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ABSTRACT

Cycles and Bases of Graphs and Matroids

Ping Li

The objective of this dissertation is to investigate the properties of cycles and bases in

matroids and in graphs. In [62], Tutte defined the circuit graph of a matroid and proved

that a matroid is connected if and only if its circuit graph is connected. Motivated by

Tutte’s result, we introduce the 2nd order circuit graph of a matroid, and prove that

for any connected matroid M other than U1,1, the second order circuit graph of M has

diameter at most 2 if and only if M does not have a restricted minor isomorphic to U2,6.

Another research conducted in this dissertation is related to the eulerian subgraph

problem in graph theory. A graph G is eulerian if G is connected without vertices of odd

degrees, and G is supereulerian if G has a spanning eulerian subgraph. In [3], Boesch,

Suffey and Tindel raised a problem to determine when a graph is supereulerian, and they

remarked that such a problem would be a difficult one. In [55], Pulleyblank confirmed

the remark by showing that the problem to determine if a graph is supereulerian, even

within planar graphs, is NP-complete. Catlin in [8] introduced a reduction method based

on the theory of collapsible graphs to search for spanning eulerian subgraphs in a given

graph G. In this dissertation, we introduce the supereulerian width of a graph G, which

generalizes the concept of supereulerian graphs, and extends the supereulerian problem

to the supereulerian width problem in graphs. Further, we also generalize the concept of

collapsible graphs to s-collapsible graphs and develop the reduction method based on the

theory of s-collapsible graphs. Our studies extend the collapsible graph theory of Catlin.

These are applied to show for any integer n > 2, the complete graph Kn is (n − 3)-

collapsible, and so the supereulerian width of Kn is n− 2. We also prove a best possible

degree condition for a simple graph to have supereulerian width at least 3.

The number of edge-disjoint spanning trees plays an important role in the design of

networks, as it is considered as a measure of the strength of the network. As disjoint



spanning trees are disjoint bases in graphic matroids, it is important to study the proper-

ties related to the number of disjoint bases in matroids. In this dissertation, we develop

a decomposition theory based on the density function of a matroid, and prove a decom-

position theorem that partitions the ground set of a matroid M into subsets based on

their densities. As applications of the decomposition theorem, we investigate problems

related to the properties of disjoint bases in a matroid. We showed that for a given integer

k > 0, any matroid M can be embedded into a matroid M ′ with the same rank (that is,

r(M) = r(M ′)) such that M ′ has k disjoint bases. Further we determine the minimum

value of |E(M ′)| − |E(M)| in terms of invariants of M . For a matroid M with at least

k disjoint bases, we characterize the set of elements in M such that removing any one of

them would still result in a matroid with at least k disjoint bases.
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Chapter 1

Preliminaries

1.1 Notation and Terminology

We consider finite graphs with possible multiple edges and loops, and follow the notation

of Bondy and Murty [4] for graphs, and Oxley [58] or Welsh [64] for matroids, except

otherwise defined. Thus for a connected graphG, ω(G) denotes the number of components

of G. For a matroid M , we use rM (or r, when the matroid M is understood from the

context) denotes the rank function of M , and E(M), C(M) and B(M) denote the ground

set ofM , and the collections of the circuits, and the bases ofM , respectively. Furthermore,

if M is a matroid with E = E(M), and if X ⊂ E, then M −X is the restricted matroid

of M obtained by deleting the elements in X from M , and M/X is the matroid obtained

by contracting elements in X from M . As in [58] and [64], we use M − e for M −{e} and

M/e for M/{e}.

The spanning tree packing number of a connected graph G, denoted by τ(G), is

the maximum number of edge-disjoint spanning trees in G. A survey on spanning tree

packing number can be found in [59]. By definition, τ(K1) = ∞. For a matroid M , we

similarly define τ(M) to be the maximum number of disjoint bases of M . Note that by

definition, if M is a matroid with r(M) = 0, then for any integer k > 0, τ(M) ≥ k.

1



CHAPTER 1. PRELIMINARIES 2

Let M be a matroid with rank function r. For any subset X ⊆ E(M) with r(X) > 0,

the density of X is

dM(X) =
|X|

rM(X)
.

When the matroid M is understood from the context, we often omit the subscript M .

We also use d(M) for d(E(M)). Following the terminology in [11], the strength η(M)

and the fractional arboricity γ(M) of M are respectively defined as

η(M) = min{d(M/X) : r(X) < r(M)}, and γ(M) = max{d(X) : r(X) > 0}.

For an integer k > 0 and a matroid M with τ(M) ≥ k, we define Ek(M) = {e ∈
E(M) : τ(M − e) ≥ k}. Likewise, for a connected graph G with τ(G) ≥ k, Ek(G) = {e ∈
E(G) : τ(G− e) ≥ k}.

Let M be a matroid and k ∈ N. If there is a matroid M ′ with τ(M ′) ≥ k such that

M ′ has a restriction isomorphic toM (we then view M as a restriction of M ′), then M ′ is

a (τ ≥ k)-extension of M . We shall show that any matroid has a (τ ≥ k)-extension. We

then define F (M,k) to be the minimum integer l > 0 such thatM has a (τ ≥ k)-extension

M ′ with |E(M ′)| − |E(M)| = l.

For a graph G, δ(G), ∆(G), κ(G) and κ′(G) represents the minimum degree, the

maximum degree, the connectivity and the edge connectivity of a graph G, respectively.

As in [4], G[X] denotes the subgraph induced by an edge subset X ⊆ E(G). When no

confusion arises, we shall often adopt the convention that for an edge subset X ⊆ E(G),

X denotes the edge subset as well as the subgraph G[X] of G. For subgraphs H1, H2 of

G, H1 ∪ H2 and H1 ∩ H2 denote the union and intersection of H1 and H2, respectively.

For vertices u, v ∈ V (G), a trail with end vertices being u and v will be referred as a

(u, v)-trial. We use O(G) to denote the set of all odd degree vertices in G. A graph G

is Eulerian if O(G) = ∅ and G is connected, and is supereulerian if G has a spanning

Eulerian subgraph.

Let G be a graph, and s > 0 be an integer. For any distinct u, v ∈ V (G), an (s;u, v)-

trail-system of G is a subgraph H consisting of s edge-disjoint (u, v)-trails. A graph is

supereulerian with width s if ∀u, v ∈ V (G) with u ̸= v, G has a spanning (s;u, v)-

trail-system. The supereulerian width µ′(G) of a graph G is the largest integer s such
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that G is supereulerian with width k for any integer k with 1 ≤ k ≤ s. Note that if for

some vertices u and v, G does not have a spanning (u, v)-trial, then µ′(G) = 0.

A graph G is s-collapsible if for any subset R ⊆ V (G) with |R| ≡ 0 (mod 2), G has

a spanning subgraph ΓR such that

(i) both O(ΓR) = R and κ′(ΓR) ≥ s− 1, and

(ii) G− E(ΓR) is connected.

Let Cs denote the collection of s-collapsible graphs.

Let M be a matroid on a set E. The corank r∗(M) of a matroid M is the rank of

M∗, the dual of M . For a subset S ⊆ E, we abbreviate the expression r∗(M |S) as r∗S,
and the dimension dS of S is defined to be the number r∗S − 1. Following Tutte [62], a

subset S of E is called a flat of M if it is a union of circuits of M . The null subset of E

is considered as a null union of circuits, and therefore a flat. Note that our definition of

a flat here is different from that in [58].

For any subset S of E there is an associated flat ⟨S⟩, defined as the union of all the

circuits of M contained in S. Thus ⟨S⟩ is the union of the circuits of M |S. Note that

d⟨Z⟩ = dZ = r∗Z − 1. A flat S is on a flat T if either S ⊆ T or T ⊆ S. A flat of

dimension k is called a k-flat. The 1-flats and 2-flats of M are the lines and the planes

of M , respectively. A flat S of M is called connected if M |S is a connected matroid.

Let M be a matroid, and let k > 0 be an integer. The kth order circuit graph

Ck(M) of M has vertex set V (Ck(M)) = C(M), the set of all circuits of M . Two vertices

C,C ′ ∈ C(M) are adjacent in Ck(M) if and only if |C ∩ C ′| ≥ k. For notational conve-

nience, for a circuit C ∈ C(M), we shall use C to denote both a vertex in Ck(M) and a

circuit (also as a subset of E(M)) of M .

1.2 Main Results

In the coming several chapters, we will present the following main results.
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(1) Let M be a connected simple matroid with more than one circuit. Then M does

not have a restriction isomorphic to U2,6 if and only if diam(C2(M)) ≤ 2.

(2) Let M be a connected simple matroid with more than one circuit, but M is not

a line, then C2(M) is 2-connected.

(3) Let M be a matroid and k > 0 be an integer. Each of the following holds.

(i) Suppose that τ(M) ≥ k. Then Ek(M) = E(M) if and only if η(M) > k.

(ii) In general, Ek(M) equals to the maximal subset X ⊆ E(M) such that η(M |X) > k.

(4) Let M be a matroid with r(M) > 0. Then each of the following holds.

(i) There exist an integerm > 0, and anm-tuple (l1, l2, ..., lm) of positive rational numbers

such that

η(M) = l1 < l2 < ... < lm = γ(M),

and a sequence of subsets

Jm ⊂ ... ⊂ J2 ⊂ J1 = E(M);

such that for each i with 1 ≤ i ≤ m, M |Ji is an η-maximal restriction of M with

η(M |Ji) = li.

(ii) The integer m and the sequences in (i) are uniquely determined by M .

(iii) For every i with 1 ≤ i ≤ m, Ji is a closed set in M .

(5) For k ∈ N, let M be a matroid with τ(M) ≤ k and let i(k) denote the smallest

ij in (4) such that i(k) ≥ k. Then

(i) F (M,k) = k(r(M)− r(Ji(k)))− |E(M)− Ji(k)|.
(ii) F (M,k) = maxX⊆E(M){kr(M/X)− |M/X|}.

(6) Let s ≥ 1 be an integer. Then Cs satisfies the following.

(C1) K1 ∈ Cs.

(C2) If G ∈ Cs and if e ∈ E(G), then G/e ∈ Cs.

(C3) If H is a subgraph of G and if H,G/H ∈ Cs, then G ∈ Cs.

(7) Let s ≥ 1 be an integer. If a graph G ∈ Cs, then µ
′(G) ≥ s+ 1.

(8) Let s ≥ 1 be an integer. If F (G, s+1) ≤ 1, then G ∈ Cs if and only if κ′(G) ≥ s+1.
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(9) Let n, p, s be positive integers such that p ≥ 2. Suppose that G is a simple graph

on n vertices. If

δ(G) ≥ n

p
− 1,

then when n is sufficiently large (say n > p(1 + (1 + 2(s + 3) + 2(p + 1)(s + 1)))), the

Cs-reduction of G has at most p vertices.

(10) Let n, p, s be positive integers such that p ≥ 2. Suppose that G is a simple graph

on n vertices. If G is triangle free, and if

δ(G) ≥ n

2p
,

then when n is sufficiently large (say n > 2p(1 + (1 + 2(s + 3) + 2(p + 1)(s + 1)))), the

Cs-reduction of G has at most p vertices.

(11) Let n, p, s be positive integers such that p ≥ 2. Suppose that G is a simple graph

on n vertices. If

δ(G) ≥ n

p
− 1,

then when n is sufficiently large (say n > p(1 + (1 + 2(s + 3) + 2(p + 1)(s + 1)))), the

Cs-reduction of G has at most p vertices.



Chapter 2

Diameter of Second Order Circuit

Graph of Matroids

2.1 Introduction

Matroids and graphs considered in this paper are finite. For undefined notations and

terminology, see [4] for graphs and [58] for matroids. Let M be a matroid on a set E.

The corank r∗(M) of a matroid M is the rank of M∗, the dual of M . For a subset S ⊆ E,

we abbreviate the expression r∗(M |S) as r∗S, and the dimension dS of S is defined to be

the number r∗S − 1. Following Tutte [62], a subset S of E is called a flat of M if it is a

union of circuits of M . The null subset of E is considered as a null union of circuits, and

therefore a flat. Note that our definition of a flat here is different from that in [58].

For any subset S of E there is an associated flat ⟨S⟩, defined as the union of all the

circuits of M contained in S. Thus ⟨S⟩ is the union of the circuits of M |S. Note that

d⟨Z⟩ = dZ = r∗Z − 1. A flat S is on a flat T if either S ⊆ T or T ⊆ S. A flat of

dimension k is called a k-flat. The 1-flats and 2-flats of M are the lines and the planes of

M , respectively. A flat S of M is called connected if M |S is a connected matroid.

There have been many studies on the properties of graphs arising from matroids. In

6
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[62], Tutte defined the circuit graph of a matroid M , denoted by C(M), whose vertices

are the circuits of M , where the two vertices in C(M) are adjacent if and only if they

are distinct circuits of the same connected line. Tutte [62] showed that a matroid M is

connected if and only if C(M) is a connected graph. In [48] and [49], Maurer defined the

base graph of a matroid. The vertices are the bases of M and two vertices are adjacent

if and only if the symmetric difference of these two bases is of cardinality 2. He also

discussed the graphical properties of the base graph of a matroid. Alspach and Liu [1]

studied the properties of paths and circuits in base graphs of matroids. The connectivity

of the base graph of matroids is investigated by Liu [44] and [45]. The graphical properties

of the matroid base graphs have also been investigated by many other researchers, see

[23], [28], [39], [46], among others.

Recent studies by Li and Liu ([40], [41] and [42]) initiate the investigation of graphical

properties of matroid circuits graphs. Let M be a matroid, and let k > 0 be an integer.

The kth order circuit graph Ck(M) of M has vertex set V (Ck(M)) = C(M), the set

of all circuits of M . Two vertices C,C ′ ∈ C(M) are adjacent in Ck(M) if and only if

|C ∩ C ′| ≥ k. For notational convenience, for a circuit C ∈ C(M), we shall use C to

denote both a vertex in Ck(M) and a circuit (also as a subset of E(M)) of M .

In their studies ([40], [41] and [42]), Li and Liu proved that C1(M) possesses quite

good graphical connectivity properties. The purpose of this chapter is to investigate the

graphical properties possessed by C2(M), a spanning subgraph of C1(M), which represents

a relatively loose interrelationship among circuits in the matroid. We have proved in this

chapter that for a connected simple matroid M , the diameter of C2(M) is at most 2 if

and only if M does not have a restriction isomorphic to U2,6. Moreover, if a connected

simple matroid M is not a line, then C2(M) is 2-connected.

In Section 2, we shall review some former results and develop certain useful lemmas

what will be needed in this paper. The last section will be devoted to the proofs of the

main results.
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2.2 Useful Results on Circuits and Flats

In this section, we summarize some of the useful former results, and developed a few

lemmas for our use. A matroid M is trivial if it has no circuits. In the following all

matroids will be nontrivial.

Theorem 2.2.1 (Tutte [62]) Let M be a matroid.

(i)(Theorem 4.21 [62]). Let L be a line of M and a ∈ L, then ⟨L−{a}⟩ is the only circuit

on L which does not include a.

(ii)(Theorem 4.28 [62]). Let L be a disconnected line on a connected d-flat S of M , where

dS > 1. Then there exists a connected plane P of M such that L ⊂ P ⊆ S.

(iii)(Theorem 4.281 [62]). Let L be a disconnected line on a plane P of M . Let X and

Y be its two circuits, and let Z be any other circuit on P . Then X ∪ Z and Y ∪ Z are

connected lines, the only lines of M which are on both Z and P .

(iv)(Theorem 4.36 [62]). A matroid M without coloops is connected if and only if its

circuit graph C(M) is a connected graph.

Also, throughout the rest of this section, M denotes a simple nontrivial matroid, and

C1 and C2 will denote two distinct circuits of M .

Lemma 2.2.2 If C1 and C2 are different circuits of a matroidM such that C1∩C2 = {e},
then:

(i) If C1 and C2 are on a line, then C1△C2 is a circuit of M and |(C1△C2) ∩ Ci| ≥ 2.

(ii) If C1 and C2 are not on a line, then there are circuits C3 and C4 of M such that

e ∈ C3 ∩ C4, C1, C2, C3, C4 are pairwise different and |Ci ∩ Cj| ≥ 2, for every i ∈ {1, 2}
and j ∈ {3, 4}.

Proof. First, we establish (i). Observe that C1 − C2 and C2 − C1 are serious classes of

M |(C1 ∪C2). But M |(C1 ∪C2) is connected and so for each element e′ ∈ C1△C2 there is

a circuit C of M such that e′ ∈ C ⊆ C1△C2 = (C1 − C2) ∪ (C2 − C1). But by Theorem
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2.2.1 (i), C is the only circuit on ⟨C1△C2⟩. Therefore C1△C2 = (C1 ∪C2)− e ⊆ C. Then

C1△C2 is a circuit of M .

Now, we show (ii). There is a connected line L of M such that C1 ⊆ L ⊆ C1 ∪ C2.

Choose a circuit C3 of M such that e ∈ C3 ⊆ L and C3 ̸= C1. There is a connected line

L′ of M such that C2 ⊆ L′ ⊆ C1 ∪ C2 and ⟨L′ ∩ C3⟩ = ∅. We can choose a circuit C4 of

M such that e ∈ C4 ⊆ L′ and C4 ̸= C2. �

Lemma 2.2.3 If C1 and C2 are on a disconnected line of a connected matroid M , then

there is a circuit C0 such that C1 ∪C0 and C2 ∪C0 are connected lines with |C1 ∩C0| ≥ 2

and |C2 ∩ C0| ≥ 2.

Proof. By assumption, M |(C1 ∪ C2) is a disconnected line. Since M is connected, by

Theorem 2.2.1(ii), there exists a connected plane P of M such that C1 ∪ C2 ⊂ P . By

Theorem 2.2.1(iii), let C be any other circuit on P , then C1∪C and C2∪C are connected

lines. Assume that there is not a circuit C0 on P such that |C1∩C0| ≥ 2 and |C2∩C0| ≥ 2.

By Lemma 2.2.2, we know that there is a circuit C3 with |C1∩C3| ≥ 2. Then |C2∩C3| = 1.

