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Abstract 
 

Object-Based Supervised Machine Learning Regional-Scale Land-Cover Classification Using High 

Resolution Remotely Sensed Data 

Christopher A. Ramezan 

High spatial resolution (HR) (1m – 5m) remotely sensed data in conjunction with supervised machine 

learning classification are commonly used to construct land-cover classifications.  Despite the increasing 

availability of HR data, most studies investigating HR remotely sensed data and associated classification 

methods employ relatively small study areas.  This work therefore drew on a 2,609 km2, regional-scale 

study in northeastern West Virginia, USA, to investigates a number of core aspects of HR land-cover 

supervised classification using machine learning.  Issues explored include training sample selection, 

cross-validation parameter tuning, the choice of machine learning algorithm, training sample set size, 

and feature selection.  A geographic object-based image analysis (GEOBIA) approach was used.  The data 

comprised National Agricultural Imagery Program (NAIP) orthoimagery and LIDAR-derived rasters.  

Stratified-statistical-based training sampling methods were found to generate higher classification 

accuracies than deliberative-based sampling.  Subset-based sampling, in which training data is collected 

from a small geographic subset area within the study site, did not notably decrease the classification 

accuracy.  For the five machine learning algorithms investigated, support vector machines (SVM), 

random forests (RF), k-nearest neighbors (k-NN), single-layer perceptron neural networks (NEU), and 

learning vector quantization (LVQ), increasing the size of the training set typically improved the overall 

accuracy of the classification.  However, RF was consistently more accurate than the other four machine 

learning algorithms, even when trained from a relatively small training sample set.  Recursive feature 

elimination (RFE), which can be used to reduce the dimensionality of a training set, was found to 

increase the overall accuracy of both SVM and NEU classification, however the improvement in overall 

accuracy diminished as sample size increased.  RFE resulted in only a small improvement the overall 

accuracy of RF classification, indicating that RF is generally insensitive to the Hughes Phenomenon.  

Nevertheless, as feature selection is an optional step in the classification process, and can be discarded 

if it has a negative effect on classification accuracy, it should be investigated as part of best practice for 

supervised machine land-cover classification using remotely sensed data. 
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Chapter 1 - Introduction 

1. Background 

  High-spatial resolution (HR) (1m – 5m) earth observation datasets can be used to 

develop land-cover classifications of the earth’s surface to monitor our ever-changing landscape.  

Over the past few decades, starting with the launch in late 1999 of IKONOS, the first 

commercially available spatial HR earth observation satellite, HR remotely sensed data has 

become increasingly available for public use.  However, HR remotely sensed data are rarely 

analyzed on large, regional or national scales.  Regional-scale in this context simply refers to a 

large, multi-county study area, rather than definitions used in disciplines such as landscape 

ecology or ecology.   

Typically, regional- or national-scale land-use/land-cover (LULC) maps are constructed 

from medium- or coarse-spatial resolution remotely sensed data.  For example, the 2011 

National Land Cover Dataset (NLCD) is based on medium resolution Landsat data, providing a 

30m land cover dataset over the contiguous United States (Homer et al., 2015).  Global-scale 

datasets, such as the Vegetation Continuous Fields (VCF) dataset, constructed from MODIS 

imagery, typically have an even coarser spatial resolution, such as 250 m or 1 km.  While 

medium or coarse-spatial resolution datasets can be useful, the scale is inappropriate for studies 

that require finer spatial detail (Li and Shao, 2014), such as urban feature extraction 

(Benediktsson et al., 2003; Kong et al., 2006; Taubenböck et al., 2010), tree crown mapping 

(Karlson et al., 2014), forest structural parameter estimation (Galidaki, et al., 2016; Wolter et al., 

2009) and small-area site-specific crop management (SSCM) or precision agriculture mapping 

(Mulla, 2013).   
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Despite advances in information technology platforms, and increasing availability of HR 

remotely-sensed datasets, large-scale HR land-cover classifications remain rare (Ma et al., 2017; 

O’Neil-Dunne et al., 2014).  The lack of large-scale (large-scale in this context meaning large 

geographic areas) land-cover analyses is likely due in part to the relatively large data volume of 

HR datasets compared to coarser resolution datasets covering the same area.  To partially assist 

with remediating data volume and processing issues with large-scale HR datasets, Geographic 

Object-Based Image Analysis (GEOBIA) approaches have been suggested for conducting large-

scale HR land-cover classifications (Demarchi et al., 2017; Li and Shao, 2014; Lubker and Schaab, 

2010).     

GEOBIA is a relatively recent paradigm in remote sensing which has several potential 

advantages over traditional pixel-based approaches when analyzing HR remotely sensed data 

(Arvor et al., 2013; Blaschke, 2010; Blaschke et al., 2014; Hay and Castilla, 2008; Hay and 

Blaschke, 2010).  GEOBIA approaches can mitigate some of the technical challenges in classifying 

HR data through the grouping of heterogeneous pixels into discrete image-objects.  Rather than 

having to analyze and classify each pixel individually, segmented groups of pixels, called image-

objects, form the base unit of analysis, thus reducing the overall number of data units and in 

turn reducing the processing demands (Zhang et al., 2007).  In addition, GEOBIA approaches can 

help to reduce the effects of high intra-class spectral variability or “salt and pepper” texture, 

which is a commonly encountered obstacle in HR classifications of remotely sensed data 

(Blaschke, 2010). 

Object-based analyses of HR remotely sensed data have been conducted for a variety of 

applications, such as land-use/land-cover mapping (Antonarakis, et al., 2008; Elhadi et al., 2014; 

Im et al., 2013; Lu and Weng, 2007; Liu and Xia, 2009; Tehrany et al., 2014; Walker and Blaschke, 

2006; Zhou et al., 2008) tree-canopy mapping (Chen and Hay, 2011; O’Neil-Dunne et al., 2014; 
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Machala and Zejdova, 2014), mine-reclaimed land mapping (Maxwell and Warner, 2015), 

hydrological mapping (Demarchi et al., 2017), bathymetric mapping (Diesing et al., 2014; Diesing 

et al., 2016; Lacharité et al., 2015), and acoustic remote sensing (Hill et al., 2014), among others.  

While GEOBIA has become a popular method for analyzing remotely sensed datasets, a majority 

of basic and applied object-based analyses using HR data reported in the literature are also 

conducted on geographically small areas (Ma et al., 2017). 

Supervised machine learning algorithms are a popular method for constructing land-

cover classifications in GEOBIA and remote sensing analyses in general.  Supervised machine 

learning classifiers are mathematical algorithms that use pre-labeled training examples to infer a 

function, which can be applied to classify new unseen examples.  Machine learning has become 

increasingly popular in a variety of fields, such as biomedical science (Cao et al., 2018) and 

automotive engineering (Huval et al., 2015).  Machine learning methods are particularly 

attractive to remote sensing scientists due to the typical high data volume and complexity of 

remotely sensed data.   

While many core methodological themes and issues in GEOBIA-based supervised 

machine learning land-cover classifications such as sample selection, cross-validation, machine 

learning algorithms, and classification optimization, have been widely examined within the 

literature, these concepts are rarely, if ever investigated on large, HR regional-area datasets.   

This work therefore seeks to investigate methods for developing large area, supervised 

machine learning regional-scale object-based land-cover classifications of HR remotely sensed 

data.  As traditional remote sensing methods applied to large datasets may be expensive in 

terms of human and computer effort, this work examines several core HR remote sensing 

methodological questions, such as sample selection, model cross-validation, supervised machine 
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learning algorithms, and feature optimization at large, regional scales.  In addition, this work 

provides a practical approach for developing applied regional-scale HR land-cover classifications 

datasets using an object-based approach. 

2. Research Themes and Aims 

Through investigation of the development of regional-scale object-based high-resolution 

land-cover classifications, this dissertation addresses the following research questions: 

1. As sample selection is a critical component of conducting supervised machine learning 

classifications, how do various aspects of sample acquisition processes such as sample size, 

sample location, and sampling technique affect the accuracy of supervised regional-scale 

land-cover classifications of HR remotely sensed data? 

 

2. Cross-validation tuning is often used to optimize parameter selection in supervised machine 

learning classifiers.  While a variety of cross-validation tuning methods are commonly used 

in remote sensing analyses, they are rarely compared.  Do different cross-validation tuning 

methods provide inherent advantages for improving supervised classifier performance of 

regional-scale HR remotely sensed data?  

 

3. As various supervised machine learning methods are commonly employed for constructing 

land-cover classifications of remotely sensed data, how do the following supervised machine 

learning classifiers: Support Vector Machine (SVM), Random Forests (RF), k-Nearest 

Neighbors (k-NN), Neural Networks (NEU), and Learning Vector Quantization (LVQ) perform 

when constructing regional-scale HR land-cover maps?  
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4. High dimensional remotely sensed datasets can contain highly correlated or irrelevant bands 

(or features) that can negatively affect the performance of supervised machine learning 

classifiers, a problem known as the curse of dimensionality or the Hughes Phenomenon 

(Hughes, 1968).  Automated feature selection approaches have therefore been suggested 

for optimizing the feature space of training sets, and reducing the data dimensionality.  This 

work investigates if recursive feature elimination improves classifier performance when 

applied to large, regional-scale HR remotely sensed datasets and using three supervised 

machine learning classifiers: Support Vector Machines (SVM), Random Forests (RF), and 

Neural Networks (NEU). 
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3. Objectives and Structure 

This dissertation consists of three main chapters, each written as a stand-alone article, 

with its own experimental design.  Additionally, an introduction chapter that explains the overall 

context of the work, and a conclusion chapter that summarizes and reflects on the findings of 

the three articles, are included. 

Chapter 2 focuses on research question one, examining how the performance of 

support vector machines (SVM) supervised regional-scale HR land-cover classification is affected 

by training sets that vary in size, acquisition location, and collection method.  In addition, 

chapter 2 also examines the second question in a comparison of cross-validation tuning 

methods in a regional-scale land-cover classification of HR remotely sensed data. 

Chapter 3 focuses on the first and third research questions by investigating how training 

samples of varying size acquired from differing geographic regions affect the performance of 

several different supervised machine learning algorithms when applied to a regional-scale HR 

land-cover classification.   

Chapter 4 focuses on the first and fourth research questions by examining how feature 

selection techniques such as can be used to improve performance of regional-scale HR 

supervised classifications trained from varying size training sets. 
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Chapter 2 
 

Evaluation of Sampling and Cross-Validation Tuning Strategies for Regional-Scale Machine Learning 

Classification1 

 

Abstract 
High spatial resolution (1–5 m) remotely sensed datasets are increasingly being used to map land covers 

over large geographic areas using supervised machine learning algorithms. Although many studies have 

compared machine learning classification methods, sample selection methods for acquiring training and 

validation data for machine learning, and cross-validation techniques for tuning classifier parameters are 

rarely investigated, particularly on large, high spatial resolution datasets. This work, therefore, examines 

four sample selection methods—simple random, proportional stratified random, disproportional 

stratified random, and deliberative sampling—as well as three cross-validation tuning approaches—k-

fold, leave-one-out, and Monte Carlo methods. In addition, the effect on the accuracy of localizing sample 

selections to a small geographic subset of the entire area, an approach that is sometimes used to reduce 

costs associated with training data collection, is investigated. These methods are investigated in the 

context of support vector machines (SVM) classification and geographic object-based image analysis 

(GEOBIA), using high spatial resolution National Agricultural Imagery Program (NAIP) orthoimagery and 

LIDAR-derived rasters, covering a 2,609 km2 regional-scale area in northeastern West Virginia, USA. 

Stratified-statistical-based sampling methods were found to generate the highest classification accuracy. 

Using a small number of training samples collected from only a subset of the study area provided a similar 

level of overall accuracy to a sample of equivalent size collected in a dispersed manner across the entire 

regional-scale dataset. There were minimal differences in accuracy for the different cross-validation 

tuning methods. The processing time for Monte Carlo and leave-one-out cross-validation were high, 

especially with large training sets. For this reason, k-fold cross-validation appears to be a good choice. 

Classifications trained with samples collected deliberately (i.e., not randomly) were less accurate than 

classifiers trained from statistical-based samples. This may be due to the high positive spatial 

autocorrelation in the deliberative training set. Thus, if possible, samples for training should be selected 

randomly; deliberative samples should be avoided. 

 

 

  

                                                           
1 Published by MDPI in Remote Sensing on 18 January 2019. Available online: https://www.mdpi.com/2072-
4292/11/2/185.  Ramezan, C. A., Warner, T. A., Maxwell A. E. 2019. Evaluation of Sampling and Cross-Validation 
Tuning Strategies for Regional-Scale Machine Learning Classification. Remote Sensing. 11(2): 185. 
https://doi.org/10.3390/rs11020185. 
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1. Introduction 
With the increasing availability of high spatial resolution (HR) remotely sensed datasets (1–5 m 

pixels), the routine production of regional-scale HR land-cover maps has become a possibility. However, 

due to the large area associated with regional-scale HR remote sensing projects, the sample selection 

for training and assessment can be burdensome. Sampling strategies that are commonly used in remote 

sensing analyses involving smaller datasets may be unsuitable or impractical for regional-scale HR 

analyses. This is particularly true if the sampling protocol requires field observations. While much 

previous remote sensing research has been conducted on supervised classification sample selection 

methods for training [1–3] and accuracy assessments [4–7], most of these studies examine sampling 

methods using study sites of limited geographic extent. The limited area of these study sites is typical of 

classification experiments in general; Ma et al. [8] meta-reviewed over 170 supervised object-based 

remote sensing analyses and found that an overwhelming majority of geographic object-based image 

analyses (GEOBIA) studies were conducted on areas smaller than 300 ha.  

This work, therefore, investigates a variety of sample selection method techniques for regional-

scale land-cover classifications with large, HR remotely sensed datasets. Additionally, as the number of 

samples is limited in many regional studies, cross-validation for regional HR classification is also 

explored. Cross-validation is an approach for exploiting training and accuracy assessment samples 

multiple times and thus potentially improving the reliability of the results. Finally, as the acquisition of 

widely dispersed samples across a large region may be expensive, a sampling strategy which confines 

the sample selection to a small geographic subset area is also investigated. This study is conducted in 

the context of GEOBIA, an approach that has become increasingly popular for analyzing high-resolution 

remotely sensed data [8,9]. 
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1.1. Background on Sample Selection in Remote Sensing 
Samples in remote sensing analyses are typically collected for two purposes: training data for 

developing classification models and assessment or test data for evaluating the accuracy of the map 

product. Supervised classifiers, such as machine learning algorithms, use pre-labeled samples to train 

the classifier, which is then used to assign class labels to the remaining population. As the collection of 

training data inherently requires sampling, the strategies used for the sample selection must be carefully 

considered in the context of the characteristics of the dataset, classifier, and study objectives [10]. 

Although sample selection strategy is widely discussed in the remote sensing literature, there are a 

variety of opinions on almost every aspect of the sampling process. Nevertheless, there is a consensus 

that the size [5,7,11,12] and quality [12] of the training sample dataset, as well as the sample selection 

method used [5], can affect classification and accuracy assessments. 

A variety of statistical (e.g., simple random and stratified random) and non-statistical (e.g., 

deliberative) sample selection methods have been used to collect training and testing samples for 

remote sensing analyses. Mu et al. [13] separated statistical-based sampling into two categories: spatial 

and aspatial approaches. Spatial sampling considers the spatial autocorrelation inherent in geographic 

data, while aspatial methods, which ignore potential spatial autocorrelation, include approaches such as 

simple random and stratified sampling. Although problems associated with aspatial sampling methods in 

remote sensing have been noted [14–16], spatial sampling methods can be complex and typically 

require a priori information about the population, which may be difficult or impractical to collect. While 

spatial sampling methods have been used in remote sensing analyses, currently they are far less 

common than aspatial methods and consequently not pursued in this study. 

Simple random sampling involves the purely random selection of samples and thus gives a direct 

estimate of the population parameters. Although random samples for image classification on average 

will sample each class (or stratum) in proportion to the area of that class in the map, any single random 
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sample will generally not do so. This can exacerbate the difficulty of dealing with rare classes. Some 

classifiers, including support vector machines (SVM), are sensitive to imbalanced training data sets, in 

which some classes are represented by a much smaller number of samples than other classes [17]. 

Stratified random sampling addresses this problem by forcing the number of samples in each 

stratum to be proportional to the area of the class. A variant on this method is equalized stratified 

random sampling, where the number of samples in each stratum is the same, irrespective of their area 

on the map. Equalized stratified random sampling may not be possible if some classes are so rare that 

the population of that class is smaller than the desired sample size. In such circumstances, a 

disproportional stratified random sample may be collected, an approach in which the sizes of the strata 

are specified by the user and are set to intermediate values between the proportions of the areas of the 

classes and a simple equalized approach. 

One disadvantage of all stratified approaches is that a pre-classification is needed to identify the 

strata. If the samples are only to be used for an accuracy assessment (and not training), then it is 

possible to use the classification itself to generate the strata. However, Stehman [18] points out that if 

multiple classifications are to be compared and the strata are developed from just one of those 

classifications, the resulting accuracy statistics for the remaining maps need to be modified to account 

for the differences between the map used to develop the stratification and the map under 

consideration. Furthermore, unlike random and stratified random sampling, equalized and 

disproportional stratified random samplings produce samples that are not a direct estimate of the 

population. Thus, for samples generated with these methods, the accuracy estimates need adjustment 

to account for the class prior probabilities [19].  

Deliberative sampling, in which samples are selected based on a non-random method, are also 

common in remote sensing. Deliberative sampling is necessary if access limitations or other issues 
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constrain the sampling. One could hypothesize that deliberative sampling might, under certain 

circumstances, be more effective for classifier training than random sampling. Deliberative sampling 

allows for the incorporation of expert knowledge into the sample selection process. For example, 

samples can be selected to ensure that the variability of each class is well represented. Furthermore, in 

SVM, only training samples that define the hyperplane separating the classes are used by the classifier. 

Thus, for SVM, deliberative samples selected to represent potentially spectrally confused areas may be 

more useful than samples representing the typical class values [20].  

