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ABSTRACT 
 

The Effects of Omega-3 Polyunsaturated Fatty Acids on  
AMPK Activation and Lipid Metabolism in Skeletal Muscle 

 
Myra Woodworth-Hobbs 

 
Intramyocellular lipid accumulation and low lipid oxidative capacity contribute to the formation 
of insulin resistance, but omega-3 polyunsaturated fatty acids (n-3 PUFA) are shown to attenuate 
insulin resistance caused by high levels of saturated fats.  The AMP-activated protein kinase 
(AMPK) promotes lipid oxidation and oxidative gene expression, highlighting its possible role in 
promoting insulin sensitivity by reducing lipid content and improving oxidative capacity.  This 
study evaluated the effects of n-3 PUFA on the AMPK pathway and alterations to lipid content, 
oxidative markers, and insulin signaling proteins in a muscle cell culture model, with the 
hypothesis that n-3 PUFA would attenuate the saturated fatty acid-induced increase in 
intramyocellular lipids and detriments to the AMPK pathway, oxidative markers, and insulin 
signaling.  The findings confirm that n-3 PUFA both attenuate saturated fatty acid-induced 
increases in intramyocellular lipid content and normalize insulin signaling and oxidative 
metabolic markers, though independently of the AMPK signaling pathway. 
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CHAPTER 1. INTRODUCTION 

1.1. Background and Significance 

     Emergence of the lifestyle characterized by excessive nutrient intake and low physical 

activity levels has significantly contributed to the worldwide prevalence of overweight and 

obesity (67).  The percentage of obese adults and children in the U.S. has increased to over one-

third and almost one-fifth of the population, respectively, over the past 40 years (55, 67).  

Obesity is an established cause of insulin resistance (21), an early hallmark in the pathogenesis 

of type 2 diabetes (37) and cardiovascular disease (46).  Insulin is the primary anabolic hormone 

that stimulates uptake and storage of nutrients in muscle, liver, and adipose tissue (47), and 

insulin resistance is defined as disturbances in insulin signaling that result in inappropriate 

responses of insulin-stimulated peripheral tissues to the actions of insulin (47) of normal or high 

concentrations (43).     

     The condition of obesity provides constant increased lipid flux into tissues (22), and lipid 

accumulation in non-adipose tissue can lead to cell dysfunction and/or death (87), termed 

lipotoxicity (41, 42, 44, 51, 87).  Implementation of a high fat (HF) diet is associated with 

abnormally high skeletal muscle lipid accumulation (87), which is highly correlated to skeletal 

muscle insulin resistance (65, 76) and is a more robust measurement of insulin resistance than 

body fat percentage, body mass index, and waist-to-hip ratio (22).  However, both endurance-

trained athletes (67) and previously untrained individuals who have undergone an endurance-

training program (60) also display increased fasting intramyocellular lipid content similar to or 

greater than levels found in individuals with type 2 diabetes but conversely possess enhanced 

insulin sensitivity (42, 59, 65), a condition often termed the athlete’s paradox (42).  A low ability 

to oxidize accumulated fatty acids (FA) is an important contributor to formation of insulin 

resistance (44), and skeletal muscle oxidative capacity may be more important in determining 

insulin sensitivity than intramyocellular lipid content (67).  Indeed, the athlete’s paradox (42) 

distinguishes that accumulation of lipids in skeletal muscle is not harmful when adaptations in 

oxidative capacity are maintained and identifies the importance of targeting metabolic treatments 

toward enhancement of oxidative capacity. 

     Formation of insulin resistance is also partially related to the type of FA accumulated in the 

cell (1, 39, 81).  A chronic flux of saturated FA (SFA) are shown to have detrimental effects on 



cells (94) and lead to insulin resistance (39, 52), while exposure to unsaturated FA (UFA) 

prevents (1, 39, 52, 76, 77), attenuates (54), or reverses (19, 46, 64) insulin resistance and when 

co-administered with SFA may prevent against detrimental metabolic effects associated with 

SFA treatment alone (52).  Of particular interest are the long chain omega-3 (n-3) 

polyunsaturated FA (PUFA), such as docosahexaenoic acid (DHA).  Supplementation of a small 

amount of long chain n-3 PUFA for other FA attenuates reductions in insulin sensitivity caused 

by oversupply of lipids (1, 77, 81) and sucrose (19, 46, 64) in cells (1) and metabolically normal 

(11, 20, 76, 77), obese (54) and insulin resistant animals (19, 46, 64).  Omega PUFAs have the 

unique ability to partition FA toward oxidation (6), which identifies a possible role for the 

marine n-3 PUFA to improve insulin sensitivity by promoting skeletal muscle FA oxidation and 

reducing intramyocellular lipid content.   

     An enzyme that may participate in this mechanism is the AMP-activated protein kinase 

(AMPK), which controls systemic energy expenditure, glucose homeostasis, lipid metabolism 

(47), and mitochondrial biogenesis (62).  AMPK is activated by phosphorylation of the 

threonine-172 (Thr172) residue of its α-subunit (90) by an upstream kinase (84).  The level of 

phosphorylated (p-) AMPK parallels the activity of AMPK (49), thus p-AMPKThr172 is an 

indicator of AMPK activity.   

     When activated, AMPK promotes insulin-independent glucose uptake in skeletal muscle (37, 

74) and also centrally regulates fat metabolism both acutely and through long-term 

transcriptional control (75).  Activated AMPK phosphorylates acetyl-CoA carboxylase β at its 

serine-79 residue and inactivates it (13,40, 44, 73, 87, 92, 94, 97), which removes inhibition of 

carnitine palmitoyl transferase-1 and promotes fat oxidation (40, 44, 73, 87, 92, 94, 97).  

Activated AMPK also phosphorylates and activates the PGC1α protein on its threonine-177 and 

serine-538 residues in skeletal muscle, which activates PGC1α gene expression in a feed-forward 

manner (32).  Since PGC1α is a master gene that regulates mitochondrial biogenesis (89), the 

expression and activity levels of the mitochondrial enzymes citrate synthase and cytochrome c 

oxidase provide a method for assessment of oxidative changes downstream of AMPK activity 

(57, 69, 70). 

     Treatments that activate AMPK are shown to improve insulin sensitivity (17, 29, 30, 44, 56, 

72, 91), and the ability of AMPK to enhance fatty acid oxidation and improve oxidative capacity 

identifies its possible value in controlling insulin resistance (4) through reductions in 
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intramyocellular lipid content.  Proper insulin signaling depends on the phosphorylation of 

specific tyrosine residues of the insulin-receptor substrate proteins (IRS) 1-4 (98), and the 

tyrosine phosphorylation of IRS-1 can be blocked by phosphorylation of particular IRS-1 serine 

(Ser) residues, including Ser636 (53), which effectively terminates insulin signal transduction 

(98).  The serine cascade is activated by accumulation of intramyocellular lipid metabolites (53), 

and, as such, the phosphorylation of IRS-1 on Ser636 provides a method for evaluating the 

effects of FA on insulin signal transduction as a marker of skeletal muscle insulin resistance. 

     Long-term FA treatments have been demonstrated to inhibit AMPK (44, 49) and reduce 

insulin sensitivity (44) in rodent skeletal muscle, while n-3 PUFAs are shown to attenuate 

reductions in insulin sensitivity associated with nutrient oversupply (10, 46, 68, 81).  However, 

there has been no published research to date examining the effects of marine n-3 PUFAs on 

AMPK phosphorylation in skeletal muscle cell culture, and there is limited literature (13) 

examining the skeletal muscle effects in vivo.  Elucidating these effects may identify roles of 

marine n-3 PUFAs in improving skeletal muscle lipid homeostasis and contributing to insulin 

sensitivity through dis-inhibition of the insulin signaling pathway.   

1.2. Purpose and Specific Aims 

     AMPK has the ability to regulate cellular lipid status (75) and mechanisms involved in 

oxidative metabolism (32, 40), and n-3 PUFAs promote FA oxidation over storage (6); therefore, 

the purpose of this thesis is to determine if n-3 PUFAs enhance FA oxidation and reduce 

intramyocellular lipid accumulation through activation of the AMPK signaling pathway.  The 

central hypothesis is that long-term DHA treatment of C2C12 myotubes will activate the AMPK 

pathway to improve oxidative metabolism, reduce intramyocellular lipid content and enhance 

insulin signaling. 

 

Specific Aim 1. Determine the long-term effects of palmitate and DHA on AMPK and ACC 

phosphorylation in cultured myotubes. 

Hypothesis 1.1. Long-term palmitate treatment will lead to a reduction in the phosphorylation of 

AMPKThr172 and ACCSer79 in myotubes. 

Hypothesis 1.2. Long-term DHA treatment will increase the phosphorylation of AMPKThr172 and 

ACCSer79 in myotubes. 
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Hypothesis 1.3. Long-term DHA treatment will attenuate the palmitate-induced decrease in the 

phosphorylation of AMPKThr172 and ACCSer79 in myotubes. 

 

Specific Aim 2. Determine the long-term effects of palmitate and DHA on the oxidative capacity 

of cultured myotubes by evaluating the enzyme activity of citrate synthase (CS) and the protein 

expression levels of PGC1α and cytochrome c oxidase (COX) IV. 

Hypothesis 2.1. Long-term palmitate treatment will decrease CS activity and reduce protein 

expression of PGC1α and COXIV in myotubes. 

Hypothesis 2.2. Long-term DHA treatment will increase the activity of CS enhance protein 

expression of PGC1α and COXIV versus control myotubes. 

Hypothesis 2.3. Long-term DHA treatment will attenuate the palmitate-induced decreases in the 

activity of CS and the protein expression of PGC1α and COXIV in myotubes. 

 

Specific Aim 3.  Determine the long-term effects of palmitate and DHA on intramyocellular 

lipid content of cultured myotubes and any related changes in insulin signaling as determined by 

phosphorylation of the insulin receptor substrate 1 (IRS-1) on serine 636/639. 

Hypothesis 3.1.  Long-term palmitate treatment will increase the intramyocellular lipid content 

of myotubes and the phosphorylation of IRS-1Ser636/639. 

Hypothesis 3.2.  Long-term DHA treatment will not change intramyocellular lipid content of 

myotubes from control levels or lead to increases in phosphorylation of IRS-1Ser636/639. 

Hypothesis 3.3.  Long-term DHA treatment will attenuate the palmitate-induced increases in 

intramyocellular lipid content and phosphorylation of IRS-1Ser636/639. 
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CHAPTER 2. REVIEW OF LITERATURE 

2.1. Obesity contributes to the formation of insulin resistance and other chronic diseases 

     Excessive nutrient intake and low physical activity levels significantly contribute to the 

development of overweight and obesity.  Overweight is defined as a body mass index (BMI) of 

25 kg/m2-29.9 kg/m2, and obesity is defined as BMI ≥30 kg/m2 (67).  In the year 2000, the 

percentage of overweight and obese individuals over 20 years old in the United States was 63% 

and 30%, respectively (67).  Furthermore, the prevalence of individuals with extreme obesity 

(BMI ≥40 kg/m2) has increased by 2.8% in men and 6.9% in women as of 2004 (55).  The 

prevalence of obesity in children ages 6-19 years has increased from 4% to 17.1% between 1960-

2004 (55, 67), which is alarming because overweight children are more likely to be overweight 

or obese as adults (25).  Obesity and weight gain are established causes of insulin resistance and 

type 2 diabetes (21), and complications accompanying type 2 diabetes are a major cause of 

disability and death (72).  Obesity and weight gain also increase the risk for many other 

disorders, such as high blood pressure, high cholesterol, asthma, arthritis, and cardiovascular 

disease (67).  The developing obesity epidemic in adults, adolescents, and children across the 

globe will continue to have enormous implications on healthcare and supporting research for 

many years to come.  To reduce the future incidence of these diseases, multiple treatment 

strategies are needed that normalize metabolic control and prevent mortality-associated systemic 

complications (72).   

2.2. Obesity is associated with intramyocellular triglyceride accumulation and formation of 

bioactive lipid species that contribute to insulin resistance 

     Skeletal muscle from obese humans displays an increased quantity of fatty acid (FA) 

transporters in the muscle membrane (71) and increased rates of fatty acid uptake (71, 74) and 

esterification (74), as well as decreased contents of cytosolic FA binding protein for intracellular 

FA transport (50) and reduced rates of FA oxidation (71, 74).  Together these factors lead to the 

obesity-associated phenotypic characteristic of accelerated intramyocellular triglyceride 

synthesis (22).  Skeletal muscle from high-fat fed animals is also shown to have a higher rate of 

intramyocellular triglyceride turnover than that of lean littermates, which leads to chronically 

increased levels of lipid intermediates (22). 
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     When a long chain FA enters the cell, it is rapidly converted to fatty acyl CoA (FACoA) by 

acyl CoA synthetase (22).  This conversion is a required step for entrance into several different 

metabolic processes, which is dictated by the structure of the FA (34).  FACoA can undergo 

elongation and/or desaturation or be formed into complex lipids such as membrane 

phospholipids (34).  FACoA can also be converted to long chain acylcarnitine by carnitine 

palmitoyl transferase-1 (CPT-1) and immediately β-oxidized by the mitochondria, or it can be 

converted to the lipid intermediate diacylglycerol and then to triacylglycerol (TAG or TG) for 

storage (67).  When a stored TG molecule is hydrolyzed, one molecule each of diacylglycerol 

and FACoA is released (22), and, as such, a chronic FA flux can lead to intracellular 

accumulation of diacylglycerol and FACoA (73, 92) either directly through esterification or 

indirectly through TG accumulation and subsequent hydrolysis. 

