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ABSTRACT 

Economic and Environmental Analyses of Biomass 

Utilization for Bioenergy Products in the Northeastern 

United States 
 

Weiguo Liu 

A mixed-integer programming model was developed to optimize forest carbon 

sequestration considering carbon price, biomass price, harvest area restriction, and harvest 
method. The model was applied to examine the harvest scheduling strategies and carbon 

sequestration in a mixed central Appalachian hardwood forest. Sensitivity analyses were 
conducted over a range of carbon and biomass to timber price ratios, harvest area limitations 
and harvest methods. The results showed that the carbon sequestration rate of the central 

Appalachian hardwood forests could gradually increase as the carbon to timber price ratio 
changed from 0.0 to 1.0 with an average sequestration rate of 0.917 Mg ∙ ha−1 ∙ year−1. The 

rise of biomass to timber price ratio reduces the carbon sequestration potential. Additionally, 

the carbon sequestration potential would decrease when harvest area limitation varied from 0 
(no harvest) to 100 ha. The decrease could be 97.4% and 70.8% respectively when the carbon 
to timber price ratios were 0.0 and 0.25. Low intensity partial cut could have a higher carbon 

sequestration rate comparing with clearcutting when the carbon to timber price ratio was low. 

We analyzed the economic feasibility and environmental benefits of an alternative 
technology that converts coal and biomass to liquid fuels (CBTL), using West Virginia as a real 

case scenario with considerations of woody biomass harvest scheduling optimization, feedstock 
transportation and siting options of potential CBTL plants. Sensitivity analyses on required 
selling price (RSP) were conducted according to feedstock availability and price, biomass to 

coal mix ratio, liquid fuel yield, IRR, capital cost, operational and maintenance cost. A cradle-
to-grave life cycle assessment (LCA) model was also developed to analyze the environment 

benefits of the CBTL processes. The study of siting and capacity showed that feedstock mixed 
ratio limited the CBTL production. Sensitivity analysis on RSP showed the price of coal had 
more dominant effect than that of biomass. Different biomass mixed ratio in the feedstock and 

liquid fuel yield led to RSP ranging from $104.3 - $157.9/bbl. LCA study indicated that 
greenhouse gas (GHG) emissions ranged from 80.62 kg CO2 eq to 101.46 kg CO2 eq/1,000 MJ 

at various biomass to coal mix ratios and liquid fuel yield if carbon capture and storage (CCS) 
was applied. Most of water and fossil energy were consumed in conversion process at a CBTL 
facility. Compared to petroleum-derived-liquid fuels, the reduction in GHG emissions in West 

Virginia was estimated to be between -162 and 555 million tons over a 30-year period. 

A mixed integer linear programming (MILP) model and life cycle assessment (LCA) 
model were developed to analyze economic and environmental benefits by utilizing forest 

residues for small scale production of bioenergy in West Virginia. The MILP was developed to 
optimize the costs and required selling price of biofuels under different strategies. The cradle-



 

 

to-gate LCA was developed to examine the greenhouse gas emissions, blue water and fossil 
energy consumption associated with the biomass utilization. The RSP in base case was 

$90.87/bbl ethanol and $126.08/bbl for diesel and gasoline. The sensitivity analysis on RSP 
showed that liquid fuel yield had most prominent effect and followed by internal rate of return 

(IRR) and feedstock price. The LCA showed that the GHG emissions from the production of 
1,000 MJ energy equivalent ethanol was 9.72 kg CO2 eq which was lower than fast pyrolysis 
(9.72 kg CO2 eq). Fast pyrolysis had high water and energy consumption. The uncertainty 

analysis showed the change of environmental impact by the change of liquid fuel yield. The risk 
of biomass to liquid via fast pyrolysis (BLFP) to have a negative energy output was expected 

when the liquid fuel yield was low. The production of ethanol required lower cost and had 
lower environmental impact, that is to say, the costs for reducing 1 kg CO2 eq GHG emissions 
was low in biomass to ethanol (BTE), but more biomass was required to produce same amount 

of energy equivalent liquid fuels. 

Finally, a modeling process was developed to examine the economic and environmental 
benefits of utilizing energy crops for biofuels and bio-products. Three energy crops (hybrid 

willow, switchgrass and miscanthus) that can potentially grow on marginal agricultural land or 
abandoned mine land in the Northeastern United States were considered in the analytical 
process for the production of biofuels, biopower and pellet fuel. The supply chain components 

for both the economic and life cycle modeling processes include feedstock establishment, 
harvest, transportation, storage, preprocessing, energy conversion, distribution and final usage. 

Sensitivity analysis was also conducted to assess the effects of energy crop yield, transportation 
distance, bioproduct yield, different pretreatments, facility capacity and internal rate of return 
(IRR) on the production of bioenergy products. The RSPs were ranged from $7.39/GJ to 

$23.82/GJ for different bioproducts. The production of biopower had the higher required selling 
price (RSP) where pellet fuel had the lowest. The results also indicated that bioenergy 

production using hybrid willow demonstrated lower RSP than the two perennial grass 
feedstocks. Biopower production presented the lowest GHG emissions (less than 10 kg CO2eq 
per 1,000 MJ) and fossil energy consumption (less than 160 MJ per 1,000 MJ) but with the 

highest water consumption. The production of pellet fuel resulted in the highest GHG 
emissions. Sensitivity analysis indicated that bioproduct yield was the most sensitive factor to 

RSP and followed by transportation distance for biofuel and biopower production. Bioproduct 
yield and transportation distance of feedstock presented great effects on environmental impact 
for the production of liquid fuels and biopower. 
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The amount of carbon dioxide (CO2), one of the major greenhouse gases (GHGs), has 

increased from 315 ppm to 400 ppm since 1959 (Tans and Keeling 2015). Terrestrial uptake of 

CO2 has a significant role in the overall carbon budget (Fan et al. 1998; Schimel 1995), and 

terrestrial forests are the major carbon sink. Forests have a great potential of absorbing 

atmospheric carbon dioxide. Their efficiency has been estimated by previous studies which were 

begotten in response to global climate change (Richards and Stokes 2004, Pan et al. 2011, 

Hardiman et al. 2013). Additionally, carbon prices can effectively motivate carbon mitigation 

(McCarl and Schneider 2001). A higher carbon price could result in a longer forest rotation 

(Asante et al. 2011).  

Though the best strategy to sequester carbon is never to harvest forest, harvesting is 

considered to be one of the most important forest management practices, which provides 

timber for commercial usage and brings financial benefits to landowners. Clearcutting has 

the lowest harvest cost comparing to partial cut (Gutrich and Howarth 2007), but it 

increases the potential of land erosion and reduces shelter for some wildlife. The 

limitation of open area through environmentally sound management has been addressed 

(Thompson et al. 1973), and well defined (O’Hara et al. 1989, Murray and Church 1996). 

According to those concerns and requirements, Murray (1999) developed an area 

restriction model (ARM) to maximize the economic benefit from harvest with the 

limitation of open area. Sharma (2010) analyzed the carbon sequestration potential based 

on the area restriction model and found high potential of carbon sequestration in center 

Appalachian hardwood forest. The increase of carbon subsidy could effectively increase 

carbon sequestration (McCarl and Schneider 2001) and Sharma (2010) indicated the 

necessity to study this effect with consideration of open area. 
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Besides the carbon sequestration by forest growth, the utilization of biomass has also been 

given a high priority to substitute fossil fuels and reduce the carbon emissions. Woody biomass 

is an abundant clean energy resource that could bring lots of environmental benefits. In the study 

of the Union of Concerned Scientists (UCS 2012), total estimated sustainable available biomass 

resources are just under 680 million tons each year within the U.S. As one of the largest 

underexploited energy resources, woody biomass is identified as a potentially important 

feedstock for biofuels and bioproducts (Perlack et al. 2005). The production of bioproducts from 

biomass usually has much less GHG emissions compared to fossil fuel (Mann and Spath 1997, 

Hsu et al. 2010, Guest et al. 2011).  

There are several pathways to convert biomass to biofuels and bioproducts. Fast pyrolysis 

is a thermal decomposition process in the absence of oxygen to upgrade biomass to valuable high 

energy density liquid fuels. The dark liquid yields could be 30 wt% - 70 wt% depending on the 

feedstock (Bridgwater 2012). The pyrolysis-derived- liquid fuels need to be upgraded and can be 

blended with petroleum-derived- liquid fuels. The introduction of biomass into coal to liquid 

technology (CTL) known also as coal and biomass to liquids (CBTL) can further reduce GHG 

emissions. Generally, biomass as a single feedstock could bring more reduction of GHG 

emissions, but it typically requires higher procurement cost and lower energy conversion 

efficiency (Bartis et al. 2008). The mix of coal or natural gas and biomass effectively solves this 

dilemma – the tradeoff between GHG reduction and cost. Recently, the economic feasibility of 

CBTL or natural gas and biomass to liquids (GBTL) has been studied extensively to address the 

potentials of bioenergy production based on these processes (Marano and Ciferno 2001; Tarka 

2009; Van Bibber et al. 2007; Wu et al. 2012).  
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Both economic and environmental analyses have been extensively conducted on biomass 

utilization in terms of feedstock delivered costs, capital, operation and maintenance costs of 

conversion facilities. Economic analyses were conducted on biomass utilization to determine the 

feasibility of bioproducts. Studies conducted on CBTL from 2001 to 2011 showed that the 

required selling price (RSP) of CBTL was higher than the price of petroleum-derived fuels 

(Marano and Ciferno 2001; Van Bibber et al. 2007; Tarka 2009; Wu et al. 2012). With the 

increase of petroleum-derived-fuels price and carbon price, the CBTL plant could be feasible 

under certain scenarios. The economic analyses conducted on ethanol resulted lower RSP (from 

$1/gal to $1.49/gal) than CBTL (Phillips et al 2007, Gnansounou and Dauriat 2010). The 

estimation of RSP of liquid fuel by fast pyrolysis was from $1.93/gal - $3.7/gal according to the 

techno-economic analysis conducted by Brown (2015). Previous techno-economic analysis had 

lower RSP ($0.40/gal - $3.07/gal) than that in Brown’s study (Ringer et al. 2006; Wright et al. 

2010). The production of pellets had large variation in RSP according to the logistics cost of 

feedstock. Its RSP ranged from $122/ton to $170/ton (Sultana et al. 2010) and cancould be as 

high as $199/ton (Pirraglia et al. 2013). The production of biopower usually had high cost which 

is difficult to compete with electricity from coal. The analysis conducted by the International 

Renewable Energy Agency (IRENA) had capital cost of $1.8-$5.7 million/MW (2012).  

Life Cycle Assessment (LCA) is a standardized method to systematically evaluate the 

environmental impact of a product or service throughout its full life cycle (ISO 2006). Four 

general steps are typically required to finish a proper LCA study: scope and goal definition 

which defines the system boundary, life cycle inventory which provides material input and 

output for every process, impact assessment which usually summarizes the impact based on 

available data and analyzes the method, and interpretation which discusses the results. Currently, 
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LCA is a mainstream environmental analysis tool to evaluate the impact of bioenergy products, 

such as pellets, biopower, ethanol, biodiesel and other liquid fuels.  

The first biomass fired power plant was available in the U.S. in 1989 (U.S. DOE 1992). 

The study on the production of biopower showed that GHG emissions were 49 g CO2 eq/kWh 

which was 95% reduction comparing to coal fired power plant (Mann and Spath 1997). A LCA 

study in New York showed that, by combining biomass and coal at power plant, a reduction of 

GHG by 7-10% was achieved with only 10% biomass mixed with coal (Heller et al. 2004). A 

recent LCA study conducted on biomass based combined heat and power plant (CHP) showed 

higher thermal efficiency and more reduction of GHG (Guest et al. 2011).  

Although some studies have been conducted on economic analysis and life cycle 

assessments of biomass utilization, there is a necessity to further examine the economics and life 

cycle impact of biomass utilization for bioenergy products in the northeastern United States. 

Therefore, this dissertation targeted  the optimization of the forest harvest scheduling, and 

biomass utilization for bioenergy products by specifically including the following four 

objectives: (1) Modeling the forest carbon sequestration in mixed hardwood forests, (2) 

Analyzing economic and environmental impact of transforming coal and biomass to liquids, (3) 

Conducting economic input/output life cycle assessment of  woody biomass utilization for 

bioenergy products, and (4) Assessing economic and life cycle impact of energy crops for 

bioenergy products in the northeastern U.S. 
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ABSTRACT 

A mixed-integer programming model was developed to optimize forest carbon 

sequestration considering carbon price, biomass price, harvest area restriction, and harvest 

method. The model was applied to examine the harvest scheduling strategies and carbon 

sequestration in a mixed central Appalachian hardwood forest. Sensitivity analyses were 

conducted over a range of carbon and biomass to timber price ratios, harvest area limitations 

and harvest methods. The results showed that the carbon sequestration rate of the central 

Appalachian hardwood forests could gradually increase as the carbon to timber price ratio 

changed from 0.0 to 1.0 with an average sequestration rate of 0.917 Mg ∙ ha−1 ∙ year−1. The 

rise of biomass to timber price ratio reduces the carbon sequestration potential. Additionally, 

the carbon sequestration potential would decrease when harvest area limitation varied from 0 

(no harvest) to 100 ha. The decrease could be 97.4% and 70.8% respectively when the carbon to 

timber price ratios were 0.0 and 0.25. Low intensity partial cut could have a higher carbon 

sequestration rate comparing with clearcutting when the carbon to timber price ratio was low. 
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2.1. INTRODUCTION 

Carbon dioxide plays a vital role in global warming, along with other greenhouse gases 

(GHGs), such as water vapor, methane, nitrous oxide, ozone and chlorofluoromethane (Mitchell 

1989). Since 1959, the concentration of CO2 in atmosphere has increased 25% (Tans and Keeling 

2014).  The increase of atmospheric carbon has led to increased scrutiny of the global carbon 

budget. One of the factors that could significantly mitigate atmospheric carbon is the terrestrial 

uptake of CO2, in which terrestrial forests are a major carbon sink (Fan et al. 1998; Schimel 

1995).  

In response to global climate change, more attention has been paid to find ways to slow 

down or reverse the trend of global warming.  One of the approaches examined is the efficiency 

of forest carbon sequestration through appropriate forest management activities. Spring et al. 

(2005) analyzed the carbon sequestration benefits of forests around Thomson catchment in 

southeastern Australia using stochastic dynamic programming and found that the optimal 

decision depends on the change of fire frequency and water availability. Sharma (2010) 

developed a model that simultaneously optimized sustainable biomass utilization and carbon 

emission reduction. By solving this model, Sharma et al. (2011) reported that forest carbon 

sequestration potential could be enhanced through using efficient forest management strategies 

to increase the mean annual carbon sequestration rate between 6% and 79% for central 

Appalachian hardwood forests.  

Carbon subsidy has been found to be a driver that increases the motivation of landowners 

to manage their forests for carbon sequestration (McCarl and Schneider 2001). The subsidy is 

typically financially incentivized policies that encourage the employment of GHG offset 

activities, with the aim of influencing management decisions. As the amount of subsidy 
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increases, it has been shown that the optimal management alternative in terms of economic 

benefit is to tend away from harvest activities (Van Kooten et al. 1995). A simulation of 

response of management policies to price changes for CO2 storage suggested that a higher 

carbon price could result in a longer rotations and no harvest would occur when carbon 

price was higher than $35/ton (Asante et al. 2011).  

However, forests are also managed for both ecological and societal services. 

Harvesting is one of the most commonly used management practices in forest operations.  

Although partial cut or selective harvesting has been used for years, they might result in an 

increase of management costs (Gutrich and Howarth 2007). Clearcutting could possibly 

reduce management costs. To conform to harvesting and sustainability requirements and 

regulations, clearcutting typically requires a limitation on maximum open area. The 

applications of harvesting carry some inherent risks of land erosion and disruption of 

wildlife habitats (Barahona et al. 1992).  However, these risks could be effectively 

mitigated through careful planning and implementation of forest best management 

practices (BMPs, WVDOF 2014), such as harvest area limit and buffer size of streamside 

management zones (SMZs). Murray (1999) proposed an area restriction model (ARM) 

using mixed-integer nonlinear programming with consideration of the maximum 

permissible contiguous harvest area. This area could be different in different forests but the 

average size must not exceed 120 acres (Murray et al. 2004). An even flow of timber 

supply was also considered in the model because a consistent supply of timber is always a 

mandate requirement (Vielma et al. 2007).  

Many of the previous forest harvest scheduling and carbon sequestration studies 

usually considered either timber values or carbon values but neither took into account the 
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potential biomass utilization, nor multi-time periods of harvests. As a result, there appears to be 

an opportunity to advance the knowledge of harvest scheduling and forest carbon sequestration 

through optimizing scheduling scenarios with considering carbon sequestration rate, harvest area 

limitation relative to BMPs, even flow of timber supply, biomass production and harvest 

methods.  Specifically, the objectives of this study were to: (1) model forest harvest scheduling 

and carbon sequestration to maximize the total revenue of forests from timber, biomass, and 

carbon, and (2) apply the model to a mixed hardwood forest in the central Appalachian region to 

analyze the effects of carbon to timber price ratio, biomass to timber price ratio, harvest area and 

harvest method on carbon sequestration.  

2.2. MATERIALS AND METHODS 

2.2.1. Model Development 

The objective of the model is to maximize the total revenue (z) of the forests in terms of 

carbon (C), timber (W), and biomass (B) values. The objective function of the model is 

formulated as: 

𝑚𝑎𝑥   𝑧 = 𝐶 +𝑊 + 𝐵                                                                                                                        (2 − 1) 

Where C is the monetary value of carbon sequestered and is calculated by equation (2-2). 

𝐶 = 𝑟𝐶𝑂2𝑝
𝐶𝑂2∑∑{𝑓𝑐𝑖(𝑎𝑖𝑡)− 𝑟𝑑𝑟𝑦𝛿𝑥𝑖𝑡[𝐺𝑖,𝑡−1 +𝑓𝑏𝑖(𝑎𝑖,𝑡−1)]}

𝑇

𝑡=1

𝑆

𝑖=1

                                             (2 − 2) 

A harvest decision for a stand at a given time is denoted by a binary variable: 

𝑥𝑖𝑡 = {
1, if stand 𝑖 is harvested at period 𝑡;

0, otherwise.                                            
   

Where, t=1 … T, and i=1 … S. T is the total management periods. S is the total number of 

stands. An integer variable 𝑎𝑖𝑡  represents stand age of stand i at time period t. A continuous 

variable 𝐺𝑖𝑡  is the above-ground dry biomass in metric tons (Mg) of stand i at period t.  
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𝑓𝑏𝑖(𝑎𝑖𝑡) = Growth function of the aboveground dry biomass of stand 𝑖 at period 𝑡 (Mg); 

𝑓𝑐𝑖(𝑎𝑖𝑡) = Stand carbon storage function of stand 𝑖 at period 𝑡 (Mg); 

𝑝𝑐𝑜2 = The present carbon price in term of carbon dioxide ($ ∙ 𝐶𝑂2 𝑀𝑔
−1); 

𝑟𝐶𝑂2 = Coefficient used to convert Carbon into 𝐶𝑂2 equivalent; 

𝑟𝑑𝑟𝑦 = Coefficient used to convert dry biomass into carbon; 

𝛿 = Percentage of wood products other than long lived wood products; 

Similarly, W is the value of timber and B is the value of biomass. They can be 

computed by equations (2-3) and (2-4), respectively. 

𝑊 = 𝑝𝑇∑∑𝜂𝑇𝑥𝑖𝑡[𝐺𝑖,𝑡−1 +𝑓𝑏𝑖(𝑎𝑖,𝑡−1)]

𝑇

𝑡=1

𝑆

𝑖=1

                                                                                  (2 − 3) 

𝐵 = ρ ∙ 𝑝𝐵∑∑𝜂𝐵𝑥𝑖𝑡[𝐺𝑖,𝑡−1 + 𝑓𝑏𝑖(𝑎𝑖,𝑡−1)]

𝑇

𝑡=1

𝑆

𝑖=1

                                                                              (2 − 4) 

Where: 

𝑝𝐵 = The present price of biomass($ ∙ Mg−1); 

𝑝𝑇 = Average present price of timber,($ ∙ dry Mg−1); 

𝜂𝐵 = Percentage of wood residue  which includes logging and mill residues; 

𝜂𝑇 = Percentage of timber in total aboveground biomass; 

ρ = Percentage of biomass that is economically available. 

The objective function is subject to the following constraints: 
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Harvest area restrictions 

A symmetric adjacency (ADJ) matrix is constructed to describe the adjacency of every two 

stands:  

𝐴𝐷𝐽𝑖𝑗 = {
1, if stand 𝑖 and stand 𝑗 are physically adjacent or 𝑖 = 𝑗;

0,otherwise.                                                                                 
  

Fig. 2-1 Representations and application procedures of stand adjacencies for a maximum 

permissible contiguous harvest area. Each circle represents a managed stand and two stands are 

physically adjacent if they are next to each other.  Solid black circles represent stands that can 

be potentially harvested at the same time and the dotted lines represent the virtual adjacency. (a) 

no virtual adjacency; (b) virtual adjacency; (c), (d), (e), and (f) procedures that can be applied 

to form a maximum permissible contiguous harvest area.  
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Another binary variable is defined to represent the harvest of two stands at the same 

time: 

 𝑦𝑖𝑗𝑡 = {

1, if stand 𝑖 and stand 𝑗 are havested at the same time period 𝑡,                

and they are virtually adjacent or 𝑖 = 𝑗;    j = 1… S;                              
0, otherwise.                                                                                                                  

 

Virtual adjacency is defined when two stands are harvested at the same time period 

and located in the same contiguous harvest area. The decision of harvesting a stand is 

based on a virtual adjacency matrix (Fig. 2-1a, b). 

Equations (2-5) and constraints (2-6) ensure that every contiguous harvest area does 

not exceed the maximum permissible contiguous harvest area (Murray 1999). Fig. 1c-f 

show the procedures to check if a continuous harvest area exceeds the maximum 

permissible contiguous area. To illustrate the procedures, we define that the stands 

represented by solid circles are harvested at period 1,  stands 1-5 are harvested in period 1 

and belong to the same contiguous area, 𝑦𝑚𝑛1=1 for m, n=1, 2, 3, 4, 5. If the total size of 

this harvest area consisting of stands 1, 2, 3, 4 and 5 exceeds AR, the area constraint (6) is 

violated. 

{

𝑦𝑖𝑗𝑡 = 𝑥𝑖𝑡 ∙ 𝑥𝑗𝑡 ∙ 𝐴𝐷𝐽𝑖𝑗, ∀𝑖, 𝑗 = 1… 𝑆 ∧ ∀𝑡 = 1…𝑇 ⋀𝐴𝐷𝐽𝑖𝑗 = 1                 

𝑦𝑖𝑗𝑡 = ∑ 𝑥𝑖𝑡 ∙ 𝑥𝑗𝑡 ∙ 𝑦𝑖𝑘𝑡 ∙ 𝐴𝐷𝐽𝑗𝑘

𝑆

𝑘=1

, ∀𝑖, 𝑗 = 1… 𝑆⋀∀𝑡 = 1…𝑇  ⋀𝐴𝐷𝐽𝑖𝑗 ≠ 1
                         (2 − 5) 

∑𝑦𝑖𝑗𝑡𝐴𝑗

𝑆

𝑗=1

+ 𝑥𝑖𝑡∑𝐴𝑗

𝑆

𝑗=1

≤ 𝐴𝑅 +∑𝐴𝑗

𝑆

𝑗=1

, ∀𝑖 = 1… 𝑆, ∀𝑡 = 1…𝑇                                               (2 − 6) 

Where: 

𝐴𝑗 = The area of stand 𝑗 (ha); 

𝐴𝑅 = The maximum permissible contiguous harvest area  (ha);  
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Fig. 2-2 Illustrations of stand age constraints over a planning horizon. This figure assumes two 

cases when x25=0 and 1 to illustrate the value of aTem225 according to x25. 

Stand age and even flow of timber supply 

Constraint (2-7) imposes the restriction of average ending stand age for harvest, which 

means the average stand age at the end of a planning horizon should be greater than the 

minimum permissible stand age for harvest. Constraint (2-8) ensures even flow of timber supply 

among planning periods. 

∑𝐴𝑖 ∙ (𝑎𝑖𝑇 − 𝐴𝑔𝑒𝑅)

𝑆

𝑖=1

≥ 0                                                                                                                 (2 − 7) 

(1 − ∆)∑𝑥𝑖𝑡[𝐺𝑖,𝑡−1 +𝑓𝑏𝑖(𝑎𝑖,𝑡−1)]

𝑆

𝑖

≤ ∑𝑥𝑖,𝑡+1[𝐺𝑖𝑡 + 𝑓𝑏𝑖(𝑎𝑖𝑡)]

𝑆

𝑖

≤ (1+ ∆)∑𝑥𝑖𝑡[𝐺𝑖,𝑡−1 + 𝑓𝑏𝑖(𝑎𝑖,𝑡−1)]

𝑆

𝑖

, ∀𝑡 = 1…𝑇 − 1                                (2− 8) 

 aTem214       aTem224       aTem234     aTem244            x25 

0 1 0 0 0 

 aTem215        aTem225       aTem235     aTemp245    

0 1 0 0 0 

aTem214       aTem224      aTem234        aTem244           x25 

0 1 0 0 1 

aTem215        aTem225      aTem235        aTemp245   

0 0 0 0 1 

x25=0 

x25=1 
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Where: 

𝐴𝑔𝑒𝑅= The minimum permissible average ending stand age.  