If in situ observations are required for sample characterization and the cost of traveling between 

sites is high, the spatial distribution of samples becomes a central focus. This is particularly a concern for 

regional-scale HR datasets. While certain innovative methods such as active learning have been 

proposed to reduce sampling costs [21,22], these methods are complex to implement and are beyond 

the scope of this study. An alternative is localizing sample selection to a single subset area of the region 

of interest. Localizing sample selection to a small geographic subset area can be advantageous in large 

regional-scale analyses for reducing sampling costs, especially if field observations are required. 

1.2. Background on Cross-Validation Tuning 
A central tenet of accuracy assessment is that the samples used for training should not also be 

used for evaluation. A similar concern applies to the methods for selecting the user-specified 

parameters required by most machine learning methods, for example, the number of trees for random 

forests, sigma and C values for radial basis function kernel support vector machines, and the k-distance 

for the k-nearest neighbors. The value of these parameters can affect the accuracy of the classification, 

and thus, optimizing the chosen values (sometimes called tuning) is usually required [23–26]. Tuning is 

generally empirical, with various values for the parameters systematically evaluated, and the 

combination of values that generate the highest overall accuracy or kappa coefficient is assumed to be 

optimal [17,25]. Excluding training samples from the samples used for the evaluation of the candidate 
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parameter values reduces the likelihood of overtraining and thus improves the generalization of the 

classifier.  

If the overall number of samples is small, a fixed partition of training samples into separate 

training and tuning samples will further exacerbate the limitations of the small sample size, since each 

sample is used once and for one purpose only (e.g., training). Cross-validation is an alternative approach 

to a fixed partition. In cross-validation, multiple partitions are generated, potentially allowing each 

sample to be used multiple times for multiple purposes, with the overall aim of improving the statistical 

reliability of the results. Examples of cross-validation methods include k-fold, leave-one-out, and Monte 

Carlo. Classification parameter tuning via cross-validation has been demonstrated to improve 

classification accuracy in remote sensing analyses [27]. However, as with any sampling technique, it is 

important that the overall sample set be representative of the entire data set, otherwise the 

generalizability of the supervised classifier is unknown [25]. 

The k-fold cross-validation method involves randomly splitting the sample set into a series of 

equally sized folds (groups), where k indicates the number of partitions, or folds, the dataset is split into. 

For example, if a k-value of ten is used, the dataset is split into ten partitions. In this case, nine of the 

partitions are used for training data, while the remaining one partition is used for test data. The training 

is repeated ten times, each time using a different partition as the test set and the remaining nine 

partitions as the training data. The average of the results is then reported [28]. 

Leave-one-out cross-validation is similar to the k-fold cross-validation except the number of 

folds is set as the number of samples in the sample set. This approach can be slow with very large 

sample sets [29]. 

Monte Carlo validation works on similar principles to k-fold cross-validation except that the folds 

are randomly chosen with replacement, also called bootstrapping. Thus, the Monte Carlo method may 
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result in some samples being used for both training and testing data multiple times, or some data not 

being used at all. Usually, Monte Carlo methods employ a large number of simulations, for example 

1,000 or more, and therefore may also be slow [30].  

While studies such as by Maxwell et al. [17] and Cracknell and Reading [25] demonstrated the 

merits of the cross-validation methods such as k-fold cross-validation for parameter tuning, very little 

attention has been given to examining the different cross-validation methods and their effect on 

parameter optimization and, by extension, machine learning classification performances. 

1.3. Research Questions and Aims 
This work examines sample selection and cross-validation parameter tuning on regional-scale 

land cover classifications using HR remotely sensed data. These issues are explored through the 

following interlinked research questions: 

1.  Which training sample selection method results in the highest classification accuracy for a supervised 

support vector machine (SVM) classification of a regional-scale HR remotely sensed dataset? The 

methods tested include both statistical (simple random, proportional stratified random, and 

disproportional stratified random) and non-statistical (deliberative) methods.  

2.  Which cross-validation method provides the highest classification accuracy? Methods tested are k-

fold, leave-one-out, and Monte Carlo.  

3.  What is the effect on classification accuracy for the different sampling and cross-validation methods 

when the samples are collected from a small localized region rather than from across the entire study 

area? 
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2. Materials and Methods  

2.1. Study Area and Data 
The study area (Figure 1) lies within the 

northeastern section of West Virginia, near the 

borders with Maryland and Pennsylvania. The 

study area includes the entirety of the Preston 

County, as well as proportions of the 

neighboring Monongalia, Taylor, Barbour, and 

Tucker counties. This region is dominated by 

Appalachian mixed mesophytic forests [31] and 

the terrain is mountainous (548–914 m). 

Two remotely sensed datasets were 

used in this analysis: optical multispectral 

imagery and light detection and ranging 

(LIDAR) point cloud data. The optical dataset 

comprises leaf-on National Agriculture Imagery 

Program (NAIP) orthoimagery collected primarily during 17–30 July 2011. A very small portion of the 

NAIP imagery was collected on 10 October 2011. The NAIP imagery consists of four spectral bands (red 

(590–675 nm), green (500–650 nm), blue (400–580 nm), and near-infrared (NIR) (675–850 nm)), with an 

8-bit radiometric resolution and a spatial resolution of 1 m [32]. The data were provided as 

uncompressed digital orthophoto quarter quadrangles (DOQQs) in a .tiff format. The study area is 

covered by 108 individual DOQQ NAIP images, representing 260,975 ha or 4.2% of the total area of the 

state of West Virginia.  

Figure 1 - The regional-scale study area 
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The LIDAR data were acquired using an Optech ALTM-3100C sensor through a series of aerial 

flights between 28 March and 28 April 2011. The LIDAR scanner had a 36° field of view and a frequency 

of 70,000 Hz. The LIDAR data were acquired at a flying height of 1,524 m above the ground with an 

average flight speed of 250 km/h. The flight lines of the LIDAR dataset had an average of 30% overlap. 

The LIDAR data include elevation, intensity, up to four returns, and a vendor-provided basic 

classification of the points [33]. The LIDAR data were formatted as a .las version 1.2 point cloud. In total, 

1164 LIDAR tiles containing a combined total of 5.6 x 109 points were used in the analysis. A preliminary 

investigation indicated that little change occurred during the approximately three to four-month 

temporal gap between the LIDAR and NAIP acquisitions. 

Four land-cover classes were mapped: forest, grassland, water, and other. The forest class is 

primarily closed-canopy deciduous and mixed forests. The grassland class comprises areas dominated by 

non-woody vegetation. The water class includes both impoundments and natural waterbodies. The 

other class encompasses areas characterized by bare soil, exposed rock, impervious surfaces, and 

croplands.  
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2.2. Experimental Design 
Sample selection includes three components: sample size, sampling region, and sampling 

method. The sample size 

specifies the number of training 

samples in the training set. The 

sampling region indicates 

whether samples are collected 

from the entire study area or 

only a limited sub region. The 

sampling method specifies the 

protocol for selecting samples, 

for example, random or 

deliberative. 

In this study, four 

sampling methods are used to 

generate training data sets, 

which are then used with three 

cross-validation methods in SVM classifications (Figure 2). The samples are selected from the entire 

study area or from only a small geographic subset of the study area, and in all cases, the classifier is 

applied to the entire regional-scale dataset. The error for all classifications is evaluated using a large 

independent validation dataset acquired from the entire regional-scale dataset.  

Figure 2 - Overview of the experiment workflow 
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2.3. Data Processing 

A normalized-digital surface model (nDSM) and intensity rasters were generated as input 

variables for the classification from the LIDAR point cloud data. The LIDAR intensity raster was 

generated using the first returns only and the LAS Dataset to Raster function in ArcMap 10.5.1 [34]. The 

LIDAR intensity data has proven to be beneficial for separating land-cover surfaces such as grassland, 

trees, buildings, and asphalt roads. [35–37]. The LIDAR intensity data was not normalized due to the 

limited LIDAR metadata which prevented the normalization for distance. Previous research indicates 

that LIDAR intensity information is still useful for land-cover classifications without this correction [38]. 

The nDSM was generated by subtracting a rasterized bare earth digital elevation model (DEM) from a 

digital surface model (DSM) produced from the ground and first returns, respectively. The LIDAR-derived 

surfaces were rasterized at 1 m, matching the pixel size of the NAIP orthoimagery. nDSMs have been 

demonstrated to be useful for characterizing the varying heights of natural and man-made objects in 

GEOBIA studies [39].  

The 108 NAIP orthoimages were mosaicked into a single large NAIP image mosaic using the 

Mosaic Pro tool within ERDAS Imagine 2016. Color-balancing was used to reduce the radiometric 

variations between the NAIP images, since they were acquired from different flights and times [40].  

The NAIP mosaic was clipped to the extent of the LIDAR rasters. The NAIP and LIDAR rasters were then 

combined to form a single layer stack with six bands: four NAIP (Red, Green, Blue, and NIR) and two 

LIDAR (nDSM and Intensity). 

 

2.4. Image Segmentation 

The Trimble eCognition Developer 9.3 multi-resolution segmentation (MRS) algorithm was used 

as the segmentation method [41]. MRS is a bottom-up region-growing segmentation approach. Equal 

weighting was given to all six input bands for the segmentation. Preliminary segmentation trials found 

that a large number of artefacts were created by the image segmentation, apparently due to the 
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“sawtooth” scanning pattern of the OPTECH ALTM 3100 sensor and the 1 m rasterization process [42]. A 

5 x 5 pixel median filter was therefore applied to both the nDSM and Intensity rasters prior to 

segmentation to reduce the problem.  

MRS has three user-set parameters: scale, shape, and compactness [43]. The scale parameter 

(SP) is regarded as the most important of the three parameters as it controls the size of the image 

objects [44–46]. The Estimation of Scale Parameter (ESP2) tool developed by Drăguţ et al. [45] was used 

to estimate the optimal scale parameter for the segmentation. The ESP2 tool generates image-objects 

using incrementally increasing SP values and calculates the local variance (LV) for each scale. The rate of 

change of the local variance (ROC-LV) is then plotted against the SP. In theory, peaks in the ROC-LV 

curve indicate segmentation levels in which segments most accurately delineate real world objects and 

thus optimal SPs for the segmentation [45].  

Due to the high processing and memory demands of the ESP2 tool, three randomly selected 

subset areas were chosen to apply the ESP2 process rather than attempting to run the tool across the 

entire regional-scale dataset. The three subset tests indicated optimal SP values of 97, 97, and 104. The 

intermediate value of 100 was therefore chosen for the segmentation of the entire image. Alterations of 

the shape and compactness parameters from their defaults of 0.1 and 0.5 respectively did not seem to 

improve the quality of the segmentation, and therefore these values were left unchanged. The 

segmentation generated 474,614 image segments. 

2.5. Dataset Subsetting 

The subsetting tool in eCognition was used to extract the subset dataset from the regional 

dataset. The location of the subset was selected so that it included all four classes of interest. The total 

area of the subset dataset was approximately 4.19% of the area of the regional-scale dataset and 

comprised 21,777 image objects. 
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2.6. Segment Attributes Used for Classification 

A total of 35 spectral and geometric attributes (Table 1) were generated for each image object 

(segment); these attributes were used as the predictor variables for the classification. Examples of the 

spectral attributes include the object’s means and standard deviations for each band and the geometric 

attributes include object asymmetry, compactness, and roundness. The object’s mean normalized 

difference vegetation index (NDVI) was also included as it is a commonly used spectral index used with 

NAIP data [47]. 

Table 1 - Spectral and geometric attributes of the segments 

Attribute Type Attributes Number of Attributes 

Spectral 

 
Mean (Blue, Green, Intensity, NIR, Red, nDSM), Mode (Blue, Green, 

Intensity, NIR, Red, nDSM), Standard deviation (Blue, Green, 
Intensity, NIR, Red, nDSM), Skewness (Blue, Green, Intensity, NIR, 

Red, nDSM), Brightness 

 
25 

Geometric 
 

Density, Roundness, Border length, Shape index, Area, Compactness, 
Volume, Rectangular fit, Asymmetry 

 
9 

 
Spectral 
Indices 

 
Mean NDVI 

 
1 

 

2.7. Sample Data Selection 

As image-objects are the base unit of analysis in this study, an object-based sampling approach was used 

for the collection of the samples. Two spatial scales were employed: a small subset and a regional scale, 

encompassing the entire study area. A large regional sample (n = 10,000) from the regional-scale dataset 

was collected to provide a benchmark representing an assumed maximum accuracy possible with this 

dataset. Since the subset area is 4.19% of the regional scale data set, the sample size for the subset area 

was set to n = 419 samples (4.19% of 10,000). This sample set is termed the small subset dataset. In 

addition, a small regional sample (n = 419) was selected from the entire regional scale data set to 

provide a direct comparison with the small subset sample dataset. In summary, three categories of 
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datasets were collected at two spatial scales and two sample sizes: samples from a small limited region 

within the study area (small subset sample) (Figure 3) and two sets of samples collected from across the 

study area, one encompassing a small number of samples (small regional sample) (Figure 4) and another 

encompassing a large number (large regional sample) (Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

 

For each of these three categories of spatial scales and sampling sizes, four sampling methods were 

employed: simple random, proportional stratified random, disproportional stratified random, and 

deliberative. All samples were manually labeled by the analyst. In total, 53,352 samples were collected 

for this analysis. The number of samples for each training and validation sample sets is summarized in 

Tables 2a–c. 

Figure 3 - The subset area location and subset training samples overlaid on false color infrared composite of National 
Agricultural Imagery Program (NAIP) orthoimagery (Bands 4, 1, and 2 as RGB). 
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Figure 4 - The small regional training samples displayed over false color infrared composite of NAIP orthoimagery 
(Bands 4, 1, and 2 as RGB). 

Figure 5 - Large regional-scale training sample datasets. 
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Table 2a- Small subset sample sets. 

 Number of samples per class 

Sample Name Forest Grass Other Water 
Total # 

of 
Samples 

Small Subset 
Simple Random 

 
290 67 53 9 419 

Small Subset 
Proportional 

Stratified 
Random 

 

305 59 35 20 419 

Small Subset 
Disproportional 

Stratified 
Random 

 

209 84 84 42 419 

Small Subset 
Deliberative 

139 100 100 80 419 

      

 

Table 2b. Small regional sample sets. 

 Number of samples per class 

Sample Name Forest Grass Other Water 
Total # 

of 
Samples 

Small Regional 
Simple Random 

 
341 50 26 2 419 

Small Regional 
Proportional 

Stratified 
Random 

 

333 65 18 3 419 

Small Regional 
Disproportional 

Stratified 
Random 

 

209 84 84 42 419 

Small Regional 
Deliberative 

254 80 69 16 419 
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Table 2c. Small regional sample sets. 

 Number of samples per class 

Sample Name Forest Grass Other Water 
Total # 

of 
Samples 

Large Regional 
Simple Random 

 
8183 1178 600 39 10000 

Large Regional 
Proportional 

Stratified 
Random 

 

7984 1553 408 55 10000 

Large Regional 
Disproportional 

Stratified 
Random 

 

5000 2000 2000 1000 10000 

Large Regional 
Deliberative 

6087 1897 1651 365 10000 

 

2.7.1. Simple Random Sampling 

The eCognition version 9.3 client does not offer a tool for selecting random samples, and therefore the 

select random polygon tool in QGIS was used. 
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2.7.2. Proportional Stratified Random Sampling 

Because a stratified approach requires a priori strata, a rule-based classification developed through the 

expert system was applied to both the regional-scale dataset and the subset dataset (Figure 6) to 

estimate the strata sizes for the subset and regional datasets. 

 

The ruleset contained 16 individual rules. The accuracy of the rule-based classifications was evaluated 

using the samples from the large regional-scale validation dataset and had an overall accuracy of 98.1%. 

The strata size for both the subset and regional-scale datasets were determined by the total area 

occupied by each class. Table 3 summarizes the proportions of the strata for both datasets. Simple 

random sampling was used within each stratum to obtain samples for both the subset and regional-scale 

datasets.  

 

 

 

Figure 6 - Rule-based classification of subset area 
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Table 3. Class strata sizes for subset and regional datasets. 

 

 

 

 

2.7.3. Disproportional Stratified Random Sampling 

It was not possible to test an equalized stratified sampling approach because the water class is too 

rare to provide sufficient samples for a 25% proportion. Consequently, a disproportional stratified 

approach was chosen. For this sample, the class proportions were defined as 50% forest, 20% grassland, 

20% other, and 10% water. These proportions were selected as intermediate values between the random 

and equalized stratified proportions to ensure a larger representation of the less common classes than in 

the random dataset. The same values were used for the small subset and small and large regional sample 

sets. 

2.7.4. Deliberative Sampling 

The deliberative sample was produced via on-screen digitizing by the analyst using the sample 

selection tool in eCognition Developer. No attempt was made to avoid spatial autocorrelation in the 

samples selected, for example, by avoiding samples that were spatially adjacent, because manual 

selection of samples is generally characterized by autocorrelation [48].  

2.8. Cross-Validation Strategies 
The cross-validation tuning methods were conducted using the trainControl function within the caret 

package [49] in R Studio 1.1.383. A separate classification was conducted for each cross-validation tuning 

method used and each sample set. The three cross-validation strategies tested were k-fold, leave-one-

out, and Monte Carlo. 

Class 
Proportion of Total Area Occupied 

Subset Dataset Regional Dataset 

Forest 72.73% 79.84% 

Grassland 14.10% 15.53% 

Other 8.34% 4.08% 

Water 4.84% 0.55% 
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2.9. Supervised Classification 
A radial basis function kernel (RBF) Support Vector Machines (SVM) was chosen as the supervised 

machine learning classifier for several reasons: 

1. SVM is a commonly used supervised classifier in remote sensing analyses [17]. 

2. SVM is a non-parametric classifier, meaning it makes no assumption regarding the underlying data 

distribution. This may be advantageous for a small sample set [50]. 

3. SVMs are able to perform well with relatively small training datasets when compared to other 

commonly used classifiers. 

4. SVMs are attractive for their ability to find a balance between accuracy and generalization [51]. 

A total of 36 individual classifications were conducted, each using a different combination of sample 

and validation methods: 3 categories of approaches at different spatial scales and sample sizes (small 

subset, small regional, and large regional) x 4 sample selection methods (simple random, proportional 

stratified random, disproportional stratified random, and deliberative) x 3 cross-validation tuning 

methods (k-fold, leave-one-out, and Monte Carlo) = 36 classifications. 