By Lemma 2.2.2, C2△C3 is a circuit and |(C2△C3)∩C2| ≥ 2. But also |(C2△C3)∩C1| ≥ 2,

a contradiction. �

Lemma 2.2.4 Let C1 be a circuit of M . If e /∈ C1, then there is a circuit C2 containing

e and C1 and C2 are on a connected line.

Proof. Since M is connected, there is a circuit C ′ containing e and |C1 ∩C ′| ̸= 0. Let C2

be such a circuit and |C1 ∪ C2| − r(C1 ∪ C2) is minimal. Since M is binary, C1△C2 is a

disjoint union of circuits of M . If C1△C2 is a circuit, then C1 and C2 are on a connected

line. If C1△C2 is not a circuit, then there is C3 ⊂ C1△C2 containing e. So we have

|C1 ∪ C3| − r(C1 ∪ C3) < |C1 ∪ C2| − r(C1 ∪ C2) which is a contradiction. So C1 and C2

are on a connected line. �

Lemma 2.2.5 If |C1 ∩ C2| = 0, and r(C1) < r(C1 ∪ C2) < |C1 ∪ C2| − 2, then there is a

circuit C in M |(C1 ∪ C2) such that C and C1 are on a connected line with |C1 ∩ C| ≥ 2,

|C2 ∩ C| ≥ 2.
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Proof. There is e ∈ C2 such that C1 does not span e because, by hypothesis, r(C1) <

r(C1 ∪C2). By Lemma 2.2.4, there is a connected line L such that C1 ∪ e ⊆ L ⊆ C1 ∪C2.

If C is a circuit of M such that e ∈ C ⊆ L and C ̸= C1, then L − C1 ⊆ C and so

|C ∩ C2| ≥ 2. Since |C1| ≥ 3, it is possible to choose C such that |C ∩ C1| ≥ 2. �

2.3 Main Results

In this section, we shall prove our main results.

Theorem 2.3.1 . Let M be a connected simple matroid with more than one circuit. The

following statements are equivalent:

(i) M does not have a restriction isomorphic to U2,6.

(ii) diam(C2(M)) ≤ 2.

Proof. Assume that (i) holds. Let C1 and C2 be two circuits of M . We shall show that

in C2(M), either C1 and C2 are adjacent, or there is a C3 which is adjacent to both C1

and C2. Since if |C1 ∩ C2| ≥ 2, then C1 and C2 are adjacent in C2(M), we assume that

|C1 ∩ C2| ≤ 1.

Case 1. C1 ∩ C2 = {e}. By Lemma 2.2.2, we know (ii) holds.

Case 2. |C1 ∩ C2| = 0. In this case, we have r(C1 ∪ C2) ≤ |C1 ∪ C2| − 2.

Subcase 2.1. If r(C1∪C2) = |C1∪C2|−2, then M |(C1∪C2) is a disconnected line.

By Lemma 2.2.3, we can find a circuit C0 such that C1 ∪ C0 and C2 ∪ C0 are connected

lines with |C1 ∩ C0| ≥ 2 and |C2 ∩ C0| ≥ 2.

Subcase 2.2. If r(C1 ∪ C2) < |C1 ∪ C2| − 2, then M |(C1 ∪ C2) is connected. If

r(C1 ∪ C2) > r(C1) or r(C1 ∪ C2) > r(C2), without loss of generality, we assume that

r(C1 ∪ C2) > r(C1). By Lemma 2.2.5, there is a circuit C0 in M |(C1 ∪ C2) such that C0

and C1 are on a connected line and |C1 ∩ C0| ≥ 2, |C2 ∩ C0| ≥ 2.
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Subcase 2.3. If r(C1∪C2) < |C1∪C2|− 2 and r(C1∪C2) = r(C1) = r(C2), assume

that in C2(M), C1 and C2 do not have a common adjacent vertex. Since M is a simple

matroid, then |C2| ≥ 3. Hence there are elements f1, f2, f3 ∈ C2 and fi ̸= fj for any i ̸= j

(i, j = 1, 2, 3).

Subcase 2.3.1. {f1, f2, f3} = C2. Then r(C1 ∪C2) = r(C1) = r(C2) = 2. Therefore

M |(C1 ∪ C2) is isomorphic to U2,6 which is a contradiction.

Subcase 2.3.2. {f1, f2, f3} ⊂ C2. Therefore in M |(C1 ∪ {fi, fj}), any circuit

containing fi and fj has length 3 (i ̸= j, i, j = 1, 2, 3). Hence we can find a circuit

C3 = {f1, f2, h} and C4 = {f2, f3, g} such that h, g ∈ C1. Since r({f1, f2, f3}) = 3, by

Lemma 2.2.2, {f1, h, f3, g} is a circuit of M . Then we can get a vertex adjacent to both

C1 and C2 which is also a contradiction.

Conversely, ifM has a restriction X isomorphic to U2,6, let C1 and C2 be two different

circuits of X and C1 ∩ C2 = ∅, then the distance between C1 and C2 in C2(M) is 3.

If not, then we have a circuit C ′ of M with |C ′ ∩ C1| ≥ 2 and |C ′ ∩ C2| ≥ 2. Let

Y = (C ′ ∩ C1) ∪ (C ′ ∩ C2). Then |Y | ≥ 4 and Y ⊆ X. Since M |X ∼= U2,6, and since

|Y | ≥ 4, Y must properly contain a circuit of M , contrary to the circuit axioms.

This completes the proof of the theorem. �

Theorem 2.3.2 . Let M be a connected simple matroid with more than one circuit, but

M is not a line, then C2(M) is 2-connected.

Proof. We argue by contradiction. Assume that C2(M) has a cut vertex C0. Let C1 and

C2 be circuits of M such that they are in two different components of C2(M) − C0 and

|C1 ∩ C2| = 1. By Lemma 2.2.2(ii), we know that C1 and C2 are on a connected line. By

Lemma 2.2.2(i), C0 = C1△C2. But M is not a line, then there is another circuit C3 in

different components of C2(M)− C0 with Ci and |C3 ∩ Ci| = 1 (i = 1or2). Assume that

i = 1. By Lemma 2.2.2, we know C1 and C3 are both adjacent to C1△C3 which is also a

circuit of M . We get a contradiction.

We prove the theorem. �
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Theorem 2.3.3 . If M is a connected matroid with girth at least 2k− 1, then Ck(M) is

connected.

Proof. Let CD be an edge of C(M). By definition, C and D are different circuits of a

connected line of M . If |C ∩D| ≥ k, then CD is an edge of Ck(M). If |C ∩D| < k, then

C△D ⊆ C ′, for some circuit C ′ of M . But |C ∩ C ′| ≥ |C −D| ≥ (2k − 1)− (k − 1) = k

and so CC ′ is an edge of Ck(M). Similarly, DC ′ is an edge of Ck(M). Therefore Ck(M)

is connected because C(M) is connected. �



Chapter 3

Removable Elements in Matroids

3.1 Introduction

The number of edge-disjoint spanning trees in a network, when modeled as a graph, often

represents certain strength of the network [18]. The well-known spanning tree packing

theorem of Nash-Williams [52] and Tutte [61] characterizes graphs with k edge-disjoint

spanning trees, for any integer k > 0. For any graph G, the problem of determining which

edges should be added to G so that the resulting graph has k edge-disjoint spanning trees

has been studied, see Haas [21] and Liu et al [43], among others. However, it has not

been fully studied that for an integer k > 0, if a graph G has k edge-disjoint spanning

trees, what kind of edge e ∈ E(G) has the property that G − e also has k-edge-disjoint

spanning trees. The research of this chapter is motivated by this problem. In fact, we

will consider the problem that, if a matroid M has k disjoint bases, what kind of element

e ∈ E(M) has the property that M − e also has k disjoint bases.

We consider finite graphs with possible multiple edges and loops, and follow the

notation of Bondy and Murty [4] for graphs, and Oxley [58] or Welsh [64] for matroids,

except otherwise defined. Thus for a connected graph G, ω(G) denotes the number of

components of G. For a matroid M , we use ρM (or ρ, when the matroid M is understood

from the context) denotes the rank function of M , and E(M), C(M) and B(M) denote

13
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the ground set of M , and the collections of the circuits, and the bases of M , respectively.

Furthermore, if M is a matroid with E = E(M), and if X ⊂ E, then M − X is the

restricted matroid of M obtained by deleting the elements in X from M , and M/X is

the matroid obtained by contracting elements in X from M . As in [58] and [64], we use

M − e for M − {e} and M/e for M/{e}.

The spanning tree packing number of a connected graph G, denoted by τ(G), is

the maximum number of edge-disjoint spanning trees in G. A survey on spanning tree

packing number can be found in [59]. By definition, τ(K1) = ∞. For a matroid M , we

similarly define τ(M) to be the maximum number of disjoint bases of M . Note that by

definition, if M is a matroid with ρ(M) = 0, then for any integer k > 0, τ(M) ≥ k. The

following theorems are well known.

Theorem 3.1.1 (Nash-Williams [52] and Tutte [61]) Let G be a connected graph with

E(G) ̸= ∅, and let k > 0 be an integer. Then τ(G) ≥ k if and only if for any X ⊆ E(G),

|E(G−X)| ≥ k(ω(G−X)− 1).

Theorem 3.1.2 (Edmonds [19]) Let M be a matroid with ρ(M) > 0. Then τ(M) ≥ k if

and only if ∀X ⊆ E(M), |E(M)−X| ≥ k(ρ(M)− r(X)).

Let M be a matroid with rank function r. For any subset X ⊆ E(M) with r(X) > 0,

the density of X is

dM(X) =
|X|

rM(X)
.

When the matroid M is understood from the context, we often omit the subscript M .

We also use d(M) for d(E(M)). Following the terminology in [11], the strength η(M)

and the fractional arboricity γ(M) of M are respectively defined as

η(M) = min{d(M/X) : r(X) < r(M)}, and γ(M) = max{d(X) : r(X) > 0}.

Thus Theorem 3.1.2 above indicates that

τ(M) = ⌊η(M)⌋. (3.1)
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For an integer k > 0 and a matroid M with τ(M) ≥ k, we define Ek(M) = {e ∈
E(M) : τ(M − e) ≥ k}. Likewise, for a connected graph G with τ(G) ≥ k, Ek(G) = {e ∈
E(G) : τ(G− e) ≥ k}. Using Theorem 3.1.1, Gusfield proved that high edge-connectivity

of a graph would imply high spanning tree packing number.

Theorem 3.1.3 (Gusfield [20]) Let k > 0 be an integer, and let κ′(G) denote the edge-

connectivity of a graph G. If κ′(G) ≥ 2k, then τ(G) ≥ k.

The next result strengthens Gusfield’s theorem, and indicates a sufficient condition

for a graph G to satisfy Ek(G) = E(G).

Theorem 3.1.4 (Theorem 1.1 of [13]) Let k > 0 be an integer, and let κ′(G) denote the

edge-connectivity of a graph G. Then κ′(G) ≥ 2k if and only if ∀X ⊆ E(G) with |X| ≤ k,

τ(G−X) ≥ k. In particular, if κ′(G) ≥ 2k, then Ek(G) = E(G).

A natural question is to characterize all graphs G with the property Ek(G) = E(G).

More generally, for any graph G with τ(G) ≥ k, we are to determine the edge subset

Ek(G). These questions can be presented in terms of matroids in a natural way. The

main purpose of this chapter is to characterize Ek(M), for any matroid with τ(M) ≥ k.

The next theorem is our main result.

Theorem 3.1.5 Let M be a matroid and k > 0 be an integer. Each of the following

holds.

(i) Suppose that τ(M) ≥ k. Then Ek(M) = E(M) if and only if η(M) > k.

(ii) In general, Ek(M) equals to the maximal subset X ⊆ E(M) such that η(M |X) > k.

For a connected graph G with M(G) denoting its cycle matroid, let η(G) = η(M(G))

and γ(G) = γ(M(G)). Then Theorem 3.1.5, when applied to cycle matroids, yields the

corresponding theorem for graphs.
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Corollary 3.1.6 Let G be a connected graph and k > 0 be an integer. Each of the

following holds.

(i) If τ(G) ≥ k, Ek(G) = E(G) if and only if η(G) > k.

(ii) In general, Ek(G) equals to the maximal subset X ⊆ E(G) such that every component

of η(G[X]) > k.

In the next section, we shall discuss properties of the strength and the fractional

arboricity of a matroid M , which will be useful in the proofs of our main results. We will

prove a decomposition theorem in Section 3, which will be applied in the characterizations

of Ek(M) and Ek(G) in Section 4. In the last section, we shall develop polynomial

algorithms to locate the sets Ek(M) and Ek(G).

3.2 Strength and Fractional Arboricity of a Matroid

Both parameters η(M) and γ(M), and the problems related to uniformly dense graphs

and matroids (defined below) have been studied by many, see [11, 9, 10, 14, 17, 26, 25, 27,

27, 54, 60], among others. From the definitions of d(M), η(M) and γ(M), we immediately

have, for any matroid M with r(M) > 0,

η(M) ≤ d(M) ≤ γ(M). (3.2)

As in [11], a matroid M satisfying η(M) = γ(M) is called a uniformly dense

matroid. Both η(M) and γ(M) can also be described by their behavior in some parallel

extension of the matroid. For an integer t > 0, letMt denote matroid obtained fromM by

replacing each element e ∈ E(M) by a parallel class of t elements. (See Page 252 of [33]).

This matroid Mt is usually referred as the t-parallel extension of M . For X ⊆ E(M),

we use Xt to denote both the matroid (M |X)t and the set E((M |X)t).

Theorem 3.2.1 (Theorem 4 of [11], and Lemma 1 of [33]) Let M be a matroid and let

s ≥ t > 0 be integers. Then

(i) η(M) ≥ s
t
if and only if η(Mt) ≥ s.
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(ii) γ(G) ≤ s
t
if and only if γ(Mt) ≤ s.

(iii) tη(M) = η(Mt).

(iv) tγ(M) = γ(Mt).

Theorem 3.2.2 (Theorem 6 of [11]) Let M be a matroid. The following are equivalent.

(i) η(M) = d(M).

(ii) γ(M) = d(M).

(iii) η(M) = γ(M).

(iv) η(M) = s
t
, for some integers s ≥ t > 0, and Mt, the t-parallel extension of M , is a

disjoint union of s bases of M .

(v) γ(M) = s
t
, for some integers s ≥ t > 0, and Mt, the t-parallel extension of M , is a

disjoint union of s bases of M .

For each integer k > 0, define

T k = {M : τ(M) ≥ k}.

Proposition 3.2.3 The matroid family T k satisfies the following properties.

(C1) If r(M) = 0, then M ∈ T k.

(C2) If M ∈ T k and if e ∈ E(M), then M/e ∈ T k.

(C3) Let X ⊆ E(M) and let N =M |X. If M/X ∈ T k and if N ∈ T k, then M ∈ T k.

Proof: Recall that the bases of the contraction M/X has the following form (see, for

example, Corollary (3.1.9) of by [58]).

B(M/X) = {B′ ⊆ E −X : B′ ∪BX ∈ B(M)}, where BX ∈ B(M |X). (3.3)

Since when r(M) = 0, η(M) = ∞, (C1) follows from the definition of η immediately.

If e is a loop of M , then e is not in any basis of M and so by (3.3), M/e = M − e.

Thus τ(M/e) = τ(M − e) = τ(M) ≥ k. Therefore M/e ∈ T k.

Suppose e is not a loop. Let B1, . . . , Bk be disjoint bases of M . We assume that

∀i ∈ {1, 2, · · · , k}, if e /∈ Bi, then Ci = CM(e,Bi) is the unique circuit of Bi ∪ e. Since e
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is not a loop, ∃ei ∈ Ci − e. Define B′
i = Bi ∪ e − ei, if e /∈ Bi; and B

′
i = Bi, if e ∈ Bi.

It follows that B′
1, B

′
2, . . . , B

′
k are bases of M such that for any i ̸= j, Bi ∩ Bj = e. Note

that if X = {e}, then BX = {e} ∈ B(M |X). It follows by (3.3) that B′
i − e is a basis of

M/e, and all {B′
i − e} are disjoint. Hence M/e ∈ T k. This proves (C2).

Let B′′
1 , B

′′
2 , . . . , B

′′
k be disjoint bases of N and B′

1, B
′
2, . . . , B

′
k be disjoint bases of

M/N . By (3.3), B′
1 ∪B′′

1 , B
′
2 ∪B′′

2 , . . . , B
′
k ∪B′′

k are disjoint bases of M , and so M ∈ T k.

Lemma 3.2.4 Let M be a matroid with r(M) > 0, and let l ≥ 1 be fractional number.

Each of the following holds.

(i) (Lemma 10 of [11]) If X ⊂ E(M) and if η(M |X) ≥ η(M), then η(M/X) = η(M).

(ii) (Theorem 17 of [11]) If X ⊂ E(M) and if d(X) = γ(M), then η(M |X) = γ(M |X) =

d(X) = γ(M).

(iii) A matroid M is uniformly dense if and only if ∀X ⊆ E(M), d(X) ≤ η(M).

(iv) A matroid M is uniformly dense if and only if for any restriction N of M , η(N) ≤
η(M).

(v) If d(M) ≥ l, then there exists a subset X ⊆ E(M) with r(X) > 0 such that η(M |X) ≥
l.

Proof: (iii). If ∀X ⊆ E(M), d(X) ≤ η(M), then in particular, d(M) ≤ η(M). It

follows by (3.2) that d(M) = η(M), and so by Theorem 3.2.2, M is uniformly dense.

Conversely, suppose that there exists an X ⊆ E(M) with d(X) > η(M). Then by (3.2),

γ(M) ≥ d(X) > η(M), contrary to the assumption that M is uniformly dense.

(iv). By (iii) of this lemma, if M is uniformly dense, then for any restriction N , η(N) ≤
d(E(N)) ≤ η(M). On the other hand, if M is not uniformly dense, then γ(M) > η(M).

By the definition of γ(M), there exists an X ⊂ E(M) such that d(X) = γ(M). It follows

by (ii) of this lemma that η(M |X) = d(X) = γ(M) > η(M), contrary to the assumption.

