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ABSTRACT 

CARBON PROMOTED WATER ELECTROLYSIS TO PRODUCE 
HYDROGEN AT ROOM TEMPERATURE 

 

by Sukanya Ranganathan 

 

The objective of the work was to conduct water electrolysis at room temperature with 

reduced energy costs for hydrogen production. The electrochemical gasification of 

carbons consumes only 9.6 kcal/mol H2O compared to 56.7 kcal/molH2O for 

conventional water electrolysis. In this work, carbon-assisted hydrogen production and 

the reaction energetics/kinetics at applied potentials |E0| between 0.1 and 1.8 V are 

studied. The carbon promoted water electrolysis could be performed at applied potentials 

as low as |E0|=0.21 V as opposed to conventional water electrolysis which requires 

|E0|>1.25 V. The study reveals that the H2 produced per W h is higher at the lower 

voltages, but longer times are required to produce the same amount of H2.The following 

parameters were considered for evaluating the process: time taken, potential applied, 

current required and amount of carbon to be added. Based on such an evaluation, 

practical parameters of  |E0| ~ 0.5 V and carbon concentration (0.08 g/cm3) are suggested. 
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1 INTRODUCTION 
 
Energy has always been the primary focus of mankind and it continues to drive the 

economy through a series of technological advances.  The energy-based industrial and 

scientific revolution, places a demand on researchers and industries to produce 

sustainable energy technologies. Conversion of chemical energy stored in fossil fuels or 

in nuclear processes has been the major contributor for the world’s energy demand. Fossil 

fuel technology dates back to the industrial revolution of 19th century and it continues to 

be the leading supplier for energy consumption even today. However the combustion of 

fossil fuels spews out toxic substances like COx, NOx, SOx etc, into the air. Energy 

sources such as sun, wind or other renewable sources can be considered as future 

alternatives. However the lack of commercial plants makes them a long term possibility. 

Hence in the intermediate period a solution which utilizes the currently available plants 

with minor changes and that would minimize emissions is highly desired. Hydrogen 

plays a key role as an energy storage media and it can be generated by various 

techniques. Hydrogen production via water electrolysis is still considered to be the low 

cost alternative if energy efficient techniques are established. The main advantage of 

electrolysis is production of very pure hydrogen unlike other processes. The other major 

reasons for considering water electrolysis advantageous are: it requires no moving parts, 

requires little space, and is non-polluting. The research conducted by National Renewable 

Energy Laboratory (NREL) claims that about 58% of the cost factor in electrolysis is 

electricity [1]. The electricity cost which contributes to the cost of electrolytic hydrogen 

production needs to be reduced to make the process competitive. Hence in an effort to 
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address this issue a model proposed in the literature was considered and tested 

experimentally, the details of which are presented in the following chapters. 

1.1 Research objective 

This research on a broader perspective is focused on hydrogen production at an 

acceptable cost for a hydrogen based economy. The electrochemical process proposed by 

Coughlin and Farooque utilizes coal assisted water electrolysis to achieve energy 

reduction [2]. The energy costs would be reduced by a factor of 6 if the proposed reaction 

proved to be true. The model though proposed was not actually tested at low enough 

voltages in terms of amount of hydrogen produced. Hence the specific focus of the 

current work was to test the usefulness of the model proposed by Coughlin and Farooque. 

The initial work was carried out with activated carbon to reduce the complexities 

involved with impurities in coal. It aimed at testing a wide range of operating potentials 

from 0.1 V to 1.8 V and measure the relative amount of hydrogen produced rather than 

just the oxidation rate measured in the earlier work [2].  

1.2 Advantages  

The proposed process, unlike the hydrogasification of coal, does not have complex 

gaseous products such as tars, ash and sulfur compounds. Also in such processes, the 

hydrogen and carbon monoxide contents need to be adjusted by means of water-gas shift 

reactions. The process chemistry of coal gasification reaction takes place at high 

temperatures (around 1000°C). However the proposed process of electrochemical 

gasification using carbons takes place at mild temperatures, even at room temperature.  
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1.3 Other considerations 

The anode compartment produces pure gas streams of carbon oxides. However, since 

carbon is used only as a reagent the amount produced is considerably smaller compared 

to coal gasification processes. Also the carbon dioxide concentration produced can be 

lowered by considering alternative electrode materials [3]. Other catalysts along with 

carbon can also lead to reduced amount of carbon dioxide production. Carbon 

sequestration is an effort to lock up CO2 (for example in large underground formations) 

so it cannot enter the earth’s atmosphere. Such efforts can also be considered for 

concerns regarding CO2 emissions. With such efforts economic estimates for those 

processes along with hydrogen production costs need to be made. Since this work is only 

an initial effort to investigate a proposed process, the above considerations are left for 

future work. 
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2 BACKGROUND 

2.1 Overview 

This chapter provides an insight into various techniques used for hydrogen production in 

the industry. The following techniques namely production from fossil fuels and 

electrolysis are well established and there are various thermochemical water 

decomposition processes in development. In each of these methods of hydrogen 

production, advantages and disadvantages and factors affecting costs are reviewed in 

detail [4]. Other techniques such as bio photolysis, solar energy conversion of water to 

hydrogen and some of the emerging techniques of hydrogen production are listed. The 

electrochemical gasification of coal, which inspired our current research, is also 

discussed in detail [2].   

2.2 Major techniques for hydrogen production 

2.2.1 Hydrogen production from fossil fuels 

There are several methods to produce hydrogen from fossil fuels. The major processes 

include catalytic decomposition of methane, steam-iron process, steam reforming and 

catalytic & non-catalytic partial oxidation reaction [5, 6]. The basis for catalytic 

decomposition of methane is that under certain conditions of temperature and pressure 

and in the presence of a catalyst, methane can be converted to carbon and hydrogen. The 

reaction is highly endothermic and heat must be supplied to sustain the temperature. The 

most basic process consists of a fluidized bed reactor which contains a 7% nickel on 

alumina catalyst and a fluidized bed regenerator [5]. Then a sulfur free natural gas is 

passed through the catalyzed bed so that fluidization occurs in the reactor. As the natural 
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gas moves upward, the hydrogen is released and the carbon is deposited on the catalyst 

surface. The catalyst needs to be continuously removed and regenerated. Various 

researches are underway to replace the catalyst and one such catalyst is carbon nanofibers 

[7].  

In the steam-iron process, crushed and dried coal is reacted with steam and air to make 

producer gas. The producer gas is then used to reduce the oxidized iron from the steam-

iron reactor [8]. The process involves various steps broadly classified as: coal storage and 

preparation, producer gas generation & steam iron reactor, upgrading the oxidizer 

effluent to the desired hydrogen product and power generation from reducer off-gas using 

a combined power cycle. The process has attracted considerable attention since it does 

not require subsequent shifting and CO2 removal steps. Applying fluidized beds to the 

conventional steam-iron process enables a continuous steam-iron process [9]. The total 

plant cost is comparatively reduced in a continuous steam-iron process [10]. 

Catalytic steam reforming of hydrocarbons aims at converting much of the steam and 

hydrocarbon as possible into a mixture of CO and H2. The CO produced in the reaction is 

converted into CO2 and more H2 in a subsequent water-gas shift step. The catalytic steam 

reforming process can be enhanced by optimizing the temperature and pressure 

conditions on the chemical equilibrium. The optimum conditions at which the maximum 

H2 + CO mole fraction is reached, are at 1600° F, 14.7 psig, with a steam-to-hydrocarbon 

ratio of 2.0 [11].  Catalyst selectivity is important in steam reforming of hydrocarbons 

since some catalysts promote the formation of methane rather than hydrogen and carbon 

monoxide. The development of catalysts which resist carbon deposition continues to be 
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an area of research [12]. Nickel oxide catalysts with supports of corundum or alumina/ 

calcium aluminate are considered to be robust in recent researches [13].  