Table 4 details all subset-trained and regional-trained classifications. The SVM classifications were 

conducted within R Studio client version 1.1.383 using the e1071 [52] and caret packages [49] on a Dell 

Optiplex 980 workstation with an Intel i7 2.80 GHz processor with 16.0 GB of memory running Windows 

8.1 Enterprise. The processing time for all classifications were recorded using the microbenchmark 

package [53]. Processing runtime values should be interpreted as indications of relative speed and not as 

absolute values as they are highly dependent on the system architecture, CPU allocation, memory 

availability, and background system processes, among other factors. 
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Table 4. Classifications and associated abbreviations based on the sample selection method, training sample size, region of area 
collected, and cross-validation method. 

  

Cross-Validation Method 

k-Fold 

(KF) 

Monte 

Carlo 

(MC) 

Leave-

One-

Out 

(LOO) 

k-Fold 

(KF) 

Monte 

Carlo 

(MC) 

Leave-

One-

Out 

(LOO) 

k-Fold 

(KF) 

Monte 

Carlo 

(MC) 

Leave-

One-

Out 

(LOO) 

Small Subset-Trained 

Classification 

Small Regional-Scale Trained 

Classification 

Large Regional-Scale Trained 

Classification 

Sample 

Selection 

Method 

Simple Random 

(SR) 

Small-

Subset-

(SR-KF) 

Small-

Subset-(SR-

MC) 

Small-

Subset-

(SR-LOO) 

Small-

Regional-

(SR-KF) 

Small-

Regional-

(SR-MC) 

Small-

Regional-

(SR-LOO) 

Large-

Regional-

(SR-KF) 

Large-

Regional-

(SR-MC) 

Large-

Regional-

(SR-LOO) 

Proportional 

Stratified 

Random (PSTR) 

Small-

Subset-

(PSTR-KF) 

Small-

Subset-

(PSTR-MC) 

Small-

Subset-

(PSTR-

LOO) 

Small-

Regional-

(PSTR-KF) 

Small-

Regional-

(PSTR-

MC) 

Small-

Regional-

(PSTR-

LOO) 

Large-

Regional-

(PSTR-KF) 

Large-

Regional-

(PSTR-

MC) 

Large-

Regional-

(PSTR-

LOO) 

Disproportional 

Stratified 

Random (DSTR) 

Small-

Subset-

(DSTR-KF) 

Small-

Subset-

(DSTR-MC) 

Small-

Subset-

(DSTR-

LOO) 

Small-

Regional-

(DSTR-KF) 

Small-

Regional-

(DSTR-

MC) 

Small-

Regional-

(DSTR-

LOO) 

Large-

Regional-

(DSTR-KF) 

Large-

Regional-

(DSTR-

MC) 

Large-

Regional-

(DSTR-

LOO) 

Deliberative (DL) 

Small-

Subset-

(DL-KF) 

Small-

Subset-(DL-

MC) 

Small-

Subset-

(DL-LOO) 

Small-

Regional-

(DL-KF) 

Small-

Regional-

(DL-MC) 

Small-

Regional-

(DL-LOO) 

Large-

Regional-

(DL-KF) 

Large-

Regional-

(DL-MC) 

Large-

Regional-

(DL-LOO) 

 

 

2.10. Error Assessment 
Each of the trained classifications was tested against a large, randomly sampled validation dataset (n 

= 10,000) collected from the regional-scale dataset. Results for each classification were reported in a 

confusion matrix programmed via the caret package in the R statistical client. User’s and producer’s 

accuracies were calculated as well as overall accuracy and the kappa coefficient. Additionally, McNemar’s 

test [54] was used to evaluate the statistical significance of differences observed between the k-fold tuned 

classifications. McNemar’s test is a non-parametric evaluation of the statistical differences between two 

classifications with related samples [55]. A p-value smaller than 0.05 indicates a one-sided 95% confidence 

that the differences in accuracy between the classifications are statistically significant. 
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3. Results and Discussion 

3.1. Performance of Sample Selection Methods 
Figure 7 summarizes the overall accuracies of the classification of the entire regional dataset using 

the various training samples and k-fold (k = 10) cross-validation. Within each spatial scale and sample size 

(i.e., subset, small regional, and large regional), the disproportional stratified random (DSTR) samples 

consistently resulted in the highest overall accuracy although it is notable that variations between the 

performance of the classifications trained using the different statistical-based sampling methods were 

small, less than 2%. 

 

 

Figure 7 - Overall accuracies of the regional classifications using small subset, small regional, and large regional training 
datasets and k-fold (k=10) cross-validation tuning. 

 

Despite the small differences between some of the classification accuracies, the McNemar’s test 

results, shown in Table 5, indicate that most of the differences were statistically significant. The only 
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exceptions were the differences in the classification accuracies for the large regional-trained SR, PSTR, 

and DSTR, which indicates that when the sample size is very large (n = 10,000 in this case), differences 

between sampling methods is less important.  

Classifications trained with the SR sample resulted in a slightly lower accuracy than those 

trained with the PSTR and DSTR samples. This suggests that sample stratification is advantageous for 

SVM classifiers, as stratification ensures that rare classes are sampled at a rate that is either equal to or 

greater than their proportion in the dataset, depending on whether proportional or disproportional 

stratified approaches are selected. 

The DSTR sampling method was designed to provide a much larger number of samples from 

minority classes, such as the water and other classes, than the simple random or proportional stratified 

random sampling methods (Table 2a–c). Using SR sampling, the number of samples from the minority 

classes may vary greatly, depending on random chance, especially when the total number of samples is 

small (e.g., 419 in this case). This can be seen in the small-regional SR and PSTR sample sets, where only 

2 and 3 samples, respectively, were collected for water (Table 2b). The number of samples selected for 

the rare classes is important; Waske et al. [56] found that SVM was negatively affected by dataset 

imbalance. Stehman [57] also found that sample stratification resulted in improved classification 

accuracy due to an increased sample selection from the minority classes. The results of our study 

emphasize the value of disproportional stratified sample selection to reduce class imbalance and ensure 

minority class representation in the training set.  
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Table 5. McNemar's test p-values for small subset, small regional, and large regional-trained classifications using k-fold (k=10) 
cross-validation tuning. (*Indicates the differences between classifications that are statistically significant, p < 0.05.) 

 

The classifications trained from the deliberative (DL) samples consistently had lower accuracies 

across all sample sets (Figure 7). The low accuracy for the classifications with the DL samples indicates 

that samples acquired though expert selection of the training data did not adequately characterize the 

dataset. Notably, the DL samples have higher spatial autocorrelation than samples collected via the 

statistical-based methods (Figure 5). This is not surprising; as noted previously, human-based 

Subset-

SR-KF 

Subset-

PSTR-

KF 

Subset-

DSTR-

KF 

Subset-

DL-KF 

Small-

Regional-

SR-KF 

Small-

Regional-

PSTR-KF 

Small-

Regional-

DSTR-KF 

Small-

Regional-

DL-KF 

Large-

Regional-

SR-KF 

Large-

Regional-

PSTR-KF 

Large-

Regional-

DSTR-KF 

Large-

Regional-

DL-KF   

  <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* 

Subset-

SR-KF 

    0.007* <0.001* <0.001* <0.001* 0.004* <0.001* <0.001* <0.001* <0.001* <0.001* 

Subset-

PSTR-KF 

      <0.001* 0.043* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* 

Subset-

DSTR-KF 

        <0.001* <0.001* <0.001* 0.009* <0.001* <0.001* <0.001* <0.001* 

Subset-

DL-KF 

          0.013* 0.002* <0.001* <0.001* <0.001* <0.001* <0.001* 

Small-

Regional-

SR-KF 

            0.031* <0.001* <0.001* <0.001* <0.001* <0.001* 

Small-

Regional-

PSTR-KF 

              <0.001* <0.001* <0.001* <0.001* <0.001* 

Small-

Regional-

DSTR-KF 

                <0.001* <0.001* <0.001* <0.001* 

Small-

Regional-

DL-KF 

                  0.108 0.113 <0.001* 

Large-

Regional-

SR-KF 

                    0.162 <0.001* 

Large-

Regional-

PSTR-KF 

                      <0.001* 

Large-

Regional-

DSTR-KF 

                        

Large-

Regional-

DL-KF 
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deliberative sampling has a high potential for spatial autocorrelation [48]. High spatial autocorrelation in 

sample sets may result in a reduction in the effective sample size [13]. A univariate Moran’s I test 

indicates that the small subset, small regional, and large regional DL samples all show positive spatial 

autocorrelation, with values of 0.950, 0.692, and 0.985, respectively. While the SR, PSTR, and DSTR 

samples also contained positive spatial autocorrelation, ranging from 0.208 (subset-SR) to 0.661 (large-

regional-DSTR), they showed less positive spatial autocorrelation than all DL sample sets. Stratified 

sampling, especially disproportional stratified sampling, tends to favor some autocorrelation, since 

samples are, by definition, not completely random. 

The similar performance between the classifications trained from the small subset and small 

regional-scale samples and the much higher accuracy reported from the large regional-scale sample 

indicate that the geographic location of the sample may not be as important as the sample size in 

determining the accuracy of the supervised SVM classifications. This is notable as selecting a small 

sample from a subset area is less expensive in terms of effort than selecting a small sample from a 

regional-scale area, especially if field data collection is needed. It should also be mentioned that the 

regional-scale area in this analysis was generally homogenous, which allowed the selection of a single 

subset area that contained many examples of all four classes of interest. In areas or datasets that are 

more heterogeneous or contain extreme minority classes limited to separate geographic regions of a 

regional-scale dataset, multiple subset areas may be needed for subset-based sampling to be effective. 

The fact that the classifications trained from both small sample sets were less accurate than the large 

regional-trained benchmark classification emphasizes that large numbers of statistical-based samples 

can raise the accuracy of SVM classifications substantially.  

3.2. Performance of Cross-Validation Tuning Methods 
There was no consistent pattern for the overall accuracy of the classifications trained from the 

small subset samples and tuned using the three cross-validation methods (k-fold, Monte Carlo, and 
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leave-one-out). As seen in Figure 8a, when the SR samples were used as training data, the k-fold (KF) 

method provided slightly higher accuracy than the Monte Carlo (MC) or leave-one-out (LOO) cross-

validation. MC proved the best method for the PSTR samples. KF, MC, and LOO tuning resulted in equal 

overall accuracies for the DSTR samples. Overall, the differences in overall accuracy between the tuning 

methods on the small subset statistical-sample trained classifications was less than 1%. 

The cross-validation tuning methods using the small regional SR, PSTR, and DSTR training data 

applied to the SVM classification all showed high values for overall accuracy (Figure 8b) and inconsistent 

results for the different tuning methods, similar to the results of the small subset training data. LOO had 

slightly lower performance on the SR classifications, but this decrease in performance was also less than 

1%. The DSTR classifications had the highest overall accuracy, irrespective of the cross-validation tuning 

methods, with the MC- and LOO-tuned DSTR classifications resulting in 94.8% and the k-fold tuned-DSTR 

resulting in 94.7% overall accuracy.  

For the large-regional statistical sample-trained classifications, the MC- and KF-tuned 

classifications consistently outperformed LOO. This indicates that LOO is less effective for tuning than KF 

and MC when dealing with large statistical-based sample sets. Both MC and KF had the same overall 

accuracy for the large-regional SR, PSTR, and DSTR classifications. 

The deliberative-trained classifications for both the small subset and regional scales had much 

lower performances than the statistical based classifications. For the small-regional DL classifications, 

LOO matched the overall accuracy of KF and MC at 89.6% (Figure 8b). However, for both the small-

subset (Figure 8a) and large-regional DL classifications (Figure 8c), LOO tuning improved overall accuracy 

by 3.6% and 1.2%, respectively over the KF-DL classifications. 

The confusion matrices of the small subset-DL-KF (Table 6), MC (Table 7), and LOO (Table 8) 

show that the increase in performance of the small subset-DL-LOO classification was due to a substantial 



36 
 

increase in the producer’s accuracy of the forest class and the increased user’s accuracy of the grassland 

class, though at the cost of decreases in the other class accuracies, most notably in the grassland 

producer’s accuracy. As the forest and grassland classes combined make up 93.4% of the validation 

dataset, improving the average class accuracies of these two classes led to a marked improvement of 

the overall accuracy. 

 

Figure 8a. Overall accuracies of the small-subset SVM training data classifications using k-fold (k=10), Monte Carlo, and leave-
one-out cross-validation tuning.  

 

Figure 8b. Overall accuracies of the small-regional training data SVM classifications using k-fold (k=10), Monte Carlo, and leave-
one-out cross-validation tuning. 
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Figure 8c. Overall accuracies of the classifications using large-regional training data and k-fold (k=10), Monte Carlo, and leave-
one-out cross-validation tuning. 

 

Table 6. Confusion matrix for the classification trained with the subset-DL-KF data set. 

 

Reference data (No. objects)   

Forest Grassland Other Water Total 
User's 

accuracy 

Classified 
data (No. 
objects) 

 

Forest 7238 31 4 0 7273 99.5% 

Grassland 699 1151 85 0 1935 59.5% 

Other 136 73 479 28 716 66.9% 

Water 12 1 22 41 76 53.9% 

Total 8085 1256 590 69 10000 Overall 
accuracy:  

89.1%   
Producer's 
accuracy 89.5% 91.6% 81.2% 59.4%   

 

Table 7. Confusion Matrix for the classification trained with the subset-DL-MC data set. 

 

Reference data (No. objects)   

Forest Grassland Other Water Total 
User's 

accuracy 

Classified 
data (No. 
objects) 

 

Forest 7723 36 6 0 7265 99.4% 

Grassland 723 1133 80 0 1936 58.5% 

Other 129 86 487 29 731 66.6% 

Water 10 1 17 40 68 58.8% 

Total 8085 1256 590 69 10000 Overall 
accuracy:  

88.8%   
Producer'
s accuracy 89.3% 90.2% 82.5% 58.0%   
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Table 8. Confusion Matrix for the classification trained with the subset-DL-LOO data set. 

 

Reference data (No. objects)   

Forest Grassland Other Water Total 
User's 

accuracy 

Classified 
data (No. 
objects) 

 

Forest 7728 174 5 0 7907 97.7% 

Grassland 176 1034 95 1 1306 79.2% 

Other 176 48 466 26 716 65.1% 

Water 5 0 24 42 71 59.2% 

Total 8085 1256 590 69 10000 Overall 
accuracy:  

92.7%   
Producer's 
accuracy 95.6% 82.3% 79.0% 60.9%   

 

However, both the leave-one-out and Monte Carlo tuning required longer processing time than 

the k-fold (k = 10) cross-validation tuning (Table 9). When sample sizes become very large (n = 10,000), 

leave-one-out tuning may become prohibitively slow; though with advances in processor technology, 

this may be less of a concern for the future. 

Table 9. Processing time metrics. 

Classification Processing time (seconds) 

SVM-Subset-KF 10 

SVM-Large-Regional-KF 468 

SVM-Subset-MC 17 

SVM-Large-Regional-MC 876 

SVM-Subset-LOO 313 

SVM-Large-Regional-LOO 489,960 

 

Since no cross-validation method was consistently superior for tuning SVM classifications 

trained from the SR, PSTR, and DSTR sample sets and for all sample sets, k-fold may be the most 

effective and efficient method for cross-validation parameter tuning for SVM classifiers.  

4. Conclusions 

This investigation explored the effects sample acquisition method, sample geographic 

distribution, and cross-validation tuning methods in regional-scale land-cover classifications of HR 

remotely sensed data. Based upon the results presented in this analysis, a random sample, possibly 
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combined with stratification techniques to ensure adequate representation of minority classes within 

training sample sets, is recommended. Deliberative samples should be avoided, possibly because of the 

tendency of humans to collect excessively highly autocorrelated samples. Stehman, [57] recommends 

using an underlying systematic sampling scheme to minimize spatial autocorrelation in sample sets.  

Classifications trained from the small subset-based sample sets were found to have comparable 

performance to classifications trained from small sample sets acquired in a dispersed manner across the 

entire regional-scale study site. This is an important finding because if sample selection is expensive, 

especially if field checking is required, a relatively small sample set collected from a subset area of the 

regional-scale study area can be used. However, it is important to note that since the study area for this 

analysis was broadly homogenous, it was possible to select a single subset area that contained adequate 

examples of all four classes of interest for training data collection. In more heterogeneous 

environments, multiple subset areas may be needed to obtain the samples. Future research is needed 

on large-scale sample selection strategies in highly heterogeneous environments.  

The relative accuracy of classifications produced with k-fold (k = 10), leave-one-out, and Monte 

Carlo cross-validation tuning methods when trained with the small subset, small regional, and large 

regional SR, PSTR, and DSTR data sets were not consistent. As the Monte Carlo and leave-one-out cross-

validation tuning methods required greater processing resources and time, the k-fold cross-validation 

method may be preferable, especially for large sample sets. Regarding deliberative sampling methods, 

in both the small subset and large regional classifications, leave-one-out cross-validation tuning was 

more effective in increasing classifier performance when compared to the k-fold and Monte Carlo 

tuning. 

In summary, for large regional-scale HR classifications, deliberative sampling should be avoided 

not only for accuracy assessment data but also for training data collection. Random samples are 
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preferable, and data collected randomly from a small subset region is adequate, at least in relatively 

homogenous areas. Disproportional stratified sampling can be used to reduce the effect of imbalanced 

samples. Tuning is important, though the type of method used does not seem to have a large effect. k-

fold tuning is possibly a good choice because it is relatively rapid.  
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Chapter 3 
 

What is the Optimal Training Sample Size for Common Machine Learning Classifiers? 

