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ABSTRACT 
 

Design and Analysis of a Modified Power Split Continuously Variable 
Transmission 

 
 

Andrew J. Fox 
 
 

The continuously variable transmission (CVT) has been considered to be a viable 
alternative to the conventional stepped ratio transmission because it has the advantages of 
smooth stepless shifting, simplified design, and a potential for reduced fuel consumption 
and tailpipe emissions.  These benefits have driven all of the major automobile 
manufacturers to explore different designs of the CVT for the last century.  Through this 
work, the CVT has been developed into a practical alternative to the conventional 
transmission for vehicles in the lower two thirds of the power spectrum. 

 
The power split CVPST has a potentially higher mechanical efficiency than a 

conventional shaft-to-shaft CVT, but it is unknown whether that efficiency can be 
increased further.  For the CVPST, the branch control circuit that contains the CVT can 
be disengaged at the ring gear for a 1:1 overall transmission ratio, which will interrupt the 
power flow through the CVT.  This could increase overall efficiency because the branch 
control circuit is no longer transmitting any power. 

 
This thesis involves the study of just such a CVPST system.  This system is 

compared to a conventional CVPST, a direct-drive CVPST that disconnects the entire 
branch control system, and a shaft-to-shaft CVT.  A set of computer programs is 
produced to study the mechanical losses for each system over the entire operating range 
of a representative simulation model.  From this analysis, the value of disengaging the 
branch control circuit at the ring gear can be determined. 
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Chapter 1 – Introduction 
 

 
During the infancy of automobile development in the late 19th century, it was 

recognized that varying the drive ratio during vehicle operation would achieve good 

efficiency and vehicle performance (Chan et al., 1984).  Many of the first automobiles to 

make it to market were equipped with continuously variable transmissions (CVTs) that 

could vary the ratio range continuously within a range of gear ratios.  The CVT was 

perceived to be superior to conventional gearboxes because, with the CVT, speed ratio 

can be selected independent of transmitted torque.  This was superior to conventional 

gearboxes because they have discrete gear ratios that must be selected based upon the 

required torque at a given vehicle speed (Mechanical Engineering, 1984).  Unfortunately, 

the drawbacks of poor reliability and durability, and the poor control schemes developed 

in that era outweighed the perceived benefits of CVTs, and they were abandoned in favor 

of conventional transmissions (Chan et al., 1984).   

Renewed interest in CVTs in the early 1930’s led to the development of a 

transmission for the British Austin, which was produced in small quantities.  General 

Motors also performed extensive research and development work on the CVT in this time 

period, but its work was halted at the testing stage of development (Hewko, 1986).  This 

work was resumed in the 1960’s by Perbury Gear, which produced an automotive 

transmission with a higher power capacity.  Their success was, in turn, overtaken by the 

Van Doorne design which has undergone extensive development work over the past four 

decades to become the most visible and successful CVT design (Fenton, 1996).  Cars 

utilizing transmissions based on the Van Doorne design are currently being produced by 

automakers such as Audi, BMW, and Honda who recognize that the CVT is lighter, 
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simpler, and cheaper than a conventional automatic transmission (Mechanical 

Engineering, 1984). 

While technical development has brought the CVT back into the realm of 

automotive design, it still suffers from such problems as poor launch feel or reduced high 

speed fuel economy because of limited ratio coverage and torque capacity (Vahabzadeh, 

1990), and the CVT has shorter transmission life at high power densities when compared 

to conventional transmissions (Hewko, 1986).  These problems can be overcome by 

combining the CVT with one or more epicyclic gears to create a power-split transmission 

(Beccari and Cammalleri, 2001). 

The concept of a power-split transmission is nothing new.  Epicyclic, or planetary 

gears have been well known in the design of transmissions.  The unique “summing” 

characteristic of this gear arrangement allows two power sources to be summed into a 

single output (Fussner and Singh, 2002).  This technology has been used in the hydraulics 

industry for off-road vehicles and farm equipment.   

Interest in power-spit technology for automotive applications began in the 1980’s 

with renewed research at GM (Macey and Vahabzadeh, 1987).  They recognized that the 

range of the CVT could be extended with the use of a planetary gear set.  This design did 

not require the starting clutch or reversing mechanism of other transmissions, but its 

arrangement placed a greater power demand on the CVT (Vahabzadeh and Macey, 1990).  

Other designs actually placed less of a load on the CVT for a true power-split design 

(Mucino et al., 1997).  It was recognized through this research that the qualities of 

extended ratio range and extended power envelope were inversely proportional (Beccari 

and Cammalleri, 2001). 
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It is recognized that the power capacities of CVTs still fall far short of the power 

output of large-displacement engines used in larger automobiles.  These power capacities 

can be extended when the CVT is combined with an epicyclic gear set (Beccari and 

Cammalleri, 2001), and the life of the CVT can be extended if its transmitted power is 

kept to a minimum (Hewko, 1986) 

1.1 Problem Statement and Thesis Objectives 

1.1.1 Design Hypothesis 

All the previous work in the field of continuously variable transmissions have 

been concerned with improving the efficiency and power capacity of the variable unit 

through better designs and materials.  The only proposed alternative route to improving 

CVT efficiency has been to combine it with an epicyclic gear set in order to extend its 

power envelope.  Vahabzadeh (1990) and, most recently Torotrak transmissions have 

modified this concept by adding a combination of clutches to their systems so that the 

transmission operates as an IVT for part of the operating cycle and a direct shaft-to-shaft 

CVT for another part of the cycle (Brockbank and Heumann, 2002).    

An alternative dual-range design could operate for part of the driving cycle like 

previous transmissions, but the second range would be different from previous designs.  

Instead of directing all of the power flow through the variable element, the power flow 

could be directed through the conventional gears.  In this design, there would be a direct-

drive mode that could eliminate CVT inefficiencies by disconnecting it from the power 

path for a single speed ratio (Figure 1-1). 
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Conventional CVPST With a Split Power 
Path at (1) 

Modified CVPST With a Direct Power 
Path (Solid) and Idling Components 
(Dashed) 

1

Figure 1.1.  The Operating Principle of the Modified CVPST 

1.1.2 Problem Statement 

It is unknown whether a dual-mode CVPST will be any more efficient than a 

conventional CVPST with one, continuously variable mode, or whether parasitic losses 

from idling components will decrease overall efficiency to the point that it does not 

justify the extra complexity, cost, and weight of the transmission. 

1.1.3 Thesis Objectives 

The objective of this work will be to evaluate the efficiency of a common 

CVPST, a modified CVPST that disengages the branch control circuit at the ring gear 

shaft, and a pure direct-drive CVPST that disengages the branch control circuit at the 

input shaft.  This analysis will be performed at the 1:1 input/output ratio where the 

planetary gear set is synchronized.  

1.1.4 Scope 

This first part of this study will be centered on deriving all of the relations that 

apply to power-splitting transmissions so that the power flows in all modes of operation 

are known.  Then, the parasitic losses due to bearing friction, gear friction, and CVT 

friction will be calculated for a range of operating conditions.  The three transmission 
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arrangements will be evaluated for steady-state power losses at constant velocity and 

constant torque where there is no angular acceleration.  The kinematic and dynamic 

relations will be derived, and then they will be applied to actual system design if any of 

the last two arrangements can be used for direct drive at high speeds without CVT losses. 
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Chapter 2 – Review of Relevant Literature 
 

 
2.1 Current State of the Art 

 The automotive transmission has undergone many changes and improvements 

over the lifetime of the automobile, but the established methods of power transmission 

have remained basically the same for most of that period.  Even though systems such as 

CVTs, electric, and hybrid-electric drive trains have made inroads into the automobile 

marketplace at different times over the past century, the gearbox with discrete, shifting 

gear ratios has still been the standard by which other systems are judged.  Even though 

the basic transmission designs have been around for most of the past century, continued 

refinement and research has improved conventional transmissions to the point where they 

will be accepted as the standard until a truly cost effective and efficient piece of 

technology can replace them (Wagner, 2001). 

 Currently, the two standard designations in automotive transmissions are the 

manual and automatic transmission.  These are established designs, which are familiar to 

almost any driver, but recent improvements in both technologies have blurred the line 

between the two systems in an attempt to improve efficiency and the driver experience. 

2.1.1 Manual Transmissions 
 
 The manual transmission is a system that is distinctive because of the driver’s role 

in its operation; in this system, the driver undertakes the actuation force.  The driver’s 

right (or left) foot applies actuation force to the clutch while the left (or right) hand shifts 

between the gear ratios.  There is a mechanical connection between the actuation 

elements of the clutch pedal, shift lever, and the transmission (Wagner, 2001).  The driver 
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is responsible for modulating the engine throttle in harmony with the clutch so that there 

is enough torque available for smooth transitions from a standing stop to motion, and the 

driver must select the proper gear ratio at a given vehicle speed for acceptable 

performance and economy.   

 The manual transmission system can be divided into two parts, the gearbox and 

the clutch.  Inside of most modern gearboxes, there are two parallel gear shafts that 

typically contain thirteen gears and four synchronizers.  These gear shafts are supported 

across their length by three bearings.  The gears are helical cut, and they are typically 

manufactured from high strength steel and heat-treated to an Rc 58 value (Kluger and 

Long, 1999).  Designs with more or less forward gear ratios will only vary in the number 

of gears and synchronizers, as a significant increase in forward gear ratios would require 

another gear shaft.  The clutch is interposed between the gearbox and the engine, and it 

serves two functions.  The first function of the clutch is to allow the transmission and 

engine to be disconnected for the selection of a new gear ratio.  The second function is to 

allow the driver to modulate the clutch so that the proper amount of torque is available 

for starting the vehicle from rest.  This design is advantageous in that the driver can 

modify the shifting schedule so that the desired performance or economy is attained.  The 

main disadvantage is that the power flow is interrupted during a gear shift when the 

clutch is engaged which can hurt performance during hard acceleration (Wagner, 2001). 

 The manual transmission operates by passing power from the input shaft to a lay 

shaft, and then transmitting power from that lay shaft back to the output shaft.  In this 

design, all of the gears stay in mesh and rotate at all times. Individual gears are locked to 

the output shaft by means of a splined shift collar activated by the gearshift lever that 
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changes the gear ratios.  The resulting power path for this transmission starts from the 

engine, moves through the clutch into the input shaft, from the input shaft into the lay 

shaft, and then it moves from the lay shaft to the output shaft and into the differential.  

This path is used for all but the direct-drive fourth gear, where a 1:1 input to output ratio 

exists.  An average efficiency for the common five-speed manual transmission is 96 

percent with a 3-5 percent increase in the direct-drive gear. Reducing the torque-

dependent losses in the gears, reducing bearing losses, and minimizing the windage 

losses in the transmission case can increase the efficiency, but this increase would only 

be about one percent (Kluger and Long, 1999). 

2.1.2 Automated Manual Transmissions 

 The automated manual transmission (AMT) is essentially the same as a standard 

manual transmission, but the actuation force for the clutch and gearshift lever is provided 

by hydraulic or electronic actuators.  The mechanical connection between the shift lever 

is omitted while the clutch pedal is eliminated altogether.  In this design, there is a control 

system that manages clutch operation while the gear shifts can be controlled by either the 

driver or shifted automatically. 

 This system was first designed for racing applications.  The aim was to shorten 

the gear shifting time and relieve the driver.  Manufacturers such as Alfa Romeo, BMW, 

and Toyota identified that the AMT had the cost and efficiency benefits of the standard 

manual transmission with easier operation, and these manufacturers have AMTs 

available.  These transmissions will become more prevalent in the future, but the issues of 

control complexity and driver comfort will have to be addressed further if they are to 

displace automatic transmissions completely (Wagner, 2001). 
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2.1.3 Automatic Transmissions 

 Automatic transmissions with multiple gear ratios are mechanical transmissions 

that shift on their own.  The driver does not disengage the clutch to engage the driveline 

or select gear ratios with a gearshift lever.  Because there is no clutch to engage, gear 

shifting occurs without an interruption of power through the driveline, and these shifts are 

executed automatically with a shifting program in the transmission (Wagner, 2001). 