In catalytic partial oxidation reaction, the heat required for the reaction is generated 

directly in the reaction vessel, unlike other processes wherein an external heat source is 

used.  The heat required for the reaction is supplied directly by mixing both oxygen and 

steam with the hydrocarbon.  The steam reacts with the hydrocarbon in a reaction similar 

to steam reforming and the oxygen reacts with remaining hydrocarbon to form CO and 

CO2. The oxidation reaction supplies the heat required by the reforming reactions. The 

low temperature (1500 to 1700°F) partial oxidation reactions require a catalyst, hence the 

name catalytic partial oxidation. At high temperatures (2000 to 2500°F) the reaction takes 

place without catalyst. On studying the temperature and pressure effects it is observed 

that the oxygen-to-hydrocarbon ratio decreases with increasing pressure and decreasing 

temperature whereas the steam-to-hydrocarbon ratio shows the exact opposite trend. The 

use of a catalyst to enhance the reaction rates in a partial oxidizer has been patented and 

commercialized [14].   

A high rate of partial oxidation can be achieved at a high temperature without a catalyst. 

The limitations like reduced availability and sharp increase in price of natural gas and 

naphtha and need to produce hydrogen at high pressure make non-catalytic partial 

oxidation the only solution. In non catalytic partial oxidation, any hydrocarbon from 

methane to a high-ash, high-sulfur coal can be reacted with steam and oxygen at 

pressures up to the metallurgical limits of the reactor. However since more oxygen is 

needed, more CO must be shifted. Also removal of sulfur as well as CO2 is required in the 
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gas cleanup system. Various commercial processes based on different technologies 

developed by Texaco, shell and Montecatini exist [15]. The optimization of the process 

involves examining the experimental conditions over a wide range of temperatures and 

mixture compositions [16].  

Steam-iron process and catalytic decomposition are preferred if high-purity hydrogen is 

to be produced directly. A subsequent water-gas shift reaction is required in the rest of 

the three methods to separate hydrogen from its product, the product being synthetic gas 

containing carbon monoxide. Although the catalytic decomposition of methane is simpler 

in terms of eliminating shift conversion and CO2 removal, the fluidized beds and solid 

circulation systems needed for the reaction are expensive and hence the process is 

preferred in only small installations. Steam reforming and partial oxidation reaction both 

produces a synthetic gas rather than high-purity hydrogen. The hydrogen content of this 

gas must be increased by shifting the CO and subsequently removing the CO2.  Catalytic 

oxidation has the limitations of both steam reforming and non-catalytic partial oxidation 

and few advantages of either process. However hydrogen production by steam reforming 

is less expensive and hence it is preferred over catalytic oxidation. Another fossil-based 

hydrogen production method that needs special mention is coal gasification process. It is 

explored in detail in later sections. 

2.2.2 Hydrogen production by electrolysis 
 
Electrolysis of water is carried out by passing a direct electric current between two 

electrodes placed in a conducting electrolyte.  For water to decompose the applied 

voltage between the two electrodes must be greater than that corresponding to the free 

energy of formation of water plus the voltage needed to overcome electrode and ohmic 
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polarizations [17]. The electrolysis cell in its most basic form is reliable and trouble free 

as it involves no moving parts and is also the most efficient way to generate hydrogen 

under pressure. The most important characteristic of electrolysis is that hydrogen and 

oxygen are separated at the same time from water. The cost of electrolysis mainly 

increases because of the electric generation step i.e. the power stations required to run the 

electrolyzers. There are two forms of current day water electrolysis, namely alkaline and 

polymer. Alkaline electrolysis is the most typical of water electrolyzers. There are two 

forms of alkaline technology: namely unipolar and bipolar [18]. Unipolar alkaline 

technology is the simplest electrochemical setup which has been used for many years 

(shown in figure.1). It has no moving parts associated with it, which makes it simpler to 

manufacture and repair. Two electrodes namely cathode and anode are immersed in an 

alkaline solution and separated from each other by a diaphragm. The diaphragm is 

usually a semi-permeable membrane that allows only salts to travel between the two ends 

and prevents the gases produced from mixing with each other. The H2 and O2 produced is 

collected and dried to make it free of water vapor.  
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                            Figure 2-1. Picture of the unipolar (tank design) [20] 

The disadvantage with the unipolar design is that operating current density and 

temperature are lower [19]. A unipolar setup is shown in the figure above [19, 20]. On 

the other hand the bipolar electrolyzers use stacks in which the positive end of the 

previous electrode is connected to the negative of the next. The design for such an 

electrolyzer is given in Figure.2 [19, 20]. 
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                                         Figure 2-2. Picture of the bipolar (filter-press) design [20] 

 
The design is called a bipolar design because each face acts as positive electrode for one 

cell and the opposite face as the negative electrode of the next cell. However in practice 

the electrodes are separated and the electrical connection is achieved through a solid 

metal separator plate. This aids in separating the hydrogen cavity of one cell from the 

oxygen cavity of the next.  The advantage of such a design is less floor space, capability 

to operate at higher temperature and pressure [21]. The disadvantage is that the entire 

stack needs to be serviced in case of failure.  [20]. 
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Proton Exchange Membrane electrolysis (PEM) also known as Solid Polymer Electrolyte 

(SPE) technology is the other commercially available technology based on electrolysis 

[20]. It uses an ion-exchange resin instead of the electrolyte [22]. Usually the membrane 

is a Teflon-like substance attached with sulfonic acid groups [17]. This membrane aids to 

conduct water electrolysis as well as to separate the anode and cathode. To provide 

electric continuity, a metal separator is introduced between cells. Water is circulated 

through the cavity between metal separator and the electrode plate. A SPE cell is capable 

of very high current densities and is highly compact with fewer cells. The disadvantages 

of the SPE cell are that they are more expensive than their alkaline counterparts and the 

electrolyte is more corrosive which requires expensive metal components to be used in 

the cell. Water electrolysis cost using any of the above technology is mainly determined 

by the capital cost and the system operating cost. However this method is well 

established for the production of hydrogen and commercial electrolyzers are simple, 

reliable and efficient [17].  

2.2.3 Hydrogen production from thermochemical processes 

Thermochemical hydrogen-production has the potential for higher efficiency in 

converting thermal energy to hydrogen than water electrolysis [23]. Thermochemical 

hydrogen- production is a process in which water is material input and mainly thermal 

energy or heat as an energy input. The output of the process is hydrogen and oxygen and 

waste heat. The process involves a series of chemical reactions to reach water 

decomposition. The products from each reaction should be separated and either recycled 

or sent to the next reaction. The various “heats of reaction” are provided by the heat 

transferred to heat or cool the various reactant and product streams. Throughout the 
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process, useful work or electricity is required for operating or pumping separation 

equipment or electrochemical reactions. The ‘pure’ thermochemical process is one which 

requires heat as energy input, whereas if an electrochemical step is included in the 

reaction it becomes a ‘hybrid’ process. The heat source to drive the reaction could be 

high-temperature, gas-cooled, nuclear reactor (HTGR) or a solar furnace [24-26].   

 Thermochemical processes are not yet fully developed processes. Hence most of them 

are in the conceptual research or development stages.  The thermodynamics of closed 

cycle water splitting processes have been studied and feasibility of different processes has 

been established from an energy standpoint [27]. A single-step water decomposition 

process like electrolysis can be carried out at various temperatures. If the reaction is done 

at higher than room temperature, the work requirement at the higher temperature should 

be reduced relative to operation at lower temperatures. This means that the change in free 

energy or Gibbs function (ΔG) should decrease with increasing temperature. Also if a 

reaction has a positive entropy change, therefore, raising the operating temperature will 

reduce the work requirement by a like amount. In a two-stage process, two reaction 

processes can be found which requires no useful work input. The steam-methane 

reforming reaction is a two-stage process which almost satisfies the above reaction. This 

reaction requires very large entropy change and has been suggested as a “good” reaction 

for thermochemical processes, however the work of separation for this reaction is high. 