Abstract 

The size of the training data set is a major determinant of classification accuracy.  Nevertheless, the 

collection of a large training data set for supervised classifiers can be a challenge, especially for regional 

studies covering a large area, which may be typical of many real world applied projects.  This work 

investigates how variations in training sample size, ranging from a very large sample (n = 10,000) to a very 

small sample (n = 40), affect the performance of five supervised machine learning algorithms applied to 

classify large, regional-scale high spatial resolution (HR) (1 – 5 m) remotely sensed data.  The performance 

of five supervised machine learning algorithms is evaluated: support vector machines (SVM), random 

forests (RF), k-nearest neighbors (k-NN), single-layer perceptron neural networks (NEU), and learning 

vector quantization (LVQ).  RF, the algorithm with the highest overall accuracy, was notable for its 

negligible decrease in overall accuracy, 0.7%, when training sample size decreased from 10,000 to 315 

samples.  NEU and SVM were the most sensitive to decreasing sample size, with NEU classifications having 

slightly higher overall accuracy than SVM classifications.  NEU however required a longer processing time.  

The k-NN classifier saw less of a drop in overall accuracy than NEU and SVM as training set size decreased, 

however the overall accuracies of k-NN were typically less than RF, NEU, and SVM classifiers.  LVQ had on 

average the lowest overall accuracy of all five methods, but was relatively insensitive to sample size, down 

to the smallest sample sizes.  Overall, due to its relatively high accuracy with small sample sets, and 

minimal variations in overall accuracy between very large and small sample sets, as well as short 

processing time, in this case, RF is a good classifier for regional-scale land-cover classifications of HR 

remotely sensed data, especially when training data are scarce. 
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1. Introduction 

One of the key determinants of classification accuracy is the training sample size (Foody et al., 

2006), with larger training sets typically resulting in superior performance compared to smaller training 

sets.  However, in applied remote sensing analyses, training data may be limited and expensive to 

obtain, especially if field observations are needed.  In circumstances where the number of training data 

is limited, it would be advantageous to know the relative dependence of machine learning classifiers on 

sample size.  For example, an analyst may want to know the potential for increased classification 

accuracy if additional resources were invested in increasing the number of training samples.  

Alternatively, if a very large sample size is available, does this potentially affect the classifier choice?  

The existing literature on training sample size and its effect on classification accuracy offers only 

partial insight into these questions.  Most previous studies comparing supervised machine learning 

classifier accuracy have used a single, fixed training sample size (Maxwell et al., 2018; Raczko and 

Zagajewski, 2017; Samaneigo and Schulz, 2009), and thus have ignored the effects of variation in sample 

size.  Conversely, investigations that have examined the effects of sample size (Foody et al., 1995; Foody 

et al., 2006; Millard and Richardson, 2015) have generally focused on a single classifier, making it 

difficult to compare the relative dependence of machine learning classifiers on sample size.   

The small number of studies that have investigated varying training set size on multiple supervised 

classifiers have generally considered only a narrow range in sample sizes, and often focused on other 

characteristics of the training set, such as class imbalance (Heydari and Mountrakis, 2018; Noi and 

Kappas, 2018) or feature set dimensionality (Myburgh and van Niekerk, 2014).  For example, an 

important study by Qian et al. (2015) investigated the effects of sample size on four machine learning 

classifiers.  However, their experiment explored only a small range of sample sizes, 25 – 200, and 

collected from a relatively small study area.  Furthermore, although they included classification and 



50 
 

regression tree (CART) classification, they did not include the popular random forest classifier.  Shang et 

al. (2018) also examined the effects of training set size on various supervised classifiers in a GEOBIA 

classification.  However, Shang et al. (2018) examined a narrow range of sample sizes, 5-50 samples per 

class.  They also conducted their investigation using Landsat-8 OLI imagery, a medium spatial resolution 

dataset, which was applied to a single district within Beijing. Furthermore, their study, like that of Qian 

et al. (2018), did not include either neural networks or k-nearest neighbors classifiers. 

 This paper therefore furthers the investigation into the effects of sample size on supervised 

classifiers by examining a broad range of training sample sizes, ranging from a very large sample size of 

10,000, with each class having a minimum of 1,000 

samples, to a very small training sample size of 40, 

where certain classes may have as few as 4 training 

samples.  The effect of sample size is compared for 

five supervised machine learning classifiers, support 

vector machines (SVM), random forests (RF), k-

nearest neighbors (k-NN), single layer perceptron 

neural networks (NEU), and learning vector 

quantization (LVQ).  The accuracy of the 

classifications is evaluated with a large, independent 

validation sample set.     

 As most previous investigations comparing 

supervised machine learning classifiers dependence 

on sample size have employed relatively small test 

areas, this analysis examines classifier response to 

varying training sample sizes when applied to classify Figure 1 - Study Area 
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a large, regional-scale high-spatial resolution (HR, 1- 5 m) remotely sensed dataset. A geographic object 

based image analysis (GEOBIA) approach is used, because GEOBIA has been found to be particularly 

effective for classifying HR remotely sensed data (Blaschke, 2010; Ma et al., 2017).  The remotely sensed 

data used includes 4-band color infrared 1 m National Agriculture Imagery Program (NAIP) 

orthoimagery, as well as 1 m light detection and ranging (LIDAR)-derived normalized digital surface 

model (nDSM) and intensity rasters.   

 

2. Study Area and Data 

2.1 Description of Study Area 

The study site is located in the state of West Virginia, USA, between latitudes 79° 55’ W and 79° 

30’ W and longitudes 39° 42’ N and 39° 0’ N, encompassing a multi-county area including Preston 

county, and portions of Monongalia, Taylor, Barbour, and Tucker counties (Figure 1).  The total size of 

the study area is 260,975 ha, which is 4.2% of the area of the entire state of West Virginia.  The terrain is 

mountainous, with elevations of 548 – 914 m, and mostly forested.   

2.2 Remotely Sensed Data 

Two types of remotely sensed data were utilized:  passive optical multi-spectral imagery, and a 

LIDAR point cloud (Figure 2).  The optical dataset comprises four-band color infrared leaf-on National 

Agriculture Imagery Program (NAIP) orthoimagery (Maxwell et al., 2017).  The spectral bands of the 

NAIP imagery include red (590–675 nm), green (500–650 nm), blue (400–580 nm), and near-infrared 

(NIR) (675–850 nm) (Maxwell et al., 2014).  The imagery has 1 m spatial resolution and 8-bit radiometric 

resolution.  The NAIP data were acquired via a series of aerial flights between July 17 and July 30, 2011.  

A small portion of the imagery, less than 3% of the total NAIP dataset, was collected on October 10, 
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2011.  The NAIP imagery were provided as 108 individual uncompressed digital orthophoto quarter 

quadrangles (DOQQs) in a tiff format.   

The LIDAR data were acquired between March 28 and April 28, 2011, using an Optech ALTM-

3100C sensor (WVU NRAC, 2013) with a 36° field of view and a pulse frequency of 70,000 Hz.  The LIDAR 

data were provided as 1164 individual .las files, containing a combined total of 5.6 x 109 points.  The 

Figure 2 – Remotely sensed datasets: (a) small subset area, showing 4-band color infrared NAIP Orthoimagery, displaying bands NIR, Red, 
Green as RGB, (b) LIDAR-derived intensity, (c) LIDAR-derived nDSM, (d) false color composite NAIP orthomosaic displaying bands NIR, 
Red, Green, as RGB, of the entire study area.  Highlighted areas “A” refers to the subset area represented in this figure, area “B” refers to 
a subset area chosen to display a sample classification area in Figure 5.  
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LIDAR point cloud data include elevation, intensity, up to four returns, and a basic classification of the 

points provided by the vendor.  A pilot investigation determined there was minimal change in the land 

cover during the approximately four months between the acquisition dates of most of the LIDAR and 

NAIP data. 

2.3 Description of Land-Cover Classes 

Four land-cover classes were mapped for this analysis, forest, grassland, water and other (Table 1). 

Table 1 - Land-Cover Classes 

Name Description 

Forest Woody vegetation 

Grassland Herbaceous and other non-woody vegetation 

Water Man-made and natural waterbodies 

Other Bare soil, exposed rock, impervious surfaces, and bare croplands 

    

3. Methods 

3.1 Data Processing 

The LIDAR tiles first were combined into a single large LIDAR point cloud file.  Elevation and 

intensity information in the LIDAR point cloud were used to develop a normalized-digital surface model 

(nDSM) and an intensity raster, respectively.  LIDAR-derived elevation and intensity surfaces have been 

demonstrated to improve the accuracy of land-cover classifications of HR multispectral imagery, 

especially if the spectral resolution of the imagery is low (Yan et al., 2015). 

The LAS to Raster function in ArcMap 10.5.1 (ESRI, 2017) was used to rasterize the LIDAR point 

cloud.  Elevation data in the LIDAR point cloud was used to first develop a bare earth digital elevation 

model (DEM) and a digital surface model from the ground and first returns, respectively.  An nDSM was 

produced by subtracting the DEM from the DSM.   
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The first intensity returns in the LIDAR point cloud were rasterized to generate an intensity 

surface using the ArcMap LAS to Raster function.  Slant range distance was not available, and thus it was 

not possible to correct for beam spreading loss or other factors.  Previous research has shown that even 

in the absence of calibration of LIDAR intensity, LIDAR intensity data are useful for land cover 

classification (Maxwell et al., 2015).  The pixel size of both the nDSM and LIDAR-intensity rasters was set 

to 1 m, matching the pixel size of the NAIP orthoimagery.    

The NAIP tiles were mosaicked and color-balanced into a single large image using the Mosaic 

Pro tool in ERDAS Imagine 2014.  As NAIP imagery comprise multiple flight lines of data acquired at 

different times of the day (Maxwell et al., 2017), radiometric variation can occur between NAIP tiles.  In 

regional-scale analyses of NAIP data, this can be a particular concern, as a larger study area is likely to 

include more radiometric variation.  Thus, color-balancing was applied during the mosaic process to 

reduce radiometric variation between the NAIP orthoimagery (Lear, 2005).  The NAIP orthomosaic was 

then clipped to the boundaries of the LIDAR rasters.  Layer stacking was then used to combine the NAIP 

and LIDAR rasters into a single layer stack containing six bands, four NAIP and two LIDAR.    

3.2 Image Segmentation 

Trimble eCognition Developer 9.3 multi-resolution segmentation (MRS) was chosen as the 

segmentation method for this analysis.  MRS is a bottom-up region-growing segmentation approach that 

partitions images into distinct image segments (Baatz and Schäpe, 2002).  Equal weighting was given to 

all six bands for the segmentation.  Prior to the segmentation, a 5 x 5 pixel median filter was applied to 

the LIDAR data, as preliminary segmentation experiments indicated that the raw LIDAR data caused a 

large number of artefacts created in the image segmentation process.  These artefacts were likely 

caused by the “sawtooth” scanning pattern of the OPTECH ALTM 3100 sensor and the 1 m rasterization 

process (Petrie and Toth, 2008).   
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The MRS algorithm has three parameters that require input from the analyst: scale, shape, and 

compactness (Baatz and Schäpe, 2002).  The scale parameter (SP) determines the size of the image 

objects, and is usually assumed to be the most important (Belgiu and Drăguţ, 2014; Drăguţ et al., 2014; 

Kim et al., 2011).  The SP value is typically chosen through trial and error (Arvor et al., 2013; Hay et al., 

2005), although that approach has been criticized as ad hoc, not replicable, and not able to guarantee a 

near-optimal value (Kim et al., 2009).  The estimation of scale parameter (ESP2) tool, an automated 

method for SP selection developed by Drăguţ et al. (2010), iteratively generates image-objects at 

multiple scale levels.  The tool then plots the rate of change of the local variance (ROC-LV) against the 

associated scale parameter.  Peaks in the ROC-LV curve indicate SPs with segment boundaries that tend 

to approximate natural and man-made features (Drăguţ et al. 2014). 

As the ESP2 tool requires a large amount of computing resources, three small areas of the study 

area were randomly selected to run the ESP2 process.  The results suggested SP values of 97, 97, and 

104, and an intermediate value of 100 was selected for the MRS segmentation.  The default shape and 

compactness parameters of 0.1 and 0.5 respectively were used, as varying these parameters did not 

appear to improve the quality of the segmentation.  The segmentation of the regional-scale dataset 

generated 474,614 image segments. 

3.3 Image Object Predictor Variables 
Unlike pixels, which are uniform in size and shape, image segments in object-based image 

analyses can include spatial as well as spectral information.  A total of 35 spectral and geometric 

predictor variables were generated for each image object (Table 2).  Spectral variables include the mean, 

mode, standard deviation, and skewness of each image band.  In addition, a separate spectral value 

Brightness was also included.  The Brightness values of objects were calculated as the mean value of the 

four NAIP bands, averaged over all the pixels in the object (Salehi et al., 2012).  NDVI was calculated 
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using the Red and NIR spectral bands from the NAIP data.  Examples of geometric variables include 

object roundness, border length, and compactness. 

Table 2 - Spectral and Geometric Attributes 

Variable type Object predictor variables Number of variables 

Spectral 
properties 

Mean (Blue, Green, Intensity, NIR, Red, nDSM),  
Mode (Blue, Green, Intensity, NIR, Red, nDSM),  

Mean Brightness  
13 

Spectral 
Indices 

Mean NDVI 1 

Texture 
measures 

Standard deviation (Blue, Green, Intensity, NIR, Red, nDSM),  
Skewness (Blue, Green, Intensity, NIR, Red, nDSM), 

12 

Geometric 
measures 

Density, Roundness, Border length, Shape index, Area, Compactness, 
Volume, Rectangular fit, Asymmetry 

9 

Total  35 

 

3.4 Sample Data Collection 

Two large sample sets each containing 10,000 samples were collected from across the entire 

regional-scale dataset.  One large sample set was used as training data while the other large sample set 

was used as an independent validation set used for testing the classifier accuracies, and was not used in 

training.  As this analysis was conducted in a GEOBIA framework, image-objects were the sampling unit.  

Image objects were found to almost always represent a single class.  In the rare instances that they did 

not, the majority class within the object was used as the class label. 

Simple random sampling was used to acquire the validation dataset (Ramezan et al., 2019).  

Simple random sampling has the benefit that the population error matrix can be estimated directly from 

the sample statistics (Stehman and Foody, 2009).  The size of the validation sample set (n = 10,000) was 
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approximately 2.1% of the regional-scale population.  Image-objects were manually labeled by the 

analyst.   

The training sample set were then collected from the regional-scale dataset.  To ensure the 

independence of the validation dataset, the image-objects in the validation dataset were removed from 

the population before collecting the training dataset.  As the study is overwhelmingly dominated by the 

forest class, the proportions of the classes in the image did not allow for an equalized stratified 

sampling. Therefore, disproportional stratified random sampling was used to ensure adequate 

representation of extreme minority classes in the training sets.  Disproportional stratified random 

sampling involves the selection of samples from pre-defined strata, where each member of the stratum 

has an equal probability of being selected, but the size of the strata is defined by the analyst.  Previous 

research has indicated that disproportional stratified random sampling is an effective approach for 

training data collection in regional-scale supervised land-cover classifications of HR remotely sensed 

data (Ramezan et al., 2019).  Randomly collected training data improves the representativeness of the 

samples, and the disproportional stratified approach can reduce class imbalance (Ramezan et al., 2019).  

For this study, the strata sizes were defined as 50% Forest, 20% Grassland, 20% Other, and 10% Water.     
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The large training sample set (n = 10,000) 

(Figure 3) was randomly subset into a series of smaller 

training sets, with each subset independently chosen 

from the original 10,000, and each successive set 

approximately half the size of the preceding larger set.  

This resulted in training sets of size 10,000, 5,000, 2,500, 

1,250, 626, 315, 159, 80, 40 (Class strata proportions 

were maintained for each sample set, which explains 

why each successively smaller sample is not exactly half 

of the larger set).  The smallest training sample used 

was 40, because a preliminary analysis showed that 

sample sizes smaller than 40 caused problems with the 

cross-validation parameter tuning due to the small 

number of samples in the Water class. Table 3 

summarizes the training sample sets and the validation 

dataset.  

 

 

 

 

 

 

Figure 3 - Location of training sample polygons (n = 10,000).  
(Note:  Each sample is indicated by a uniformed-size dot; the size 
and shape of the associated polygon is unrelated to the size and 
shape of the dot).   
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Table 3 - Training and validation data sample sizes 

Purpose Number of image-objects by class Total sample size 

Forest Grass Other Water 

 

 

 

 

 

 

 

 

Training 

       

5,000  

        

2,000  

        

2,000  

        

1,000  

                             

10,000  

       

2,500  

        

1,000  

        

1,000  

           

500  

                               

5,000  

       

1,250  

           

500  

           

500  

           

250  

                               

2,500  

          

625  

           

250  

           

250  

           

125  

                               

1,250  

          

313  

           

125  

           

125  

              

63  

                                   

626  

          

157  

              

63  

              

63  

              

32  

                                   

315  

             

79  

              

32  

              

32  

              

16  

                                   

159  

             

40  

              

16  

              

16  

                

8  

                                     

80  

             

20  

                

8  

                

8  

                

4  

                                     

40  

 

Validation 

       

8,085  

        

1,256  

           

590  

              

69  

 

10,000  

 

3.5 Supervised Classifications 
Five supervised machine learning classifiers were compared in this study.  The classifications 

were performed on each training dataset and evaluated against the regional-scale validation dataset.   