     Diacylglycerol, long chain FaCoA (22) and ceramides (75) are bioactive lipid signaling 

molecules that can enter and interfere with non-oxidative metabolic pathways (88), leading to 

lipotoxic defects such as formation of insulin resistance (22).  One mechanism underlying 

lipotoxic insulin resistance is through defects in the insulin signaling pathway.  Binding of 

insulin to its transmembrane receptor stimulates the phosphorylation of specific tyrosine residues 

of numerous target proteins, including the insulin-receptor substrate proteins (IRS) 1-4, which 

then associate with other downstream kinases to ultimately mediate the metabolic and growth-

promoting functions of insulin (98).  However, the tyrosine phosphorylation of IRS-1 can be 

blocked by phosphorylation of particular IRS-1 serine (Ser) residues, including Ser636 (53) and 

Ser1101, the latter of which has been associated with IRS-1 degredation (33).  Serine 

phosphorylation of IRS-1 uncouples the protein from its upstream and downstream effectors and 

terminates signal transduction from insulin (98).  It has been demonstrated that the serine 

cascade is activated by accumulation of intramyocellular lipid metabolites (53).  Therefore, the 

phosphorylation of IRS-1 on Ser636 and Ser1101 provides a method for evaluating the effects of 

FA on insulin signal transduction as a marker of skeletal muscle insulin resistance. 
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2.3. AMPK is a master metabolic regulator 

2.3.1. AMPK is important in systemic metabolism 

     The adenosine monophosphate-activated protein kinase (AMPK) pathway is a possible target 

for treatment of insulin resistance (4).  AMPK is a conserved cellular energy gauge (51, 90, 94) 

that serves as a master metabolic regulator by controlling systemic energy expenditure, food 

intake, glucose homeostasis, and lipid metabolism (47).  The protein kinase is activated in 

conditions of energy depletion (17, 40) or metabolic stress (28), such as muscle contraction (17, 

37), exercise (17, 56), and hypoxia (37), and can also be stimulated pharmacologically (44, 56, 

91).  Activation of AMPK acts to conserve cellular energy stores (47, 73) by acutely suppressing 

energy-consuming pathways, such as synthesis of glycogen, cholesterol, and lipids (73), and 

inducing energy-producing pathways, such as glucose uptake (94) and FA oxidation (92, 94).  

AMPK is an important regulator of insulin-independent glucose uptake into tissues by promoting 

glucose transporter 4 (GluT4) translocation to the sarcolemma (37), as well as increased 

expression (47), phosphorylation, and activation (74) of transcription factors regulating the 

GluT4 gene promoter.  Also of particular interest is the ability of AMPK to sense the lipid status 

of a cell (90, 94), independent of cellular energy charge (92). 
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2.3.2. Enzymatic characteristics of AMPK 

     AMPK is a heterotrimeric enzyme formed by α, β, and γ subunits (47, 84, 94).  Each subunit 

has multiple isoforms encoded by separate genes: α1, α2, β1, β2, γ1, γ2, and γ3 (75).  AMPK is 

ubiquitously expressed in mammalian tissues, though some tissue-specific expression is 

observed with the β and γ subunits and the contribution of each α isoform to total AMPK activity 

(4).  Skeletal muscle AMPK complexes mostly contain α2/β2, 80% of which are associated with 

γ1 (73), though glycolytic skeletal muscle predominately contains α2/β2/γ3 complexes (4).   

     The α subunit provides the catalytic activity of AMPK (75, 94) and contributes to AMP 

binding (4).  In skeletal muscle, the α1 subunit is predominately cytoplasmic (84), while the α2 

subunit is located in the cytoplasm and nucleus, and cytoplasmic α2 translocates to the nucleus 

upon stimulation (80), indicating its participation in regulation of gene expression.  The 

regulatory β subunit serves as a docking area for α and γ subunits and also contains a glycogen 

binding domain (75), suggesting a possible role in glycogen feedback regulation of AMPK (4).  

Additionally, the β subunit is important for determining the localization of the α subunit; in 

C2C12 skeletal muscle cells, β2 is shown to aide in the nuclear localization of α2, while β1 

contributes to the return of α2 to the cytoplasm after stimulation (80).  The γ subunit is 

responsible for binding AMP or ATP and thus provides for allosteric control of AMPK (75).  It 

also stabilizes the α subunit and is essential for the catalytic activity of AMPK (4).  The γ1 and 

γ2-isoforms are widely distributed throughout tissues, while the γ3-isoform is highly specific for 

glycolytic skeletal muscle where it plays a role in regulation of carbohydrate metabolism (4) but 

not lipid oxidation (3).  The γ1 isoform is the only γ subunit expressed in C2C12 cells and is 

required for both phosphorylation and nuclear translocation of α2 (80).   

2.3.3. Allosteric modulation and phosphorylation of AMPK 

     Multiple mechanisms contribute to regulation of the AMPK pathway, which varies between 

tissues (47).  AMPK can be regulated through both allosteric modulation and phosphorylation.  

Allosteric activation of AMPK due to increasing concentrations of cellular AMP (94) leads to a 

5-fold increase (84) in the enzymatic activity of AMPK.  AMPK can also be allosterically 

inhibited by the presence of physiological concentrations of phosphocreatine (13, 24) and 

adenosine triphosphate (ATP) (73).  Importantly, allosteric binding of AMP also both facilitates 

the phosphorylation of AMPK on the threonine-172 (Thr172) residue in the activation loop of 
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the α-subunit (90) by an upstream kinase and reduces the inhibitory dephosphorylation of 

AMPKThr172 by its upstream phosphatases (84).  Phosphorylation of AMPK results in a 100-fold 

increase in AMPK activity (23, 84), and when combined with allosteric modulation produces 

greater than 1000-fold activation of AMPK (23).  Since the level of phosphorylated (p-) AMPK 

parallels the activity of AMPK (49), p-AMPKThr172 is commonly used to indicate AMPK 

activity.  Furthermore, phosphorylation of AMPK on its Ser485/491 residues has been associated 

with a decrease in phosphorylation of AMPKThr172 (27), indicating its usefulness as a measure of 

AMPK inactivation.   

     The primary upstream kinase activating AMPK is the tumour suppressor kinase (LKB1) (73, 

75, 84), which phosphorylates AMPKαThr172 in response to increasing AMP concentrations (84).  

The calcium/calmodulin-dependent protein kinase kinase (CaMKK) shows significant homology 

to LKB1 and has also been identified as an AMPK-activator (28).  CaMKK is activated by 

increasing intracellular calcium levels and regulates AMPK independently of the AMP/ATP 

ratio (47).  The primary upstream phosphatases to AMPK are the protein phosphatases (PP) 2C 

(73) and 2A (74).  Adipose tissue also exerts effects on skeletal muscle fuel metabolism, as the 

adipokines adiponectin and leptin have been identified as AMPK-activators (51, 96).  Leptin is 

adipocyte-derived protein hormone secreted in proportion to fat storage content (49) that helps 

regulate energy flow (35).  Leptin has been shown to decrease peripheral TG storage and 

improve insulin sensitivity (47) through improvement of FA oxidation in skeletal muscle cells 

(51, 80).  Adiponectin is a protein also secreted exclusively by adipocytes (64).  Decreased 

expression of adiponectin correlates with insulin resistance, and treatments that stimulate 

production of adiponectin are associated with enhanced insulin sensitivity (64).  Both leptin and 

adiponectin stimulate FA oxidation in skeletal muscle through phosphorylation of AMPKα (96), 

which depends on translocation of the α2 subunit from the cytoplasm to the nucleus (80). 

2.3.4. AMPK contributes to acute and chronic lipid homeostasis 

       AMPK is a central regulator of fat metabolism both acutely and through long-term 

transcriptional control (75).  Classically, AMPK promotes FA oxidation by phosphorylating and 

inactivating acetyl-CoA carboxylase β (ACCβ), the rate-limiting enzyme of malonyl-CoA 

synthesis (40, 44, 73, 87, 92, 94, 97).  The phosphorylation of ACCβ at its serine-79 (Ser79) 

residue is accomplished almost exclusively by AMPK (13), thus p-ACCSer79 is an excellent 
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downstream marker for secondary measurement of AMPK activity.  AMPK also phosphorylates 

and activates malonyl-CoA decarboxylase (MCD), which degrades malonyl-CoA.  Malonyl acts 

as a powerful allosteric inhibitor of CPT-1, which shuttles FACoAs into the mitochondria for β-

oxidation.  The effects of AMPK on ACC and MCD cause a reduction in the level of malonyl-

CoA, subsequently disinhibiting CPT-1 and promoting fat translocation and oxidation (40, 44, 

73, 87, 92, 94, 97).    

     AMPK also regulates long-term lipid metabolism and mitochondrial biogenesis by increasing 

expression of genes involved in FA metabolism (40) and mitochondrial proteins involved in 

oxidation (62).  AMPK is shown to increase FA oxidation in myotubes in a dose-dependent 

manner (40), which occurs with an increase in mRNA expression of the peroxisome-proliferator-

activated receptor (PPAR) γ co-activator 1α (PGC1α) (40) but not PGC1β (32).  PGC1α is a 

master gene that regulates mitochondrial biogenesis (89) and co-activates the PPARα to regulate 

transcriptional control of FA oxidation (40).  AMPK directly phosphorylates and activates the 

PGC1α protein on its threonine-177 and serine-538 residues in skeletal muscle, which activates 

PGC1α gene expression in a feed-forward manner (32).  AMPK activation promotes expression 

of the mitochondrial gene cytochrome c and increases total mitochondrial respiration, which is 

dependent upon the presence of PGC1α (32).  This indicates that activation of AMPK can 

enhance oxidative capacity by improving mitochondrial biogenesis via PGC1α.  AMPK also 

increases mRNA expression of PPARα and its target genes CPT-1 and fatty acid binding protein 

3 (FABP3) in myotubes and rodent skeletal muscle (40), which indicates its ability to facilitate 

FA oxidation. 
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2.3.5. Oxidative capacity is decreased with insulin resistance  

     Reductions in mitochondrial density and activity contribute to reduced oxidative capacity and 

dysregulated lipid metabolism (62) and aide in the development of skeletal muscle insulin 

resistance (47).  A common method for assessment of oxidative capacity is measurement of 

expression and activity levels of the mitochondrial enzymes citrate synthase (CS) and 

cytochrome c oxidase (COX), which are shown to increase in response to aerobic exercise 

training in metabolically normal animals (69, 70) and in insulin resistant humans (57) and are 

decreased in conditions of insulin resistance.  Insulin resistant offspring of individuals with type 

2 diabetes have been shown to exhibit a trend toward lower baseline COX and CS activity levels 

(57), as well as possess 38% lower mitochondrial density and 50% lower expression of COX 

versus insulin-sensitive individuals, which is associated with 60% greater intramyocellular lipid 

content (53).  Maximal COX activity was also reduced by almost 50% after 6 weeks of high-fat 

and high-sucrose feeding of male Wistar rats versus control animals (5).   
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2.3.6. Activation of AMPK enhances oxidative capacity   

     The ability of AMPK to reduce skeletal muscle TG content by stimulating FA oxidation (44, 

47) and enhancing lipid oxidative capacity (4) is important in its distinction as a positive 

regulator of insulin sensitivity (44, 47).  The compounds 5-aminoimidazole-4-carboxamide 

ribonucleoside (AICAR) (91) and metformin (44) are pharmacological stimulators of AMPK.  

AICAR potently activates AMPK (91) in cells upon formation of the adenosine analogue ZMP 

(40, 47), while AMPK is an indirect target of metformin (32).  While it is possible that AICAR 

may also affect other AMP-sensitive enzymes, it is commonly used to examine the effects of 

AMPK activation on cellular processes (9, 17, 29, 30, 37, 56, 61, 62).  AICAR is shown to 

increase skeletal muscle FA oxidation (32, 40) and PPARα (40), PGC1α (32, 40), CPT-1, and 

FABP3 mRNA expression (40), and both AICAR and metformin increase the mRNA expression 

of cytochrome c and uncoupling proteins-2 and -3 (32) in skeletal muscle cells.   

     Treatment of male Sprague-Dawley rats with AICAR for 4 weeks significantly increased 

cytochrome c protein content in white quadriceps as well as the activity of CS, succinate 

dehydrogenase, and malate dehydrogenase in white quadriceps and soleus muscles (93).  

Furthermore, administration of oral metformin for 14 days to male Wistar rats increased PGC1α 

protein content and CS activity in soleus and red and white gastrocnemius muscles, as well as 

cytochrome c protein content in the soleus (79).  These studies examining the effects of AICAR 

and metformin on AMPK activity and subsequent FA oxidation and mitochondrial oxidative 

capacity identify the possible value of AMPK-activating treatments in controlling insulin 

resistance (4) through changes in lipid homeostasis. 

2.4. Fatty acid treatments alter skeletal muscle AMPK 

     FA treatments have been shown to both activate (78, 92, 94) and repress (44, 83) AMPK 

phosphorylation and activity, but the outcome is dependent upon the type of FA and the length of 

treatment.  The saturated fatty acid (SFA) palmitate comprises between 30-40% of FA in the 

plasma (94) and is commonly used (7, 8, 14-16, 18, 29, 31, 39, 41, 52, 56, 59, 63, 65, 83, 85, 90, 

92, 94) along with the monounsaturated fatty acid (MUFA) oleate (1, 7, 8, 18, 39, 41, 52, 59, 65, 

92, 94) and omega-6 (n-6) polyunsaturated fatty acid (PUFA) linoleate (39, 92) to study the 

effects of  different FAs on metabolic markers.  Acute palmitate (10, 76) and linoleate (76) 

treatments have been shown to promote skeletal muscle AMPK and ACC phosphorylation (15, 
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92), while chronic treatment with palmitate (94) and palmitoyl-CoA (83), as well as long-term 

high-fat (HF) feeding with primarily SFA (44, 49), have been shown to repress AMPK in 

skeletal muscle and other cell types. 

2.4.1. Acute fatty acid treatments stimulate AMPK activity 

     Treatment of L6 myotubes for 1 hour with 0.25 mM of SFA palmitate or PUFA linoleate 

significantly increased AMPK activity, phosphorylated (p-) AMPKThr172, and p-ACCβSer218 with 

no changes in cellular energy charge.  Both palmitate and linoleate pre-treatments increased 

subsequent palmitate oxidation rates (92).  In a similar study, L6 myotubes incubated for 1 hour 

with 0.001-0.8 mM palmitate demonstrated a dose-response increase in p-AMPKαThr172 and p-

ACCSer79 levels, which was significant with as little as 0.01 mM palmitate and peaked with 0.4 

mM palmitate at 3.5-fold for AMPK and 4.5-fold for ACC.  Furthermore, as palmitate 

concentration increased so did its oxidation (15).  Similar effects are also observed in a different 

cell type, as acute treatment of bovine arterial endothelial cells (BAECs) with palmitate resulted 

in increased p-AMPK and p-ACC versus control-treated cells (94).  Together these data indicate 

that acute treatment with FA leads to activation of AMPK and inactivation of ACC to promote 

FA oxidation, which supports an acute feed-forward mechanism where increased lipid 

availability enhances FA oxidation to allow non-adipose cells to adapt to increasing FA flux 

without initially changing lipid storage capacity. 