 The automatic transmission is divided into three main parts, the pump, torque 

converter, and gearbox.  The pump is a driven accessory that pressurizes the transmission 

fluid to supply the torque converter and valve body.  These pumps can be either crescent 

type, gerotor, or hypocycloidal, with some manufacturers also moving toward variable 

displacement pumps to improve efficiency (Kluger and Long, 1999).  The torque 

converter is a fluid coupling that allows smooth, automatic gearshifts without interrupting 

the power flow through the transmission.  The torque converter, like the clutch in a 

manual transmission, is also located between the engine and the gearbox.  Most modern 

torque converters are based on the hydrokinetic type patented by Fottinger in 1905.  In 

these torque converters, the drive shaft-mounted impeller imparts kinetic energy to a 

fluid, which is transferred to the driven turbine member (Fenton, 1996).  At low engine 

speeds, the torque converter’s fluid coupling is not transferring much torque to the 

vehicle, and the vehicle can be held still with the brake pedal, while increasing engine 

speeds increase the torque output of the torque converter.  The transmission can be 

shifted under power as this just changes the speed of the driven turbine in the fluid 

coupling.  The gearbox in most common automatic transmissions uses epicyclic gears to 

shift between ratios.  These gearshifts are accomplished through activating a combination 
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of bands and internal clutches which are operated by either a mechanical-hydraulic or 

electronic control system. 

 The automatic transmission operates by passing power through the torque 

converter to the input shaft of the gearbox.  This input shaft is then connected to the sun, 

ring, or planet carrier of a planetary gear set by means of bands and clutches that can 

connect, disconnect, or constrain these elements to produce multiple forward and reverse 

gear ratios.  The control system of the automatic transmission must operate these bands 

and clutches sequentially in order to get the correct gear ratio for a given set of vehicular 

operating conditions.  These control systems used to be purely mechanical and hydraulic, 

but microprocessor control systems are now the standard. 

 Unlike the standard transmission, the automatic transmission has many 

components that require power to operate.  The major sources for losses are in the pump 

and torque converter, and gearbox losses are comprised of gearbox windage, torque 

losses in the gear, bearing losses, and clutch pack drag.  Variable displacement pumps 

and better design have minimized the pump losses, while torque converter losses can be 

reduced by installing a lockup clutch between the impeller and turbine.  The gearbox 

losses can also be reduced through more thorough design of the individual components.  

The average mechanical efficiency of modern five-speed automatic transmissions are 

around 85 percent, and further modifications to the current designs would only yield 

about a one percent improvement in mechanical efficiency (Kluger and Long, 1999).  
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2.2 Continuously Variable Transmissions 

 A continuously variable transmission (CVT) is a power device whose speed ratio 

can be varied in a continuous manner.  A CVT transmits power without any abrupt 

changes in output torque and speed, and it has an infinite number of intermediate speed 

ratios between the bounds of its highest and lowest speed ratio (Singh and Nair, 1992).  

This aspect of the CVT has been very attractive to automotive designers as tightening 

environmental regulations, increased performance requirements, and increased emphasis 

on customer satisfaction have forced them to rethink the automotive powertrain (Chan, 

1986).  Even though automatic and manual transmissions will still dominate the market 

for some time to come, CVTs will have an increasing presence in the automotive 

landscape (Wagner, 2001). 

 The CVT concept has been around since the fifteenth century when Leonardo da 

Vinci made a sketch that indicated the potential of the stepless continuously variable 

transmission (Birch, 2000).  Of these designs, there have only been a few that have 

received significant attention from automotive designers.  These CVT designs can be 

classified into five categories:  these are friction CVTs, traction CVTs, hydrostatic CVTs, 

electric CVTs, and other variable geometry CVTs (Table 2-1). 

Table 2-1.  Classification of Continuously Variable Transmission Devices 

Friction Type 
• Rubber Flat Belt CVT 
• Rubber V-Belt CVT 
• Metal Pushing Belt CVT 

Traction Type • Nutating Traction Drive CVT 
• Toric CVT 

Hydrostatic CVT • Hydraulic Pump and Motor 
Electric CVT • Series Hybrid Vehicle Drive 

Variable Geometry CVT • Epicyclic CVT 
• Other Designs 
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2.2.1 Friction Type CVT 

 The definition of a friction type CVT is a transmission device that uses friction as 

a medium for power transmission.  This friction is of the “static” type in that the design is 

intended to transmit power from one element to the other with no relative displacement 

between the two elements (Hewko, 1986).  An example of this phenomenon is the 

variable diameter pulley and belt system, where the belt slides axially or radially, but 

frictional force prevents tangential belt slip (Kluger and Fussner, 1997). 

 The most general arrangement for friction type CVTs consists of two pulleys and 

a flexible belt.  This arrangement transmits power in the same fashion as the common 

fixed diameter pulleys, but the variable diameter of these pulleys is what makes the 

friction CVT unique.  These pulleys can vary in diameter, with the driving pulley 

increasing in diameter while the driven pulley decreases in diameter, or vice versa.  The 

mechanism for the pulley diameter variation and the belt material is what varies in these 

particular CVTs. 

Rubber Flat Belt CVT 

 The rubber flat belt CVT is a device that uses a flat elastomer belt that is based 

upon the internal combustion engine fixed-radius type engine timing belts.  Variable 

diameter pulleys are utilized in order to allow for a continuously variable speed ratio.  

 The belt used in this design is normally fabricated from high strength tensile 

members; usually this is Kevlar cords in an elastomer matrix such as neoprene.  Because 

the belt is flat, more of the allowable belt tension can be devoted to transmitting power 

than generating belt to sheave forces (Kluger and Fussner, 1997).  This is because the flat 

belt has a large amount of its surface area on the interior surface where it interacts with 
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the belt drive elements on the pulleys, so a normal force does not need to be applied to 

any of the other surfaces of the belt to increase torque transmission. 

 The variable diameter pulley consists of a number of belt drive elements, 

positioned radially by the intersection of logarithmic spiral slots to adjust the pulley 

diameter.  In each pulley, the spiral slots are opposing in direction, and the belt drive 

elements are supported by the intersection of the spiral tracks on each side of the pulley.  

These contact elements form a discontinuous “pulley” which varies in diameter as the 

belt drive elements move inward and outward on their individual tracks when a hydraulic 

actuator rotates the disks with respect to the pulley center (Fig. 2-1).  There is a hydraulic 

actuator on the driving and the driven pulley, and a typical control system will set the 

hydraulic pressure in one actuator to maintain belt tension, while the hydraulic pressure 

in the other actuator sets the speed ratio (Kluger and Fussner, 1997). 

 

Figure 2-1.  Flat Belt CVT (Kluger, 1997) 

 

The flat belt CVT can attain belt efficiency values as high as 97 percent at high power 

levels and high driven pulley speeds, whereas the belt efficiency is around 94 percent for 
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light loads.  The steady state efficiency drops off as the output pulley speeds increase 

above 3000 revolutions per minute (Kluger and Fussner, 1997).  Currently, there are no 

major automobile manufacturers marketing vehicles with this transmission, as the power 

rating of this unit is still too small for automotive use. 

Rubber V-Belt CVT 

 The rubber V-belt CVT is a device that uses an elastomer belt similar in design to 

the flat belt CVT.  Variable diameter pulleys are utilized in order to allow for a 

continuously variable speed ratio.  Unlike the flat belt CVT, the variable pulleys used in 

this design consist of split, conical pulleys where the conical sections are able to move 

axially.  The continuously variable ratio results from contracting one set of conical 

sheaves while expanding the set on the other shaft (Fig. 2-2).  The belt rides on the 

surface of these sheaves, so it moves radially inward on one set and radially outward on 

the other.  This stepless change in sheave diameter is what causes the stepless ratio 

change in the transmission.  The mechanism for the sheave motion is usually either a 

hydraulic actuator or a mechanical spring system. 

 The belt used in this design is constructed in a similar fashion to the belt in the 

flat belt CVT, but its design is modified to accommodate different loading conditions.  

The friction surface on this belt is comprised of the two sides of the belt that mate with 

the conical sheaves on the pulley, so the belt must be squeezed in order to prevent slip.  

This creates a loading condition on the belt, which is a combination of a buckling load 

over the axial surface of the belt and a tensile load on the belt between the two pulleys 

(Kluger and Fussner, 1997).  The power is transmitted from the tensile force on the belt 

as a result of the friction force created by the sheaves pressure on the belt, so the belt 
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stress is the limiting factor in the power capacity of a V-belt CVT (Beccari and 

Cammalleri, 2001). 

 

Figure 2-2.  Illustration of Operation of Belt and Sheave CVT (Fenton, 1996) 
 
 The split-conical sheave design of the V-Belt CVT requires some source of axial 

force in order for the transmission to transmit power efficiently.  There are CVTs in 

which the axial thrusts on the movable sheaves are produced by simple devices (helical 

springs, centrifugal masses, etc.), which require no sophisticated regulation system 

(Mantriota, 2001).  These transmissions are usually found in the lower end of the power 

spectrum in such vehicles as snowmobiles, go-karts, and personal scooters.  For higher-

powered applications, the CVTs are controlled with hydraulic actuators with either 

mechanical or electronic regulation schemes.  In these automotive designs, the addition of 

either a starting clutch or a torque converter is required just as in a conventional 

transmission (Vahabzadeh and Macey, 1990).   
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 The design for the V-Belt CVT is credited to Hub Van Doorne, who designed the 

system for a Dutch car called the Daffodil, or Daf (Fig. 2-3).  Introduced in 1959, the 

transmission was marketed as the Variomatic, and was fitted into the Daf 33.  The 

original Van Doorne design had a transmission range between 16.4 and 3.9:1, and it was 

mated to a 0.6-liter engine.  This design used a combination of mechanical and electro-

pneumatic actuators to control the transmission (Fenton, 1996).  The Van Doorne design 

went through continuous development from that original design until the present even 

though Daf was bought out by Volvo in the 1970’s, and the Variomatic became the most 

successful CVT produced in the automotive marketplace with production ending in 1991 

(Ritzinger, 2003). 

 

Figure 2-3.  Cut-away drawing of Daf 55 equipped with the Variomatic CVT (Ritzinger, 2003) 
 

Metal Pushing Belt CVT 

 The metal pushing belt CVT is a refinement of the original Van Doorne design.  

Its operation is based on the same principles as the earlier design, but a metal belt is used 

for increased power capacity (Fig. 2-4). 
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Figure 2-4.  Cut-away View of Van Doorne Metal Belt CVT Unit (Fenton, 1996) 

 
 The metal belt consists of segmented, thick-stamped steel blocks with cutouts on 

both sides that contain stacked ribbons of steel referred to as bands.  The metal cutouts 

are stacked onto these bands so that they form a belt that is flexible enough to wrap 

around the drive sheaves while being rigid in compression.  The metal belt has more 

buckling strength than the previous rubber design, so a greater amount of axial force can 

be applied to the belt by the sheaves.  The metal belt can also transmit more power than 

its rubber counterpart because it transmits power with compression rather than tension 

because the steel blocks resist deformation to transmit power whereas the rubber belt 

transmits power through belt tension.  There is still a component of tension in this design 

because the tension in the steel bands needs to be sufficient enough to prevent bucking of 

the stack of steel blocks while holding them in contact with the sheave faces with enough 

normal force to generate adequate tangential friction forces.  Thus, the steel bands are the 

limiting factor in the metal pushing belt CVT (Kluger and Fussner, 1997). 
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Figure 2-5.  Audi A4 Equipped With the Multitronic CVT (Csere, 2002) 

 
 The Van Doorne transmission equipped with the metal pushing V-Belt was 

introduced in 1976 as the Transmatic transmission.  This design soon became the 

standard for CVT applications in automobiles.  Currently, almost all of the CVT-

equipped automobiles sold worldwide utilize a transmission based around the Van 

Doorne design.  These transmissions have continued to improve in refinement, power 

capacity, and performance (Table 2-2).  Whereas the original application of the Van 

Doorne design was for a 0.6-liter engine, the new Multitronic metal pushing belt CVT 

from Audi (Fig. 2-5) is designed to handle the output for a 3.0-liter engine (Wagner, 

2001).   