The classifications were performed within R 3.5.1 and R Studio 1.1.383; Table 4 lists the associated R 

packages.   
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Table 4 - List of R packages used 

Machine 
Learning 
Classifier 

Description R Package Reference 

SVM Radial basis function (RBF) kernel support 
vector machines 

e1071 & 
caret 

Meyer et al., 
2012; Kuhn, 2016 

RF Fast implementation random forests suited 
for high dimensional data 

ranger & 
caret 

Wright and 
Zeigler, 2015; 

Kuhn, 2016 

k-NN Instance-based learning model using 
Euclidean distance  

caret Kuhn, 2016 

NEU Single-layer perceptron feed-forward 
neural networks  

nnet & 
caret 

Ripley and 
Venables, 2015; 

Kuhn, 2016 
LVQ Moving codebook vectors class & 

caret 
Ripley and 

Venables, 2015; 
Kuhn, 2016 

 

3.5.1 Support Vector Machines (SVM) Classification 

SVM is a non-parametric, supervised machine learning algorithm that seeks a hyperplane 

boundary to separate classes (Cortes and Vapnik, 1995; Pal, 2012).  A distinctive feature of SVM is that 

the location of the hyperplane is determined by the training samples closest to the hyperplane, termed 

support vectors; other training samples are ignored.  The optimization maximizes the margin of the 

hyperplane between the support vectors of the different classes, which is why SVM is sometimes 

referred to as a maximum margin classifier (Mountrakis et al., 2010).  SVM is a binary classification 

method, so the classifier must be applied repeatedly for all possible combinations of classes.  In 

addition, as the hyperplane is a linear decision boundary, and many classes are not linearly separable, 

SVM transforms the feature space to a higher dimension where the data may be linearly separable 

(Maxwell et al., 2018).  This transformation is called the kernel trick.  There is a variety of kernel types; 

we use a radial basis function kernel (RBF), a kernel commonly used in remote sensing (Maxwell et al., 

2018; Mountrakis et al., 2010; Pal, 2012) and typically employed as a baseline for evaluating the 

performance of new SVM kernels (Sharma et al., 2016; Zhu and Blumberg, 2002).  
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3.5.2 Random Forest (RF) Classification 

RF is an ensemble machine learning classifier that uses a large number of decision trees, each of 

which is given random subsets of the training data and predictor variables (Belgiu and Drăguţ, 2016).  

The decisions trees in the ensemble are produced independently and, unlike typical classification using a 

single decision tree, are not pruned.  An internal cross-validation holdout process is used to estimate the 

performance of each tree in the forest.  After training, each unknown sample is classified based on the 

majority vote of the ensemble (Kulkarni and Lowe, 2016).  RF is a commonly used classification method 

in remote sensing analyses (Chen and Cheng, 2016; Gislason et al., 2004; Ramo and Chuvieco, 2017; Pal, 

2005; Maxwell et al., 2018), and has become increasingly popular due to its superior classification 

accuracies compared to other commonly used classifiers such as single decision trees (Pal, 2005).  

Additionally, the RF classifier can be attractive to remote sensing scientists due to its ability to handle 

high dimensional datasets, an important consideration for hyperspectral and object-oriented datasets 

(Ham et al., 2005; Maxwell et al., 2018).        

3.5.3 k-Nearest Neighbors (k-NN) Classification 

 The k-NN is a non-parametric classifier, which assigns class membership to new data inputs 

based upon their proximity to the k closest pre-labeled training data in the feature space.  Lower k-

values produce more complex decision boundaries, while larger k-values increase generalization 

(Maxwell et al., 2018; Everitt et al., 2011).  K-NN is often described as a lazy learning classifier because it 

is not trained; unknowns are compared directly to the training data (Seetha, et al., 2012).  

3.5.4 Neural Networks (NEU) Classification 

NEU classifiers use a series of neurons, organized into layers.  All neurons in neighboring layers 

are connected to each other by matrices of weights.  Input layer neurons correspond to predictor 

variables, while output layer neurons correspond to classes (Maxwell et al., 2018).  The neural network 

is trained by iteratively adjusting the weights to improve the classification, as the training data pass 

through layers.  A feed-forward neural network with a single hidden layer is used in this analysis.  Data in 



62 
 

this neural network moves only mono-directionally (forward), and uses only one single layer between 

the input and output layers (Ripley and Venables, 2016).    

3.5.5 Learning Vector Quantization (LVQ) Classification 

LVQ is a classifier that assigns membership to unseen examples using a series of codebook or 

prototype vectors within the feature space.  Codebook vectors are typically randomly selected training 

data.  Training samples in the LVQ algorithm are processed one at a time and are evaluated against the 

most similar codebook vector in the feature space.  If the selected training sample has the same class as 

the codebook vector, a winner-take-all strategy is pursued, where the “winning” codebook vector is 

moved closer to the training sample.  If the codebook vector does not have the same output as the 

training sample, the codebook vector is moved further away from the selected training sample in the 

feature space.  This process is repeated until all codebook vectors have been evaluated against all 

training samples.  Once the codebook vectors have been trained, the rest of the training data are 

discarded.  The LVQ classifier predicts unseen examples in a similar manner to k-NN, except the 

codebook vectors are used for making predictions, rather than the full training data set.  While LVQ is 

not commonly used in remote sensing analyses, it is a widely used classifier in many other fields because 

of its clear and intuitive learning process and ease of implementation (Grbovic and Vucetic, 2009). 

3.6 Cross-Validation Parameter Tuning  
  

Many supervised machine learning algorithms are parameterized, so they can be optimized for a 

specific objective or dataset (Karatzoglou et al., 2006).  The selection of classifier parameters is an 

important stage of the classification process.  However, as it is normally not possible to predict optimal 

values for these parameters, empirical cross-validation methods are typically employed (Brownlee, 

2014; Heydari and Mountrakis, 2018; Ramezan et al. 2019).   
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Table 5 - Parameter tuning results 

 

 

K-fold cross validation testing was used for parameter tuning (Ramezan et al., 2019).  Kappa was 

used to evaluate model parameters instead of overall accuracy, as several cross-validation models 

reported identical overall accuracy values, but different kappa coefficient values.  Table 5 shows the 

optimal parameters for each classification.     

After the optimal parameters for each classification were estimated, classifications were 

conducted for all five machine learning classifiers (SVM, RF, k-NN, NEU, LVQ), trained from each of the 

nine different sets, which varied in sample size (40, 80, 159, 315, 626, 1,250, 2,500, 5,000, 10,000 

training samples), producing 45 separate classifications.  Classifications were run on a custom 

workstation with an Intel Core i5-6600K Quad-Core Skylake processor and 32.0 GB of GDDR5 memory, 

and a Samsung 970 EVO NVMe 256 GB M.2. SSD running Windows 10 Pro.  Processing time for all 

Classifier  Parameter Parameter value by sample size 

 Sample Size 40 80 159 315 626 1250 2500 5000 10000 

SVM Sigma 0.0302 0.0343 0.0397 0.0342 0.0338 0.0305 0.036 0.0355  0.0355 

 C 2 4 4 8 2 4 8 4  8 

           

RF num.trees 100 100 100 100 100 100 100 100 100 

 mtry 9 20 13 13 13 13 28 24 13 

           

k-NN k 5 5 7 5 5 9 9 7  9 

           

NEU size 5 15 9 19 15 17 17 17  7 

 decay 0.0075 0.1 0.0075 0.0001 0.0075 0.0178 0.1 0.1  0.1 

           

LVQ size 37 56 45 37 45 68 64 68  68 

 k 1 6 6 6 6 11 1 6  31 
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classifications were recorded using the microbenchmark package (Ulrich, 2018).  The processing time 

statistics are of interest as relative, and not absolute, values as processing time is highly dependent on a 

variety of factors such as system architecture, CPU allocation, memory availability, background system 

processes, among other factors.        

3.7 Error Assessment 
The classifications were evaluated against a large randomly sampled validation dataset consisting of 

10,000 image-objects.  As mentioned above, the pixels within image objects generally belonged to a 

single class. In the rare instances that more than one class was present in a single image object, the 

object was labeled based on the majority class.  Results for each classification were reported in a 

confusion matrix.  Overall map accuracy as well as user’s and producer’s accuracies were calculated, as 

well as the kappa coefficient.  McNemar’s test (McNemar, 1947) was used to evaluate the statistical 

significance of differences observed between classifications trained from sample sets of varying sizes.  

McNemar’s test is a non-parametric evaluation of the statistical significance of differences between two 

classifications evaluated using related data.   A p-value less than 0.05 specifies a one-sided 95% 

confidence that the differences in accuracy between the two classifications are statistically significant.  

McNemar’s test was conducted between classifications using the same machine learning method, 

resulting in 180 individual tests.  The full results of the McNemar’s tests can be found in Appendix A. 

4. Results and Discussion 
Figure 4 summarizes the overall dependence of the five classification methods on sample size.  

RF is notable for consistently achieving higher overall accuracy than the other four machine learning 

algorithms, for all sample sizes.  Fassnacht et al. (2014) also found that RF outperformed other classifiers 

such as SVM and k-NN, especially when large training sample sizes were used.  RF saw its highest overall 

accuracy when trained from the 10,000 sample set (99.8%), and its lowest accuracy when the training 

sample size was only 40 (95.6%).  However, the difference between the overall accuracy of these 
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classifications was only 4.2%, which was the second lowest difference between the highest and lowest 

performing classifications of all five machine learning classifiers, after LVQ, though the latter generally 

had low accuracy.   

 

Figure 4 - Overall accuracy and training set size.  Note that the x-axis is on a log-scale. 

While the overall accuracy of the RF classifier increased as training sample size increased, the RF 

overall accuracy began to plateau when the sample size reached 626.  The difference in accuracy 

between RF classifications using 626 and 10,000 samples was just 0.3%.  Furthermore, the difference in 

accuracy for classifications between 2,500 and 5,000 samples was not statistically significant, though all 

other differences in accuracy for RF with different samples sizes were significant.  This plateauing of the 

accuracy is perhaps not all that surprising; when classifications reach very high accuracy, there is little 

potential for further increases in accuracy.   
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  The NEU classifier was generally the second most accurate classifier (Figure 4).  NEU provided its 

highest accuracy (98.7%) when trained from the 10,000 sample set, and the overall classification 

accuracy decreased only 1.0% as the number of samples fell from 10,000 to 1,250 and 10,000.  However, 

as the sample size was smaller than 1,250, the performance of the NEU classifier decreased rapidly.  The 

lowest overall accuracy of all NEU classifications, 89.4% was the NEU classification trained from 40 

samples. Of the five machine learning algorithms investigated in this study, NEU had the largest overall 

difference in accuracy between the classifications trained from 10,000 and 40 samples, 9.3%. It is 

notable that the threshold number of samples, below which the NEU classifier is most sensitive to 

sample size, was 1,250 samples or 0.26% of the population of the total study area.  This threshold was 

very similar to the observation by Noi and Kappas (2017); and Colditz, (2015), who both found that 

overall accuracy of several machine learning classifiers began to decrease when sample size was smaller 

than a threshold of 0.25% of the study area.  While Noi and Kappas (2017) observed this threshold was 

similar for three different machine learning classifiers, including RF, in this case, the thresholds for RF 

and LVQ classifiers are lower than that of NEU. 

  It should also be mentioned that while NEU performed very well when trained from large 

sample sets, almost equaling the performance of the RF, the NEU classifier was much slower than the 

other four classification methods. (Table 6) summarizes the runtime metrics for training and predicting 

processes for all classifications.  The processing time for NEU is almost two orders of magnitude slower 

than RF, k-NN, and SVM, which is an important consideration in regional analyses, with very large 

datasets.  Long processing times of NEU classifiers compared to other supervised machine learning 

algorithms was also noted in Maxwell et al. (2018).   
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Table 6 - Processing metrics (in seconds) for the five classifiers.  Processing time ratio is the time for processing 10,000 samples 
as a multiple of the time for 40 samples. 

Training Sample Size  Processing time (s) 
SVM RF k-NN NEU LVQ 

10,000 302.1 78.4 36.1 4379.4 2528.5 

5,000 105.6 35.2 12.5 2231.4 738.1 

2,500 33.7 16.7 4.5 1118.5 211.0 

1,250 12.7 8.6 2.2 543.2 75.0 

626 5.8 4.5 1.4 320.7 33.7 

315 3.3 2.8 1.1 163.0 19.4 

159 2.3 2.1 0.9 119.4 13.8 

80 2.0 1.7 0.9 99.0 10.5 

40 1.9 1.6 0.9 84.1 1.5 

Processing time ratio  162 50 41 52 1744 

 

  The SVM classifier was typically the third best performing classifier when the sample size was 

between 315 and 10,000.  When the sample size was increased from 5,000 to 10,000, SVM had the 

largest increase in performance, 1.1%, compared to the other four classifications methods, which saw 

increases of 0.1% to 0.7%.  This is notable, as it suggests that SVM benefits from very large sample sets 

(n = 10,000), and does not plateau in accuracy as much as RF and NEU classifiers do when the sample 

size becomes very large (e.g. 10,000).  This is likely due to larger samples containing more examples in 

the feature space that can be used as support vectors to optimize the hyperplane and thus identify a 

more optimal class decision boundary.    

  However, when trained from just 80 samples, SVM generated the lowest overall accuracy of all 

the classifications (88.7%), irrespective of the sample size or method.  In contrast to the overall trend, 

reducing the sample size to 40 samples actually increased the accuracy of the SVM classifier to 91.8%.  

As indicated in Tables 7 and 8, the lower performance of SVM trained with 80 samples compared to SV 

trained with 40 samples was partly due the former classification’s lower user’s and producer’s 

accuracies for grassland and lower producer’s accuracy for forest.  It is surprising that these two classes, 

the largest classes by area, should vary so in accuracy.  However, since the samples are selected 
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randomly, and SVM focuses exclusively on support vectors (i.e. potentially confused samples) for 

separating classes, it suggests SVM may be inherently more inconsistent in its likely accuracy at any 

sample size.  For the SVM trained with just 40 samples, the water class, which has only 4 training 

samples, resulted in the lowest producer’s accuracy, just 40%.  This is evident in Figure 5 (b), where SVM 

classification trained with 40 samples has many areas within the central river incorrectly mapped as 

other, unlike the SVM trained with 80 samples (Figure 5 (a)).   These observations regarding SVM class 

accuracy further stress the value of larger sample sets for SVM classifications. Table 7 - Confusion Matrix 

for the SVM classification trained from 80 samples 

  

Reference Data (No. Objects)   

Forest Grassland Other Water Total User's Accuracy 

Classified 
Data 
(No. 

Objects) 
 

Forest 7336 68 8 0 7412 99.0% 

Grassland 514 991 54 0 1559 63.6% 

Other 229 196 504 30 959 52.6% 

Water 6 1 24 39 70 55.7% 

Total 8085 1256 590 69 10000  Overall 
Accuracy:  

88.7%   Producer's Accuracy 90.7% 78.9% 85.4% 56.5%   

 

Table 8 - Confusion Matrix for the SVM classification trained from 40 samples 

  

Reference Data (No. Objects)   

Forest Grassland Other Water Total User's Accuracy 

Classified 
Data 
(No. 

Objects) 
 

Forest 7655 153 42 1 7851 97.5% 

Grassland 277 1063 98 1 1439 73.9% 

Other 145 40 434 39 658 66.0% 

Water 8 0 16 28 52 53.8% 

Total 8085 1256 590 69 10000  Overall 
Accuracy:  

91.8%   Producer's Accuracy 94.7% 84.6% 73.6% 40.6%   

 

  k-NN was the fourth best performing machine learning classifier for larger sample sizes, ranging 

from 626 to 10,000.  While k-NN accuracy generally decreased as the sample size became smaller, k-NN 

was even more erratic in its overall trend than SVM.  In two separate instances, k-NN classifications 
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trained from a smaller sample size produced a higher overall accuracy than k-NN classifications trained 

from double, or even triple, the sample size.  For example, k-NN trained with 2500 samples had an 

overall accuracy of 95.1%, which was 0.6% higher than the overall accuracy of k-NN trained with 5000 

samples.  Similarly, the k-NN classification trained with 159 samples had a higher accuracy (94.0%) than 

when trained with 315 samples (92.8%), and an equivalent overall accuracy to when it was trained with 

626 samples.  This suggests that k-NN is somewhat inconsistent generalizer, and may be sensitive in 

random variations in the training data.  One interesting observation with k-NN is that, despite being a 

lazy learning classifier, requiring each unknown to be compared to the original training data, it was 

consistently the fastest classifier, and furthermore, the processing time was the least affected by 

training sample size (Table 6).  This is shown by the fact processing with 10,000 samples took only 41 

times as long as with 40 samples.  In comparison, RF took 50 times, SVM 162 times and LVQ 1,744 times 

as long.   

 

Figure 5 – Example of land-cover classifications: Sample classification area depicted in this figure is highlighted in Figure 1 (d) as 
area “B”: (a) SVM trained with 80 samples, (b) SVM trained with 40 samples. 

 

  Except for SVM trained with 80 samples, LVQ had the lowest accuracy across all sample sizes.  

The performance gap between LVQ and the other four classifiers increased with sample size, because 
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the overall accuracy of LVQ plateaued when the sample size reached 159.  Indeed, LVQ overall accuracy 

remained almost unchanged when the sample size increased from 159 to 10,000, with less than a 0.4% 

difference between all classifications, and none of the differences between classification accuracies 

trained on successively larger samples was statistically significant (Appendix A).  Out of the five 

classification methods, LVQ also showed the lowest difference in overall accuracy between its most 

accurate classifications, those trained with 2500 and 1250 samples, which both had an accuracy of 

93.3%, and the lowest performing classification, trained with 40 samples, at 89.2%.  This indicates that 

LVQ is less sensitive to sample size than the other four classification algorithms.  Nevertheless, LVQ 

processing time was the most sensitive to sample size, increasing 1,744 fold, as the sample size 

increased from 40 to 10,000 samples. 

5. Conclusion 

This analysis explored the effects of training sample size, varying from 40 to 10,000, on five 

supervised machine learning algorithms, SVM, RF, k-NN, NEU, LVQ, to classify a regional-scale HR 

remotely sensed dataset.  Although it is well known from previous studies that larger training sets 

typically provide superior classification performance over smaller training sets (Foody et al., 2006), our 

study found considerable variation in how five machine learning classifiers responded to changes in 

training sample size.  Furthermore, our study extends previous comparisons of machine learning 

classifier dependence on sample size (e.g., Qian et al., 2015 and Shang et al., 2018) by incorporating RF, 

SVM, NEU and k-NN, which tend to be amongst the most commonly used classifiers (Maxwell et al., 

2018) as well as LVQ, a method widely used in non-remote sensing disciplines.  We also evaluate 

performance over a very large range compared to previous studies.   

Overall, given RF’s superior performance over the other machine learning algorithms across all 

sample sizes, RF appears to be the best choice for constructing regional-scale land-cover classifications 
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using HR remotely sensed data.  RF was found to be one of the most robust classifiers to decreases in 

training sample size, so much so, that it outperformed several other supervised classification 

approaches even when the other classifiers were given much larger training sets.  In this case, RF using 

315 samples provided a higher overall accuracy than the other four classification methods, even when 

given more than 30 times the number of training samples.  Thus, RF is a particularly good choice if there 

are only limited training data.  RF was also the second fastest classifier, after k-NN.  Along with k-NN, 

and NEU, RF processing time was the least affected by increasing numbers of training samples (Table 6).  