Hence M must be uniformly dense.

(v). By (3.2), γ(M) ≥ d(M) ≥ l. By definition of γ(M), there exists a subset X ⊆ E(M)

with r(X) > 0, such that d(X) = γ(M). Let N = M |X. By (ii) of this lemma,

η(N) = γ(N) = d(N) = γ(M) ≥ d(M) ≥ l.
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For each rational number l > 1, define

S l = {M : η(M) ≥ l}. (3.4)

Corollary 3.2.5 Let p > q > 0 be integers. The matroid family S l satisfies the following

properties.

(C1) If r(M) = 0, then M ∈ S l.

(C2) If M ∈ S l and if e ∈ E(M), then M/e ∈ S l.

(C3) Let X ⊆ E(M) and let N =M |X. If M/X ∈ S l and if N ∈ S l, then M ∈ S l.

Proof: As (C1) follows from the definition of η and (C2) follows from Lemma 3.2.4(i),

it suffices to prove (C3) only. Since l = p
q
, and since both η(M/X) ≥ p

q
and η(M |X) ≥ p

q
,

it follows by Theorem 3.2.1 that Mq/(Xq) = (M/X)q ∈ T p and Mq|Xp = (M |X)q ∈ T p.

By Proposition 3.2.3(C3), Mq ∈ T p, and so by Theorem 3.2.1, M ∈ S l = S p
q
= {M :

τ(Mq) ≥ p}. This verifies (C3).

Lemma 3.2.6 Let M be a matroid with τ(M) ≥ k. Suppose that X ⊆ E(M) satisfies

η(M |X) ≥ k. Then Ek(M |X) ⊆ Ek(M).

Proof: Let N = M |X. It is trivial if Ek(N) = ∅. Assume Ek(N) ̸= ∅. Let e ∈ Ek(N).

Then τ(N−e) ≥ k. By definition of contraction, (M−e)/(N−e) =M/N . SinceM ∈ T k,

by Proposition 3.2.3(C2), M/N ∈ T k. Since N − e ∈ T k and (M − e)/(N − e) ∈ T k, by

Proposition 3.2.3(C3), M − e ∈ T k. Therefore e ∈ Ek(M).

Lemma 3.2.7 Let M be a matroid, and N be a restriction of M . If M/N,N ∈ T k, and

if both Ek(N) = E(N) and Ek(M/N) = Ek(M/N), Then Ek(M) = E(M).

Proof: Let e ∈ E(M). There are two cases to be considered.

Case 1: e ∈ E(M)−E(N) = E(M/N). Since Ek(M/N) = E(M/N), τ(M/N − e) ≥ k.

But (M − e)/N = M/N − e ∈ T k, and N ∈ T k, by Proposition 3.2.3(C3), M − e ∈ T k.

Hence e ∈ Ek(M) ⊆ E(M).
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Case 2: e ∈ E(N). Since Ek(N) = E(N), τ(N − e) ≥ k. Note that (M − e)/(N − e) ∼=
M/N ∈ T k. By Proposition 3.2.3(C3), M − e ∈ T k, and so e ∈ Ek(M) ⊆ E(M).

As for any e ∈ E(M), e ∈ Ek(M), we have Ek(M) = E(M).

3.3 A Decomposition Theorem

Throughout this section, we assume that M is a matroid with r(M) > 0. A subset

X ⊆ E(M) is an η-maximal subset and M |X is an η-maximal restriction if for any

subset Y ⊆ E(M), Y properly contains X, we have η(M |Y ) < η(M |X).

Lemma 3.3.1 If X ⊆ E(M) is an η-maximal subset, then X is a closed set in M .

Proof: Let η(M |X) = s
t
for some integers s ≥ t > 0. It follows by Theorem 3.2.1(i)

that M |X has s bases B1, B2, · · · , Bs such that every elements of X lies in at most t of

these bases. Suppose that X is not closed. Then there exists an e ∈ clM(X)−X, and so

r(X ∪ e) = r(X). Thus B1, B2, · · · , Bs are also bases of M |(X ∪ e), and every element in

X ∪ e lies in at most t of these bases. By Theorem 3.2.1(i), η(M |(X ∪ e)) ≥ s
t
= η(M |X),

contrary to the assumption that X is an η-maximal subset.

Lemma 3.3.2 Let W , W ′ ⊂ E(M) be subsets of E(M), and let l ≥ 1 be an integer. If

η(M |W ) ≥ l and η(M |W ′) ≥ l, then η(M |(W ∪W ′)) ≥ l.

Proof: Let N = M |(W ∪ W ′). Since N/W = (M |W ′)/(W ∩ W ′), it follows by

Corollary 3.2.5 (C2) that η(N/W ) = η((M |W ′)/(W ∩W ′)) ≥ η(M |W ′) ≥ l. Hence both

N/W ∈ S l and M |W ∈ S l. It then follows by Corollary 3.2.5 (C3) that N ∈ S l. Thus

η(N) ≥ l.

If N1 and N2 are two restrictions of M , we denote by N1 ∪N2 =M |(E(N1)∪E(N2)),

the restriction of M to the union of the ground sets of N1 and N2. This notation can be

extended to any finite union of restrictions.
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Lemma 3.3.3 Let N be a restriction of M . Then M must have an η-maximal restriction

L such that both E(N) ⊆ E(L) and η(L) ≥ η(N).

Proof: Suppose that η(N) = l for some rational number l ≥ 1. Let FN be the collection

of all restrictions N ′ of M such that η(N ′) ≥ l. Define L =
∪

N ′∈FN
N ′. As N ∈ FN ,

E(N) ⊆ E(L). By Lemma 3.3.2, η(L) ≥ l. By the definition of L, L must be η-maximal.

Lemma 3.3.4 For any restriction N of M , η(N) ≤ γ(M).

Proof: By (3.2), η(N) ≤ d(N) ≤ γ(M), and so it follows from the definition of γ(M).

Theorem 3.3.5 Let M be a matroid with r(M) > 0. Then each of the following holds.

(i) There exist an integer m > 0, and an m-tuple (l1, l2, ..., lm) of positive rational numbers

such that

η(M) = l1 < l2 < ... < lm = γ(M), (3.5)

and a sequence of subsets

Jm ⊂ ... ⊂ J2 ⊂ J1 = E(M); (3.6)

such that for each i with 1 ≤ i ≤ m, M |Ji is an η-maximal restriction of M with

η(M |Ji) = li.

(ii) The integer m and the sequences (3.5) and (3.6) are uniquely determined by M .

(iii) For every i with 1 ≤ i ≤ m, Ji is a closed set in M .

Proof: Let R(M) denote the collection of all η-maximal restrictions of M . By

Lemma 3.3.3, R(M) is not empty. Since E(M) is finite,

|R(M)| is a finite number. (3.7)

Define

spη(M) = {η(N) : N ∈ RHO(M)}.
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By (3.7), |spη(M)| is finite. Since M ∈
RHO(M), |spη(M)| ≥ 1.

Let m = |spη(M)|. Denote

spη(M) = {l1, l2, ..., lm}, such that l1 < l2 < ... < lm.

By Corollary 3.2.5(C3), and by the definition of γ(M), we have

η(M) = l1, and γ(M) = lm. (3.8)

For each j ∈ {1, 2, ...,m}, let Nj denote the η-maximal restriction of M with η(Nj) = lj,

and define

Jj = E(Nj). (3.9)

By the definition of S l,

S l1 ⊃ S l2 ⊃ ... ⊃ S lm . (3.10)

Hence by (3.8), (3.9) and (3.10),

E(M) = J1 ⊇ J2 ⊇ ... ⊇ Jm. (3.11)

Since

RHO(M) and spη(M) are uniquely determined byM , the integerm, them-tuple (l1, l2, ..., lm)

and the sequence (3.6) are all uniquely determined by M .

(iii). This follows from Lemma 3.3.1.

For a matroid M , the m-tuple (l1, l2, ..., lm) and the sequence in (3.6) will be referred

as the η-spectrum and the η-decomposition of M , respectively.

Corollary 3.3.6 Let M be a matroid with η-spectrum (3.5) and η-decomposition (3.6)

such that m > 1. Then each of the following holds.

(i) M/J2 is a uniformly dense matroid with η(M/J2) = γ(M/J2) = η(M).

(ii) For any integer k with l1 ≤ k < lm, E(M) has a unique subset Zk such that Zk is

η-maximal and such that η(M |Zk) > k.
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Proof: (i) Since m > 1, η(M |J2) = l2 > l1 = η(M). It follows by Lemma 3.2.4

that η(M/J2) = η(M). To see that M/J2 is uniformly dense, we argue by contradic-

tion. Suppose that M/J2 is not uniformly dense, and that γ(M/J2) > η(M/J2). It

follows by the definition of γ that there is a subset J ′ ⊂ E(M/X2) such that dM/J2(J
′) =

γ(M/J2). By Lemma 3.3.3, M/J2 has an η-maximal subset J ′′ (containing J ′) such that

η((M/J2)|J ′′) = l′ > η(M) = l1. If l′ ≥ l2, then by Lemma 3.3.2, η(M |(J2 ∪ J ′)) ≥ l2,

and so J2 is not η-maximal, contrary to the conclusion of Theorem 3.3.5. Thus we may

assume that l2 > l′ > l1. Since J ′′ is η-maximal in M/J2, by Lemma 3.2.4((i), J2 ∪ J ′′

is also η-maximal, and so by Theorem 3.3.5, the η-spectrum of M much contain l′. It

follows that (l1, l2, ..., lm) cannot be the η-spectrum of M , contrary to the assumption of

the corollary. This proves (i).

(ii) Let j < m be the smallest integer such that lj > k, and let Zk = Jlj . Then (ii) of

this corollary follows from Theorem 3.3.5.

The unique subset Zk stated in Part (ii) of Corollary 3.3.6 will be called the η-

maximal subset at level k of M .

Corollary 3.3.7 Let M be a matroid with with η-spectrum (3.5). Then M is uniformly

dense if and only if m = 1.

Proof: By definition,M is uniformly dense if and only if γ(M) = η(M). Since l1 = η(M)

and lm = γ(M), it follows that M is uniformly dense if and only if m = 1.

3.4 Characterization of the Removable Elements with

Respect to Having k Disjoint Bases

The main purpose of this section is to investigate the behavior of the set Ek(M). We first

observe that matroids M with Ek(M) = ∅ can be characterized in terms of the density of

M .
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Proposition 3.4.1 Let k > 0 be an integer, and M be a matroid with τ(M) ≥ k. Then

Ek(M) = ∅ if and only if d(M) = k.

Proof: Since τ(M) ≥ k, M has disjoint spanning bases B1, B2, · · · , Bk, and so

kr(M) =
k∑

i=1

|Bi| ≤ |E(M)| = d(M)r(M),

where equality holds if and only if k = d(M). It follows by Theorem 3.2.2 (iv) (with

s = k and t = 1) that k = d(M) if and only if E(M) =
∪k

i=1Bi, and so if and only if

Ek(M) = ∅.

Accordingly, when τ(M) ≥ k, Ek(M) ̸= ∅ if and only if d(M) > k. We have the

following characterization.

Theorem 3.4.2 Let k ≥ 2 be an integer. Let M be a graph with τ(M) ≥ k. Then each

of the following holds.

(i) Ek(M) = E(M) if and only if η(M) > k.

(ii) In general, if η(M) = k and if m > 1, then Ek(M) = J2 equals the η-maximal subset

at level k of M .

Proof: Since τ(M) ≥ k, it follows by (1) that η(M) ≥ k.

(i). If η(M) = k, then by Theorem 3.3.5 or by Corollary 3.3.6, there exists an unique

subset J ⊂ E(M) (say, J = J2 in the η-decomposition of M) such that M/J is uni-

formly dense with η(M/J) = γ(M/J) = η(M) = k. It follows by Theorem 3.2.2 that

d(E(M/J)) = k, and so by Proposition 3.4.1, for any e ∈ E(M) − J = E(M/J),

τ((M − e)/J) = τ(M/J − e) < k. Thus by τ((M − e)|J) = τ(M |J) ≥ k and by

Proposition 3.2.3(C3), τ(M − e) < k. This proves the necessity of (i).

We shall argue by contradiction to prove the sufficiency. Assume that the sufficiency

of (i) fails, and that

M is a counterexample with r(M) minimized. (3.12)
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Then

η(M) > k but Ek(M) ̸= E(M). (3.13)

Claim 1: M does not have a restriction N with r(N) < r(M) and η(N) > k.

Suppose not, and that M has a restriction N with η(N) > k. As r(N) < r(M), it

follows by (3.12) that Ek(N) = E(N). By Lemma 3.2.4, η(M/N) ≥ η(M) > k. Since

η(N) > k, r(N) > 0, and so r(M/N) < r(M). By (3.12), Ek(M/N) = E(M/N). By (1),

both M/N,N ∈ T k, and so by Lemma 3.2.7 that Ek(M) = E(M), contrary to (3.13).

This proves Claim 1.

The next claim follows from Claim 1 and Lemma 3.2.4 (iv).

Claim 2: M is uniformly dense.

By (3.12) and by (3.13), we may assume that

τ(M) ≥ k and η(M) > k, but ∃e ∈ E(M), τ(M − e) ≤ k − 1. (3.14)

Fix e ∈ E(M) so that τ(M − e) ≤ k − 1 as in (3.14). It follows by (3.2) and by

τ(M − e) ≤ k − 1 that η(M − e) < k. On the other hand, by Claim 2, M is uniformly

dense, and so by Theorem 3.2.2,

k < η(M) = d(M) =
|E(M)|
r(M)

.

This implies |E(M)| ≥ kr(M)+1. SinceM has k ≥ 2 disjoint bases, e cannot be a coloop

of M , and so r(M − e) = r(M). Hence

d(E − e) =
|E(M − e)|
r(M − e)

≥ k.

By Lemma 3.2.4(v), E(M) has a subsetX ⊆ E(M) with r(X) > 0 such that η(M |X) ≥ k.

Hence τ(M |X) = ⌊η(M |X)⌋ ≥ k. By Corollary 3.2.5 (C2), η(M/X) ≥ η(M) > k. Since

r(X) > 0, r(M/X) < r(M).

By e ∈ E(M/X), and by (3.12), τ((M − e)/N) = τ(M/N − e) ≥ k. As τ(N) ≥ k, it

follows by Proposition 3.2.3(C3) that τ(M − e) ≥ k, contrary to (3.14). This proves the

sufficiency of (i).
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(ii). We assume that η(M) = k. If d(M) = k, then by Proposition 3.4.1, Ek(M) = ∅.
On the other hand, by Theorem 3.2.2, M is uniformly dense and so by Lemma 3.3.7, the

η-maximal subset of level k of M is an empty set. Thus if d(M) = k, then (ii) holds with

Ek(M) = ∅.

Now assume that d(M) > k. By Lemma 3.2.4(v), γ(M) ≥ d(M) > k = η(M),

and so M is not uniformly dense. By Lemma 3.3.7, if M has (3.5) as its η-spectrum

and sequence (3.6) as its η-decomposition, then m > 1. Hence by Lemma 3.3.6(ii), the

η-maximal subset of level k of M equals J2. It follows by Part (i) of this theorem that

Ek(M |J2) = J2. By Lemma 3.2.6,

J2 = Ek(M |J2) ⊆ Ek(M). (3.15)

On the other hand, by Lemma 3.3.6(i),M/J2 is uniformly dense with η(M/J2) = η(M) =

k, and so by Proposition 3.4.1, Ek(M/J2) = ∅. By Theorem 3.3.5(iii), J2 is closed in M ,

and so

Ek(M) ⊆ E(M)− E(M/J2) = J2. (3.16)

Combining (3.15) and (3.16), we have Ek(M) = J2, which proves Part (ii) of the theorem.

Applying Theorem 3.4.2 to cycle matroids of connected graphs, we obtain the corre-

sponding theorem for graphs.

Corollary 3.4.3 Let k ≥ 2 be an integer, and G be a connected graph with τ(G) ≥ k. Let

(3.5) and (3.6) denote the η-spectrum and η-decomposition of M(G), respectively. Then

each of the following holds.

(i) Ek(G) = E(G) if and only if η(G) > k.

(ii) In general, if η(G) = k and if m > 1, then Ek(G) = J2 equals the η-maximal subset

at level k of M(G).
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3.5 Polynomial Algorithms Identifying the Excessive

Elements

We remark that there exists a polynomial algorithm which can identify the excessive

element subset Ek(M) for any given integer k > 0 and any matroid M .

Modifying an algorithm of Kruth (see Page 368 of [64]), Hobbs in [24] obtained an

algorithm in O(|E(M)|3(r(M)4) time (referred as Hobbs’ Algorithm below) such that

for any matroid M , it computes η(M) and γ(M), and finds the η-maximal subset J of M

such that η(M |J) = γ(M). By Theorem 3.3.5, this η-maximal subset J of M equals Jm

in (3.6).

For any matroid M , Hobbs’ Algorithm outputs im = γ(M) and Jm in (3.6). If

E(M) ̸= Jm (which means m > 1), then by Lemma 3.2.4 (i), we replace M by M/Jm,

and run Hobbs’ Algorithm to get γ(M) = im−1 and the η-maximal subset J ′ of M/Jm,

and so Jm−1 = J ′ ∪ Jm. This process can be repeated m times to generate all subsets

J1, J2, · · · , Jm in (3.6). In particular, by Theorem 3.4.2, it also computes Ek(M).



Chapter 4

Reinforcing a matroid to have k

disjoint bases

4.1 Introduction

In this chapter, we use N and Q+ to denote the set of all natural numbers and the set

of all positive fractional numbers, respectively, and consider finite matroids and graphs.

Undefined notations and terminology can be found in [58] or [64] for matroids, and [4] for

graphs. Thus for a connected graph G, ω(G) denotes the number of components of G.

For a matroidM , rM (or r, when the matroidM is understood from the context) denotes

the rank function of M , and E(M), I(M), C(M) and B(M) denote the ground set of

M , and the collections of independent sets, the circuits, and the bases of M , respectively.