2.4.2. Long-term fatty acid treatments repress basal AMPK activity but may not affect 

the ability of AMPK to be chronically activated 

     More applicable to the condition of obesity is long-term FA treatment that increases cellular 

and tissue lipid concentrations and detrimentally affects metabolic pathways.  For example, 

although palmitate treatment led to an initial activation of p-AMPK and p-ACC levels in 

BAECs, these values returned to basal levels by 5 hours, and both basal and AICAR-stimulated 

p-AMPK and p-ACC were significantly decreased with long-term treatment for 40 hours, which 

was not due to increased ATP from palmitate oxidation or reduced AMPK or ACC expression 

(94).  This clearly identifies the opposing effects of FA on AMPK and ACC phosphorylation in 

acute versus chronic conditions and distinguishes that the same effects may occur in skeletal 

muscle.   
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     Indeed, animal HF feeding studies mimic the Western diet of nutrient oversupply and have 

been shown to inhibit AMPK in rodent skeletal muscle (44, 49).  Male Wistar rats fed a 22% fat 

diet of predominately lard for 5 months demonstrated significant decreases in basal total- and 

phosphorylated-AMPKα protein, AMPKα2 mRNA, and p-ACC protein versus chow-fed animals 

in the gastrocnemius muscle, which was associated with decreased basal and insulin-stimulated 

glucose uptake during hyperinsulinemic clamping.  However, animals receiving oral metformin 

during the last month of feeding displayed an attenuation of insulin resistance as evidenced by 

significant increases in the glucose infusion rate (GIR) during clamping, which was associated 

with 162% and 39% increases in basal p-AMPKαThr172 and p-ACC levels, respectively (44).  

This data suggests that although basal AMPK activity and expression is decreased in skeletal 

muscle of HF-fed animals, they maintain the capacity to improve these levels through chronic 

pharmacological activation, which is also associated with enhanced insulin sensitivity.   

     Young male FVB mice fed a 55% fat diet of predominately lard for 5-12 weeks showed 

impaired AMPK phosphorylation and activity in response to leptin administration in the soleus 

muscle but demonstrated unimpaired AMPK activation by AICAR (49), identifying that these 

animals were leptin resistant but still maintained the ability to sense cellular energy charge.  

Furthermore, another group (36) reported that 3-week old male Wistar rats fed a 50% fat diet for 

4 weeks were insulin resistant but did not display significantly different hypoxia-stimulated p-

AMPK levels than chow-fed animals.  These studies suggest that HF-feeding does not affect the 

ability of skeletal muscle AMPK to become activated by agents other than leptin, indicating that 

these pathways may be targeted to induce positive metabolic effects.  However, feeding studies 

of over 14 weeks are considered long-term in rats (46); therefore, further studies are needed to 

identify the ability of  skeletal muscle AMPK to be activated after chronic HF-feeding.  Chronic 

SFA treatment of BAECs led to reduced basal and AICAR-activated AMPK levels (94), 

highlighting the need for these studies in skeletal muscle. 

     Together these data suggest that short-term HF feeding does not alter the ability of AMPK to 

be activated and leads to adaptations in FA oxidation to meet cellular needs, while long-term HF-

feeding leads to decreased basal AMPK activity and overcomes the adaptive capacity of the 

muscle for FA oxidation when unaided by pharmacological activators or stress-inducing 

conditions.  These studies did not examine the effects of PUFA supplementation on basal and 
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stimulated p-AMPK levels, which may identify cellular role(s) of PUFAs in metabolic regulation 

of lipid metabolism through alteration of skeletal muscle AMPK activity. 

2.5. Cellular effects of fatty acids depend on their structures 

2.5.1. Saturated and unsaturated fatty acids differentially affect cellular metabolism   

     The effects of dietary FA on health depend not only on the quantity but also on the nature of 

the fatty acids (48).  A chronic flux of SFA is demonstrated to have detrimental metabolic effects 

in cells (52, 65, 94) and skeletal muscle (39) and is associated with formation of insulin 

resistance (39, 52), while exposure to unsaturated fatty acids (UFA) prevents (1) (11, 39, 52, 76, 

77), attenuates (54), or reverses insulin resistance (19, 46, 64).  Interestingly, there is also 

evidence that UFA co-administered with SFA offers prevention against detrimental metabolic 

effects associated with SFA treatment alone, improving lipid homeostasis (7) and promoting 

insulin sensitivity (52). 

     Myotubes incubated with palmitate showed increased accumulation of diacylglycerol and 

formation of insulin resistance, while cells incubated with oleate had increased TG levels and no 

changes in insulin sensitivity.  Co-incubation of palmitate + oleate also led to increased TG 

content and prevented insulin resistance in a dose-dependent manner.  Furthermore, palmitate 

treatment led to a reduction in PGC1α mRNA expression, while cells treated with oleate alone 

and palmitate + oleate had PGC1α expression levels similar to control values and actually 

demonstrated an approximate 7-fold increase in CPT-1 mRNA expression (7).  This data 

indicates that SFA treatment induces insulin resistance and downregulates the expression of the 

mitochondrial regulator PGC1α, while UFA treatment leads to maintenance of mitochondrial 

biogenesis and improvement in FA oxidation capacity and can actually prevent detrimental 

effects of SFA on these parameters. 

2.5.2. Omega-3 polyunsaturated fatty acids enhance insulin sensitivity 

     In addition to the positive effects of the MUFA oleate on prevention of insulin resistance, a 

great deal of literature has examined the metabolic effects of PUFAs.  The n-6 PUFA linoleic 

acid and the omega-3 (n-3) PUFA linolenic acid are considered essential fatty acids because they 

cannot be synthesized by mammals and must be consumed from dietary sources (66).  

Metabolism of linolenic acid gives rise to two other FA (12) of particular interest in regards to 
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insulin resistance, the long chain n-3 PUFAs eicosapentaenoic acid (EPA; C20:5 n-3) and 

docosahexaenoic acid (DHA; C22:6 n-3).  EPA and DHA are primarily found in fish, shellfish, 

and sea mammals and are sparse or absent in plants and land animals (45), and at least 30 

marketed species of Mediterranean fish and shellfish provide significant sources of n-3 PUFAs 

by containing high levels of EPA and DHA (58).  In the literature these PUFAs are often 

administered in the form of fish oil (FO) (20).  Conversely, n-6 PUFAs are found in foods of 

animal origin and in vegetable oils (66).  Currently more than 85% of the total dietary PUFA 

intake in Western diets is of the n-6 moiety, while consumption of n-3 PUFAs has declined (48).  

This may be one contributor to the rise in obesity-associated disease, as high intake of n-6 

PUFAs has been associated with childhood obesity (48) and may lead to hyperinsulinaemia and 

insulin resistance in adults (95).   

     In 1987, Storlein et al. (77) demonstrated that substituting a small amount of n-3 PUFAs in 

the form of FO for n-6 PUFAs in a HF diet attenuated reductions in insulin sensitivity observed 

with a HF-diet alone.  Since this discovery, a plethora of research has been aimed at identifying 

the mechanisms underlying these beneficial effects.  Although it has been demonstrated that n-3 

PUFA improve components of the insulin-signaling pathway in skeletal muscle (20, 38, 81), 

their effects outside of the insulin-signaling pathway remain unclear.  PUFAs have the unique 

ability to partition FA toward oxidation (6), which identifies a possible role for the marine n-3 

PUFAs to improve skeletal muscle insulin sensitivity by promoting FA oxidation and reducing 

of intramyocellular lipid content.  Therefore, focus will be maintained on studies identifying 

effects of n-3 PUFAs on blood and skeletal muscle lipid parameters to assess possible changes in 

FA flux, lipid synthesis, and oxidative metabolism as they relate to alterations in insulin 

sensitivity.  Little research is available on the effects of n-3 PUFAs on skeletal muscle oxidative 

capacity, though one study did report that male Wistar rats fed a HF diet containing 10% n-3 

PUFA + 18% SFA exhibited 48% and 83% increases in skeletal muscle acyl-CoA oxidase 

activity and mRNA expression, respectively, versus rats fed a HF diet containing 28% SFA.  

This was associated with a normalization of the GIR during hyperinsulinemic clamping, 

indicating an enhancement of systemic insulin sensitivity (86). 

     Aside from direct measurements of FA oxidation and mitochondrial proteins and enzymatic 

activities, changes in intramyocellular lipid contents are indicators of the possible effects of n-3 

PUFAs on fatty acid metabolism in skeletal muscle.  Male Wistar rats were fed a control diet 
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(CON), a 70% fat diet (HF), or a HF diet with either 10% replacement of SFA with n-3 PUFAs 

from FO (HF+FO) or 18.5% replacement of SFA with the n-6 PUFA gamma-linolenic acid from 

borage oil (HF+GLA) for 3 weeks.  The HF diet led to increased fasting insulin levels and post-

prandial free FA, TG, and glycerol levels, which were normalized by FO but not GLA 

supplementation.  Interestingly, the plasma TG levels in the HF+FO group were even 

significantly lower than the control group by about 50%.  The GIR during hyperinsulinemic 

clamping was about 60% lower in HF versus control animals and was significantly increased 

with FO supplementation. Skeletal muscle TG contents were similar in control and HF+FO 

groups and were significantly lower than in animals fed HF or HF+GLA diets (68).   These data 

clearly indicate the hypolipidemic effect of n-3 PUFAs in blood and skeletal muscle and its 

association with improved systemic insulin sensitivity.  

     Other studies have also assessed the effectiveness of n-3 PUFA supplementation in 

prevention of insulin resistance.  Male Wistar rats were fed diets containing 18.5% fat, composed 

of either 8% corn oil (control diet, CD) or 1% corn oil + 7% cod liver oil (CD+CLO) for 1 

month.  CLO is high in the n-3 PUFAs EPA and DHA (82).  The CD+CLO group exhibited 

significantly lower plasma TG and insulin levels and significantly higher GIR during 

euglycemic-hyperinsulinemic clamping compared to CD-fed animals (11), demonstrating an 

association between short-term CLO supplementation and prevention of insulin resistance in 

metabolically normal rats through improvements in systemic glucose utilization and reductions 

in plasma TG levels.  

     Since CLO supplementation prevented fat-induced insulin resistance in normal animals, the 

same group (46) evaluated the possibility that CLO supplementation could reverse diet-induced 

insulin resistance.  Young male Wistar rats were fed a sucrose-rich diet (SRD, 8% corn oil) for 6 

months to induce dyslipidemia and insulin resistance, after which the animals were split into 2 

groups and fed for 2 more months with either the same SRD or one where the 8% corn oil was 

replaced by 1% corn oil + 7% CLO (SRD+CLO).  CLO supplementation restored gastrocnemius 

TG content to control levels and significantly reduced diacylglycerol and FACoA content versus 

SRD-feeding (46), suggesting either improvement in FA oxidation or reduction in TG synthesis.  

Additionally, the SRD was associated with increased fasting plasma TG, FFA, and glucose 

concentrations and led to over 50% reduction in GIR during clamping versus the CD, while CLO 

supplementation elicited values similar to CD-fed animals (46).  These studies indicate that CLO 
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supplementation is associated with normalization of skeletal muscle lipid content and improved 

glucose homeostasis during fasting and insulin-stimulated conditions. 

     Mustad et al. (54) expanded the literature by examining the possibility of different n-3 PUFA 

supplements (α-linolenic acid [ALA], EPA, or DHA) to improve glucose metabolism and insulin 

sensitivity in HF-fed ob/ob mice.  Mice were fed MUFA-rich diets [43-45% fat, 37-39% CHO, 

and 18% protein] with n-3 PUFA percentages of either 1.2% (MUFA), 24.6% (ALA), 36.6% 

(EPA), or 34.7% (DHA) for 4 weeks.  EPA and DHA groups had lower plasma TG and free FA 

levels than the MUFA group, which is similar to other findings (19, 46).  The plasma glucose 

concentration 2 hours post-meal was also significantly reduced by 40-50% in all n-3 PUFA 

groups compared to MUFA-fed mice, indicating improved glucose utilization in response to 

feeding (54) which may have occurred through activation of the AMPK pathway. 

2.6. Polyunsaturated fatty acids may alter skeletal muscle AMPK to improve insulin sensitivity 

     It is clearly established that treatment with n-3 PUFAs exerts positive effects on insulin 

sensitivity in skeletal muscle (1, 11, 19, 26, 46, 54, 76, 77), which has been shown in cell culture 

(1), in metabolically normal (11, 76, 77), obese (54), and insulin resistant (19, 46, 64) animals, 

and in humans (26).  In several cases this improvement is associated with reduced plasma and 

intramyocellular lipid levels (11, 46, 54, 68, 86), indicating reduced lipid flux to tissues and 

either reduced TG synthesis or increased FA oxidation.  AMPK-activating treatments are also 

established to improve glucose and lipid homeostasis and enhance insulin sensitivity (17, 29, 30, 

44, 56, 72).  However, there is limited literature examining the cellular effects of marine n-3 

PUFAs on AMPK, especially in skeletal muscle.  AMPK is an important sensor of cellular lipid 

status (90, 94) and regulator of FA oxidative metabolism (47, 92, 94) and mitochondrial 

biogenesis (62).  Furthermore, omega PUFAs have been identified to partition FA from storage 

toward oxidation in liver and skeletal muscle (6).  Therefore, it is possible that marine n-3 

PUFAs exert positive effects on AMPK phosphorylation, which leads to improvements in FA 

oxidation and possibly mitochondrial oxidative capacity to reduce intramyocellular lipid storage.  

There has been no published research to date examining the effects of marine n-3 PUFAs on p-

AMPK in skeletal muscle cell culture, although the outcomes of other FA treatments on AMPK 

activity have been examined (15, 92).  Furthermore, only two in vivo studies have examined the 
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effects of marine n-3 PUFAs on AMPK, with one in liver (78) and the other in skeletal muscle 

(13).   

     Male Sprague-Dawley rats were fed an initial 7-day high-glucose, no fat diet, which 

decreased liver p-AMPKThr172 levels and AMPK activity by 80% and approximately 50%, 

respectively, versus pre-meal values, with similar reductions in p-ACC levels and no change in 

total AMPK protein concentration.  This is not unexpected, as the same group demonstrated a 

depression in AMPK phosphorylation and activity with re-feeding a high-carbohydrate diet after 

fasting (2).  For the next 7 days, rats were fed the same high-glucose diet but supplemented with 

10 grams of either MUFA [triolein, 99% omega-9] or PUFA [35% EPA and DHA] per 100 

grams of diet.  Fasted p-AMPKαThr172 values were unchanged, while p-AMPKThr172 and p-

ACCβSer79 levels were reduced with both diets 2 hours following the final meal.  However, this 

reduction was greater with the MUFA diet than the PUFA diet, as both postprandial PUFA p-

AMPKThr172 and p-ACC levels were approximately double MUFA levels.  Furthermore, MUFA 

feeding was associated with significantly lower AMPK activity levels than PUFA feeding (78).  