Although this paper has not focused on the other attributes of RF, it is worth noting that RF offers the 

benefits of an estimate of classification accuracy (the so-called out-of-bag accuracy), and variable 

importance (Maxwell et al., 2018).  Finally, RF is relatively straightforward to parameterize.  In this 

study, we optimized only the number of decision trees (i.e, the num.tree variable), though the result is 

not particularly dependent on the number used, as long as it is large (Maxwell et al., 2018). 

NEU was found to be generally the second-most accurate classifier, especially for classifications 

using a larger number of samples (315 and above).  NEU was however was the classifier most affected 

by sample size.  Therefore, if using NEU, it is particularly important to get the largest training sample 

data set possible.  Unfortunately, though, NEU was also the slowest classifier, as much as 2 orders of 

magnitude slower than the other methods.  Thus, even if a large training data set is available, making 

NEU accuracy competitive with that of RF, the slow processing time makes NEU unattractive.   

SVM and k-NN were generally (though not always) the third and fourth-most accurate classifiers.  

Although they both showed the general pattern of declining accuracies with smaller sample sizes, the 

pattern was inconsistent, perhaps indicating that these two methods are more sensitive to the 

particular values of each training sample chosen, which is particularly a factor for smaller sample sizes.  

It is notable that the water class, which had the fewest samples, varied the most in accuracy in Tables 7 
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and 8.  One benefit of k-NN is that it was the fastest classifier, and processing time was the least 

sensitive to the number of training samples. 

LVQ was the method with overall accuracies least affected by sample size:  overall accuracy 

essentially was unchanged for sample sizes of 159 and larger.   Nevertheless, this method’s processing 

time was the most affected by the number of training samples.  Thus, for LVQ there is a strong 

disincentive to using a large sample. 

In conclusion, machine learning methods vary considerably in their response to changes in sample 

size.  Nevertheless, in this case, RF appeared to be the best all-round choice as a classifier.  The insights 

provided by this analysis can be valuable for informing decision analysis on classifier selection given a 

particular training set size in future applied remote sensing projects. 
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Appendix A   

SVM 

SVM-10000 SVM-5000 SVM-2500 SVM-1250 SVM-625 SVM-315 SVM-159 SVM-80 SVM-40   

  < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 SVM-10000 

    0.6917 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 SVM-5000 

     < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 SVM-2500 

      < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 SVM-1250 

       < 0.001 < 0.001 < 0.001 < 0.001 SVM-625 

        0.02 < 0.001 < 0.001 SVM-315 

         < 0.001 < 0.001 SVM-159 

          < 0.001 SVM-80 

                  SVM-40 

          

RF 

RF-10000 RF-5000 RF-2500 RF-1250 RF-625 RF-315 RF-159 RF-80 RF-40   

  < 0.001 0.007 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 RF-10000 

    0.571 0.002 0.001 < 0.001 < 0.001 < 0.001 < 0.001 RF-5000 

     0.01246 0.01038 < 0.001 < 0.001 < 0.001 < 0.001 RF-2500 

      < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 RF-1250 
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       < 0.001 < 0.001 < 0.001 < 0.001 RF-625 

        < 0.001 < 0.001 < 0.001 RF-315 

         < 0.001 < 0.001 RF-159 

          < 0.001 RF-80 

                  RF-40 

          

k-NN 

k-NN-10000 k-NN-5000 k-NN-2500 k-NN-1250 k-NN-625 k-NN-315 k-NN-159 k-NN-80 k-NN-40   

  < 0.001 0.3612 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 k-NN-10000 

    0.01127 0.214 0.003 < 0.001 0.007 < 0.001 < 0.001 k-NN-5000 

     < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 k-NN-2500 

      0.0644 < 0.001 0.09 < 0.001 < 0.001 k-NN-1250 

       < 0.001 < 0.001 < 0.001 < 0.001 k-NN-625 

        < 0.001 < 0.001 < 0.001 k-NN-315 

         < 0.001 < 0.001 k-NN-159 

          < 0.001 k-NN-80 

                  k-NN-40 

          

NEU 

NEU-10000 NEU-5000 NEU-2500 NEU-1250 NEU-625 NEU-315 NEU-159 NEU-80 NEU-40   

  0.0388 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 NEU-10000 

    0.02261 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 NEU-5000 

     0.004 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 NEU-2500 

      < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 NEU-1250 

       < 0.001 < 0.001 < 0.001 < 0.001 NEU-625 

        < 0.001 < 0.001 < 0.001 NEU-315 

         < 0.001 < 0.001 NEU-159 

          < 0.001 NEU-80 

                  NEU-40 

          

LVQ 

LVQ-10000 LVQ-5000 LVQ-2500 LVQ-1250 LVQ-625 LVQ-315 LVQ-159 LVQ-80 LVQ-40   

  0.5656 0.517 0.5465 0.6353 0.3845 0.4568 < 0.001 < 0.001 LVQ-10000 

    0.1856 0.2036 0.268 0.8118 0.8933 < 0.001 < 0.001 LVQ-5000 

     0.9 0.8855 0.1446 0.1556 < 0.001 < 0.001 LVQ-2500 

      0.9236 0.1551 0.1888 < 0.001 < 0.001 LVQ-1250 

       0.182 0.2309 < 0.001 < 0.001 LVQ-625 

        0.9317 < 0.001 < 0.001 LVQ-315 

         < 0.001 < 0.001 LVQ-159 

          < 0.001 LVQ-80 

                  LVQ-40 
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Chapter 4 
 

Recursive Feature Elimination applied to Supervised Machine Learning Classification:  Training samples 

size and the Hughes Phenomenon  

 

 

Abstract 
Many remotely sensed datasets, such as hyperspectral imagery or geographic object-based image 

analysis (GEOBIA) data, incorporate a large number of predictor variables.  However, when training data 

are limited, reducing the data dimensionality generally improves the accuracy of the classification, a 

phenomenon commonly known as the Hughes phenomenon.  Feature selection methods such as 

recursive feature elimination (RFE) are therefore sometimes used to reduce the data dimensionality by 

eliminating redundant, noisy, or other features that do not contribute to the performance of the 

classifier.  While RFE has been used in a number of experiments, investigations examining RFE typically 

use a static sample size, or only examine a single supervised machine learning classifier.  This analysis 

therefore investigates the effect of RFE on the accuracy of three commonly used supervised machine 

learning algorithms, support vector machines (SVM), random forests (RF), and single-layer perceptron 

neural networks (NEU), trained from sample sets of varying size, ranging from a very small sample (n = 

40) to a very large sample (n = 10,000).  A GEOBIA approach was adopted, using high spatial resolution 

passive optical multispectral National Agricultural Imagery Program (NAIP) orthoimagery and LIDAR-

derived raster grids, covering a 2,609 km2 regional-scale study area in northeastern West Virginia, USA.  

RFE was found to consistently improve the overall accuracy of SVM and NEU classifiers, with the highest 

performance increase at 5.1% for the SVM classification trained from 40 samples, however the benefit 

of feature selection diminished as sample size increased.  Overall, RF consistently provided the highest 

overall accuracy for any training sample size, and even outperformed SVM and NEU trained with RFE-

optimized feature sets.  Furthermore, RFE resulted in only a small improvement of RF classification 

accuracy.  Thus, RF was more robust to the Hughes phenomenon than SVM or NEU.  In summary, 

feature selection can result in a notable improvement in classification accuracy, and should be included 

in best practices for machine learning remote sensing analyses.   
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1. Introduction 

1.1 Supervised Machine Learning and the Hughes Phenomenon 
Many remotely sensed datasets incorporate a large number of predictor variables or features 

(Huang et al., 2017).  Hyperspectral imagery has, by definition, many bands.  Geographic object based 

image analysis (GEOBIA) data also tend to have high feature dimensionality, for example, including 

spectral, spatial, geometric, and other properties.  Although increasing the number of predictor 

variables has the potential to improve the separability of classes (Ramezan et al. 2019b), Hughes (1968) 

showed that as the number of dimensions in a feature space increases, the number of training samples 

needed to maintain statistical confidence for a parametric classifier also increases.  Thus, for a fixed 

number of training samples, adding more and more variables will eventually cause the classification 

accuracy to decline (Alonso et al., 2011; Thenkabail et al., 2014).  This phenomenon is often referred to 

as the curse of dimensionality, or the Hughes phenomenon, despite the fact that criticisms have been 

raised regarding Hughes’ original formulation of the issue (Van Campenhout, 1978). 

The Hughes phenomenon is important in remote sensing because training data are often 

limited, for example, if field observations are required, and the study area is large or transportation 

between sites is difficult.  Reducing the number of predictor variables to minimize the likelihood of the 

Hughes phenomenon affecting the classification accuracy is a widely discussed topic in remote sensing 

literature (Warner et al., 1999).  Two of the most popular remote sensing strategies for data 

dimensionality reduction are feature extraction and feature selection.  Feature extraction involves a 

transformation of the original features to create a new feature set in which most of the useful 

information is represented by a smaller number of features.  Feature selection, on the other hand, is the 

selection of a subset of the original bands that is assumed to carry most of the information.  Principal 

component analysis (PCA) and linear discriminant analysis are commonly used feature extraction 

methods.  For example, Imani and Ghassemian (2015) used feature extraction methods including linear 
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discriminant analysis to improve an SVM classification of hyperspectral data.  While feature extraction 

methods have proven to be useful in some remote sensing analyses, feature selection is sometimes a 

preferred method over feature extraction as the transformed features created by feature extraction can 

be difficult to interpret (Yu, 2003).  

1.2 Feature Selection Methods 
Feature selection methods can be divided into three groups: filter, embedded, and wrapper 

methods.  Filter methods generally use independent statistical tests such as chi-square or analysis of 

variance (ANOVA) tests to rank the importance of features based upon an independent, generalized 

performance criterion such as information gain, or Fisher score (Jović et al., 2015). Filter-based feature 

selection methods are computationally efficient compared to wrapper or embedded methods as they do 

not require iterative testing of machine learning classification models.  However, as filter-based feature 

selection is conducted using metrics that are not necessarily relevant to the discriminant function of the 

subsequent classification, the derived feature sets are not necessarily optimal (Kaushik, 2016). 

Embedded methods incorporate the feature selection process into the machine learning 

algorithm itself.  Popular examples of embedded feature selection algorithms are LASSO and RIDGE 

regression (Kaushik, 2016), as well as classification and regression trees (CART) (Breiman et al., 1984).  

Although embedded methods have been used in remote sensing analyses, such as Yu et al.’s (2006) 

object-based classification of HR aerial imagery, Bittencourt and Clarke’s (2003) land-cover classification 

of Landsat-TM and AVIRIS imagery, or Archibald and Fann’s (2007) classification of hyperspectral AVIRIS 

imagery, embedded feature selection is conducted as part of the classification process, and is native to 

classification method.  As embedded methods are classifiers in themselves, optimized feature sets 

derived using embedded methods cannot be used in other machine learning algorithms, and are 

therefore inherently limited in their general application.  Thus, they are considered to be not as flexible 

as wrapper-based methods (Jović et al., 2015).  
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The third approach, wrapper-based methods, constructs predictive models via a machine 

learning classifier using subsets of the original feature set.  Cross-validation techniques are used to hold 

out part of the training set to test the performance of the models.  The model with the highest accuracy 

is assumed to be the optimum choice.  Forward selection and backwards elimination methods such as 

recursive feature elimination (RFE) are examples of common wrapper-based feature selection methods. 

One drawback with wrapper-based methods is that because they involve iterative testing of different 

combinations of the feature set, they tend to be computationally intensive, especially if the 

dimensionality of the dataset is high. With constant advances in computing power (i.e. CPU clock speed, 

floating-point operations per second [flops]) this issue is becoming less of a concern.   

Wrapper-based methods are popular because feature variables are evaluated using machine 

learning algorithms, and do not rely on a generic performance criterion, like filter-based methods.  

Furthermore, while wrapper-based methods use a machine learning classification for feature selection, 

unlike embedded methods, the optimized feature set is not tied to the classification method used in the 

feature selection process, and can be applied to a variety supervised machine learning algorithms (Jović 

et al., 2015).  Thus, wrapper-based methods may be particularly attractive for remote sensing 

applications, given the wide variety of machine learning algorithms that can be used to classify remotely 

sensed datasets (Maxwell et al., 2018; Ramezan et al., 2019b).  

This work therefore focuses on a wrapper-based feature selection method because of the wide 

potential application and high general reliability of the approach.  Recursive feature elimination (RFE) 

(Kuhn, 2016) is used because it is adaptable to most machine learning methods.  For example, Stevens 

et al. (2013) used random forest (RF) RFE to improve the prediction of soil organic carbon using 

reflectance data acquired from visible and near infrared spectroscopy.  Guan et al. (2012) used RFE to 

improve a high resolution land-cover random forest classification using LIDAR data and orthoimagery.  

Colkesen and Kavzoglu (2016) used a SVM-RFE approach to increase the accuracy of a classification 
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using hyperspectral AVIRIS data.  In addition to being a popular method for improving supervised 

classification accuracy, RFE is often used as a baseline feature selection method for evaluating new 

feature selection methods in remote sensing analyses.  For example, Zhang and Ma (2009) used SVM-

RFE to evaluate a new feature selection algorithm, modified recursive SVM (MR-SVM).   

While RFE has been demonstrated to improve the accuracy of a number of supervised machine 

learning classifiers, and has been previously used for feature selection in HR remote sensing analyses, 

most studies that examine RFE and its effect on classification accuracy use a static sample size (Colkesen 

and Kavzoglu, 2016; Huang et al., 2014).  One exception is Pal and Foody (2010), who examined the RFE 

process on a supervised classifier using multiple sample sizes.  However, their range of sample size was 

relatively narrow, and only focused on a single supervised classifier, SVM. 

1.3 Research Aims 
 This study investigates feature selection using recursive feature elimination, the Hughes 

phenomenon, and three machine learning classifiers, SVM, RF, and single layer perceptron neural 

networks (NEU).  These issues are explored in the context of a regional-scale land-cover classification 

using training sets that range from n = 40 to 10,000 samples.  While increasing sample set size can help 

to reduce the potential negative effects on classification accuracy due to the Hughes phenomenon, 

collecting additional training data may not be practical or possible on large, regional-scale applied 

remote sensing analyses.  Thus, a thorough investigation of the relative benefits of feature selection on 

several common machine learning classifiers may help inform future applied analyses involving high 

dimensional datasets with limited training data and may provide a model for future studies. 

 This paper is part of a larger study on optimizing machine learning classification.  In a previous 

study we investigated sampling strategies and cross-validation methods (Ramezan et al. 2019a), and 

demonstrated the benefit of a random sample over a deliberative sample for training data.   The current 

paper extends the findings of Ramezan et al. (2019b), which focused on the sensitivity of classifiers to 
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sample size, by investigating the potential benefits of feature selection as a way to reduce classifier 

dependence on sample size. 

2. Study Area and Data 

2.1 Description of Study Area 

This analysis focuses on a multi-county area in the 

state of West Virginia, USA, including Preston County, as 

well as portions of neighboring Monongalia, Taylor, 

Barbour, and Tucker counties.  The study site is 260,975 ha 

in size (just over 4% of the state), and generally 

encompasses the area 79° 55’ W to 79° 30’ W and 39° 42’ N 

to 39° 0’ N (Figure 1).  The area is forested, and the terrain 

mountainous.   

2.2 Remotely Sensed Data 

Data from active and passive remote sensors were 

used.  The passive optical dataset is four-band color 

infrared leaf-on National Agriculture Imagery Program 

(NAIP) orthoimagery (Figure 2) (Maxwell et al., 2017).  The NAIP imagery comprises four spectral bands: 

red (590–675 nm), green (500–650 nm), blue (400–580 nm), and near-infrared (NIR) (675–850 nm) 

(Maxwell et al., 2014).  The NAIP imagery has 8-bit radiometric resolution and 1 m spatial resolution.  

Figure 1 – Study Area 
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The NAIP data were acquired between July 17 

and July 30, 2011, although a small section of 

the imagery was collected on October 10, 

2011.  The NAIP data comprised 108 digital 

orthophoto quarter quadrangles (DOQQs), 

which were provided in an uncompressed .tiff 

format. 

The active remote sensing dataset is 

aerial LIDAR point clouds acquired by an 

Optech ALTM-3100C sensor (WVU NRAC, 

2013) between March 28 and April 28, 2011.  

The sensor has a 36° field of view and a laser 

pulse frequency of 70,000 kHz.  The LIDAR data 

were provided as 1,164 individual .las point 

cloud files, which contained elevation, 

intensity, up to four returns, and a vendor-

provided basic classification of the points.  In 

total, the LIDAR data comprised 5.6 x109 

points.  A preliminary investigation determined 

that minimal change occurred during the 

approximately four months between the 

acquisition of the NAIP and LIDAR data.    

Figure 2 - NAIP orthomosaic of study area displaying bands Red, Green, Blue 
as RGB 
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2.3 Description of Land-Cover Classes 

Four land-cover classes were mapped: Forest, Grassland, Water, and Other (Table 1).   

Table 2 - Land Cover Classes 

Class Name Description 

Forest Appalachian mixed woody vegetation 

Grassland Non-woody vegetation 

Water Man-made and natural waterbodies 

Other Bare soil, exposed rock, impervious surfaces, and bare croplands 

 

3. Methods 

3.1 Experimental Design 
Figure 3 provides an overview of the experimental design.  Two separate sample sets, each 

comprising 10,000 samples, were collected.  The first was set aside as a validation sample, and the 

second for training.  The workflow includes feature selection, machine learning and accuracy 

assessment.  Classifications with and without feature selection were undertaken with training sample 

sizes ranging from 40 to 10,000 samples.  These steps are described in more detail below. 
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Figure 3 - Experiment Workflow 

3.2 Data Processing 
The 1,164 individual LIDAR point cloud tiles were first combined into a single LIDAR file.  The LAS 

Dataset to Raster function in ArcMap 10.5.1 was used to generate rasterized datasets from the original 

point clouds.  The rasterization was carried out at 1 m, which corresponds to the pixel size of the NAIP 

orthoimagery.  Two intermediate products, a bare earth digital elevation model (DEM) and a digital 

surface model (DSM) were generated by rasterizing the ground and first elevation returns, respectively.  