∆=Allowable variation of timber supply in even flow constraint. 

A binary variable 𝑎𝑇𝑒𝑚𝑖𝑘𝑡  (𝑘 ≤ 𝑡) is used to calculate stand age and is defined as:  

𝑎𝑇𝑒𝑚𝑖𝑘𝑡 = {
1, if (𝑥𝑖𝑘 ≠ 𝑥𝑖𝑡⋀𝑥𝑖𝑡 = 0)⋁(𝑥𝑖𝑘 = 1⋀𝑘 = 𝑡) 

0, otherwise.                                                        
  

Equations (2-9) and (2-10) compute the stand age at each period over the planning 

horizon. These two equations ensure that 𝑎𝑇𝑒𝑚𝑖𝑘𝑡 will be set to 1 when 𝑥𝑖𝑡 is 1, and 

𝑎𝑇𝑒𝑚𝑖𝑘𝑡 will also be set to 1 if 𝑥𝑖𝑡 is not 1 but 𝑎𝑇𝑒𝑚𝑖𝑘,𝑡−1  is 1. We take stand 2 in time 

period 5 as an example (Fig. 2-2). If x25=0, all the aTems for that stand are kept the same as 

they are in the previous planning period. If x25=1, all the aTems, except for aTemp255, 

should be 0. Equations (2-11) initialize the stand age at the beginning of harvest schedule. 

Equations (2-12) calculate the stand age in each time period. Constraints (2-13) mandate 

stands that are qualified to be harvested when they are older than a certain age ah. 

Equations (2-14) and (2-15) compute the amount of above-ground dry biomass of every 

stand in each planning period. 

𝑎𝑇𝑒𝑚𝑖𝑘𝑡 = 𝑎𝑇𝑒𝑚𝑖𝑘,𝑡−1(1 − 𝑥𝑖𝑡),∀𝑖 = 1… 𝑆 ∧ ∀𝑡 = 2…𝑇  ⋀𝑘 < 𝑡;                                      (2 − 9) 

𝑎𝑇𝑒𝑚𝑖𝑘𝑡 = 𝑥𝑖𝑡 , ∀𝑖 = 1…𝑆⋀∀𝑡 = 1…𝑇  ⋀𝑘 = 𝑡;                                                                      (2 − 10) 

𝑎𝑖0 = 𝑎𝑔𝑒𝑖 ,∀𝑖 = 1… 𝑆;                                                                                                                   (2 − 11) 

𝑎𝑖𝑡 = 𝑎𝑔𝑒𝑖+ 𝑡𝑌 −∑ 𝑎𝑇𝑒𝑚𝑝𝑖𝑘𝑡(𝑎𝑔𝑒𝑖+ 𝑘𝑌),∀𝑖 = 1… 𝑆⋀∀𝑡 = 1…𝑇

𝑡

𝑘=1

;                           (2 − 12) 

𝑎𝑖𝑡 ≥ 𝑥𝑖𝑡(𝑎ℎ− Y), ∀𝑖 = 1 … 𝑆⋀∀𝑡 = 1…𝑇;                                                                      (2 − 13) 

Gi1 = Gi0,∀𝑖 = 1… 𝑆;                                                                                                                      (2 − 14) 

𝐺𝑖𝑡 = (1 − 𝑥𝑖𝑡)[𝐺𝑖,𝑡−1 + 𝑓𝑏𝑖(𝑎𝑖,𝑡−1)],∀𝑖 = 1… 𝑆⋀∀𝑡 = 1…𝑇;                                              (2 − 15) 
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Where: 

𝑎𝑔𝑒𝑖 = The initial  stand age of stand 𝑖; 

𝑎ℎ = The minumum allowed age of a stand could be harvested;   

𝐺𝑖0 = The initial aboveground biomass of stand 𝑖 (dry tonnes); 

𝑌 = The length of each planning period (years); 

Linearization  

A linearization process was adopted to simplify the quadratic formulations of the model in 

order to improve its solving and computing efficiency. Specifically, the expression 

𝑥𝑖𝑡[𝐺𝑖,𝑡−1 +𝑓𝑏𝑖(𝑎𝑖,𝑡−1) ] is linearized as [𝐺𝑖,𝑡−1 + 𝑓𝑏𝑖(𝑎𝑖,𝑡−1)− 𝐺𝑖𝑡]. This is because 𝐺𝑖,𝑡−1 +

𝑓𝑏𝑖(𝑎𝑖,𝑡−1) represents the accumulated biomass of stand i in time t if this stand is not harvested in 

time t. If it is harvested in time t, 𝐺𝑖𝑡 will be 0. Therefore, the objective function (equations 2-1, 

2-2, 2-3, 2-4), and constraints/equations 2-5, 2-8, 2-9, 2-14 can be expressed as equations 2-16, 

2-17, 2-18, 2-19, and 2-20. 

max 𝑧 =   𝑟𝐶𝑂2𝑝
𝑐𝑜2∑∑{𝑓𝑐𝑖(𝑎𝑖𝑡) − 𝑟𝑑𝑟𝑦𝛿[𝐺𝑖,𝑡−1 +𝑓𝑏𝑖(𝑎𝑖,𝑡−1) − 𝐺𝑖𝑡]}

𝑇

𝑡=1

𝑆

𝑖=1

+ 𝑝𝑇∑∑𝜂𝑇𝑥𝑖𝑡[𝐺𝑖,𝑡−1 +𝑓𝑏𝑖(𝑎𝑖,𝑡−1) − 𝐺𝑖𝑡]

𝑇

𝑡=1

𝑆

𝑖=1

+ 𝑝𝐵∑∑𝜂𝐵𝑥𝑖𝑡[𝐺𝑖,𝑡−1 +𝑓𝑏𝑖(𝑎𝑖,𝑡−1)− 𝐺𝑖𝑡]

𝑇

𝑡=1

 

𝑆

𝑖=1

                                              (2 − 16) 

S.t. 
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{
  
 

  
 
𝑦𝑖𝑗𝑡 ≥ (𝑥𝑖𝑡 +𝑥𝑗𝑡 − 1), ∀𝑖, 𝑗 = 1 …𝑆 ∧ ∀𝑡 = 1…𝑇 ⋀𝐴𝐷𝐽𝑖𝑗 = 1                          

𝑦𝑖𝑗𝑡 ≤
𝑥𝑖𝑡+𝑥𝑗𝑡

2
, ∀𝑖, 𝑗 = 1 …𝑆 ∧ ∀𝑡 = 1…𝑇 ⋀𝐴𝐷𝐽𝑖𝑗 = 1                                          

𝑦𝑖𝑗𝑡 ≥ 𝑥𝑖𝑡 + 𝑥𝑗𝑡 −2 +
∑ 𝑦𝑖𝑘𝑡𝐴𝐷𝐽𝑗𝑘
𝑆
𝑘=1

2𝑆
, ∀𝑖, 𝑗 = 1 … 𝑆 ∧ ∀𝑡 = 1…𝑇⋀𝐴𝐷𝐽𝑖𝑗 ≠ 1  

 𝑦𝑖𝑗𝑡 ≤
(𝑆−0.5)(𝑥𝑖𝑡+𝑥𝑗𝑡)

2𝑆
+

∑ 𝑦𝑖𝑘𝑡𝐴𝐷𝐽𝑗𝑘
𝑆
𝑘=1

2𝑆
, ∀𝑖, 𝑗 = 1… 𝑆⋀∀𝑡 = 1…𝑇⋀𝐴𝐷𝐽𝑖𝑗 ≠ 1  

              (2 − 17) 

(1 − ∆)∑[𝐺𝑖,𝑡−1 +𝑓𝑏𝑖(𝑎𝑖,𝑡−1) − 𝐺𝑖𝑡]

S

i

≤∑[Git+ fbi(ait)− 𝐺𝑖,𝑡+1]

S

i

≤ (1+ ∆)∑[𝐺𝑖,𝑡−1 + 𝑓𝑏𝑖(𝑎𝑖,𝑡−1)− 𝐺𝑖𝑡]

S

i

, ∀𝑡 = 1 …𝑇 − 1                         (2− 18) 

{

𝑎𝑇𝑒𝑚𝑖𝑘𝑡 ≥ 𝑎𝑇𝑒𝑚𝑖𝑘,𝑡−1 − 𝑥𝑖𝑡 ,∀𝑖 = 1… 𝑆 ∧ ∀𝑡 = 2…𝑇  ⋀𝑘 < 𝑡               

𝑎𝑇𝑒𝑚𝑖𝑘𝑡 ≤
1+ 𝑎𝑇𝑒𝑚𝑖𝑘,𝑡−1 − 𝑥𝑖𝑡

2
, ∀𝑖 = 1 … 𝑆 ⋀∀𝑡 = 2…𝑇  ⋀𝑘 < 𝑡        

                       (2 − 19) 

{

𝐺𝑖𝑡 ≤ 𝑀(1− 𝑥𝑖𝑡),∀𝑖 = 1… 𝑆  ∧ ∀𝑡 = 2…𝑇                              

𝐺𝑖𝑡 ≤ 𝐺𝑖,𝑡−1 +𝑓𝑖(𝑎𝑖,𝑡−1 ), ∀𝑖,𝑘 = 1… 𝑆  ∧ ∀𝑡 = 2…𝑇           

𝐺𝑖𝑡 ≥ 𝐺𝑖,𝑡−1 +𝑓𝑖(𝑎𝑖,𝑡−1 )− 𝑀𝑥𝑖𝑡 ,∀𝑖, 𝑘 = 1… 𝑆  ⋀∀𝑡 = 2…𝑇

                                           (2 − 20) 

Where, M is a large constant that M≫ 𝐺𝑖𝑡 

Table 2-1 Descriptive statistics of the inventoried stands used in the case study. 

 N Mean StdDev Maximum Minimum Median 

Number of measurement points  92 21 6 31 5 22 

Tree height (m) 14008 18 11 44 2 22 

Diameter at breast height (DBH) (cm) 14008 36 15 132 3 36 

Quadratic mean diameter (cm) 14008 28 3 36 21 28 

Trees per ha 92 497 210 1505 232 439 

Basal area (m2∙ha-1) 92 30 11 72 11 28 

Merchantable volume (m3∙ha-1) 92 1784 625 4802 557 1668 

Forest C stock (Mg∙ha-1) 92 147 49 363 74 136 

Merchantable C stock (Mg∙ha-1) 92 69 24 170 21 64 
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2.2.2. Data 

Data for a case study of the model application were from an inventory conducted in 2000 

for West Virginia University Research Forest, a mixed hardwood forest of 3,042 ha, located 

approximately at 39.66°N, 79.78° near Morgantown, West Virginia, USA. The forest has 92 

cutting units (i.e. equivalent to stands) with area varying from 7 to 41 ha. Recent forest inventory 

data were acquired from West Virginia University Division of Forestry and Natural Resources. 

Each stand had at least 5 cruise points and altogether 14,008 tree records were available for this 

study. A description of these stand parameters is given in Table 2-1. 

Fig. 2-3 Quadratic functions for stand age vs. (a) total carbon and (b) carbon in above ground 

biomass. The decrease of total carbon in the first few years after harvest is because the 

decomposition of dead root and release of soil carbon.  

The Forest Vegetation Simulator (FVS) (Dixon 2013; Stage 1973) Northeast Variant (NE) 

with Fire and Fuels Extension (FFE) was used on the inventoried stand data to simulate the 

growth and yield, harvest impact, carbon stocks, and biomass production at each time period of 5 

years over a planning horizon of 50 years. A quadratic relationship between stand age and 

growth rate as well as between stand age and the total carbon accumulation, was developed for 

each stand (Fig. 2-3). Then 𝑓𝑏𝑖(𝑎𝑖𝑡) 𝑎𝑛𝑑 𝑓𝑐𝑖(𝑎𝑖𝑡) were calculated as increment of biomass 

accumulation and carbon sequestration between planning periods. 
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Table 2-2. Parameter configuration for the base case. 

Name Definition Value Reference 

𝐴𝑗  The area  of stand 𝑗 (ℎ𝑎)  Inventory 

ADJ describe the adjacency of every two stands   Inventory 

𝐴𝑔𝑒𝑅  The minimum permissible average ending stand age 40 Sharma et al. 2011 

𝑎𝑔𝑒𝑖  The initial stand age  of stand  𝑖 80 Inventory 

𝑎ℎ The minumum allowable age of a stand could be harvested 20  

𝐴𝑅 The maximum permissible contiguous harvest area  (ℎ𝑎) 40 Sharma et al. 2011 

𝑓𝑏𝑖 (𝑎𝑖𝑡) Growth function of the  aboveground dry  biomass of stand 𝑖  

at period  𝑡 (𝑀𝑔) 

Simulation  

𝑓𝑐𝑖 (𝑎𝑖𝑡) Stand carbon storage  function of stand 𝑖 at period  𝑡 (𝑀𝑔) Simulation  

𝐺𝑖0  The initial aboveground biomass of stand 𝑖 (𝑑𝑟𝑦 𝑡𝑜𝑛𝑛𝑒𝑠)  Inventory 

𝑟𝐶𝑂2  Coefficient  used to convert  Carbon into 𝐶𝑂2 equivalent 3.667  

𝑟𝑑𝑟𝑦  Coefficient  used to convert  dry biomass  into carbon  0.5 de Wit et al. 2006 

𝑌 The length  of each planning  period  (years)  5  

ρ Percentage  of biomass that is economically available 0.65 Wu et al. 2012 

𝛿  Percentage  of wood product other than long lived wood product  82%  Sharma et al. 2011 

𝜂𝐵 Percentage of wood residue which includes logging and mill residues  60% Sharma et al. 2011 

𝜂𝑇  Percentage of timber in total aboveground biomass  60% Sharma et al. 2011 

∆ Allowable variation of timber supply in even flow constraint  0.15 Goycoolea et al. 

2005 
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Table 2-3. Description of parameter configurations in each case scenario. 

Description 
Clearcutting 

Base Case 

Clearcutting 

Sensitivity1 

Clearcutting 

Sensitivity 2 

Clearcutting 

Sensitivity 3 

Partial-cut: basal area removal 

25%  50% 75% 

Enforce Area 

Restriction 
Y Y Y Y N N N 

Enforce Even Flow Y Y Y Y Y Y Y 

Enforce Minimum 

Permissible Stand 

Age 

Y Y Y Y N N N 

Number of Planning 

Periods 
10 10 10 10 10 10 10 

Carbon to Timber 

Price Ratio 0.05 

0 – 1, 

increased by 

0.05 

0.05 0.05 

0 – 1, 

increased 

by 0.05 

0 – 1, 

increased 

by 0.05 

0 – 1, 

increased 

by 0.05 

Biomass to Timber 

Price Ratio 
0.005 0.005 

0 – 1, 

increased by 

0.05 

0.005 0.005 0.005 
0.005 

Permissible Harvest 

Area 
40 40 40 

0-100 ha, 

increased by 

10 

- - - 

 

2.2.3. Base Case and Sensitivity Analysis 

The base case scenario of this study is to schedule the harvest of the above mentioned 

mixed hardwood forest of 3,042 ha.  A clearcutting with an area limit of 40 ha was used in the 

base case management scenario. We assumed the timber product price at $100/dry Mg according 

to a timber market report (AHC 2014), carbon price at $5/ Mg CO2 eq based on the historical 

data by Chicago Climate Exchange (2011), and average woody residue price at $2/dry Mg (Wu 

et al. 2011). The configurations of all other parameters are listed in Table 2-2.  
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Fig. 2-4. Different carbon components of the forest at different carbon to timber price ratio, (a) 

0.1, (b) 0.5, (c) 1.0. Growth of 100 years was simulated in FVS.  

The sensitivity of carbon sequestration was analyzed over a range of carbon to timber price 

ratio, biomass to timber price ratio, harvest area limit, and harvest method (Table 2-3). The 

partial cut was set at removal levels of 25%, 50%, and 75% of the stand’s basal area. The carbon 

to timber price ratio varied from 0 to 1 at the increment of 0.05 (from $0-$100/ CO2 eq Mg). The 

biomass (wood residue) to timber price ratio ranged from 0 to 0.7 at the increment of 0.05 (from 

$0-$70/dry Mg of biomass). The carbon sequestration potential was also examined with 

consideration of a permissible harvest area ranging from 0 to 100 ha at an increment of 10 ha.  
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The model in this case study was solved using ILOG CPLEX 12.5 on a computer with 

8GB memory and 2.93 GHz processor. Necessary programs were written in JAVA to implement 

the model and a 5000-second time limit was set to achieve a convergence gap of less than 1%. 

 

2.3. RESULTS 

2.3.1. Base Scenario 

The optimized carbon sequestration rate of the base case scenario over the planning 

horizon of 50 years was 0.408 Mg ∙ ha−1 ∙ year−1. Among different carbon components of the 

forest (Fig. 2-4a), aboveground living stands were the major contributor (59.6%) to the total 

carbon storage, followed by belowground living component (15.6%). The forest carbon 

sequestration rate drastically decreased right after each harvest. However, it will gradually return 

to pre-harvest rate with enough time for new growth (20-50 years). The revenue could be up to 

$21.2 ha−1 ∙ year−1 where carbon sequestration accounts for 40%, timber and biomass account 

for 59% and 1%, respectively. 

2.3.2. Carbon to Timber Price Ratio  

Most of the case scenarios at different carbon prices were solved with a convergence gap 

of less than 1% (Table 2-4). A noticeable increase of carbon sequestration rate was generally 

observed as carbon to timber price ratio increased. The sequestration rate of mixed Appalachian 

hardwood forests ranged from 0.325 to 1.253 Mg ∙ ha−1 ∙ year−1 with an average of 0.917 Mg ∙

ha−1 ∙ year−1 as the carbon to timber price ratio increased from 0.0 to 1.0.  The carbon storage 

of the forest could be sustained in a planning horizon when the carbon to timber price ratio was 

higher than 0.5 (Fig. 2-4b, c). Consequently, the total revenue from the forest grew steadily from  
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Table 2-4. Optimized results of carbon sequestration, timber and revenue by carbon to timber 

price ratios. 

Note:    

a Final gap for sub-optimal solution when the optimal solution was not achieved;                  

b A hyphen indicated an optimal solution was obtained. 

$20.8 to $71.2ha−1 ∙ year−1. The number of stands harvested would be reduced as the carbon to 

timber price ratio increased.  

The peak of the increment of carbon sequestration rate (marginal rate) was located when 

the carbon to timber price ratio was at 0.45 (Fig. 2-5a). The rate reached 0 when the carbon to 

timber price ratio was greater than or equal to 0.8. Accordingly, the revenue steadily increased 

from $0.8 to $3.6 ha-1∙year-1 as the carbon to timber price ratio increased from 0.0 to 1.0.  When  

Carbon to Timber 

Price Ratio 

Carbon (Mg ∙
ha−1 ∙ year−1) 

Timber (Mg ∙
ha−1 ∙
year−1) 

Revenue ($ ∙
ha−1 ∙ year−1) 

Harvest 

Area (ha ∙
year−1) 

Final convergence Gapa 

0 0.325 0.796 20.386 55.7 0.02% 

0.05 0.405 0.782 21.198 54.9 -b 

0.1 0.408 0.766 22.531 54.9 0.09% 

0.15 0.413 0.764 24.150 54.1 0.10% 

0.2 0.411 0.769 25.503 54.0 0.17% 

0.25 0.540 0.698 26.646 49.3 - 

0.3 0.624 0.633 28.051 47.2 - 

0.35 0.655 0.576 29.829 44.5 - 

0.4 0.803 0.504 32.186 37.3 - 

0.45 1.125 0.235 34.833 22.6 - 

0.5 1.195 0.162 37.808 15.8 - 

0.55 1.211 0.140 40.929 14.3 - 

0.6 1.216 0.132 44.135 14.1 - 

0.65 1.228 0.114 47.389 13.4 - 

0.7 1.230 0.109 50.656 12.8 - 

0.75 1.230 0.109 53.935 12.8 - 

0.8 1.231 0.103 57.231 12.8 - 

0.85 1.253 0.000 60.466 0 - 

0.9 1.253 0.000 64.023 0 - 

0.95 1.253 0.000 67.580 0 - 

1 1.253 0.000 71.137 0 - 
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Fig. 2-5. Variations of (a) carbon sequestration rate and (b) total forest revenue by carbon to 

timber price ratio (∆= 𝟎. 𝟎𝟓). 

the price ratio was greater than or equal to 0.8, the increment of forest revenue attained a flat 

plateau. 

The clear increasing trend of carbon sequestration rate and decreasing trend of timber 

harvest intensity were observed when the carbon to timber price ratio was between 0.2 and 0.5. 

When carbon price was higher than or equal to 0.8, the carbon sequestration rate was flatted out 

while timber production was dramatically dropped (Fig. 2-6). The carbon to timber price ratio is 

a tradeoff between carbon stock and timber demand. As shown in Fig. 6, to achieve a carbon 

sequestration rate of C (0.64) Mg ∙ ha−1 ∙ year−1, a carbon to timber price ratio should be P 

(0.33), then M (0.6)  Mg ∙ ha−1 ∙ year−1 is determined as the amount of raw timber products 

available for the market. 

2.3.3. Biomass to Timber Price Ratio 

If the carbon to timber price ratio was 0.0, the carbon sequestration rate slightly varied 

from 0.325 to 0.323 Mg ∙ ha−1 ∙ year−1 as biomass to timber price ratio increased from 0.0 to 0.7 

(Fig. 2-7a). As woody biomass price increased, the carbon sequestration rate declined. When a 
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carbon to timber price ratio of either 0.0 or 1.0, the carbon sequestration rate would decline 

approximately 2%. But an obvious decline of carbon sequestration rate was noticed when the 

carbon to timber price ratio was 0.5 (63.4%, Fig. 2-7a). 

 
Fig. 2-6. Method for choosing a suitable carbon price by considering timber demand and carbon 

sequestration. Note: C: carbon sequestration; M: Raw timber; P: Carbon to Timber price ratio. 
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Fig. 2-7 Carbon sequestration rate (𝑴𝒈 ∙ 𝒉𝒂−𝟏 ∙ 𝒚𝒆𝒂𝒓−𝟏) by (a) biomass to timber price ratio; 

(b) harvest area size (ha); (c) management strategies: partial-cut vs. clearcutting. 

 

2.3.4. Harvest Area Limitation 

Limitation of the harvest area is important to prevent wildlife habitat in the forest from 

disruption and fragmentation, it reduces soil erosion, and ensures a sustainable manner of forest 

resource management. For a given carbon to timber price ratio, the size restriction of continuous 

harvest areas becomes a primary factor affecting the amount of carbon sequestrated in a forest 

stand. The maximum potential carbon sequestration rate of 1.253 Mg ∙ ha−1 ∙ year−1 was 

achieved when the harvest area was limited to less than 20 ha for lower carbon to timber price 

ratio (Fig. 2-7b).  Assuming the carbon to timber price ratio was 0.0, the carbon sequestration 

rate steadily declined from 1.253 to 0.03 Mg ∙ ha−1 ∙ year−1 with the harvest area changed from 
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0 to 100 ha. When the carbon to timber price ratio was high, the carbon sequestration rate 

changed slightly as the harvest area varied.   

2.3.5. Harvest Methods 

Generally, the carbon sequestration of clearcutting was higher than that of partial cut; 

specifically, when the carbon to timber price ratio was higher than 0.4. Without carbon credit, 

the carbon sequestration rate of the partial cuts of 75% and 25% of stand basal area removal 

scenarios was 165.7% lower and 55% higher than clearcutting, respectively (Fig. 2-7c). All 

stands would be reserved for carbon storage when the carbon to timber price ratio was 1.0 for 

partial cuts of 50% and 25% basal area removal scenarios. If the carbon to timber price ratio 

remained the same, as the removal intensity of partial cuts increased, the carbon sequestration 

rate generally decreased (Fig.2- 7c). The sequestration potential among various harvest methods 

could be largely differentiated when the carbon to timber price ratio was lower than 0.45. 

However, this difference became smaller when the carbon to timber price ratio was higher (Fig. 

2-7c).  