This indicates that although AMPK was not affected in the post-absorptive state, n-3 PUFAs did 

exert a greater activating effect on AMPK and ACC phosphorylation and AMPK activity than 

MUFAs.  Moreover, the PUFA group demonstrated lower postprandial levels of fatty acid 

synthase (FAS) mRNA and higher CPT-1 mRNA expression than the MUFA group (78), 

indicating a greater shift from lipogenesis toward FA oxidation with n-3 PUFA feeding.   

     While any FA treatment could be expected to upregulate levels of AMPK activity, 

phosphorylated AMPK and ACC, FA transport proteins, and oxidative enzymes after a high-

glucose, no-fat diet, merely due to their renewed presence in the tissues, an n-3 PUFA treatment 

was more effective than a MUFA treatment in doing so.  This is promising because it suggests 

that mechanism(s) other than simply the law of mass action contribute to the ability of n-3 

PUFAs to activate AMPK and ACC.  Whether they may do this directly by acting on AMPK or 

indirectly by acting on upstream AMPK regulators still needs to be determined.  Furthermore, 

this study is considered short-term (46) because the MUFA and PUFA supplements were 

administered for only one week, and it would be interesting to observe the chronic effects of n-3 

PUFA feeding on AMPK activity, especially in relation to any alterations in systemic insulin 

sensitivity. 
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     In response to this study, Dobrzyn et al. (13) evaluated the effects of feeding a 5% fat diet of 

either PUFA from FO or MUFA from triolein for 14 days on AMPK activity in heart, liver, and 

skeletal muscle of mice.  They found no changes in p-AMPKThr172 levels in FO-fed animals 

versus control in any tissue (13).  While these results suggest that PUFAs do not activate AMPK 

in mouse tissues, no changes were observed in liver p-AMPKThr172, which is contradictory to the 

previous findings (78) that n-3 PUFAs are more effective in stimulating liver AMPK than 

MUFAs and indicates that confounding factors may be present.  For one, these animals were 

metabolically challenged with stearoyl-CoA desaturase 1-deficiency, making the results difficult 

to compare to other studies in metabolically normal animals.  Additionally, this PUFA diet 

contained 5% fat with 25% EPA/DHA content, versus 10% fat and 35% EPA/DHA content in 

the study by Suchankova et al. (78), indicating that the n-3 PUFA composition of the diet may 

not have been great enough to observe positive effects on AMPK activity. 

     HF-feeding was shown to reduce skeletal muscle AMPK phosphorylation and activity, which 

correlated with reductions in systemic insulin sensitivity (44).  Additionally, administration of 

marine n-3 PUFAs attenuated reductions in p-AMPK, p-ACC, and CPT-1 mRNA and increased 

suppression of FAS in the liver of normal animals (78).  These data prompt further investigation 

of the effects of marine n-3 PUFAs on skeletal muscle AMPK phosphorylation and activity to 

identify if the improvement in insulin sensitivity observed with n-3 supplementation is at all 

related to improvement in FA oxidation and reduction in intramyocellular lipid content. 

 

 

 

 

 

 

 

 

20 
 



Reference List 
 
 

1. Aas V, Rokling-Andersen MH, Kase ET, Thoresen GH, and Rustan AC. Eicosapentaenoic 
acid (20:5 n-3) increases fatty acid and glucose uptake in cultured human skeletal muscle cells. J 
Lipid Res 47: 366-374, 2006. 

2. Assifi MM, Suchankova G, Constant S, Prentki M, Saha AK, and Ruderman NB. AMP-
activated protein kinase and coordination of hepatic fatty acid metabolism of 
starved/carbohydrate-refed rats. American journal of physiology 289: E794-800, 2005. 

3. Barnes BR, Marklund S, Steiler TL, Walter M, Hjalm G, Amarger V, Mahlapuu M, Leng Y, 
Johansson C, Galuska D, Lindgren K, Abrink M, Stapleton D, Zierath JR, and Andersson L. 
The 5'-AMP-activated protein kinase gamma3 isoform has a key role in carbohydrate and lipid 
metabolism in glycolytic skeletal muscle. J Biol Chem 279: 38441-38447, 2004. 

4. Barnes BR, and Zierath JR. Role of AMP--activated protein kinase in the control of glucose 
homeostasis. Curr Mol Med 5: 341-348, 2005. 

5. Chanseaume E, Giraudet C, Gryson C, Walrand S, Rousset P, Boirie Y, and Morio B. 
Enhanced muscle mixed and mitochondrial protein synthesis rates after a high-fat or high-
sucrose diet. Obesity (Silver Spring) 15: 853-859, 2007. 

6. Clarke SD. Polyunsaturated fatty acid regulation of gene transcription: a molecular mechanism to 
improve the metabolic syndrome. J Nutr 131: 1129-1132, 2001. 

7. Coll T, Eyre E, Rodriguez-Calvo R, Palomer X, Sanchez RM, Merlos M, Laguna JC, and 
Vazquez-Carrera M. Oleate reverses palmitate-induced insulin resistance and inflammation in 
skeletal muscle cells. J Biol Chem 2008. 

8. Coll T, Jove M, Rodriguez-Calvo R, Eyre E, Palomer X, Sanchez RM, Merlos M, Laguna JC, 
and Vazquez-Carrera M. Palmitate-mediated downregulation of peroxisome proliferator-
activated receptor-gamma coactivator 1alpha in skeletal muscle cells involves MEK1/2 and 
nuclear factor-kappaB activation. Diabetes 55: 2779-2787, 2006. 

9. Cuthbertson DJ, Babraj JA, Mustard KJ, Towler MC, Green KA, Wackerhage H, Leese GP, 
Baar K, Thomason-Hughes M, Sutherland C, Hardie DG, and Rennie MJ. 5-aminoimidazole-
4-carboxamide 1-beta-D-ribofuranoside acutely stimulates skeletal muscle 2-deoxyglucose 
uptake in healthy men. Diabetes 56: 2078-2084, 2007. 

10. D'Alessandro ME, Chicco A, Karabatas L, and Lombardo YB. Role of skeletal muscle on 
impaired insulin sensitivity in rats fed a sucrose-rich diet: effect of moderate levels of dietary fish 
oil. J Nutr Biochem 11: 273-280, 2000. 

11. D'Alessandro ME, Lombardo YB, and Chicco A. Effect of dietary fish oil on insulin sensitivity 
and metabolic fate of glucose in the skeletal muscle of normal rats. Ann Nutr Metab 46: 114-120, 
2002. 

12. Das UN. Essential fatty acids: biochemistry, physiology and pathology. Biotechnol J 1: 420-439, 
2006. 

13. Dobrzyn A, Dobrzyn P, Miyazaki M, and Ntambi JM. Polyunsaturated fatty acids do not 
activate AMP-activated protein kinase in mouse tissues. Biochem Biophys Res Commun 332: 
892-896, 2005. 

14. Faergeman NJ, and Knudsen J. Role of long-chain fatty acyl-CoA esters in the regulation of 
metabolism and in cell signalling. Biochem J 323 ( Pt 1): 1-12, 1997. 

15. Fediuc S, Gaidhu MP, and Ceddia RB. Regulation of AMP-activated protein kinase and acetyl-
CoA carboxylase phosphorylation by palmitate in skeletal muscle cells. J Lipid Res 47: 412-420, 
2006. 

16. Fediuc S, Pimenta AS, Gaidhu MP, and Ceddia RB. Activation of AMP-activated protein 
kinase, inhibition of pyruvate dehydrogenase activity, and redistribution of substrate partitioning 
mediate the acute insulin-sensitizing effects of troglitazone in skeletal muscle cells. J Cell Physiol 
215: 392-400, 2007. 

17. Fisher JS, Gao J, Han DH, Holloszy JO, and Nolte LA. Activation of AMP kinase enhances 
sensitivity of muscle glucose transport to insulin. American journal of physiology 282: E18-23, 
2002. 

21 
 



18. Gaidhu MP, Fediuc S, and Ceddia RB. 5-Aminoimidazole-4-carboxamide-1-beta-D-
ribofuranoside-induced AMP-activated protein kinase phosphorylation inhibits basal and insulin-
stimulated glucose uptake, lipid synthesis, and fatty acid oxidation in isolated rat adipocytes. J 
Biol Chem 281: 25956-25964, 2006. 

19. Ghafoorunissa, Ibrahim A, Rajkumar L, and Acharya V. Dietary (n-3) long chain 
polyunsaturated fatty acids prevent sucrose-induced insulin resistance in rats. J Nutr 135: 2634-
2638, 2005. 

20. Gingras AA, White PJ, Chouinard PY, Julien P, Davis TA, Dombrowski L, Couture Y, 
Dubreuil P, Myre A, Bergeron K, Marette A, and Thivierge MC. Long-chain omega-3 fatty 
acids regulate bovine whole-body protein metabolism by promoting muscle insulin signalling to 
the Akt-mTOR-S6K1 pathway and insulin sensitivity. J Physiol 579: 269-284, 2007. 

21. Gregg EW, Cheng YJ, Narayan KM, Thompson TJ, and Williamson DF. The relative 
contributions of different levels of overweight and obesity to the increased prevalence of diabetes 
in the United States: 1976-2004. Prev Med 45: 348-352, 2007. 

22. Guo ZK. Intramyocellular lipid kinetics and insulin resistance. Lipids Health Dis 6: 18, 2007. 
23. Hardie DG. Biochemistry. Balancing cellular energy. Science 315: 1671-1672, 2007. 
24. Hardie DG. Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular 

energy status. Endocrinology 144: 5179-5183, 2003. 
25. Hardy LR, Harrell JS, and Bell RA. Overweight in children: definitions, measurements, 

confounding factors, and health consequences. J Pediatr Nurs 19: 376-384, 2004. 
26. Haugaard SB, Madsbad S, Hoy CE, and Vaag A. Dietary intervention increases n-3 long-chain 

polyunsaturated fatty acids in skeletal muscle membrane phospholipids of obese subjects. 
Implications for insulin sensitivity. Clin Endocrinol (Oxf) 64: 169-178, 2006. 

27. Horman S, Vertommen D, Heath R, Neumann D, Mouton V, Woods A, Schlattner U, 
Wallimann T, Carling D, Hue L, and Rider MH. Insulin antagonizes ischemia-induced Thr172 
phosphorylation of AMP-activated protein kinase alpha-subunits in heart via hierarchical 
phosphorylation of Ser485/491. J Biol Chem 281: 5335-5340, 2006. 

28. Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, and Witters LA. The 
Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J 
Biol Chem 280: 29060-29066, 2005. 

29. Iglesias MA, Furler SM, Cooney GJ, Kraegen EW, and Ye JM. AMP-activated protein kinase 
activation by AICAR increases both muscle fatty acid and glucose uptake in white muscle of 
insulin-resistant rats in vivo. Diabetes 53: 1649-1654, 2004. 

30. Iglesias MA, Ye JM, Frangioudakis G, Saha AK, Tomas E, Ruderman NB, Cooney GJ, and 
Kraegen EW. AICAR administration causes an apparent enhancement of muscle and liver insulin 
action in insulin-resistant high-fat-fed rats. Diabetes 51: 2886-2894, 2002. 

31. Iossa S, Mollica MP, Lionetti L, Crescenzo R, Botta M, and Liverini G. Skeletal muscle 
oxidative capacity in rats fed high-fat diet. Int J Obes Relat Metab Disord 26: 65-72, 2002. 

32. Jager S, Handschin C, St-Pierre J, and Spiegelman BM. AMP-activated protein kinase 
(AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U 
S A 104: 12017-12022, 2007. 

33. Jin UH, Kang YJ, Chang YC, and Kim CH. Secretion of atherogenic risk factor apolipoprotein B-
100 is increased by a potential mechanism of JNK/PKC-mediated insulin resistance in liver cells. 
Journal of cellular biochemistry 103: 908-919, 2008. 

34. Jump DB, and Clarke SD. Regulation of gene expression by dietary fat. Annu Rev Nutr 19: 63-
90, 1999. 

35. Kokta TA, Dodson MV, Gertler A, and Hill RA. Intercellular signaling between adipose tissue 
and muscle tissue. Domest Anim Endocrinol 27: 303-331, 2004. 

36. Koshinaka K, Oshida Y, Han YQ, Kubota M, Viana AY, Nagasaki M, and Sato Y. Insulin-
nonspecific reduction in skeletal muscle glucose transport in high-fat-fed rats. Metabolism 53: 
912-917, 2004. 

37. Krook A, Wallberg-Henriksson H, and Zierath JR. Sending the signal: molecular mechanisms 
regulating glucose uptake. Med Sci Sports Exerc 36: 1212-1217, 2004. 

38. Le Foll C, Corporeau C, Le Guen V, Gouygou JP, Berge JP, and Delarue J. Long-chain n-3 
polyunsaturated fatty acids dissociate phosphorylation of Akt from phosphatidylinositol 3'-kinase 
activity in rats. American journal of physiology 292: E1223-1230, 2007. 

22 
 



39. Lee JS, Pinnamaneni SK, Eo SJ, Cho IH, Pyo JH, Kim CK, Sinclair AJ, Febbraio MA, and 
Watt MJ. Saturated, but not n-6 polyunsaturated, fatty acids induce insulin resistance: role of 
intramuscular accumulation of lipid metabolites. J Appl Physiol 100: 1467-1474, 2006. 

40. Lee WJ, Kim M, Park HS, Kim HS, Jeon MJ, Oh KS, Koh EH, Won JC, Kim MS, Oh GT, Yoon 
M, Lee KU, and Park JY. AMPK activation increases fatty acid oxidation in skeletal muscle by 
activating PPARalpha and PGC-1. Biochem Biophys Res Commun 340: 291-295, 2006. 

41. Listenberger LL, Han X, Lewis SE, Cases S, Farese RV, Jr., Ory DS, and Schaffer JE. 
Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S 
A 100: 3077-3082, 2003. 

42. Liu L, Zhang Y, Chen N, Shi X, Tsang B, and Yu YH. Upregulation of myocellular DGAT1 
augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin 
resistance. J Clin Invest 117: 1679-1689, 2007. 

43. Liu S, Baracos VE, Quinney HA, and Clandinin MT. Dietary omega-3 and polyunsaturated fatty 
acids modify fatty acyl composition and insulin binding in skeletal-muscle sarcolemma. Biochem J 
299 ( Pt 3): 831-837, 1994. 

44. Liu Y, Wan Q, Guan Q, Gao L, and Zhao J. High-fat diet feeding impairs both the expression 
and activity of AMPKa in rats' skeletal muscle. Biochem Biophys Res Commun 339: 701-707, 
2006. 