Furthermore, if M is a matroid with E = E(M), and if X ⊂ E, then M − X is the

restricted matroid ofM obtained by deleting the elements in X fromM , and M/X is the

matroid obtained by contracting elements in X from M . As in [58] or [64], we use M − e

for M − {e} and M/e for M/{e}.

For a matroid M , let τ(M) denote the maximum number of disjoint bases of M . For

a graph G, define τ(G) = τ(M(G)), where M(G) denotes the cycle matroid of G. Thus

if G is a connected graph, then τ(G) is the spanning tree packing number of G.

28
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Readers are refereed to [59] for a survey on τ(G). The well-known spanning tree packing

theorem of Nash-Williams [52] and Tutte [61] characterizes graphs with k edge-disjoint

spanning trees, for any integer k > 0. Edmonds [19] proved the corresponding theorem

for matroids.

Let k > 0 be an integer. For any matroidM with τ(M) ≥ k, which element e ∈ E(M)

has the property that τ(M − e) ≥ k? Characterizations of all such elements have been

found in [36] and [35]. For a graph G, the problem of determining which edges should

be added to G so that the resulting graph has k edge-disjoint spanning trees has been

studied, see Haas [21] and Liu et al [43], among others. As the arguments in these papers

are involved vertices, it is natural to consider the possibility of extending these results to

matroids. Since matroids in general do not have a concept corresponding to vertices, one

can no longer add an element to a matroid as adding an edge in graphs. Therefore, we

need to reformulate the problem so that it would fit the matroid setting while generalizing

the graph theory results.

Let M be a matroid and k ∈ N. If there is a matroid M ′ with τ(M ′) ≥ k such that

M ′ has a restriction isomorphic toM (we then view M as a restriction of M ′), then M ′ is

a (τ ≥ k)-extension of M . We shall show that any matroid has a (τ ≥ k)-extension. We

then define F (M,k) to be the minimum integer l > 0 such thatM has a (τ ≥ k)-extension

M ′ with |E(M ′)|−|E(M)| = l. The main purpose of this chapter is to determine F (M,k)

in terms of other invariants of M .

By definition, ifM is a matroid with r(M) = 0, then ∀k ∈ N, τ(M) ≥ k. Accordingly,

for a connected graph G, if |V (G)| = 1, then τ(G) ≥ k for any k ∈ N. For a graph G, then

edge arboricity of G, denoted by a1(G), is the minimum number of spanning trees of G

whose union equals E(G). For a matroid, we define the similar concept γ1(M), which is

the minimum number of bases of M whose union equals E(M). The following theorems

are well known.

Theorem 4.1.1 (Nash-Williams [53]) Let G be a connected graph with |V (G)| > 1, and

let k > 0 be an integer. Then a1(G) ≤ k if and only if ∀X ⊆ E(G), |X| ≤ kr(G[X]).
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Theorem 4.1.2 (Edmonds [19]) Let M be a matroid with r(M) > 0. Then γ1(M) ≤ k

if and only if ∀X ⊆ E(M), |X| ≤ kr(X).

Thus Theorem 4.1.2 above indicates that

γ1(M) = ⌈γ(M)⌉. (4.1)

Our main result of this chapter can now be stated as follows.

Theorem 4.1.3 For k ∈ N, let M be a matroid with τ(M) ≤ k and let i(k) denote the

smallest ij in (3.5) such that i(k) ≥ k. Then

(i) F (M,k) = k(r(M)− r(Ji(k)))− |E(M)− Ji(k)|.
(ii) F (M,k) = maxX⊆E(M){kr(M/X)− |M/X|}.

In the next section, we shall present some of the useful properties related to strength

and fractional arboricity of a matroid M , and to the decomposition of M . Section 3 will

be devoted to the proofs of the main results. In the last section, we shall show some

applications of our main results.

4.2 Preliminaries

Both η(M) and γ(M) have been studied by many, see [11], [25] and [27], among others.

A matroid M satisfying η(M) = γ(M) is called a uniformly dense matroid. The

both η(M) and γ(M) can also be described by their behavior in some parallel extension

of the matroid.

Definition 4.2.1 Let M be a matroid and let ϕ : E(M) 7→ N be a function. For each

e ∈ E(M), let Xe = {e1, e2, · · · , eϕ(e)} be a set such that Xe ∩ Xe′ = ∅, ∀e, e′ ∈ E(M)

with e ̸= e′. The ϕ-parallel extension of M , denoted by Mϕ, is obtained from M
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by replacing each element e ∈ E(M) by a class of ϕ(e) parallel elements Xe. Thus

E(Mϕ) =
∪

e∈E(M)Xe such that a subset Y ⊆ E(Mϕ) is independent in Mϕ if and only if

both {e ∈ E(M) : Xe ∩ Y ̸= ∅} is independent in M and ∀e ∈ E(M), |Xe ∩ Y | ≤ 1. For

t ∈ N, if ∀e ∈ E(M), ϕ(e) = t is a constant function, we write Mt for Mϕ, and call Mt

the t-parallel extension of M .

Let E ′ = {e1 : e ∈ E(M)} ⊆ E(Mϕ). Then the bijection e ↔ e1 between E(M) and

E ′ yields a matroid isomorphism between M and Mϕ|E ′. Under this bijection, we shall

view M =Mϕ|E ′ as a restriction of Mϕ.

4.3 Characterization of the Must-Added Elements

with Respect to Having k Disjoint Bases

The main purpose of this section is to prove Theorems 4.1.3. We will start with a lemma.

Lemma 4.3.1 Let M be a matroid and let k > 0 be an integer. Each of the following

holds.

(i) η(M) ≥ k if and only if F (M,k) = 0.

(ii) If γ(M) ≤ k, then

F (M,k) = kr(M)− |E(M)|.

and for some ϕ : E(M) 7→ N, Mϕ is a matroid that contains M as a restriction such that

η(Mϕ) = γ(Mϕ) = k, and such that |E(Mϕ)| − |E(M)| = F (M,k).

Proof: (i) By (4.1), η(M) ≥ k if and only if τ(M) ≥ k. By the definition of F (M,k),

τ(M) ≥ k if and only if F (M,k) = 0. This proves (i).

(ii) Since γ(M) ≤ k, it follows by (4.1) that M has disjoint bases B1, · · ·Bk such

that E(M) =
∪k

i=1Bi. Define ϕ(e) = |{Bi : e ∈ Bi}|. Then ϕ : E(M) 7→ N. Let

L = Mϕ be the ϕ-parallel extension of M . Then by Definition 4.2.1, M is contained

in L as a restriction. Moreover, both |E(L)| =
∑k

i=1 |Bi| = kr(M) and τ(L) = k. It
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follows by Theorem 3.2.2 that η(L) = γ(L) = k. Hence F (M,k) = |E(L)| − |E(M)| =
kr(M)− |E(M)|.

When k = 2, the cycle matroid version of Lemma 4.3.1 has been frequently applied

in the study of supereulerian graphs, see Theorem 7 of [7] and Lemma 2.3 of [12], among

others. (For a literature review on supereulerian graphs, see [6] and [16].)

Proof of Theorem 4.1.3(i): Let M be a matroid with r(M) > 0. If τ(M) ≥ k, then

by (4.1) and by Theorem 3.3.5, i(k) = i1, and so

E(M) = Ji(k), and F (M,k) = 0.

Thus Theorem 4.1.3(i) follows trivially with τ(M) ≥ k. Hence we assume that τ(M) < k.

By Theorem 3.3.5, we must have m > 1. Let i(k) be the smallest ij in η-spectrum (3.6)

of M such that ij ≥ k. By Theorem 3.3.5, η(M |Ji(k)) ≥ k. Let M ′ = M/Ji(k). By the

assumption that η(M) < k and by Lemma 3.2.4(i), η(M ′) = η(M). By the choice of i(k),

γ(M ′) < k, and so by Lemma 4.3.1,

F (M ′, k) = kr(M ′)− |E(M ′)|, (4.2)

and there must be a function ϕ′ : E(M ′) 7→ N such that M ′
ϕ′ satisfies η(M ′

ϕ′) = γ(M ′
ϕ′) =

k. Define ϕ : E(M) 7→ N as follows:

ϕ(e) =

{
ϕ′(e) if e ̸∈ Ji(k)

1 if e ∈ Ji(k)
.

Then Mϕ is a matroid that contains M as a restriction, such that Jk(M) ⊂ E(Mϕ). By

the definition of ϕ, Mϕ|Ji(k) = M |Ji(k) ∈ Sk. Since Mϕ/Ji(k) = M ′
ϕ′ ∈k, it follows by

Proposition 3.2.5(C3) that Mϕ ∈k. Thus by (4.2) and by Lemma 3.3.1,

F (M,k) = F (M ′, k) = kr(M ′)− |E(M ′)|
= k(r(M)− r(Ji(k)))− |E(M)− Ji(k)|,

and so Theorem 4.1.3(i) is established.

To continue our proof for Theorem 4.1.3, we introduce the following function: for any

X ⊆ E(M), define

fk(M,X) = kr(M/X)− |M/X|, and Fk(M) = max
X⊆E(M)

{fk(M,X))}. (4.3)
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The function fk(M,X) was introduced by Bruno and Weinberg [5] to investigate the

principal partition of matroids. They are closely related to the strength and fractional

arboricity of matroids, as to be shown in Lemma 4.3.2 below.

Lemma 4.3.2 Let M be a matroid with r(M) > 0, and let k > 0 be an integer. Each of

the following holds.

(i) Fk(M) = 0 if and only if η(M) ≥ k.

(ii) Fk(M) = fk(M, ∅) if and only if γ(M) ≤ k.

(iii) Let i(k) denote the smallest ij in (3.5) such that i(k) ≥ k, and Ji(k) the corresponding

set in the η-decomposition (3.6) of M . Then Fk(M/Ji(k)) = F (M,k).

(iv) For any e ∈ E(M), Fk(M) ≥ Fk(M/e). In particular, Fk(M) ≥ F (M,k).

(v) If X0 ⊂ E(M) satisfies Fk(M) = fk(M,X0), then Fk(M) = fk(M/X0) = Fk(M/X0) =

fk(M/X0, ∅) and γ(M/X0) ≤ k.

Proof: (i) By definition (4.3), Fk(M) = 0 if and only if ∀X ⊆ E(M), fk(M,X) =

kr(M/X) − |E(M/X)| ≤ 0. By the definition of η(M), ∀X ⊆ E(M), kr(M/X) −
|E(M/X)| ≤ 0 if and only if η(M) ≥ k.

(ii) By the definition of Fk(M), Fk(M) = fk(M, ∅ if and only if ∀X ⊆ E(M),

k(r(M)− r(X))− |E −X| ≤ kr(M)− |E|;

and so if and only if ∀X ⊆ E(M) with r(X) > 0, |X|
r(X)

≤ k. By the definition of γ(M),

this happens if and only if γ(M) ≤ k.

(iii) By Theorem 3.3.5, γ(M/Ji(k)) < k. By (ii) of this lemma, by Lemma 3.3.1, and

by Theorem 4.1.3,

Fk(M/Ji(k)) = fk(M/Ji(k), ∅) = r(M/Ji(k))− |M/Ji(k)|
= r(M)− r(Ji(k))− |E| − |Ji(k)| = F (M,k).

(iv) For any e ∈ E(M), by the definition of Fk(M) in (4.3), Fk(M) ≥ Fk(M/e). It

follows by (iii) of this lemma that Fk(M) ≥ fk(M,X) = F (M,k).



CHAPTER 4. REINFORCING A MATROID TO HAVE K DISJOINT BASES 34

(v) By (iv), and by the choice of X0, we have

Fk(M) ≥ Fk(M/X0) ≥ fk(M/X0, ∅) = fk(M,X0) = Fk(M).

Thus we must have both Fk(M) = fk(M/X0) and Fk(M/X0) = fk(M/X0, ∅). It follows

by (ii) that γ(M/X0) ≤ k. This proves (v).

Lemma 4.3.3 Suppose that X0 ⊆ E(M) satisfies fk(M,X0) = Fk(M). Then η(M |X0) ≥
k.

Proof: By Lemma 4.3.1(i), it suffices to show that Fk(M |X0) = 0. For any Y ⊆ X0, as

fk(M |X0, Y ) = k(r(X0)−r(Y ))−|X0|+|Y |, and fk(M,X0) = kr(r(M)−(X0))−|E(M)|+|X0|.

It follows that fk(M |X0, Y ) + fk(M,X0) = fk(M,Y ) ≤ Fk(M) = fk(M,X0). Thus by

definition, fk(M |X0, Y ) ≤ 0. This implies that Fk(M |X0) = 0, and so η(M |X0) ≥ k.

Proof of Theorem 4.1.3(ii): By Lemma 4.3.2(iv), it suffices to show that Fk(M) ≤
F (M,k). We shall argue by induction on |E(M)| to proceed the proof.

Suppose first that Fk(M) = 0. Then by Lemma 4.3.2(i), Fk(M) = 0 if and only if

η(M) ≥ k. By Lemma 4.3.1(i), we have F (M,k) = 0 = Fk(M) in this case. Thus we

assume that Fk(M) > 0.

By Lemma 4.3.1(i), Fk(M) > 0 if and only if η(M) < k. If γ(M) ≤ k, then by

Lemma 4.3.1(ii), and by Lemma 4.3.1(ii),

Fk(M) = fk(M, ∅) = kr(M)− |E(M)| = F (M,k).

Hence we may assume that Theorem 4.1.3(ii) holds for smaller values of |E(M)|, and that

η(M) < k < γ(M). (4.4)

By induction, we may assume that M does not have loops. By Theorem 3.3.5, and by

(4.4), both i(k), the smallest ij in (3.5) such that ij ≥ k, and Ji(k), the corresponding set

in (3.6), exist.
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Let X0 ⊂ E(M) be such that Fk(M) = fk(M,X0). By (4.4), X0 ̸= ∅. Since M is

loopless, r(X0) > 0, and so |E(M/X0)| < |E(M)|. By Lemma 4.3.2(v) and by induction,

we have

Fk(M) = fk(M/X0) = Fk(M/X0) = F (M/X0, k), and γ(M/X0) ≤ k. (4.5)

Suppose that F (M,k) = l. Then there exists a matroid M ′ with M ′ ∈ Sk, which

contains M as a restriction and satisfies |E(M ′)− E(M)| = l. Note that X0 ⊆ E(M) ⊆
E(M ′). Let W = E(M ′)− E(M), and W0 = W − clM ′(X0). Then |W0| ≤ |W |.

Since M ′ ∈ Sk, it follows by Proposition 3.2.5(C2) that M ′/X0 ∈ Sk. Since M

is a restriction of M ′, M/X0 is a restriction of M ′/X0. It follows by the definition of

F (M/X0, k) and by (4.5) that

Fk(M) = F (M/X0, k) ≤ |E(M ′/X0)− E(M/X0)| ≤ |W0| ≤ |W | = F (M,k).

This, together with Lemma 4.3.2(iv), implies Theorem 4.1.3(ii).

4.4 Applications

Let G be a graph, and M =M(G) is the cycle matroid of G. Let F (G, k) = F (M(G), k),

and fk(G,X) = fk(M(G), X), for any edge subset X ⊆ E(G). Let ω(G) denote the

number of connected components of G. The next theorem follows immediately from

Theorem 4.1.3.

Theorem 4.4.1 (Theorems 3.4 and 3.10 of [43]) For k ∈ N, let G be a connected graph

with τ(M(G)) ≤ k and let i(k) denote the smallest ij in (3.5) such that i(k) ≥ k. Then

(i) F (G, k) = k(|V (G)| − |V (G[Ji(k)])|+ ω(G[Ji(k)])− 1)− |E(G)− Ji(k)|.
(ii) F (G, k) = maxX⊆E(G){fk(G,X)}.

The problem of reinforcing graphs to have k edge-disjoint spanning trees has also been

investigated by others. In [21], the following is proved.
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Theorem 4.4.2 (Haas, Theorem 1 of [21]) The following are equivalent for a graph G,

and integers k > 0 and l > 0.

(i) E(G)| = k(|V (G)|−1)− l and for subgraphs H of G with at least 2 vertices, |E(H)| ≤
k(|V (H)| − 1).

(ii) There exists some l edges which when added to G result in a graph that can be decom-

posed into k spanning trees.

Proof: Assume that (i) holds. Then by (3.1), γ(M(G)) ≤ k. It follows by the assump-

tion that E(G)| = k(|V (G)| − 1)− l and by Lemma 4.3.1(ii) that F (G, k) = l, and so (i)

is obtained.

Assume (ii) holds. Since adding l edges to G can result in a graph in Sk, by (3.1) and

by (4.1), γ(M(G)) ≤ k. By Lemma 4.3.1(ii),

k(|V (G)| − 1)− |E(G)| = F (G, k) = l,

and so (i) must hold.



Chapter 5

Supereulerian Width of Graphs

5.1 Introduction

Graphs in this paper are finite and may have multiple edges but no loops. Terminology

and notations not defined here are referred to [4]. In particular, for a graphG, δ(G), ∆(G),

κ(G) and κ′(G) represents the minimum degree, the maximum degree, the connectivity

and the edge connectivity of a graph G, respectively. For subgraphs H1, H2 of G, H1∪H2

and H1 ∩H2 denote the union and intersection of H1 and H2, respectively, as defined in

[4]. For vertices u, v ∈ V (G), a trail with end vertices being u and v will be referred as

a (u, v)-trial. We use O(G) to denote the set of all odd degree vertices in G. A graph G

is Eulerian if O(G) = ∅ and G is connected, and is supereulerian if G has a spanning

Eulerian subgraph.

Let G be a graph, and s > 0 be an integer. For any distinct u, v ∈ V (G), an (s;u, v)-

trail-system of G is a subgraph H consisting of s edge-disjoint (u, v)-trails. A graph is

supereulerian with width s if ∀u, v ∈ V (G) with u ̸= v, G has a spanning (s;u, v)-

trail-system. The supereulerian width µ′(G) of a graph G is the largest integer s such

that G is supereulerian with width k for any integer k with 1 ≤ k ≤ s. Luo et al in [47]

defined graphs with mu′(G) ≥ 2 as Eulerian-connected graphs and investigated, given

an integer r > 0, the minimum value ψ(r) such that if G is a ψ(r)-edge-connected graph,

37
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then ∀X ⊆ E(G) with |X| ≤ r, µ′(G−X) ≥ 2. Note that if for some vertices u and v, G

does not have a spanning (u, v)-trial, then µ′(G) = 0. The vertex counter-part of µ′(G),

called the spanning connectivity of a graph, has been intensively studied, as can be seen

in Chapters 14 and 15 of [29].