 

2.4. DISCUSSION  

2.4.1. Carbon to Timber Price Ratio 

Carbon price could substantially affect the potential of forest carbon sequestration rate. For 

the Appalachian mixed hardwood forests, the carbon sequestration rate could be up to 1.253 Mg ∙

ha−1 ∙ year−1 when the carbon to timber price ratio was over 0.8. As Asante et al. (2011) 

indicated, forest might never be harvested if carbon price was high enough. In this study, for 

example, forest stands might not need to be harvested when the carbon to timber price ratio was 

higher than 0.8. 
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A noticeable change of carbon sequestration rate was observed when the carbon to timber 

price ratio was between 0.4-0.5. This was because a stand would not be treated as ‘no harvest’ at 

a lower carbon price unless the economic benefit of reserving the stand for carbon was higher 

than its harvest revenue. This threshold was dependent on growth and management strategies of 

forest stands and most thresholds were around 0.4-0.5 in our case. As the further increase of 

carbon price, carbon sequestration rate became stable and the increment reached 0 eventually. 

When the carbon to timber price ratio was near 0, because most of the stands would be 

harvested, a reduction of carbon storage in the forest was expected within the planning horizon. 

An increase of carbon to timber price ratio allowed less cut and more sustainable carbon storage.  

2.4.2. Timber Demand and Biomass Utilization 

If the amount of timber harvested is lower than the market demand, timber price would 

increase until the demand is met. To maintain a certain level of carbon sequestration rate, an 

increase of carbon price is needed. If timber demand is not a driving factor of the supply, then 

the carbon to timber price ratio could become a major factor motivating forest managers and 

landowners to manage their forests for carbon sequestration.  

Biomass is considered as a carbon neutral energy resource, so the benefit from forest 

carbon sequestration can be further enhanced, if the reduction of GHG emissions is considered 

through utilizing woody biomass such as residues for bioenergy (Fantozzi and Buratti 2010; 

Perilhon et al. 2012; Augustínová et al. 2013). Any increase of biomass price can affect the 

carbon sequestration and forest management decision as well (Saud et al. 2013; Wu et al. 2011). 

In this study, the price of woody biomass was assumed to be a ratio of timber price ranging from 

0 to 0.7. Biomass production would affect carbon sequestration as the biomass to timber price 

ratio increased. Biomass utilization for bioenergy would generally encourage more harvest as 
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biomass price increased. Biomass price did not have any noticeable effect when the carbon 

to timber price ratio was either high or low, due to price of biomass being considered as 

part of benefit from harvest and have little effect on the carbon to timber price ratio.  

2.4.3. Harvest Area Limitation and Harvest Methods 

 Harvest area limitation, related BMPs regulations and harvest site terrain conditions, all 

affect carbon sequestration. Clearcutting with appropriate area limitation could enhance carbon 

sequestration of the forest compared to partial cuts. When the carbon to timber price ratio is low, 

most stands will be profitable if be harvested rather than reserved for carbon storage, thus lower 

area limitation could ensure more carbon can be stored in forest stands. In this study, harvest 

intensity of a partial cut presented a direct effect on the carbon sequestration rate. High intensity 

of partial cut will allow more removal of timber and biomass, and reduce the carbon 

sequestration rate. But when the carbon to timber price ratio is low, more stands would be 

harvested in clearcutting scenario. When the carbon to timber price ratio rises, the advantage of 

clearcutting becomes prominent because area limitation restricts the feasible harvest decision and 

responses to the rise quickly. 

2.4.4. Model Performance 

Few approaches were previously discussed for modeling harvesting area restrictions 

(Constantino et al. 2008; Goycoolea et al. 2005; McDill et al. 2002 ), and the cluster packing 

formulation could be an efficient approach (Goycoolea et al. 2009). However, it could not be 

used directly in this case study because multiple harvesting for a stand needs to be considered 

during multiple planning horizons. Thus some of the stands in a feasible cluster might need to be 

harvested at different time periods to achieve an optimal solution. The approach developed in 

this study can be intentionally used to schedule harvest of a stand multiple times during different 
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planning horizons. The CPLEX solver was used to optimize the scenarios in this case study with 

3,207 rows, 1,536 columns, and 11,478 non-zero elements contained in the modelling matrix. 

Five types of variables were defined in the model, including 𝑥𝑖𝑡, 𝑦𝑖𝑗𝑡, 𝑎𝑖𝑡,  Git and 𝑎𝑇𝑒𝑚𝑖𝑘𝑡 , and 

they made the computing a very complex task.  Solving a larger optimization problem is always 

challenging. However, the modeling approach developed in this study proved to be useful and 

efficient in making decision in sustainable forest management. Modeling process and algorithms 

could be further improved to reduce the number of variables and to enhance solving efficiency 

for larger problems. 

 

2.5. CONCLUSIONS 

Harvest area restriction, carbon price, biomass price, and harvest method all affected the 

carbon sequestration rate of the central Appalachian mixed hardwood forests to some extent. 

Carbon price was the most sensitive factor to the carbon sequestration rate, followed by harvest 

intensity. The average carbon sequestration potential was 0.408 Mg ∙ ha−1 ∙ year−1 in the central 

Appalachian hardwood forests at a carbon price of $5/Mg CO2 eq. This potential could be 

enhanced as carbon price increased. The marginal revenue for carbon sequestration and timber 

demand also affect the sequestration strategies. Increased biomass utilization for bioenergy 

would encourage more harvest to promote the long-term carbon sequestration. Larger area 

limitation could encourage more harvest when carbon price is low. When the carbon to timber 

price ratio is low, lower harvest intensity of partial cut would allow more carbon storage 

compared to clearcutting. 
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ABSTRACT 

We analyzed the economic feasibility and environmental benefits of an alternative 

technology that converts coal and biomass to liquid fuels (CBTL), using West Virginia as a real 

case scenario with considerations of woody biomass harvest scheduling optimization, feedstock 

transportation and siting options of potential CBTL plants. Sensitivity analyses on required 

selling price (RSP) were conducted according to feedstock availability and price, biomass to coal 

mix ratio, liquid fuel yield, IRR, capital cost, operational and maintenance cost. A cradle-to-

grave life cycle assessment (LCA) model was also developed to analyze the environment 

benefits of the CBTL processes. The study of siting and capacity showed that feedstock mixed 

ratio limited the CBTL production. Sensitivity analysis on RSP showed the price of coal had 

more dominant effect than that of biomass. Different biomass mixed ratio in the feedstock and 

liquid fuel yield led to RSP ranging from $104.3 - $157.9/bbl. LCA study indicated that 

greenhouse gas (GHG) emissions ranged from 80.62 kg CO2 eq to 101.46 kg CO2 eq/1,000 MJ 

at various biomass to coal mix ratios and liquid fuel yield if carbon capture and storage (CCS) 

was applied. Most of water and fossil energy were consumed in conversion process at a CBTL 

facility. Compared to petroleum-derived-liquid fuels, the reduction in GHG emissions in West 

Virginia was estimated to be between -162 and 555 million tons over a 30-year period. 
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3.1. INTRODUCTION 

Uncertain supplies of oil, climate change and attempts to increase the nation’s fossil fuel 

independence are concerns that has evoked a renewed interest in alternative sources of energy. 

Substitutes for traditional fossil fuels could be liquid fuels produced from coal or biomass which 

enables the USA to reduce its reliance on foreign oil (Paul 2009). Since the Fischer-Tropsch (FT) 

technology was first developed in Germany in the 1920s, it has been popularly used for 

producing synthetic fuels (Höök and Aleklett 2010; Bartis and Van Bibber 2011). There are two 

processes that could be developed to produce liquid fuels from coal: direct and indirect (Paul 

2009; Jiang and Bhattacharyya 2014, 2015). Direct approach has higher product yield compared 

to indirect approach, but the product quality is lower and the operating conditions are severe 

(Bellman et al. 2007).  

Both direct and indirect coal-to-liquids (CTL) methods have been commercialized in South 

Africa and China. Sasol in Africa was able to produce 27% of the total liquid fuel produced in 

2012 (Tennant 2014). Five CTL projects processing a total of 930,000 ton coal per year were 

planned in China in 2013 and two will completed in 2015 (Li et al. 2013). Currently, there is no 

CTL plant in the U.S. because liquid fuels derived from coal cannot compete on price with the 

fuels derived from crude oil (Van Bibber et al. 2007; Tarka 2009). Additionally, another main 

drawback of CTL is the high carbon footprint in the conversion processes, which is more than 

twice of petroleum-derived-fuels (Tarka 2009). Carbon capture and storage (CCS) is an approach 

to capture carbon emission during the production of liquid fuels at facility, which can efficiently 

reduce greenhouse gas (GHG) emissions. If a simple CCS is considered (91% carbon captured), 

a 5-12% reduction in life cycle emission can be achieved in comparison to the petroleum-

derived-diesel (Tarka 2009). 
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Biomass has always been considered as a carbon neutral energy resource. The introduction 

of biomass to CTL, known as coal and biomass to liquids (CBTL) process, can further reduce 

GHG emissions (Gray et al. 2007; Tarka 2009). Biomass-to-liquids (BTL) processes have very 

low GHG emissions and most emissions are associated with harvesting, collection and 

transportation of biomass feedstock, but they usually associate with high costs (Bartis et al. 

2008). Combination of coal and biomass allows biomass to offset the emissions in the CTL 

process. Inclusion of CCS in the CBTL process can maintain the total emissions at a lower level. 

A study from the U.S. Department of Energy’s National Energy Technology Laboratory (DOE 

NETL) reported that a mixture of 8% biomass and 92% coal (by weight) can produce fuels 

which have 20% lower life cycle GHG emissions than petroleum-derived diesel fuel (Tarka et al. 

2009). 

Life Cycle Assessment (LCA) has been considered as a good tool to analyze GHG emissions 

since it was first proposed in 1970 (Hunt and Franklin 1996) and fully developed in the early 

1990s (Boustead 1996). The International Organization for Standardization (ISO) accredited 

LCA when the process was completed and published between 1996 and 1998. A second edition 

of this standardization has become available since 2006 (ISO 14040 2006). Many studies have 

been conducted on LCA of biofuel, CTL, and CBTL fuel productions. A study of CTL by 

Marano and Ciferno (2001) reported 18.7 kg CO2 eq GHG emissions per gal of liquid fuels 

produced from coal. GHG emission of 16.4 – 58.9 kg CO2eq per 1,000 MJ ethanol produced 

from biomass is 43-57% lower than those of petroleum-derived-gasoline (Hsu et al. 2010). 

Kumar and Murthy (2012) found that fossil energy consumption for ethanol production from 

grass straw is 57.43 - 112.67% lower than that of gasoline. Compared to the traditional jet fuel, 

CBTL can result in up to 30% lower GHG emissions when 31% switchgrass is mixed with coal 
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(Skone 2011). Wu et al. (2012) reported a 27% lower GHG emissions with a biomass to coal 

mix ratio of 15/85. 

Economic feasibility of CBTL were studied by considering siting optimization, delivered 

costs of feedstocks and techno-economic analysis. Wu et al. proposed a two-stage GIS suitability 

model for deciding the suitable site for biomass to liquid fuel facility which considered 

topography condition, biomass handling cost and environmental impact (Wu et al. 2011). The 

CBTL plant could become economically feasible if the prices of petroleum-derived-fuels keep 

rising or the price of carbon is quite high (Marano and Ciferno 2001; Van Bibber et al. 2007; 

Tarka 2009; Wu et al. 2012). Marano and Ciferno (2001) estimated the price of FT liquid fuels 

for a 50,000 bpd CBTL plant to be $52.8 bbl-1-$96.6 bbl-1 in 1998$s based on the amount of 

biomass content in the feedstock. This price was not competitive with petroleum derived 

gasoline and diesel. In the work of Van Bibbler et al. (2007), the average FT liquid fuels price 

was reported to be $81.5bbl-1. Tarka (2009) reported that the CBTL plant becomes feasible when 

the price of crude oil is higher than $100 bbl-1 and when less than 30% of biomass is added to the 

mixture. Based on Wu et al.’s study (2012) conducted for the central Appalachia, the price was 

$84.19 bbl-1-$86.74 bbl-1 in 2009$s and was able to compete with petroleum derived fuels with 

high government subsidy. 

The abundant coal and biomass resources in West Virginia provide a compelling 

opportunity for the production of liquid fuels using CBTL technologies, but it is imperative that 

these resources can reach the facility at a reasonable price. There are many factors that influence 

the delivered cost to a facility, including but not limited to, the abundance of feedstock, presence 

of an infrastructure to handle the feedstock, and existing competing uses.  There appears a 

necessity to further examine both environmental and economic benefits of the CBTL processes. 
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Hence, the objectives of this study are to: (1) examine the economic efficiency of CBTL 

processes by developing a mixed integer linear programming model; (2) perform a life cycle 

assessment to analyze the environmental benefits of CBTL; and (3) conduct sensitivity analysis 

of economic and environmental impact of the CBTL applications in terms of feedstock 

availability, feedstock price, liquid fuel yield, biomass to coal mix ratio and plant capacity. 

 

3.2. MATERIALS AND METHODS 

3.2.1. Study Area 

Our study area is the state of West Virginia (WV). West Virginia extends from 37º12' N to 

40º39' N and from 77º43' W to 82º39' W in the U.S. More than 80% of the total land area is 

covered with forests, which makes it the third most heavily forested state in term of coverage. 

The total forest area is 4.9 million ha of which 98% is timber land. The annual yield of woody 

residue is approximately 2.19 million dry tons according to information on timber products 

output, published by US Department of Agriculture (USDA TPO 2009).  

The state of West Virginia (WV) is the nation’s second largest coal-producing state, 

producing more than 143 million metric tons of coal in 2010, about 13% of the U.S. total 

(National Mining Association 2011, West Virginia Coal Association 2011). The majority of the 

coal in the state is produced in the southern half of the state. Eight counties in the southern 

central part of the state (Boone, Kanawha, Logan, McDowell, Mercer, Mingo, Raleigh and 

Wyoming) produce approximately 55% of the state’s coal.  

3.2.2. Biomass and Coal Feedstocks 

An area restriction model (Murrary 1999) was used to estimate the biomass in West 

Virginia. The planning horizon was 80-year with planning period of five years. The forest 
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inventory data were downloaded from the Forest Inventory & Analysis database (USDA FIA 

2012). The growth of forest stands was simulated by the Forest Vegetation Simulator (FVS) 

Northeast Variant (NE) with Fire and Fuels Extension (FFE) (Dixon 2013). The land cover data 

were obtained from the United States Geological Survey National Gap Analysis Program - Land 

Cover Data 2006 (USGS 2012). 

It was assumed that a total of 10% of the timberland would not be harvested because of 

landowners’ preferences to maintain forests for future values, aesthetics and other reasons. The 

amount of logging residues left in the forests was 2/3 of the raw timber and mill residues was 1/3 

of the raw timber (Sharma 2010). The availability of mill residue was estimated based on the 

amount of timber harvested and capacity of sawmills. The location of sawmills in West Virginia 

were obtained from the Appalachian Hardwood Center (AHC) at West Virginia University. A 

total of 171 sawmills were recorded. The distances from logging sites to sawmills were 

calculated based on the 2010 road network downloaded from TIGER/Line Shape files of the U.S. 

Census Bureau.  

The costs of handling biomass were based on a study by Wu et al. (2012). All costs are in 

2012 dollars and all the tons are metric tons. The harvest costs were $12.92 dry ton-1 using 

grapple skidder-chips system and the price of logging residue was set to be $1 dry ton-1 as the 

average price in the base case, although some logging residues could be obtained free from some 

landowners (Wu et al. 2012). We assumed that 65% of total logging residue is economically 

available. The purchase price of mill residue was assumed to be $50 dry ton-1. We also assumed 

that 40% of the total woody residue from sawmill was economically available. The round-trip 

transportation costs was $0.23 dry ton-1∙km-1 for logging residue and $0.15 dry ton-1∙ km-1 for 

wood chips (Kerstetter and Lyons 2001). All the biomass was assumed to be evenly supplied to 
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the CBTL plants and no storage occurred at plant sites from previous year. The distribution of 

logging and sawmill residues in 2012 are shown in Fig. 3-1a and b. 

Fig. 3-1. Distributions of logging residue (a), mill residue (b), coal production level (c), and 

locations of candidate CBTL plants (d) in the study area. 

 

 (b) 

(c) (d) 

(a) 
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Fig. 3-2. Block flow diagram of the indirect CBTL plant with CCS 

The regional coal production data are available in Annual Coal Report by the U.S. Energy 

Information Administration (Harris et al. 2013). The average sales price was $90.17 ton-1. The 

locations of coal mines were obtained from the West Virginia Department of Environmental 

Protection Technical Applications & GIS Unit. We assumed a round-trip transportation cost of 

coal at $0.1 ton-1∙ km-1 for the base case. Coal was primarily consumed for coal-fired power 

generation that provided approximately 99% of the electricity in West Virginia and the total 

amount of coal used for power generation is 29.52 million tons in 2012 in West Virginia (EIA 

2013). A consistent and sufficient supply of coal was assumed over the next 30 years in this 
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region, while over half of this production potential could be used to meet the feedstock request of 

CBTL plants (Fig. 3-1c). Distances between coal miles to CBTL facilities were calculated in the 

same way as we did for biomass feedstock. 

3.2.3. Process model of the CBTL plant 

A block flow diagram of the indirect CBTL plant is shown in Fig. 3-2. In the indirect 

CBTL plant, pre-treated coal and biomass are sent to the gasifier producing raw syngas, 

consisting mainly of H2, CO, H2O, CO2, COS, H2S. The raw syngas is then cooled and sent to 

the COS hydrolysis unit and water gas shift unit to convert COS to H2S and adjust the H2/CO 

ratio in the stream. Then the syngas is sent to the heat recovery unit, where most of the H2O is 

condensed. After that it is sent to the acid gas removal (AGR) unit where the physical solvent 

Selexol is used for selective capture of CO2 and H2S. The physical absorption process is 

preferred to remove CO2 from syngas because the syngas from gasification unit is available at 

high pressure, which can provide enough driving force for absorption, while the CO2 released 

from the solvent regeneration is also available at high pressure, which can reduce the penalty of 

the downstream CO2 compressor. The clean syngas from the AGR unit and the recycle stream 

from the autothermal reformer, containing mainly H2 and CO, are sent to the Fischer-Tropsch 

(FT) unit to produce syncrude, where additional CO2 is produced. The vapor product from the 

FT unit is sent to the post-FT CO2 removal unit, using chemical absorption technology, to 

remove CO2 from unreacted syngas and light hydrocarbons. The advantage of using chemical 

absorption process for post-FT CO2 remove is that it can avoid hydrocarbon loss, which is 

significant in a physical absorption unit. The liquid product is sent to the product upgrading 

section, including hydrotreating, isomerization, catalytic reforming and hydrocracking unit, to 

produce on-spec gasoline and diesel. The H2 required for product upgrading is generated from 
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the recycled syngas in the H2 recovery unit using pressure swing adsorption. A portion of the 

fuel gas generated in the FT unit and product upgrading unit is used as utility in the furnaces, 

while the remaining portion is sent to the gas turbine for power generation. Steam generated at 

multiple pressure levels in the syngas cooler, heat recovery and FT synthesis units is either 

directly utilized in various unit operations or sent to the heat recovery and steam generation 

section for superheating. Superheated steam is sent to the steam turbine for power generation. 

Some amount of steams is also extracted from the steam turbine for being utilized in the process 

(Jiang and Bhattacharyya, 2014, 2015) 

3.2.4. Economic model for CBTL plants 

An economic model is developed to maximize the total profit of the CBTL process. The 

liquid fuel yield from biomass to liquid fuels is 1.53 bbl ∙ ton-1 and from coal to liquid fuels is 2.38 

bbl ∙ ton-1 (Wu et al. 2012, Jiang and Bhattacharyya 2014, 2015). The base case conditions for this 

CBTL process are reported in Table 1. The cost components consist of feedstock purchase cost, 

transportation, facility construction, operational and maintenance costs. Capital costs and 

operation and maintenance costs of different plant sizes are estimated in Aspen Process Economic 

Analyzer® (APEA) based on a steady-state process model developed in Aspen Plus®. All of the 

distillation columns are sized in Aspen Plus®. All of the heat exchangers are sized in Exchanger 

Design and Rating®. Reactors are specified as quoted equipment in APEA, of which the costs are 

estimated from the throughput (Jiang and Bhattacharyya, 2015; Baliban et al., 2010). The main 

outside battery limit (OSBL) equipment is the cooling water system, which is designed by 

Analyzer Utility Modules (AUM) available in APEA. The remaining project components are 

designed in APEA. Other than reactors, the capital cost of each sized equipment is estimated in 

APEA® based on Aspen Icarus database. The costs are then scaled to different capacity based on  
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Table 3-1. Base case configuration of the CBTL process. 

Parameters Assumptions 

Plant capacity (bpd) 10,000 

Conversion method Indirect liquefaction 

Carbon capture and storage (%) 88 

Liquid fuels yield – Coal (bbl∙ton-1) 2.381 

Liquid fuels yield – Biomass (bbl∙ton-1) 1.531 

Price of logging residues ($∙ dry ton-1) 2 

Price of sawmill residues ($∙ dry  ton-1) 50 

Price of Coal ($∙ ton-1) 90.17 

Biomass to coal mix ratio: mass  8/92 

Plant life (years) 30 

Equity proportion (%) 40 

Cost of Equity (%) 15 

Cost of Debt (%) 8 

Operating time (days/year) 350  

Internal Rate of Return (%) 15 

Federal tax (%) 40 
1 Cited from Jiang and Bhattacharyya 2014. 

NETL report (Gray et al. 2007). A set of candidate locations (Fig. 3-1d) were selected using a two-

stage GIS-based suitability model by Wu et al. (2011, 2012).  

The high heating value (HHV) of FT liquid fuels (diesel equivalence) is 44.7 MJ∙ kg-1 while 

for petroleum-derived diesel it is 43.1 MJ∙kg-1 (Jiang and Bhattacharyya 2014, 2015). An 

incremental cost of $2.95 bbl-1 would incur for applying CCS (Tarka 2009). We assume a 15% 

internal rate of return (IRR) on equity in the base case in order to make the project economically 

feasible. The RSP was calculated according to feedstock costs, liquid fuel yield, mix ratio of 

biomass to coal, and the internal rate of return on equity. The model is shown as follows (The 

configurations and explanations of other necessary parameters considered in the model are in 

Appendix B): 

𝑀𝑎𝑥 𝑧 = 𝑅𝑣 − 𝑇𝐶                                                                                                                             (3 − 1) 

𝑤ℎ𝑒𝑟𝑒: 

𝑇𝐶 = 𝐹𝐶 + 𝑇𝑟 +𝜓 ∙ 𝑂𝑀+ 𝜁 ∙ 𝑇𝑃𝐶.                                                                                             (3 − 2) 
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𝜁 =∑
1

(1+ 𝑊𝐴𝐶𝐶)𝑡

𝑇2

𝑡

.                                                                                                                     (3 − 3) 

𝑊𝐴𝐶𝐶 = 𝑤𝑒 ∙ 𝑅𝑒 + (1− 𝑤𝑒) ∙ 𝑅𝑑 ∙ (1 − 𝑓𝑡).                                                                              (3− 4) 

𝜓 =∑𝑟𝑂𝑀
𝑡

𝑇2

𝑡

.                                                                                                                                       (3 − 5) 

𝑅𝑣 = 𝑝𝑓 ×∑(∑∑𝐶𝑜𝑣𝑠𝑐 ∙ 𝑥𝐶𝑐𝑝𝑡

𝑃

𝑝

𝐶

𝑐

𝑇2

𝑡

+∑∑𝐶𝑜𝑣𝑠𝑏 ∙ 𝑥𝐼𝑖𝑝𝑡

𝑃

𝑝

𝐼

𝑖

+∑∑𝐶𝑜𝑣𝑠𝑏 ∙ 𝑥𝑆𝑠𝑝𝑡

𝑃

𝑝

𝑆

𝑠

).   (3 − 6) 

𝐹𝐶 = ∑(∑∑𝑃𝑐 ∙ 𝑥𝐶𝑐𝑝𝑡

𝑃

𝑝

𝐶

𝑐

𝑇2

𝑡

+∑∑(𝑃𝑙 +𝐻𝐶) ∙ 𝑥𝐼𝑖𝑝𝑡

𝑃

𝑝

𝐼

𝑖

+∑∑𝑃𝑠 ∙ 𝑥𝑆𝑠𝑝𝑡

𝑃

𝑝

𝑆

𝑠

).                      (3 − 7) 

𝑇𝑟 =∑(∑∑𝑇𝑅𝑐 ∙ 𝑑𝐶𝑐𝑝 ∙ 𝑥𝐶𝑐𝑝𝑡

𝑃

𝑝

𝐶

𝑐

𝑇2

𝑡

+∑∑𝑇𝑅𝑙 ∙ 𝑑𝐼𝑖𝑝𝑥𝐼𝑖𝑝𝑡

𝑃

𝑝

𝐼

𝑖

+∑∑𝑇𝑅𝑠 ∙ 𝑑𝑆𝑠𝑝𝑥𝑆𝑠𝑝𝑡

𝑃

𝑝

𝑆

𝑠

).                                                                                   (3 − 8) 

𝑂𝑀 = ∑∑𝑜𝑝𝑙 ∙ 𝑜𝑚𝑙

𝐿

𝑙

𝑃

𝑝

.                                                                                                                    (3 − 9) 

𝑇𝑃𝐶 = ∑∑𝑜𝑝𝑙 ∙ 𝑡𝑝𝑐𝑙

𝐿

𝑙

𝑃

𝑝

.                                                                                                                 (3 − 10) 

𝑆. 𝑡.: 

∑𝑜𝑝𝑙

𝐿

𝑙

≤ 1, ∀𝑝 ∈ 𝑃.                                                                                                                          (3− 11) 

∑𝑥𝐶𝑐𝑝𝑡

𝑃

𝑝

≤ 𝐴𝐶𝑐 ,∀𝑐 ∈ 𝐶, ∀𝑡 ∈ 𝑇2.                                                                                                (3 − 12) 
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∑𝑥𝐼𝑖𝑝𝑡

𝑃

𝑝

≤ 𝐴𝐼𝑖 , ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇2.                                                                                                  (3− 13) 

∑𝑥𝑆𝑠𝑝𝑡

𝑃

𝑝

≤ 𝐴𝑆𝑠, ∀𝑠 ∈ 𝑆, ∀𝑡 ∈ 𝑇2.                                                                                               (3− 14) 

∑𝑥𝐼𝑖𝑝𝑡 +∑𝑥𝑆𝑠𝑝𝑡

𝑆

𝑠

𝐼

𝑖

= 𝜂 ∙∑𝑥𝐶𝑐𝑝𝑡

𝐶

𝑐

, ∀𝑝 ∈ 𝑃, ∀𝑡 ∈ 𝑇2.                                                         (3− 15) 

∑𝐶𝑜𝑣𝑠𝑠 ∙ 𝑥𝐶𝑐𝑝𝑡

𝐶

𝑐

+∑𝐶𝑜𝑣𝑠𝑏 ∙ 𝑥𝐼𝑖𝑝𝑡

𝐼

𝑖

+∑𝐶𝑜𝑣𝑠𝑏 ∙ 𝑥𝑆𝑠𝑝𝑡

𝑆

𝑠

≤ 365 × 104∑𝑙 ∙ 𝑜𝑝𝑙

𝐿

𝑙

, ∀𝑝 ∈ 𝑃, ∀𝑡

∈ 𝑇2.                                                                                                                        (3− 16) 

𝑥𝐼𝑖𝑝𝑡 , 𝑥𝑆𝑠𝑝𝑡 ,𝑥𝐶𝑐𝑝𝑡 ≥ 0, ∀𝑐 ∈ 𝐶, ∀𝑖 ∈ 𝐼, ∀𝑠 ∈ 𝑆, ∀𝑡 ∈ 𝑇2. 