As shown by Funk and Reinstrom [29] and reiterated by Abraham and Schreiner [30], it 

is possible for a multistage process to satisfy the first and second laws of thermodynamics 

and with a constraint that no useful work be expended in the process. Such a situation can 

be visualized by considering a general thermochemical process comprising an arbitrary 
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number of steps where each reaction exhibits some change in enthalpy (ΔH), entropy (Δ

S) and Gibbs free energy (ΔG). The entire process becomes similar to an ideal 

electrolysis cell, if the entire process is operated reversibly at 25°C at 1 atm since the 

work and heat requirement are the same for all reversible processes. The work 

requirement in electrolysis can be reduced by operating at higher temperatures; however 

by choosing the operating temperatures in the thermochemical process properly, it is 

possible to reduce the useful work requirement to zero at least theoretically. The main 

work requirement in such a process is the work of separation required in various reaction 

steps. The unreacted materials need to be recycled and the flow rates must be set to 

achieve the overall stoichiometry of the chemical reaction. The work of separation can be 

theoretically calculated pressure, gibbs free energy change etc. However the actual 

energy requirements vary considerably from theoretical estimates. A complete evaluation 

of the thermochemical process requires identification of chemical cycles, estimates of 

efficiencies from mass and energy balances listed in detailed engineering flow.  

Bamberger and Richardson [31] list about 72 cycles most of which are conceptual in 

nature. Even now, laboratory data are generally sparse. However there are other forms of 

thermochemical processes namely solar, biomass etc. Currently feasibility of various 

thermochemical cycles and a possible laboratory scale thermochemical plant coupled 

with nuclear reactor is being analyzed by various researches funded by US Department of 

Energy [32].  There are various cycles namely sulfur-iodine cycle, hybrid sulfur cycle, 

calcium-bromine cycle and alternative thermochemical cycles, which are identified by 

USDOE for viability analysis of the process as well as the plant. The hybrid solar 
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thermochemical cycles are also under review. Solar thermochemical processes convert 

radiant energy into chemical energy [33]. The objective of solar thermochemical 

processes is to identify thermochemical water- splitting cycles suitable for solar 

interfaces from the viewpoint of thermodynamics, chemical process engineering, costs 

and their potential environmental impact [34]. The primary work until now in this area 

has been identification/elimination of cycles based on numerous criteria; chemical 

reactions, chemical separations, process temperature, efficiency to name a few [35]. 

There are three notable processes namely Bunsen reaction involving iodine and thermal 

decomposition of HI, UT-3 thermochemical cycle and Zn/ZnO process. The potential 

heat sources for the high temperature processes are being identified as solar thermal 

concentrators and central receiver systems and nuclear reactors [34]. Hence all these 

studies suggest that solar thermochemical process technology is a long-term prospect for 

hydrogen production. There are different suitable thermochemical processes for 

conversion and recycling of carbonaceous materials such as biomass. The processes 

include pyrolysis, gasification, liquefaction and supercritical fluid extraction [36]. All 

these processes appear to be attractive economically and are a feasible option. However 

the hydrogen gas produced normally contains other constituents and hence separation and 

purification of hydrogen becomes compulsory. Nowadays methods like CO2 absorption, 

drying/chilling and membrane separation have been successfully developed for hydrogen 

purification [37, 38]. Hence biomass thermochemical conversion processes especially 

newly developed gasification types are expected to be commercially available in the near 

future [39]. 

 

 14



2.2.4 Hydrogen production from other processes 

Most methods of hydrogen production involve the splitting of water, and the source of 

energy for water splitting differentiates the production method. The work in this thesis 

deals mainly about electrolysis of water to produce hydrogen; however there are other 

methods which can be used to produce hydrogen. Solar energy is the most abundantly 

available renewable energy source for hydrogen production. Based on solar energy the 

various processes in producing hydrogen can be classified as: 

a. Thermolysis by using concentrated solar energy 

b. Biological methods using algae and cyanobacteria 

c. Photolysis of water 

Of these processes certain biological processes, may use sugars instead of water as the 

source of hydrogen. 

2.2.4.1 Thermolysis 

Thermolysis of water involves heating water to temperatures of about 3000K to 

decompose it into hydrogen and oxygen. This method of hydrogen production is 

theoretically a very efficient mode of producing hydrogen. The fact that solar energy is 

used to heat the water up makes this process a more environmentally friendly approach to 

produce hydrogen. Solar concentrators are used to focus the suns energy onto the water 

and raise it to the desired temperature to trigger the decomposition of water. The work by 

G. Olalde et al. showed a more improved solar design for thermolysis of water. Their 

study used a refractory material (ZrO2) as target material to heat up the water and the 

suns energy is focused onto this refractory material using parabolic mirrors mounted on 

heliostats. The study also showed that the immediate quenching of the products of 
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disassociation prevented the recombination of products into water. The study also pointed 

out that the hydrogen bubbles produced were small, and would prevent explosion [40]. 

The study by H. Barnert showed the heat from high temperature nuclear reactor could be 

used for thermolysis of water. Hence thermolysis of water is considered as one of the 

potential methods of hydrogen production in near-future. 

2.2.4.2 Biological method 

Biological hydrogen production involves bacterial chemical reaction to produce 

hydrogen. Bacteria can produce hydrogen through oxygenic or anoxygenic reactions, 

with sunlight as their source of energy. Anoxygenic bacteria basically react with organic 

acids in the presence of sunlight to produce hydrogen and oxygenic bacteria react with 

water and sunlight to produce hydrogen [41]. There are certain types of green algae that 

have been found to produce hydrogen efficiently. Cyanobacteria are a certain type of 

bacteria that live under nitrogen rich environments, and these bacteria have been found to 

produce hydrogen reacting with organic compounds such as bio waste and sunlight to 

produce hydrogen. The biggest drawback of this system of hydrogen production would 

be the quantity of hydrogen production and the efficiency of recovering the produced 

hydrogen. 

2.2.4.3 Photolysis 

Photolysis of water utilizes a photovoltaic cell and an electrolytic chamber built in 

system. The photovoltaic cell would basically provide the electrical energy to split the 

water into oxygen and hydrogen. This type of hydrogen production is found to be very 

efficient and cost effective. A study by the Swiss federal institute uses new nanoparticle 
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photovoltaic material which has very good energy conversion efficiency to produce 

highly efficient rates of hydrogen production [42]. However large scale industrial 

production of this process also requires research and development efforts on multiple 

fronts. 

There are also numerous other techniques under development like titania nanotube arrays 

for photo-cleavage of water [43], Zirconium-Titanium Phosphates for photo induced 

water splitting [44] and lime- enhanced coal gasification [45] are some of the several 

approaches proposed for hydrogen production. Most of the novel techniques proposed for 

hydrogen production are only prototypes. Of these varied processes proposed for 

hydrogen production many need to be proved competitive against existing technology for 

cost, sustainability and performance. 

2.3 Electrochemical gasification of coal 

2.3.1 Overview 

An electrochemical process was proposed by Coughlin and Farooque which converts coal 

and water into two separate gaseous products, one comprising essentially gaseous oxides 

of carbon and other essentially pure hydrogen [2]. Unlike other methods employed for 

hydrogen production, the process takes place at mild temperatures (even room 

temperature) and the gaseous products are free of impurities such as ash, tar and sulfur 

compounds.  The process in this context causes electrolysis of water to hydrogen by 

utilizing the electrons in coal to lower the potential of operation. In this process, 

compared to conventional water electrolysis, less energy has to be supplied as electricity. 