Throughout this paper, as in [4], G[X] denotes the subgraph induced by an edge

subset X ⊆ E(G). When no confusion arises, we shall often adopt the convention that

for an edge subset X ⊆ E(G), X denotes the edge subset as well as the subgraph G[X]

of G.

In [3], Boesch et al first raised a problem to determine when a graph is supereulerian.

They remarked that such a problem would be a difficult one. In [55], Pulleyblank con-

firmed the remark by showing that the problem to determine if a graph is supereulerian,

even within planar graphs, is NP-complete.

In [8], Catlin introduced collapsible graphs as a tool to study supereulerian graphs.

Catlin (Theorem of [8]) and Lai et al (Theorem 2.3(iii) of [37]) showed that if G is

collapsible, then µ′(G) ≥ 2. Most of the studies on supereulerian graphs with width at

most 2 can be found in Catlin’s survey [6] and its update [16]. By definition, we have the

obvious inequality

µ′(G) ≤ κ′(G), for any connected graph G. (5.1)

Knowing when the equality in (5.1) will hold is one of the most natural questions. One

purpose of this paper is an effort to investigate graphs G such that for a given integer

k, µ′(G) ≥ k if and only if κ′(G) ≥ k. Motivated by Catlin’s work in [8], we extend the

concept of collapsible graphs to s-collapsible graphs, and use it to develop an associate

reduction method using s-collapsible graphs in Section 2. In Section 3, we study the

s-collapsibility of complete graphs and some other dense graphs, and verify that for any

graph G with at most 6 vertices and not isomorphic to K3,3, µ
′(G) ≥ 3 if and only if

κ′(G) ≥ 3. In the last section, we apply the reduction method associate with s-collapsible

graphs to study the structure of reduced graphs under a degree condition. These allow us

to obtain a best possible degree condition for supereulerian graphs with width at least 3.
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5.2 Reductions with s-Collapsible Graphs

Throughout this paper, we adopt the convention that any graph G is 0 edge-connected,

and let s ≥ 1 denote an integer. For sets X and Y , the symmetric difference of X and

Y is

X∆Y = (X ∪ Y )− (X ∩ Y ).

Definition 5.2.1 A graph G is s-collapsible if for any subset R ⊆ V (G) with |R| ≡ 0

(mod 2), G has a spanning subgraph ΓR such that

(i) both O(ΓR) = R and κ′(ΓR) ≥ s− 1, and

(ii) G− E(ΓR) is connected.

A spanning subgraph ΓR of G with both properties in Definition 5.2.1 is an (s,R)-

subgraph of G. Let Cs denote the collection of s-collapsible graphs. Then C1 is the

collection of all collapsible graphs, defined in [8]. By definition, for s ≥ 1, any (s+ 1, R)-

subgraph of G is also an (s,R)-subgraph of G. This implies that

Cs+1 ⊆ Cs, for any positive integer s. (5.2)

Proposition 5.2.2 Let G be a graph, and let s ≥ 1 be an integer. Then the following

are equivalent.

(i) G ∈ Cs.

(ii) For any X ⊆ V (G) with |X| ≡ 0 (mod 2), G has a spanning connected subgraph LX

such that O(LX) = X and such that κ′(G− E(LX)) ≥ s− 1.

Proof. (i) =⇒ (ii). Given X ⊆ V (G) with |X| ≡ 0 (mod 2), let R = O(G)∆X.

Since G ∈ Cs, G has a spanning subgraph ΓR such that O(ΓR) = R, κ′(ΓR) ≥ s− 1, and

G−E(ΓR) is connected. Let LX = G−E(ΓR). Then LX is a spanning connected subgraph

such that O(LX) = R∆O(G) = X∆O(G)∆O(G) = X. Moreover κ′(G − E(LX)) =

κ′(ΓR) ≥ s− 1.

(ii) =⇒ (i). Given R ⊆ V (G) with |R| ≡ 0 (mod 2), let X = R∆O(G). By (ii), G has

a spanning connected subgraph LX such that O(LX) = X and such that κ′(G−E(L)) ≥
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s− 1. Let ΓR = G−E(LX). Then both κ′(ΓR) ≥ s− 1 and O(ΓR) = O(G)∆X = R. As

G− E(ΓR) = LX is connected, G ∈ Cs.

For a graph G, and for X ⊆ E(G), the contraction G/X is obtained from G by

identifying the two ends of each edge in X and then by deleting the resulting loops. If H

is a subgraph of G, then we write G/H for G/E(H). When H is connected, we use vH

to denote the vertex in G/H onto which H is contracted.

Lemma 5.2.3 Suppose that H is a connected subgraph of G, and R ⊆ V (G) with |R| ≡ 0

(mod 2). Define

R′ =

{
R− V (H) if |R ∩ V (H)| ≡ 0 (mod 2)

(R− V (H)) ∪ {vH} if |R ∩ V (H)| ≡ 1 (mod 2).

If G/H has an (s,R′)-subgraph ΓR′, and if H ∈ Cs, then G has an (s,R)-subgraph ΓR.

Proof. Let ΓR′ be an (s,R′)-subgraph of G/H. Define R∗ = V (H) ∩ O(G[E(ΓR′)]).

Thus R∗ consists of vertices in H that are incident with an odd number of edges in E(ΓR′).

By the definition of R′, |R∗| ≡ |R ∩ V (H)| (mod 2). Define R′′ = R∗∆(R ∩ V (H)). Then

|R′′| ≡ |R∗| + |R ∩ V (H)| ≡ 0 (mod 2). Since H ∈ Cs, H has an (s,R′′)-subgraph ΓR′′ .

Define

ΓR = G[E(ΓR′) ∪ E(ΓR′′)].

Since κ′(ΓR′) ≥ s − 1 and κ′(ΓR′′) ≥ s − 1, we conclude that κ′(ΓR) ≥ s − 1. By the

definition of R′ and R′′,

O(ΓR) = O(G[E(ΓR′)])∆O(ΓR′′ = (R− V (H)) ∪ (R ∩ V (H)) = R.

Moreover, G−E(ΓR) = G[E(G/H −E(ΓR′))∪E(H −E((ΓR′′))]. Since ΓR′ is an (s,R′)-

subgraph of G/H, and since ΓR′′ is an (s,R′′)-subgraph of H, ΓR′ contains a spanning

tree of G/H and ΓR′′ contains a spanning tree of H. It follows that G − E(ΓR) has a

spanning tree of G, and so by definition, ΓR is an (s,R)-subgraph of G.

Corollary 5.2.4 Let s ≥ 1 be an integer. Then Cs satisfies the following.

(C1) K1 ∈ Cs.
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(C2) If G ∈ Cs and if e ∈ E(G), then G/e ∈ Cs.

(C3) If H is a subgraph of G and if H,G/H ∈ Cs, then G ∈ Cs.

Proof. (C1) and (C2) follow immediately from definitions, and (C3) follows from

Lemma 5.2.3.

Corollary 5.2.5 Let s ≥ 1 be an integer. If a graph G ∈ Cs, then µ
′(G) ≥ s+ 1.

Proof. Let u and v be two distinct vertices of G. Let X = ∅. Since G ∈ Cs,

by Proposition 5.2.2, G has a spanning connected subgraph LX with O(LX) = ∅ and

κ′(G−E(LX)) ≥ s− 1. Since LX is a spanning eulerian subgraph, LX can be partitioned

into two edge-disjoint (u, v)-trails T1, T2. By Menger’s theorem, G−E(LX) has s−1 edge-

disjoint (u, v)-trials, T3, T4, · · · , Ts+1. Since T1 ∪ T2 = LX is spanning, {T1, T2, · · · , Ts+1}
is spanning (s+ 1;u, v)-trail-system.

A subgraph H of G is Cs-maximal if H ∈ Cs and if G has no subgraph in Cs that

properly contains H.

Lemma 5.2.6 Let G be a graph and let s > 0 be an integer. Each of the following holds.

(i) Let L1, L2 be vertex induced subgraphs of G. If V (L1)∩ V (L2) ̸= ∅ and if L1, L2 ∈ Cs,

then L1 ∪ L2 ∈ Cs.

(ii) The graph G has a unique set of Cs-maximal subgraphs H1, H2, · · · , Hc, and if G′ =

G/(∪c
i=1E(Hi)), then G

′ contains no nontrivial subgraph in Cs.

Proof. (i) Let L = L1 ∪ L2, and L
′ = L/L2. Let v

′ denote the vertex of L′ onto which

L2 is contracted. Since L1, L2 are vertex induced subgraphs of G,

L′ = L/L2 = (L1 ∪ L2)/L2 = L1/(L1 ∩ L2),

is a contraction of L1, it follows by Corollary 5.2.4(C2) that L′ ∈ Cs. As L2 ∈ Cs and by

Corollary 5.2.4(C3), L ∈ Cs.

(ii) The existence and the uniqueness of this set Cs-maximal subgraphs H1, H2, · · · , Hc

follow from Corollary 5.2.4(C1) and from (i). Let V (G′) = {u1, u2, · · · , uc}, where ui is
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the vertex onto which the subgraph Hi is contracted, (1 ≤ i ≤ c). Suppose that G′ has a

nontrivial subgraph H ′ ∈ Cs. We may assume that V (H ′) = {u1, u2, · · · , ut} with t ≥ 2.

Then by repeat applications of Corollary 5.2.4(C3),

H = G[E(H ′) ∪

(
t∪

i=1

E(Hi)

)
] ∈ Cs,

contrary to the assumption that these Hi’s are Cs-maximal.

A graph is Cs-reduced if it contains no nontrivial subgraph in Cs. By Lemma 5.2.6,

the graph G′ = G/(∪c
i=1E(Hi)) is Cs-reduced, called the Cs-reduction of G.

Corollary 5.2.7 Let s ≥ 1 be an integer. Let T be a spanning tree of a graph G. If

∀e ∈ E(T ), e lies in a subgraph He ∈ Cs, then G ∈ Cs.

Proof. The hypothesis implies that G has a nontrivial subgraph in Cs. Let H be a

subgraph of G such that H ∈ Cs with |V (H)| maximized. If G = H, then done. Assume

that |V (H)| < |V (G)|. Since T is a spanning tree, there must be an edge e ∈ E(T )−E(H)

but e is incident with a vertex in H. By assumption, G has a subgraph He ∈ Cs such that

e ∈ E(He). Since V (H) ∩ V (He) ̸= ∅, by Lemma 5.2.6(i), H ∪He ∈ Cs, contrary to the

maximality of H. Hence we must have G = H.

Lemma 5.2.8 Let s ≥ 1 be an integer. Suppose that H is a connected subgraph of G.

For any x ∈ V (G), define x′ = x if x ∈ V (G) − V (H) and x′ = vH if x ∈ V (H). If

H ∈ Cs, then for any u, v ∈ V (G) with u ̸= v, the following are equivalent.

(i) G has a spanning (s+ 1; u, v)-trail-system.

(ii) If u′ ̸= v′, then G/H has a spanning (s + 1;u′, v′)-trail-system; and if u′ = v′ = vH ,

then G/H is supereulerian.

Proof. (i) =⇒ (ii). Let T1, T2, · · ·Ts+1 be edge-disjoint (u, v)-trials in G such that

∪s+1
i=1Ti is spanning in G. For i ∈ {1, 2, · · · , s+ 1}, let Zi = V (G)− V (Ti), and define

T ′
i = (Ti ∪H)/H − Zi, for i ∈ {1, 2, · · · , s+ 1},
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Then in G/H, if u′ ̸= v′, T ′
1, T

′
2, · · ·T ′

s+1 are edge-disjoint (u′, v′)-trails. Since ∪s+1
i=1Ti is

spanning in G, {T ′
1, T

′
2, · · ·T ′

s+1} is a spanning (s+1;u′, v′)-trail-system of G/H. If u′ = v′,

then since u ̸= v in G, we must have u′ = v′ = vH , and so T ′
1, T

′
2, · · ·T ′

s+1 are edge-disjoint

closed trails in G/H. Since ∪s+1
i=1Ti is spanning in G, ∪s+1

i=1T
′
i is a spanning closed trail in

G/H, and so G/H is supereulerian.

(ii) =⇒ (i). Suppose first that u′ = v′ = vH , and G/H is supereulerian. Let T ′ denote

a spanning closed trial in G/H. Let X ′ = O(G[E(T ′)]).

Since T ′ is an Eulerian subgraph of G/H, X ′ ⊆ V (H) with |X ′| ≡ 0 (mod 2). Since

H ∈ Cs, by Proposition 5.2.2, H has a spanning connected subgraph LX with O(LX′) = X ′

such that κ′(H −E(LX′)) ≥ s− 1. Thus H −E(LX′) has s− 1 edge-disjoint (u, v)-paths

T1, T2, · · · , Ts−1. Let Γ = T ′∪LX′ be an edge-induced subgraph of G. Since T ′ is spanning

and connected in G/H, and since LX′ is spanning and connected in H, Γ is a spanning

connected subgraph of G with O(Γ) = O(T ′)∆O(LX′) = O(T ′)∆O(T ′) = ∅. Thus Γ is

a spanning Eulerian subgraph of G, and so Γ can be partitioned into two edge-disjoint

(u, v)-trails Ts and Ts+1, such that Ts ∪ Ts+1 = Γ is spanning in G. It follows that

{T1, T2, · · · , Ts+1} is a spanning (s+ 1;u, v)-trail-system.

Therefore we assume that u′ ̸= v′. Let {T ′
1, T

′
2, · · ·T ′

s+1} be a spanning (s + 1;u′, v′)-

trail-system of G/H. Let L′ = ∪s+1
i=1T

′
i . Let G[E(T ′

i )], (1 ≤ i ≤ s + 1), and G[E(L′)]

denote the edge induced subgraphs of G. Let

Yi = O(G[E(T ′
i )]) ∩ V (H), 1 ≤ i ≤ s+ 1.

Since for each i, T ′
i is a (u, v)-trail in G/H,

O(G[E(T ′
i )]) ⊆ V (H) ∪ {u, v}, 1 ≤ i ≤ s+ 1. (5.3)

To complete the proof of the lemma, we consider the following cases to show that a

spanning (s+ 1;u, v)-trail-system always exists.

Case 1 u, v ̸∈ V (H).

Then u′ = u and v′ = v. Since u, v ̸∈ V (H), by (5.3), |Yi| ≡ 0 (mod 2). Without loss

of generality, we assume that Yi ̸= ∅ when 1 ≤ i ≤ t, and Yi = ∅, for all i > t. Since each



CHAPTER 5. SUPEREULERIAN WIDTH OF GRAPHS 44

T ′
i is an (u, v)-trail containing vH , for each i with 1 ≤ i ≤ t, there must be ui, vi ∈ Yi such

that T ′
i contains a (u, ui)-trail Ji and a (vi, v)-trail J

′
i such that Ji and J

′
i are edge-disjoint.

Define sets Wi and W as follows:

Wi =

{
{ui, vi} if ui ̸= vi

∅ otherwise
where 1 ≤ i ≤ t, and W = ∆t

i=2Wi.

Note that if t = 1, then W = ∅, and that it is possible that for i ̸= j, ui = uj or vi = vj.

As each |Wi| ≡ 0 (mod 2), we also have |W | ≡ 0 (mod 2). Define

X = (∪t
i=1Yi)∆W.

Since both | ∪t
i=1 Yi| ≡ 0 (mod 2) and |W | ≡ 0 (mod 2), |X| ≡ 0 (mod 2). Since H ∈ Cs,

and since X ⊆ V (H), by Proposition 5.2.2, H has a spanning connected connected

subgraph LX with O(LX) = X, such that κ′(H − E(LX)) ≥ s− 1.

Since κ′(H−E(LX)) ≥ s−1, relabelling the ui’s and the Ji’s if necessary, H−E(LX)

has edge-disjoint (ui, vi)-trials J
′′
i , (2 ≤ i ≤ t). Define edge induced subgraphs as follows:

Ti =

{
Ji ∪ J ′

i ∪ J ′′
i if 2 ≤ i ≤ t

T ′
i if t+ 1 ≤ i ≤ s+ 1.

Thus for all 2 ≤ i ≤ s+ 1, these Ti’s are edge-disjoint (u, v)-trials. For i = 1, define

T1 = J1 ∪ J ′
1 ∪ LX ∪

(
L′ −

s+2∪
i=2

E(Ti)

)
.

Since each Ti is a (u, v)-trail, every vertex in LX ∪
(∪s+1

i=2 Ti −
∪t

i=2 Ti
)
− {u1, v1} has an

even degree. By the definition of W , either u1 = v1 or u1, v1 ∈ X, and so T1 is also a

(u, v)-trial, edge-disjoint from
∪s+1

i=2 Ti. Since LX is spanning in H and L′ spans G/H,

∪s+1
i=1T1 is spanning in G. Thus {T1, T2, · · · , Ts+1} is a spanning (s+ 1;u, v)-trail-system.

Case 2 u ̸∈ V (H) and v ∈ V (H). (The case when u ∈ V (H) and v ̸∈ V (H) is similar

and will be omitted).

Then u′ = u and v′ = vH . Since u ̸∈ V (H), by (5.3), ∀i with 1 ≤ i ≤ s, |Yi| ≡ 1 (mod

2). Since T ′
i is a (u, vH)-trial in G/H, ∃ui ∈ Yi, such that T ′

i contains a (u, ui)-trail Ji in

G. Without loss of generality, assume that ui ̸= v if 1 ≤ i ≤ t, and v = uj if j > t.
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Let Wi = Yi − {ui}, 1 ≤ i ≤ t; and Wj = Yj − {v}, t < j ≤ s + 1. Then |Wi| ≡ 0

(mod 2), 1 ≤ i ≤ s+ 1. Define

X =
(
∆s+1

i=1Wi

)
∆{u1, v}.