𝑜𝑝𝑙 = {
1, 𝑖𝑓 𝑝𝑙𝑎𝑛𝑡 𝑝 𝑖𝑠 𝑜𝑝𝑒𝑟𝑎𝑡𝑒𝑑 𝑎𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙 𝑙,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                          
 

Equations (3-2) to (3-10) compute the related cost components, amortization factor (𝜁), 

weighted average cost of capital (𝑊𝐴𝐶𝐶), plant maintenance factor (𝜓), total revenue (𝑅𝑣), 

feedstock costs (𝐹𝐶), transportation costs (𝑇𝑟), operation & maintenance (OM) and capital costs 

(TPC), respectively.  Constraints (3-11) ensure a consistent capacity of a CBTL plant over its 

entire operational period. Constraints (3-12) – (3-14) impose the condition that the total amount 

of feedstocks transported from a feedstock location cannot be greater than its availab ility in that 

location. Equations (3-15) ensure that the amounts of biomass and coal transported to a CBTL 

plant equal to the required mix ratio of biomass to coal under difference case scenarios. 

Constraints (3-16) limit the total production of a plant that cannot exceed its designed capacity.  

All the models were solved using the program ILOG CPLEX 12.2, Academic Version on a 

computer with 16 G memory and 1.8 GHz 8 CPUs. Required programs to implement the model 

were written in the JAVA programming language and 5000 seconds was set as a time limit. 
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3.2.5. Life Cycle Assessment 

3.2.5.1. Goal and Scope  

A cradle-to-grave life cycle assessment model was developed to examine the CBTL process 

with a focus on global warming potential, blue water and fossil energy consumption. The 

reduction potential in GHG emissions through using woody biomass in the CBTL process over 

the next 30 years was assessed. The functional unit was defined as 1,000 MJ energy equivalent 

FT liquid fuels. All energy inputs and outputs were calculated in HHV. The system boundary of 

this CBTL process is described in Fig. 3-3. 

3.2.5.2. Life Cycle Inventory (LCI) 

This LCA model included seven basic processes consisting of biomass collection, coal 

mining, transportation of coal, transportation of biomass, thermo-chemical conversion, liquid 

fuels distribution and final combustion. Feedstock included logging residue, mill residue and 

coal. Mill residue did not require any specific harvests since they were already available at 

sawmills. The extraction of logging residue involved grapple skidder, chipper and grapple 

loader. Data on processes of coal mining were obtained from the US LCI database provided by 

National Renewable Energy Laboratory (NREL). The transportation related processes were also 

derived from the US LCI database. Hauling distances of feedstocks were obtained through 

solving the economic model in the previous section.  

The emissions in the conversion process were adapted from the inventory data by Marano 

and Ciferno (2001). A simple CCS was considered to reduce CO2 emission in the thermos-

chemical conversion process. It was assumed that 88% of CO2 was captured (Jiang and 

Bhattacharyya 2014, 2015). At the distribution stage, we assumed an average transportation 

distance of 100 km from plants to refueling stations. We also assumed that the FT liquid fuels of 
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CBTL were combusted in a flex-fuel passenger car (Wang 2009). All other background 

processes were based on Ecoinvent 2.2 database. GHG emissions of 98.8 kg CO2 eq per 1,000 

MJ of petroleum-derived-diesel were used as a base reference for comparison (Keesom and 

Unasch, 2009). All the detailed processes were in Appendix B. 

 

Fig. 3-3. System boundary of the CBTL LCA framework model. 

3.2.5.3. Life Cycle Impact Assessment 

The LCA model was developed by the environmental modeling tool SimaPro 8 (PRé 

Consultants 2011). The impact of GHG emissions was calculated using 100-year global warming 

potentials (Forster et al. 2007). All emissions were converted to CO2 equivalent (kg CO2 eq). 

The reduction of GHG emissions was calculated as the difference between the emissions from 

petroleum-derived-diesel and the emissions from coal and biomass derived liquid fuels. The 
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calculation of blue water consumption (BWC: kg) was done following Boulay et al.’s method 

(2011). Fossil energy consumption (FEC: MJ) was calculated based on Frischknecht et al.’s 

work (2007). 

3.2.6. Sensitivity Analyses 

Sensitivity analyses on RSP was conducted by changing price of coal and biomass, 

biomass to coal mix ratio, liquid fuel yield, plant capacity and internal rate of return (IRR). The 

price range of coal and biomass were $40 ton-1- $100 ton-1 and $40 ton-1 - $140 ton-1, 

respectively. The liquid fuel yield ranged from 1.36 to 1.7 bbl ∙ ton-1 for biomass to liquid fuels 

and from 2.22 to 2.54 bbl ∙ ton-1 for coal (Edwards et al. 2011; Jiang and Bhattacharyya 2014, 

2015; Liu et al, 2011; Wu et al. 2011). The energy efficiency ranged from 40%-50%. The liquid 

fuel yield for different mix ratio were linear combinations of liquid fuel yield of coal and 

biomass (Andre et al., 2005). The IRR was set to 20% and 10% to test its effect on RSP. The 

effects of 20% change of capital cost and operation and maintenance cost were studied. The 

sensitivity analysis of liquid fuel yield and mix ratio on GHG emissions was studied in the same 

way as on RSP.  
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Fig. 3-4. Sensitivity analyses by liquid fuel yield and biomass to coal mix ratio for CBTL fuel 

production in thousand bbl/day (a); required selling price of CBTL fuels $/bbl (b), GHG 

emission kg CO2 eq/f.u. (c),and GHG reduction compared to petroleum derived diesel in 

thousand tons CO2 eq/year (d).  

 

(a) (b) 

(c) (d) 
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3.3. RESULTS 

3.3.1. Plant Siting and Capacity 

The siting and capacity of a CBTL plant were typically determined by several major factors 

such as availability of feedstocks, infrastructure, and others. The total production of all open 

plants decreased with a decrease in liquid fuel yield and an increase in mix ratio (Fig. 3-4a). 

Differences among the various mix ratios showed a greater effect than that among the various 

liquid fuel yield. The highest production was 471,223 bbl/day (bpd) with highest liquid fuel yield 

and no biomass was mixed with coal. When the biomass to coal mix ratio was 30/70 and the 

liquid fuel yield a minimum, the overall production was 27,971 bpd.  

A total of 22 potential CBTL plant site candidates were considered under different 

availability of feedstock, infrastructure and biomass to coal mix ratios. Most candidate sites were 

not suitable for CBTL plants. The number of CBTL plants, as well as their production, decreased 

as the liquid fuel yield declines. In the case where the mix ratio was 8/92 and the liquid fuel yield 

changed from 2.473 to 2.151 bbl ∙ ton-1, the production changed from 157,805 bpd to 137,261 

bpd. Multiple plants were operated if the amount of available biomass increased and the capacity 

of plant did not increase. 

3.3.2. Economic Impact 

Cost analysis indicated that the purchase of coal and operational and maintenance cost 

accounted most of the total cost. In the base case (defined in Table 3-1), the purchase of coal 

accounted 60.7% of the total cost. Operational and maintenance cost accounted 17%. The 

transportation of biomass cost more than purchasing them. When the mix ratio increased, which 

meant more biomass mixed with coal, the unit transportation cost of biomass became to decrease 

and unit transportation cost of coal increased. 
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The RSP of liquid fuels was calculated based on all the cost components in the project. The 

RSP in the base case was $113.01 bbl-1 with a payback period of 7 years for the project. The RSP 

rose with the increase in the price of feedstock, where the RSP was calculated when the mix ratio 

was 8/92 and the liquid fuel yield was 1.53 bbl ∙ ton-1 for biomass and 2.38 bbl ∙ ton-1 for coal. 

The effect of coal on RSP was more pronounced than that of biomass. The RSP was $91.9  bbl-1 

when the price of coal and biomass were $40∙ ton-1. The RSP increased to $115.8 bbl-1 when the 

price of coal was $100 ton-1, and increased to $94.7 bbl-1 when the price of biomass was $100 

ton-1.  

Fig. 3-5 Change of RSP based on different IRR at different mix ratio and liquid fuel yield. 
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Table 3-2 Percentage change of RSP according change of capital cost and operation and 

maintenance cost. 

 

The RSP was $104.3 bbl-1 when no biomass was used at the maximum liquid fuel yield 

when the prices of coal and biomass were same as the base case. The highest RSP was $157.9 

bbl-1 when the mix ratio was 30/70 with the minimum liquid fuel yield. The RSP kept increasing 

when more biomass was mixed with the coal and lower liquid fuel yield was assumed (Fig. 3-4-

b). When the mix ratio was low, the RSP changed with a change of liquid fuel yield than when 

more biomass was mixed. The reduction of IRR significantly reduced the RSP, especially when 

more biomass was mixed with coal (Fig. 3-5). The change in capital cost by 20% would change 

the RSP by 10%-12%. The change in operation and maintenance cost by 20% would change the 

RSP by 1.93%-2.26%. (Table 3-2). 

Table 3-3. Process based environmental impact for the base case.  

Impact 
Coal 

Mining 

Transport-

Coal 

Residue 

Collection 

Transport-

Residue 
Conversion Distribution Combustion Total 

GHG 

12.6 0.1 0.17 0.06 17.17 0.64 62.86 93.6 

13.46% 0.11% 0.18% 0.06% 18.34% 0.68% 67.16% 100% 

BWC 

0. 632 0. 838 0.0721 0. 998 44.46 2.21 0.09 49.3 

1.28% 1.70% 0.15% 2.02% 90.18% 4.48% 0.18% 100 % 

FEC 

1.05 1.31 0.101 1.639 34 0.584 0.016 38.7 

2.71% 3.39% 0.26% 4.24% 87.86% 1.51% 0.04% 100% 

 

Mix 

Ratio 

Capital Cost  Operation & Maintenance 

0% 25% 50% 75% 100% 0% 25% 50% 75% 100% 

0/100 10.01% 10.05% 10.16% 10.19% 10.29% 2.12% 2.14% 2.20% 2.21% 2.26% 

8/92 10.75% 10.96% 10.96% 11.14% 11.14% 2.09% 2.15% 2.15% 2.21% 2.21% 

15/85 10.84% 10.84% 10.84% 10.84% 10.84% 2.12% 2.12% 2.12% 2.12% 2.12% 

20/80 11.30% 11.30% 11.30% 11.30% 11.30% 2.04% 2.04% 2.04% 2.04% 2.04% 

25/75 11.78% 11.75% 11.75% 11.75% 11.75% 2.02% 2.01% 2.01% 2.01% 2.01% 

30/70 11.97% 11.97% 11.97% 11.97% 11.97% 1.93% 1.93% 1.93% 1.93% 1.93% 



61 

3.3.3. Environmental Impact 

There were seven major processes in the LCA model. For the base case, the GHG emissions, 

water and fossil energy consumption of each process and the percentage of their total amount of 

emission were shown in Table 3-3. Most emissions originated from the combustion in vehicles 

and thermos-chemical conversion, which contribute 62.86% and 17.17% to the overall GHG 

emissions, respectively. The portion of FT fuels derived from biomass was considered as carbon 

neutral. The emissions from 1,000 MJ of products ranged from 80.62 kg CO2 eq to 101.46 kg 

CO2 eq for various mix ratio and liquid fuel yield. The CBTL facility consumed over 80% of the 

water and fossil energy in the system.  

Fig. 3-4c shows the GHG emissions at each mix ratio are a function of liquid fuel yield. 

GHG emissions are lower when more biomass is mixed with coal. Given the same mix ratio, 

more GHG emissions occur when the liquid fuel yield is low. The mix ratio and liquid fuel yield 

also affect the transportation distance of the feedstock, but the emissions due to transportation 

only account for a low percentage in the entire life cycle.   

By producing FT liquid fuels, the total reduction in GHG emissions over 30 years is 

estimated to range from -162 to 555 million tons CO2 eq for various liquid fuel yield and mix 

ratios in our simulation (Fig. 3-4d). The reduction in emissions is calculated by considering the 

emissions due to production and combustion of the equal amount (in energy) of petroleum-

derived-fuel minus the emissions due to coal and biomass derived liquid fuels.  
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3.4. DISCUSSION  

3.4.1. Feedstock Availability 

A constant growth of forest was simulated using the FVS over a relatively short term (i.e., 

60 years). Wildfire was included in the simulation but its intensity was low and no other natural 

disturbance was simulated. This allowed a constant increment of the available biomass before the 

forests reach maturity. The availability of woody biomass could reach its peak as the timber 

production could not exceed the capacity of sawmills in our model. However, this availability of 

biomass could be changed due to other uncertain factors such as growth of short rotation woody 

crops on marginal agricultural land and abandoned mine land, natural disturbances or increment 

of carbon subsidies (Asante et al. 2011). There usually was abundant coal available in West 

Virginia. We had, in general, assumed that the supply of coal will not decline over the next 30 

years. Coal was also easy to handle with and always have lower transportation cost than biomass.  

3.4.2. Siting and Capacity 

The optimal location of CBTL plants was based on a set of candidate locations and the 

availability of feedstock (Wu et al. 2011, Hartley 2014). Candidate location was selected by 

considering many criteria such as cost, environmental impact, site physical condition and human 

society (Wu et al. 2011, Hartley 2014). The best locations were those surrounded by coal mines 

since coal was the dominant feedstock for CBTL plants. When more biomass was mixed with 

coal, smaller CBTL plant was operated, and hauling distance of biomass was decreased and 

hauling distance of coal was increased. This is because biomass is difficult to handle with and 

cost more than coal in transport.  

When only coal was used as feedstock to produce FT fuels, the total productivity was not 

limited by biomass and could be very high. When biomass was involved, production will decline 
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because of limited biomass availability. The decision of operating one large scale plant or several 

small plants also depended on the capital and operational costs besides the distribution of 

feedstocks. Coal was more concentrated in Southern West Virginia than biomass. So if only coal 

was used as feedstock, the best location was the candidate location in Boone county.  

3.4.3. Costs and RSP 

The feasibility of CBTL is largely depended on the total costs. Costs were low when only 

coal was supplied as feedstock and increased when biomass was mixed with coal. This is 

because higher cost is always expected to handle biomass (Ruiz et al. 2013). The feasibility is 

also depended on the price of crude oil. Tarka (2009) shows that CBTL (with 30% biomass or 

lower) was feasible when the price of crude oil was over $100 bbl-1. As the average crude oil 

price in 2012 was $94 bbl-1, CBTL could be feasible if the required internal rate of return is 

allowed to be lower than 10%. But the low price of fossil fuels from the end of 2014 till date has 

made CBTL hard to compete with conventional petroleum-derived fuels (EIA 2015).  

By changing the price of coal and biomass, our investigation showed close relationship of 

RSP and the price of feedstock. The price of coal had a more pronounced effect because coal is 

always the dominant feedstock in a CBTL plant. Because the price of coal for our investigation 

were higher than in previous studies and because we also considered lower liquid fuel yield, the 

RSP in our study could be higher than the feasible price. The liquid fuel yield is one important 

factor because this rate may vary due to coal type, tree species and other factors. The rise in the 

RSP did not linearly follow increases of mix ratio and decreases in liquid fuel yield. This is 

because the CBTL plant is operated under its capacity in some scenarios. So a more sophisticated 

biomass supply chain is needed to be developed and the improvement of conversion efficiency 

was required to reduce the high RSP of CBTL. IRR had significant effect on RSP especially 
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when more biomass was mixed with coal because higher capital cost was usually required. Wu et 

al. (2011) assumed 5% and 10% change in capital cost which changed the RSP by 2% and 5%, 

respectively. The results on the sensitivity of capital cost in this study were consistent with Wu et 

al.’s study (2011).  

3.4.4. LCA of CBTL 

This study showed that the major contribution to GHG emissions was from the thermo-

chemical conversion of FT fuels and their final combustion in vehicles. The emissions released 

in land use changes were neglected because the candidate sites were selected from pre-existing 

industrial sites. We also did not consider the environmental impact of waste since the slag can be 

used as a concrete mix where it performs well (Slag Cement Association 2013). Differences in 

GHG emissions at the same mix ratio were caused by various liquid fuel yield. The location and 

size of CBTL plants had a direct influence on the distance for transporting feedstock. But this did 

not change the life cycle emissions to any great extent because transportation accounts for less 

than 0.5% of the overall emissions. The electricity required in conversion process was provided 

by waste heat and light hydrocarbons, so the fossil energy consumption was low in CBTL plant. 

But the water consumption could be high to generate power from coal.  

When the liquid fuel yield increased, the reduction in GHG emissions to produce same 

amount of liquid fuels was higher because less coal and biomass were required. Improvements in 

the liquid fuel yield and capture of carbon dioxide can further benefit the environment, such as 

aggressive CCS is able to capture 95% of the total emissions (Tarka 2009). But aggressive CCS 

will dramatically increase the cost (Jiang and Bhattacharyya 2015). The contribution of GHG 

emission reduction from biomass utilization may be overestimated because we did not include 

most natural disturbances, such as extreme weather, wild fire, insect and disease, which will 
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disturb the growth of forest. The LCA model also will systematically underestimated 

environmental impact by ignoring some less important processes and information gap. High 

ratios of biomass was only preferred when biomass was abundant. This implied that the option of 

relatively lower amount of biomass in feedstock was chosen if high GHG emission reduction 

was expected when biomass availability was low. 

 

3.5. CONCLUSIONS 

In this study, we analyzed the economic and environmental effect of coal and biomass 

utilization for production of liquid fuels. The location of CBTL facility preferred the site 

surround with coal mines. If there was abundant biomass and the biomass ratio in feedstock was 

low, large plant sizes should be selected and high overall liquid fuel production was expected. 

RSP was calculated by changing biomass to coal mix ratio, liquid fuel yield, price of coal and 

biomass, IRR, capital cost, and operational and maintenance costs. The price of feedstock 

directly affected RSP. Coal had more pronounced effect than biomass on RSP. RSP increased 

when more biomass was mixed and liquid fuel yield was low. Lower IRR could obviously 

reduce RSP. Thermo-chemical conversion and combustion in vehicles account for most GHG 

emissions. Most of blue water and fossil energy were consumed in conversion process at CBTL 

facility. The effects of biomass to coal mix ratio and liquid fuel yield on GHG emissions were 

assessed in this study. High biomass ratio in the feedstock will reduce the GHG emissions, but 

GHG emission reduction will also decline because of limited biomass availability. The 

improvement of liquid fuel yield consistently reduced the GHG emissions. 
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WOODY BIOMASS UTILIZATION FOR BIOENERGY 
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ABSTRACT 

A mixed integer linear programming (MILP) model and life cycle assessment (LCA) 

model were developed to analyze economic and environmental benefits by utilizing forest 

residues for small scale production of bioenergy in West Virginia. The MILP was developed to 

optimize the costs and required selling price of biofuels under different strategies. The cradle-to-

gate LCA was developed to examine the greenhouse gas emissions, blue water and fossil energy 

consumption associated with the biomass utilization. The RSP in base case was $90.87/bbl 

ethanol and $126.08/bbl for diesel and gasoline. The sensitivity analysis on RSP showed that 

liquid fuel yield had most prominent effect and followed by internal rate of return (IRR) and 

feedstock price. The LCA showed that the GHG emissions from the production of 1,000 MJ 

energy equivalent ethanol was 9.72 kg CO2 eq which was lower than fast pyrolysis (9.72 kg 

CO2 eq). Fast pyrolysis had high water and energy consumption. The uncertainty analysis 

showed the change of environmental impact by the change of liquid fuel yield. The risk of 

biomass to liquid via fast pyrolysis (BLFP) to have a negative energy output was expected when 

the liquid fuel yield was low. The production of ethanol required lower cost and had lower 

environmental impact, that is to say, the costs for reducing 1 kg CO2 eq GHG emissions was low 

in biomass to ethanol (BTE), but more biomass was required to produce same amount of energy 

equivalent liquid fuels. 
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4.1. INTRODUCTION  

Biomass is a carbon neutral energy resource which can be utilized as a feedstock for 

bioenergy and bioproducts and has a great potential to reduce the carbon emissions from fossil 

fuels. The interest in the use of cellulosic biomass as feedstock for biofuels has been increased to 

reduce energy dependence on fossil fuels. As one of the largest unexploited sources of cellulosic 

biomass, woody biomass is identified as a potentially important feedstock for biofuels (Perlack et 

al. 2005). Current biofuels are typically converted from energy crops which require change of 

land covers and introduce carbon debt that needs a considerable amount of time to pay back 

(Fargione et al. 2008). Woody biomass is given high priority to produce biofuels in terms of 

effectively managing land cover changes and carbon emissions. There are several pathways to 

convert biomass to biofuels or bioproducts, including biomass-to-ethanol (BTE) and biomass to 

liquids via fast pyrolysis (BLFP). Many analyses have been conducted on these approaches in 

terms of economic analysis and environmental or life cycle assessments. 

Ethanol is one of the biofuels which currently widely produced in the United States, 10.8 

billion gallon of ethanol was produced in 2009 (Renewable Fuels Association Statistics 2014) 

and most of them were from corn grain (Gecan and Johansson 2010). The production of ethanol 

has increased to 13.3 billion gallon in 2013 (Renewable Fuels Association Statistics 2014). The 

required selling price (RSP) of ethanol from biomass was around $1.00/gal (Gnansounou and 

Dauriat 2010). Phillips et al. (2007) studied the hybrid poplar chips to ethanol and reported a 

RSP of $1.07/gal. An estimation of the global ethanol program cost target in 2012 showed 

$1.49/gal in US$ of 2007 (EIA 2009). The Economic Research Service (2015) summarized a 

historical survey of corn derived ethanol showed that the price of ethanol was peaked in 2006 

($3.58/gal) and reduced to $1.67/gal in 2015. The average price was $1.91/gal from 2005 to 
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2015. Kocoloski et al. (2010) indicated that larger facilities would be able to decrease ethanol 

cost by $0.20-0.30/gal by analyzing the impact of facility size and location on ethanol cost. 

Although the improvement of biomass derived liquid fuel production, the low price of fossil 

fuels from the end of 2014 till date has made biomass derived liquid fuel hard to compete with 

conventional petroleum-derived fuels (EIA 2015). 