Table 2-2. Belt CVT Efficiencies for Various Operating Conditions (Kluger, 1999) 
 Low-Speed Ratio 

High-Input Torque 
Mid-Speed Ratio 
Mid-Input Torque 

High-Speed Ratio 
Low-Input Torque 

Low-Speed 84% 86% 77% 
Mid-Speed 86% 89% 80% 
High-Speed 83% 85% 76% 

 

2.2.2 Traction Type CVT 

 The definition of a traction type CVT is a transmission that uses rolling contact 

between two rotating bodies to transmit power.  Traction drives transmit power through 
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tractive forces, which are a function of the radius at the location where the tractive forces 

are applied (Kluger and Long, 1999).  Kinematically speaking, any smooth body in 

revolution in contact with another smooth body of revolution can be considered a traction 

drive, but a traction CVT uses this contact in conjunction with a variable contact radius to 

achieve stepless changes in ratio (Fig. 2-6).  Traction drives that used purely rolling 

contact were the earliest designs for automotive applications.  These traction CVTs rely 

upon the frictional contact of dry surfaces, and their resulting power capacity is limited 

(Hewko, 1986). 

 
Figure 2-6.  Different Kinematic Arrangements for Traction CVTs (Hewko, 1986) 

 
 The advent of traction fluids has greatly increased the power capacity of traction 

drives.  Two rolling elements in contact place the traction fluid between them into 

extreme shear.  At pressures around 2.8 GPa, the traction fluid viscosity increases to the 

point where the fluid becomes almost glasslike.  Under these conditions, the transmission 

can transmit a high level of torque (Kluger and Long, 1999).  Traction fluid also 

lubricates and cools the traction elements, which are constructed of high strength steel 
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(Hewko, 1986).  The continued development of traction drive CVTs will center on the 

improvement of traction fluids and traction element materials, because the size, and 

therefore the weight, of traction drives is directly related to the traction coefficient of the 

traction fluid (Kluger and Long, 1999). 

Nutating Traction Drive CVT 

The nutating traction drive CVT is a transmission comprised of conical rollers and 

control rings situated inside of a transmission casing.  In this design, the input and output 

shafts are aligned on the same axis, and the entire transmission is contained inside of a 

cylindrical case.  The heart of this transmission is a dual cone element.  This dual cone 

element is comprised of two hollow, metal cones that are joined at the base with a shaft 

through the center of these driving cones that is supported by bearings.  A carrier in 

which one end is connected to the input shaft supports this cone shaft, and a bearing 

supports the other.  The cone shaft is mounted to this carrier at about a 20-degree angle, 

with the center of the cone shaft intersecting the transmission centerline (Fig. 2-7).  

Because of this angled arrangement, when the carrier rotates, the cone shaft “nutates” 

around the transmission axis.  This compound motion is a result of the cone shaft being in 

rolling contact with the control rings.  The output end of the cone shaft is connected to a 

gear, which contacts a ring gear connected to the output shaft of the transmission.  The 

compound rotation of the cone shaft creates a motion analogous to that of the carrier of 

the planetary gear set, and the axial movement of the control rings changes the speed of 

the cone shaft, and hence the transmission ratio (Kluger and Fussner, 1997). 

 20 



 
Figure 2-7.  Nutating Traction Drive CVT (Kluger, 1997) 

 
 
 The nutating traction drive CVT was attractive to automobile and tractor 

manufacturers because its linear layout was superior to the parallel shaft layout of the 

Van Doorne design.  This layout is better suited to the north-south layout of conventional 

cars and light trucks and rear wheel drive tractors.  Vadetec Corporation developed this 

design for automotive use, but, to date, it has never been developed for series production 

(Hewko, 1986).  The transmissions that were produced exhibited very good mechanical 

efficiency, with values of 90 to 96 percent being typical (Kluger and Long, 1999). 

Toric CVT 

 The toric CVT is a transmission comprised of two toric races facing each other 

with three rollers equally spaced at 120 degrees inside of the toric cavity.  The outside 

diameter of these rollers is equal to the transverse diameter of the torus, while the centers 

of the rollers are located on its pitch diameter (Hewko, 1986).  This transmission 

transmits power into the input torus, which is in rolling contact with the rollers.  These 

rollers then impart a rolling motion on the output torus.  Changing the angle of the rollers 

relative to the transmission centerline effectively controls the speed ratio of the 

 21 



transmission (Fig. 2-8).  When the roller planes are inline with the transmission axis, a 

1:1 transmission ratio results.  When the rollers are turned in either direction, either an 

under drive or overdrive condition results (Kluger and Fussner, 1997). 

 
Figure 2-8.  Half-toroidal Transmission (Kluger, 1997) 

 
 The toric CVT is one of the oldest traction CVT drive designs to be designed for 

use in passenger cars.  The first toric CVT was manufactured by Hayes for the Austin 

automobile in the 1930’s.  Further development work on the toric design was pursued by 

General Motors off and on through the 1960’s (Hewko, 1986).  The Perbury gear 

emerged early 1970’s with a toric design that could transmit 100 bhp at 92 percent 

efficiency.  This design was further developed and enhanced, and it culminated into the 

Torotrak transmission design (Fenton, 1996).  The latest toroidal transmission design to 

reach the market was the Extroid transmission manufactured by Nissan Motors 

Corporation (Nissan).  This transmission was mated to a 3.5 liter six cylinder engine, and 

it was designed for full-sized sedans (Nissan) in the Japanese market (Fig. 2-9) 
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Figure 2-9.  Nissan Gloria Equipped With the Extroid CVT (Nissan) 

  

 The modern toric CVT is approximately 91 percent efficient over the majority of 

its operating range with lowered efficiency in areas of low reduction ratio and input 

torque.  This efficiency is superior to other continuously variable transmissions and 

standard automatic units, but toric transmissions are heavy and expensive compared to 

the other designs.  In addition, the performance of the traction fluid is a limiting factor in 

the design because of its narrow temperature range (Wagner, 2001).   

2.2.3 Hydrostatic CVT 

A hydrostatic CVT is a transmission unit comprised of a hydrostatic pump and a 

hydrostatic motor.  The pump input shaft is connected to the power source while the 

motor is connected to the output shaft; the pump and the motor are connected by a 

hydraulic circuit (Singh and Nair, 1992).  The speed ratio change in these transmissions is 

performed by varying the displacements of the pump and motor while the overall system 

pressure limits the amount of torque that can be transmitted.  The speed ratio change is 

stepless, and therefore continuously variable throughout the transmission operating range.  

The hydrostatic transmission differs from the hydrodynamic drives that are employed in 

common automotive torque converters.  The hydrodynamic drive relies on fluid kinetic 
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energy to derive power, while the hydrostatic drive is analogous to a column of liquid 

actuating a hydraulic unit attached to a load (Fenton, 1996). 

The hydrostatic transmission has a lower mechanical efficiency than other 

continuously variable transmissions used in automotive applications (Singh and Nair, 

1992).  However, the hydrostatic transmission is successful in off-road vehicle 

applications where the vehicle operation is primarily in the low-speed, high-torque 

regime and the excess weight of the unit is not a liability (Fig. 2-10). 

 
Figure 2-10.  Honda Rubicon ATV with Hondamatic Hydrostatic Transmission (Honda) 

 

2.2.4 Electric CVT 

The electric CVT, or the series hybrid electric vehicle (HEV), is comprised of 

three to four main elements.  These are the power source, the generator, the electric 

motor, and a battery pack (Fig. 2-11).  The basic principle of the electric CVT is 

analogous to the hydrostatic CVT in that the power source drives an electric generator 

while the electric motor is connected to the output shaft; the generator and motor are 

connected by an electric circuit.  Unlike the hydrostatic CVT, the addition of a battery 

pack can store excess power that would normally be wasted during vehicle operation 

(Kiuchi et al., 2001). 
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Figure 2-11.  Layout of Series Hybrid for Heavy-Duty Buses (Kiuchi, et al., 2001) 

 
The series hybrid has been used with limited success in the automotive field as 

parallel hybrid arrangements have proven to have superior performance and economy.  

Currently, only city buses have seen any success at volume production (Fenton, 1996).  

On the other hand, this series arrangement is the standard for such heavy vehicles as 

diesel locomotives and ultra-heavy-duty trucks (Fig. 2-12).  The electric CVT serves well 

 
Figure 2-12.  Komatsu 930E Heavy Diesel Truck with Electric Drive (Komatsu) 

 

in situations where the power source and the load locations prohibit a direct mechanical 

drive and where accurate transmission of high power is necessary (Kiuchi et al. 2001).       
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2.2.5 Variable Geometry CVT 

Epicyclic CVT 

The epicyclic CVT is a combination of a variable geometry sine wave generating 

mechanism and an epicyclic gear set.  The sine wave generating mechanism consists of a 

crank arm carrier connected to the input shaft with four crank arms connected to a set of 

output gears.  The crank ends fit into a slotted index plate.  The index plate has a 

moveable center of rotation that can create a relative crank motion.  This relative crank 

motion is translated to the output gears (Fig. 2-13).  The epicyclic gear set then combines 

the input motion and one-way clutches in the output shafts add the forward motion from 

the output gears to form a new output gear ratio, which is a combination of the input and 

the positive sinusoidal output (Fitz and Pires, 1991).  Compared to other CVT designs, 

this one does not allow gross slip in that there is a direct mechanical connection between 

the input and the output.  Frictional losses do hurt efficiency at low speeds, but the peak 

efficiency of this mechanism is over 90 percent (Kluger and Fussner, 1997). 

 
Figure 2-13.  Epicyclic CVT (Fitz and Pires, 1991) 
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Other CVT Designs 

 There are other purely mechanical designs listed in the literature that are too 

numerous to list here.  One trait that is common to all of these designs is some sort of 

variable geometry which will change the input to output ratio.  This variable geometry 

can be combined with an oscillating or rotating motion continuously for a stepless ratio 

change.   

 

2.3 Power-Split CVT Technology 

The CVT has distinct advantages over conventional fixed-ratio transmissions in 

many ways, but current CVT units suffer from limited torque capacity and ratio coverage 

when compared to conventional units (Vahabzadeh and Macey, 1990).  There are two 

methods to overcome these limitations; either the CVT unit has to be redesigned or the 

CVT can be combined with an epicyclic gear set to change its operating characteristics.  

The first industry to recognize the advantages of combining the CVT and a differential 

gear set produced transmissions for agricultural equipment.  These units combined a 

hydrostatic transmission with epicyclic gears.  Kress (Kress, 1968) analyzed and 

classified these transmissions, but this analysis can be extended to any type of CVT by 

substituting it in place of the hydrostatic variator.  These hybrid transmissions can be 

classified into two main categories; each with its own distinct characteristics.  These are 

continuously variable power split transmissions (CVPST) and infinitely variable 

transmissions (IVT). 
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2.3.1 Continuously-Variable Power Split Transmissions  

The CVPST is a transmission system consisting of a variator and one or more sets 

of epicyclic gears.  The CVPST operates in a three-branch power circuit where one of the 

branches is the output or input of the transmission, and the other two branches are 

connected by a variator, which is then connected to the input or output of the 

transmission.  In the CVPST, the torque passing through the variator circuit is always less 

than the input torque.  This quality is what has attracted engineers to this concept because 

a CVPST can extend the power envelope of current CVT mechanisms. 

Interest in the CVPST has been around for the better part of the past century, but 

its development for automotive use has been limited.  One CVPST designed especially 

for automotive use utilized a Van Doorne-type CVT connected to a planetary gear train 

(Fig. 2-14).  This design minimized the torque input to the CVT at low speeds and 

increased the CVT load as the gear ratio decreased (Mucino et al., 1997).  This 

arrangement was modified with a two-stage gearbox to extend the operational range of 

the transmission.  This design never made it past the computer simulation, but the results 

of that simulation indicated that this design would give superior vehicle acceleration 

when compared to a conventional transmission while decreasing the load on the CVT 

unit (Lu, 1999).   

Currently, the only development of the CVPST is in the academic arena.  Most of 

the work is centered on deriving the operating characteristics of CVPST units in 

conjunction with other transmission arrangements (Fussner and Singh, 2002).  The 

conclusions from this research are that the CVPST can be designed to extend the power 

envelope of any variator, but the overall transmission range will be reduced (Beccari and 
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Cammalleri, 2001).  The ideal CVPST will balance all of these design factors while 

producing a useable range of speed ratios. 