A normalized digital surface model (nDSM), representing the heights of surface objects (mostly trees), 

was then calculated by subtracting the DEM from the DSM.  The intensity raster dataset was developed 

by rasterizing the intensity of the first returns only.  Only the nDSM and intensity raster datasets were 

used in the subsequent classification experiments. 

All 108 NAIP orthoimages were color-balanced and mosaicked into a single large NAIP image 

using the Mosaic Pro tool in ERDAS Imagine 2016.  Lear (2005) recommends color-balancing to reduce 
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radiometric variations between large NAIP data acquisitions acquired from different flights and times.  

After the mosaicking process, the NAIP mosaic was clipped to the boundaries of the LIDAR raster data.  

A layer stack process in ERDAS Imagine was then used to combined the NAIP and LIDAR raster data into 

a single image file containing six bands: Bands 1 – 4 comprised NAIP Red, Green, Blue, NIR and bands 5 

& 6 the LIDAR nDSM and Intensity, respectively.  

3.3 Image Segmentation 

Segmentation was carried out with the multi-resolution segmentation (MRS) algorithm in 

Trimble eCognition Developer 9.3.  MRS is a bottom-up region-growing segmentation.  The MRS 

algorithm is one of the most commonly use segmentation methods in image processing and GEOBIA 

analyses (Kavzoglu and Tonbul, 2018).  All six bands were weighted equally for the segmentation.   

An initial test of the segmentation process found that a large number of artefacts, segments 

unrelated to any obvious ground features, were created.  These artefacts appear to have been caused 

by a combination of the “sawtooth” scan pattern (Petrie and Toth, 2008) of the LIDAR sensor and the 1 

m rasterization process.  However, a 5 x 5 pixel median filter applied to both LIDAR-derived rasters grids 

before segmentation largely suppressed the problem.   

Three user-defined parameters must be specified for the MRS algorithm: scale, shape, and 

compactness (Baatz and Schäpe, 2002).  The scale parameter (SP) is usually found to be the most 

important of the three parameters, as it defines the average area of the image objects.  (Belgiu and 

Drăguţ, 2014; Drăguţ et al., 2014; Kim et al., 2011).  While ad hoc trial and error methods are typically 

used in most projects for selecting the SP (Arvor et al., 2013; Hay et al., 2005), such methods present 

challenges for experimental replication.  We therefore used the estimation of scale parameter (ESP2) 

tool developed by Drăguţ et al. (2014), which can be considered an objective method for selecting the 

SP for the segmentation.  The ESP2 tool iteratively generates image-objects at a range of scale levels.  
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The tool then plots the rate of change of the local variance (ROC-LV) against the associated scale 

parameter.  Peaks in the ROC-LV curve are assumed to indicate SPs where image-object boundaries 

generally coincide with real-world objects, and thus represent optimal SP values for the segmentation. 

Due to the demanding processing and memory requirements of the ESP2 tool, three randomly 

selected small subset areas were identified for estimating a representative SP value for the scene.  The 

optimal scale parameters for the three subsets were 97, 97, and 104.  An intermediate value of 100 was 

therefore chosen as the SP for the MRS segmentation of the entire dataset.  In total, the MRS process 

produced 474,614 image segments. 

3.4 Image-Object Attribute Feature Set  
 

Figure 4 – Example images of the data, illustrating various image object attributes.  (a) – (f) is an example subset.  (g) is the 
entire study area.  (a) and (g) are 4-band color infrared NAIP orthoimagery, (a) bands Red, Green, Blue as RGB, (g) bands NIR, 
Red, and Green as RGB, (b) false color composite image with NAIP-NIR, LIDAR-Intensity, NAIP-Red as RGB, (c) image-object 
compactness, (d) NDVI, (e) image-object asymmetry, (f) image-object Brightness. 
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A total of 35 attributes were generated for the image objects and used as predictor variables (or 

“feature set”) for the classification (Table 2 and Figure 4).  Spectral attributes for each object include the 

mode for each NAIP band, and textural variables, such as the standard deviation for each band.  LIDAR-

variables include the mean and mode of the LIDAR bands.   Geometric attributes include object border 

length, and asymmetry.  Additionally, the mean normalized difference vegetation index (NDVI) and 

mean Brightness (defined as the mean over all the NAIP bands) were calculated.  With the exception of 

the mean NDVI, all spectral and geometric variables were generated using functions native to Trimble 

eCognition Developer 9.3.  

Table 2 - Image-object attributes 

Attribute Type Attributes 
Number of 
Attributes 

Spectral variables 

 
Mean (Blue, Green, NIR, Red), 
Mode (Blue, Green, NIR, Red) 

 

 
8 

Textural variables 
Standard deviation (Blue, Green, Intensity, NIR, Red, nDSM), 

Skewness (Blue, Green, Intensity, NIR, Red, nDSM), 
 

12 

LIDAR variables 
Mean (Intensity, nDSM), 
Mode (Intensity, nDSM) 

4 

Geometric 
variables 

 
Density, Roundness, Border length, Shape index, Area, Compactness, 

Volume, Rectangular fit, Asymmetry 

 
9 

 
Spectral Indices 

 

 
Mean NDVI 
Brightness 

 

 
2 
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3.5 Training and Validation Sample Selection 
 The sampling unit for both the training and validation datasets were image-objects.  Training 

and validation data were collected independently.  Each data set comprised 10,000 samples, and 

represented approximately 2.1% of the total number of image-objects in the population.  The validation 

dataset was collected using simple random sampling.  Foody (2017) points out that simple random 

sampling is an effective design for validation datasets because the sample statistics directly estimate the 

population, and do not require additional manipulation prior to generating summary statistics.    

 The procedure for the training data were somewhat more complex than for the large, purely 

random validation data set, and drew upon previous research into sample size selection (Ramezan et al. 

2019b).  To ensure no overlap between the validation and training sets, all image-objects in the 

validation dataset were removed from the population before the training data were collected.  As the 

dataset is dominated by the Forest class, and the other classes comprise a much smaller area, a purely 

random training sample would result in an imbalanced training set, which would likely reduce the 

classification accuracy (Ramezan et al., 2019b).  Therefore, disproportional stratified random sampling, 

where the proportions in each strata are chosen by the analyst, was used.  Disproportional stratified 

random sampling allows the analyst to boost the proportion of samples from classes that are too small 

to allow equally sized strata (Ramezan et al., 2019a).  In order to apply this method, an initial 

classification is needed.  A preliminary classification was therefore developed via a rule-based expert-

system.  The rule-based classification contained 16 individual rules.  The accuracy of the rule-based 

classification was evaluated by the validation dataset, and had an overall accuracy of 98.1%.  The class 

strata sizes for each class in the rule-based classification were found to be 79.8% Forest, 15.5% 

Grassland, 4.1% Other, and 0.6% Water.  The disproportional strata sizes were defined as 50% Forest, 

20% Grassland, 20% Other, and 10% Water.  These strata sizes were selected to maintain the majority of 
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the Forest class, while ensuring a larger representation of other minority classes in the training set, 

especially the Water class, which was an extreme minority.   

The training dataset was then randomly subset, while maintaining class proportion size, into a 

number of smaller training sets.  Each training set was half the size of the preceding larger training set, 

resulting in training sets ranging in size from 10,000, 5,000, 2,500, 1,250, 626, 315, 159, 80, 40.  The 

number of training samples in each sample set are summarized in Table 3. 

Table 3 - Training and validation data sample sizes 

Purpose Sample 
selection 
method 

Number of image-objects by class Total sample 
size Forest Grass Other Water 

 
 
 
 
 
 
 
 

Training Disproportional 
random sample 

5,000 
        

2,000  
        

2,000  
        

1,000  
                             

10,000  

2,500 
        

1,000  
        

1,000  
           

500  
                               

5,000  

1,250 
           

500  
           

500  
           

250  
                               

2,500  

625 
           

250  
           

250  
           

125  
                               

1,250  

313 
           

125  
           

125  
              

63  
                                   

626  

157 
              

63  
              

63  
              

32  
                                   

315  

79 
              

32  
              

32  
              

16  
                                   

159  

40 
              

16  
              

16  
                

8  
                                     

80  

20 
                

8  
                

8  
                

4  
                                     

40  

 
Validation 

Simple random 
sample 8,085 

        
1,256  

           
590  

              
69  

 
10,000  

 

3.6 Feature Selection - Recursive Feature Elimination 

The feature selection process used was Recursive Feature Elimination with resampling (RFE), 

which is built in to the caret package (Kuhn, 2016) in R.  As described by Kuhn (2016), the RFE process is 

a wrapper-type method that uses backwards elimination and cross-validation resampling to rank 
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variables in order of importance to model accuracy and identify the best combination of features for a 

given sample set.  The RFE process involves two distinct but connected stages.  The first stage involves 

determining feature variable rankings by importance to classification accuracy, while the second stage 

involves determining the optimal number of feature variables to include in the feature set. 

The algorithm begins by partitioning the sample set into training and test data via 10-fold cross-

validation.  All 35 feature variables were first used to train a 500-tree random forest classification as a 

baseline of accuracy for the classifier incorporating all feature variables.  Backwards elimination is then 

used to iteratively remove different feature variables from the feature set, which are then used to train 

and test the effects of removed feature variables on the accuracy of the RF classification.  The results are 

averaged across all folds.  Overall accuracy was used as the performance metric for variable ranking.  

Thus, feature variables that contribute more towards the overall accuracy of the classifier are ranked 

higher than variables that do not contribute as much to the overall accuracy of the classifier.  The result 

is a complete ranking of all 35 feature variables (Kuhn, 2016). 

The variable rankings are preserved, and input into the second phase of the RFE process.  The 

second phase of the RFE process first partitions the dataset into training and test data via 10-fold cross-

validation.  The full variable-ranked feature set is used to train a 500-tree RF classifier to determine a 

baseline level of accuracy.  A second backwards elimination process is used to systematically remove 

variables from the ranked feature set.  Variables are removed in each iteration from the bottom-up (the 

lowest ranked variables are removed first) in blocks of 5.  5 was chosen as the block size as it was the 

smallest number by which 35 the total number of feature variables, is divisible.  The variable-size 

truncated feature sets are each used to train a 500-tree RF classifier for each fold.  The results of each 

feature set classification were averaged across all folds.  The feature set with the highest overall 

accuracy was chosen as the optimal feature set.  Thus, the end result of both processes provides an 

optimally-sized ranked feature set.  
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The RFE process was conducted for each training set size, resulting in 9 RFE-derived feature sets.  

RFE-derived feature variable sets were stored separate from the original “No-RFE” feature sets, which 

contain the original 35 variables. 

3.7 Parameter Optimization – k-fold Cross-Validation 
Some supervised machine learning algorithms contain parameters which can influence the 

learning process of the classifier.  While parameters can be manually specified, empirical methods such 

as cross-validation are often used to determine optimal parameters for a specific classifier and training 

set (Ramezan et al. 2019a).  K-fold (k = 10) cross-validation was used to determine the optimal 

parameters for the three supervised classification methods when trained from each of the varying 

training sample sizes, as well as the RFE-optimized training sets (Table 4).  The Kappa statistic was used 

as the accuracy metric to determine the optimal parameters, thus the parameters from the model with 

the highest Kappa value was determined to be the optimal parameter. 

Table 4 - Parameter tuning results 

Classifier 
Sample 

Size 
40 80 159 315 626 1,250 2,500 5,000 10,000 

SVM Sigma 0.0302 0.0343 0.0397 0.0342 0.0338 0.0305 0.036 0.0355  0.0355 

  C 2 4 4 8 2 4 8 4  8 

              

SVM-
RFE 

Sigma 0.1569 0.3381 0.0667 0.0835 0.0729 0.2813 0.036 0.06 0.0937 

  C 4 8 4 2 1 4 8 8 16 

                      

RF num.trees 100 100 100 100 100 100 100 100 100 

  mtry 9 20 13 13 13 13 28 24 13 

                      

RF-RFE num.trees 100 100 100 100 100 100 100 100 100 

  mtry 2 2 7 7 4 3 36 18 15 

                      

NEU size 5 15 9 19 15 17 17 17  7 

  decay 0.0075 0.1 0.0075 0.0001 0.0075 0.0178 0.1 0.1  0.1 

              

NEU-RFE size 9 7 3 11 15 17 15 7 9 

  decay 0.0031 0.0006 0.0075 0.0075 0.0422 0.0001 0.0178 0.1 0 
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3.8 Supervised Classification 
The supervised machine learning classifiers in this study were SVM, RF, and NEU.  The SVM 

classifier used a radial basis function kernel (RBF), a commonly used kernel in remote sensing (Meyer et 

al., 2012).  An RF implementation particularly suited for high dimensional data was used (Wright and 

Zeigler, 2015).  The NEU classifier was a feed-forward neural network containing a single hidden layer 

(Ripley and Venables, 2016).   

After the optimal parameters for each classification were determined, classifications were 

conducted for all three machine learning classifiers (SVM, RF, and NEU) with one set of classifications 

“No-RFE” trained from the varying size sample sets that included the original full feature set of 35 

variables, and one set of classifications “RFE” which were trained from the RFE-optimized feature sets.  

In total, 54 classifications were produced (9 training set sizes x 3 machine learning classifiers x 2 feature 

set types).  The classifications were conducted within the R statistical client and associated packages:  

e1071 package for SVM (Meyer et al., 2012), ranger package for RF (Wright and Zeigler, 2015), and the 

nnet package  for NEU (Ripley and Venables, 2016).  The caret package (Kuhn, 2016) was used as the 

framework for processing the classifications and the accuracy assessments.  Classifications were run on 

a custom workstation with an Intel Core i5-6600K Quad-Core Skylake processor and 32.0 GB of GDDR5 

memory, and a Samsung 970 EVO NVMe 256 GB M.2. SSD running Windows 10 Pro.   

3.9 Error Assessment 
The classifications were evaluated against the randomly sampled validation 10,000 image-object 

dataset.  Classification results were reported in a confusion matrix.  Overall, user’s, and producer’s 

accuracy were calculated along with the Kappa coefficient.  In addition to these accuracy measures, 

McNemar’s test (McNemar, 1947) was used to evaluate the statistical significance of differences 

between No-RFE and Post-RFE classifications.   McNemar’s test is a non-parametric evaluation of the 
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statistical significance of differences between two classifications evaluated using related data.   A p-

value less than 0.05 specifies a one-sided 95% confidence that the differences in accuracy between the 

two classifications are statistically significant.  McNemar’s test was conducted between each No-RFE and 

Post-RFE classification of the same machine learning classifier trained from the same sample size, 

resulting in 27 individual tests.   

4. Results and Discussion 

RFE indicated that the optimal number of features was less than the original 35 features, for every 

training sample size except 2,500 (Table 5). The optimal number of features varied depending on the 

sample size; smaller numbers training samples generally (though not consistently) had a smaller optimal 

number of features.  For example, for 5,000 and 10,000 training samples had 25 optimal features, 

whereas 80 training samples had only 5 optimal features. 

The top five ranked variables for each sample set are listed in Table 6. Generally, the RFE process 

identified similar highly-ranked variables for each sample size for the training data, which gives some 

confidence in the reproducibility of the RFE approach, even as the number of samples varied.  Notably, 

the two LIDAR variables, Mean intensity and Mode intensity, along with Mean NDVI all occur in all but 

one of the rankings.  While geometric variables were mostly excluded by the RFE process in this analysis, 

geometric variables may provide value in other land-cover classifications (Guo et al., 2007).  While the 

spectral index, Brightness, was retained for all sample sizes, except 1,250, 315, and 80, the RFE process 

did not rank the variable highly, indicating it is less important compared to other spectral variables or 

spectral indices such as Mean Intensity and Mean NDVI, respectively.   
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Table 5 - Optimal number of feature variables as determined by RFE  

Training Set 
Size 

Optimal Number of 
Feature Variables 

Spectral Textural  LIDAR Geometric 
Spectral 
Indices 

10,000 25 8 9 4 2 2 

5,000 25 8 9 4 2 2 

2,500 35 8 12 4 9 2 

1,250 10 4 2 3 0 1 

626 20 7 7 3 1 2 

315 10 4 2 3 0 1 

159 25 8 9 4 2 2 

80 5 1 1 2 0 1 

40 15 4 5 4 0 2 
 

Table 6 - Top five feature variables per sample size (LIDAR-derived variables are in shades of green, spectral indices are indicated 
in pink, NAIP-derived variables are in shades of orange) 

 

Figures 5, 6, and 7, summarize the No-RFE and RFE classification accuracy by sample size for each 

supervised machine learning algorithm.  The RFE-optimized feature sets consistently provided superior 

or comparable accuracy for all three supervised machine learning algorithms.  Notably, as sample size 

decreased for all three classifiers, the difference in performance between No-RFE and RFE supervised 

 Sample Set Size 

Feature 
Variable 

Rank 
10000 5000 2500 1250 625 315 156 80 40 

1 
Mean 

Intensity 
Mean 

Intensity 
Mean 

Intensity 
Mean 

Intensity 
Mean 
NDVI 

Mean 
Intensity 

Mean 
NDVI 

Mean 
NDVI 

Mean 
NDVI 

2 
Mean 
NDVI 

Mean 
NDVI 

Mean 
NDVI 

Mean 
NDVI 

Mean 
Intensity 

Mean 
NDVI 

Mean 
Intensity 

Mean 
Intensity 

Standard 
deviation 

nDSM 

3 
Mean 

NIR 
Mean 

NIR 
Mean 

NIR 
Mode 

Intensity 
Standard 
deviation 

nDSM 

Mode 
Intensity 

Standard 
deviation 

nDSM 

Mean 
Red 

Mean 
Intensity 

4 
Mode 

Intensity 
Mode 

Intensity 
Mode 

Intensity 
Standard 
deviation 

nDSM 

Mode 
Intensity 

Standard 
deviation 

nDSM 

Mode 
Intensity 

Standard 
deviation 

nDSM 

Mean 
nDSM 

5 
Standard 
deviation 

nDSM 

Standard 
deviation 

nDSM 

Standard 
deviation 

nDSM 

Mean 
nDSM 

Mean 
nDSM 

Skewness 
Intensity 

Mean 
nDSM 

Mean 
nDSM 

Mode 
Intensity 
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classifications increased.  This finding is consistent with the Hughes phenomenon, and indicates feature 

selection is most beneficial in improving overall accuracy when the number of training samples is small.  