Fast pyrolysis is a good approach to produce reliable higher energy density liquid fuels 

from biomass. The energy density of pyrolysis-derived diesel and gasoline can be 40.6MJ/kg and 

42.3MJ/kg, respectively (Wang 2009).  In fast pyrolysis, biomass is quickly heated to 400°C to 

500°C in the absence of oxygen and the biomass decomposes very rapidly. Dark brown liquid fuel is 

generated after cooling and condensation of the pyrolysis vapours (Bridgwater 2012; Hsu 2012). The 

liquid fuel needs to be upgraded by hydrotreating and hydrocracking before using as transportation 

fuels (Augustínová et al. 2013). The pyrolysis-derived-liquid fuels also can be blended with 

petroleum-derived-liquid fuels and filled in passenger vehicle. Some economic analysis conducted in 

recent years found that these biofuels had economic advantages to compete with other alternative 

fuels and the estimated costs ranged from $0.40/gal to $3.07/gal (Ringer et al. 2006; Wright et al. 

2010).. A review of recently techno-economic analysis on fast pyrolysis found the RSP changed 

from $1.93-$3.70/gal of gasoline equivalent (Brown 2015). 

Life cycle assessments (LCA) were conducted separately to analyze environmental 

impact of biomass utilization. Kumar and Murthy found 15 kg to 57 kg CO2 eq GHG emissions 

and 57% - 113% reduction in fossil energy consumption to produce 1,000 MJ of ethanol from 

grass straws (2012). The LCA study of biodiesel from rapeseeds showed that the climate change 

potential was 73% lower than petroleum derived diesel (Herrmann et al. 2013). The study of 

different agricultural feedstock (corn stover, sugarcane and sugar beet) to produce ethanol 

showed a reduction of GHG emissions from 46% to 65% compared to fossil based ethanol 
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(Munñz et al. 2013). However, because ethanol has lower energy density which is 26.8 MJ/kg 

(Edwards et al. 2011) and the possible damage of engine (Lavelle 2010), the manufacturers have 

no willing to increase the blending percentage of ethanol. Hertel et al. (2010) also argued that the 

change of land use may eliminate the benefit of ethanol on global warming. The lab research of 

fast pyrolysis generally brings more reduction in GHG emissions comparing to ethanol. Fan et 

al. (2011) studied the GHG emissions for pyrolysis oil to generate electricity and found it can 

saving 77%-99% of GHG emissions relative to fossil fuels combustion. GHG emissions could be 

reduced 56-77% from pyrolyzed biofuels compared to fossil fuels (Snowden-Swan and Male 

2012, Hsu 2012).  

Located in the central Appalachian region, West Virginia is the third most heavily 

forested state in the U.S. and can produce roughly 2.5 million dry tons of biomass annually. This 

biomass resource can definitely be used as a feedstock for biofuels or bioproducts to benefit the 

environment. There appears a necessity to analyze the economic and environmental impact of 

increased woody biomass utilization at a regional scale. The objectives of this study were to: (1) 

develop an economic model to optimize and analyze the conversions of forest residues to 

bioenergy through both biological and thermos-chemical pathways; (2) develop LCA model to 

analyze the environmental impact of biomass utilization. 

 

4.2. MATERIALS AND METHODS 

4.2.1. Study Area and Feedstock 

This study area is located in West Virginia, of the United States with more than 80% of 

total land area covered with forest. The total forest area in West Virginia is 4.9 million hectares 

and 98% of them are timber land. The annual yield of wood residue is approximately 2.19 
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million dry tons in this region according to the timber products output by the US Department of 

Agriculture (USDA TPO 2009). This biomass resource can be utilized as a feedstock for BTE 

and BLFP of up to 10,000 barrels per day, respectively. 

4.2.2. Economic Modeling 

4.2.2.1. Feedstock handling costs 

The availability of forest residues was derived from the Bioenergy Knowledge Discovery 

Framework (KDF) by U.S. Department of Energy. The monthly availability of biomass (from 

Jan. to Dec.) was assumed to be 8.3, 8.3, 8.3, 8.3, 7.5, 7.5, 7.5, 7.5, 9.2, 9.2, 9.2 and 9.2% of the 

yearly available forest residues. The logging residue availability was based on the historic 

harvest activities and the impact of monthly precipitation on the accessibility to harvested sites in 

West Virginia (US DOS 2014). The stumpage price of logging residue was set to be $2 dry ton-1 

as average price for the base case in spite some logging residue could be free from land owners. 

Grapple skidder-chips system was used to collect logging residues. The harvest costs were 

$13.19 dry ton-1 according to Wu et al. (2012). It was assumed that 65% of total logging residue 

was economically available. The purchase costs of mill residue were assumed to be $50 dry ton-

1. It was also assumed that 40% of total mill residue in sawmill was economically available. The 

round-trip transportation costs for logging residue and wood chips are $0.23 dry ton-1∙ km-1 and 

$0.15 dry ton-1∙ km-1 respectively (Kerstetter and Lyons 2001).  
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Table 4-1. Configurations of case scenarios of biomass to ethanol and biomass to liquids via fast 

pyrolysis. 

Conversion 

pathways 

Parameters Base case Sensitivity and 

uncertainty 

References 

Biomass to 

ethanol 

Liquid fuel yield: bbl∙ton-1 1.99 1.7 – 2.1 Hsu et al. 2010; Wang, 2009. 

Conversion Method Fermentation   

Fast pyrolysis 

derived liquid 

fuels 

Liquid fuel yield: bbl∙ton-1 2.44 1.95 – 2.6 Hsu 2012. 

Conversion Method Pyrolysis   

 Price of logging residues $1/dry ton  Wu et al. 2012 

 Price of sawmill residues $50/dry ton   

 Plant life 30 years   

 Operating time 350 

days/year 

  

 Internal Rate of Return 15%   

 Equity proportion (%) 40   

 Cost of Equity (%) 15   

 Cost of Debt (%) 8   

 Federal tax (%) 40   

Energy density 

(HHV MJ/kg) 

Ethanol 26.8  WTT Report 2011 

Fast Pyrolysis derived 

diesel 

40.6  Wang 2009 

Fast Pyrolysis derived 

gasoline 

42.3  Wang 2009 

4.2.2.2. Economic Model Development 

This economic model is to maximize the total profit of biofuel production. In the base 

case, the capacity, liquid fuel yield, and other parameters are listed Table 4-1. The total costs 

include feedstock harvest, purchase, transportation, storage, facility construction and operation & 

maintenance. Capital costs of different plant capacities were adjusted from a study by Kocoloski 
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et al. (2011) for BTE and a study by Shackley et al. (2011) for BLFP. The siting of the bioenergy 

candidate plants (Fig. 4-1) was optimized by Wu et al. (2011, 2012) and Hartley (2014). The 

plant life was assumed to be 30 years. The distances between the sites of residues and the 

candidate locations of bioenergy product plants were calculated based on the 2010 road network 

downloaded from the U.S. Census Bureau’s TIGER/Line Shape files. In this study, a 15% 

internal rate of return on equity was assumed for the base case. The RSP for two conversion 

pathways was calculated based on the total costs and internal rate of return on equity. 

The objective function of the mixed integer linear programming model consists of two 

major components (total revenue and total cost), which is expressed as follows (The definitions 

and configurations of variables and parameters considered in the model are in Appendix C): 

𝑀𝑎𝑥 𝑧 = 𝑅𝑣 − 𝑇𝐶                                                                                                                             (4 − 1) 

𝑊ℎ𝑒𝑟𝑒: 

𝑅𝑣 =   𝑃 ∙ 𝑐𝑜𝑣 ∙∑∑ 𝑥𝑃𝑗𝑚

12

𝑚=1

𝐽

𝑗=1

;                                                                                                       (4 − 2) 

𝑇𝐶 = 𝐹 +𝑂𝑀+ 𝜁 ∙ 𝑇𝑃𝐶;                                                                                                                (4 − 3) 

𝜁 = 𝜓 ∙ [
𝑞𝑁+𝑝 − 1

(𝑞 − 1) ∙ 𝑞𝑁+𝑝
−

𝑞𝑝 −1

(𝑞 − 1) ∙ 𝑞𝑝
]

−1

;                                                                                 (4 − 4) 

𝑞 = (1 + 𝑊𝐴𝐶𝐶) ∙ (1 + 𝑟);                                                                                                            (4 − 5) 

𝑊𝐴𝐶𝐶 = 𝑤𝑒 ∙ 𝑅𝑒 + (1− 𝑤𝑒) ∙ 𝑅𝑑 ∙ (1 − 𝑓𝑡);                                                                              (4 − 6) 

𝑂𝑀 = ∑∑𝑦𝑗𝑙 ∙ 𝑜𝑚𝑙

𝐿

𝑙=1

𝐽

𝑗=1

;                                                                                                                    (4 − 7) 
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𝑇𝑃𝐶 = ∑∑𝑦𝑗𝑙 ∙ 𝑡𝑝𝑐𝑙

𝐿

𝑙=1

𝐽

𝑗=1

;                                                                                                                  (4 − 8) 

S. t.: 

𝐹 =∑∑∑(𝐻𝐶 +𝑃𝐶𝐿 + 𝑇𝐶𝐿 ∙ 𝐷𝑖𝑗 + 𝐿𝐷𝐿) ∙ 𝑥𝐿𝑖𝑗𝑚

12

𝑚=1

𝐽

𝑗=1

𝐼

𝑖=1

+∑∑∑(𝑃𝐶𝑀+𝑇𝐶𝑀 ∙ 𝐷𝑖𝑗 + 𝐿𝐷𝑀) ∙ 𝑥𝑀𝑖𝑗𝑚

12

𝑚=1

𝐽

𝑗=1

𝐼

𝑖=1

+∑∑ 𝑥𝑆𝑗𝑚 ∙ 𝑆𝐶

12

𝑚=1

𝐽

𝑗=1

; (4 − 9) 

∑𝑦𝑗𝑙

𝐿

𝑙=1

≤ 1,∀𝑗;                                                                                                                                 (4 − 10) 

∑𝑥𝐿𝑖𝑗𝑚

𝐽

𝑗=1

≤ 𝐴𝐿𝑖𝑚, ∀𝑖, 𝑚;                                                                                                               (4 − 11) 

∑𝑥𝑀𝑖𝑗𝑚

𝐽

𝑗=1

≤ 𝐴𝑀𝑖𝑚, ∀𝑖,𝑚;                                                                                                              (4 − 12) 

∑(𝑥𝐿𝑖𝑗𝑚 + 𝑥𝑀𝑖𝑗𝑚)

𝐼

𝑖=1

+𝑥𝑆𝑗,𝑚−1 − 𝑥𝑃𝑗𝑚 − 𝑥𝑆𝑗𝑚 = 0, ∀𝑗,𝑚;                                                 (4 − 13) 

𝑥𝑃𝑗𝑚 =∑(𝑦𝑗𝑙 ∙ 𝑅𝐵𝑙)

𝐿

𝑙=1

, ∀𝑗,𝑚;                                                                                                       (4 − 14) 

𝑥𝑆𝑗0 = 0, ∀𝑗;                                                                                                                                      (4 − 15) 

𝑥𝑃𝑗𝑚, 𝑥𝐿𝑖𝑗𝑚, 𝑥𝑀𝑖𝑗𝑚, 𝑥𝑆𝑗𝑚 ≥ 0, ∀𝑗 ∈ 𝐽, ∀𝑖 ∈ 𝐼, ∀𝑚 ∈ {1, … , 12}. 

𝑦𝑗𝑙 = {
1, 𝑖𝑓 𝑝𝑙𝑎𝑛𝑡 𝑗 𝑖𝑠 𝑜𝑝𝑒𝑟𝑎𝑡𝑒𝑑 𝑖𝑛 𝑙𝑒𝑣𝑒𝑙 𝑙,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                          

 

Expressions (4-2) – (4-8) compute the total revenue (𝑅𝑣), total costs (𝑇𝐶), amortization 

factor (𝜁), weighted average cost of capital (𝑊𝐴𝐶𝐶), operation and maintenance costs (𝑂𝑀), and 
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total capital costs (𝑇𝑃𝐶), respectively. Equation (4-9) calculates the handling costs of feedstock 

including feedstock purchase cost, harvest, transport, loading and storage. Constraints (4-10) are 

to ensure that a candidate site can only have at most one facility and only be operated in one of 

certain capacity. Constraints (4-11) and (4-12) impose that the amount of feedstock transported 

from a supply location cannot be greater than the total available amount at that location. 

Constraints (4-13) balance the storage at a bioenergy product facility. The amount of biomass 

being transported to a facility plus the storage from previous period should be equal to the 

biomass processed and stored in this time period. Equations (4-14) initialize the amount of 

biomass being processed at each time period at each facility. Equations (4-15) ensure no storage 

before the facility is opened.  

All the models were solved using the IBM ILOG CPLEX 12.2, academic version on a 

computer with 16 GB memory and 1.8 GHz 8 CPU. Required programs to implement the model 

were written in JAVA and 5000 seconds was set as a time limit of solution convergence. 

4.2.3. Life Cycle Assessment 

4.2.3.1. Scope definition 

The cradle-to-gate life cycle assessment included feedstock collection, transportation, 

preprocessing and storage, liquid fuel production, distribution, final usage and waste disposal in 

terms of GHG emissions, blue water consumption, and fossil fuel consumption (Fig. 4-1). The 

functional unit (f.u.) of the biomass supply chain system was 1,000 MJ of biofuel produced. 
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Fig. 4-1. System boundary of LCA model for biomass to bioenergy products. 

4.2.3.2. Life cycle inventory 

Feedstock collection included the collection of logging and mill residues. Specifically, 

logging residue was collected using mechanized harvesting system and chipped on site. The fuel 

consumption of this harvest system was based on Wu et al.’s study (2012). Data on 

transportation process were primarily adapted from the US LCI database. The liquid fuel yield of 

BTE and BLFP were adjusted according to Hsu’s studies (2010, 2012), respectively. A hauling 

distance of 100 km was used in the base case as an average transportation distance from 

bioenergy plant to refueling station (Marano and Ciferno 2001). The liquid fuels were finally 

combusted in a flex-fuel passenger car (GREET 1.8c). All the other background processes were 

based on the processes defined in Ecoinvent 2.2. The GHG emissions of 98.8 kg CO2 eq per 

1,000 MJ for petroleum-derived-diesel were used as a base reference for comparisons (Keesom 

and Unasch, 2009). All the detailed processes were in Appendix C. 
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4.2.3.3. Impact Assessment 

The environmental impact of each process were assessed using the environmental 

modeling tool SimaPro v8 (PRé Consultants 2011). The impact of GHGs was calculated using 

100-year global warming potentials (Forster et al. 2007). All the emissions were converted into 

the carbon dioxide equivalent amount (kg CO2 eq). The reduction of GHG emissions was 

calculated as the difference between the emissions from petroleum-derived-diesel and the 

emissions from liquid fuels produced using BTE and BLFP. The calculation of blue water 

consumption (BWC: kg) was based on the method by Boulay et al. (2011). Fossil energy 

consumption (FEC: MJ) was calculated based on Frischknecht et al. (2007). The economic 

input/output LCA (EIO-LCA) model was also examined on the processes based LCA model to 

estimate the overall environmental impact of the biomass utilization (Suh 2004, Jiang et al. 2011, 

Cooper et al. 2013). An input-output matrix of physical flows A was created for each pathway. 

This matrix indicated quantitative relationship between each two processes. The environmental 

impact (GHG, BWC, FEC) for each process was represented as a row vector b which was 

derived from SimaPro based on the functional unit. The total demand of each processes was 

represented as a column vector y. Amount of liquid fuel in y was given based on the functional 

unit and all the other processes in y was set to zero. The total life cycle environmental impact (E) 

was calculated by:  

𝐸 = 𝒃𝑨−𝟏𝒚                                                                                                                                         (5 − 16) 

4.2.4. Sensitivity Analysis 

Sensitivity analyses on RSP and environmental impact were conducted according to 

feedstock price of biomass, liquid fuel yield, plant capacity and internal rate of return (IRR) 
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(Table 4-1). The delivery cost of biomass was examined by changing from $40/dry ton - 

$140/dry ton. Sensitivity analyses of liquid fuel yield were conducted by testing the maximum 

and minimum liquid fuel yield. The IRR was set from 10% to 20% to test its effect on RSP. 

The Monte Carlo uncertainty analysis for environmental impact focused on the liquid fuel 

yield. Triangular distribution was assumed on each liquid fuel yield according to Hsu’s studies 

(2010, 2012). A total of 1,000 random trials were conducted to study the effect of uncertainty.   

 

4.3. RESULTS  

4.3.1. Production and Required Selling Price of Biofuels 

Three and seven small scale facilities can be supported for BTE and BLFP, respectively 

(Table 4-2). The production for both BTE and BLFP was at 10,000 bpd. The biomass 

consumption as feedstock was at 1.91, 1.95 million dry tons for BTE, BLFP, respectively. The 

procurement radius of forest residues were slightly longer for producing ethanol than for diesel 

and gasoline. Among the cost components, the operation and maintenance accounted for 30.4% - 

38.8% of the total cost, and it was followed by feedstock handling costs (35.8% - 37.8%). The 

RSP of ethanol ($90.87/bbl) was lower than that of diesel and gasoline, but the energy based 

RSP of ethanol was higher. 

Table 4-2. Computational results from the economic model. 

Technology 

Average transportation distance 

of feedstock (km/ton) # of 

facilities 

Productivity: 

(bbl/day: bpd) 

RSP 

($/bbl) 

RSP 

($/1,000MJ) 

Logging residue Mill residue 

BTE 86.928 73.824 3 10,437 90.87 38.06 

BLFP 71.952 67.408 7 13,048 126.08 21.95 
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Sensitivity analyses were conducted according to the price of feedstock, liquid fuel yield 

and IRR (Fig. 4-2). The biomass price affected the RSP of both BTE and BLFP. An increase of 

10% delivered cost of biomass would increase the RSP by 2.68% and 1.57% for BTE and BLFP, 

respectively. The liquid fuel yield was a factor that affected the overall costs and RSP. The RSP 

would reduce 5.98% for BTE and 6.94% for BLFP if the liquid fuel yield would be improved 

10%. A required IRR of 15% was set in base case. A change of IRR to 10% or 20% would 

reduce or increase the RSP up to 9.26% or 10.50% for BTE and 8.65% or 9.57% for BLFP, 

respectively. 

Fig. 4-2. Sensitivities of feedstock price, liquid fuel yield, IRR on RSP. 

4.3.2. Environmental Impact 

The GHG emissions of BTE were lower than that of BLFP. Most of the GHG emissions 

in BTE were accounted in biomass collection and transportation processes. The conversion 
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process accounted most of the GHG emissions in BLFP (80.26%). For the same amount of 

energy equivalent liquid fuel produced, the BLFP consumed higher amount of water and fossil 

energy. The processes of transportation, storage and preprocessing and conversion together 

accounted for more than 80% of the total water or fossil fuel consumptions. Table 4-3 also 

showed the analysis of biogenic GHG emissions from the biomass to liquid fuels system. The 

biogenic GHG emissions were very high in BTE and BLFP. Almost all the emissions were from 

conversion process. 

Table 4-3. Environmental impact of LCA by bioenergy products and processes. 

Bioenergy 

product 

Impact 

Factors 

LCA impact of each process, % 

Total 
Feedstock 

Collection 
Transportation  

Storage and 

Preprocessing 
Conversion Distribution 

Waste 

Disposal 

Ethanol 

GHG 28.41 45.18 8.92 13.09 4.02 0.38 9.72  

BWC 2.07 54.56 9.63 32.02 1.23 0.49 254.61  

FEC 0.72 12.87 10.29 75.01 0.81 0.3 125.24  

Biogenic 

GHG 
0 0.02 0 99.98 0 0 190 

Pyrolyzed 

fuel 

GHG 6.41 10.15 2.17 80.26 0.96 0.05 30.5  

BWC 0.3 8.18 1.41 89.79 0.28 0.04 711.72  

FEC 0.18 3.18 2.54 93.95 0.11 0.04 589.13  

Biogenic 

GHG 
0 0.03 0 99.97 0 0 68.59  

 

Table 4-4. Efficiency of reduction of 1 kg CO2 eq GHG emissions. 

 
BTE BLFP 

Cost, $ 0.48    0.95 

Fossil Energy input, MJ 1.343 7.951 

Blue Water Consumption, kg 2.671 9.752 

Biomass Requirement, kg 1.84 0.805 
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The GHG reduction was 89.08, 68.3 kg CO2 eq for BTE, BLFP, respectively, 

compared to petroleum derived diesel. The costs, fossil energy, blue water and biomass 

input per kg CO2 eq GHG reduction were used to determine the efficiency of GHG 

emissions reduction (Table 4-4). BTE required lower cost to reduce GHG emission but it 

required more biomass as feedstock compared to BLFP. BLFP was a more energy and water 

intensive technology comparing to the BTE. 

Uncertainty analysis of Monte Carlo simulation indicated the comparative results of the 

environmental impact (Fig. 4-3). It can be noticed that there was no overlap between the BTE 

and BLFP technologies. However, the right tail of BTE and the left tail of BLFP were closer to 

each other (18 kg CO2 eq to 21 kg CO2 eq). The highest possible values of the three impact 

factors were 59.8 kg CO2 eq GHG emissions, 1,914kg for water consumption and 1,525 MJ for 

fossil energy consumption to produce gasoline and diesel. There was possibility that the energy 

consumption larger than the energy output in the simulation of BLFP, but the possibility was 

lower than 2.5%. 

 

4.4. DISCUSSION  

4.4.1. Fuel Production and RSP 

There were more than one facility for BTE and BLFP opened and they were operated at 

smaller scale (<5,000 bpd). This was because a larger facility typically demands more biomass 

and accordingly increases the biomass handling cost (Sultana et al. 2010). Few small scale 

facilities would be able to reduce the transportation distance of biomass. Unlike a fossil fuel 

facility, handling cost of biomass is usually higher (Sharma et al. 2013).  
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Fig. 4-3. Monte Carlo simulations of the environmental impact by bioenergy products: (a) GHG 

emissions, (b) blue water consumption, and (c) fossil energy consumption. 

  

(a) 

(b) 

(c) 
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The energy content of ethanol was almost a half of fast pyrolysis derived gasoline and 

diesel, but the RSP of ethanol was just slightly lower than the liquid fuels derived from fast 

pyrolysis. Ethanol was not easy to compete with gasoline and diesel also because of potential 

damage to engine (Lavelle 2010). The liquid fuels produced by fast pyrolysis were $3/gal which 

was higher than the range of $2.34-2.48/gal (Brown 2015). The operation and maintenance cost 

could be higher if bio-char and off-gas were not recycled (Jones and Male 2012). The sale of bio-

char can decrease the cost to produce liquid fuel (Shabangu et al. 2014). The amount of cost 

reduction will depend on the yield of bio-char and liquid fuels. The average price of crude oil in 

2011 was $104.4/bbl, but the price went down dramatically at the end of 2014 to its current price 

of $48/bbl (EIA 2015). With this uncertainty of crude oil price, it is hard to favor the biofuel 

production. The energy liquid fuel yield used in this study was 1.99 bbl∙ton-1 and 2.44 bbl∙ton-1 

for BTE and BLFP, respectively. Any improvement of conversion process would further lower 

the RSP. However, the RSP will also be changed according to the demand/supply of feedstock.  

4.4.2. Sensitivity of RSP 

The effect of price of biomass, liquid fuel yield and IRR on RSP were studied in 

sensitivity analyses. The liquid fuel yield was the most significant factor among the three factors. 

The reduction of liquid fuel yield significantly rose the RSP, so improvement of conversion 

efficiency was required to reduce the high RSP. When the liquid fuels are produced in industrial 

scale, the liquid fuel yield is not easy as high as in laboratory condition (Oliveira et al. 2013). 

Thus, a higher RSP could be expected when the liquid fuels are produced in industrial scale. The 

rise of biomass price could also significantly increase the RSP of liquid fuels in our study. This 

effect was more prominent in BTE because more biomass was required as feedstock. The price 

of biomass could be expected to rise through the increased use of biomass. An Austria example 
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showed that the increased use of biomass has doubled the wood chip price from 7.50 € m−3in 

2005 to 16.45 € m−3in 2012 (Kristöfel et al. 2014). IRR was sensitive in the production of liquid 

fuels because large proportion of total cost was investment of capital cost and a competitive price 

of liquid fuel could be obtained only when there is a low IRR required. 

4.4.3. LCA and Uncertainty Analysis 

The BTE presented low GHG emissions that was lower than Hsu et al.’s study (2010) 

because of the reduced emission in transportation and distribution. However, the energy 

conversion efficiency was low, thus more biomass was required than BLFP. BLFP had high 

water and energy consumption, of which over 90% was attributed to the conversion process. The 

fossil energy consumption can be reduced if the required electricity could be provided by 

biomass as a portion of the feedstock. However, the GHG emissions for feedstock handling 

would increase consequently. The bio-char from BLFP could be used for soil application to add 

more environmental and economic benefits if the yield of bio-char is high (Miller-Robbie et al. 

2015) and the price of liquid fuels might be reduced considerably (Gerhard et al. 2014).  

Emissions from biomass are usually considered as carbon neutral, but large amount of 

GHG emissions will increase the payback time from the regrowth of forest or grassland. In this 

study, the BTE resulted in higher biogenic emissions because of its requirement of relatively 

larger amount of biomass. Biogenic GHGs in BLFP will also increase if the fossil energy 

consumption is substituted by biomass energy. This increase of biogenic GHGs means high 

usage of biomass that leads to an increase of the environmental impact and costs in biomass 

supply chain. 