 

Figure 2-14.  Continuously Variable Power Split Transmission (Mucino et al., 1997) 
 

2.3.2 Infinitely Variable Transmissions 

Infinitely variable transmissions share the same basic architecture with CVPST 

units in that they consist of some variator connected to one or more sets of epicyclic 

gears.  The same three-branch system results from this arrangement, but the difference is 

in the power flows.  In IVT units, there are two different power flows that can be 

encountered as the input power is recirculated through the branches instead of splitting 

between them.  This power recirculation can cause either the variator or the epicyclic 
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gears to operate under conditions that exceed the input power.  These units are called 

infinitely variable transmissions because their arrangement actually extends the ratio of 

the variator to the point that the unit can reverse its output direction through the operating 

range of the transmission.  This point of reversing is the geared neutral point (Macey and 

Vahabzadeh, 1987).   

Initial work on IVT designs was directed toward use with hydrostatic 

transmissions.  These transmissions were used in agricultural vehicles because their 

flexibility and performance were not degraded by their weight and cost (Kress, 1968).  In 

1987, General Motors patented an IVT design for automotive applications (Fig. 2-15).  

This design utilized a metal pushing belt CVT, a planetary gear set, and a set of clutches 

(Macey and Vahabzadeh, 1987).  In this design, the transmission operated as an IVT for 

the lower portion of its driving range, while the CVT was the main transmission element 

through the higher portion of the driving range.  This design was shown to have superior 

acceleration and economy to conventional transmissions, and the IVT design eliminated 

the need for a starting device and a reversing gear (Vahabzadeh, 1990).  This work has 

been continued by the Torotrak Corporation, which has developed a dual-range 

transmission unit suitable for full-sized trucks with up to 5.4 liters of displacement. 

The most recent work on IVT design is centered on the synthesis of components 

for maximum mechanical efficiency.  Mantriota has designed and built a modular testing 

apparatus that can be used to test different IVT designs.  With the validation of testing 

equipment, new expressions for the transmission overall efficiency have been validated 

(Mantriota, 2001).  Other current works have been concerned with maximizing this 
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efficiency in order to come up with a competitive design (Hong-Sen and Long-Chang, 

1994).   

 

Figure 2-15.  General Motors Infinitely Variable Transmission (Macey and Vahabzadeh, 1987) 
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Chapter 3 – Continuously Variable Power Split 
Transmissions – Definition and Analysis 

 
 

3.1 Model of Study 

 The transmission system evaluated in this study consists of a variable element and 

an epicyclic gear element.  The variable element can be either a friction, traction, 

hydrostatic, electric, or mechanical CVT while the epicyclic gear element can consist of 

either differential or planetary gears.  The central element in these transmissions is the 

epicyclic gear set.  The epicyclic gear set consists of three shafts, and the motion of two 

of these shafts defines the motion of the third, which gives the system two degrees of 

freedom.  In a transmission application where there is one input torque and speed that is 

passed to one output shaft, there is one degree of freedom.  In epicyclic transmissions, 

one of the shafts is always moving at a defined speed, and the speeds of two of these 

shafts is constrained to each other to reduce the system to one degree of freedom.  There 

are two levels of classification for this transmission system.  The first level of 

classification is based on the physical layout of the transmission, which is either input-

coupled or output-coupled because variable element is either coupled to the input or 

output shaft of the transmission (Fig. 3-1). 

Pin Pin Pout Pout 

CVT 

PGT PGT 

CVT 

Input Coupled Output Coupled 

 
Figure 3-1.  Illustration of CVT Arrangements 
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The second level of classification is based upon the direction of power flow between the 

components of the transmission.  These are classified as a Type I, Type II, or Type III 

power flows for both the input-coupled and output-coupled arrangements (Figs. 3-2). 
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CVT 

Pin Pout Pout 

CVT 

PGT PGT 

CVT 

Pin Pin Pout Pout 

CVT 

PGT PGT 

CVT 

Type I 

Type III 

Type II 

Figure 3-2.  Illustration of Power Flows 

Hsieh and Yan (1990) determined that the input-coupled transmission 

arrangement is the most efficient mechanically.  In addition, the input-coupled 

transmission will connect the CVT to the input circuit of the transmission, which has a 

lower torque value than the output shaft for most of the transmission operating range.  

Also, the ratio of the CVT will be controlled in much the same manner as a conventional 

shaft-to-shaft CVT because it is connected to the input shaft of the transmission. 

According to Figure 3-2, transmissions with a Type III power flow are more 

desirable because there is no power recirculation in the transmission circuit.  In Type I 

 33 



and Type II power flows, certain transmission components are exposed to a power load 

greater than that of the input load.  These loads can range from a factor of one to the 

hundreds, which can result in an undesirable design (Kress, 1968).   

 

3.2 Component Analysis 

The input-coupled CVPST is comprised of a planetary gear set, a variator, and one or 

more sets of conventional gears (Fig. 3-3).  This particular system is designed to have a 

Type III power flow. 

 

ω IN 

γ 1 γ CVT γ PGT 

        

ω OUT 

   

 

Figure 3-3.  Layout of CVPST 
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3.2.1 Kinematic Analysis of Planetary Gears 

The heart of the CVPST is the planetary gear set.  The planetary gear set is 

comprised of the sun gear, the ring gear, and the planet gears attached to a gear carrier 

(Fig. 3-4).  The gear carrier allows the planetary gear to operate with a compound 

rotation where it can rotate around its own axis and rotate around the center axis of the 

transmission.  The planetary gear system has two degrees of freedom, which can be 

proven with the relation: 

 ( ) 21213 ffnM −−−= . (3-1) 

In this equation, M denotes the number of degrees of freedom, n is the number of 

machine elements, and f1 and ff denote the number of one degree of freedom joints and 

two degree of freedom joints respectively (Mabie and Reinholtz, 1987).  In the planetary 

gear set, there are five elements comprised of the gears, gear carrier, and the ground link.  

There are four revolute joints with one degree of freedom and two gear joints with two 

degrees of freedom: 

 

 ( ) ( ) 2242153 =−−−=M . (3-2) 

Because there are two degrees of freedom, the motion of any two elements must be 

known in order to determine the motion of the third.  As can be seen in the Kinematic 

Graph in Figure 3-4, the planetary system can be constrained to have one degree of 

freedom if the circuits between either elements 2 and 5 or elements 4 and 5 are coupled.  

The planetary system is fully constrained when both element pairs are coupled.  Because 

of this design freedom, two planetary gear sets with the same ratio can produce different 

speed ratios dependent upon which components are coupled, and careful design must be 

performed so that the resulting transmission operates within all of its design parameters. 
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Figure 3-4.  Skeleton and Kinematic Graph of Planetary Gear Set 

3.2.2 Motion Analysis of Planetary Gears 

 The basic system for a planetary gear set consists of a sun gear, a planet gear, a 

rotating arm, and a ground link (Fig. 3-5).  This system can be set up to derive the basic 

speed relations between the components so that an overall equation can be expressed. 

2

1

3

4

Figure 3-5.  Basic Planetary Gear System 

ω24 

ω41 ω21 

ω34 ω31 

ω41 

Figure 3-6. Complete Velocity Diagram for Basic Planetary System 
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For the planetary gear system represented in Figure 3-6, two expressions can be derived 

from the velocity diagram (Mabie and Reinholtz, 1986): 

 412124441221224 ωωω −==−= rVrVrV  (3-3) 

and, 413134441331334 ωωω −==−= rVrVrV , (3-4) 

where ω denotes the angular velocities of the sun gear, planet gear, and arm with respect 

to the ground link and the angular velocities of the sun and planet gear in relation to the 

arm.  The next step is to divide Eq. (3-3) by Eq. (3-4) to yield the velocity equation: 

 
4131

4121

34

24

ωω
ωω

ω
ω

−
−

= .  (3-5) 

For the basic planetary system with a sun gear, ring gear, and planet gears, relations can 

be derived such that: 

 PGT
S

R

N
N γ

ω
ω

−=−=
34

24  (3-6) 

where, Sωω =21 , Rωω =31 , Aωω =41 , (3-7) 

and where N denotes the number of teeth on the ring and sun gears, γ denotes the 

velocity ratio between the sun and ring gears, and the subscripts S, R, and A stand for the 

sun, ring, and planetary gear carrier respectively.  When Eq. (3-5) and Eqs. (3-6) are 

combined, the following relationship yields: 

 
AR

AS
PGT ωω

ωωγ
−
−

=− ,  (3-8) 

which can be used to calculate the angular velocities of all the components of the 

planetary gear set if the gear ratio and two of the velocities are known. 
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3.2.3 Torque and Power Analysis of Planetary Gears 

 The key factor in analyzing a split-path transmission is determining the power 

split factor.  With this power split factor, it can be determined whether a certain 

transmission design exhibits a Type I, II, or III power flow.  The basic split-path system 

consists of three circuits.  One circuit is connected to the output while the other circuit is 

connected to the input, and a third circuit is connected to either of the two.  All of these 

circuits intersect at the differential gear set (Fig. 3-7). 

 Pcir 

b 
a c 

Pin Pout 

Control 
Circuit 

Differential 

 
Figure 3-7.  Layout of Power-Split Circuit 

The power split factor is defined as the ratio of power circulating through the control 

circuit branch and the output power.  The circulating power ratio is: 

 
c

cir

P
P

=γ , (3-9) 

where γ is the circulating power ratio, Pcir is the circulating power through the control 

circuit, and Pc is the output power.  If the differential is considered as an isolated unit 

where branches a, b, and c intersect, then the scalar sums of powers and torques can be 

expressed as: 

 0=++=Σ cba TTTT  (3-10) 

and 0=++=Σ ccbbaa TTTP ωωω . (3-11) 
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It is noted that although these are scalar relations, the same relationship applies to vector 

components where the counter-clockwise direction is considered positive for torque and 

angular velocity.  In this case, branch a is always the element connected to the branch 

control circuit and the differential, branch b is always the branch control circuit that does 

not connect outside the system, and branch c is always the unit that projects directly from 

the differential to the input or output.  With this arrangement, Eq. (3-5) and (3-6) can be 

solved simultaneously to give the relations (Mabie and Reinholtz, 1986): 

 )(
)(

bac

acb

ωωω
ωωωγ

−
−

=  (3-12) 

or 

 
r
Rr

−
−

=
1

)1(γ  (3-13) 

where 

 
a

br
ω
ω

=  and 
c

aR
ω
ω

= . (3-14) 

The circulating power ratio defines the type of power flow exhibited by the transmission.  

When γ is positive, the power flow in branches b and c are moving in the same direction 

either into or out of the differential.  This is a Type I power flow where the power in the 

control branch is greater than the input power.  When γ is negative, the power flow in 

branches b and c are moving in opposite directions with respect to the differential.  This 

is a Type II flow which exhibits power recirculation if γ is greater than unity, or it is a 

Type III flow with the power split between the two branches if γ is less than unity. 
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3.2.4 Component Efficiency 

Gear Pair Efficiency 

 The CVPST is made up of the planetary gear set, the CVT, a reduction gear set, 

clutches, and other supporting components.  Each of these components exhibits some sort 

of power loss due to friction and other factors, so a comprehensive design must take all of 

these factors into account.   

 The efficiency for a gear pair is defined as: 

 
in

out
gear P

P
−=η , (3-15) 

where η is the component efficiency and P is the power before and after the unit.  The 

frictional power loss for a gear pair is defined: 

 )1( gearinloss PP η−= . (3-16) 

 
Planetary Gear Set Efficiency 

The planetary gear set is a system with two degrees of freedom, so the efficiency 

must be calculated for each branch of the system.  The torques acting on the links and the 

power loss are independent of the observer’s motion, so the power losses can be 

calculated in a moving reference frame in which one of the components appears fixed 

(Pennestri and Freudenstein, 1993).  The conventional planetary gear set has six 

inversions in which one component is fixed in order to eliminate one degree of freedom.  

In an input-coupled CVPST, the power flows into the sun and ring gears and exits the 

gear carrier, so the two inversions of the system constrain either the sun or ring gears.  

Table 3-1.  Epicyclic Inversions for a Planetary Gear set 
 Case #1 Case #2 

Driver A B 
C C 
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Fixed B A 
 

  

   C   

A   B   

  C   

A   B   

 
The mechanical efficiency for the inversion in Case #1 (Table 3-1) is defined by the 

expression: 

 
1
11

)( −
−

=− r
r

CAB
ηη , (3-17) 

where η1 is the gear pair efficiency for the first gear pair and: 

 
B

A

N
Nr −= . (3-18) 

The mechanical efficiency for the inversion in Case #2 (Table 1) is defined by the 

expression: 

 
1

2
)( −

−
=− r

r
CBA

ηη , (3-19) 

where η2 is the gear pair efficiency for the second gear pair.  With the efficiencies of the 

individual components, the next step is to calculate the power flow through the planetary 

gear set.  In the CVPST, the direction of power is positive at the sun and ring gear and 

negative at the gear carrier (Fig. 3-8).   