However from another standpoint it can be considered that coal is gasified by reaction 
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with water. In the process the externally supplied electrons from coal make the process 

thermodynamically feasible at low temperatures, otherwise large amounts of thermal 

energy would be required to carry out the reaction. Conventional production of hydrogen 

from coal using steam-carbon reaction requires high temperatures (800° C). Also 

synthesis gas must be purified to remove sulfur compounds and other impurities followed 

by water-gas shift reaction to shift the CO/H2 ratio. The current process however 

produces relatively pure streams of carbon oxides in the anode compartment and 

hydrogen at the cathode. The oxidation currents of the proposed reactions were observed 

in [3]. The experiments were carried out at room temperature. At a particular cell 

potential different types of coals and carbons were oxidized under potentiostatic 

conditions with a fixed coal slurry concentration. Experiments carried out by Coughlin et 

al under aforementioned conditions indicated that the rate of oxidation falls gradually as 

the reaction proceeds and this indicates coal consumption during the process. Various 

means to recover the coal were also listed in their studies. Their experiments were carried 

out with six different coal samples namely Montana rosebud char, North Dakota lignite, 

Pittsburgh coal, Illinois no.6 and Montana Rosebud coal. The reactivities of these 

different coal types were reported [2].  However in all the above analysis, only the carbon 

content in the coal was studied since coal contains a wide variety of organic compounds 

rich in carbon. The ash of coal contains some amount of iron. Literature suggests that the 

iron content in coal is actually oxidized, which causes the coal slurry to be oxidized [46]. 

They suggest that the voltammetric behavior for iron (II)/iron (III) is similar to that of 

coal slurry. On analyzing the mechanism thoroughly, Dhooge et al suggests that coal is 

oxidized through the catalytic mechanisms along with iron [47]. They report that rather 
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than coal particles, compounds or ions from the coal that are soluble in acid solution 

causes the anodic oxidation. In another work by Dhooge et al, FTIR studies of 

electrolysis of coal were carried out [48]. They report that water is intimately involved in 

the oxidation mechanism. Water is the source of oxygen for production of carbon oxides 

similar to the coal gas reaction for the production of hydrogen and carbon monoxide. 

They suggest that the electrochemical gasification reaction is similar to coal gasification 

in terms of anodic oxidation. Their studies also indicate that both oxygens required for 

the formation of CO2 are added in two separate steps. The first step involves the 

formation of quinoid group followed by conversion of quinine to CO2.  Hence it is to be 

noted that the carbon dioxide formed in this reaction is from the solvent water and not 

from carbonates or other carbon oxygen compounds extant in coal. The proposed 

reactions, energy requirements for the reactions and other factors to be considered in 

electrochemical gasification of carbons are listed in the sections to follow. 

2.3.2 Proposed reactions 

The chemical reactions involved in some of the well known commercial hydrogen 

production processes are discussed in detail in this section. Conventional water 

electrolysis process has been known since the 18th century and industrial process exists 

beginning about 1900. The electrochemical gasification of coal equations are laid out 

considering only the carbon in coal [2]. The reaction at the anode which is the oxidation 

of coal is postulated by the half cell reaction: 

                       ( ) ( ) ( ) ( )1442 22 L−+ ++→+ eHgCOlOHsC  

and the corresponding half cell reaction at the cathode: 

                        ( ) ( )2244 2 LgHeH →+ −+  
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The net sum of the reactions (1) and (2) is the predominant reaction in the 

electrochemical gasification of coal.  

                        ( ) ( ) ( ) ( ) ( )322 222 LgCOgHlOHsC +→+  

In conventional steam- gasification, the product is a complex mixture containing H2, CO, 

CO2 and impurities. Instead the electrochemical gasification process produces relatively 

pure streams of carbon oxides in the anode compartment and hydrogen at the cathode. 

The conventional steam gasification equations are listed and it is important to distinguish 

the energy requirements for the process from electrochemical gasification. The well 

known steam – carbon reaction given by: 

                        ( ) ( ) ( ) ( )422 LgHgCOOHsC +→+   

The reaction is strongly endothermic and at ordinary temperatures the equilibrium for the 

reaction is highly unfavorable. The reaction is carried out at temperatures sufficiently 

high (~800°C) to assure favorable equilibrium. Also the endothermic heat of reaction 

required is supplied by gasifying the coal by treating it with a mixture containing both 

steam and oxygen.  Thus part of coal is combusted as below: 

                         ( ) ( ) ( ) ( )522 LgCOgOsC →+  

The heat released by reaction (5) provides the thermal energy and hence the necessary 

high temperature for reaction (4) is supplied. The energy required for all these processes 

are in discussions to follow. The detailed discussion about coal gasification is in [50].  

The conventional water electrolysis reactions also needs to be listed in order to learn the 

energy requirements for the process. In conventional water electrolysis at the cathode 

pure hydrogen in produced. 

                       ( )622 2 LHeH →+ −+  
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At the anode the reaction is: 

                      ( )7222
1

22 L−+ ++→ eHOOH  

Hence the net reaction is water split into H2 and O2 molecules.  

                     ( )82
1

222 LOHOH +→  

The conventional electrolysis process in alkaline media utilizes energy alone is also 

relevant in terms of production of hydrogen from water [49]. The reaction for such a 

reaction is listed as: 

At cathode:   ( )9222 22 L−− +→+ OHHeOH  

At anode:      ( )1022
12 22 L−− ++→ eOOHOH  

Net reaction: ( )112
1

222 LOHOH +→  

Another method which uses only thermal energy and several complex cyclic processes 

are [49] shown: 

                 ( )12231100222 LHISOOHISO K +⎯⎯ →⎯++  

                 ( )132
1

2210003 LOSOSO K +⎯⎯ →⎯  

                 ( )142 22600 LIHHI K +⎯⎯ →⎯  

Net:          ( )152
1

222 LOHOH +→  

There are also hybrid methods which utilize both thermal and electrical energy in a cyclic 

process [49]: 

Electrolysis: ( )162 24222 LHSOHSOOH +→+   

Thermal:      ( )17222 22242 LOSOOHSOH ++→  
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Net:              ( )1822 222 LOHOH +→  

The widely used methods for practical purposes are the ones which involve thermal 

energy and fossil fuels. The carbon of the fossil fuel becomes the acceptor of ‘oxygen’ 

from water. However combining the electrical energy with fossil fuel to produce 

hydrogen was first reported by Coughlin and Farooque, the reactions for which are listed 

above. 

2.3.3 Energy requirements 

Conventional water electrolysis in principle requires a theoretical thermodynamic 

electrical energy input of 56.7 kcal/g-mol of H2O and a corresponding theoretical driving 

potential of about 1.23 V. The energy input required is calculated based on the Nernst 

equation. The relation between free energy and cell potentials needs to be reviewed 

before considering the electrochemical gasification reactions. The change in Gibbs free 

energy associated with a chemical reaction is an indicator of whether the reaction will 

proceed spontaneously. The Gibbs free energy at any moment of time is described as the 

enthalpy of the system minus the product of temperature times the entropy of the system. 

    G = H – TS 

The Gibbs free energy of the system is a state function because it is defined in terms of 

thermodynamic properties that are state functions. Hence the change in Gibbs free energy 

is equal to the change in enthalpy of the system minus the change in the product of 

temperature times entropy of the systems. 

                                             ΔG = ΔH –Δ (TS) 

If the reaction is at constant temperature the equation can be written as, 

                                            ΔG = ΔH –TΔ S 
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The Gibbs free energy required for conventional water electrolysis is 56.7 kcal/mol H2O. 

For the coal gasification reaction which is strongly endothermic with ΔH° = 31.4 

kcal/mol, ΔG= 21.8 kcal/mol. Hence coal is gasified at 800°C using both steam and 

oxygen which makes the reaction exothermic with ΔH = -94.1 kcal/mol. The reactions 

proposed by Coughlin and Farooque [2], require much less energy compared to 

conventional water electrolysis.  