Uncertainty is inevitable for any industrial process but it could be minimized through 

the robust planning and analyses. A range of liquid fuel yield for both BTE and BLFP was 
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assumed based on the change of feedstock property, operation condition, facility scale (Hsu et al. 

2010, Hsu 2012). Higher environmental impact could be expected if the liquid fuel yield was 

low. This is because more biomass need to be supplied for producing same amount of liquid 

fuels. Lower liquid fuel yield in BLFP also increased the expected fossil energy input which 

increase the possibility of negative energy output, thought the possibility is lower than 2.5%. 

4.4.4. GHG Emissions Reduction 

The efficiency of GHG emissions reduction was assessed in terms of the costs, fossil 

energy and water consumption by reducing one kg CO2 eq GHG emissions. BTE has higher cost 

efficiency than BLFP in reducing GHG emissions. It took $0.48 for the BTE to reduce one kg 

CO2 eq GHG emissions. However, to reduce same amount of GHG emissions, more biomass 

was required to produce ethanol than diesel and gasoline. BLFP had much higher water and 

energy consumption in the comparison to BTE. The utilization of biomass was emphasized for 

GHG emissions reduction and energy independence. Each biomass to liquid fuel pathway in this 

study had its disadvantage and advantage. The proper choice largely depends on what is the 

major emphasize, costs, environmental impact or liquid fuels production. 

 

4.5. CONCLUSIONS 

The economic model was developed to maximize the profit of forest residue utilization. 

Fast pyrolysis derived liquid fuels cost more and require higher RSP. Ethanol had the lowest 

RSP. The RSP could be increased by increasing the price of biomass and decrease of IRR. 

Liquid fuel yield had most prominent effect on RSP, followed by IRR and price of biomass. The 

life cycle assessment showed the intensive water and energy consumption in BLFP. BTE had 

lower GHG emissions to produce same amount energy equivalent liquid fuel. The uncertainty 
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analysis of LCA showed that the fossil energy consumption in BLFP could be larger than 1,000 

MJ, and the possibility was lower than 2.5%. The LCA study integrated with economic analysis 

showed that all the technologies had their advantages and disadvantages, such as the costs to 

produce ethanol were low but it required more biomass for same amount of product in energy. 
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ABSTRACT 

A modeling process was developed to examine the economic and environmental benefits of 

utilizing energy crops for biofuels and bio-products. Three energy crops (hybrid willow, 

switchgrass and miscanthus) that can potentially grow on marginal agricultural land or 

abandoned mine land in the Northeastern United States were considered in the analytical process 

for the production of biofuels, biopower and pellet fuel. The supply chain components for both 

the economic and life cycle modeling processes include feedstock establishment, harvest, 

transportation, storage, preprocessing, energy conversion, distribution and final usage. 

Sensitivity analysis was also conducted to assess the effects of energy crop yield, transportation 

distance, bioproduct yield, different pretreatments, facility capacity and internal rate of return 

(IRR) on the production of bioenergy products. The RSPs were ranged from $7.39/GJ to 

$23.82/GJ for different bioproducts. The production of biopower had the higher required selling 

price (RSP) where pellet fuel had the lowest. The results also indicated that bioenergy production 

using hybrid willow demonstrated lower RSP than the two perennial grass feedstocks. Biopower 

production presented the lowest GHG emissions (less than 10 kg CO2eq per 1,000 MJ) and fossil 

energy consumption (less than 160 MJ per 1,000 MJ) but with the highest water consumption. 

The production of pellet fuel resulted in the highest GHG emissions. Sensitivity analysis 

indicated that bioproduct yield was the most sensitive factor to RSP and followed by 

transportation distance for biofuel and biopower production. Bioproduct yield and transportation 

distance of feedstock presented great effects on environmental impact for the production of 

liquid fuels and biopower.  
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5.1. INTRODUCTION 

Biomass is being considered as a carbon neutral energy resource. It is preferred to be a 

substitution of fossil energy resources to reduce the greenhouse gas emissions. The interest in the 

usage of cellulosic biomass for biofuels and bioproducts has been steadily increased due to the 

environmental and energy independence concerns (Paul 2009). Biomass could be used to 

produce different forms of bioenergy products, such as traditional firewood, pellet, electricity, 

ethanol, and other biofuels. However, biomass feedstock production usually requires more land 

cover change to provide the same amount of energy as fossil fuels (Searchiger et al. 2008). 

Consequently, the production cost of bioenergy from biomass is typically higher than fossil fuels 

(Brown 2015).  

Cellulosic biomass has been traditionally combusted for heat in human history. The ash 

from combustion is sprayed in field as fertilizer. To improve the biomass heating efficiency, 

pellet was then introduced and is a product that densifies the loose biomass and becomes popular 

as solid biofuel (Fantozzi and Buratti2010). The densification of biomass not only improves the 

efficiencies in biorefinery facilities but also reduces its handling costs (Yancey et al. 2013), even 

though densification itself also consumes energy. Biomass fired power plants produce electricity 

and heat using either direct fired or gasification system (EPA 2007). The efficiency to produce 

electricity using biomass may be low (<30%) but the product is easy to distribute (Perilhon et al. 

2012). Biomass derived liquid fuels have been introduced in different pathways including 

biological and thermochemical processes. Fast pyrolysis could also produce reliable liquid fuels 

which can be blended with petroleum derived liquid fuels (Augustínová et al. 2013).However, 

the production of lignocellulosic biofuels still faces many technical, economic, environmental 

challenges. 
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Many analyses have been conducted on biomass supply chains in terms of economic, 

environmental or life cycle assessments. Earlier economic analysis of biomass utilization focused 

on biomass-fired power plants (Kumar et al. 2003, Perilhon et al. 2012), such as optimization of 

plant size based on available biomass, and the cost of different sizes of pellet facilities (Sultana 

et al. 2010, Pirraglia et al. 2013). On the other hand, life cycle assessments (LCA) were 

conducted separately to analyze environmental impact of biomass utilization. For example, GHG 

emissions could be reduced 30-63% through utilizing biomass pellet fuels instead of natural gas 

(Fantozzi and Buratti 2010), and 56-77% from using pyrolyzed biofuels compared to fossil fuels 

(Snowden-Swan and Male 2012, Hsu 2012).  

Although the utilization of biomass presents a lower environmental burden, the handling 

cost of biomass is usually higher than fossil fuels (Sharma et al. 2013, Hartley 2014). The 

techno-economic analysis conducted on fast pyrolysis estimated that the cost of this biofuel can 

range from $0.40/gal to $3.07/gal (Ringer et al. 2006; Wright et al. 2010). Brown (2015) 

recently reviewed techno-economic analyses of fast pyrolysis of biomass and found that the 

required selling price (RSP) varied from $1.93-$3.70/gal of gasoline equivalent. Similarly, a 

range of costs were shown using different boiler systems for biopower generation using biomass 

(IRENA 2012), including the capital cost of $1.8-$5.7 million/MW and operational and 

maintenance cost contribution 9%-20% of total cost. The production cost of biomass pellet also 

varies dramatically according to the physical location and capacity of the pellet facility, ranging 

from $122/ton to $170/ton (Sultana et al. 2010). For a 100,000 tons/year pellet facility, its 

production cost could be up to $199/ton (Pirraglia et al. 2013). The RSP of pellet was $174/ton 

when the biomass delivered cost was $45/ton (Hunsberger and Mosey 2014). 
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Energy crops such as hybrid willow and warm-season grasses on abandoned and marginal 

agricultural and mine lands in the Northeastern U.S. could be possibly utilized as sustainable 

bioenergy feedstocks in this region. These energy crops could provide flexibility for processing 

plants because they can be strategically deployed spatially and temporally to optimize efficiency 

of biofuels production (Hinchee et al. 2009). Furthermore, these crops would provide a stimulus 

to the regional rural economies through converting marginal agricultural and abandoned mine 

lands to productive and profitable uses. Energy crops usually have high growth rates, and can be 

genetically enhanced for robust adaptation to the biotic and abiotic stresses encountered in the 

region, efficient processivity, and high energy content. 

There appears necessity to analyze the environmental and economic impact of utilizing 

bioenergy crops for major possible pathways at a regional scale. The objectives of this study 

were to: (1) develop an economic model to analyze biomass energy supply chains in the 

northeastern U.S., (2) perform a cradle-to-grave life cycle assessment (LCA) to examine the 

environmental impact of utilizing the energy crops for bioenergy products, and (3) conduct 

sensitivity analyses of the production of bioenergy products according to energy crop yield, 

transportation distance, bioproduct yield, facility capacity and internal rate of return (IRR).   
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Table 5-1. Physical properties and requirements of three energy crops for three bioenergy 

products. 

Miguez et al. 2009

 Product Particle Size Moisture Content (w.b.) Citation

Biofuel <2 mm <10%

Brown and Holmgren 2009; Jones et 

al. 2009.

Biopower <2 in <50% Mann and Spath 2001; EPA 2007.

Pellet <1/4 in <10%

Chen 2009; Fantozzi and Buratti 

2010.

 

5.2. MATERIALS AND METHODS 

5.2.1. Study Area and Base Case Scenario 

The study focused on the northeastern U.S., including New York, Pennsylvania, West 

Virginia and other states. The regions has available marginal agricultural land of over 2.8 million 

ha (Graham 1994) and abandoned mine land of 0.5 million ha (Rodrigue and Burger 2004), 

respectively. These lands are generally categorized with rocky and sloped soils and are 

compatible to the development of perennial energy crops. The temperate climate in this regional 

so provides the conditions of producing biomass of higher yield. Annual yield from hybrid 

willow and miscanthus could be 10.7-14.1 odt/ha (

) and 10.9-24.7 odt/ha (

Miguez et al. 2009).  

Three biomass feedstocks: hybrid willow, switchgrass and miscanthus were included in 

this study, which are being considered as the dedicated energy crops in the Northeastern U.S. 
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The physical properties of these three feedstocks were described in Table 5-1.Three bioenergy 

products were examined: biofuel by fast pyrolysis, biopower, and pellet fuel. The preprocessing 

requirements of feedstocks for energy products are different according to different conversion 

pathways, such as particle size, energy density, moisture content and ash content (Table 5-1).The 

base case of the analyses primarily included the following process components: feedstock 

development, storage, transportation, preprocessing, conversion and final uses of the biomass 

energy products. The capacity was 1,000 bbl/day, 20 MW and 180,000 dry tons per year for 

biofuel, biopower and pellet fuel facilities, respectively, based on a feedstock demand of 200,000 

dry tons per year. 

5.2.2. Economic Modeling 

5.2.2.1. Supply Chain Model Development 

A mixed integer linear programming (MILP) model was formulated with the objective to 

minimize the costs of delivering biomass feedstocks to the gate of a biomass energy facility. The 

decision variables included quantity of feedstock harvested and quantity of feedstock transported 

among harvest site, short-term storage, and location of bioenergy facility. 

The total delivered cost (ψ) that consists of the following cost components: biomass 

feedstock establishment (f), harvest (η), transport (τ) and storage (μ) can be formulated as 

follows: 

𝑀𝑖𝑛 𝜓 = 𝑓 +  𝜂 +  𝜏 +  𝜇                                                                                                                 (5− 1) 

The cost of field handling system is made up of two parts: the cost of the actual 

harvesting operations and investment for energy crops plantation. In this model, the investment 

for plantation (𝑝𝑐𝑚) was calculated as dollars per dry metric ton where m was one of the energy 

crop M. Different harvest systems were considered for short rotation willow crop and perennial 
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grasses, and the cost of per dry metric ton of energy crop was represented as ℎ𝑐𝑚. The feedstock 

establishment and harvest cost was calculated using the following equations: 

𝑓 =∑∑∑∑𝑥𝑚𝑖𝑗𝑡 × 𝑝𝑐𝑚

𝑀𝐼𝐽𝑇

                                                                                                      (5 − 2) 

𝜂 = ∑∑∑∑𝑥𝑚𝑖𝑗𝑡 × ℎ𝑐𝑚

𝑀𝐼𝐽𝑇

                                                                                                       (5 − 3) 

Where 𝑥𝑚𝑖𝑗𝑡(dry metric ton) is the amount of energy crop m harvested in area i and 

transported to location j at period t. 

Transportation is a major cost element in all energy projects because of relatively low 

energy density of biomass and its wide spatial distribution in comparison to fossil fuels. The 

transportation of biomass feedstocks is affected by many factors including availability, demand 

and spatial distribution. It can be calculated with the following equation: 

𝜏 = ∑∑∑∑𝑥𝑚𝑖𝑗𝑡 × 𝑡𝑐𝑚 × 𝑑𝑖𝑗

𝑀𝐼𝐽𝑇

                                                                                            (5 − 4) 

Where 𝑡𝑐𝑚 ($ ton-1 km-1) is unit transportation cost of energy crop m and 𝑑𝑖𝑗  (km) is 

distance from area i to candidate facility j. 

The ability to store biomass will be a key to ensuring that a continuous, sufficient supply 

is available throughout the year. Uncertainty in supply of feedstock will also necessitate a certain 

level of storage to ensure sufficient supply during periods of reduced production. The cost of 

storage is calculated with equation (5): 

𝜇 =∑∑∑∑𝑥𝑠𝑚𝑖𝑗𝑡 × 𝑠𝑐𝑚

𝑡𝑀𝐼𝐽

                                                                                                    (5 − 5) 
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Where 𝑠𝑐𝑚 is storage cost of energy crop m and 𝑥𝑠𝑚𝑖𝑗𝑡 (dry metric ton) is the amount of 

energy crop m stored at location j from area i at period t. 

The objective function developed is subject to a series of constraints such as material 

balance, resource availability and operational constraints. Equation (5-6) ensures that there is 

only one candidate location can be used for a bioenergy processing facility within a certain 

procurement radius. Equation (5-7) ensures no feedstock will be delivered to a location that is 

not open for bioenergy production. Equation (5-8) indicates that the amount of feedstock that is 

transported from a harvest area is less than or equal to the total available amount. Equation (5-9) 

represents that the feedstock shipped to a location plus the storage from previous period is equal 

to the amount of feedstock processed and the storage. Equation (5-10) imposes the total amount 

of feedstocks processed should not exceed the demand of a processing facility at a specific 

location. 

∑𝑦𝑗

𝐽

≤ 1                                                                                                                                              (5 − 6) 

𝑥𝑚𝑖𝑗𝑡 ≤ 𝐶𝑦𝑗, ∀𝑚 ∈ 𝑀, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 𝑎𝑛𝑑 𝑡 ∈ 𝑇                                                                                (5− 7) 

 ∑𝑥𝑚𝑖𝑗𝑡

𝐽

≤ 𝐴𝑚𝑖𝑡 , ∀𝑚 ∈ 𝑀, 𝑖 ∈ 𝐼 𝑎𝑛𝑑 𝑡 ∈ 𝑇                                                                                 (5− 8) 

∑𝑥𝑚𝑖𝑗𝑡

𝐼

+𝑥𝑠𝑚𝑖𝑗,𝑡−1 = 𝑥𝑝𝑗𝑚𝑡 + 𝑥𝑠𝑚𝑖𝑗𝑡 , ∀𝑚 ∈ 𝑀,𝑗 ∈ 𝐽 𝑎𝑛𝑑 𝑡 ∈ 𝑇                                        (5− 9) 

∑𝑥𝑝𝑗𝑚𝑡

𝑀

≤ 𝐷𝑗𝑡 ,∀ 𝑗 ∈ 𝐽 𝑎𝑛𝑑 𝑡 ∈ 𝑇                                                                                               (5− 10) 
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Where 𝐶 is a defined positive number that is larger than any possible 𝑥𝑚𝑖𝑗𝑡 ..𝐴𝑚𝑖𝑡 is the 

amount of harvestable energy crop m in area i at period t. 𝑥𝑝𝑗𝑚𝑡  is the amount of energy crop m 

processed in location j at period t and 𝐷𝑗𝑡 is feedstock demand of location j at period t. 

5.2.2.2. Economic Model Configuration for Base Case 

Feedstock development and harvest cost of energy crops included the machine costs for 

land preparation, plantation, fertilizer, pesticide spray and harvest were based on the settings by 

Duffy (2013) and Schweier and Becker (2012). The round-trip transportation of wood chips and 

bales were assumed to be $0.24 ton-1∙km-1(Kerstetter and Lyons 2001) in the base case. Storage 

cost of feedstock was assumed to be $5 dry ton-1. The capital cost, operational and maintenance 

cost of fast pyrolysis were based on the results of techno-economic analyses conducted by 

Wright et al. (2010). Average costs of biomass fired power plant in IRENA’s report (2012) were 

used as facility cost to produce biopower. A techno-economic analysis by Sultana et al. (2010) 

provided costs to operate a pellet facility. Internal rate of return was assumed 15% in base case. 

RSP at facility gate was calculated. 

5.2.3. Life Cycle Assessment 

5.2.3.1. System Boundary and Life Cycle Inventory 

 The system boundary of this cradle-to-grave LCA model (Fig. 5-1) included land 

preparation, plantation, harvest, transportation, storage, preprocessing, bioproduct conversion, 

distribution final usage and waste disposal. The environmental impact will be assessed in terms 

of the GHG emissions, blue water consumption, fossil fuel consumption and human health 

impact. The health impact considered in this study were carcinogenics, respiratory effects, ozone 

depletion and human toxicity. The functional unit (f.u.) was 1,000 MJ of energy equivalent 

bioenergy product produced in the system.  
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Fig. 5-1. System boundary and processes of the three energy crops for three bioenergy products. 

The field operation of hybrid willow system includes 1-year land preparation and seven 3-

year rotations (Caputo et al. 2014) while the grass field operation system is 1-year land 

preparation and ten 1-year rotations (Liu and Kemmerer 2011). The grass and willow use 

different land preparation, planting and harvesting systems (Caputo et al. 2014; Duffy 2013; Liu 

and Kemmerer 2011). The procedures of land preparation for willow include mowing, plowing, 

disking and cultipacking. After the preparation, willow cuttings were planted by a planter. The 

harvest system was a single pass cut-and-chip harvester with a short rotation coppice head. A 

forage wagon was also included to transport biomass chips to a bigger van, the chips were then 

transported to a storage area. For perennial grasses, disking, harrow, and plowing are typically 

performed in land preparation while the harvest system includes disk mowing, tedding, raking 

and baling.  

The data on biomass transportation were derived from the US LCI database provided by 

National Renewable Energy Laboratory (NETL) while energy and material usage at storage were 

based on the Emery and Mosier’s results (2012). The energy consumptions of preprocessing 
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including grinding, drying, hammer milling were based on the measurements of the Idaho 

National Laboratory’s (INL) Process Demonstration Unit (PDU) (Kenney et al. 2013). The 

percentage of feedstock needs to be processed in hammer mill usually depends on the required 

particle size. For example, 25% of feedstock was needed to go through harmer mill if the 

required particle size was less than 2mm and 15% if the required particle size was less than ¼″ 

(Kenney et al. 2013).  

The LCA inventory data for fast pyrolysis and biopower generation were derived from 

previous studies by Hsu (2011) and Spath et al. (1999). The resource consumptions in the 

production of pellet fuel were based on the measurements by INL (Yancey et al. 2013). An 

average distribution distance of 100 km (62.5 miles) was assumed for bioenergy products from 

plants to end users. The liquid fuels were considered to be combusted in flex-fuel passenger cars 

(Wang 2009). The maintenance of the distribution grid for biopower generation was adapted 

from Jorge et al.’s results (2012). No emission was assumed for electricity in usage. Pellet was 

combusted in industrial boiler and the emission was derived according to the properties of the 

feedstock (Brassard et al. 2014). All the other related background processes were based on the 

SimaPro built-in database Ecoinvent 3 processes. All the detailed processes were in Appendix D. 

5.2.3.2. Life Cycle Impact Assessments 

The LCA model was developed using the environmental modeling tool SimaPro v8 (PRé 

Consultants 2014). The following indicators were assessed in terms of life cycle impact 

assessments. The 100-year global warming potentials of GHG (Forster et al. 2007) were 

calculated in carbon dioxide equivalent amount (kg CO2eq).The blue water footprint (kg) was 

analyzed following the Boulay et al.’s method (2011). The fossil energy consumption (MJ) was 

based on the results by Frischknecht et al.(2007).Carcinogenics (CTUh), respiratory effects (kg 
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PM2.5 eq) and ozone depletion (kg CFC-11 eq) were calculated using the methods provided in 

TRACI (Bare 2012). The CML-IA was used to assess human toxicity (kg 1,4-DB eq). Two-way 

ANOVA was applied to analyze the major factors that explain the variance of life cycle impact 

indices. The difference of human health indices was studied by principal component analysis 

(PCA). All the statistical analyses were conducted in R 3.1.1 software. 

Table 5-2. Parameters for base case and sensitivity analysis. 

Parameter Base Case Sensitivity Setting Note and references 

Willow – Yield 12.4 odt/ha1 10.7 - 14.1 odt/ha Yield increases from minimum 

to maximum yield by 10% of 

their difference. 

Switchgrass – Yield 9.6 odt/ha 6.6-12.6 odt/ha 

Miscanthus - Yield 17.8 odt/ha 10.9-24.7odt/ha 

Transportation 50 miles 10 – 100 miles The distance increases by 10 

miles each time. 

Biofuel - 

Bioproduct yield 

0.39 tons feedstock/bbl 

of fuel 

0.33-0.45 odt 

feedstock/bbl of fuel 

Amount of feedstock demand 

increases from minimum to 

maximum yield by 10% of their 

difference. 

Biopower – 

Bioproduct yield 

0.84 tons 

feedstock/MWh of 

biopower 

0.63-1.05 odt feedstock/ 

MWh of biopower 

Pellet – Bioproduct 

yield 

1.11 tons feedstock/ton 

of pellet 

1.05-1.17 tons 

feedstock/ton of pellet 

 

1 “odt” is “oven dry metric ton”. 

5.2.4. Sensitivity and Uncertainty Analyses 

 The effects of crop yield, transportation distance, bioproduct yield, facility size and IRR 

on RSP were analyzed in terms of sensitivity and uncertainty (Table 5-2). Maximum and 

minimum yield and bioproduct yield were tested for every energy crop and bioenergy product. A 

range of 16-160 km (10 -100 miles) of hauling distance for feedstock were examined to test the 

sensitivity of RSP on transportation distance. To analyze the effect of facility capacity, 20% 

larger and 20% smaller facility than the base case were examined. An IRR ranging from 10% 

and 20% was also examined for its effect on the RSP. The sensitivities of the environmental 

impact of biomass utilization were also conducted on crop yield, biomass transportation distance 

and bioproduct yield (Table 5-2). 
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5.3. RESULTS  

5.3.1. Base Case Scenario 

The cost of each component was analyzed by feedstock and energy product (Fig. 5-2). The 

total costs changed from $72.64/bbl to $78.31/bbl for biofuel ($14.44/GJ-$15.57/GJ), from 

$73.57/MWh to $85.74/MWh for biopower ($20.44/GJ-$23.82/GJ) and from $125.18/ton to 

$143.79/ton for pellet ($7.36/GJ-$7.99/GJ). The percentage of cost in transportation was ranging 

from 13%-31%. Percentage of capital cost for facilities to produce pellet fuel (3.6%-4.1%) was 

lower than the other two facilities (18.5%-22.2%). Operation and maintenance expenses ranged 

from 9.54% in the production of biopower by miscanthus to 49.63% in the production of pellet 

fuel by willow. Operation and maintenance costs for biopower generation accounted for 10-11% 

of the total cost and were lower than for biofuel and pellet production. Cost of plantation 

contributed 10.6%-27.7% of the total cost and cost of harvest contributed 5.6%-33.85%. Willow 

had lower cost in plantation and harvest than the other two energy crops. Storage was a small 

portion of total cost, which only accounted less than 1%.  

The RSP ranged from $131.22/bbl to $136.9/bbl for biofuel, $160.12/MWh to 

$172.28/MWh for biopower, and $132.99/ton to $151.6/ton for pellet fuel (Table 5-3). The 

production of biopower presented higher RSP of $44.5/GJ-$47.9/GJ compared to $26.1/GJ-

$27.2/GJ and $7.8/GJ-$8.4GJ for the production of biofuel and pellet fuel, respectively (Table 5-

3). For the production of the same bio-energy product, the RSP using hybrid willow was 0.5%-

5.8% lower than using the other two energy crops.  
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Fig. 5-2. Cost components of the biomass supply chain by energy crops and bioenergy products: 

(a) biofuel; (b) biopower; (c) pellet.  

Table 5-3. Required selling price of bioenergy products by energy crops. 

 Crops 

Biofuel: $/bbl 

($/GJ) 

Biopower $/MWh 

($/GJ) Pellet: $/ton ($/GJ) 

Willow 131.22 (26.1) 160.12 (44.5) 132.99 (7.8) 

Switchgrass 136.90 (27.2) 172.28 (47.9) 151.60 (8.4) 

Miscanthus 131.72 (26.2) 161.17 (44.7) 134.23 (7.9) 

 

Table 5-4. GHG emissions for the production of the three energy products by energy crops. 