Then |X| ≡ 0 (mod 2). Since H ∈ Cs, by Proposition 5.2.2, H has a spanning connected

subgraph LX with O(LX) = X, such that κ′(H −E(LX)) ≥ s− 1 ≥ t. Thus H −E(LX)

has edge-disjoint (ui, v)-paths J
′
i , 2 ≤ i ≤ t. Define edge induced subgraphs as follows:

Ti =


J1 ∪ LX ∪

(
L′ −

s+1∪
i=2

E(Ji)

)
if i = 1

Ji ∪ J ′
i if 2 ≤ i ≤ t

Ji if t < i ≤ s+ 1.

Note that O(T1) = O(J1)∆O(LX)∆O(L
′ −

∪t
i=2 Ji) = {u, v}. As LX is connected,

T1, T2, T3, · · · , Ts+1 are edge-disjoint (u, v)-trails in G. Since L′ is spanning in G/H and

LX is spanning in H, {T1, T2, · · · , Ts+1} is a spanning (s+ 1;u, v)-trail-system of G.

Corollary 5.2.9 Let s ≥ 1 be an integer, G be a graph and let H be a subgraph of G

such that H ∈ Cs. Each of the following holds.

(i) G ∈ Cs if and only if G/H ∈ Cs.

(ii) µ′(G) ≥ s+ 1 if and only if µ′(G/H) ≥ s+ 1.

Proof. (i) follows from Corollary 5.2.4. Since µ′(G/H) ≥ s + 1 ≥ 2 implies that G/H

is supereulerian, (ii) follows by Lemma 5.2.8.

Let s ≥ 1 be an integer. For a graph G, let τ(G) denote the maximum number of

edge-disjoint spanning trees of G. By the well known spanning tree packing theorem

of Nash-Williams [52] and Tutte [61], every 2k-edge-connected graph must have k edge-

disjoint spanning trees. (For a direct proof of this fact, see [20], or Theorems 1.1 and 1.3

of [13]). By Corollary 5.2.5 that a relationship between Cs membership and the value of

τ(G) is observed:

if G ∈ Cs, then τ(G) ≥ ⌊ s+1
2
⌋. (5.4)
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Let F (G, s) denote the minimum number of additional edges that must be added to G

to result in a graph G′ with τ(G′) ≥ s. The value of F (G, s) has been studied and

determined in [43], whose matroidal versions are proved in [36].

Theorem 5.2.10 (Catlin, [8]) If F (G, 2) ≤ 1, then G ∈ C1 if and only if κ′(G) ≥ 2.

We extend this Catlin’s Theorem to other values of s.

Theorem 5.2.11 Let s ≥ 1 be an integer. If F (G, s+ 1) ≤ 1, then G ∈ Cs if and only if

κ′(G) ≥ s+ 1.

Proof. Suppose first that G ∈ Cs. By Corollary 5.2.5, we have κ′(G) ≥ µ′(G) ≥ s + 1.

Hence we assume that κ′(G) ≥ s + 1 to prove that G ∈ Cs. By Theorem 5.2.10, we may

assume that s > 1. Let n = |V (G)|.

Since F (G, s + 1) ≤ 1, G has spanning trees T1, T2, · · · , Ts and a spanning forest F

with |E(F )| = n − 2. Let F ′ and F ′′ denote the two components of F . For each i with

1 ≤ i ≤ s, let Hi = Ti ∪F . By definition, F (Hi, 2) = 1. If κ′(Hi) = 1, then there must be

an edge ei ∈ E(Ti) such that if T ′
i , T

′′
i are two components of Ti − ei, then V (F ′) = V (T ′

i )

and V (F ′′) = V (T ′′
i ). It follows that if for every i, κ

′(Hi) = 1, then {e1, e2, · · · , es} is an

edge cut of G separating V (F ′) and V (F ′′), contrary to the assumption that κ′(G) ≥ s+1.

Hence we may assume that κ′(H1) ≥ 2. By Theorem 5.2.10, H1 ∈ C1. Let X ⊆ V (G) be

a subset with |X| ≡ 0 (mod 2). Since H1 ∈ C1, by Proposition 5.2.2, H1 has a spanning

connected subgraph LX with O(LX) = X. Since G − E(LX) contains spanning trees

T2, · · · , Ts, we have κ′(G− E(LX)) ≥ s− 1. By Proposition 5.2.2 again, G ∈ Cs.

We need a theorem of Nash-Willaims in deriving a corollary of the theorem above.

For an explicit proof of this theorem, see Theorem 2.4 of [65].

Theorem 5.2.12 (Nash-Willaims [53]) Let G be a graph. If

|E(G)|
|V (G)| − 1

≥ s+ 1.

then G has a nontrivial subgraph L with τ(L) ≥ s+ 1.
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Corollary 5.2.13 Let G be a connected graph, and s ≥ 1 be an integer.

(i) If τ(G) ≥ s+ 1, then G ∈ Cs.

(ii) If G is Cs-reduced, then for any nontrivial subgraph H of G, |E(H)|
|V (H)|−1

< s+ 1.

(iii) If κ′(G) ≥ s+ 1 and G is Cs-reduced, then

F (G, s+ 1) = (s+ 1)|V (G)| − |E(G)| − (s+ 1) ≥ 2.

Proof. (i) If τ(G) ≥ s + 1, then F (G, s + 1) = 0 and κ′(G) ≥ τ(G) ≥ s + 1. By

Theorem 5.2.11, G ∈ Cs.

(ii) If for some connected subgraph H of G, |E(H)|
|V (H)|−1

≥ s+1, then by Theorem 5.2.12,

H (and so G) has a nontrivial subgraph L with τ(L) ≥ s+1. By Theorem 5.2.11, L ∈ Cs,

contrary to the assumption that G is Cs-reduced.

(iii) The formula F (G, s+1) = (s+1)|V (G)| − |E(G)| − (s+1) follows from Lemma

3.1 of [36] (or indirectly, Theorem 3.4 of [43]). The inequity follows from Theorem 5.2.11.

The following theorem of Chen is useful when dealing with graphs with small order.

Theorem 5.2.14 (Chen [15]) If G satisfies κ′(G) ≥ 3 and |V (G)| ≤ 11, then G ∈ C1 if

and only if G cannot be contracted to the Petersen graph.

5.3 Complete Graphs and Other Examples

In this section, we shall study the Cs membership and the µ′ values of certain graphs,

which will be useful in our arguments in the other sections. We start with a simple

example. For an integer l > 1, and a graph H, lH denote the graph obtained from H by

replacing each edge of H by a set of l parallel edges joining the same pair of vertices. For

example, lK2 is the loopless connected graph with two vertices and l edges. By Corollaries

5.2.5 and 5.2.13 and as µ′(G) ≤ κ′(G) for any graph G, we have

Corollary 5.3.1 Let l ≥ 2, s ≥ 1 be integers. Then lK2 ∈ Cs if and only if l ≥ s+ 1.
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We next consider the problem that for a give integer s ≥ 1, determine the value of n

such that Kn ∈ Cs.

Lemma 5.3.2 Let s ≥ 2, n ≥ 2 be positive integers.

(i) If both s ≡ n ≡ 1 (mod 2), and if n2 < (3 + s)n− 3, then Kn ̸∈ Cs.

(ii) If s+n ≡ 1 (mod 2) or if s ≡ n ≡ 0 (mod 2), and if n2 < (3+ s)n− 2, then Kn ̸∈ Cs.

Proof. In the proofs below, for each n satisfying the inequalities, we will choose a

particular R ⊆ V (Kn), and argue by contradiction to show that Kn cannot have an

(s,R)-subgraph.

(i) Take R ⊂ V (G) with |R| = n− 1 ≡ 0 (mod 2). Since κ′(Γ) ≥ s− 1, s− 1 ≡ 0 (mod 2)

andO(Γ) = R, ∀v ∈ R, we must have dΓ(v) ≥ s. It follows that 2|E(Γ)| ≥ s(n−1)+(s−1).

As n2 < (3 + s)n− 3,

|E(Kn)− E(Γ)| = |E(Kn)| − |E(Γ)| ≤ n(n− 1)

2
− s(n− 1) + (s− 1)

2
< n− 1,

and so Kn − E(Γ) cannot be connected, contrary to the assumption that Γ is an (s,R)-

subgraph of Kn.

(ii) We first present the proof for the case when s ≡ 1 and n ≡ 0 (mod 2). Let R = V (Kn).

As s ≡ 1 (mod 2), δ(Γ) ≥ s, and so 2|E(Γ)| ≥ sn. Since n2 < (3 + s)n− 2,

|E(Kn)− E(Γ)| = |E(Kn)| − |E(Γ)| ≤ n(n− 1)

2
− sn

2
< n− 1.

and so Kn − E(Γ) cannot be connected, contrary to the assumption that Γ is an (s,R)-

subgraph of G.

The case when s ≡ 0 and n ≡ 1 (mod 2) is similar.

What is left is to show that case when n ≡ s ≡ 0 (mod 2). Let R = ∅. As s ≡ 0 (mod

2), δ(Γ) ≥ s, and so 2|E(Γ)| ≥ sn. Since n2 < (3 + s)n− 2,

|E(Kn)− E(Γ)| = |E(Kn)| − |E(Γ)| ≤ n(n− 1)

2
− sn

2
< n− 1,

and so Kn − E(Γ) cannot be connected, contrary to the assumption that Γ is an (s,R)-

subgraph of G.
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Theorem 5.3.3 Let s ≥ 2 and n ≥ 2 be integers. Then Kn ∈ Cs if and only if n ≥ s+3.

Proof. Suppose that G ∈ Cs. By Corollary 5.2.5, κ′(G) ≥ µ′(G) ≥ s + 1. Thus if

n ≤ s + 1, then κ′(G) ≤ s and so Kn ̸∈ Cs. By Lemma 5.3.2 with n = s + 2, Ks+2 ̸∈ Cs.

This completes the proof for necessity.

To prove the sufficiency, we note that if we can proveKs+3 ∈ Cs, then for any n > s+3,

Kn/Ks+3 contains a spanning tree isomorphic to K1,n−(s+3) with the contraction image

of Ks+3being a vertex of degree n − (s + 3), such that every edge of this spanning tree

lies in a (s + 1)K2. By Corollary 5.3.1 and by Corollary 5.2.7, Kn/Ks+3 ∈ Cs. Thus by

Corollary 5.2.4(C3), Kn ∈ Cs. Hence it suffices to show that Ks+3 ∈ Cs. For any integer

n > 0, let V (Kn) = {v1, v2, · · · , vn}, where the subscript are taken mod n.

Let R ⊆ V (Kn) be a subset with |R| ≡ 0 (mod 2). It suffices to show that for any

possible values of |R|, Kn always has an (s,R)-subgraph ΓR.

Case 1 n = 2k + 1, for some integer k > 2.

Let Cn = v1v2...vnv1 be a Hamilton cycle of Kn. As n ≥ 7 and s = n− 3, Kn−E(Cn)

is an s-edge-connected, s-regular graph. Let M = {viv2k−i : with i = 1, 2, · · · , k − 1} ∪
{vk+1v2k}. Then M is a perfect matching of Kn − E(Cn)− v1. Since n ≥ 7, it is routine

to check that κ′(Kn − E(Cn)−M) ≥ n− 4 = s− 1.

By symmetry and since n is odd, we may assume that v1 ̸∈ R. Again by symmetry,

we may assume that if |R| > 0, then |R| = {vi, v2k−i+3 : i = 2, 3, 4, · · · , l + 1} if |R| = 2l

with l ≤ k.

If |R| = 0, then let ΓR = Kn − E(Cn); if |R| = 2l for some 0 < l < k, then let

ΓR = Kn − E(Cn) − {viv2k−i+3 : 2 ≤ i ≤ l}. Then O(ΓR) = R with κ′(ΓR) ≥ s − 1, and

G− E(ΓR) is connected. Therefore by definition, Kn ∈ Cs.

Case 2 n = 2k, for some integer k > 4.

Let M1 = {vivk+i : i = 1, 2, · · · , k}, M2 = {vivk+i+1 : i = 2, 3, · · · , k − 1} ∪ {vkvk+1},
andM3 = {vivk+i+2 : i = 2, 3, · · · , k−2}∪{vk−1vk+1, vkvk+2}. Let L = G[M1∪M2∪M3)].

As n = 2k ≥ 10, it is routine to verify that κ′(Kn − E(L)) ≥ n− 4 = s− 1.
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By symmetry and since n is even, we may assume that if |R| > 0, then R =

{v1, vk+1, · · · , vl, vk+l} if 0 < |R| = 2l ≤ 2k.

If |R| = 0, then let ΓR = Kn − E(L); if |R| = 2l for some 0 < l ≤ k, then let ΓR =

Kn − E(L− {vivk+i : 1 ≤ i ≤ l}). In any case, we have O(ΓR) = R with κ′(ΓR) ≥ s− 1,

and G−E(ΓR), containing a Hamilton cycle v1vk+2vkvk+1vk−1v2kvk−2v2k−1 · · · v2vk+3v1, is

connected. Therefore by definition, Kn ∈ Cs.

Case 3 n ∈ {4, 5, 6, 8}.

Note that when n = 4 and s = 4 − 3 = 1, K4 ∈ C1 by Corollary 5.2.13. Hence we

assume that n ≥ 5.

For n = 5, let C5 = v1v3v5v2v4v1. If |R| = 0, then let ΓR = C; if R = {v3, v4},
then let ΓR = C5 + v3v4}; if R = {v2, v3, v4, v5}, then let ΓR = C5 + v3v4 − v2v5. In any

case, O(ΓR) = R and both ΓR and G − E(ΓR) are connected. By symmetry and by the

definition Cs, K5 ∈ C2.

Suppose that n = 6, and let C6 = v1v2v3v4v5v6v1, and H = C + v2v5. If |R| = 0, then

ΓR = H + {v1v3, v4v6}; if R = {v1, v3}, then ΓR = H + v4v6; if R = {v1, v3, v4, v6}, then
ΓR = H; if R = V (K6), then ΓR = C6. In any case, we have O(ΓR) = R with κ′(ΓR) ≥ 2,

and G− E(ΓR) connected. By symmetry and by the definition Cs, K5 ∈ C3.

Suppose that n = 8, and let K4,4 denote the complete bipartite graph with vertex

bipartition {v1, v3, v5, v7} and {v2, v4, v6, v8}. Let M = {v1v4, v3v6, v5v8, v7v2}. Let L =

K4,4 − M . If |R| = 0, then let ΓR = K8 − E(L); if R = {v1, v2}, then let ΓR =

K8 − E(L − v1v2); if R = {v1, v2, v3, v4}, then let ΓR = K8 − E(L − {v1v2, v3v4}); if

R = {v1, v2, v3, v4, v5, v6}, then let ΓR = K8−E(L−{v1v2, v3v4, v5v6}); and if R = V (K8),

then let ΓR = K8 −E(L− {v1v2, v3v4, v5v6, v7v8}). In any case, we have O(ΓR) = R with

κ′(ΓR) ≥ 4, and G− E(ΓR) connected. By symmetry and by the definition Cs, K8 ∈ C5.

Example 5.3.1 We present some examples G with κ′(G) = µ′(G) = 3. Let Cn =

v1v2 · · · vnv1 denote a cycle on n vertices and let v0 ̸∈ {v1, v2, · · · , vn} be a vertex. The

wheel on n + 1 vertices, denoted by Wn, is obtained from Cn and v0 by adding n new
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edges v0vi, (1 ≤ i ≤ n). These new edges v0vi, (1 ≤ i ≤ n), are referred as the spoke edges

of Wn. The graph W ′
n is obtained from Wn by contracting a spoke edge. Isomorphically,

we can write W ′
n = Wn/{v0vn}. The following can be routinely verified.

(i) µ′(Kn) = κ′(Kn) = n− 1.

(ii) if G ∈ {Wn,W
′
n} for n ≥ 3, then µ′(G) = κ′(G) = 3.

It suffices to verify (ii). Since both properties µ′(G) ≥ 3 and κ′(G) are preserved

under taking contractions, and since W ′
n is a contraction of Wn, it suffices to show that

µ′(Wn) ≥ 3. Let u, v ∈ V (Wn be two distinct vertices. If {u, v} = {vi, vj} for some

0 < i < j ≤ n, then viv0vj, vivi+1 · · · vj, vjvj+1 · · · vnv1 · · · vi is a spanning (3;u, v)-trail-

system. If u = v0 and v = v1, then v0v1, v0v2v1, v0v3 · · · vnv1 is a spanning (3;u, v)-trail-

system.

5.4 Smallest Graph G with µ′(G) < κ′(G) = 3

The main result of this section will determine the smallest graph G with µ′(G) < κ′(G) =

3. For a vertex v ∈ V (G),

EG(v) = {e ∈ E(G) : e is incident with v in G}.

We start with a conditional reduction lemma.

Lemma 5.4.1 Let G be a graph and let H = 2K2 be a subgraph of G. Denote V (H) =

{z1, z2} and E(H) = {e1, e2}. Suppose that

|EG(zi)− E(H)| ≤ 2, for each i = 1, 2. (5.5)

Let vH denote the vertex in G/H onto which H is contracted. For each vertex v ∈ V (G),

define v′ = v if v ∈ V (G)− V (H) and v′ = vH if v ∈ V (H).

(i) For any u, v ∈ V (G), if {u′, v′}−{vH} ̸= ∅, and if G/H has a spanning (3;u′v′)-trail-

system, then G has a spanning (3;u, v)-trail-system.

(ii) If {u, v} = V (H) and if G−E(H) has a spanning (u, v)-trail, then G has a spanning

(3;u, v)-trail-system.
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Proof. (i) Let T ′
1, T

′
2, T

′
3 be a spanning (3;u′, v′)-trail-system in G/H.

Case 1 vH ̸∈ {u′, v′}. Then vH has even degrees in each T ′
i . By (5.5), at most two of

T ′
1, T

′
2, T

′
3 can contain vH , and so we may assume that vH ∈ V (T ′

1) − V (T ′
3). Hence we

may assume that z1 ∈ V (G[E(T ′
1)]).