ΔG  = ΔG (product) – ΔG (reactants) 

                   = -94.26 (CO2) + 2(56.7) = 19.27 kcal/ 2mol H2O 

                               =  9.6 kcal/mol H2O   compared to 56.7 kcal/mol H2O 

The relationship between cell potential and free energy can be calculated from the 

reaction  ΔG = - n F E; where n is the number of free electrons involved in the reaction, F 

represents Faraday’s constant and E the cell potential. Using this reaction, the 

corresponding cell potentials for conventional water electrolysis and electrochemical 

gasification can be calculated and compared. For conventional water electrolysis, 
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This applied voltage of E0 = 1.23 V and associated power/energy used to electrolyze 

water to produce hydrogen is not practical because of its lower efficiency compared to 

hydrocarbon based processes (Rosen and Scott, Int. J. Hydrogen Energy, Vol. 23(1998), 

pages 653-659).  The electrochemical gasification proposed requires only -0.21 V as 

calculated below: 
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These reactions were only proposed by Coughlin and Farooque and if true the energy 

requirements would be reduced approximately by a factor of six. However, the practical 

operating voltages at which they conducted their experiments were between 0.85 V and 

1.0 V.  The greatly lower energy requirement for the electrochemical gasification process 

is from the consumption of coal which supplies the additional electrons required by the 

process. Alternatively electrochemical gasification can also be viewed as providing the 

free energy needed to drive the reaction at the anode by supplying an additional reagent 

in the form of electrons at a theoretical thermodynamic potential of -0.21 V. The energy 

required by the electrochemical gasification of coal is compared with the conventional 

water electrolysis in terms of a theoretical estimate [2, 51]. The energy consumed by 

ordinary water electrolysis is given by 2NH2FE2; where E2 is the potential at which water 

electrolysis is conducted; NH2 is the number of moles of hydrogen produced and F the 

Faraday’s constant. The energy required by electrochemical gasification is given by, 

          

 ( )BC

t

HNdtiE Δ−+∫
0

where E is the operating potential; i is the anodic rate of electrochemical gasification; NC 

is the number of mol of carbon consumed; and ΔHB is the enthalpy of combustion of 

carbon to CO

B

2. The expression can be simplified by approximating the operating 

potential to be constant E, and substituting 

2
0

2 2
1
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idtNH C
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 Eliminating and N∫
t

dti
0

C the total energy consumed for electrochemical gasification is,                         

                                                ( )BHNHEFNH Δ−+ 22 2
12  

The relative energy unit (REU) is equal to ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− iselectrolysassistedcoal

iselectrolysordinary  

 

 

                                      =                 2NH2FE2 

                                            ( )BHNHEFNH Δ−+ 22 2
12  

                                      =            E2 / (E+ |ΔHB|/4F) B

We know that ΔHB = 94,100 x 4.18 J mol-1 and F = 96500 C equiv-1.Hence 

                                      REU = E2/ (E+1.02) 

The above factor is a first order approximation of the amount of energy from each source 

and hence provides a rough feeling for efficiency. The energy required for conventional 

water electrolysis comes solely from electricity. However in electrochemical gasification 

about half the energy is supplied by coal and other half from electricity. Practical values 

of E2 for conventional water electrolysis are about 2 V and for electrochemical 

gasification proposed by Coughlin E ~ 1 V. Though the relative energy unit for both the 

reactions is the same, with the increased energy supplied by coal, the energy required as 

electricity goes down. Also they suggest that the total energy requirement for coal-

assisted water electrolysis can be improved by conducting it at higher temperatures.  
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2.3.4 Other factors 

2.3.4.1 Effect of coal 

The work reported by Coughlin et al reports all the results in terms of oxidation rates [3]. 

Increasing coal concentration i.e. coal-to-electrolyte loading increases oxidation rate. 

Also increasing temperature leads to an increase in current. The particle size of coal also 

affects the rate of electrochemical oxidation of coal. The reasons for such behavior can be 

attributed to: 

1) The depth of penetration of the hydrodynamic boundary layer at an electrode 

depends on the particle radius [52]. If the reaction site is the particle surface, 

smaller particles with high surface area should react more rapidly on a unit mass 

basis. 

2) The particle size versus chemical reactivity classification can be done by sieving 

coal into several different fractions based on particle size. 

Through experimental observations it is verified that smaller particles provide higher 

rates during electro-oxidation proving the conventional notion of the chemical reactivity 

of the solid particles.  

2.3.4.2 Analysis of gases produced 

A coulombic efficiency close to 100% is claimed by Coughlin et al based on measured 

current values integrated over time.  The anodic compartment contained a mixture of CO2 

and CO. Due to the changes in population of surface oxides on the coal the composition 

of the anode gas varies as the reaction proceeds. The gas generated at the anode is mostly 

CO2 with lesser amounts of CO. The CO concentration further reduces after most of the 
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coal is consumed beyond which the mechanism itself appears to change. The volume of 

the gases collected at the cathode to anode ranged from about 9.1 to 3.7 [3]. The higher 

ratios were obtained at the beginning of the experiment but with a following decrease. As 

stated earlier, according to reaction stoichiometry this ratio for coal gasification reaction 

should be 2.0.  However the accumulation of oxygen on coal particles in the form of 

functional and groups such as –COOH, -CHO and _CH2OH and the like leads to higher 

ratios. Also the coal used has some hydrogen content which is also a reason for higher 

ratios. 

2.3.4.3 Effect of potential and activation energy 

As with any electrolysis, it is true in this case also that higher the potential greater the 

oxidation current. The activation energy is the minimum energy needed for the reaction 

to occur expressed in KJ. An Arrhenius relationship to the measured data plotted in the 

temperature range 25 - 110°C can be used to determine the activation energy.  The 

activation energy was estimated to be between 9 to 11 Kcal mol-1, based on the operating 

conditions. The sulfuric acid concentration of the electrolyte did not affect the activation 

energy. However with increasing coal concentration, a small change in activation energy 

was observed. 

2.3.4.4 Role of carbon 

Carbon particles of large surface area find varied applications such as adsorption, 

catalysis, and physics-chemical processes [53]. The reason for such application can be 

attributed to carbon’s crystalline structure, microscopic physical structure, electronic 

properties and sometimes the presence of impurities within the carbon. Carbon itself 
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gives rise to some catalytic properties and carbon may display electronic properties as 

conductor, semiconductor or insulator based on method of preparation and pretreatment. 

Hence treatment of carbon catalyst to influence its electronic properties may alter its 

activity and selectivity for a particular kind of reaction. Oxidation and formation of 

oxides on the edges of layer planes can be considered as one kind of treatment which 

localizes Π-electrons in surface states and lead to more semi conductivity. There are 

several reactions catalyzed by carbons including hydrogen-deuterium reaction, oxidation-

reduction, halogenation and polymerization. In the reaction of interest (oxidation-

reduction) surface oxygen of catalysts participate in many reactions [54]. In the case of 

hydrogen peroxide decomposition, it has been shown that catalysis is due to the basic 

surface oxides on carbon but inhibited by acidic functional groups of chemisorbed 

oxygen. Also carbon can act as a sorbent when it has a specific affinity and accessible 

surface area. Selectivity not only depends on pore geometry but also by various specific 

contributions to the physical bond between carbon and adsorbate. The influence of 

surface oxygen seems to influence adsorption of nitrobenzene and benzene sulfonate 

from aqueous solutions. Although the precise mechanisms remain in doubt, the behavior 

of carbon as catalyst is established.  
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3 EXPERIMENTAL SETUP 

3.1 Overview 

This chapter provides the details about the electrochemical setup used to carry out the 

experiments. The basic setup is a simple three electrode electrochemical setup with 

working, counter and reference electrodes. The nature and dimensions of the electrodes 

are discussed in detail. The details about the gas chromatograph used in the study and 

analysis performed with the chromatograph are also listed in detail.  

3.2 Setup & Instrumentation 

A schematic of the basic three electrode setup used is shown in Figure 3.1 [55].  There 

are three compartments in the setup. The anode compartment which contains the working 

electrode is the center compartment. The electrolyte in the anode compartment is 3.7 M 

sulfuric acid along with activated carbon. High purity, high surface area activated carbon 

was used (PICA carbon with surface area of 1000 m2/g supplied by PICA, USA Inc.). 