Species Utilization Plantation Harvest 
Storage and 

preprocessing 
Production Distribution 

Final 

Usage 

Waste 

disposal 

Total 

(kg CO2 

eq) 

Willow 

 

 

Biofuel 0.78 0.19 13.60 25.00 0.76 1.60 0.04 41.43 

Biopower 2.23 0.56 1.93 0.00 1.13 0.00 0.12 5.46 

Pellet 0.63 0.13 7.34 41.79 0.78 0.46 0.03 51.02 

Switchgrass 

 

 

Biofuel 0.87 0.05 12.51 25.00 0.76 1.60 0.07 40.86 

Biopower 2.50 0.15 3.44 0.00 1.13 0.00 0.20 7.43 

Pellet 0.59 0.03 7.04 47.90 0.78 0.11 0.05 57.38 

Miscanthus 

 

 

Biofuel 0.49 0.03 16.20 25.00 0.76 1.60 0.05 44.14 

Biopower 1.42 0.10 5.82 0.00 1.13 0.00 0.16 8.62 

Pellet 0.33 0.02 7.96 47.90 0.78 0.10 0.04 58.08 
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The most emissions occurred in the “Storage and preprocessing” and “Production” 

processes (Table 5-4). They together accounted for 30-60% of the total emission for biopower 

generation, while for over 90% of the total emission for the production of biofuel or pellet fuel. 

The biopower production presented the lowest GHG emission among the three bioenergy 

products, with an average emission of less than 10 kg CO2 eq per 1,000 MJ of electricity 

produced. Among the three feedstocks, using willow shrub for biopower generation 

demonstrated the lowest emission at 5.96kg CO2 eq per 1,000 MJ. The GHG emission peaked 

when using miscanthus to produce pellet fuel, which was 57.13kg CO2 eq per 1,000 MJ of pellet 

fuel produced. 

Differences of life cycle impact were more significant among the three bioenergy 

products than among the three energy crops (Fig. 5-3). Two-way ANOVA showed that more 

than 95% of the life cycle impact variance was explained by different utilizations of bioenergy 

products. Fossil energy consumption for biofuel production was 71%-73% and 6%-16% higher 

than for the production of biopower and pellet fuel, respectively. More fossil energy was needed 

to convert miscanthus feedstock to bioenergy products than using shrub willow and switchgrass 

(3.5%-10.5% higher). More water was consumed for biopower generation compared to the 

production of biofuel and pellet (47.9%-69.7% higher), though it required a lower input of fossil 

energy. The production of biofuel had higher impact on carcinogenics and ozone depletion while 

the production of biopower emitted the highest amount of particulate matter 2.5 (PM2.5). The 

highest amount of human toxicity materials were emitted when producing pellet fuel. The PCA 

of human health impact indices of the biomass to bio-products showed the similar results. 
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Fig. 5-3. LCA impact of GHG emissions, fossil energy consumption, blue water consumption and 

human health impact by energy crops: (a) willow by bioenergy products; (b) switchgrass by 

bioenergy products and (c) miscanthus by bioenergy products. 

 

(a) (b) 

(c) 
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5.3.2. Sensitivity Analyses of Economic Benefit 

Several factors affect the RSP of bioenergy products including yield of energy crops, 

transportation distance of biomass, bioproduct yield and the required IRR (Fig. 5-4). For the 

production of biofuel and biopower, the RSP was very sensitive to IRR and bioproduct yield, 

followed by transportation distance. The RSP change of 2.6-4.2% and 2.4-3.4% was expected 

when IRR and bioproduct yield changed 10%, respectively. The RSP was most sensitive to 

transportation distance for pellet fuel production. A 10% change of transportation distance 

induced 1.9-2.1% change of RSP. The effect of crop yield on RSP was more prominent for pellet 

fuel production, causing the RSP increase of 1.1-2.5% by a 10%.increase of crop yield. A 20% 

change of plant scale could course a 0.37-1.0% change of RSP of bioproducts. The effects of 

these factors on RSP were similar among energy crops. However, some differences could be 

detected among the crops. Relatively lower effects of crop yield and bioproduct yield occurred 

on the RSP of bioenergy products from willow feedstock than from perennial grasses.  

5.3.3. Sensitivity of Life Cycle Impact 

The bioproduct yield was the most significant effect on the environmental impact (Fig. 5-

5). The impact changed from 0.52% to 9.37% with 10% change of bioproduct yield from base 

case. However, the effect was not prominent when biomass was used for pellet fuel production, 

which the impact changed by 1.14% to 1.94%. By increasing the transportation distance, the 

environmental impact was increased accordingly. The impact varied from 0.03%-4.73% with a 

10% change of transportation distance. An increase of yield could reduce the environmental 

impact. By comparing the environmental impact with changing yield of energy crops by 10%, it 

usually had higher influence to produce biofuel (0.13%-0.36%) and biopower (0.23%-5.6%) than 

to produce pellet fuel (0.09%-0.4%). However, blue water consumption did not have obvious  
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 Fig. 5-4. Sensitivities of crop yield, transportation distance, facility capacity and IRR by energy 

crops and bioenergy products: (a) willow; (b) switchgrass; (c) miscanthus. 

(b) 

(a) 
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Fig. 5-4. Continued. 

  

(c) 
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Fig. 5-5. Sensitivities of LCA impact by energy crops and bioenergy products: (a) willow; (b) 

switchgrass and (c) miscanthus. 

  

(a) 
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Fig. 5-5. Continued.  

  

(b) 
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Fig. 5-5. Continued. 

 

 

(c) 
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change along the change of yield of crops (0.02%-0.04%). The sensitivity of environmental 

impact on yield of crops, transportation distance and bioproduct yield were similar among all the 

three energy crops.  

 

5.4. DISCUSSION 

5.4.1. Cost Components and RSP 

Operation and maintenance expenses were made up of up to 50% of the total cost, and 

followed by transportation, feedstock plantation and harvest. The production of pellet fuel 

required high cost for electricity consumption at facility, so the percentage of operation and 

maintenance cost at pellet mill was higher than other two bio-product production systems 

(Yancey et al. 2013). Using willow always presented lower cost than perennial grasses because 

of its high energy content that also leads to lower level consumption of biomass to produce the 

same amount of energy equivalent bioenergy product. In this study, bio-char and off-gas were 

recycled in the process of fast pyrolysis (Jones and Male 2012), so the operation and 

maintenance cost for biofuel production could be higher. Because less pretreatment of biomass 

was required in biopower generation, its operation and maintenance cost was mainly caused by 

boiler systems (IRENA 2012). 

In this study, the RSP of liquid fuels produced by fast pyrolysis was $3.14-$3.25/gal, which 

is higher than a study by Brown (2015). It is hard to compete with conventional petroleum 

derived fuels because the low price of fossil fuels from the end of 2014 till date (EIA 2015). The 

price of biopower generation at $160.12/MWh-172.28/MWh was similar to the result by Kumar 

et al. (2003) after converting their results to the current dollars. The average annual price of 

electricity in 2013 by state in the Northeast ranged from $78.1/MWh in West Virginia to 
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$159/MWh in Connecticut according to the EIA Electric Power Monthly Report (EIA 2015). 

Our result of the RSP for biopower was a little higher than this range, so it implies the feasibility 

of biomass fired power plants could happen in this region if the bioproduct yield can be 

improved. Our study indicated that the price of pellet production could be lower due to efficient 

feedstock logistics, and lower capital investment for these facilities in the region. 

5.4.2. Environmental Impact 

Most of the GHG emissions occurred in the “Storage and preprocessing” and “Production” 

processes at facility site. The change of GHG emissions among different bioenergy products 

could be mostly explained by the different procedures being used at the facilities. The production 

of biopower emitted less GHGs than the production of biofuel or pellet fuel. This is because the 

heat and electricity in power plants were provided by biomass, thus more feedstock is required 

(Perilhon 2012). The GHG emissions were higher when produce pellet fuel because of the high 

electricity consumption for operating pellet mill, dryer, grinder and hammer mill. The electricity 

consumption was considered as fossil energy produced by coal in the LCA model. If the 

electricity consumed to produce biofuel and pellet fuel was generated by biomass or other 

renewable resources, the emissions could be reduced. Fast pyrolysis is an energy intensive 

process to produce biofuel, the energy consumption could be reduced through recycling 

byproducts, off-gas and bio-char, for preheating (Jones and Male 2012). Power plant typically 

needs more water for cooling, and consequently the water consumption of biopower generation 

is higher than the production of biofuel and pellet fuel.  

More energy is required to process miscanthus than switchgrass and willow due to its 

properties which make it recalcitrant than other crops (Yancey et al. 2013). Willow has higher 

energy content than perennial grasses, as well as specific physical and chemical properties 
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(Stolarski et al. 2013), allowing it to be processed or handled easily. Low ash content also 

ensures willow has a relatively higher energy bioproduct yield to bioenergy products (Fahmi et 

al. 2008). Disposal of ash is always an issue during the production of bioenergy products. 

However, ash may be collected and sprayed in the field as fertilizer without further negative 

environmental impact.  

We found that most of the variations of LCA impact could be explained by different 

processes of three bioenergy products. Different feedstock requirements at facility required 

different pretreatments with different liquid fuel yield to bioenergy products. The combustion of 

biomass in biopower generation produced a relatively higher level of PM2.5 that could possibly 

cause respiratory problems of workers. The emission of smoke and dust in power industry is 

usually higher than in other industries (Yi et al. 2012). Fossil fuel power generation could 

produce high emission of human toxicity materials (Korre et al. 2010). The higher emission of 

human toxicity materials during the production of pellet fuel is mainly because of the usage of 

the fossil fuel derived electricity. The environmental impact of the production of bioenergy 

products did not significantly differ among the three energy crops. The differences were due 

primarily to the different bioproduct yield, feedstock development and harvesting systems.  

5.4.3. Sensitivity Analyses 

Yield of energy crops, transportation distance of biomass, bioproduct yield and IRR were 

analyzed to understand their effects on RSP. Bioproduct yield was sensitive in the production of 

biofuel and biopower because a little change of bioproduct yield will bring more change on 

demand of feedstock comparing to pellet fuel. Longer transportation distance would dramatically 

increase the biomass delivered cost. It is essential to reduce the transportation cost through 

optimizing biomass logistics (Wu et al. 2011). However, a longer procurement radius is always 



125 

required for large scale biomass facilities. Larger facility requires more biomass which also 

increases the biomass handling cost which leads to high RSP (Sultana et al. 2010), so an increase 

of facility scale will increase RSP of bioproduct.  IRR was sensitive to produce biopower 

because large proportion of total cost was investment of capital cost.  

Sensitivity analyses on environmental impact were conducted by changing yield of energy 

crops, transportation distance and bioproduct yield. Prominent effects on environmental impact 

were obtained by changing bioproduct yield. Thus, the improvement of biomass conversion 

could significantly reduce GHG emission, fossil energy consumption, water consumption and 

human health effects because of the reduction of feedstock demand. Fossil energy consumption 

and human toxicity were also sensitive to transportation distance because of most of toxic 

emissions were contributed by transportation fuel combustion. The environmental burden of 

biopower showed a high sensitivity to feedstock transport distance. This is because a large 

amount of biomass is typically required to produce 1,000 MJ energy equivalent biopower. High 

biomass demand also leads to a sensitive response of environmental impact by changing the 

yield of energy crops. Thus, because less amount of biomass is required to produce same amount 

of energy equivalent pellet fuel, environmental impact in biomass to pellet fuel system was less 

sensitive in the change of energy crop yield than the other two bioproducts. 

 

5.5. CONCLUSIONS 

 The economic analysis showed the RSP of different bioproducts ranged from $7.8/GJ to 

$27.2/GJ. Biopower had the highest RSP and pellet fuel required the lowest selling price. Most 

of the costs were accounted by Operation and maintenance in the production of pellet fuel and 

biofuel. The feedstock handling system accounted the most cost in the production of biopower. 
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The LCA study obtained environmental impact of different cases. Different bio-products 

required different specific preprocess and process procedures, so the variance of environmental 

burden and cost were mostly explained by the production of different bio-products. Biopower 

had lowest GHG emissions and fossil energy consumption, but had highest water consumption 

and particulate matter emission. The production of pellet fuel has highest GHG emissions. 

The change of RSP had different pattern among bio-products according to different change 

of yield, transportation distance, bioproduct yield, facility capacity and IRR. IRR and bioproduct 

yield were most sensitive when producing biofuel and biopower. Transportation distance had 

most prominent effect on RSP when producing pellet fuel. The effects of crop yield on RSP was 

higher when produce pellet fuel than biopower and biofuel. An increase of facility scale would 

generally rise the RSP of bioproducts. The analyses of sensitivity on environmental impact 

showed that bioproduct yield was the most significant effect. The increase of transportation 

distance would increase the environmental burden accordingly. The increase of crop yield could 

reduce the environmental impact. 
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A set of modeling techniques were applied in this dissertation to assess the economics and 

environmental impact of the utilization of biomass to produce bioenergy products in the 

northeastern United States. According to the results from the models and case scenarios, as well 

as sensitivity analyses, the following conclusions can be drawn: 

(1) In the base case, the average sequestration potential was 0.408 𝑀𝑔 ∙ ℎ𝑎−1 ∙ 𝑦𝑒𝑎𝑟−1. 

Several factors affected the carbon sequestration rate of the central Appalachian mixed hardwood 

forests. They included: permissible contiguous harvest area, carbon price, biomass price, and 

harvest intensity. Carbon price and harvest intensity were the two most sensitive factors. The 

results of the model showed that less timber would be harvested with the rising of carbon price. 

If forest carbon price is high enough, harvest intensity would be limited and a maximum carbon 

sequestration would be achieved. When the carbon to timber price ratio was low, lower harvest 

intensity of partial cut would allow more carbon storage compared to clear-cut. Large area 

limitation would be preferred when the carbon price was low. The increase of biomass price 

could encourage more harvest which subsequently resulted in a reduction of carbon 

sequestration. 

(2) Economic and environmental modeling is a viable process to analyze the effects of coal 

and biomass utilization for the production of liquid fuels. The RSP of liquid fuels was 

$113.01/bbl with the GHG emissions at 93.6 kg CO2 eq/1,000 MJ for the base case. Over 80% of 

the total cost was associated with the purchase of feedstock and operation and maintenance of 

the facilities. Most of the GHG emissions were attributed to the thermo-chemical conversion and 

combustion of final uses (85.5%). Most of blue water and fossil energy were consumed in 

conversion process at CBTL facility. The price change of feedstock directly affected the RSP. 

More biomass mixed with coal and lower liquid fuel yield would rise the RSP. The highest RSP 



137 

was $157.9/bbl when the biomass/coal mix ratio was 30/70 at the minimum liquid fuel yield 

while the lowest RSP was $104/bbl when no biomass was used and at the maximum liquid fuel 

yield. Lower IRR would definitely allow to reduce the RSP. A 20% change of capital cost and 

operational and maintenance cost could result in 10-12% and 1.93-2.26% change of the RSP for 

different mix ratios. Sensitivity analyses conducted on LCA showed the effects of mix ratio and 

liquid fuel yield on GHG emissions. High biomass ratio in the feedstock and high liquid fuel 

yield would reduce the GHG emission.  

(3) Two potential utilizations of forest residues for small scale production of bioenergy in 

West Virginia were analyzed for the economic and environmental effects. The RSP in base case 

was $90.87/bbl for ethanol and $126.08/bbl for diesel and gasoline. The sensitivity analysis 

showed RSP was significantly affected by liquid fuel yield and followed by IRR and price of 

biomass. A 10% change of liquid fuel yield would lead 5.98% and 6.94% change of RSP for 

BTE (biomass to ethanol) and BLFP (biomass to liquids via fast pyrolysis). The GHG emissions 

were 9.72 kg CO2 eq and 30.5 kg CO2 eq for BTE and BLFP, respectively. BLFP had more 

intensive water and energy consumption than BTE. The uncertainty analysis of LCA showed the 

possibility of negative net energy output but the possibility was lower than 2.5%.  

(4) The economic analysis showed the costs of bioproducts from energy crops changed from 

$7.36/GJ to $23.82/GJ. Most of the costs in the production of biofuel and pellet fuel were 

accounted by operation and maintenance of facilities. The feedstock handling attributed to the 

most of the cost in the production of biopower. The RSP ranged from $7.8/GJ to $27.2/GJ for 

different bioenergy products. Biopower had the highest RSP ($26.1/GJ-$27.2/GJ) and pellet fuel 

required the lowest selling price ($7.8/GJ-$8.4/GJ). The environmental impact of biomass to 

bioenergy products were assessed by LCA model. The GHG emissions ranged from 5.96 kg CO2 
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eq per 1,000 MJ to 57.13 kg CO2 eq per 1,000 MJ. Biopower had the lowest GHG emissions 

while pellet fuel bore the highest GHG emissions. Biopower also had the lowest fossil energy 

consumption but required the highest water consumption compared to the other two products. 

Different bioproducts required different specific preprocess and process procedures, so the 

variances of environmental burden and cost were mostly explained by the production process of 

different bioproducts. 

Sensitivity analyses showed RSP was affected by crop yield, transportation distance, 

bioproduct yield, facility capacity and IRR. In the production of biofuel and biopower, a 10% 

change of IRR and bioproduct yield could change RSP by 2.6-4.2% and 2.4-3.4%, respectively. 

The RSP was most sensitive to transportation distance in the production of pellet fuel. The 

increase of facility capacity by 20% could only lead to a 0.37-1.0% increase of RSP. It also 

showed that bioproduct yield was the most significant effect. A change of 10% of bioproduct 

yield would change 0.52-9.37% of environmental impact. An increase of transportation distance 

would also result in an increase of the environmental burden accordingly.   
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APPENDIX A. SUPPLEMENTAL INFORMATION FOR CHAPTER 2 

The difference of this model from the previous models is that it allows multiple cuts of a 

stand in the planning horizon. This modification will provide more options to optimize the total 

revenue and increase the carbon sequestration.   

A.1. VARIABLE IN THE MODEL  

    A binary variable 𝒙𝒊𝒕  was defined to represent the harvest decision for a stand: 

𝑥𝑖𝑡 = {
1, if stand 𝑖 is harvested at period 𝑡;

0, otherwise.                                            
 

    Binary variable 𝒚𝒊𝒋𝒕  is defined to represent the virtual adjacency: 

𝑦𝑖𝑗𝑡 = {
1, if stand 𝑖 and stand 𝑗 are havested in same period 𝑡, and they         
are virtual adjacency stands or 𝑖 = 𝑗;                                                  

0, otherwise.                                                                                                          

  

    An integer variable 𝒂𝒊𝒕  represents stand age of stand i at time period t. 

    A continuous variable  𝐆𝐢𝐭 is the above-ground dry biomass in Mg of stand i at period t. 

A binary variable 𝒂𝑻𝒆𝒎𝒊𝒌𝒕  (𝑘 ≤ 𝑡) is defined as:  

𝑎𝑇𝑒𝑚𝑖𝑘𝑡 = {
1, if (𝑥𝑖𝑘 ≠ 𝑥𝑖𝑡⋀𝑥𝑖𝑡 = 0)⋁(𝑥𝑖𝑘 = 1⋀𝑘 = 𝑡) 
0,otherwise.                                                        
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A.2. THE PARAMETERS USED IN THIS MODEL  

Table A-1. Explanation and configuration of parameters. 

Name Definition Value Reference 

𝐴𝑗  The area  of stand 𝑗 (ha)  Inventory 

ADJ describe the adjacency of every two 

stands 

 Inventory 

𝐴𝑔𝑒𝑅  The minimum permissible stand age 40 Sharma et al. 2011 

𝑎𝑔𝑒𝑖  The initial stand age  of stand  𝑖 80 Inventory 

𝑎ℎ The minumum age of a stand could be harvested 20  

𝐴𝑅 The maximum permissible contiguous harvest area  (ha) 40 Sharma et al. 2011 

𝑓𝑏𝑖 (𝑎𝑖𝑡) Growth function of the  aboveground dry  biomass of stand 𝑖 at period 𝑡 Simulation  

𝑓𝑐𝑖 (𝑎𝑖𝑡) Stand carbon storage  function of stand 𝑖 at period  𝑡 Simulation  

𝐺𝑖0  The initial aboveground biomass of stand 𝑖 (dry  tonnes)  Inventory 

𝑟𝐶𝑂2  The coefficient used to convert Carbon 

into CO2 equivalent  

3.667  

𝑟𝑑𝑟𝑦  The coefficient used to convert dry 

biomass into Carbon 

0.5 de Wit et al. 2006 

𝑌 The length  of each period  (year) 5  

ρ The percentage of biomass that is 

economically available 

0.65 Wu et al. 2012 

𝛿  Percentage  of wood product other than long lived wood product  82%   

𝜂𝐵 Percentage of woody residue in total 

above-ground biomass 

60%  

𝜂𝑇  Percentage of raw timber in total above-

ground biomass  

60%  

∆ Allowable deviation in even  flow constraint  0.15 Goycoolea et al. 2005 

 

The parameters 𝜂𝐵 , 𝜂𝑇 , 𝛿 were calculated according to the results in Sharma’s thesis 

(Sharma 2010). It said, for 66 cubic meters of timber produced, there will be approximately 66 

cubic meters logging residue left in the forest and 33 cubic meters mill residue. It is also assumed 

that all the above-ground standing timber is harvested for a stand under clear cut scenario 

including 30% of long lived wood products (US DOE, 2007). 

𝜂𝐵 =
66 (𝑙𝑜𝑔𝑔𝑖𝑛𝑔 𝑟𝑒𝑠𝑖𝑑𝑢𝑒) + 33(𝑚𝑖𝑙𝑙 𝑟𝑒𝑠𝑖𝑑𝑢𝑒)

66 + 66+ 33
× 100% = 60% 

𝜂𝑇 =
66 (𝑡𝑖𝑚𝑏𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑) + 33(𝑚𝑖𝑙𝑙 𝑟𝑒𝑠𝑖𝑑𝑢𝑒)

66 + 66+ 33
× 100% = 60% 
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𝛿 = 1−
66 (𝑡𝑖𝑚𝑏𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑) ×30%

66 + 66 + 33
× 100% = 82% 

The coefficient 𝑟𝐶𝑂2  was used to convert Carbon into CO2 equivalent. This is because the 

percentage of Carbon in CO2 is 
12

44
× 100% = 27.27%. Then 

1

27.27%
= 3.667. 
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A.3. JAVA CODE TO SOLVE THE PROBLEM 

/* -------------------------------------------------------------------------- 

 * File: SolveEldorado.java 

 * Version 12.2   

 * -------------------------------------------------------------------------- 

 * Licensed Materials - Property of IBM 

 * 5725-A06 5725-A29 5724-Y48 5724-Y49 5724-Y54 5724-Y55 

 * Copyright IBM Corporation 2001, 2010. All Rights Reserved. 

 * 

 * US Government Users Restricted Rights - Use, duplication or 

 * disclosure restricted by GSA ADP Schedule Contract with 

 * IBM Corp. 

 * -------------------------------------------------------------------------- 

 * 

 * SolveEldorado.java - An implementation of an example from H.P. 

 *                     Williams' book Model Building in Mathematical 

 *                     Programming.  This example solves a 

 *                     food production planning problem.  It  

 *                     demonstrates the use of CPLEX's  

 *                     linearization capability. 