PB’ 

PA’ 

PB 

PA 

Pout 

G1 

G2 

Figure 3-8.  Power Flow in Planetary Gear Set 
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The power balance for the system above can be expressed with the relations: 

(3-20) 

 , and 

here POUT is the output power,  is the power flowing into the ring gear, and PB 

 

 PGTBAOUT PPP η)( += , 

)(' CABAA PP −= η )(' CBABB P −= η  P (3-21) 

w PA is the 

power flowing into the sun gear.  When Eq. (3-19) and Eqs. (3-20) are solved 

simultaneously, the resulting expression is: 

=η

)()(

''
CBA

B

CAB

A

OUT
PGT PP

P

−−

+
ηη

. 
(3-22) 

The ratio of powers can be determined from the speed ratio and the power split factor γ is 

 

introduced.  The resulting expressions are: 

AP '
=γ  

OUTP OUT

B

P
P ')1( =−γand . (3-23) 

When Eq. (3-21) and Eqs. (3-22) are solved simultaneously, the resulting expression is: 

 
)()(

1
CBACAB

PGT

−−

−
+
η

γ
η

γ
1

=η . 
(3-24) 

Using Eq. (3-23) the mechanical efficiency of the planetary gear set can be calculated as 

Variator Efficiency 

ment in this transmission is responsible for the greatest part of the 

echan

long as the speeds of all the gear train elements are known.  

 The variable ele

m ical losses because it is less efficient than conventional gears.  The type of 

variable element chosen for this particular application was the metal pushing belt CVT 

because it offers acceptable efficiency values compared to other variable elements while 
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being less costly and lighter than traction drives (Wagner, 2001).  The mechanical 

efficiency of a metal pushing belt CVT is not a constant value, because it uses a 

combination of axial force to squeeze the metal blocks in the band to transmit torque and 

a compressive force in the blocks to transmit torque from one pulley to another.  Changes 

to the torque and speed ratios of the CVT induce non-linear changes to the values of these 

force distributions, so the efficiency is dependent upon input torque and speed ratio 

(Kluger and Fussner, 1997).  A method for estimating the efficiency of a metal pushing 

belt CVT was conceived that used efficiency values for varied metal pushing belt CVTs 

published in standard literature (Bothron, 1985).  These values were normalized, and 

equations for the resultant curves were derived in a series of steps which accounted for 

efficiency variations due to input torque, speed ratio, and input speed respectively (Singh 

and Nair, 1992).  The efficiency curves for the transmission (Bothron, 1985) were then 

duplicated with the resulting experimental equations. 

 The first step in this method is to compute the efficiency for a given input torque 

(3-25) 

for the maximum and minimum speed ratios where the corrected speed ratio range is set 

from 2.5 to 0.4.  This is because it was recognized that there was a linear relationship 

between the natural logarithm of the speed ratio and the efficiency.  The maximum and 

minimum speed ratios for the transmission were given a 2.5 and 0.4 respectively, and 

these were used as the bounding speed ratios for the torque and speed relationships.  

These efficiencies are calculated for the following set of boundary conditions from 

polynomial curves fitted to experimental data (Singh and Nair, 1992): 

if t2.5≤0.3, 32
5.2 244.1684.3616.0 CVTCVTCVT ttt +−+=η , 

if t2.5>0.3, 95.05.2 =η , (3-26) 

 43 



and: 

if t0.4≤0.5, , (3-27) 

if t0.4>0.5, 

543

2
4.0

4.1854.3184.218

01.7687.132145.0

CVTCVTCVT

CVTCVT

ttt

tt

+−+

−+−=η

92.04.0 =η , (3-28) 

where: 

 
MAXCVT

CVT
CVT T

Tt =  and 
MAXCVT

CVT
CVTw

ω
ω

= . (3-29) 

he next step is to compute the efficiency respect to the input torque and the T with speed 

ratio. In this relation, the linear relationship between speed ratio and efficiency is 

accounted for within the speed ratio boundaries (Singh and Nair, 1992). This is 

accomplished with the relation: 

 =ηη 



 −

−+
8326.1

9163.0)log()( 4.05.25.2
CVTγηηγ

s  input 

. (3-30) 

The final step is to compute the overall efficiency, which is in term of input torque,

speed, and speed ratio.  With this relation, the effect of input speed is accounted for.  

Using the information from Eqs. (3-24) to (3-29), the overall efficiency for the metal 

pushing belt CVT is (Singh and Nair, 1992): 

 


−=
0.004.0 wηη 







++
2

247.046.067

CVT

CVTCVT
CVTCVT t

tt
γ

rating 

. (3-31) 

Eq. (3-30) can calculate the efficiency for a metal pushing belt CVT under all ope

conditions as long as the maximum rated torque and input speed are known. 
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3.3 CVPST System Design 

s to account for the velocity ratios, power flows, and 

e CVPST is dependent upon the fixed ratios of the fixed gear 

 The complete CVPST ha

overall efficiency of the transmission system.  In order to do so, the relations for all of 

these factors must be derived with emphasis on the optimal design.  Also, in order to 

accommodate variator disengagement, the angular velocity ratio of the variable element 

in relation to the overall transmission ratio must be manipulated.   

3.3.1 CVPST Speed Ratio 

 The speed ratio of th

pair and the planetary gear set and the variable ratio of the variable element.  When the 

transmission layout in Fig. (3-9) is used to assign angular velocities to the planetary gear 

train components, Eq. (3-7) becomes: 

 PGTγ−
OUTR

OUTIN

ωω
ωω

−
−

=

eed is 

. (3-32) 

The ring gear in this transmission is connected to the variable circuit where its sp

 and , (3-33) 

where  ωb=ωc, ωe=ωR  and γCV γ1 are the speed ratios of the variator and the

 

controlled by the ratios of the CVT element and the gear pair.  The relations that 

determine these speeds are: 

 ab γωω = CVT 1γωω ce =

T and  gear 

pair respectively. 
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Figure 3-9.  Skeleton Diagram of CVPST 

When Eq. (3-31) and Eqs. (3-32) are combined, the relation for the overall speed ratio 

becomes: 

 
CVTPGT

PGT

OUT

IN

γγγ
γ

ω
ω

11
1

+
+

= . (3-34) 

In this design, there are two modes of operation.  During the drive mode, C1 is engaged 

and C2 is disengaged so that the transmission speed ratio varies in proportion to the CVT.  

In cruise mode, C1 is disengaged while C2 is engaged.  In this mode, the planetary gear 

set is fully constrained so that ωR=ωS=ωA, ωIN=ωOUT, and there is no power passing 

through the control circuit (Table 3-2). 
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Table 3-2.  Modes of Operation for CVPST 
(Shading Indicates Clutch Engagement) 

Drive Mode C1 C2 

Drive   

Cruise   

Neutral   

Park   

 

In order to fully constrain the planetary gear set for the cruise mode, the speeds of all the 

planetary members must be synchronized, or the clutch cannot engage them all smoothly.  

The “synchronous point” of the planetary gear set only occurs when all three members 

are moving at the same angular velocity and in the same direction.  A CVT can be 

overdriven where the output velocity is twice the input velocity while the CVPST is 

limited to a 1:1 speed ratio at its minimum, so the transmission must be designed to use 

the entire useful range of the CVT.  This is accomplished with the equation: 

 1))(( 1 =γγ
MAXCVT . (3-35) 

In this equation, the maximum value for γCVT is in terms of output to input value.  In the 

Modified CVPST, the maximum speed ratio is 1:1, so the ratio range for this entire 

transmission is: 
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== . (3-36) 

The ratio range of the CVT and the CVPST differ because of the split power path 

associated with the planetary gear set.  The value of this difference is: 
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CVT

TDiff
φ
φ

−=1% , (3-37) 

where φCVT is the ratio range of the variable element.  A positive value indicates that the 

CVT range is increased by the CVPST, which would also indicate a Type I or Type II 

power flow.  A negative value indicates that the CVT range is decreased by the CVPST, 

but the power flow is a Type III. 

3.3.2 CVPST Torque and Power Analysis 

 The power splitting factor can be used to determine the performance of the 

transmission because the branch control circuit contains the CVT, which is the least 

efficient component in the transmission.  The relation for the power splitting factor for 

the transmission in Fig. (3-9) is: 

 







+
−


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


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1

11
. (3-38) 

The torque splitting factor between the output torque and the branch control circuit torque 

is derived by combining Eqs. (3-9), (3-10), (3-32), and (3-33) to get the relation: 

 



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γγ 1
11

1
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. (3-39) 

Equation (3-38) would also be used to calculate the torque split at the entrance of the 

branch control circuit in the absence of mechanical losses.  The torques through the other 

circuits and their respective powers can be calculated with Eqs. (3-9) and (3-10) if the 

torque and power ratio through one branch is known. 

3.3.3 CVPST Efficiency Analysis 

 The CVPST system efficiency is a function of the individual component 

efficiencies and the ratio of power flowing through the individual branches of the system 
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(Fig. 3-10).  For simplicity, the clutches C1 and C2 have been omitted.  In order to include 

them in the analysis, the component efficiency of C1 would be placed at (4) in Figure (3-

10) and the component efficiency of C2 would be evaluated within the PGT. 
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Figure 3-10.  The Interaction of Components and Their Efficiencies in the CVPST 

The first step in calculating the efficiency of the transmission is to apply the conservation 

of energy, or rate-based energy (Power), equations at the two branch intersections: 

 0321 =++ PPP , (3-40) 

and 0653 =++ PPP , (3-41) 

where P1=PIN and P6ηPGT=POUT.  The power relationship on both sides of the branch 

control circuit can be calculated with the equation: 

 512 PP CVT =ηη . (3-42) 

An equation for the overall transmission efficiency can be calculated by combining Eqs. 

(3-39), (3-40), and (3-41) to produce the relation: 

 1

1

16

5

6
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. 
(3-43) 

This can be simplified to form the relation: 
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ηη . 
(3-44) 

Eq. (3-43) can compute the global efficiency for the CVPST in terms of its individual 

components.  In the cruise mode of operation, the power flow through the branch control 

circuit is interrupted (Fig. 3-11), so the power flow is simplified to one circuit which 

transmits power while the only power required by the branch control circuit is that to 

overcome frictional losses.  When the efficiency of C2 is estimated to be unity, the power 

flow becomes: 

 61 PPP LOSS =−  or OUTLOSSIN PPP =− . (3-45) 

The resulting efficiency for the transmission is also unity because: 

 T
IN

OUT

P
P

η= . (3-46) 
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Figure 3-11.  Transmission Power Path in Cruise Mode 
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Chapter 4 – Continuously Variable Power Split 
Transmission Simulation Design 

 
 

 A thorough evaluation of different CVPST configurations would include such 

factors as the mechanical efficiency of individual elements along with the basic factors of 

speed and torque ratios.  In the CVPST, the power in the branch control circuit varies 

with overall transmission ratio, and the power loss in the variable element varies in a non-

linear fashion according to its instantaneous speed ratio, torque, and operating speed.  In 

addition, the torque losses associated with gear friction and bearing friction have to be 

addressed.  Because of the complexity of this system, no single equation can be derived 

to predict the transmission output torque and speed, so a computer simulation that can 

solve the system of equations for each component must be used.  For this study, three 

separate simulations were produced to evaluate the different operating conditions. 

 These simulations were designed and operated with the Matlab Simulink software 

package.  All three simulations were designed using the same methodology, where 

function blocks represent physical components of the transmission.  The simulations 

follow the same physical hierarchy of a physical system where the global system is the 

transmission with an input, output, and operating conditions, and the subassemblies that 

perform specific functions are contained within the global system.  The modularity of 

these simulations allows for the replacement of individual components in the system for 

greater flexibility (Rubin et al., 1997) 

4.1 CVPST Simulation Program 

  The CVPST simulation is modeled after the common CVPST described in the 

literature (Mucino et al., 1997).  In this system, the power flow is a type III in which the 
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power splits at the input of the CVT and recombines at the planetary gear set.  This 

system is comprised of three subsystems, which include the variator, the conventional 

gear pair, and the planetary gear set (Fig. 4-1).  In this arrangement, all of the subsystems 

are mechanically connected to the input shaft, and all of the subsystems transmit power. 