45. Lombardo YB, and Chicco AG. Effects of dietary polyunsaturated n-3 fatty acids on 
dyslipidemia and insulin resistance in rodents and humans. A review. J Nutr Biochem 17: 1-13, 
2006. 

46. Lombardo YB, Hein G, and Chicco A. Metabolic syndrome: effects of n-3 PUFAs on a model of 
dyslipidemia, insulin resistance and adiposity. Lipids 42: 427-437, 2007. 

47. Long YC, and Zierath JR. AMP-activated protein kinase signaling in metabolic regulation. J Clin 
Invest 116: 1776-1783, 2006. 

48. Madsen L, Pedersen LM, Liaset B, Ma T, Petersen RK, van den Berg S, Pan J, Muller-
Decker K, Dulsner ED, Kleemann R, Kooistra T, Doskeland SO, and Kristiansen K. cAMP-
depending signaling regulates the adipogenic effect of N-6 polyunsaturated fatty acids. J Biol 
Chem 2007. 

49. Martin TL, Alquier T, Asakura K, Furukawa N, Preitner F, and Kahn BB. Diet-induced obesity 
alters AMP kinase activity in hypothalamus and skeletal muscle. J Biol Chem 281: 18933-18941, 
2006. 

50. Mensink M, Blaak EE, Vidal H, De Bruin TW, Glatz JF, and Saris WH. Lifestyle changes and 
lipid metabolism gene expression and protein content in skeletal muscle of subjects with impaired 
glucose tolerance. Diabetologia 46: 1082-1089, 2003. 

51. Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Muller C, Carling D, and Kahn BB. Leptin 
stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415: 339-343, 
2002. 

52. Montell E, Turini M, Marotta M, Roberts M, Noe V, Ciudad CJ, Mace K, and Gomez-Foix AM. 
DAG accumulation from saturated fatty acids desensitizes insulin stimulation of glucose uptake in 
muscle cells. American journal of physiology 280: E229-237, 2001. 

53. Morino K, Petersen KF, Dufour S, Befroy D, Frattini J, Shatzkes N, Neschen S, White MF, 
Bilz S, Sono S, Pypaert M, and Shulman GI. Reduced mitochondrial density and increased 
IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J 
Clin Invest 115: 3587-3593, 2005. 

54. Mustad VA, Demichele S, Huang YS, Mika A, Lubbers N, Berthiaume N, Polakowski J, and 
Zinker B. Differential effects of n-3 polyunsaturated fatty acids on metabolic control and vascular 
reactivity in the type 2 diabetic ob/ob mouse. Metabolism 55: 1365-1374, 2006. 

55. Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, and Flegal KM. Prevalence of 
overweight and obesity in the United States, 1999-2004. Jama 295: 1549-1555, 2006. 

56. Olsen GS, and Hansen BF. AMP kinase activation ameliorates insulin resistance induced by 
free fatty acids in rat skeletal muscle. American journal of physiology 283: E965-970, 2002. 

57. Ostergard T, Andersen JL, Nyholm B, Lund S, Nair KS, Saltin B, and Schmitz O. Impact of 
exercise training on insulin sensitivity, physical fitness, and muscle oxidative capacity in first-
degree relatives of type 2 diabetic patients. American journal of physiology 290: E998-1005, 
2006. 

23 
 



58. Passi S, Cataudella S, Di Marco P, De Simone F, and Rastrelli L. Fatty acid composition and 
antioxidant levels in muscle tissue of different Mediterranean marine species of fish and shellfish. 
J Agric Food Chem 50: 7314-7322, 2002. 

59. Pickersgill L, Litherland GJ, Greenberg AS, Walker M, and Yeaman SJ. Key role for 
ceramides in mediating insulin resistance in human muscle cells. J Biol Chem 282: 12583-12589, 
2007. 

60. Pruchnic R, Katsiaras A, He J, Kelley DE, Winters C, and Goodpaster BH. Exercise training 
increases intramyocellular lipid and oxidative capacity in older adults. American journal of 
physiology 287: E857-862, 2004. 

61. Qiang W, Weiqiang K, Qing Z, Pengju Z, and Yi L. Aging impairs insulin-stimulated glucose 
uptake in rat skeletal muscle via suppressing AMPKalpha. Exp Mol Med 39: 535-543, 2007. 

62. Reznick RM, Zong H, Li J, Morino K, Moore IK, Yu HJ, Liu ZX, Dong J, Mustard KJ, Hawley 
SA, Befroy D, Pypaert M, Hardie DG, Young LH, and Shulman GI. Aging-associated 
reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab 5: 
151-156, 2007. 

63. Rimbert V, Boirie Y, Bedu M, Hocquette JF, Ritz P, and Morio B. Muscle fat oxidative capacity 
is not impaired by age but by physical inactivity: association with insulin sensitivity. Faseb J 18: 
737-739, 2004. 

64. Rossi AS, Lombardo YB, Lacorte JM, Chicco AG, Rouault C, Slama G, and Rizkalla SW. 
Dietary fish oil positively regulates plasma leptin and adiponectin levels in sucrose-fed, insulin-
resistant rats. Am J Physiol Regul Integr Comp Physiol 289: R486-R494, 2005. 

65. Sabin MA, Stewart CE, Crowne EC, Turner SJ, Hunt LP, Welsh GI, Grohmann MJ, Holly JM, 
and Shield JP. Fatty acid-induced defects in insulin signalling, in myotubes derived from 
children, are related to ceramide production from palmitate rather than the accumulation of 
intramyocellular lipid. J Cell Physiol 211: 244-252, 2007. 

66. Sampath H, and Ntambi JM. Polyunsaturated fatty acid regulation of gene expression. Nutr Rev 
62: 333-339, 2004. 

67. Schrauwen P. High-fat diet, muscular lipotoxicity and insulin resistance. Proc Nutr Soc 66: 33-41, 
2007. 

68. Simoncikova P, Wein S, Gasperikova D, Ukropec J, Certik M, Klimes I, and Sebokova E. 
Comparison of the extrapancreatic action of gamma-linolenic acid and n-3 PUFAs in the high fat 
diet-induced insulin resistance [corrected]. Endocr Regul 36: 143-149, 2002. 

69. Siu PM, Donley DA, Bryner RW, and Alway SE. Citrate synthase expression and enzyme 
activity after endurance training in cardiac and skeletal muscles. J Appl Physiol 94: 555-560, 
2003. 

70. Siu PM, Donley DA, Bryner RW, and Alway SE. Myogenin and oxidative enzyme gene 
expression levels are elevated in rat soleus muscles after endurance training. J Appl Physiol 97: 
277-285, 2004. 

71. Smith AC, Mullen KL, Junkin KA, Nickerson J, Chabowski A, Bonen A, and Dyck DJ. 
Metformin and exercise reduce muscle FAT/CD36 and lipid accumulation and blunt the 
progression of high-fat diet-induced hyperglycemia. American journal of physiology 293: E172-
181, 2007. 

72. Song XM, Fiedler M, Galuska D, Ryder JW, Fernstrom M, Chibalin AV, Wallberg-Henriksson 
H, and Zierath JR. 5-Aminoimidazole-4-carboxamide ribonucleoside treatment improves glucose 
homeostasis in insulin-resistant diabetic (ob/ob) mice. Diabetologia 45: 56-65, 2002. 

73. Steinberg GR. Inflammation in obesity is the common link between defects in fatty acid 
metabolism and insulin resistance. Cell Cycle 6: 888-894, 2007. 

74. Steinberg GR, and Jorgensen SB. The AMP-activated protein kinase: role in regulation of 
skeletal muscle metabolism and insulin sensitivity. Mini Rev Med Chem 7: 519-526, 2007. 

75. Steinberg GR, Macaulay SL, Febbraio MA, and Kemp BE. AMP-activated protein kinase--the 
fat controller of the energy railroad. Can J Physiol Pharmacol 84: 655-665, 2006. 

76. Storlien LH, Jenkins AB, Chisholm DJ, Pascoe WS, Khouri S, and Kraegen EW. Influence of 
dietary fat composition on development of insulin resistance in rats. Relationship to muscle 
triglyceride and omega-3 fatty acids in muscle phospholipid. Diabetes 40: 280-289, 1991. 

77. Storlien LH, Kraegen EW, Chisholm DJ, Ford GL, Bruce DG, and Pascoe WS. Fish oil 
prevents insulin resistance induced by high-fat feeding in rats. Science 237: 885-888, 1987. 

24 
 



78. Suchankova G, Tekle M, Saha AK, Ruderman NB, Clarke SD, and Gettys TW. Dietary 
polyunsaturated fatty acids enhance hepatic AMP-activated protein kinase activity in rats. 
Biochem Biophys Res Commun 326: 851-858, 2005. 

79. Suwa M, Egashira T, Nakano H, Sasaki H, and Kumagai S. Metformin increases the PGC-
1alpha protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal 
muscle in vivo. J Appl Physiol 101: 1685-1692, 2006. 

80. Suzuki A, Okamoto S, Lee S, Saito K, Shiuchi T, and Minokoshi Y. Leptin stimulates fatty acid 
oxidation and peroxisome proliferator-activated receptor alpha gene expression in mouse C2C12 
myoblasts by changing the subcellular localization of the alpha2 form of AMP-activated protein 
kinase. Mol Cell Biol 27: 4317-4327, 2007. 

81. Taouis M, Dagou C, Ster C, Durand G, Pinault M, and Delarue J. N-3 polyunsaturated fatty 
acids prevent the defect of insulin receptor signaling in muscle. American journal of physiology 
282: E664-671, 2002. 

82. Taugbol O, and Saarem K. Fatty acid composition of porcine muscle and adipose tissue lipids 
as affected by anatomical location and cod liver oil supplementation of the diet. Acta Vet Scand 
36: 93-101, 1995. 

83. Taylor EB, Ellingson WJ, Lamb JD, Chesser DG, and Winder WW. Long-chain acyl-CoA 
esters inhibit phosphorylation of AMP-activated protein kinase at threonine-172 by 
LKB1/STRAD/MO25. American journal of physiology 288: E1055-1061, 2005. 

84. Towler MC, and Hardie DG. AMP-activated protein kinase in metabolic control and insulin 
signaling. Circ Res 100: 328-341, 2007. 

85. Turner N, Bruce CR, Beale SM, Hoehn KL, So T, Rolph MS, and Cooney GJ. Excess lipid 
availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role 
for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Diabetes 56: 2085-
2092, 2007. 

86. Ukropec J, Reseland JE, Gasperikova D, Demcakova E, Madsen L, Berge RK, Rustan AC, 
Klimes I, Drevon CA, and Sebokova E. The hypotriglyceridemic effect of dietary n-3 FA is 
associated with increased beta-oxidation and reduced leptin expression. Lipids 38: 1023-1029, 
2003. 

87. Unger RH. Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the 
metabolic syndrome. Endocrinology 144: 5159-5165, 2003. 

88. Unger RH, and Orci L. Lipoapoptosis: its mechanism and its diseases. Biochim Biophys Acta 
1585: 202-212, 2002. 

89. Vaarmann A, Fortin D, Veksler V, Momken I, Ventura-Clapier R, and Garnier A. Mitochondrial 
biogenesis in fast skeletal muscle of CK deficient mice. Biochim Biophys Acta 1777: 39-47, 2008. 

90. Wang X, Zhou L, Li G, Luo T, Gu Y, Qian L, Fu X, Li F, Li J, and Luo M. Palmitate activates 
AMP-activated protein kinase and regulates insulin secretion from beta cells. Biochem Biophys 
Res Commun 352: 463-468, 2007. 

91. Watson RT, and Pessin JE. Bridging the GAP between insulin signaling and GLUT4 
translocation. Trends Biochem Sci 31: 215-222, 2006. 

92. Watt MJ, Steinberg GR, Chen ZP, Kemp BE, and Febbraio MA. Fatty acids stimulate AMP-
activated protein kinase and enhance fatty acid oxidation in L6 myotubes. J Physiol 574: 139-147, 
2006. 

93. Winder WW, Holmes BF, Rubink DS, Jensen EB, Chen M, and Holloszy JO. Activation of 
AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J Appl Physiol 
88: 2219-2226, 2000. 

94. Wu Y, Song P, Xu J, Zhang M, and Zou MH. Activation of protein phosphatase 2A by palmitate 
inhibits AMP-activated protein kinase. J Biol Chem 282: 9777-9788, 2007. 

95. Yam D, Eliraz A, and Berry EM. Diet and disease--the Israeli paradox: possible dangers of a 
high omega-6 polyunsaturated fatty acid diet. Isr J Med Sci 32: 1134-1143, 1996. 

96. Yoon MJ, Lee GY, Chung JJ, Ahn YH, Hong SH, and Kim JB. Adiponectin increases fatty acid 
oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 
mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha. Diabetes 
55: 2562-2570, 2006. 

25 
 



97. Yu X, McCorkle S, Wang M, Lee Y, Li J, Saha AK, Unger RH, and Ruderman NB. 
Leptinomimetic effects of the AMP kinase activator AICAR in leptin-resistant rats: prevention of 
diabetes and ectopic lipid deposition. Diabetologia 47: 2012-2021, 2004. 

98. Zick Y. Role of Ser/Thr kinases in the uncoupling of insulin signaling. Int J Obes Relat Metab 
Disord 27 Suppl 3: S56-60, 2003. 

 
 
  

26 
 



CHAPTER 3. RESEARCH METHODS 

 

Materials.  Mouse C2C12 myoblasts were purchased from American Type Culture Collection.  

Fetal calf serum (FCS) was purchased from Atlas Biologicals.  ITS Liquid Media Supplement, 

palmitic acid sodium salt, cis-4, 7, 10, 13, 16, 19-docosahexaenoic acid (DHA) oil, insulin, 

Ponceau S red, 99% triethyl phosphate, and a citrate synthase assay kit (Cat# CS0720) were 

purchased from Sigma.  BSA was purchased from Santa Cruz Biotechnology.  SDS-PAGE pre-

cast gels were purchased from Invitrogen, and nitrocellulose membranes and an RC DC protein 

assay kit (#500-0121) were purchased from BioRad.  Antibodies were purchased from Cell 

Signaling Technology, and goat anti-rabbit and goat anti-mouse horseradish peroxidase-

conjugated IgG were purchased from Jackson ImmunoResearch Laboratories, Inc..  Enhanced 

chemiluminescence (ECL) was purchased from Pierce, and advanced ECL was purchased from 

Amersham Biosciences.  ReBlot Plus Strong Solution was purchased from Millipore.  X-ray film 

was purchased from Phenix Research Products.  Oil Red O powder was purchased from Fluka 

Analytical. 