If z1 ̸∈ O(G[E(T ′
1)]), then by (5.5), EG(z1)−E(H) ⊆ E(T ′

1). It follows that (G[E(T
′
1)∪

E(H)], G[E(T ′
2)], G[E(T

′
3)]) is a spanning (3;u′v′)-trail-system in G. By symmetry, we

assume that By (5.5),

z1 ∈ O(G[E(T ′
j)]) if and only if z2 ∈ O(G[E(T ′

j)]), for each j ∈ {1, 2}. (5.6)

Define T1 = G[E(T ′
1) ∪ {e1}] and T3 = G[E(T ′

3)]. For T2, let

T2 =

{
G[E(T ′

2) ∪ {e2}] if z1 ∈ O(G[E(T ′
2)])

G[E(T ′
2)] if z1 ∈ O(G[E(T ′

2)])
.

Since vH ∈ V (T ′
1 −V (T ′

3)), T1, T2 and T3 are (u, v)-trials in G. Since ∪3
i+1T

′
i is a spanning

in G/H, and since V (H) ⊆ V (T1), {T1, T2, T3} is a spanning (3, u, v)-trail-system of G.

Case 2 vH ∈ {u′, v′}. We shall assume that u′ ̸= vH and v′ = vH . Without loss of

generality, we assume that v = z1. By the definition of (3;u′, v′)-trail-system, vH ∈ O(T ′
j),

for each j ∈ {1, 2, 3}. By (5.5), |E(T ′
j) ∩ (EG(z1) ∪ EG(z2))| = 1, and so v is in at most

two of the O(G[E(T ′
j)])’s. We then assume that v /∈ O(G[E(T ′

3)]). For each j ∈ {1, 2, 3},
define

Tj =

{
G[E(T ′

j)] if z1 ∈ O(G[E(T ′
j)])

G[E(T ′
j) ∪ {ej}] if z1 ̸∈ O(G[E(T ′

j)]).

It is routine to verify that {T1, T2, T3} is a spanning (3, u, v)-trail-system of G.

(ii) Let Ti = G[{ei}], for i = 1, 2. If G − E(H) has a spanning (u, v)-trail T3, then

{T1, T2, T3} is a spanning (3, u, v)-trail-system of G.

Example 5.4.1 Let n > 2 be an integer, and let Cn = v1v2...vnv1 denote a cycle on n

vertices. For i = 1, 2, ..., n− 1, let ei denote the edge of Cn with end vertices vi and vi+1.

The graph 2Cn − e is obtained from Cn by adding a new edge e′i, parallel to ei, for each

i = 1, 2, ..., n− 1. It is routine to show that µ′(2Cn − e) = 3.



CHAPTER 5. SUPEREULERIAN WIDTH OF GRAPHS 53

Lemma 5.4.2 Let G = K3,3. Then µ
′(G) = 2.

Proof. By Theorem 5.2.10, K3,3 ∈ C1, and so by Corollary 5.2.5, µ′(K3,3) ≥ 2. It suffices

to show that for some u, v ∈ V (K3,3), K3,3 does not have a spanning (3;u, v)-trail-system.

We shall adopt the notation in Figure 1 for K3,3. Suppose that K3,3 has a spanning

(3; v1, v3)-trail-system {P1, P2, P3}. Let e1 = v1v2, e2 = v1v4, and e3 = v1v6; and f1 = v3v2,

f2 = v3v4 and f3 = v3v6. Since P1, P2, P3 are edge-disjoint, we must have

|{e1, e2, e3} ∩ E(Pi)| = 1 = |{f1, f2, f3} ∩ E(Pi)|,∀i ∈ {1, 2, 3}. (5.7)

By (5.7), we may assume that ei ∈ E(Pi), (1 ≤ i ≤ 3). If f1 ̸∈ E(P1), then since K3,3 is 3-

regular, P1 must use v2v5, which will force f1 lying in no Pi’s, contrary to (5.7). Therefore,

we must have f1 ∈ E(P1). Similarly, we must have f2 ∈ E(P2). As K3,3 − {v2, v4} has

cannot have a spanning (v1, v3)-trail. This proves that K3,3 does not have a spanning

(3; v1, v3)-trail-system. .
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Figure 1. The graph K3,3

Theorem 5.4.3 Let G be a graph on n vertices.

(i) (Lemma 5 of [8]) If n ≤ 4, and if κ′(G) ≥ 2, then µ′(G) ≥ 2 if and only if G ̸= K2,2.

(ii) If n ≤ 6, and if κ′(G) ≥ 3, then µ′(G) ≥ 3 if and only if G ̸= K3,3.

Proof of (ii). We argue by contradiction and assume that

G is a counterexample with |E(G)|+ |V (G)| minimised. (5.8)

If 1 ≤ n ≤ 3, then κ′(G) ≥ 3 implies that F (G, 3) ≤ 1, and so (ii) follows by Theorem

5.2.11 and Corollary 5.2.5. By the definition of µ′(G), µ′(G) ≥ 3 if and only if every block

H of G satisfying µ′(H) ≥ 3. Therefore, by (5.8), we assume that

κ(G) ≥ 2, 4 ≤ n ≤ 6 and G is minimally 3-edge-connected, and C2-reduced. (5.9)
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Note that by Theorem 5.2.14, every such graph has a spanning eulerian subgraph. By

(5.9) and by n ≤ 6, we further conclude that

every such graph G has a Hamilton cycle C = v1v2 · · · vnv1. (5.10)

Let G̃ denote the simplification of G, and let f(G,C) = |E(G̃)| −n denote the number of

chords of C in G̃. We choose C so that f(G,C) is minimized. If f(G,C) = 0, then G is

spanned by a 2Cn − e, and so by Example 5.4.1, µ′(G) ≥ 3, contrary to (5.8). Hence we

have

Claim 1 f(G,C) ≥ 1.

A subgraph 2K2 of G satisfying (5.5) and Lemma 5.4.1(ii) in G will be referred as a

contractible 2K2 of G. Claim 2 below follows from (5.8) and Lemma 5.4.1, and from

the fact that when n ≥ 5, that f(G,C) ≤ 1 forces G to have a contractible 2K2.

Claim 2 There will be no contractible 2K2 of G, and when n ≥ 5, F (G,C) ≥ 2.

Claim 3 Theorem 5.4.3(ii) holds if 4 ≤ n ≤ 5.

By Claim 2, G cannot have a contractible 2K2. Therefore, if n = 4, G must be either

L(4, 1, 1) or K4 as depicted in Figure 2. By inspection, µ′(L(4, 1, 1)) = µ′(K4) = 3.

Assume n = 5. By Claim 2, f(G,C) ≥ 2. To avoid a contractible 2K2 in G, when

f(G,C) = 2, G must be L(5, 2, 1) (see Figure 2). When f(G,C) ≥ 3, we may assume,

by (5.9), that G = L(5, 3, 1) (see Figure 2). Direct verification shows that µ′(G) ≥ 3 for

G ∈ {L(5, 2, 1), L(5, 3, 1)} (see Appendix for details).

Claim 4 If e ̸∈ E(K3,3) is an edge whose ends are in V (K3,3), and if G = K3,3 + e, then

µ′(G) ≥ 3.

We again use the notation of Figure 1 for K3,3. By symmetry, we may assume that

e = v1vi. By Claim 2, G does not have a contractible 2K2, and so i /∈ {2, 4, 6}. Therefore,
we may assume that e = v1v3. Then it is routine to show that µ′(G) ≥ 3. (See Table 6 in

Appendix for details).
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Figure 2 Graphs in Claim 3

Figure 3 G̃ has 6 vertices with 3 chords of C

We are now ready to prove Theorem 5.4.3(ii). By Claims 3 and 4, we assume that

n = 6 and G is not spanned by a K3,3. Note that when n = 6, if f(G,C) ≤ 2, then by

(5.9), G must have a contractible 2K2. Hence f(G,C) ≥ 3. Let d = ∆(G̃).

Suppose that f(G,C) = 3. If d = 5, then as G̃ is simple and by (5.9), G ∼= L(6, 3, 1)

(depicted in Figure 3). If d = 3, then G ∈ {K3,3, L(6, 3, 6)} (depicted in Figure 3).

Assume that d = 4 and v1 has degree 4 in G̃. If v1 is adjacent to v2, v3, v5, v6, then to

avoid a contractible 2K2, either v4v2 or v4v6 ∈ E(G). Hence by symmetry, we assume

that G = L(6, 3, 2) (depicted in Figure 3). Therefore by symmetry, we may assume

that v1 is adjacent to v2, v4, v5, v6. To avoid a contractible 2K2, v3 must have degree 3.

Hence G ∈ {L(6, 3, 3), L(6, 3, 4), L(6, 3, 5)} (depicted in Figure 3). In any of these cases,
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Figure 4 G̃ has at least 4 chords of C

µ′(G) ≥ 3. (See Appendix for details).

Now suppose that F (G,C) ≥ 4, n = 6, and that

G is not spanned by a K3,3 or any L(6, 3, i). (5.11)

If G̃ has a vertex v of degree 2, then at least 4 edges in E(G̃)− E(C) will be joining the

vertices of V (C)− {v}, and so G must have at least one edge e, such that κ′(G− e) ≥ 3.

Thus G is not minimally 3-edge-connected, contrary to (5.9). Hence we assume that

δ(G̃) ≥ 3. Since F (G,C) ≥ 4, d ≥ 4.

Case 1 d = 5. We assume that v1 is adjacent to all other 5 vertices of G̃. Since δ(G̃) ≥ 3,

and by (5.9), we must have G = L(6, 4, 1) (depicted in Figure 4). It is routine to show

that µ′(L(6, 4, 1)) = 3. (See Appendix for details).

Case 2 d = 4, We assume that v1 is a vertex of degree 4 in G̃.

If v1 is adjacent to all but v4. Since δ(G̃) ≥ 3, we may assume, by symmetry, that

v2v4 ∈ E(G̃). If v6v2 ∈ E(G̃), then κ′(G−v1v2) ≥ 3, contrary to (5.9). Hence v4v6 ∈ E(G̃)

and so G = L(6, 4, 2) (depicted in Figure 4). It is routine to show that µ′(L(6, 4, 2)) = 3.

(See Appendix for details).
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Thus by symmetry, we may assume that v1 is adjacent to all but v3. Then either v3v5

or v3v6 ∈ E(G̃), and either v2v5 or v2v6 ∈ E(G̃). But any of such combination will either

violate (5.11) or violate (5.9).

This completes the proof of the theorem.

5.5 Degree Condition for Supereulerian Graphs with

Larger Width

Settling three open problems of Bauer in [2], Catlin and Lai proved the following.

Theorem 5.5.1 Let G be a 2-edge-connected simple graph G on n vertices.

(i) (Catlin, Theorem 9 of [8]) If δ(G) > n
5
− 1, then when n is sufficiently large, G is

supereulerian.

(ii) (Lai, Theorem 5 of [32]) If G is bipartite, or G is triangle free, and if δ(G) > n
10
, then

when n is sufficiently large, G is supereulerian.

Both bounds in Theorem 5.5.1 are best possible in the sense that there exist an infinite

family of non-supereulerian 2-edge-connected graphs G on n vertices with δ(G) = n
5
− 1

(for Theorem 5.5.1(i)) and an infinite family of non-supereulerian bipartite graphs on n

vertices with δ(G) = n
10

(for Theorem 5.5.1(ii)). The main purpose of this section is to

extend the theorem above, with a more general argument than the proofs in both [8] and

[32]. We start with some preparation before presenting our main arguments. If G is a

graph and G′ is the Cs-reduction of G, then for any vertex u ∈ V (G′), G has a maximal

Cs-subgraph Hu such that u the the vertex onto which Hu is contracted. The subgraph

Hu is called the preimage of u in G. It is possible that Hu consists of a single vertex, in

which case u is a trivial vertex of the contraction.

Lemma 5.5.2 Let n, p, c be positive integers, and f(n, p) be a function of n and p such

that

for every fixed p > 0, both
∂f

∂n
> 0 and lim

n→∞
f(n, p) = ∞.
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Suppose that G is a simple graph on n vertices. If one of the following holds:

(i) δ(G) ≥ f(n, p)− 1,

(ii) G is triangle free and δ(G) ≥ f(n,p)
2

,

then when n is sufficiently large, any vertex v in the Cs-reduction of G whose degree is at

most c must be the contraction image of a connected subgraph Nv with |V (Nv)| ≥ f(n, p).

Proof. Let G′ be the Cs-reduction of G. Define W = {u ∈ V (G′) : dG′(u) ≤ c} and pick

v ∈ W . Let NG(v) denote the vertices of G adjacent to v in G. Then V (Nv) contains all

vertices in NG(v) except at most c vertices in V (G)−V (Nv). Hence |V (Nv)| ≥ dG(v)− c.

By assumption, we can choose n so large that f(n, p) > 2(c+1). (If for Part (i) only,

we can choose n large so that f(n, p) > c + 1.) Then |V (Nv)| ≥ dG(v) − c > 0. Since

V (Nv) has at most c vertices that are adjacent to vertices not in Nv, ∃z ∈ V (Nv), such

that z is adjacent only to vertices in Nv. As V (Nv) must contain all vertices adjacent to

z, if (i) holds, then |V (Nv)| ≥ dG(z) + 1 ≥ f(n, p).

Suppose that G is triangle free and δ(G) ≥ f(n,p)
2

. Find a vertex z ∈ V (Nv) such that

z is adjacent only to vertices in Nv as above. Since |V (Nv − z)| ≥ |NG(z)| > c, NG(z) has

a vertex z′ such that NG(z
′) is not adjacent to any vertex in V (G) − V (Nv). Since G is

triangle free, NG(z)∩NG(z
′) = ∅. Thus |V (Nv)| ≥ |NG(z)|+ |NG(z

′)| ≥ 2δ(G) ≥ f(n, p).

Hence in any case,

∀v ∈ W, |V (Nv)| ≥ f(n, p). (5.12)

This completes the proof of the lemma.

Theorem 5.5.3 Let n, p, s be positive integers such that p ≥ 2. Suppose that G is a

simple graph on n vertices.

(i) If

δ(G) ≥ n

p
− 1, (5.13)

then when n is sufficiently large (say n > p(1 + (1 + 2(s + 3) + 2(p + 1)(s + 1)))), the

Cs-reduction of G has at most p vertices.

(ii) If G is triangle free, and if

δ(G) ≥ n

2p
, (5.14)
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then when n is sufficiently large (say n > 2p(1 + (1 + 2(s + 3) + 2(p + 1)(s + 1)))), the

Cs-reduction of G has at most p vertices.

Proof. As the argument to prove both conclusions are similar, we shall prove them

simultaneously. For given p > 0 and s > 0, choose an integer c = 1+2(s+3)+2(p+1)(s+1).

Let G′ be the Cs-reduction of G, and assume that n′ = |V (G′)| > 1. Define

W = {v ∈ V (G′) : dG′(v) ≤ c}.

Pick any v ∈ W and any z ∈ V (Nv). By Lemma 5.5.2 with f(n, p) = n
p
, (5.12) must

hold. By Corollary 5.2.13, we have

|E(G′)| ≤ (s+ 1)n′ − (s+ 3). (5.15)

It follows by combining (5.12) and (5.15) that,

cn′ − cp ≤ c|V (G′)−W | ≤ 2|E(G′)| ≤ 2(s+ 1)n′ − (2s+ 3). (5.16)

As c > 2(s+ 3) + 2(p+ 1)(s+ 1), (5.16) implies

n′ ≤ 2(s+ 3) + cp

c− 2(s+ 1)
< p+ 1.

Hence n′ ≤ p, and so the theorem follows.

The theorem above can be applied to study the supereulerian width of some dense

graphs, as shown in Corollary 5.5.4 below. When s = 1 and p = 5, Corollary 5.5.4 gives

the same results stated in Theorem 5.5.1.

Corollary 5.5.4 Let n, s be positive integers such that 1 ≤ s ≤ 2. Suppose that G is a

simple graph on n vertices with κ′(G) ≥ s+ 1. Let p(s) = 2s+ 3.

(i) If

δ(G) >
n

p(s)
, (5.17)
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then when n is sufficiently large, µ′(G) ≥ s+1 if and only if the Cs-reduction of G is not

a Ks+1,s+1.

(ii) If G is triangle free, and if

δ(G) >
n

2p(s)
, (5.18)

then when n is sufficiently large, µ′(G) ≥ s+1 if and only if the Cs-reduction of G is not

a Ks+1,s+1.

Proof. Let p = p(s). Let G′ denote the Cs-reduction of G. By Corollary 5.2.5, we may

assume that |V (G′)| > 1. By Theorem 5.4.3, the conclusions hold if |V (G′)| ≤ p − 1.

Hence we assume that |V (G′)| ≥ p. By Theorem 5.5.3, when n is sufficiently large, G′

has at most p vertices, and so we must have |V (G′)| = p. Apply Lemma 5.5.2 with c = p

and f(n, p) = n+1
p
. Thus when n is sufficiently large, by Lemma 5.5.2, every vertex in G′

has a nontrivial preimage with at least ⌈f(n, p)⌉ vertices. It follows that

n ≥
∑

v∈V (G′)

|V (Nv)| ≥ pf(n, p) ≥ n+ 1.

This contradiction established the corollary.
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Appendix: Checking the supereulerian width of certain graphs in the proof

of Theorem 5.4.3

In the tables below, notations in Figures 2, 3 and 4 will be used. For each of these

graphs, and for the given vertices u and v, a spanning (3;u, v)-trail-system in the given

graph is presented, and the missing cases can be obtained by symmetry.