 

Figure 4-1. CVPST Model 

4.1.1 Simulation Hierarchy 

 The global transmission model calculates the transmission output torque and 

speed based upon the input speed, torque, and CVT ratio (Fig. 4-2).  This “black box” 

model simulates the performance of the transmission for discrete values of speed, torque, 
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and CVT ratios, and the input and output variables are the same as in the actual, physical 

model.  Within this global model are the subsystems that represent the physical 

components of the transmission and how they interact with one another.  These 

subsystems operate within the global system with each individual subsystem simulating 

the operation of its physical counterpart.  The gearing subsystem computes the speed and 

torque ratio between the input and output shafts of the gears while the bearing subsystem 

computes the frictional loss in bearings depending upon the operating conditions.  The 

global system is comprised of the following hierarchy of subsystems: 
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Figure 4-2.  CVPST Transmission Simulation Model Hierarchy 

 

4.1.2 Transmission Analyzer Subsystem 

 The transmission analyzer subsystem is similar to the global transmission model 

in that the input signals are torque, speed, and speed ratio, and the output signals are 

torque and speed.  The difference is that the input signal for torque is the actual output 
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torque for the transmission.  This is because the output torque of the transmission is based 

on two factors:  the overall speed ratio of the transmission and the combined torque loss 

due to frictional losses of the transmission components.  This torque loss is based directly 

upon the power split between the branch control circuit and the main circuit of the 

transmission.  According to Eq. (3-38), the power flow in the branch control circuit is 

proportional to the output torque.  The torque loss through the two branches of the 

transmission are then solved in a “backwards” fashion by starting with the output torque 

and solving for torque losses through the branches of the transmission toward the input.  

The torque losses are added at each component location, and the solution is an input 

torque that would produce the specified output torque for the transmission speed ratio and 

input speed.  For this simulation, gross slip in the CVT is neglected so that the speed 

efficiency is unity. 

4.1.3 Iterator Subsystem 

 The CVPST Global Model has the input torque as an input signal to the model 

while the transmission analyzer has the input torque as an output signal.                               

This discrepancy is rectified with the iterator subsystem that solves for the input torque 

through a conditional loop.  In this loop, the input torque for the global model is the 

condition that must be satisfied.  The relation to solve for input torque is: 

 KKK INTOUT TT =
−

ηγ
1

, (4-1) 

where GLOBALKK INTOUT TT
11 −−

= ηγ . (4-2) 

This relation is solved iteratively until the instantaneous condition T is 

satisfied.  At this point, the loop is broken, and the input torque and its respective output 

torque are known. 

KGLOBAL ININ T=
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4.1.4 Speed Ratio Module 

 The speed ratio module has the inputs of the input speed and CVT speed ratio 

from the global transmission module.  Also, the constant values for planetary gear ratio 

and the fixed gear ratio are input signals to the module.  The speed ratio module performs 

the calculations outlined in Eqs. (3-33) and (3-34), and the output signals are the 

instantaneous angular velocities of all the transmission components.  

4.1.5 Power Split Module 

 The power split module has the inputs of the input speed and CVT speed ratio 

from the global transmission module.  Constant values for the fixed speed ratios are also 

input signals.  The power split module performs the calculations outlined in Eqs. (3-38) 

and (3-39), and the output signals are the instantaneous power split ratio and torque split 

ratio for the transmission. 

4.1.6 PGT Module 

 The PGT (Planetary Gear Train) module has the inputs of the output torque from 

the transmission analyzer subsystem and the instantaneous power split ratio from the 

power split module.  These signals are used to perform the calculations in Eqs. (3-17) 

through (3-24).  Inside this module, the output torque is then divided by the resulting 

efficiency to get the corrected torque in the PGT. 

4.1.7 Gear Module 

The gear module has the inputs of the corrected torque from the PGT module 

which has been multiplied by the torque split ratio from the power split module, the fixed 

gear ratio, and the mechanical efficiency of the gear pair.  This module corrects for the 
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torque loss due to gear friction with Eq. (3-15) and the output signal is the corrected 

torque at the CVT outlet. 

4.1.8 CVT Module 

 The CVT Module is similar in operation to the global transmission model in that 

the type of input and output signals is the same.  This is because the CVT is also a power 

transmission device; it is just embedded in the larger model.  The CVT module lies in the 

chain of solving for torques from the output of the transmission to the input, so the input 

signals to the module consist of the speed ratio, the CVT input speed, and the CVT output 

torque.  The output signals of the module consist of the input torque and the output speed. 

 

4.1.9 CVT Iterator 

 The CVT Iterator Module operates like the main iterator module on the global 

model.  The need for this model is to solve for the input torque from a known output 

torque.  The efficiency of the CVT can be calculated from Eqs. (3-25) to (3-31) in terms 

of input torque, speed, and speed ratio, but input speed, output torque, and speed ratio are 

the available signals.  The input and output torques are bounded by the relation for 

dynamic equilibrium: 

 CVTCVT INTOUT TT =ηγ . (4-3) 

In order to solve this problem for a known output torque, the torque in the CVT is 

increased by 0.001 Newton-meter increments until its resulting torque is equal to the 

value of the input signal.   
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4.1.10 CVT Efficiency Module 

 The CVT Efficiency module is used to determine the efficiency of the CVT for a 

given set of operating conditions.  The input signals consist of the input torque, input 

speed, and speed ratio of the CVT.  The module then solves Eqs. (3-25) to (3-31) to 

determine the efficiency of the CVT.  The output signals consist of the output torque and 

speed. 

4.1.11 Bearing Module 

 The bearing module is used to determine the bearing moments due to friction for 

all of the bearings in the transmission.  The input signals to the bearing module consist of 

the torque at each shaft location.  The module then calculates the torque loss due to 

friction with the relation: 

 µdFT nLOSSn
= , (4-4) 

where TLOSSn is the torque loss in bearing n, Fn is the force on bearing n, and µ is the 

bearing coefficient of friction.  Fn is calculated from the force analysis on the shaft due to 

tangential gear forces and component weight.  The bearing module solves this relation for 

each bearing location, and the output signals consist of the torque loss at each bearing 

location.  These torque losses are then added to the reversed torque path in the 

transmission analyzer to attain a cumulative bearing loss. 

 

4.2 Modified CVPST Simulation Program 

 The modified CVPST simulation is modeled after the common CVPST described 

in the previous section with two differences.  The modified CVPST has the branch 

control circuit disconnected from the split power path right before its connection to the 
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ring gear, and the sun, ring, and gear carrier of the planetary gear set are constrained.  

The resulting transmission has a 1:1 ratio direct-drive with an idling CVT.  In this 

arrangement, all of the subsystems are mechanically connected to the input shaft, but not 

all of the components transmit power. 

The global transmission model calculates the transmission output torque and 

speed based upon the input speed, torque, and CVT ratio.  This model performs the same 

function as the previous model, but it is for a different physical system.  Within this 

global model are subsystems that represent the same physical components as the previous 

system.  Because of this similarity, the same modules programmed for one module can be 

used in another.  The modified global system is comprised of the following hierarchy of 

subsystems: 

 

Modified CVPST
Global Model

CVT
Module

Gear
Module

Bearing
Module

CVT
Efficiency

CVT
Iterator

Modified CVPST
Global Model

CVT
Module

Gear
Module

Bearing
Module

CVT
Efficiency

CVT
Iterator

Figure 4-3.  Modified CVPST Transmission Simulation Hierarchy 

The same modules from the previous case were used in the simulation to calculate the 

performance of the CVT, gears, and bearings.  Because the branch control circuit was 

disconnected at the ring gear, the planetary gear set was modeled as a constrained, 

lumped mass (Fig. 4-3).   
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Figure 4-4.  Modified CVPST Model 

4.3 Direct-Drive CVPST Simulation Program 

 The direct-drive CVPST simulation is modeled with the same components as the 

previous two transmission layouts, but the CVT is disconnected from the input shaft and 

the planetary gear set fully constrained.  In this arrangement, none of the branch control 

circuit elements are mechanically connected to the input shaft, and the power path moves 

directly from the input to the output shaft (Fig. 4-4). 
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Figure 4-5. Direct-Drive CVPST Model 

The global transmission model calculates the transmission output torque and 

speed based upon the input speed and torque.  This model performs the same function as 

the previous models, but it is for a different physical system.  Within this global model 

are subsystems that represent the same physical components as the previous system.    

The modified global system is comprised of the following hierarchy of subsystems: 

 

Direct-Drive CVPST
Global Model

Bearing
Module

Direct-Drive CVPST
Global Model

Bearing
Module

Figure 4-6.  Direct-Drive CVPST Simulation Block Diagram 

The same module used in the previous sections was used.  The CVT, gear, and PGT 

modules were not used because the CVT and gears were completely disconnected from 

the system and the physical system was modeled as a solid shaft supported by bearings.  
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Chapter 5 – Continuously Variable Power Split 
Simulation Results and Analysis 

 
 
 A computer program developed from the framework in the previous chapter 

simulates the performance of a CVPST for three different modes of operation.  This 

program can be used to determine overall transmission efficiency in order to determine 

which kinematic arrangement is most efficient.  Another task for this program is to 

identify which parameters affect transmission efficiency in order to optimize the design.  

The program used for this simulation is Simulink, which is part of the Matlab 6.1 release.  

This software is a graphical package that can be used to model physical systems quickly 

while retaining the computation capabilities of Matlab 6.1.  It is also a modular program 

in which subsystems can be copied from one simulation into another.  In addition, 

Simulink has input modules that allow simulations to run from data files and output 

modules which can write data to new files, graph the information, or place the data in 

Matlab for post-processing.  Because this is a graphical program, there is no program 

code that had to be produced.  A glossary of the function blocks used in the simulation is 

given in Appendix A while the Simulink model diagrams for the three simulations are 

given in Appendix B.   

 
5.1 Simulation Overview 

5.1.1 Overall Model 

 In order to simulate the performance of a modified CVPST, a representative 

physical model had to be constructed.  This is a simplified conceptual model that is meant 

to study the performance of the three kinematic arrangements and illustrate the problem-
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solving method for that study.  Because of this, the design process for the model is less 

thorough than that for a transmission entering volume production.  This model is the 

basis for all three simulation conditions so that the data could be compared directly.  The 

model consists of a CVT, a set of conventional gears, and a planetary gear set (Fig. 5-1).  

Using Eqs. (3-34) and (3-35), this transmission is designed to have a maximum speed 

ratio of 3:1 and a minimum speed ratio of 1:1. 

 
Figure 5-1.  Diagram of Transmission Model 
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5.1.2 CVT Model 

In this model, a block with one input and two output shafts represents the CVT.  

The CVT model is based upon a Volvo Components Corporation design (Bonthron, 

1985).  This CVT is a metal pushing belt friction CVT with a ratio range from 2.5:1 to 

0.5:1.  The maximum input torque for this CVT is 120 N-m.  This CVT is microprocessor 

controlled, but a hydraulic actuator controls the sheave movement and applies the belt 

clamping loads.  The hydraulic losses were estimated to be 250 W while running at 

constant speed, 300 W while accelerating with constant input speed, and 420 W while 

changing input speed (Bothron, 1985).  A mathematical model of the efficiency of this 

mechanism was constructed for all of its operating conditions (Singh and Nair, 1992), 

and this model is represented by Eqs. (3-24) to (3-30).  Because the transmission 

efficiency was measured in terms of the entire transmission mechanism complete with 

bearings, hydraulic components, and control mechanisms, the CVT is represented as a 

“black box” model where the only inputs and outputs are torque and speed as the exact 

geometry and material of all the transmission components were not available in the 

literature.  In addition, the shaft center distance between the CVT input and output shafts 

was set at 300 mm.  The true shaft center distance was not apparent in the literature 

(Bothron, 1985), so the CVT black box model is combined with a set of 1:1 ratio gears to 

relocate the output shaft for analysis.  These output gears have an efficiency of unity, so 

their influence is negligible within the CVT model. 

5.1.3 Gear Train Model 

 The gear train model is represented by four components, which are gear one, gear 

two, gear three, and the planetary gear set.  Gears one, two, and three were designed for a 
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2:1 gear reduction with the gear sizes satisfying the 300 mm center distance, and the 

planetary gear set was designed to have a 5:1 ratio.  The bearings used in this 

transmission are tapered roller bearings that were assumed to have a constant coefficient 

of friction.   