 

Cell culture. Mouse C2C12 myoblasts were seeded in six-well (35-mm) plates in DMEM (4.5 g/L 

D-glucose, with L-glutamine, pyridoxine hydrochloride, 110 mg/L sodium pyruvate, and 3.7 g/L 

sodium bicarbonate) supplemented with 10% FCS and 1% penicillin and streptomycin (PS) and 

maintained in a humidified incubator at 37ºC in an atmosphere of 5% CO2.  Cells were grown to 

~95% confluence and then induced to differentiate into myotubes by incubation in serum- and 

PS-free DMEM supplemented with 1% ITS Liquid Media Supplement for 3 days.  After 

differentiation, cells were maintained in DMEM with 2% FCS until experimental treatment.   

     Palmitate and cis-4, 7, 10, 13, 16, 19-docosahexaenoic acid (DHA) oil were dissolved in 

ethanol and diluted in DMEM containing 2% BSA to reach desired fatty acid (FA) 

concentrations.  For dose-response experiments, myotubes were treated separately with palmitate 

and DHA in 0mM, 0.1mM, 0.25mM, 0.5mM, 0.75mM, and 1.0mM concentrations in media 

containing 2% FCS, and 2% BSA for 24 hours.  For time-response experiments, myotubes were 

treated with media containing 2% FCS, 2% BSA, and 0.5mM palmitate or 0.1mM DHA for 24, 

48, and 96 hours.  For all subsequent experiments, myotubes were treated with media containing 

2% FCS, 2% BSA, and 0.5mM palmitate, 0.1mM DHA, 0.5mM palmitate plus 0.1mM DHA, or 
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no FA for 96 hours, and fresh media was provided every 48 hours.  For insulin-stimulation 

experiments, myotubes were washed once with PBS and treated with 100nM insulin in DMEM 

for 15 minutes. 

 

Image capture and cell size.  Images from myotubes that were treated for 48 and 96 hours were 

visualized at x20 magnification using an inverted light microscope (Nikon) and captured with a 

Spot RT camera and Spot Software (Diagnostic Instruments).  Myotube diameter was measured 

from randomly selected microscope fields from three different wells (35 mm) of control and 

treated conditions (12 wells total per time-point) using Image J software (37). Six diameters were 

measured per myotube, and ten myotubes were measured per well, except in the case of 

palmitate-treated cells, where if ten myotubes were not present, all of the remaining myotubes 

were measured. 

 

Evaluation of phosphorylated and total proteins.  Cells were harvested by scraping in 1 x SDS 

sample buffer (1% SDS, 6 mg/mL EDTA, 0.06 M Tris (hydroxymethyl) aminomethane (pH 6.8), 

2 mg/mL bromophenol blue, 15% glycerol, and 5% β-mercaptoethanol).  Protein concentrations 

were quantified in duplicate using an RC DC protein assay and averaged for determination of 

Western blot loading volumes.  Aliquots (30 μg/ml) of harvested C2C12 cells were resolved by 

10%, 3-8%, or 4-12% SDS-PAGE using pre-cast gels.  Control and treated cells were loaded on 

the same gel to account for possible variations between blots, as well as a standard molecular 

weight marker to verify protein sizes.  Proteins were transferred to a nitrocellulose membrane 

and stained with Ponceau S red to confirm transfer.  Membranes were probed with primary 

antibodies against phosphorylated T172 for AMPKα, S79 for ACC, S636/639 for IRS-1, S473 

for Akt, S21/9 for GSK3α/β, S240/244 for rpS6, or for total protein expression of PGC1α and 

COX-IV.  Membranes were then probed with anti-species conjugated horseradish peroxidase 

secondary antibodies.  Blots were developed as described below.  Where appropriate, 

membranes were stripped with 1X ReBlot Plus Strong Solution and probed with antibodies 

against total protein expression of AMPKα, ACC, Akt, GSK3β, β-tubulin, and GAPDH.  Signals 

for GAPDH were developed by enhanced chemiluminescence and for all other proteins by 

advanced ECL, and bands were visualized by exposing the membranes X-ray film.  Digital 

records of the films were captured with a Kodak 290 camera, and bands were quantified as 
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optical density x band area by a one-dimensional image analysis system (Eastman Kodak) and 

expressed in arbitrary units normalized relative to the loading control. 

 

Oil red O stain.  Oil Red O (ORO) staining was performed as a visual marker to evaluate the 

effects of FA treatments on intramyocellular lipid content after 48 and 96 hours (15).  Cells were 

grown, differentiated, and treated with FA as previously described.  A 5g/L ORO stock solution 

was prepared in a 3:2 ratio of 99% triethyl phosphate to distilled water.  For staining, the stock 

solution was diluted to a 36% ORO/TEP working solution then filtered three times by passing 

through a syringe with a 0.45 micron filter tip.  Culture dishes were washed three times with PBS 

and myotubes fixed with 10% formalin then washed with distilled water and stained with 36% 

ORO/TEP.  Stained myotubes were rinsed with distilled water and visualized.  Intramyocellular 

lipid content was quantified by measuring fluorescence (excitation 485nm, emission 530nm) of 

the stained lipids, and values were normalized to protein content per well, which was determined 

using a commercially available kit. 

 

Citrate Synthase Activity.  To evaluate the effects of FA treatments on mitochondria oxidative 

metabolism after 96 hours, the activity level of citrate synthase (CS) was evaluated using an 

assay kit according to the manufacturer’s instructions. Cells were grown, differentiated, and 

treated with FA as previously described.  Cells were lysed in 200 μL of CelLytic M Reagent, 

centrifuged at 12,000 x g, and the supernatant transferred to a chilled test tube.  Protein content 

was determined as described previously.  The sample reaction mixture was prepared with the 

appropriate volumes of 1 x Assay Buffer, 30 mM Acetyl CoA Solution, and 10 mM DTNB 

solution and added to 10μL of sample in a 96-well plate.  The spectrophotometer was set at 412 

nm, and absorbances were measured at 0, 1, and 2 minutes.  After determining the baseline 

absorbance of the reaction mixture for 2 minutes, 10 mM Oxaloacetate Solution was added to the 

reaction, and the absorbance was read for another 2 minutes to determine total CS activity.  All 

samples were evaluated in triplicate.  CS activity for each sample was calculated per 

manufacturer instructions and was normalized to protein content.  A CS positive control was 

included for each experiment. 
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Statistical Analyses.  All results represent the mean percent change ± standard error for a 

minimum of three cell culture experiments (n=3) in triplicate, with exception to insulin-

stimulation experiments which consists of two experiments (n=2) in triplicate.  One-way 

ANOVA with Tukey post-hoc analysis was used to evaluate differences for each variable 

between treatments, and statistical significance was set at P ≤ 0.05.  Analyses were conducted 

using SPSS 12.0.1 software package. 
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CHAPTER 4. RESULTS 

 

Selection of fatty acid doses and treatment duration. To choose fatty acid concentrations and 

time-points for study, dose- and time-response curves were generated to evaluate both myotube 

morphology and levels of phosphorylated and total AMPK, since it was the primary protein of 

interest.  Dose-response curves (Figure 1) indicated that 0.75mM and 1.0mM palmitate 

treatments and 1.0mM DHA had high phospho-to-total AMPK ratios; however, there were few 

or no cells left on the plate after 24 hours with palmitate treatment in these concentrations, and 

the idea with the DHA treatment was not to bombard the cells with DHA, but to add a small 

amount of polyunsaturated fatty acids in comparison to the saturated fatty acids as done 

previously (18, 21, 38, 39, 41).  Therefore, we chose 0.5mM palmitate and 0.1mM DHA, as they 

provided the next greatest phosphorylation of AMPK without loss of cellular integrity and gave a 

polyunsaturated:saturated fatty acid ratio of 0.2, which is similar to previous studies using a ratio 

of 0.25 (21).   

     To determine the duration of treatment, we evaluated the myotube morphology and size.  

Since there were no apparent changes in morphology after 24 hours (Figure 2A), we focused on 

48 and 96 hour time-points for measurement of myotube diameter (Figure 2B).  Palmitate 

treatment decreased myotube diameter by 25% (p=0.052) after 48 hours and over 90% (p<0.001) 

after 96 hours versus control.  However, DHA maintained myotube morphology and diameter; 

adding DHA to the palmitate treatment increased myotube diameter by almost half (p=0.004) 

after 48 hours and over 100% (p<0.001) after 96 hours versus palmitate alone.  Because the most 

dramatic change in myotube morphology and size without complete loss of palmitate cells 

occurred at 96 hours, we chose this time-point to conduct subsequent measurements.  

Furthermore, since a treatment effect on β-tubulin levels at timepoints longer than 24 hours was 

observed, all subsequent western blot measures were normalized to GAPDH protein expression 

because it did not demonstrate a time x treatment effect. 

 

Palmitate-induced detriments to myotube morphology and size are attenuated by DHA.  To 

determine if maintenance of myotube morphology with DHA treatment was due to activation of 

the AMPK pathway, we measured phosphorylation of AMPKα on Thr172, which is required for 

its activation (40), and total AMPK protein expression (Figure 3A).  Phospho-AMPKαThr172 
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levels were not significantly different between treatments, but addition of DHA to the palmitate 

treatment led to 106% higher (p=0.05) total AMPK levels than palmitate alone, which was 

associated with a 5.7-fold increase (p=0.032) in the AMPK ratio in palmitate versus control 

conditions.   

     To determine if the activation of AMPK with palmitate treatment was propagated 

downstream, we examined its cytosolic target, acetyl Co-A carboxylase (ACC) (Figure 3B).  

AMPK inhibits ACC through phosphorylation on Ser79, which reduces lipid synthesis and 

allows for fatty acyl-CoA entry into the mitochondria (43).   While all fatty acid treatments led to 

increases in phospho-ACCSer79 levels, there were no significant changes between treatments or 

versus control.  These data are consistent with the phospho-AMPKαThr172 data (Figure 3A).  The 

total ACC levels mirrored its phosphorylated levels and were also no significantly different 

between treatments; therefore, the ACC ratio was also similar between treatments (Figure 3B). 

 

Palmitate treatment increases intramyocellular lipid content of myotubes.  Since AMPK is 

considered to be a regulator of lipid homeostasis in skeletal muscle (45), next we evaluated the 

intramyocellular lipid content with different fatty acid treatments.  Myotubes were stained with 

Oil red O, which indicates the levels of all neutral lipids.  There was a 400% (p<0.000) increase 

in auto fluorescence of Oil red O stained myotubes with palmitate treatment when normalized to 

average protein content per treatment.  Intramyocellular lipid content returned to control levels in 

DHA-palmitate co-treated myotube cultures (Figure 4). 

 

DHA maintains protein abundance of oxidative markers in palmitate-treated myotubes.  Since 

AMPK is also known to activate transcription for long-term regulation of lipid homeostasis (20), 

the total protein expression of its nuclear target, PGC1α, was measured.  PGC1α is a 

transcription factor responsible for expression of genes involved in oxidative metabolism.  

Palmitate treatment decreased PGC1α protein expression by 69% versus control (p=0.4), 

although the addition of DHA to the palmitate treatment completely attenuated this effect by 

increasing its protein expression 165% (p=0.017) versus palmitate treatment alone (Figure 5A). 

This suggests that DHA preserves oxidative metabolic capacity in palmitate-treated cells.  To 

determine if the improvement in PGC1α expression with DHA was matched downstream by an 

increase in oxidative metabolism, we measured CS activity as a marker of the tricarboxylic acid 
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cycle and COX-IV protein expression as an indicator of the of the electron transport chain.  We 

found disparate effects on these oxidative markers. CS activity demonstrated a small but 

significant 3% increase (p<0.05) with palmitate treatment versus all other conditions, and 

addition of DHA to palmitate had similar CS activity as control cells (Figure 5B).  However, 

palmitate treatment led to a 34% decrease (p=0.297) in COX-IV protein expression, while 

addition of DHA returned COX-IV expression to control levels (Figure 5C). 

 

DHA attenuates palmitate-induced detriments in the insulin signaling pathway.  To determine 

if changes in intramyocellular lipid content and markers of oxidative metabolism with DHA 

treatment led to alterations in the insulin signaling pathway, the inhibitory serine 

phosphorylation site of the insulin receptor substrate (IRS) 1 was examined.  All fatty acid 

treatments elevated p-IRS-1Ser636/639 by 2-3-fold, although these increases were not significant 

from each other or control conditions (Figure 6).  Because changes were noted in markers of 

lipid content and oxidative metabolism with the different treatments, which were associated with 

disparate effects on myotube morphology and size, investigation of insulin signaling was 

continued further downstream of IRS-1 to examine activation of Akt, GSK3β, and rpS6.  The 

phosphorylation of Akt on Ser473 was measured because it is required for its activation (13), and 

previous research has demonstrated it to be decreased with palmitate treatment in skeletal muscle 

(18, 29, 33).  Although not statistically significant, Akt phosphorylation and total protein were 

decreased by at least one-third and phospho-GSK3β by almost half with palmitate treatment 

versus control conditions, while addition of DHA completely attenuated these decreases (Figure 

7A&B).  Contrary to the Akt data, however, total GSK3β levels remained unchanged (Figure 

7A&C).  The effects of DHA on palmitate treatment continued all the way downstream to rpS6; 

palmitate decreased phospho-rpS6Ser240/244 levels to approximately 25% of control, while addition 

of DHA increased its activation by 7-fold (p=0.017) (Figure 8). 

     To observe the responsiveness of the signaling pathway, myotubes were stimulated with 

100nM insulin for 15 minutes, a dose and time consistent with previous literature performing 

immunoblotting (5) and chosen to elicit a maximal signaling response.  Overall, DHA again 

attenuated the decrements of palmitate treatment (Figure 9).  Phospho-Akt was reduced by half 

by palmitate treatment, although not statistically significant, and total Akt protein expression was 

only ~25-45% of the other treatments (p<0.02).  Activation of GSK3β was also decreased 55-
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85% by palmitate (p<0.03).  Addition of DHA attenuated all of these decreases to approximately 

70% of control values (p<0.03).  Together these data indicate a complete rescue of basal- and a 

partial but significant attenuation of insulin-stimulated- signaling by adding the omega-3 

polyunsaturated fatty acid DHA to the saturated fatty acid palmitate treatment. 
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CHAPTER 5. DISCUSSION 

 

     The central aim of this thesis was to determine if long term administration of n-3 PUFAs 

enhances FA oxidation and reduces intramyocellular lipid accumulation compared to palmitate 

treatment through activation of the AMPK signaling pathway in skeletal muscle cell culture.  