Graphs {u, v} Spanning (3;u, v)-trail-systems

L(5, 2, 1) {v1, v2} G[{v1v2}], G[{v1v2}], G[{v1v5, v5v4, v4v3, v3v2}]
{v1, v3} G[{v1v2, v2v3}], G[{v1v3}], G[{v1v5, v5v4, v4v3}]
{v2, v3} G[{v2v1, v1v3}], G[{v2v3}], G[{v2v1, v1v5, v5v4, v4v3}]
{v2, v4} G[{v2v3, v3v4}], G[{v2v1, v1v4}], G[{v2v1, v1v5, v5v4}]
{v2, v5} G[{v2v1, v1v5}], G[{v2v1, v1v5}], G[{v2v3, v3v4, v4v5}]
{v3, v4} G[{v3v4}], G[{v3v1, v1v4}], G[{v3v2, v2v1, v1v5, v5v4}]

L(5, 3, 1) {v1, v2} G[{v1v2}], G[{v1v3, v3v2}], G[{v1v4, v4v5, v5v2}]
{v1, v3} G[{v1v3}], G[{v1v2, v2v3}], G[{v1v5, v5v4, v4v3}]
{v2, v3} G[{v2v1, v1v3}], G[{v2v3}], G[{v2v5, v5v4, v4v3}]
{v2, v4} G[{v2v3, v3v4}], G[{v2v5, v5v4}], G[{v2v1, v1v4}]
{v2, v5} G[{v2v5}], G[{v2v1, v1v5}], G[{v2v3, v3v4, v4v5}]
{v3, v4} G[{v3v4}], G[{v3v1, v1v4}], G[{v3v2, v2v5, v5v4}]
{v3, v5} G[{v3v4, v4v5}], G[{v3v1, v1v5}], G[{v3v2, v2v5}]

Table 1. Spanning (3;u, v)-trail-systems when n = 5
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Graphs {u, v} Spanning (3;u, v)-trail-systems

L(6, 3, 1) {v1, v2} G[{v1v2}], G[{v1v2}], G[{v1v6, v6v5, v5v4, v4v3, v3v2}]
{v1, v3} G[{v1v3}], G[{v1v2, v2v3}], G[{v1v6, v6v5, v5v4, v4v3}]
{v1, v4} G[{v1v4}], G[{v1v2, v2v3, v3v4}], G[{v1v6, v6v5, v5v4}]
{v2, v3} G[{v2v3}], G[{v2v1, v1v3}], G[{v2v1, v1v6, v6v5, v5v4, v4v3}]
{v2, v4} G[{v2v3, v3v4}], G[{v2v1, v1v4}], G[{v2v1, v1v6, v6v5, v5v4}]
{v2, v5} G[{v2v1, v1v5}], G[{v2v1, v1v6, v6v5}], G[{v2v3, v3v4, v4v5}]
{v2, v6} G[{v2v1, v1v6}], G[{v2v1, v1v6}], G[{v2v3, v3v4, v4v5, v5v6}]
{v3, v4} G[{v3v4}], G[{v3v1, v1v4}], G[{v3v2, v2v1, v1v6, v6v5, v5v4}]

L(6, 3, 6) {v1, v2} G[{v1v2}], G[{v1v6, v6v2}], G[{v1v4, v4v5, v5v3, v3v2}]
{v1, v3} G[{v1v2, v2v3}], G[{v1v4, v4v3}], G[{v1v6, v6v5, v5v3}]
{v1, v4} G[{v1v4}], G[{v1v2, v2v3, v3v4}], G[{v1v6, v6v5, v5v4}]
{v2, v3} G[{v2v3}], G[{v2v1, v1v4, v4v3}], G[{v2v6, v6v5, v5v3}]
{v2, v4} G[{v2v3, v3v4}], G[{v2v1, v1v4}], G[{v2v6, v6v5, v5v4}]
{v2, v5} G[{v2v6, v6v5}], G[{v2v1, v1v4, v4v5}], G[{v2v3, v3v5}]
{v2, v6} G[{v2v6}], G[{v2v1, v1v6}], G[{v2v3, v3v4, v4v5, v5v6}]
{v3, v4} G[{v3v4}], G[{v3v5, v5v4}], G[{v3v2, v2v6, v6v1, v1v4}]

Table 2. Spanning (3;u, v)-trail-systems when n = 6 and F (G,C) = 3: L(6, 3, 1) and

L(6, 3, 6).
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Graphs {u, v} Spanning (3;u, v)-trail-systems

L(6, 3, 2) {v1, v2} G[{v1v2}], G[{v1v3, v3v2}], G[{v1v6, v6v5, v5v4, v4v2}]
{v1, v3} G[{v1v3}], G[{v1v2, v2v3}], G[{v1v6, v6v5, v5v4, v4v3}]
{v1, v4} G[{v1v2, v2v4}], G[{v1v3, v3v4}], G[{v1v6, v6v5, v5v4}]
{v1, v5} G[{v1v5}], G[{v1v6, v6v5}], G[{v1v2, v2v3, v3v4, v4v5}]
{v1, v6} G[{v1v6}], G[{v1v6}], G[{v1v2, v2v3, v3v4, v4v5, v5v6}]
{v2, v3} G[{v2v3}], G[{v2v4, v4v3}], G[{v2v1, v1v5, v5v6, v6v1, v1v3}]
{v2, v4} G[{v2v4}], G[{v2v3, v3v4}], G[{v2v1, v1v6, v6v5, v5v4}]
{v2, v5} G[{v2v4, v4v5}], G[{v2v1, v1v5}], G[{v2v3, v3v1, v1v6, v6v5}]
{v2, v6} G[{v2v1, v1v6}], G[{v2v3, v3v1, v1v6}], G[{v2v4, v4v5, v5v6}]
{v3, v4} G[{v3v4}], G[{v3v2, v2v4}], G[{v3v1, v1v6, v6v5, v5v4}]
{v3, v5} G[{v3v1, v1v5}], G[{v3v4, v4v5}], G[{v3v2, v2v1, v1v6, v6v5}]
{v3, v6} G[{v3v1, v1v6}], G[{v3v2, v2v1, v1v6}], G[{v3v4, v4v5, v5v6}]
{v4, v5} G[{v4v5}], G[{v4v3, v3v1, v1v5}], G[{v4v2, v2v1, v1v6, v6v5}]
{v4, v6} G[{v4v5, v5v6}], G[{v4v2, v2v1, v1v6}], G[{v4v3, v3v1, v1v6}]
{v5, v6} G[{v5v6}], G[{v5v1, v1v6}], G[{v5v4, v4v3, v3v2, v2v1, v1v6}]

L(6, 3, 3) {v1, v2} G[{v1v2}], G[{v1v2}], G[{v1v6, v6v5, v5v4, v4v3, v3v2}]
{v1, v3} G[{v1v2, v2v3}], G[{v1v4, v4v3}], G[{v1v5, v5v6, v6v3}]
{v1, v4} G[{v1v4}], G[{v1v2, v2v3, v3v4}], G[{v1v6, v6v5, v5v4}]
{v1, v5} G[{v1v5}], G[{v1v6, v6v5}], G[{v1v2, v2v3, v3v4, v4v5}]
{v1, v6} G[{v1v6}], G[{v1v4, v4v3, v3v6}], G[{v1v2, v2v1, v1v5, v5v6}]
{v2, v3} G[{v2v3}], G[{v2v1, v1v4, v4v3}], G[{v2v1, v1v5, v5v6, v6v3}]
{v2, v4} G[{v2v3, v3v4}], G[{v2v1, v1v4}], G[{v2v1, v1v6, v6v5, v5v4}]
{v2, v5} G[{v2v1, v1v5}], G[{v2v1, v1v6, v6v5}], G[{v2v3, v3v4, v4v5}]
{v2, v6} G[{v2v1, v1v6}], G[{v2v3, v3v6}], G[{v2v1, v1v4, v4v5, v5v6}]
{v3, v4} G[{v3v4}], G[{v3v2, v2v1, v1v4}], G[{v3v6, v6v5, v5v4}]
{v3, v5} G[{v3v4, v4v5}], G[{v3v6, v6v5}], G[{v3v2, v2v1, v1v5}]
{v3, v6} G[{v3v6}], G[{v3v4, v4v5, v5v6}], G[{v3v2, v2v1, v1v6}]
{v4, v5} G[{v4v5}], G[{v4v1, v1v5}], G[{v4v3, v3v2, v2v1, v1v6, v6v5}]
{v4, v6} G[{v4v5, v5v6}], G[{v4v3, v3v6}], G[{v4v1, v1v2, v2v1, v1v6}]
{v5, v6} G[{v5v6}], G[{v5v1, v1v6}], G[{v5v4, v4v1, v1v2, v2v3, v3v6}]

Table 3. Spanning (3;u, v)-trail-systems when n = 6 and F (G,C) = 3: L(6, 3, 2) and
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L(6, 3, 3).

The examining the spanning (3;u, v)-trail-systems for graphs L(6, 3, 4) and L(6, 3, 5)

below, the edge v1v5 is not used in both cases.

Graphs {u, v} Spanning (3;u, v)-trail-systems

L(6, 3, 4) {v1, v2} G[{v1v2}], G[{v1v2}], G[{v1v6, v6v5, v5v4, v4v3, v3v2}]
{v1, v3} G[{v1v4, v4v3}], G[{v1v2, v2v3}], G[{v1v6, v6v5, v5v4, v4v3}]
{v1, v4} G[{v1v4}], G[{v1v2, v2v3, v3v4}], G[{v1v6, v6v5, v5v4}]
{v2, v3} G[{v2v3}], G[{v2v1, v1v4, v4v3}], G[{v2v1, v1v6, v6v5, v5v3}]
{v2, v4} G[{v2v3, v3v4}], G[{v2v1, v1v4}], G[{v2v1, v1v6, v6v5, v5v4}]
{v2, v5} G[{v2v1, v1v4, v4v5}], G[{v2v1, v1v6, v6v5}], G[{v2v3, v3v5}]
{v2, v6} G[{v2v1, v1v6}], G[{v2v1, v1v6}], G[{v2v3, v3v4, v4v5, v5v6}]
{v3, v4} G[{v3v4}], G[{v3v2, v2v1, v1v4}], G[{v3v5, v5v1, v1v6, v6v5, v4v4}]
{v3, v5} G[{v3v5}], G[{v3v4, v4v5}], G[{v3v2, v2v1, v1v6, v6v5}]
{v3, v6} G[{v3v2, v2v1, v1v6}], G[{v3v4, v4v1, v1v6}], G[{v3v5, v5v6}]

L(6, 3, 5) {v1, v2} G[{v1v2}], G[{v1v3, v3v2}], G[{v1v6, v6v5, v5v4, v4v3, v3v2}]
{v1, v3} G[{v1v4, v4v3}], G[{v1v2, v2v3}], G[{v1v6, v6v5, v5v3}]
{v1, v4} G[{v1v4}], G[{v1v2, v2v3, v3v4}], G[{v1v6, v6v5, v5v4}]
{v1, v5} G[{v1v4, v4v5}], G[{v1v6, v6v5}], G[{v1v2, v2v3, v3v5}]
{v1, v6} G[{v1v6}], G[{v1v4, v4v5, v5v6}], G[{v1v2, v2v3, v3v5, v5v6}]
{v2, v3} G[{v2v3}], G[{v2v1, v1v4, v4v3}], G[{v2v1, v1v6, v6v5, v5v3}]
{v2, v4} G[{v2v1, v1v4}], G[{v2v3, v3v4}], G[{v2v1, v1v6, v6v5, v5v4}]
{v2, v5} G[{v2v3, v3v5}], G[{v2v1, v1v6, v6v5}], G[{v2v1, v1v4, v4v5}]
{v2, v6} G[{v2v1, v1v6}], G[{v2v3, v3v5, v5v6}], G[{v2v1, v1v4, v4v5, v5v6}]
{v3, v4} G[{v3v4}], G[{v3v5, v5v1, v1v4}], G[{v3v2, v2v1, v1v6, v6v5, v5v4}]
{v3, v5} G[{v3v5}], G[{v3v4, v4v5}], G[{v3v2, v2v1, v1v6, v6v5}]
{v3, v6} G[{v3v5, v5v6}], G[{v3v2, v2v1, v1v6}], G[{v3v4, v4v5, v5v6}]
{v4, v5} G[{v4v5}], G[{v4v3, v3v5}], G[{v4v1, v1v2, v2v1, v1v6, v6v5}]
{v4, v6} G[{v4v5, v5v6}], G[{v4v1, v1v2, v2v1, v1v6}], G[{v4v3, v3v5, v5v6}]
{v5, v6} G[{v5v6}], G[{v5v6}], G[{v5v4, v4v3, v3v2, v2v1, v1v6}]

Table 4. Spanning (3;u, v)-trail-systems when n = 6 and F (G,C) = 3: L(6, 3, 4) and
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L(6, 3, 5).

Graphs {u, v} Spanning (3;u, v)-trail-systems

L(6, 4, 1) {v1, v2} G[{v1v2}], G[{v1v3, v3v2}], G[{v1v4, v4v5, v5v6, v6v2}]
{v1, v3} G[{v1v3}], G[{v1v2, v2v3}], G[{v1v6, v6v5, v5v4, v4v3}]
{v1, v4} G[{v1v4}], G[{v1v2, v2v3, v3v4}], G[{v1v6, v6v5, v5v4}]
{v2, v3} G[{v2v3}], G[{v2v1, v1vv3}], G[{v2v6, v6v5, v5v4, v4v3}]
{v2, v4} G[{v2v3, v3v4}], G[{v2v1, v1v4}], G[{v2v6, v6v5, v5v4}]
{v2, v5} G[{v2v6, v6v5}], G[{v2v1, v1v5}], G[{v2v3, v3v4, v4v5}]
{v2, v6} G[{v2v6}], G[{v2v1, v1v6}], G[{v2v3, v3v4, v4v5, v5v6}]
{v3, v4} G[{v3v4}], G[{v3v1, v1v5, v5v4}], G[{v3v6, v6v1, v1v4}]

L(6, 4, 2) {v1, v2} G[{v1v2}], G[{v1v3, v3v2}], G[{v1v6, v6v5, v5v4, v4v2}]
{v1, v3} G[{v1v3}], G[{v1v2, v2v3}], G[{v1v6, v6v5, v5v4, v4v3}]
{v1, v4} G[{v1v2, v2v4}], G[{v1v3, v3v4}], G[{v1v6, v6v5, v5v4}]
{v2, v3} G[{v2v3}], G[{v2v1, v1v3}], G[{v2v4, v4v6, v6v5, v5v4, v4v3}]
{v2, v4} G[{v2v4}], G[{v2v3, v3v4}], G[{v2v1, v1v6, v6v5, v5v4}]
{v2, v5} G[{v2v4, v4v5}], G[{v2v1, v1v6, v6v5}], G[{v2v3, v3v1, v1v5}]
{v2, v6} G[{v2v4, v4v6}], G[{v2v1, v1v6}], G[{v2v3, v3v4, v4v5, v5v6}]
{v3, v4} G[{v3v4}], G[{v3v2, v2v4}], G[{v3v1, v1v6, v6v5, v5v4}]

Table 5. Spanning (3;u, v)-trail-systems when n = 6 and F (G,C) ≥ 4.

The following Table 6 verifies that µ′(K3,3 + v1v3) = 3 (with the notation in Figure

1). Missing cases can be obtained by symmetry.
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Graphs {u, v} Spanning (3;u, v)-trail-systems

K3,3 + v1v3 {v2, v3} G[{v2v3}], G[{v2v1, v1v6, v6v3}], G[{v2v5, v5v4, v4v1, v1v3}]
{v2, v4} G[{v2v1, v1v3, v3v4}], G[{v2v5, v5v4}], G[{v2v3, v3v6, v6v1, v1v4}]
{v2, v5} G[{v2v5}], G[{v2v3, v3v4, v4v5}], G[{v2v1, v1v6, v6v5}]
{v3, v4} G[{v3v4}], G[{v3v2, v2v1, v1v4}], G[{v3v6, v6v5, v5v4}]
{v3, v5} G[{v3v4, v4v5}], G[{v3v6, v6v5}], G[{v3v1, v1v2, v2v5}]
{v3, v6} G[{v3v6}], G[{v3v4, v4v5, v5v6}], G[{v3v2, v2v1, v1v6}]
{v1, v3} G[{v1v3}], G[{v1v2, v2v3}], G[{v1v6, v6v5, v5v4, v4v3}]
{v4, v5} G[{v4v5}], G[{v4v3, v3v6, v6v5}], G[{v4v1, v1v2, v2v5}]

Table 6. Spanning (3;u, v)-trail-systems of K3,3 + v1v3

Proof of claim (5.9) If G has an edge e such that κ′(G− e) ≥ 3, then by (5.8) either

µ′(G − e) ≥ 3, whence µ′(G) ≥ µ′(G − e) ≥ 3; or G − e = K3,3, whence it is routine to

verify that µ′(K3,3 + e) ≥ 3 (See Claim 4 within the proof of Theorem 5.4.3).

Now suppose that G is not C2-reduced, and so G has a nontrivial subgraph H ∈ C2.

Then by (5.8), µ′(G/H) ≥ 3, and so by Corollary 5.2.9, µ′(G) ≥ 3 also.

Hence we may assume that (5.9) must hold.

Proof of claim (5.10) Let C denote a spanning eulerian subgrah of G such that

∆(C) + |E(C)| is minimized. (5.19)

By (5.9) and by Corollary 5.3.1, no edge in G is parallel to 2 other edges. Let m(C)

denote the the number of pairs of multiple edges in C. If m(C) ≥ 2, then since n ≤ 6 and

since C is eulerian, we must have n = 6 and m(C) = 3. It follows by κ(G) ≥ 2 in (5.9)

that G must have an edge e not in C joining two two vertices not adjacent in C, and so

C ∪ e has a cycle Ce containing e, But then C∆Ce is a spanning eulerian subgraph of G

violating he choice of C stated in (5.19). Hence we must have m(C) ≤ 1.

When m(C) ≤ 1, since 5 ≤ n ≤ 6, C must be an edge-disjoint union of two cycles Ck

and Cl, where (k, l) ∈ {(2, 3), (2, 4), (3, 3), (3, 4)}, such that V (Ck)∩V (Cl) = {v} for some
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v. By (5.9), κ(G) ≥ 2, and so G must have an edge e /∈ E(C) such that G[C ∪ e] contains
a 3-cycle Ce that contains v. Therefore C∆Ce violates (5.19), and so the contradiction

establishes (5.10).
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