Because this was a conceptual design, only the static loading was used to 

determine the gear sizes, and a load factor of 1.5 was used.  The gear loads were 

calculated with a simulation model at the greatest loading condition, which occurs at the 

maximum 3:1 gear ratio at a maximum input torque of 120 N-m.  The gear loading was 

simulated in another Simulink model that calculated the stresses on gear teeth using the 

Lewis formula, and a common face width was used for all gears to simplify the analysis. 

The complete Simulink model is given in Appendix C, and the resulting gear components 

are shown in Table 5-1. 

Table 5-1.  Gear Sizes for Transmission Model 
Gear Pitch Dia. 

(mm) 
Module 
(mm) 

No. of 
Teeth 

Face Width 
(mm) 

Material Unit 
Weight (N) 

Gear 1 120 3 40 20 SAE 1020 Steel 17.30 
Gear 2 120 3 40 20 SAE 1020 Steel 17.30 
Gear 3 240 3 80 20 SAE 1020 Steel 69.22 

Sun Gear 60 3 20 20 SAE 1020 Steel 4.33 
Ring Gear 300 3 100 20 SAE 1020 Steel 112.96 

Planet 
Gears (4) 

120 3 40 20 SAE 1020 Steel 69.20  
(all 4) 

 
 The other components of the physical system such as shafts, seals, and clutches 

were considered to have no mass and be frictionless to simplify the model and eliminate 

design time for components where the design practices are well-established (Table 5-2).     
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Table 5-2.  Transmission Model Components 
Shaft Diameter 

Main Input and Output Shaft 20 mm 
Parallel Shaft out of CVT 20 mm 

Gear 2 Shaft 20 mm 
Gear 3 Shaft 40 mm 

Bearing Type Coefficient of Friction 
Tapered-Roller 0.0018 

 

5.2 Simulation Conditions 

5.2.1 Simulation of the CVSPT 

 The first kinematic arrangement to be simulated was the common PSCVT.  The 

common PSCVT is modeled with the same model depicted in Figure (5-1).  The 

operating condition that is modeled is the 1:1 input to output ratio, where all elements of 

the planetary gear set are rotating at the same angular velocity.  Because of this 

“synchronous” condition, the power split cannot be determined.  Recalling Eqs. (3-10) 

and (3-11): 

 0=++=Σ cba TTTT ,  

and 0=++=Σ ccbbaa TTTP ωωω .  

which are solved simultaneously to yield Eq. (3-12) 

 )(
)(

bac

acb

ωωω
ωωωγ

−
−

= ,  

where S, R, and A denote the angular speeds of the sun, ring, and planetary arm 

respectively.  At the synchronous point, Eq. (3-12) reduces to: 

 undefined==
−

−
=

0
0

)11(
)11(

γ ,  
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which is a singularity point in the function.  This singularity occurs because the 

derivation of Eq. (3-12) is a solution of the system of equations in Eqs. (3-10) and (3-11) 

which become equal when the speeds are synchronized where a singularity is defined as 

an algebraic relation divided by zero which is undefined.  This is due to the fact that all of 

the angular velocities are equal, so when Eq. (3-11) is reduced, Eqs. (3-10) and (3-11) are 

equal and the system of equations form a singular matrix which cannot be solved by a 

computer program.  In the physical system, the power split is still present even if it 

cannot be calculated with Eq. (3-12) because a power split exists on both sides of that 

synchronous point, so it must exist in the discontinuity, or power would be 

instantaneously transferred from one power transmitting member to another on each side 

of the synchronous point. 

As can be seen in Figure (5-2), the power split factor has a linear relationship with 

respect to speed ratio.  The discontinuity at the 1:1 speed ratio is shown to be a point 

discontinuity in the linear function.  It is a point discontinuity because power split exists 

as a linear function of speed ratio for smaller and smaller increments of speed ratio as it 

approaches the 1:1 synchronous value.  Because of this singularity, the power split factor 

at the synchronous ratio is calculated for the model with Eq. (3-38) in the limit: 

 







+
−









−

=
→ CVTPGT

CVTPGTPGT

CVT

CVT

CVT
γγγ
γγγγ

γγ
γγγ

γγ 1

1

1

1

1 11lim
1

. (5-1) 

The solution to this relation is the power split ratio at the synchronous point.   
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Power Split vs. Speed Ratio

-0.87

-0.86

-0.85

-0.84

-0.83

-0.82

-0.81

-0.8

-0.79

-0.78
0.75 1 1.25

Speed Ratio

Po
w

er
 S

pl
it 

Fa
ct

or

 
Figure 5-2.  Graph of the Power Split Factor around the Synchronous Point 

                   
  In this simulation, all of the components are in the power path.  The sources of 

loss include the frictional and hydraulic losses in the CVT and the frictional losses in the 

gears.  The frictional losses in the planetary gear set are not present at the 1:1 ratio 

because there is no relative velocity between the sun, ring, and planet gears.  The only 

other source of loss simulated was that in the bearings.  These losses are frictional losses 

due to radial loads on the bearing shafts.  These radial loads are a combination of the 

weight loads of the components and the tangential forces on the gear teeth. 

5.2.2 Simulation of the Modified CVPST 

 The second kinematic arrangement to be simulated was the modified CVPST.  

The modified PSCVT is modeled at the 1:1 input to output ratio in the cruise mode, so 

the ring gear of the planetary gear set is disconnected from gear 3 in the model.  The 

resulting system is modeled as a direct-drive shaft with an idling CVT driving gear 1, 
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gear 2, and gear 3 (Fig. 5-3).  In this model, the planetary gear set is represented by an 

equivalent mass with a fixed input and output shaft to simulate a fixed planetary gear that 

has been engaged by a clutch.  The CVT is the same black box model used in the 

previous simulation, but its load is determined by the frictional moment in the bearings 

and gears instead of the load specified by the power split factor.  In this arrangement, the 

losses are due to the frictional and hydraulic losses in the CVT, the mechanical losses in 

the gears, and the frictional losses in the bearings due to radial loads on the bearing 

shafts. 

 
Figure 5-3.  Simulation Model for Modified Power Split CVPST 

 
5.2.3 Direct-Drive CVPST Simulation 

 The final kinematic arrangement to be simulated was the direct-drive CVSPT.  As 

in the previous cases, the direct-drive transmission is simulated at the 1:1 input to output 
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ratio for direct comparison to the other kinematic arrangements.  In the direct-drive 

model, the CVT is mechanically disconnected from the input shaft and gear 3 is 

disconnected from the ring gear.  The equivalent transmission model is simply a solid 

shaft with an equivalent mass representing the constrained planetary gear set (Fig. 5-4).  

In this arrangement, the only losses are due to frictional losses in the bearings because the 

branch control circuit is completely disconnected and the planetary gear set is 

constrained. 

 
Figure 5-4.  Simulation Model for the Direct-Drive PSCVT 

 
5.3 Simulation of CVPST at Constant Speed 
 
 The CVPST simulation at constant speed is intended to simulate the performance 

of all three CVSPT arrangements for a given range of torques.  The maximum tested 

speed for the CVT in the transmission is 4000 RPM (Bonthron, 1985) and the maximum 

torque is 120 N-m.  The simulation was performed for all three transmission 

arrangements in 1000-RPM increments from 1000 RPM to the 4000-RPM maximum.  In 

these simulations, the input speed is considered constant for each data point so that 

inertial effects do not show up in the data.  The following figures show the results of the 

simulations.   
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Transmission Efficiency at Constant Input Speed (1000 RPM)
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Figure 5-5. Comparison of Total Transmission Efficiency for Varying Torques at 1000 RPM Input 
Speed 

Transmission Efficiency at Constant Input Speed (2000 RPM)
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Figure 5-6. Comparison of Total Transmission Efficiency for Varying Torques at 2000 RPM Input 
Speed 
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Transmission Efficiency at Constant Input Speed (3000 RPM)
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Figure 5-7. Comparison of Total Transmission Efficiency for Varying Torques at 3000 RPM Input 
Speed 

Transmission Efficiency at Constant Input Speed (4000 RPM)
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Figure 5-8. Comparison of Total Transmission Efficiency for Varying Torques at 4000 RPM Input 
Speed 

 71 



 
 The results of the CVPST simulation at constant input speeds indicate that the 

direct-drive arrangement is the most efficient throughout the transmission operating 

range.  It can also be seen that the efficiencies of the unmodified CVPST and the 

modified CVPST are almost identical for ranges above 25 Nm for all of the speeds. 

5.4 Simulation of CVPST at Constant Torque 

 The CVPST simulation at constant torque is intended to simulate the performance 

of all three CVSPT arrangements for a given range of speeds.  The simulation was 

performed for all three transmission arrangements in 10 and 20 N-m increments to the 

120 N-m maximum.  The following figures show the results of these simulations.   

Transmission Efficiency at Constant Input Torque (10 N-m)
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Figure 5-9.  Comparison of Total Transmission Efficiency for Varying Speeds at a Constant Input 
Torque of 10 N-m  
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Transmission Efficiency at Constant Input Torque (20 N-m)
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 Figure 5-10.  Comparison of Total Transmission Efficiency for Varying Speeds at a Constant Input 
Torque of 20 N-m 

Transmission Efficiency at Constant Input Torque (40 N-m)
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 Figure 5-11.  Comparison of Total Transmission Efficiency for Varying Speeds at a Constant Input 
Torque of 40 N-m 
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Transmission Efficiency at Constant Input Torque (60 N-m)
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 Figure 5-12.  Comparison of Total Transmission Efficiency for Varying Speeds at a Constant Input 
Torque of 60 N-m 

Transmission Efficiency at Constant Input Torque (80 N-m)
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 Figure 5-13.  Comparison of Total Transmission Efficiency for Varying Speeds at a Constant Input 
Torque of 80 N-m 
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Transmission Efficiency at Constant Input Torque (100 N-m)
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Figure 5-14.  Comparison of Total Transmission Efficiency for Varying Speeds at a Constant Input 
Torque of 100 N-m 

Transmission Efficiency at Constant Input Torque (120 N-m)
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Figure 5-15.  Comparison of Total Transmission Efficiency for Varying Speeds at a Constant Input 
Torque of 120 N-m 
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In Figs. (5-9) through (5-13) it can be seen that the direct-drive CVPST is the 

most efficient throughout the operating range.  At low torques, the CVPST has a higher 

efficiency than the modified CVPST in the lower half of the RPM range.  It can also be 

seen in all of these figures that the simulation model fails at low speeds because the CVT 

model efficiency does not converge to zero efficiency at zero input speed.  When all of 

the data is compiled from the preceding figures, geometric representations of the 

efficiencies of the three transmissions can be produced.  The following figures show the 

resulting surfaces. 
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 Figure 5-17.  This is the Overall Transmission Efficiency for the Modified CVPST in Terms of Input 
Speed and Input Torque 
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 Figure 5-18.  This is the Overall Transmission Efficiency for the Direct-Drive CVPST in Terms of 
Input Speed and Input Torque 

 

 77 



 It is evident in all of the preceding figures that there is an error in calculation at 

input speeds below 250 RPM.  In these regions, the efficiency is either above unity or 

negative, and both cases do not occur in physical systems due to conservation of energy 

laws.  This error can be traced to the CVT model, where the efficiency curve does not 

intersect with zero at the origin, so there are cases where a negative efficiency is 

indicated.   

5.5 Comparison of CVPST to CVT 

 In order to gain an overall perspective on the transmission performance, the 

efficiency of the three CVPST designs were compared to the CVT component efficiency 

for the median value of the two simulation conditions.  The following figures show the 

results of this simulation. 

Transmission Efficiency at Constant Input Speed (2000 RPM)
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Figure 5-19.  Comparison of the Shaft-to-Shaft CVT Efficiency to the Other CVPST Cases for 
Varying Torques and a Constant 2000 RPM Input Speed 

 

 78 



Transmission Efficiency at Constant Input Torque (60 N-m)
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 Figure 5-20.  Comparison of the Shaft-to-Shaft CVT Efficiency to the Other CVPST Cases for 
Varying Input Speeds and a Constant 60 N-m Input Torque 

 

5.6 Discussion of Results 

  The results of the simulation clearly indicate that the direct-drive CVPST is 

superior to the other two designs in terms of mechanical efficiency.  The results for the 

CVPST and the modified CVPST are similar above 25 N-m, but there is a large 

difference between the two values below that torque.  The average efficiency for each 

transmission was calculated for the entire operating range above 250 RPM and 20 N-m in 

order to eliminate data where the efficiency was either negative or above unity so that the 

average efficiency values were not influenced by those values (Table 5-3). 

