers to predict colon cancer stage and recurrence, building prognostic 

models, and stratifying patients into low-risk and high-risk groups based on cDNA microarray data. 

 In an effort to overcome the limitations of the traditional staging systems, in the first part of our 

study a 9-gene lymph node status signature was identified by feature selection using random forests and 

then discarding genes without differential expression. A prognostic patient stratification scheme was 

developed based on this 9-gene signature using the Cox model. In the second part of the study, we 

focused on identifying biomarkers predicting recurrence. This was achieved by a combinatorial scheme 

employing feature selection using random forests in the first step and then using InfoGain feature 

selection method in the next step. Two recurrence gene signatures were identified and patient 

stratification schemes were developed based on these signatures to identify subgroups of patients, at low 

and high-risks of recurrence. Recurrence prediction models were built using classifiers in Weka software 

based on these gene signatures. The gene signatures identified in this study could be used for classifying 

new colon cancer patients into different stages of the disease and different prognostic risk groups.  

 The analysis of microarray gene expression data through machine learning methods currently 

faces two major problems. Firstly the high dimensionality of the feature space and secondly the fact that 

gene expression data are very noisy (26). Most of the machine learning algorithms have been developed 
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for applications in domains, such as business, retail, and marketing. A typical data mining banking 

application, has thousands or millions of records, and at most a few hundred fields. In contrast, a 

microarray gene expression data may only have a few hundred records and thousands of fields. Also, 

majority of the techniques used in standard data mining applications are very sensitive to noise (1). We 

could solve the problem of high dimensionality to some extent by preprocessing the data and employing a 

combinatorial scheme for feature selection. In the future, there is a necessity for new machine learning 

techniques addressing the high dimensionality and noisy characteristics of microarray gene expression 

data. We faced with another problem of availability of colon cancer datasets. The number of colon cancer 

datasets publicly available is very less. They are not as widely available as lung cancer and breast cancer 

datasets. The colon cancer data used in our study was obtained from our research collaborator Dr.Ried. 

The survival information was not available for other colon cancer datasets used for validation and we 

could not perform the time-dependent ROC and Kaplan-Meier analyses. Availability of the survival 

information and more colon cancer datasets publicly in the future would allow for robust validation of the 

identified gene signatures providing us with more understanding of the results.  
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