 

 RFE improved the accuracy of the SVM classifier for all training sample sizes, and the results 

were statistically significant at the 0.05 level (Table 7).  The RFE SVM classification trained from 40 

samples (Figure 8) saw the largest improvement in 

overall accuracy, an improvement of 5.1%.  After 

applying the RFE process, the SVM classifier 

required fewer training samples to achieve similar 

levels of overall accuracy compared to classification 

without RFE.  Even when the training sample size 

was extremely large (n = 10,000), the RFE process 

improved the overall accuracy of the SVM 

classification by 0.5%, from 97.9% to 98.4% 

(representing a relative reduction of approximately 

25% of the error). This indicates that SVM may be 

sensitive to the dimensionality of the dataset, and 

confirms that SVM can be affected by the Hughes 

phenomenon, even with large sample sizes.  

Previous research has been contradictory:  Pal and 

Foody (2010) also found SVM susceptible to the 

Hughes phenomenon, whereas Melgani and 

Bruzzone (2004) did not observe a Hughes effect, 

even when large training sets were used.   

Figure 8 - Land-cover classification of SVM-RFE trained from 40 samples 
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RFE also improved the overall accuracy of the NEU classifier, but the results were more inconsistent 

than with SVM, and the benefits much smaller when the training set was large.  When trained from 40 

samples (Table 8), the RFE process improved the overall accuracy of the NEU classifier from 89.4% to 

93.5%, an improvement of 4.1% (Table 9).  Most notably, with RFE, the user’s accuracy of Water and 

Grassland, two relatively rare classes, showed large increases, although this was partially offset by 

declines in producer’s accuracy for these classes (Tables 8 and 9).  RFE slightly improved overall accuracy 

of classifications with extremely large sample sets.  For NEU with training sample sizes 5,000 and 10,000, 

the RFE process improved the overall accuracy of the NEU classifier by 0.4%. This is notable as it 

suggests that feature selection methods such as RFE may be beneficial to NEU classifiers regardless of 

the sample size.  Additionally, the McNemar’s tests (Table 7) indicated that the differences between the 

No-RFE and RFE classifications were statistically significant for all NEU classifications, with the exception 

of classifications trained from 1,250 and 2,500 samples. 

While the RF classifier generally provided the highest overall accuracies of all three supervised 

machine learning algorithms, the RFE process was generally not helpful for that classifier (Figure 6).  

Indeed, only sample sizes of 40 and 626 saw an increase in RF accuracy after RFE, for the other seven 

sample sizes, the No-RFE classification had slightly higher performance than the RFE classification (Table 

8).  Furthermore, the largest difference between any No-RFE and RFE RF classification was the decrease 

in accuracy of 0.3%, which occurred when RFE was used with the sample size of 159.  A possible reason 

for the decline in accuracy with RFE feature selection is that RF builds an ensemble of decision trees in 

which each tree uses only a subset of the variables.  Apparently, therefore, RF is able to exploit 

somewhat variables without requiring any additional feature selection.  On the other hand, perhaps 

with a much larger feature set, for example, hundreds or thousands of features, then RFE may be of 

value for RF.  In addition, perhaps other feature selection methods may be more effective with RF. 
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In summary, RFE provides a statistically significant increase of 4% to 5% for small sample sizes, and 

for the SVM and NEU classifier.  For larger sample sizes, the benefit is smaller, and less consistent.  In 

contrast, for RF, RFE may actually decrease the overall accuracy, even for small training sample sets.  

Therefore, we recommend as part of best practices supervised machine learning classification of 

remotely sensed data that feature selection methods should be at least be explored to see if 
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classifications trained from feature sets with reduced dimensionality provide any improvement to 

overall map accuracy, especially if training data are limited.   
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Figure 5 - Overall accuracy of No-RFE and RFE SVM Classifications.  (Note that the x-axis is a log scale). 

Figure 6 - Overall Accuracy of No-RFE and RFE RF classifications.  (Note that the x-axis is a log scale). 

Figure 7 - Overall Accuracy of No-RFE and RFE NEU classifications.  (Note that the x-axis is a log scale). 
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Table 7 – McNemar’s test of statistical difference for classification accuracy with and without RFE (* indicates differences 
between classifications that are statistically significant, p < 0.05) 

Number of 
training 
samples 

SVM  RF NEU 

RFE > Non RFE  
accuracy 

Significance of 
difference 
(p-value) 

RFE > Non RFE  
accuracy 

Significance of 
difference 
(p-value) 

RFE > Non RFE  
accuracy 

Significance of 
difference 
(p-value) 

40 Y < 0.001* Y < 0.001* Y < 0.001* 

80 Y < 0.001* N 0.06 Y < 0.001* 

159 Y 0.003* N < 0.001* Y < 0.001* 

315 Y < 0.001* N < 0.001* Y < 0.001* 

626 Y < 0.001* Y < 0.001* Y < 0.001* 

1250 Y < 0.001* N < 0.001* Y 0.3808 

2500 N < 0.001* N < 0.001* N 0.7247 

5000 Y < 0.001* N < 0.001* Y < 0.001* 

10000 Y < 0.001* N < 0.001* Y < 0.001* 

 

Table 8 - Confusion Matrix for the NEU classification trained from 40 samples 

  

Reference Data (No. Objects)   

Forest Grassland Other Water Total User's Accuracy 

Classified 
Data 
(No. 

Objects) 
 

Forest 7263 43 11 6 7323 99.2% 

Grassland 682 1152 32 2 1868 61.7% 

Other 95 60 474 10 639 74.2% 

Water 45 1 73 51 170 30.0% 

Total 8085 1256 590 69 10000  Overall 
Accuracy:  

89.4%   Producer's Accuracy 89.8% 91.7% 80.3% 73.9%   
 

Table 9 - Confusion Matrix for the NEU-RFE classification trained from 40 samples 

  

Reference Data (No. Objects)   

Forest Grassland Other Water Total User's Accuracy 

Classified 
Data 
(No. 

Objects) 
 

Forest 7750 115 22 17 7904 98.1% 

Grassland 187 1112 91 2 1392 79.9% 

Other 145 29 456 18 648 70.4% 

Water 3 0 21 32 56 57.1% 

Total 8085 1256 590 69 10000  Overall 
Accuracy:  

93.5%   Producer's Accuracy 95.9% 88.5% 77.3% 46.4%   
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5. Conclusion 

This investigation explored the benefits of recursive feature elimination (RFE) in improving 

classification accuracy for three commonly used supervised machine algorithms, SVM, RF, and NEU, 

trained from varying sample sizes in a regional-scale land-cover classification of HR remotely sensed 

data.  The results indicate that feature selection can be beneficial for SVM and NEU.  Previous research 

on the robustness of SVM to high dimensional data has been contradictory.  Our findings support those 

of Pal and Foody (2010), who observed that the SVM classifier may be sensitive to the dimensionality of 

the dataset as the RFE process usually improved the performance of the SVM classifier.  In contrast, for 

RF, applying RFE feature selection in general resulted in slightly lower accuracies.    

The benefit of feature selection for SVM and NEU is strongly dependent on sample size, as 

would be expected based on the Hughes phenomenon.  The largest improvement in accuracy was found 

for small training sample sizes, and the smallest improvement at the largest sample sizes, 2,500 and 

greater.  It is worth noting, however, that even when the sample size was very large (n = 10,000) the RFE 

process still improved the overall accuracy of SVM and NEU by 0.5% and 0.4%, respectively.  Thus, even 

with very large samples, it may be beneficial to incorporate feature selection into standard SVM and 

NEU classification. 

When the RFE-optimized feature sets were used in both the SVM and NEU classifiers, the 

improvement in performance on some classifications were superior to No-RFE SVM and NEU 

classifications that were trained using much larger sample sets.  For example, when the RFE-optimized 

feature sets were used with the SVM classifier trained from 1,250 samples, the overall accuracy was 

nearly equivalent to the No-RFE SVM classifier trained from 10,000 samples, even though the SVM 

classification trained from 10,000 samples contained 8-times the number of samples.  Thus, spending 
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resources on feature selection can result in a greater increase in accuracy than spending those same 

resources in collecting more reference data. 

In summary, feature selection processes such as RFE are a valuable pre-processing step that 

should be incorporated or explored in remote sensing analyses, especially analyses involving high 

dimensional datasets, with limited training data.  While the RFE process did not prove to be 

advantageous for the RF classifier in this case, other feature selection methods may be useful for RF.  

Therefore, even for RF, it may still be a good practice in applied studies to investigate if feature selection 

processes provide any improvement in overall accuracy even when using a RF classifier.  As feature 

selection is an optional additional step in the classification process, it does not have to be included in 

the classification if it found to have a negative effect on the overall accuracy of the classifier.  For SVM 

and NEU, feature selection appears to be very important. 
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Chapter 5 – Conclusion 
 

1. Overall findings of this research 
This dissertation focused on the development of regional-scale object-based land-cover 

classifications using high spatial resolution (HR) (1 – 5 m) remotely sensed data (aerial 

multispectral imagery, and light detection and ranging LIDAR point cloud data).  The aim of this 

dissertation was to examine several core methodological processes in remote sensing analyses, 

such as training sample selection, cross-validation parameter tuning (Chapter 2), supervised 

machine learning algorithms, training set size (Chapter 3), and feature selection (Chapter 4) on a 

large, regional-scale HR dataset.  These processes were examined through a series of three 

related experiments.  The regional-scale study area for all three papers was approximately 

260,975 ha, which is notably larger than most methodological and applied object-based, or 

geographic object-based image analyses (GEOBIA) using HR remote sensed data (Ma et al., 

2017).   

 Chapter 2’s findings indicate that for support vector machines (SVM) classification, 

training sets acquired through statistical stratified random sampling methods provide higher 

levels of overall accuracy than training sets acquired via simple random, or deliberative sampling 

methods.  There were also minimal differences in overall accuracy for SVM classifications tuned 

using three different cross-validation parameter tuning methods: k-fold, Monte Carlo, and leave 

one out.  However, Monte Carlo and leave one out greatly increased the processing time of the 

SVM classification.  As a result, k-fold cross-validation was found to be preferable, especially if 

processing and time resources are limited.  Additionally, SVM classifications trained from sample 

sets collected from a relatively small subset area of the regional-scale dataset had similar levels 

of overall accuracy to classifications trained from sample sets of equivalent size collected across 

the regional-scale area.  As training data collection can be expensive over large areas, subset-



115 
 

based sample selection can be advantageous for reducing sampling costs, especially if field 

observations are needed. 

 Chapter 3 investigated the effect of training set size on five supervised machine learning 

classifiers: SVM, random forest (RF), k-nearest neighbors (k-NN), single layer perceptron neural 

networks (NEU), and learning vector quantization (LVQ) on regional-scale HR analyses.  The 

results demonstrated that each supervised classifier responded differently to variations in 

sample size, although larger training sets generally improved overall accuracy, a similar finding 

to Foody et al. (2006).  RF consistently outperformed the other four classification algorithms 

when trained from any sample size.  RF and LVQ also quickly plateaued in performance when 

training size reached (n = 315), however LVQ was also the worst performing classifier out of all 

five methods.  The overall accuracy of SVM and NEU classifiers continued to increase with larger 

training sets, even when the sample size reached a very large size (n = 10,000).  However, the 

processing time of the NEU classifier was extremely high with very large sample sets (i.e. n = 

5,000, 10,000). K-NN was found to have the shortest processing time of all algorithms, but may 

be more sensitive to the characteristics, rather than the size of the training set.  Thus, 

determining an optimal training set size can vary on the classification method used for analysis.  

Furthermore, if training data are limited, classifiers such as RF may be preferable, as RF was able 

to produce superior or equivalent levels of accuracy to other classification methods, even when 

trained from much larger sample sets. 

Chapter 4 investigated how feature selection using recursive feature elimination (RFE) 

applied to datasets with variable sized training sets affected the overall accuracy of three 

supervised machine learning algorithms: SVM, RF, and NEU.  The results of this analysis 

suggested that RFE was generally advantageous for improving the overall accuracy of both SVM 

and NEU classifiers, however the benefits to overall accuracy diminished as sample size 
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increased.  RFE was not very effective in improving the overall accuracy of the RF classifier when 

trained from both very small and very large sample sets, which suggests that RF is more robust 

to the Hughes phenomenon that SVM or NEU classifiers.  Feature selection methods such as RFE 

are optional, and do not have to be incorporated into the final classification if feature selection 

did not improve the overall accuracy of the classifier.  Nevertheless, feature selection does in 

many cases increase the overall classification accuracy.  Therefore, we recommend that feature 

selection be considered part of best practices when conducting remote sensing classifications, 

especially on high dimensional datasets with limited training data. 

    

2. Limitations and technical comments 
While the size of the HR regional-scale dataset examined in this dissertation (260,975 

ha) was far larger than HR datasets used in most GEOBIA analyses (Ma et al., 2018), the size of 

the study area was limited by the available LIDAR data.  While a larger scale analysis would have 

been possible by using only NAIP data, it was decided that the use of LIDAR to provide additional 

spectral, and elevation information to assist with the classification outweighed the limitations 

on the extent of the study area.  As seen in Chapter 4, LIDAR derived variables, especially LIDAR 

intensity variables, were highly ranked by the feature selection process.  Similar to the findings 

of Kashani et al. (2015), Song et al. (2002), and Maxwell et al. (2015), LIDAR intensity was found 

to be valuable for land-cover classification.  However, it should be mentioned that for future 

regional-scale land-cover analyses, large area LIDAR data may not always be available.  While 

NAIP data are typically available on a state-wide level (Maxwell et al., 2017), large-area or state-

wide LIDAR datasets are rare when compared to the availability of large, regional-area HR 

multispectral imagery.    
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Regarding the processing of large, regional-scale HR land-cover datasets, the immense 

size of both the NAIP and LIDAR datasets caused several technical challenges, especially during 

the image processing and image segmentation stages.  While software platforms such as ArcGIS 

(ESRI, 2017), and ERDAS Imagine (Hexagon, 2018) are built to handle large geospatial datasets, 

hardware resource limitations, such as system memory availability led to processing 

bottlenecks.  For example, the rasterization of the LIDAR point cloud into intensity and 

elevation-based rasters took several days of computing.  The color balancing (Lear, 2005) of the 

NAIP orthomosaic also required several days to process.  Although ArcGIS Pro (ESRI, 2019) does 

incorporate parallel processing in the form of multithreading, and this can decrease time costs 

with processing large datasets, processing regional-scale HR datasets can still be expensive in 

terms of time, and requires a large computing resources.     

An additional concern that affects analyses conducted in a GEOBIA framework was the 

image segmentation process, which was costly in terms of processing power and time when 

conducted on regional-scale HR datasets.  While the multi-resolution segmentation (MRS) (Baatz 

and Schape, 2002) algorithm within the eCognition Developer (Trimble, 2018a) was able to 

successfully segment the regional-scale dataset, the segmentation took several days to 

complete, and required at least 16 GB of memory.  Due to the hardware limitations of a single 

system, we recommend future analyses involving large, regional-scale HR datasets explore 

server, or cluster-based processing options, which may remediate some of the issues 

encountered through processing on a single workstation.  Several of the software suites used in 

this analysis, have server or cloud-based processing capabilities, such as ArcGIS Server (ESRI, 

2018), and eCognition Server (Trimble, 2018b), which can be advantageous for processing very 

large remotely sensed datasets (Yan et al., 2017).  Future hardware advances in information 

technology may also mitigate some of the processing difficulties encountered in this analysis.  
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Additionally, alternate image segmentation algorithms such as the multi-threshold 

segmentation (Li and Shao, 2014) may be less expensive in terms of processing time and 

resource demands than the MRS algorithm.  

3. Conclusions and Recommendations 
The results of the analyses in this dissertation provided several insights on developing 

land-cover classifications via supervised machine learning classifiers on large, regional-scale HR 

remotely sensed datasets. 

 When designing a regional-scale HR land-cover classification, the choice of supervised 

machine learning algorithm for classification is important, as accuracy can vary between 

different supervised classifiers when applied to classify the same dataset (Maxwell et al., 2018; 

Noi and Kappas, 2018; Raczko and Zagajewski, 2017).  Similar to the observations made by Qian 

et al., (2015), in this study, the supervised classifiers responded in different ways to variations in 

training set size.  Different supervised machine learning algorithms also varied in sensitivity to 

the Hughes phenomenon (Hughes, 1968).  The negative effects of the Hughes phenomenon on 

classification accuracy can be a particular concern if analyzing high dimensional datasets such as 

hyperspectral data, which are becoming increasingly available.  As training data may not be 

abundant or very expensive to collect due to the size of regional-scale study areas, it may be 

advantageous to select a classifier such as random forests (RF), which in this case was robust to 

the Hughes phenomenon, and was able to provide high levels of overall accuracy even when 

trained from limited training sets.  Several other studies have also highlighted the strengths of 

the RF classifier (Ham et al., 2005; Maxwell et al., 2018).  Additionally, on large, homogenous 

study areas, sampling from relatively small subset areas of the regional-scale dataset can be 

effective in reducing training data collection costs, provided the sampling area contains 

adequate examples of the land-cover classes of interest. 
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 Overall, as this dissertation has demonstrated, supervised machine learning algorithms 

can be used to develop object-based land-cover classifications of large, regional-scale HR 

remotely sensed data.  However, when designing a land-cover classification or analysis, all 

aspects of the classification process, such as sampling design or classifier selection should be 

carefully considered with respect to the dataset of interest and study objectives.  As this work is, 

as far as I am aware, the first of its kind to examine several core remote sensing classification 

processes on large, regional-scale HR datasets, hopefully future HR object-based regional-scale 

analyses and land-cover classifications can use this dissertation as a guide towards providing 

high quality regional-scale classifications of HR remotely sensed data.  
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