Table 5-3.  Comparison of Average Efficiencies for Each Simulation Model 
CVPST Modified CVPST Direct-Drive CVPST 
85.8 % 83.6 % 96.7 % 
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 This difference is attributed to the CVT always being under load in the CVPSVT.  In the 

modified CVPST, the only CVT load is that to overcome bearing friction, so the CVT 

operates in an extremely low efficiency region of less than one percent.  In order to drive 

this load at such a low efficiency, the CVT requires a large amount of torque, which is 

nearly a constant value.  This explains the extremely low mechanical efficiency at low 

torques, and the efficiency increase, as that constant torque value becomes a smaller and 

smaller proportion of the input torque.  In contrast, in the CVPST the CVT receives a 

load torque in constant proportion to the output torque, so it operates in a more efficient 

range.  In all three applications, it is apparent that the ideal operating range is at higher 

torque.  The direct-drive CVPST is more efficient at higher input velocities because the 

speed-dependent losses in the CVT are eliminated.  The shaft-to-shaft CVT is more 

efficient than the common and modified CVPST for most of the operating ranges, but it is 

less efficient than the common CVPST at the extremes of the speed range where speed-

dependent losses are not mitigated by the torque-split.  In all three cases, the 200 W 

required by the pump affected the simulation where the input to the transmission was less 

than 200 W due to low speed or torque.   

5.7 Conclusion 

 The complete performance of a transmission must be studied in order to 

determine whether or not it is a viable alternative to established designs.  In the modified 

PSCVT, the efficiency values are higher than the common CVPST only in the higher 

torque and speed values where the parasitic losses are a smaller proportion of the input 

torque.  For low input torques, the modified CVPST parasitic losses can consume over 75 

percent of the input torque while the CVPST loses less than half.  The narrow range of 

 80 



efficiency advantage in the modified CVPST does not justify the added complexity of 

components if its parasitic loss can exceed that of the common CVPST for some 

operating conditions.  Improvements to the modified and direct-drive CVPST could be 

realized by minimizing the pump load because the CVT would not need an actuating 

force on the sheaves in a no-load condition.  Because this improvement would apply to 

both arrangements, the best dual-mode design would still employ a pure direct-drive 

where the parasitic losses are minimized even though the modified CVPST could be 

made as efficient at the common CVPST.   

5.8 Future Recommendations 

 This study was based upon a complete metal pushing belt CVT transmission, 

which was designed as a stand-alone unit.  In order to have a more effective model, a 

dynamometer test of the individual CVT belt and sheaves should be performed in order to 

get a better understanding of the mechanism.  In addition, development of theoretical 

models of the metal pushing belt and its contact phenomena could yield theoretical 

equations for CVT losses which would be generalized to belt and sheave CVTs in 

general.  In addition, a truly accurate model would be designed for real-world conditions 

where gear, bearing, and shaft sizes are appropriate to a particular application.  It is that 

kind of detailed analysis that will determine the utility of different kinematic 

arrangements.  
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Appendix A – Glossary of Function Blocks 
 

Block Name Block Icon Description 
Absolute 

Value  

 

Outputs the absolute value of the input. 

Constant 

 

Generates a constant value. 

Display 

 

Shows the value of the input. 

From 

 

Accepts input from a Goto block. 

From 
Workspace 

 

Reads data from the workspace. 

Function 

 

Applies a specified expression to the input. 

Gain 

 

Multiplies block input by a specified value. 

Goto 

 

Passes block input to From blocks. 

In 

 

Creates an input port for a subsystem or an 
external input. 

Math Function 

 

Performs a mathematical function. 

Memory 

 

Outputs the block input from the previous 
integration step. 
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Out 

 

Creates an output port for a subsystem or an 
external output. 

Product 

 

Generates the element-wise product, quotient, 
matrix product, or inverse of block inputs. 

Relational 
Operator 

 

Performs the specified relational operation on 
the input. 

Subsystem 

 

Represents a system within another system. 

Sum 

 

Outputs the sum of inputs. 

To Workspace 

 

Writes data to the workspace. 

Unit Delay 

 

Delays a signal one sample period. 
 
 
 

While Iterator 
Subsystem 

 

Represents a subsystem that executes repeatedly 
while a condition is satisfied during a 

simulation time step. 
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Appendix B – Simulation Models 
 

 
B.1 CVPST Global Model 
 

 
B.1.1 CVSPT Efficiency Calculator 
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B.1.2 Transmission Analyzer 
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Transmission Analyzer (cont.) 

 
 
B.1.3 Hydraulic Pump 

 
 
B.1.2.1 Bearing Loads 
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B.1.2.1.1 Calculation of CVT Circuit Drag 

 
 
B.1.2.1.2 Calculation of Main Shaft Bearing Losses 

 
B.1.2.1.3 PGT Solver 
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B.1.2.2 CVT Input Torque Calculator 

 
B.1.2.2.1 PIV CVT Efficiency 
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B.1.2.3 Determination of Power Split 

 
B.1.2.4 Gear Efficiency Correction 
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B.1.2.5 PGT Efficiency Correction 

 
B.1.2.5.1 Eff a(b-c) 

 
B.1.2.5.2 Eff b(a-c) 

 
 
 
 
 
 
 
 

 93 



B.1.2.6 Speed Converter 

 
B.1.2.7 Speed Ratio Subsystem 

 
B.2 Modified CVPST Global Model 
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B.2.1 Modified CVPST Efficiency Calculator 

 
B.3 Direct-Drive CVPST Global Model 

 
B.3.1 Direct-Drive CVPST Global Model Efficiency Calculator 
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Appendix C – Gear Design Model 
 

 
C.1 Transmission Load Model 
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C.1.1 Gear Tooth Stress Calculator 
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Appendix D – Simulation Data 
 

 

   

Simulation Data-Efficiency with Respect to Constant Input Speed 

N=1000 N=2000
Torque CVPST M CVPST DD CVPST CVPST M CVPST DD CVPST

1 0.000 -5.594 -0.913 0.000 -6.486 0.042
10 0.641 0.341 0.809 0.610 0.252 0.904
20 0.721 0.670 0.904 0.673 0.626 0.952
30 0.820 0.780 0.936 0.779 0.751 0.968
40 0.864 0.835 0.952 0.837 0.813 0.976
50 0.892 0.868 0.962 0.871 0.850 0.981
60 0.901 0.890 0.968 0.884 0.875 0.984
70 0.906 0.906 0.973 0.891 0.893 0.986
80 0.912 0.918 0.976 0.899 0.907 0.988
90 0.912 0.927 0.979 0.901 0.917 0.989

100 0.913 0.934 0.981 0.903 0.925 0.990
110 0.914 0.940 0.983 0.904 0.932 0.991
120 0.914 0.945 0.984 0.906 0.938 0.992

N=3000 N=4000
Torque CVPST M CVPST DD CVPST CVPST M CVPST DD CVPST

1 0.000 -7.616 0.360 0.000 -8.714 0.519
10 0.574 0.139 0.936 0.543 0.029 0.952
20 0.620 0.569 0.968 0.571 0.515 0.976
30 0.736 0.713 0.979 0.688 0.676 0.984
40 0.808 0.785 0.984 0.778 0.757 0.988
50 0.850 0.828 0.987 0.829 0.806 0.990
60 0.868 0.856 0.989 0.851 0.838 0.992
70 0.877 0.877 0.991 0.863 0.861 0.993
80 0.886 0.892 0.992 0.874 0.879 0.994
90 0.890 0.904 0.993 0.879 0.892 0.995

100 0.892 0.914 0.994 0.882 0.903 0.995
110 0.894 0.922 0.994 0.884 0.912 0.996
120 0.897 0.928 0.995 0.887 0.919 0.996
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Simulation Data-Efficiency with Respect to Constant Input Speed

T=10 T=20 T=40
RPM CVPST M CVPST DD CVPST CVPST M CVPST DD CVPST CVPST M CVPST DD CVPST

1 6.049 -190.000 -190.000 6.049 -94.500 -94.500 6.049 -46.750 -46.750
250 0.803 -0.009 0.236 0.921 0.496 0.618 0.923 0.748 0.809
500 0.575 0.280 0.618 0.798 0.640 0.809 0.881 0.820 0.904
750 0.511 0.336 0.745 0.773 0.668 0.873 0.874 0.834 0.936
1000 0.474 0.341 0.809 0.760 0.670 0.904 0.870 0.835 0.952
1250 0.449 0.326 0.847 0.748 0.663 0.923 0.866 0.832 0.962
1500 0.421 0.304 0.872 0.738 0.652 0.936 0.859 0.826 0.968
1750 0.395 0.279 0.891 0.725 0.639 0.945 0.854 0.820 0.973
2000 0.368 0.251 0.904 0.715 0.626 0.952 0.848 0.813 0.976
2250 0.339 0.223 0.915 0.700 0.612 0.957 0.841 0.806 0.979
2500 0.313 0.195 0.923 0.686 0.597 0.962 0.837 0.799 0.981
2750 0.285 0.167 0.930 0.672 0.583 0.965 0.830 0.792 0.983
3000 0.260 0.138 0.936 0.662 0.569 0.968 0.825 0.785 0.984
3250 0.236 0.110 0.941 0.650 0.555 0.970 0.819 0.778 0.985
3500 0.211 0.083 0.945 0.637 0.541 0.973 0.812 0.771 0.986
3750 0.188 0.056 0.949 0.623 0.528 0.974 0.807 0.764 0.987
4000 0.166 0.029 0.952 0.607 0.514 0.976 0.801 0.757 0.988

T=60 T=80 T=100
RPM CVPST M CVPST DD CVPST CVPST M CVPST DD CVPST CVPST M CVPST DD CVPST

1 6.049 -30.830 -30.830 6.049 -22.880 -22.880 6.049 -18.100 -18.100
250 0.923 0.832 0.873 0.909 0.874 0.905 0.921 0.899 0.924
500 0.909 0.880 0.936 0.918 0.910 0.952 0.919 0.928 0.962
750 0.905 0.889 0.958 0.914 0.917 0.968 0.917 0.934 0.975
1000 0.901 0.890 0.968 0.911 0.918 0.976 0.914 0.934 0.981
1250 0.896 0.888 0.975 0.909 0.916 0.981 0.911 0.933 0.985
1500 0.892 0.884 0.979 0.905 0.913 0.984 0.909 0.930 0.987
1750 0.890 0.880 0.982 0.901 0.910 0.986 0.906 0.928 0.989
2000 0.885 0.875 0.984 0.899 0.906 0.988 0.903 0.925 0.990
2250 0.881 0.871 0.986 0.896 0.903 0.989 0.900 0.922 0.992
2500 0.877 0.866 0.987 0.892 0.899 0.990 0.898 0.920 0.992
2750 0.873 0.861 0.988 0.889 0.896 0.991 0.895 0.917 0.993
3000 0.868 0.856 0.989 0.886 0.892 0.992 0.892 0.914 0.994
3250 0.865 0.852 0.990 0.883 0.889 0.993 0.889 0.911 0.994
3500 0.861 0.847 0.991 0.880 0.885 0.993 0.887 0.908 0.995
3750 0.857 0.843 0.992 0.877 0.882 0.994 0.885 0.906 0.995
4000 0.854 0.838 0.992 0.874 0.879 0.994 0.882 0.903 0.995

T=120
RPM CVPST M CVPST DD CVPST

1 6.049 -14.920 -14.920
250 0.922 0.916 0.936
500 0.919 0.940 0.968
750 0.918 0.945 0.979
1000 0.915 0.945 0.984
1250 0.913 0.944 0.987
1500 0.910 0.942 0.989
1750 0.908 0.940 0.991
2000 0.905 0.938 0.992
2250 0.904 0.935 0.993
2500 0.901 0.933 0.994
2750 0.899 0.931 0.994
3000 0.897 0.928 0.995
3250 0.895 0.926 0.995
3500 0.892 0.924 0.995
3750 0.889 0.921 0.996
4000 0.887 0.919 0.996
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