The compartment is stirred continuously with a magnetic stirrer to avoid bubble effect 

(explained later). The working electrode used in the setup is a platinum plate (working 

area 6.8 cm2) attached with a platinum wire to allow electrical connections. The cathode 

contains only 3.7 M sulfuric acid as the electrolyte and it contains the counter electrode. 

The counter electrode is platinum coil of area 2.5 cm2. The third chamber consists of the 

reference electrode with only 3.7 M sulfuric acid as the electrolyte. The reference 

electrode is standard Ag/AgCl reference electrode (Metrohm 6.0726.100). The counter 

and reference compartments are separated from the anode compartment with a glass frit. 
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The electrodes are connected to the leads of a potentiostat (BAS model 100B). The BAS 

100 B model is an electrochemical analyzer with computer controlled data acquisition 

system. The evolved gases are analyzed by a Gas Chromatograph (GC) model 8610 C 

from SRI instruments. The purpose of glass frit, choice of electrodes and electrolyte are 

explained in detail in the forthcoming sections. 
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Figure 3-1.Schematic of the three-electrode cell used in the experiments. The surface 

area of the Pt anode (cathode) is 6.8 cm2 (2.5 cm2). The contents of the anode 

compartment were constantly stirred by a magnetic stirrer (not shown) [1]. 
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The electrodes used and the electrochemical cell used are shown. Figure 4 shows the 

platinum plate, platinum coil and the cell used. Figure 5 is the electrochemical setup 

along with the BAS potentiostat. The Gas chromatograph model 8610 C is shown in 

figure 6.  

 

 

 

 

 

 

 

 

 

 

Figure 3-2.Electrodes and Electrochemical cell used 
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Figure 3-3. Electrochemical setup along with potentiostat
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Figure 3-4. Gas Chromatograph Model 8610C 

3.3 Experimental procedure 

The experiments were carried out as follows. In each experiment the operating potential 

E0 was kept constant and the time required to electrolyze approximately the same amount 

of electrolyte in the cathode cell was measured. Also the current I0 was simultaneously 

measured. The time required to produce the same amount of hydrogen is termed as tH and 

amount of H2 produced per W h of energy used is termed as AH. A fixed volume of the 

gas produced in the cathode was then injected by a syringe into the GC column. The GC 

output is a plot of retention time vs. amplitude. The area under the H2 peak was noted for 

each experiment. This way for each E0, the area under the peak was approximately the 
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same but with different tH and I0. Since the area under the peak was only approximately 

constant, the time tH was normalized for exact peak areas (we chose 1000 units). The 

current I0 recorded had some fluctuations presumably due to stirring of the electrolyte in 

the anode compartment and hence the intermittent contact of carbon particles with the 

anode. These fluctuations are the source of primary uncertainties in the data to be shown 

and are indicated with error bars in all the plots. Thus in our experiments for every E0 (in 

the range of 0.1 to 1.8 V), the time tH required to produce exactly the same amount of 

hydrogen and the current I0 in the circuit are determined. Also in order to estimate the 

effect of carbon for a particular E0 the carbon concentration added in the anode 

compartment was varied and the time tH and I0 were noted. The potentials listed 

throughout the work are with respect to standard hydrogen electrode (SHE) and so 

corrected for E0= 0.22 V for Ag/AgCl. For every experiment, the electrolyte and the 

carbon added was replaced with a new solution.  

3.4 Electrode Electrolyte and other considerations 

The choice of electrodes and electrolytes in this work is based on the suggestions in the 

literature and hence it is appropriate to review them. 

3.4.1 Electrode 

In any electrolysis system, the electrode should satisfy the following characteristics [56]. 

They must be electronic conductors with the ability to provide a catalytic surface for the 

discharge of hydrogen or hydroxyl ions. The electrode material must provide a large 

surface area interface between the catalyst and the electrolyte. Also the electrode must 

have adequate sites for nucleation of the gas bubbles and provide a reasonable means for 
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the detachment of gas bubbles so that they may separate from the electrolyte. There are 

various materials satisfying these conditions. However it is established that platinum 

assists the electrode process considerably and allows the reaction to proceed more rapidly 

than nickel. Also platinum has higher chemical as well as corrosion resistance. The 

platinum electrode used in the system is trouble free and maintenance free. After every 

run the working (platinum plate) and cathode (platinum coil) was just washed with 

deionized water. However suggestions for other electrode materials are made for future 

work.  

3.4.2  Electrolyte 

The choice of the electrolyte 3.7 M sulfuric acid is found to be the optimum for water 

electrolysis [3]. Generally the electrolyte used must exhibit high ionic conductivity and it 

must be able to withstand voltages at which the cell operates so that the electrolyte itself 

does not decompose. It should not be volatile to be removed with the evolved gases. Also 

since the solution will encounter rapid changes in hydrogen ion concentrations at the 

electrodes, the electrolyte should have strong resistance to pH changes, i.e., a buffer 

solution. In practical applications, the above criteria can be met by strong acids or strong 

alkali. However since carbon is used, the solubility of CO2 in alkaline electrolytes could 

be problematic under certain circumstances. Buffer systems such as C  / HC  can 

also be used. The advantage in this medium is that it is less corrosive than an oxidizing 

acid electrolyte which could possibly reduce cost of materials and reject CO

−2
3O −

3O

2. Also 

H3PO4 which can withstand much higher temperatures than H2SO4 can be used. However 

report [3] suggests sulfuric acid performance is better for electrochemical coal 

gasification. They have also established the conductive superiority of sulfuric acid over 
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phosphoric acid and trifluoromethane sulphonic acid monohydrate solutions. Hence 

sulfuric acid is most preferred for electro chemical gasifications. 

3.4.3  Separator 

The electrodes need to be separated to prevent the electrodes from touching each other 

and shorting out. Also the gases produced should not mix together inside the cell. Hence 

the separator should be a porous diaphragm or matrix through which the electrolyte can 

pass. It should allow ionic conducting path from one side of the cell to the other. Also the 

pores should remain full of liquid so that gas cannot pass through. All separators should 

also be corrosion resistant.  Also in the case of electrochemical gasification the carbon 

used should be isolated only to the anode. So in this case a glass frit was used as the 

separator. The frit porosity was chosen to be of porosity C (ace porosity) based on the 

particle size (particle size ~ 140 μm) of the carbon used.  

3.4.4  Bubble effect 

The formation of bubbles as shown in figure 3.5 at the electrodes during electrolysis is an 

important electrical field and electrochemical process disturbance [57]. This causes an 

ohmic potential drop and hence contributes to higher energy consumption [58]. The 

presence of bubbles modifies the electrical properties, thermal properties, the 

electroactive species diffusive transport and the current density. The bubbles need to be 

forced to separate faster from the electrodes and ascend through the electrolyte. Hence 

the whole electrochemical cell is mounted on a magnetic stirrer (CORNING 

stirrer/hotplate) and stir bars are used both in the anode and cathode compartment thereby 

eliminating gas blanketing.  
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Figure 3-5.Presence of bubbles at the electrode. From macroscopic vertical electrode 

to insulated bubble [4]. 