The central hypothesis was that long-term DHA treatment of C2C12 myotubes would activate the 

AMPK pathway to improve oxidative capacity, reduce intramyocellular lipid content, and 

enhance insulin signaling.  The main finding of this thesis is that after 4 days of treatment in a 

cell culture model of a high fatty acid environment, DHA attenuated the negative effects of 

palmitate on myotube size and morphology, some measures of oxidative metabolism, 

intramyocellular lipid content, and insulin signaling independently of AMPK activation.  Overall 

these data confirm previous findings (6, 8, 18, 21, 36, 39, 41) that omega-3 polyunsaturated fatty 

acids have the ability to prevent detrimental effects of saturated fatty acids.   

     A most-striking initial finding of this research is that myotube morphology and size were 

markedly and differentially altered by palmitate and DHA.  Long-term treatment of cells with 

palmitate altered the typical morphological properties of myotubes; after 2 days myotubes were 

significantly smaller in diameter than with either control or DHA conditions, and after 4 days 

very few myotubes remained and most cells lost adherence to the plate.  However, this effect was 

completely attenuated by co-treatment with DHA, as this group demonstrated a 12% increase in 

diameter even over control cells after 4 days. 

     To determine if the changes in myotube morphology were associated with changes in protein 

expression and activation of signaling proteins involved in lipid metabolism, we measured 

AMPK phosphorylation and total protein expression.  Contrary to our hypothesis, DHA does not 

appear to exert its positive effects through activation of AMPK since all fatty acid treatments led 

to non-significant 2-3-fold increases in phosphorylated AMPK.  However, there was a significant 

difference in the AMPK ratio between treatments, which was due to decreased total AMPK 

levels in palmitate-treated cells.  The total AMPK data are supported by previous findings that 

total AMPKα protein levels were decreased by approximately 60% after 5 months of high fat 

feeding in rodents.  However, phospho-AMPKThr172 levels were also decreased (22), which is 
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contrary to our data and could possibly reflect the differences between animal and cell culture 

models.     

     The high AMPK ratio in the palmitate treated cells indicates that most of the remaining total 

AMPK present in the cells was activated.  Given the morphology of the cells treated with 

palmitate, it is most-likely that the myotubes were undergoing apoptosis and/or death and were 

trying to produce energy by activating the master energetic regulator that stimulates ATP-

producing processes (44).  While cell death was not measured, our lab has previously 

demonstrated that 0.75mM palmitate treatment of myotubes for 16 hours lead to a 7-fold 

increase in DNA fragmentation versus control-treated cells (29), and the activation of AMPK via 

AICAR treatment in differentiating C2C12 myoblasts led to increased DNA fragmentation and 

caspase-3 cleavage (46).  These data along with the morphological characteristics of the cells 

suggest that the palmitate-treated cells were undergoing apoptosis.   

     Moreover, addition of DHA to the palmitate treated cells maintained the AMPK phospho:total 

ratio near control levels, and the morphological and cell size data of these cells was similar to 

control-treated myotubes.  Together these findings support that DHA did not differentially 

increase AMPK phosphorylation but was able to maintain the AMPK ratio through attenuation 

of the decrease in total AMPK and possibly contribute to the attenuation of cellular atrophy and 

death.  Our phospho-AMPK data may be different from the findings of Liu et al. (22) because we 

were examining a more extreme model of atrophy/cell death than their animal model. 

     The cytosolic downstream target of AMPK, ACC, similarly demonstrated nonsignificant 2-4-

fold increases in phosphorylation but did not display decreased total ACC levels, leading to 

similar ratios of phosphorylated to total ACC in all conditions.  These data suggest that ACC-

mediated fatty acid oxidation was not different between treatments and that lipid synthesis may 

also be similar because two of the primary cellular metabolic fates of long chain fatty acyl Co-A 

molecules are β-oxidation or conversion to diacylglycerol and triacylglycerol for storage (35).   

     To determine if the fatty acid treatments led to differential changes in lipid storage, 

intramyocellular lipid content was examined.  Because activation of AMPK decreases expression 

of genes involved in lipid synthesis (3), an increase in the phosphorylated:total AMPK ratio 

suggests that intramyocellular lipid content should be decreased with palmitate treatment.  This 

is not what the data indicated, as intramyocellular lipid content was substantially increased in the 

palmitate-treated cells versus the other conditions, which is consistent with our hypothesis.  
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Pimenta et al. (30) also observed 2.5-to-3-fold increases in phosphorylation of AMPK and ACC 

after palmitate treatment, which was associated with approximately 3-fold increases in 

intramyocellular lipids.  Moreover, apart from measurements of AMPK activation, the conditions 

of obesity (24, 31) and high fat-feeding (10, 38) are shown to increase intramyocellular lipid 

content.  These data indicate that although DHA was able to reduce accumulation of 

intramyocellular lipids when added to the palmitate treatment, this alteration was not through 

activation of the AMPK pathway.  It is possible that the reduced intramyocellular lipid content in 

the control and both DHA treatments was due to an increase in lipid oxidation versus palmitate 

conditions, resulting in lower net lipid content versus palmitate-treated cells.   

     We hypothesized that addition of DHA to the palmitate treatment increases the ability of the 

cell to deal with the influx of fatty acids by improving oxidative metabolism; therefore, the 

transcription factor PGC1α was examined.  PGC1α is located in the nucleus and promotes 

expression of genes involved in oxidative metabolism (2, 16, 17, 27).  Addition of DHA to the 

palmitate treatment maintained PGC1α near control levels, which indeed suggests that DHA may 

maintain palmitate-induced decreases in oxidative metabolism to improve utilization of 

intramyocellular lipids and attenuate cellular atrophy and/or death.  In line with this, there are 

data to suggest a relationship between PGC1α expression level and cell size.  Sandri et al. (34) 

demonstrated a sharp decrease in PGC1α mRNA expression in diabetes-induced atrophied 

muscle, which they suggested may be triggered by insulin resistance.  They also showed that 

maintenance of PGC1α levels conferred protection from muscle atrophy by inhibiting 

transcription of atrophy-related genes, which they noted may be an indirect effect of a PGC1α-

mediated increase in mitochondrial content or β-oxidative metabolism (34).  Our data support 

these findings and suggest that maintenance of PGC1α and resulting differences in oxidative 

metabolism may contribute to cell size and morphology in a high fat environment. 

     One consideration that must be made when interpreting the results of this study deals with the 

apparent uncoupling between the AMPK ratio and the phosphorylation of ACC and protein 

expression of PGC1α, which would both be expected to increase with an increase in the AMPK 

ratio.  The data of Suzuki et al. (40) may partially explain the disparate effects on the cytosolic 

and nuclear targets of AMPK in our study.  They demonstrated that phosphorylation of Thr172 

on the α2 subunit is critical for activity of AMPK and that the regulatory β subunit determines its 

subcellular localization.  Upon leptin stimulation of C2C12 myoblasts, the AMPKα2/β1 complex 
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remained in the cytosol while the α2/β2 complex translocated to the nucleus after 1 hour, 

returned to the cytosol after 3 hours, and localized to both the nucleus and cytosol after 6 hours 

(40).   Since both nuclear and cytosolic targets of AMPK rely on phosphorylation of α2 but were 

not affected similarly in our study, it is unlikely that a decrease in α2 could be solely responsible 

for the decrease in PGC1α expression.  It is possible that α1 levels could be decreased with 

palmitate treatment, as the antibody for total AMPK targeted both α subtypes, but this is also 

unlikely because α1 does not translocate to the nucleus (40) which is where the most detrimental 

effects occurred to AMPK substrates with palmitate treatment.  Therefore, palmitate treatment 

could have altered both protein expression of the AMPK α2 and β2 subunits, leading to a 

decrease in nuclear translocation of the complex and thus activation of transcription factors in the 

nucleus.  This would not necessarily affect phosphorylation of ACC, as the β1 subunit is 

primarily responsible for localizing the complex to the cytosol, and given the long time-period, 

the biphasic response of the α2/β2 complex would localize some of the remaining α2/β2 to the 

cytosol to phosphorylate ACC.  Further examination of the effects of FA on the β subunits are 

needed to clarify this possibility. 

     To determine if markers of oxidative metabolism were maintained similarly to PGC1α 

content by addition of DHA to palmitate treatment, the activity of CS and protein expression of 

COX-IV were examined as markers of the tricarboxylic acid cycle and electron transport chain, 

respectively.  Contrary to our hypothesis, DHA did not increase CS activity either alone or with 

palmitate treatment.  Conversely, there was a small increase in CS activity with the palmitate 

treatment, although most-likely not enough to translate to a physiologically-significant increase 

in oxidative metabolism.  This finding does go along with previous data demonstrating an 

increase in CS activity in skeletal muscle after high fat feeding (42) and in the muscle of obese 

animals (12).  Ultimately, however, these data indicate that DHA did not rescue myotube 

morphology by increasing enzyme activity of the initial step of the tricarboxylic acid cycle.  

Alternatively, DHA did maintain COX-IV protein levels versus palmitate treatment alone.  These 

data support the idea that maintenance of PGC1α also maintains mitochondrial content in the 

myotubes (34), which would result in preservation of oxidative enzyme protein content instead 

of necessarily increasing enzyme activity to maintain oxidative capacity and ultimately myotube 

morphology.   
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     Furthermore, Muoio and colleagues (16) found that high-fat-induced insulin resistance in 

animals was associated with decreased expression of PGC1α and accumulation of intramuscular 

acylcarnitines (from β-oxidation), while PGC1α overexpression in myocytes favored formation 

of CO2 (complete fatty acid oxidation).   They suggest that nutrient oversupply leads to an 

increase in lipid oxidation where the flux of β-oxidative by-products overcomes the capacity of 

the tricarboxylic acid cycle, resulting in incomplete fatty acid oxidation and accumulation of β-

oxidative intermediates that may contribute to mitochondrial malfunction (16).  Considering 

these findings, palmitate treatment may trigger a compensatory increase in CS activity as an 

attempt to improve complete lipid oxidation in light of increased β-oxidative flux without 

concomitant enhancement of downstream oxidative metabolism (i.e. COX-IV protein 

abundance) due to decreased PGC1α expression.  This is further supported by the finding that 

DHA maintained PGC1α and attenuated all of these changes when added to palmitate treatment. 

     Muoio’s group demonstrated that the decrease in PGC1α expression in their high-fat-fed 

animals was associated with insulin resistance (16), and Sandri et al. noted that diabetes-related 

muscle atrophy may be triggered by insulin resistance (34).  Moreover, there is a plethora of data 

showing that saturated fatty acids are detrimental to skeletal muscle (19) and contribute to the 

formation of insulin resistance (19, 25), while exposure to unsaturated fatty acids prevents, 

attenuates, or reverses insulin resistance induced by saturated fatty acids and overnutrition (1, 4, 

8, 19, 23, 25, 28, 32, 38, 39).  Therefore, another aim of this thesis was to determine if DHA 

could attenuate the negative effects of palmitate on the insulin signaling pathway in this cell 

culture model of a high-fat environment.  We examined phosphorylation of IRS-1 on serine 

636/639, which is inhibitory to the protein We examined phosphorylation of IRS-1 on serine 

636/639, which is inhibitory to the protein {Morino, 2005 #137}, and found that all fatty acid 

treatments led to 2-3-fold increases in phosphorylation, but without significant differences 

between treatments or compared to control.  Since this measure did not offer much insight into 

the sensitivity of the insulin signaling pathway, we continued downstream of IRS-1 and 

measured protein expression and activation of three proteins in the  insulin signaling pathway, 

protein kinase B (Akt), glycogen synthase kinase (GSK) 3β, and ribosomal protein S6 (rpS6).  

Akt is a downstream substrate of IRS-1 that can directly inhibit GSK3β, removing its inhibition 

of glycogen synthase, as well as indirectly activate rpS6 and promote synthesis of proteins 

involved in cell cycle progression (13).  We also wanted to assess the responsiveness of the 
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insulin signaling pathway after treatment with the different fatty acids but did not have means to 

perform radioisotopic labeling for glucose uptake or glycogen synthesis as functional outcome 

data; therefore, Akt and GSK3β activation and total protein levels after insulin stimulation were 

measured. 

     The palmitate-induced decrease in basal and insulin-stimulated Akt activation is consistent 

with previous research from our lab that demonstrated over 30% decreases in phospho-AktSer473 

and total Akt after treatment of myotubes with 0.75mM palmitate for 16 hours followed by 10 

minutes of serum-stimulation (29).  In addition, another group found an approximate 40% 

decrease in phospho-AktSer473 upon insulin stimulation after 24 hours of palmitate treatment but 

not after treatment with oleate (a monounsaturated fatty acid) in cultured myotubes (33), 

highlighting the differential effects of unsaturated and saturated fatty acids on the insulin 

signaling pathway.  More specifically to omega-3 polyunsaturated fatty acids, previous data 

demonstrated an enhancement of insulin signaling through Akt-mTOR-S6K-4EBP1 in steers fed 

with long-chain omega-3 fatty acids (9), and our finding of increased rpS6 phosphorylation with 

addition of DHA to the palmitate treatment expands this finding, as it is a substrate of S6K. 

     Together these data support the idea that the saturated fatty acid palmitate blunted growth and 

markers of oxidative metabolism, increased intramyocellular lipid content, and caused 

unresponsiveness to very high concentrations of insulin.  However, the omega-3 polyunsaturated 

fatty acid DHA restored insulin responsiveness and cellular growth, as evidenced by the fact that 

addition of DHA attenuated the palmitate-induced changes in myotube morphology and size, 

intramyocellular lipid content, and PGC1α and COX-IV protein abundance, which was 

associated with improved basal and insulin-stimulated signaling.  While it is not a completely 

novel finding that omega-3 fatty acids improve insulin signaling in skeletal muscle, as Storlien 

and colleagues demonstrated a positive effect of fish oil on systemic insulin sensitivity in 1987 

(39), these data supports a novel theory for how long-chain omega-3 fatty acids may improve 

insulin signaling in skeletal muscle in a high fat environment.   One of the most significant 

findings was that DHA maintained PGC1α protein expression, and it is warranted to continue 

investigating whether this promotes oxidative metabolism and preserves mitochondrial mass and 

quality to prevent insulin resistance and cellular atrophy. 
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Limitations and Future Directives 

    One limitation of this study is the lack of oxidative metabolic markers compared to the amount 

necessary to draw solid conclusions.  Inclusion of a single transcription factor and only two 

markers in the entire oxidative pathway provides limited data with which to draw conclusions 

regarding the oxidative capacity of the cells after fatty acid treatment.  This is especially 

significant in this data because we saw disparate effects on our oxidative markers with a slight 

palmitate-induced increase in CS activity and no change with addition of DHA, but decreased 

palmitate-induced protein abundance of PGC1α and COX-IV, which was reversed with DHA.  