3.5 Gas chromatograph description 

3.5.1  Gas chromatograph basics 

Chromatography in general can be termed as a separation technique for components of a 

mixture by a series of equilibrium operations. The separation of entities is a result of the 

portioning (differential adsorption) between two different phases, one large surface 

stationary phase and other a moving phase in contact with the first [59]. Gas 

chromatography is one in which the moving phase is a gas phase. The mixture to be 

separated and analyzed can be gas, liquid or solid. In any case, the conditions to be 

satisfied by the sample components are stability, set operating pressure, operating 

temperature and interaction with the column material and the mobile phase. The 

techniques behind separation of sample components are frontal analysis, displacement 

development or elution development. Frontal analysis is one in which the gas mixture is 
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fed into a column containing solid packing and the component is separated based on its 

ability to become a sorbate. In the displacement development technique, the developer is 

contained in the moving phase which may be a liquid or gas. The moving phase need to 

be more sorbed than any sample components and there is always an overlap zone for each 

succeeding component. In the elution technique, the components travel through the 

column at rates determined by their solid packing. In this technique, at the end of 

separation, only the elutant remains in the column. Hence it is the most preferred over 

other techniques. Some of the terms to be discussed relevant to chromatography are 

retention time, resolution, peak area and selectivity. Retention time is the amount of time 

elapsed from the injection of the sample to the recording of the peak maximum. 

Resolution indicates the degree of separation between the peaks. Peak area refers to the 

area enclosed between peak and peak base and selectivity the lowest detection limit 

achieved by the detector. Since the GC is sensitive even up to parts per million the 

hydrogen produced in the cell could be detected over several voltage ranges. The 

hydrogen produced in the cell was calibrated with pure hydrogen produced from a 

hydrogen generator. There are numerous types of columns, detectors and analyzers 

available; the one used in the study is discussed below. 

3.5.2 8610 C GC 

Model 8610 C GC (supplied by SRI instruments) was used for hydrogen analysis and 

quantification. The 8610 C GC is a Multiple Gas Analyzer capable of separating a wide 

variety of peaks [60]. The instrument consists of two packed columns, one molecular 

sieve and other hayesep column and a TCD detector. The carrier gas flow through the 

two different columns is turned ON and OFF individually at different times during the 
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run thereby preventing co-elution of the gases. The carrier to Molecular sieve 13X 

column is turned on first thereby separating H2, O2, N2, CO and CH4. Ultra High Pure 

nitrogen was used as the carrier gas hence hydrogen elutes from the first column as the 

first element. The second column can be used to separate all compounds in the C1- C6 

range if needed. There are two separate carrier gas flows, each regulated by electronic 

pressure control through the software (peaksimple). The sample is injected through a 

sample inlet port. The carrier 1 flows through sample loop one to the molecular sieve 

column and then to the TCD detector through the “Tee”. Carrier #2 flows through the 

second column hayesep and through the ‘Tee” to the TCD detector. An event table 

determines the ON and OFF of either of the carriers. In this case since only hydrogen 

needs to be detected, the same carrier was used and only the molecular sieve column was 

used. The whole run was carried out in 7 minutes with a retention time of ~0.5 min for 

hydrogen at a column oven temperature of 120°C. 

 

Figure 3-6.Schematic and working of Multi Gas analyzer 8610 C GC [60] 
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3.5.3 GC column 

The column can be considered as the heart of the GC since this is where the actual 

separation of component takes place. The GC is equipped with two columns: Molecular 

sieve 13X and Hayesep D column. Since the work involves the use of the only molecular 

sieve column, it is considered in detail. The molecular sieve serves as the column packing 

and acts as adsorbents. They are also referred to as zeolites, which are synthetic alkali or 

alkaline-earth metal aluminium silicates and are utilized for the separation of hydrogen, 

oxygen, nitrogen, methane and carbon monoxide. These materials are separated using a 

molecular sieve because their pore size matches their molecular diameter. The molecular 

sieve 13X refers to the pore size of 13Å with sodium as the primary cations. The column 

oven temperature is another important parameter that affects the range of separation. The 

column temperature needs to be chosen appropriately so that optimum separation of 

components is achieved. An isothermal column temperature of 120°C was chosen for all 

our runs. 

3.5.4 TCD detector 

A thermal conductivity detector is a chamber in which an electrically heated element 

reflects changes in thermal conductivity within the chamber atmosphere and the 

measurement is carried out based on the change in electrical resistance of the element. 

The TCD is a Wheatstone bridge configuration and uses four general purpose tungsten-

rhenium filaments for sample analysis [61]. 
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Figure 3-7.TCD filament circuit [61] 

Two of the filaments are exposed to sample-laden carrier gas flow (provides the actual 

chromatographic operation) and two others with clean carrier flow (acts as reference 

signal). When the effluent from the column flows over the two sample stream filaments, 

the bridge current is unbalanced with respect to the reference signal. This deflection is 

converted to analog signal and then transmitted to the data system. The filament leads are 

color coded so as to provide an indication of wires connected to the terminal. 
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4 RESULTS AND DISCUSSION 

4.1 Overview 

In this chapter, the results on carbon-assisted water electrolysis for applied potential 

ranges between 0.1V and 1.8 V are reported. The following quantities are measured: (i) 

time tH to produce the same amount of hydrogen versus applied E0 (ii) quantity AH 

representing the amount of hydrogen produced per W-hr of energy used and (iii) 

variations of tH and AH for different amounts of carbon used varying between 0.02 to 0.12 

g/cm3 of the electrolyte. The value of AH (H2/W-hr) is higher at lower voltages. However 

it requires a longer time (higher tH) to collect the same amount of hydrogen meaning 

slower kinetics at the lower voltages. The results are compared with the parameters 

obtained in the conventional water electrolysis process. In that case measurable hydrogen 

production is observed only for E0 >1.4V. To verify the data, two runs were carried out 

under similar conditions (potentials) and same carbon concentration. The data was 

closely reproducible in terms of current, time and hydrogen produced. However for the 

sake of clarity only one of the data sets (run 2) is used throughout the discussion here 

except when comparing both sets of data. A table with measured values of current, time 

and calculated values of power, energy requirements for selected E0 values is also listed 

in the discussion to follow.  Based on the overall considerations of tH, and AH the most 

practical value for | E0| = 0.5 V is suggested. Also after reviewing various carbon 

concentrations, 0.08 g/cm3 of the electrolyte was found to be the optimum for lower 

voltages which are of primary interest.  
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4.2 Potential vs. Time and current 

In Figure.10, a plot of tH (time/same amount of H2) versus potential E0 for run2 and the 

current measured in the circuit is shown. Although hydrogen production could be 

observed at voltages as low as 0.1 V, the corresponding time required, tH ~ 95 min is 

much higher, meaning slow kinetics. This slow kinetics at the lower voltages is perhaps 

the reason why the earlier experiments were limited to E0 > 0.7 V [2]. For E0 = 0.28 V, tH 

drops to about 18 min. Between E0 = 0.3 and 0.68 V, there is a further decrease in tH. For 

E0 > 1.4 V, tH decreases rapidly, where the current in the circuit also increases rapidly.   

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

1

10

100

t H(
m

in
)/H

2

Potential E0(volts)

amount of carbon = 0.08 g/cm3

1

10

100

 

 
C

urrent (m
A

)

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4-1.Time tH needed to produce the same amount of H2 and the current in the 

circuit are plotted against the applied potential E0 vs SHE for run 2.  
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Surprisingly for 1.0 V < E0
 < 1.4 V, tH goes through a relative maximum as if an energy 

barrier exists for these potentials. Such an effect was observed by Coughlin et al also. In 

their experiments a constant current was maintained and correspondingly the potentials 

were varied. A potential jump from 1.2 V to 1.7 V was observed to maintain the constant 

current indicating the onset of a different mechanism [3].   

4.3 Energy Calculations 

Before considering other plots it would be appropriate to consider the computations based 

on which the rest of the data were plotted. The table lists constant E0 values,  

E0  (volts) 
I0 

(mA) 

Power=E0I0

( 10-4 watts) 

tH 

(min/H2) 

RH 

(H2/min)

E0.  I0. tH 

(10 -4watt-hr/H2) 

A H

(102 

H2/watt-hr)

0.1 (Carbon) 0.4 0.4 95.9 0.01 0.64 156.3 

0.28(Carbon) 4.4 12.32 18.5 0.054 3.8 26.3 

0.51(Carbon) 6.38 32.54 8.3 0.12 4.5 22.2 

1.78 (Carbon) 200 3560 0.37 2.7 22.0 4.54 

1.67 (No 

Carbon) 
65 1085.5 3.16 0.32 57.2 1.75 

 

Table 4-1.Measured and computed quantities for selected E0 values with (0.08 

g/cm3) and without carbon. 

 44



 

measured current and normalized tH values. As mentioned in the table the magnitude of 

power is calculated as the product of potential and current. The W-hr per unit hydrogen 

produced is simply the product of power and the normalized time since energy is 

calculated as an integral of power. The amount of hydrogen produced per W-hr is simply 

the inverse of the former quantity. It can be observed that in the experiments with carbon 

the energy consumption to produce the same amount of H2 increases sharply with 

voltage. However the time required appears to have the opposite trend. The value of 

current seems to influence the most in the case of energy requirements. Though the time 

required goes down, the energy requirements increases with increase in current. In 

experiments without carbon the time taken is higher, the energy to produce the same 

amount of H2 is higher and also the amount of hydrogen produced per W-hr is much 

lower.  

4.4 Amount of hydrogen produced 

Since energy consumed to produce H2 is a major issue for practical applications, a plot of 

AH, representing the amount of H2 produced per W-hr of energy used (1 W-hr = 3.6 x 106 

J) against E0 is shown for both runs 1 and 2. In the same plot, data for ordinary 

electrolysis without added carbon is also shown. Of course in ordinary water electrolysis, 

measurable H2 is not produced unless E0 > 1.4 V is applied. Also even with E0 > 1.4 V 

the amount of hydrogen produced per W-hr is lower than carbon assisted electrolysis in 

most of the cases. A semilog plot is used to accommodate all the data since the values for 

ordinary electrolysis was much lower compared to carbon-assisted electrolysis. An 

important result to be noted here is that AH in carbon assisted electrolysis increases with 
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decrease in E0. But this higher AH at lower E0 values requires corresponding longer times 

tH needed to collect the same amount of H2. This can be considered as a tradeoff between 

energy and time, the choice of which is based on the potential E0.  
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Figure 4-2. Quantity AH representing the amount of hydrogen produced per W-hr of 

energy consumed is plotted against potential E0. 

4.5 Influence of current on hydrogen produced 

In the experiments by Coughlin and Farooque [2, 3, 49], the hydrogen produced was 

monitored primarily by the current I0 in the circuit, assuming proportionality between the 

two quantities. Since both quantities H2 and I0 were measured in our experiments, a check 

on this linearity can be made. Our data in figure 9 validates this assumption 
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approximately. As stated earlier, there is a definite slow down of H2 production prior to 

the threshold potential for ordinary water electrolysis. A theoretical understanding of the 

energy barrier and slow down is highly desirable. For such an understanding the 

mechanism behind carbon assisted electrolysis needs to be understood. The experiments 

with carbon involved a carbon concentration of 0.08 g/cm3 of the electrolyte. The current 

for ordinary electrolysis without carbon is also shown for the voltages for which 

measurable hydrogen could be produced. The quantity “hydrogen per minute” is 

calculated as the amount of hydrogen (1000 units) produced divided by the time required 

(tH) to produce the same amount of hydrogen. As stated in the table earlier, it can also be 

seen that hydrogen produced is much smaller in the case of ordinary electrolysis without 

carbon; but the currents are comparable which means higher energy spent to produce less 

hydrogen. 
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Figure 4-3.H2 produced per minute for run2 is plotted against the current I0 (mA). 
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4.6 Effect of carbon 

In the next plot, a comparison of AH versus different concentrations of carbon at three 

different E0 are made. Two potentials (1.4 V, 1.54V) above threshold potential for 

ordinary electrolysis and one below (0.68V) were chosen. Although at higher potentials 

0.04 g/cm3 carbon concentration shows a peak, at lower voltages where kinetics need to 

be improved the concentration of 0.08 g/cm3 of carbon can be considered to work better.  
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Figure 4-4.Variation of the quantity AH (H2 produced per W-hr) is plotted against 

the carbon concentration for three operating potentials E0. 

For this reason, most of the work was carried out with this concentration. The error bars 

represented on AH are due to uncertainties in I0 and tH. This plot also shows that the lower 

operating voltages are more energy efficient and yield higher hydrogen per watt-hr 
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compared to the higher voltages. Thus it appears that as long as unreacted carbon is 

present near the electrode, the reaction is more energy efficient at lower voltages.  
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 Figure 4-5.Power (watts) and time tH (min) vs. carbon concentration at E0=0.68 V 
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Figure 4-6.Power (watts) and time tH (min) vs. carbon concentration at E0=1.4 V 
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However this condition is true only to certain point after which saturation occurs and a 

decrease in amount of hydrogen produced is seen. Also, the parameters power and time 

(tH) are compared against the carbon concentration at two different operating potentials. 

The general trend shows an increase in power with increase in carbon concentration and a 

decrease in time with increasing carbon concentration. Even though time goes down, the 

increase in power requirements demand a tradeoff thereby considering 0.08 g/cm3 as 

optimum based on the amount of hydrogen produced. 

4.7 Rate of Hydrogen evolution 

The rate of hydrogen evolution which is 1/tH is plotted against various potentials. It can 

be seen from figure.16 that for E0 values ranging from 0.5 V to 0.8 V the evolution rate is 

comparable to the rapid evolution potentials (E0 > 1.5 V). This shows that the lower 

potentials are advantageous to operate with since the evolution rate is almost the same as 

the energy-consuming higher voltages. 
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Figure 4-7. Evolution rate (1/ tH) and current (mA) vs. Potential (E0) 



5 CONCLUSIONS AND FUTURE WORK  
 

5.1 CONCLUSIONS 

The results presented here have demonstrated that carbon-assisted water electrolysis is an 

energy efficient technique to produce hydrogen. The hydrogen production in terms of 

energy efficiency and the amount of hydrogen produced was studied. The various 

parameters to be considered for energy reduction namely current, time, carbon 

concentration etc. were measured. A Gas Chromatograph was used to quantify the 

hydrogen produced at the cathode. From the results discussed in the previous chapter the 

following conclusions can be drawn. 

1) The amount of hydrogen produced per W-hr was found to be higher at lower 

voltages (E0 ~ 0.2 V). However, since the time taken to produce hydrogen is 

longer, operating at E0 ~ 0.5 V was found to be more practical.  

2) The current through the circuit bears an almost linear relationship with hydrogen 

produced per minute. Also, with increasing potential the current increases thereby 

increasing the energy consumption.  

3) The effect of amount of carbon added to the anode compartment was also 

investigated by varying the carbon concentration from 0.02 g/cm3 to 0.12 g/cm3 of 

the electrolyte. At lower potentials with 0.08 g/cm3, the hydrogen produced per 

W-hr was the highest compared to other carbon concentrations. Although the time 

taken decreases, the power required increases with increasing carbon 

concentration. 
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4) The evolution rate at lower voltages was almost equal to the evolution rate at 

higher voltages which indicates a definite increase in activity at lower voltages 

compared to conventional water electrolysis process. 

In summary practical parameters for potential (|E0| ~ 0.5 V) and carbon concentration 

(0.08 g/cm3) were established after considering various factors. Also since the CO2 

produced at the anode is well separated from H2 produced at the cathode, the former can 

be sequestered using any of the available technique. 

5.2 FUTURE DIRECTIONS 

Even though there is a significant reduction in energy at lower voltages, it may be 

possible to reduce it further by addition of catalysts to the anode compartment. The 

presence of catalysts could improve the kinetics as well as reduce the time taken to 

produce hydrogen. The potential catalysts could be FeSO4, nanocrystalline γ-Fe2O3, TiO2 

with UV light source and FeCl2. The well-known catalytic activity resulting due to        

Fe2+       Fe3+ conversion mechanism could be exploited to increase the kinetics. Also 

carbons with higher surface area (>1000 m2/g) could be tested for better activity.  
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