To strengthen these data, further examination of oxidative markers is required.  These 

measurements should focus on both clarifying the differential effects on enzyme activity versus 

protein expression and identifying the functional outcome of these changes (i.e. lipid oxidation 

rates).   

     CS protein expression and COX activity should be measured to complement the measurement 

of its activity and protein abundance, respectively.  The activity and protein expression of 

another tricarboxylic acid cycle enzyme, such as succinate dehydrogenase, and electron transport 

chain component, such as COX-I, could also be examined to provide a more comprehensive 

evaluation of the capacity of the tricarboxylic acid cycle and electron transport chain.  

     To identify if the maintenance of PGC1α by DHA treatment alters “functional” outcomes of 

oxidative metabolism, mitochondrial content should be quantified to confirm that the protein 

expression of PGC1α correlates to the mitochondrial content.  This would nicely complement the 

markers of mitochondrial quality (CS and cytochrome c oxidase protein expressions and 

activities) to indicate overall mitochondrial capacity.  Furthermore, lipid oxidation should also be 

measured as a functional outcome.  The argument that fatty acid treatments increase lipid 

oxidation but without matching of tricarboxylic acid cycle and electron transport chain activity 

(26) suggests that measuring both incomplete and complete lipid oxidation is required.  Previous 

data indicate that this can be accomplished by evaluating lipid incorporation into acid soluble 

metabolites (incomplete oxidation) and carbon dioxide (complete oxidation) (7, 16).  Together 

these measurements would allow for a more complete examination of the oxidative metabolic 

capacity of myotubes after treatment with saturated and polyunsaturated fatty acids and allow for 

a more solid argument to be made with respect to their differential effects. 
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     Along the same lines as functional outcomes for oxidative metabolism, measuring more 

functional markers of insulin signaling would provide a clearer idea of the actual significance of 

the basal and insulin-stimulated Akt and GSK3β protein expressions.  While there are data that 

demonstrate omega-3-related improvements in systemic insulin sensitivity in animal (8, 38, 39) 

and human models (11) of insulin resistance, we cannot assume that these changes in insulin 

signaling in cell culture models holds equal value.  Therefore, a functional measurement of 

glucose uptake, glycogen synthesis, and/or protein synthesis rate would strengthen these data. 

     As previously discussed, it is possible that palmitate treatment not only reduced AMPKα2 

protein expression, but also protein expression of the β2 subunit.  Since the α2/β2 subunit 

translocates to the nucleus to activate and enhance protein expression of PGC1α (14, 20, 40), the 

decrease of its abundance in the palmitate-treated cells could be due to loss of β2 expression, as 

well.  This possibility should be examined by measuring the total protein abundances of the β1 

and β2 subunits by Western blotting.  The data regarding phosphorylation (activation) of PGC1α 

by AMPK is limited (14), and when good antibodies for these phosphorylation sites become 

commercially available, Western blotting could also be used to further examine if the 

phosphorylation of PGC1α (indicating its activity) is altered similarly to its protein expression 

with the different fatty acid treatments. 

     Lastly, it is possible that the methods used in the cell culture model itself could be a limitation 

to this study.  Recently Muoio’s group published data suggesting that cell culture experiments 

examining the effects of fatty acid treatments on metabolic makers should include supplemental 

carnitine in the culture culture media (17).  Carnitine is necessary for the formation of long chain 

acyl-carnitines from fatty acyl-CoA by carnitine palmitoyl transferase-1 in order to enter the 

mitochondria for β-oxidation (35).  Since carnitine is synthesized in the liver, storage of carnitine 

in cultured skeletal muscles is very low which can restrict β-oxidation (17).  Therefore, future 

studies examining the effects of saturated versus polyunsaturated fatty acids should include 

supplemental carnitine in the media in order to allow for physiologically normal β-oxidation to 

occur.  This would ensure that any changes in β-oxidation with the different fatty acids would 

not be simply due to a decrease in necessary precursors for lipid oxidation.    
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Figure Legends 

 
Figure 1. Dose-response curves for activation of AMPK following palmitate and cis-4, 7, 10, 13, 

16, 19-docosahexaenoic acid (DHA) treatments.  Cells were incubated in medium containing 2% 

fetal calf serum, 2% bovine serum albumin, and the indicated fatty acid concentrations for 24 

hours.  Cells were harvested by scraping in 1X SDS-containing sample buffer, and samples were 

analyzed for phosphorylation of AMPK on Thr172 and total AMPKα and were normalized to β-

tubulin.  Representative Western blots are shown. 

Figure 2.  Myotube morphology and diameter are differentially altered with palmitate versus 

DHA treatment.  Cells were incubated in medium containing 2% fetal calf serum, 2% bovine 

serum albumin, and either no fatty acids (Control), 0.5mM palmitate, 0.1mM cis-4, 7, 10, 13, 16, 

19-docosahexaenoic acid (DHA), or 0.1mM DHA plus 0.5mM palmitate for 24, 48, or 96 hours.  

Fresh media was supplied after 48 hours. A) Images of myotubes after indicated treatment 

durations were collected via computer-integrated camera connected to a microscope at x10.  B) 

Myotube diameter of treated cells.  Six diameters per myotube from ~10 myotubes (per culture) 

from three wells per treatment condition that were treated for 48 and 96 hours with palmitate, 

DHA, DHA+palmitate, or no fatty acids. *Denotes p≤0.05 versus other 48h treatment conditions; 
§Denotes p<0.00 versus other 96h treatment conditions; **Denotes p<0.05 versus 96h control 

conditions. 

Figure 3.  DHA attenuates the reduced total AMPKα protein expression and the increased 

AMPK ratio observed with palmitate treatment.  Cells were incubated in medium containing 2% 

fetal calf serum, 2% bovine serum albumin, and either no fatty acids (Control), 0.5mM palmitate, 

0.1mM DHA, or 0.1mM cis-4, 7, 10, 13, 16, 19-docosahexaenoic acid (DHA) plus 0.5mM 

palmitate for 96 hours with fresh media supplied after 48 hours. Cells were harvested by scraping 

in 1X SDS-containing sample buffer, and samples were analyzed for protein expression and 

normalized to glyceraldehydes-3-phosphate dehydrogenase (GAPDH) protein expression. 

Representative Western blots are shown.  A) Phosphorylation of AMPK on Thr172 was not 

different between treatments, but co-treatment of DHA+Palmitate increased total AMPKα and 

attenuated the increased AMPK ratio observed with palmitate treatment. B) No significant 

differences were observed in phosphorylation of ACC on serine79, total ACC protein expression, 
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or the ACC ratio.  *Denotes p≤0.05 versus palmitate conditions for total AMPKα. §Denotes 

p<0.05 versus all other conditions for the AMPK ratio. 

Figure 4. Palmitate treatment increases intramyocellular lipid content.  Cells were incubated in 

medium containing 2% fetal calf serum, 2% bovine serum albumin, and either no fatty acids 

(Control), 0.5mM palmitate, 0.1mM cis-4, 7, 10, 13, 16, 19-docosahexaenoic acid  (DHA), or 

0.1mM DHA plus 0.5mM palmitate for 96 hours with fresh media supplied after 48 hours.  After 

treatment, cells were treated with a 36% Oil red O/triethyl phosphate solution that stains all 

neutral intramyocellular lipids and autofluoresces.  Fluorescence was measured (excitation 

485nm, emission 530nm) and normalized to average protein content per treatment. *Denotes 

p<0.0001 versus all other conditions. 

Figure 5. DHA maintains markers of oxidative metabolism in palmitate-treated cells.  Cells were 

incubated in medium containing 2% fetal calf serum, 2% bovine serum albumin, and either no 

fatty acids (Control), 0.5mM palmitate, 0.1mM cis-4, 7, 10, 13, 16, 19-docosahexaenoic acid  

(DHA), or 0.1mM DHA plus 0.5mM palmitate for 96 hours with fresh media supplied after 48 

hours. For analysis of protein expression, cells were harvested by scraping in 1X SDS-containing 

sample buffer and subjected to Western blotting.  Expression was normalized to 

glyceraldehydes-3-phosphate dehydrogenase (GAPDH) protein expression. Representative 

Western blots are shown. A) Protein expression of peroxisome proliferator-activated receptor 

gamma coactivator 1α (PGC1α) is increased by adding DHA to palmitate treatment. *Denotes 

p<0.05 versus palmitate condition. B) Citrate synthase (CS) activity.  Treated cells were lysed 

with CellLytic M and mixed with acetyl coenzyme A, oxaloacetic acid, and 5-thio-2-

nitrobenzioc acid to spectrophotometrically measure CS activity by reading absorbance at 

412nm. §Denotes p<0.05 versus all other conditions. C) Cytochrome c oxidase subunit IV (COX-

IV) protein expression is not significantly altered with different fatty acid treatments. 

Figure 6. Phosphorylation of IRS-1 is not different between palmitate and DHA treatments. 

Cells were incubated in medium containing 2% fetal calf serum, 2% bovine serum albumin, and 

either no fatty acids (Control), 0.5mM palmitate, 0.1mM cis-4, 7, 10, 13, 16, 19-

docosahexaenoic acid  (DHA), or 0.1mM DHA plus 0.5mM palmitate for 96 hours with fresh 

media supplied after 48 hours. Cells were harvested by scraping in 1X SDS-containing sample 

buffer and analyzed for protein expression of IRS-1 phosphorylation on serine636/639 and 
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normalized to glyceraldehydes-3-phosphate dehydrogenase (GAPDH) protein expression. 

Representative Western blots are shown. 

Figure 7.  DHA treatment attenuates the palmitate-induced decrease in basal insulin signaling.  

Cells were incubated in medium containing 2% fetal calf serum, 2% bovine serum albumin, and 

either no fatty acids (Control), 0.5mM palmitate, 0.1mM cis-4, 7, 10, 13, 16, 19-

docosahexaenoic acid  (DHA), or 0.1mM DHA plus 0.5mM palmitate for 96 hours with fresh 

media supplied after 48 hours. Cells were harvested by scraping in 1X SDS-containing sample 

buffer and analyzed for protein expression Akt and GSK3β normalized to glyceraldehydes-3-

phosphate dehydrogenase (GAPDH) protein expression. A)  Representative Western blots for 

phospho-AktSer473, phospho-GSK3βSer9, total Akt and GSK3β.  B) Basal phospho- and total Akt 

levels were not statistically different between treatments. C) Addition of DHA attenuated the 

decrease in basal phosphorylation of GSK3βSer9 seen with palmitate treatment, but total GSK3β 

expression was unchanged. *Denotes p<0.05 versus DHA conditions. 

Figure 8. DHA treatment attenuates the palmitate-induced decrease in basal activation of 

ribosomal protein S6 (rpS6). Cells were incubated in medium containing 2% fetal calf serum, 2% 

bovine serum albumin, and either no fatty acids (Control), 0.5mM palmitate, 0.1mM cis-4, 7, 10, 

13, 16, 19-docosahexaenoic acid  (DHA), or 0.1mM DHA plus 0.5mM palmitate for 96 hours 

with fresh media supplied after 48 hours. Cells were harvested by scraping in 1X SDS-

containing sample buffer and analyzed for phosphorylation of rpS6 on Ser240/244 and 

normalized to glyceraldehydes-3-phosphate dehydrogenase (GAPDH) protein expression. 

Representative Western blots are shown. *Denotes p<0.05 versus palmitate condition. 

Figure 9. DHA treatment attenuates the palmitate-induced decrease in insulin-stimulated 

activation of signaling proteins.  Cells were incubated in medium containing 2% fetal calf serum, 

2% bovine serum albumin, and either no fatty acids (Control), 0.5mM palmitate, 0.1mM cis-4, 7, 

10, 13, 16, 19-docosahexaenoic acid  (DHA), or 0.1mM DHA plus 0.5mM palmitate for 96 

hours with fresh media supplied after 48 hours.  Cells were stimulated with 100nM insulin for 15 

minutes then harvested by scraping in 1X SDS-containing sample buffer and analyzed for 

protein expression Akt and GSK3β normalized to glyceraldehydes-3-phosphate dehydrogenase 

(GAPDH) protein expression. A) Representative Western blots for phospho-AktSer473, phospho-

GSK3βSer9, total Akt and GSK3β with insulin stimulation.  B) DHA attenuates the palmitate-
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induced decrease in insulin-stimulated total Akt protein expression. *Denotes p<0.05 versus all 

other conditions. C) DHA attenuates the palmitate-induced decrease in insulin-stimulated 

phosphorylation of GSK3βSer9 and the ratio of phospho- to total GSK3β. †Denotes p<0.05 

versus all other conditions for pGSK3β. §Denotes p<0.05 versus all other conditions for the GSK 

ratio.  
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Figure 2 
 

 
 

 

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

Control 0.5mM Palmitate 0.1mM DHA 0.1mM DHA + 
0.5mM Palmitate

M
yo
tu
be

 D
ia
m
et
er
, %

 o
f C

on
tr
ol 48 hours  96 hours

*

** **

§

B.

 

52 
 



Figure 3 
 

 

 
 

0

100

200

300

400

500

600

700

800

pAMPK tAMPK Ratio%
 o

f C
on

tro
l (

O
D

 X
 a

re
a,

 a
rb

itr
ar

y 
un

its
)

Control Palmitate DHA DHA+Palmitate

*

§

 

 

0

100

200

300

400

500

600

700

pACC tACC Ratio%
 o

f C
on

tro
l (

O
D

 X
 a

re
a,

 a
rb

itr
ar

y 
un

its
)

Control Palmitate DHA DHA+Palmitate

 
 

 

53 
 



Figure 4 
 
 

 

 
  

0

100

200

300

400

500

600

96 hours

Fl
uo

re
sc

en
ce

re
la

tiv
e 

to
 c

on
tro

l

Control Palmitate DHA DHA+Palmitate

*

54 
 



Figure 5 

 

      
 

0

50

100

150

200

250

PGC1α

%
 o

f C
on

tro
l (

O
D

 x
 a

re
a,

 a
rb

itr
ar

y 
un

its
)

Control Palmitate DHA DHA+Palmitate

*

 

 
 

0

20

40

60

80

100

120

CS Activity

%
 o

f C
on

tro
l

Control Palmitate DHA DHA+Palmitate

§

 
 
 
 
 
 
 
 
 

 

55 
 



Figure 5 
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