 */ 

import ilog.concert.*; 

import ilog.cplex.*; 

import java.io.*; 

import java.util.Scanner; 

import java.lang.Math; 

public class SolveEldorado 

{ 

  public static void main(String[] args)throws IOException 

  {       

    int stand=92; 

    double areaR=40; 

    double discount=0.03; 

    int Y=5; 

    double le=5; 

    //input manage periods and if there is even flow 

    Scanner pe=new Scanner(System.in); 

    System.out.print("Please input the total manage period:");  

    int period=pe.nextInt(); 

    double delta=0.5; 

 

    //input the necessary data 

    FileReader input=new FileReader("area.txt"); 

    double[] area=new double[stand]; 

    pe=new Scanner(input); 

    for(int i=0;i<stand;i++) 

      area[i]=pe.nextDouble(); 

 

    input=new FileReader("initial C.txt"); 

    double[] cInitial=new double[stand]; 

    pe=new Scanner(input); 

    for(int i=0;i<stand;i++) 

         cInitial[i]=pe.nextDouble(); 
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    input=new FileReader("initial B.txt"); 

    double[] bInitial=new double[stand]; 

    pe=new Scanner(input); 

    for(int i=0;i<stand;i++) 

         bInitial[i]=pe.nextDouble(); 

 

    input=new FileReader("adjacent.txt"); 

    int[][] adjacent=new int[stand][stand]; 

    pe=new Scanner(input); 

    for(int i=0;i<stand;i++) 

      for(int j=0;j<stand;j++) 

      { 

        adjacent[i][j]=pe.nextInt(); 

        if(i==j) 

          adjacent[i][j]=1; 

      } 

   

    input=new FileReader("age.txt"); 

    int[] age=new int[stand]; 

    pe=new Scanner(input); 

    for(int i=0;i<stand;i++) 

    { 

      age[i]=pe.nextInt(); 

      if(age[i]==-1) 

        age[i]=0; 

    } 

 

    input=new FileReader("linear carbon.txt"); 

    double[] skrewC=new double[stand]; 

    double[] intersectC=new double[stand]; 

    pe=new Scanner(input); 

    for(int i=0;i<stand;i++) 

    { 

      skrewC[i]=pe.nextDouble(); 

      intersectC[i]=pe.nextDouble(); 

      intersectC[i]=(skrewC[i]*le* le+le*intersectC[i])*area[i]; 

      skrewC[i]=2*le*skrewC[i]*area[i]; 

    } 

 

    input=new FileReader("linear biomass.txt"); 

    double[] skrewB=new double[stand]; 

    double[] intersectB=new double[stand]; 

    pe=new Scanner(input); 

    for(int i=0;i<stand;i++) 

    { 

      skrewB[i]=pe.nextDouble(); 

      intersectB[i]=pe.nextDouble(); 

      intersectB[i]=(skrewB[i]*le* le+le*intersectB[i])*area[i]*4; 

      skrewB[i]=8*le*skrewB[i]*area[i]; 

    } 

 

    //** End input data 

    double price=100; 

    double[] pW=new double[period];  

    for(int t=0;t<period;t++) 

      pW[t]=price/Math.pow(1+discount,t*Y); 
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    for(int aa=0;aa<=0;aa=aa+5) 

    for(areaR=0;areaR<=100;areaR=areaR+10) 

    { 

       

      double bb=(double)aa/10; 

      System.out.println("bb="+bb); 

      double priceC=price*bb; 

      double[] pC=new double[period]; 

      double[] pB=new double[period]; 

      for(int t=0;t<period;t++) 

      { 

        pC[t]=priceC/Math.pow(1+discount,t*Y); 

        pB[t]=pW[t]*0.01; 

      } 

       

    try{ 

      IloCplex cplex=new IloCplex(); 

      cplex.setParam(IloCplex.IntParam.NodeFileInd,2); 

      System.out.println(cplex.getParam(IloCplex.IntParam.NodeFileInd)); 

      cplex.setParam(IloCplex.DoubleParam.TiLim, 2000); 

      IloNumVar[][] x=new IloNumVar[stand][period]; 

      for (int w = 0; w < stand; w++) 

        x[w]=cplex.numVarArray(period, 0, 1, 

                                          IloNumVarType.Int);//ddd 

      IloNumVar[][][] y=new IloNumVar[stand][stand][period]; 

      for(int w1=0;w1<stand;w1++) 

        for(int w2=0;w2<stand;w2++) 

           y[w1][w2]=cplex.numVarArray(period, 0, 1, 

                                          IloNumVarType.Int); 

       

      IloNumVar[][] a=new IloNumVar[stand][period];//ddd 

      for(int i=0;i<stand;i++) 

        a[i]=cplex.numVarArray(period,0,1000, 

                                      IloNumVarType.Int); 

       

      IloNumVar[][] G=new IloNumVar[stand][period];//ddd 

      for(int i=0;i<stand;i++) 

        G[i]=cplex.numVarArray(period,0,10000000); 

       

      IloNumVar[][][] aTemp=new IloNumVar[stand][period][period];//ddd 

      for(int i=0;i<stand;i++) 

        for(int j=0;j<period;j++) 

          aTemp[i][j]=cplex.numVarArray(period,0,1, 

                                               IloNumVarType.Int);//define all the variables; 

 

     IloNumExpr[][] objvalsC=new IloNumExpr[stand][period];  

     IloNumExpr[][] objvalsB=new IloNumExpr[stand][period]; 

     IloNumExpr[][] objvalsC0=new IloNumExpr[stand][period]; 

     IloNumExpr[][] objvalsT0=new IloNumExpr[stand][period];  

     IloNumExpr[][] objvalsT=new IloNumExpr[stand][period];  

               //The total revenue includes three components: carbon, timber and biomass(residue).  

               //The raw merchantable timber is 0.6 of the total timber calculated here. 

               //The residue include logging residue and mill residue are 0.6 of the total. 

     for(int k=0;k<stand;k++) 

       for(int m=0;m<period;m++) 
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       { 

         if(m>0) 

          objvalsT0[k][m]=cplex.sum(cplex.sum(G[k][m-1],cplex.prod(-

1,G[k][m])),cplex.sum(intersectB[k],cplex.prod(skrewB[k],a[k][m-1]))); 

         else 

          objvalsT0[k][m]=cplex.prod(x[k][m],bInit ial[k]*area[k]);//biomass is wet weight;  

         

objvalsC0[k][m]=cplex.prod(3.667,cplex.sum(cplex.sum(intersectC[k],cplex.prod(skrewC[k],a[k][m])),cp lex.prod(-

0.82/4,objvalsT0[k][m]))); 

          

         objvalsC[k][m]=cplex.prod(pC[m],objvalsC0[k][m]); 

         objvalsT[k][m]=cplex.prod(pW[m]*0.6,objvalsT0[k][m]); 

         objvalsB[k][m]=cplex.prod(pB[m]*0.6,objvalsT0[k][m]); 

         

       } 

     IloNumExpr[] lwvC=new IloNumExpr[stand]; 

     IloNumExpr[] lwvT=new IloNumExpr[stand]; 

     IloNumExpr[] lwvB=new IloNumExpr[stand]; 

     for(int i=0;i<stand;i++) 

     { 

       lwvC[i]=cplex.sum(objvalsC0[i]); 

       lwvB[i]=cplex.sum(objvalsT0[i]); 

       lwvT[i]=cplex.sum(objvalsT0[i]); 

     } 

      

    IloNumExpr[] l2=new IloNumExpr[stand];  

    for(int i=0;i<stand;i++) 

      {      

        l2[i]=cplex.sum(cplex.sum(objvalsC[i]),cplex.sum(objvalsB[i]),cp lex.sum(objvalsT[i]));         

      }  

    cplex.addMaximize(cp lex.sum(l2));//objective function; 

 

     for(int i=0;i<stand;i++) 

       for(int j=i;j<stand;j++) 

         for(int p=0;p<period;p++) 

         { 

            if(adjacent[i][j]==1){ 

              cplex.addGe(y[i][j][p ],cplex.sum(cplex.sum(x[i][p ],x[j][p]), -1.0)); 

              cplex.addLe(y[i][j][p],cp lex.prod(cplex.sum(x[i][p],x[j][p]),0.5));} 

         } 

 

      for(int i=0;i<stand;i++) 

         for(int j=i;j<stand;j++) 

            if(adjacent[i][j]!=1) 

               for(int p=0;p<period;p++)     

               { 

                   IloNumExpr[] v=new IloNumExpr[stand-2]; 

                   int bv=0; 

                   for(int k=0;k<stand;k++) 

                     if(k!=i && k!=j) 

                     { 

                        v[bv]=cplex.prod(y[i][k][p],ad jacent[j][k]); 

                        bv++; 

                     } 

                   IloNumExpr b=cplex.sum(v); 
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                   cplex.addGe(y[i][j][p],cplex.sum(cp lex.sum(-

2,cplex.sum(x[i][p],x[j][p])),cplex.prod(b,1.0/(2.0*stand)))); 

                   cplex.addLe(y[i][j][p],cplex.sum(cplex.prod((stand-

0.5)/(2*stand),cplex.sum(x[i][p],x[j][p])),cplex.prod(1/ (2.0*stand),b)));  

               } 

       

     IloNumExpr[] r=new IloNumExpr[stand]; 

     for(int p=0;p<period;p++) 

       for(int i=0;i<stand;i++) 

       {  

         for(int j=0;j<stand;j++) 

         {   

           if(i<j) 

            r[j]=cplex.prod(y[i][j][p],area[j]); 

           else 

            r[j]=cplex.prod(y[j][i][p],area[j]); 

         } 

       IloNumExpr v1=cplex.sum(r); 

       IloNumExpr v2=cplex.prod(x[i][p],10000); 

       IloNumExpr f=cplex.sum(v1,v2); 

       cplex.addLe(f,areaR+10000);//area restriction 

     }  

      

     for(int i=0;i<stand;i++) 

       for(int t=1;t<period;t++) 

         cplex.addGe(a[i][t -1],cplex.prod(x[i][t],20-Y)); 

      

     for(int i=0;i<stand;i++) 

       for(int t=0;t<period;t++) 

         for(int k=0;k<t+1;k++) 

         { 

           if(k<t) 

           { 

              cplex.addGe(aTemp[i][t][k],cp lex.sum(aTemp[i][t-1][k],cp lex.prod(x[i][t],-1))); 

              cplex.addLe(aTemp[i][t][k],cplex.prod(cplex.sum(cplex.sum(1,aTemp[i][t -1][k]),cp lex.prod(x[i][t],-

1)),0.5)); 

           } 

           else if(k==t) 

              cplex.addEq(aTemp[i][t][k],x[i][t]); 

         }  

     for(int i=0;i<stand;i++) 

       for(int t=0;t<period;t++) 

       { 

         int temp=t*Y+age[i]; 

         IloNumExpr[] r8=new IloNumExpr[t+1]; 

         for(int k=0;k<t+1;k++) 

           r8[k]=cplex.prod(k*Y+age[i],aTemp[i][t][k]); 

         cplex.addEq(a[i][t],cplex.sum(temp,cplex.prod(-1,cplex.sum(r8)))); 

       }     // compute the stand age in a certain age; 

      

     for(int i=0;i<stand;i++) 

       cplex.addEq(G[i][0], bInitial[i]*area[i]);//i should add new number here;  

      

     for(int i=0;i<stand;i++) 

       for(int t=1;t<period;t++) 

       { 
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         cplex.addLe(G[i][t],cplex.prod(cp lex.sum(1,cplex.p rod(-1,x[i][t ])),Math.pow(10,15))); 

         cplex.addLe(G[i][t],cplex.sum(G[i][t-1],cp lex.sum(intersectB[i],cp lex.p rod(a[i][t-1],skrewB[i])))); 

         cplex.addGe(G[i][t],cplex.sum(cplex.sum(G[i][t-1],cplex.sum(intersectB[i],cplex.prod(a[i][t-

1],skrewB[i]))),cp lex.prod(-1*Math.pow(10,15),x[i][t]))); 

     } 

      

     if(true) 

     { 

       for(int t=1;t<period;t++) 

       { 

         if(t==1) 

         { 

            IloNumExpr[] r1=new IloNumExpr[stand]; 

            for(int i=0;i<stand;i++) 

              r1[i]=cplex.prod(x[i][t-1],bIn itial[i]); 

            IloNumExpr[] r2=new IloNumExpr[stand]; 

            for(int i=0;i<stand;i++) 

               r2[i]=cplex.sum(cplex.sum(G[i][t-1],cp lex.prod(-1,G[i][t])),cplex.sum(cplex.prod(a[i][t-

1],skrewB[i]),intersectB[i]));          

            cplex.addLe(cplex.prod(1-delta,cplex.sum(r1)),cplex.sum(r2)); 

            cplex.addGe(cplex.prod(1+delta,cplex.sum(r1)),cp lex.sum(r2)); 

         } 

         else 

         { 

            IloNumExpr[] r1=new IloNumExpr[stand]; 

            for(int i=0;i<stand;i++) 

              r1[i]=cplex.sum(cplex.sum(G[i][t -2],cplex.prod(-1,G[i][t-1])),cplex.sum(cplex.prod(a[i][t-

2],skrewB[i]),intersectB[i]));  

            IloNumExpr[] r2=new IloNumExpr[stand]; 

            for(int i=0;i<stand;i++) 

               r2[i]=cplex.sum(cplex.sum(G[i][t-1],cp lex.prod(-1,G[i][t])),cplex.sum(cplex.prod(a[i][t-

1],skrewB[i]),intersectB[i]));          

            cplex.addLe(cplex.prod(1-delta,cplex.sum(r1)),cplex.sum(r2)); 

            cplex.addGe(cplex.prod(1+delta,cplex.sum(r1)),cp lex.sum(r2));  

         } 

       }     }//flow constraint 

        

       IloNumExpr[] r3=new IloNumExpr[stand]; 

       for(int i=0;i<stand;i++) 

       { 

         IloNumExpr[] r4=new IloNumExpr[period+1]; 

         for(int p=0;p<period;p++) 

           r4[p]=cplex.prod(x[i][p],(p*Y+age[i])); 

         r4[period]=cplex.prod(period*Y+age[i], cplex.sum(1,cplex.prod(-1,cplex.sum(x[i])))); 

         r3[i]=cplex.sum(r4); 

         r3[i]=cplex.p rod(area[i],r3[i]); 

        } 

        double sumArea=0; 

        for(int b=0;b<stand;b++) 

          sumArea+=area[b]; 

        cplex.addGe(cplex.sum(r3),40.0*sumArea);//age restriction 

 

     if(cplex.solve()) 

     { 

       System.out.println("Solution status="+cplex.getStatus());  

       System.out.println("Solution value="+cplex.getObjValue());  
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       System.out.println("this is the price of timber "+price+" this is carbon price "+priceC); 

       System.out.println("total C "+cplex.getValue(cplex.sum(lwvC)));  

       System.out.println("total B "+cplex.getValue(cplex.sum(lwvB)));  

       System.out.println(); 

          

       String rr=Double.toString(bb)+"_"+Double.toString(areaR);  

       rr+=".txt"; 

       PrintWriter re=new PrintWriter(rr); 

       double gap=100*(cplex.getBestObjValue()-cp lex.getObjValue())/cplex.getBestObjValue(); 

       re.println("total carbon (Mg)   total timber (Mg)   Total Residue(Mg) total revenue ($)");  

       re.println(cplex.getValue(cplex.sum(lwvC))+" "+0.6*cplex.getValue(cplex.sum(lwvT))+" 

"+0.6*cplex.getValue(cplex.sum(lwvB))+" "+cplex.getObjValue()+" "+gap+"%");  

        

       for(int i=0;i<stand;i++) 

       { 

         re.print(i+" "); 

         for(int t=0;t<period;t++) 

         { 

           if(cplex.getValue(x[i][t])>0.5) 

             re.print(t+1+" "); 

         } 

         re.println(); 

       } 

        

       for(int i=0;i<stand;i++) 

       { 

         for(int j=0;j<period;j++) 

         { 

           if(cplex.getValue(objvalsT[i][j])>1) 

             re.print(cplex.getValue(objvalsT[i][j])/pW[j]+" "); 

           else 

             re.print(0+" "); 

         } 

         re.println(); 

       } 

        

       for(int i=0;i<stand;i++) 

       { 

         for(int t=0;t<period;t++) 

         { 

           re.print(cplex.getValue(G[i][t ])+" "); 

         } 

         re.println(); 

       } 

        

       re.println(); 

       for(int i=0;i<stand;i++) 

       { 

         for(int t=0;t<period;t++) 

         { 

           re.print(cplex.getValue(objvalsC[i][t])+" "); 

         } 

         re.println(); 

       } 

        

       re.close(); 
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     } 

     cplex.end(); 

      } 

    catch(IloException e){ 

      System.err.println("Concert exception'"+e+"'caught");} 

  } 

  } 

} 
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APPENDIX B. SUPPLEMENTAL INFORMATION FOR CHAPTER 3 

B.1. VARIABLES AND PARAMETERS IN THE ECONOMIC MODEL  

Table B-1. Data Sets and Descriptions. 

Set Description 

𝐶  Set of coal mines, |C|=954; 

𝐼 Set of logging sites |I|=196;  

𝐿 Set of possible plant scale levels, |L|=12; 

𝑃 Set of plant candidates, |P|=22;  

𝑆 Set of sawmills, |S|=171; 

𝑇 Set of operation periods, |T|=30. 

  

Table B-2. Parameters and Descriptions. 

Parameter Description 

𝐴𝐶𝑐 Available coal in mine c (tons); 

𝐴𝐼𝑖 Available logging residue in in-site place i (dry tons); 

𝐴𝑆𝑠 Available wood residue in sawmill s (dry tons); 

𝐶𝑜𝑣𝑠𝑐 Liquid fuel yield of liquid fuels from coal (1.89 bbl ∙ ton-1); 

𝐶𝑜𝑣𝑠𝑏  Liquid fuel yield of liquid fuels from biomass (1.26 bbl ∙ ton-1); 

𝑑𝐶𝑐𝑝 Distance between mine c to candidate plant p (km); 

𝑑𝐼𝑖𝑝 Distance between in-site place i to candidate plant p (km); 

𝑑𝑆𝑠𝑝 Distance between sawmill s to candidate plant p (km); 

𝑓𝑡  Federal tax rate applied to the CBTL facilities (40%); 

𝐻𝐶  Harvest cost ($12.92 ton-1); 

𝑂𝑀 Total operation and maintenance cost of the plants ($). 

𝑜𝑚𝑙 Operation and maintenance cost of a plant if its scale size is l ($); 

𝑃𝑐  Price of coal ($84.81 ton-1); 

𝑃𝑙  Price of logging residue ($1 ton-1); 

𝑅𝑣 Total revenue ($);  

𝑝𝑓  A feasible price of the products ($ 120 bbl-1); 

𝑃𝑠  Price of sawmill residue ($50 ton-1); 

𝐹𝐶  Total costs for harvesting and purchasing feedstocks ($);  

𝑅𝑒  Cost of equity (15%); 

𝑅𝑑  Cost of debt (8%); 

𝑟𝑂𝑀  Plant maintenance factor (1.04); 

𝑇𝑅𝑐  Round trip transportation cost of coal ($0.1 ton -1∙ km-1); 

𝑇𝑅𝑙 Round trip transportation cost of logging residue ($0.23 ton -1∙ km-1); 

𝑇𝑅𝑠 Round trip transportation cost of sawmill residue ($0.15 ton-1∙ km-1); 

𝑇𝐶 Total cost ($); 

𝑇𝑃𝐶  Total capital costs ($); 

𝑡𝑝𝑐𝑙  Capital costs if a plant is operated in level l ($);  

𝑇𝑟 Total transportation costs of the feedstocks ($); 

𝑊𝐴𝐶𝐶  Weighted average cost of capital. 

𝑤𝑒  Equity proportion (40%); 

𝜁 Amortization factor; 
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Parameter Description 

𝜂 Biomass and coal mix ratio (0/100, 8/92, 15/85, 20/80, 25/75, 30/70, 35/65); 

𝜓 Sum of plant maintenance factor; 

 

 

Table B-3. Variables and Descriptions. 

Variable Description 

𝑥𝐶𝑐𝑝𝑡 Quantity of coal transported from mine c to plant p in period t (tons); 

𝑥𝐼𝑖𝑝𝑡 Quantity of logging residue transported from place i to plant p in period t(dry ton); 

𝑥𝑆𝑠𝑝𝑡  Quantity of wood residue transported from sawmills to plant p in period t(dry ton); 

𝑜𝑝𝑙  Binary variable decides if the plant p operated in level l. 
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B.2. LCA PROCESSES IN SIMAPRO 

Table B-4. Processes involved in on the CBTL LCA model a. 

a The numbers of all the processes are calculated in the mix ratio is 8/92.  

 

Table B-5. Process “Loaded and transported to Prep Plant”.  

Products and co-product 

Loaded and transported to Prep Plant 1 ton 

Materials/fuels 

Transport, lorry 16-32t, EURO5/RER Ua 8 tkm 

Bituminous Coal, at mineb 1 ton 
a Ecoinvent 2.2;  

b US-LCI. 

 

 

Table B-6. Process “Coal (dried, stored)”. 

Products and co-product 

Coal (dried, stored)a 0.98 ton 

Materials/fuels 

Loaded and transported to Prep Plant 1 ton 

Transport, freight, rail, diesel/US Ub 29.68 tkm 

Fodder loading, by self-loading trailer/CH with US 

electricity US 

2.27 m3 

a Assuming 2% dry coal loss; 

b Ecoinvent 2.2. 

Process Name Table Number 

Loaded and transported to Prep Plant B-5 

Coal (dried, stored) B-6 

Grinding (Coal) B-7 

Preprocessed coal, at conversion facility B-8 

Grapple Skidder B-9 

Grapple Loader B-10 

Chipper B-11 

Forest residues processed and loaded at the landing B-12 

Forest residue (dried, stored) B-13 

Preprocessed residue, at conversion facility B-14 

CBTL (Syngas) B-15 

CBTL (Diesel) B-16 

Distribution, 60 miles B-17 

Liquid fuels pumped into vehicle B-18 

Transmission of Electricity B-19 

Gasoline Combustion B-20 

Diesel Combustion B-21 
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Table B-7. Process “Grinding (Coal)”. 

Products and co-product 

Grinding (Coal)a 2 ton 

Materials/fuels 

Electricity, at Grid, US, 2008/RNA Ub 6.19E1 kWh 
a Revised from US-LCI; 

b Ecoinvent 2.2. 

 

 

Table B-8. Process “Preprocessed coal, at conversion facility”. 

Products and co-product 

Preprocessed coal, at conversion facility 1 ton 

Materials/fuels 

Grinding (Coal) 1 ton 

Coal (dried, stored) 1 ton 

 

 

Table B-9. Process “Grapple Skidder”. 

Products and co-product 

Grapple Skiddera 24 ton 

Materials/fuels 

Diesel, combusted in industrial equipment/USb 13.758 gal 

Lubricant oil (1)b 0.247644 gal 
a Wu, Jinzhuo, Wang, Jingxin, Cheng, Qingzheng, DeVallance, David. 2011. Assessment of coal and biomass to 
liquid fuels in central Appalachia, USA. International Journal of Energy Research. 36(7): 856-870; 

b Ecoinvent 2.2. 

 

 

Table B-10. Process “Grapple Loader”. 

Products and co-product 

Grapple Loadera 24 ton 

Materials/fuels 

Diesel, combusted in industrial equipment/USb 6.54 gal 

Lubricant oil (1)b 0.1172 gal 
a Wu et al. 2011; 

b Ecoinvent 2.2.  
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Table B-11. Process “Chipper”. 

Products and co-product 

Chippera 24 ton 

Materials/fuels 

Diesel, combusted in industrial equipment/USb 14.52 gal 

Lubricant oil (1)b 0.26136 gal 
a Wu et al. 2011; 

b Ecoinvent 2.2. 

 

 

Table B-12. Process “Forest residues processed and loaded at the landing”. 

Products and co-product 

Forest residues processed and loaded at the landing a 1 ton 

Natural Resources 

Carbon dioxide, in air 942 kg 

Energy, from biomass 8561 MJ 

Materials/fuels 

Grapple Skidder 1 ton 

Grapple Loader 1 ton 

Chipper 1 ton 
a Revised from “Hsu, David D., Inman, Daniel, Heath, Garvin A., Wolfrum, Edward J., Mann, Margaret K., Aden, 

Andy. 2010. Life cycle environmental impact of selected U.S. ethanol production and use pathway in 2022. 
Environmental Science and Technology. 44: 5289-5297”; 

 

 

Table B-13. Process “Forest residues (dried, stored)”. 

Products and co-product 

Forest residue (dried, stored)a 0.772 ton 

Materials/fuels 

Forest residues processed and loaded at the landing 0.62 ton 

Transport, lorry 16-32t, EURO5/RER Ub 148.73 tkm 

Dried roughage store, non ventilated/CH/I Ub 9.75E-8 m3 

Conveyor belt, at plant/RER/I Ub 3.47E-5 m 

Fodder loading, by self-loading trailer/CH with US 

electricity US 

2.27 m3 

Sawmill Residue 0.16 ton 
a Revised from “Hsu et al. 2010”; 

b Ecoinvent 2.2. 
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Table B-14. Process “Preprocessed residue, at conversion facility”. 

Products and co-product 

Preprocessed residue, at conversion facilitya 1 ton 

Materials/fuels 

Forest residue (dried, stored) 1 ton 

Transport, lorry 16-32t, EURO5/RER Ub 20 tkm 
a Revised from “Hsu et al. 2010”; 

b Ecoinvent 2.2. 

 

 

Table B-15. Thermal-conversion Process “CBTL (Syngas)”. 

Products and co-product 

Syncrudea 165.41 kg 

Light Gasesa 24.81 kg 

Natural Resources 

Water, unspecified natural origin/kgb 183.85 kg 

Materials/fuels 

Preprocessed coal, at conversion facility 500 kg 

Preprocessed residue, at conversion facility 43.3 kg 

Thermochemical conversion plantb 5.95E-9 p 

Emissions to air 

Carbon dioxide, fossil 41.5 kg 

Carbon dioxide, biogenic 23.3 kg 
a Simulation based on Aspen Plus: Jiang, Yuan, Bhattacharyya, Debangsu. 2015. Modeling and Analysis of an 

Indirect Coal Biomass to Liquids Plant Integrated with a Combined Cycle Plant and CO2 Capture and Storage. 

Energy and Fuels, 29 (8): 5434-5451. 

b Ecoinvent 2.2. 

 

 

Table B-16. Thermal-conversion Process “CBTL (Diesel)”. 

Products and co-product 

CBTL (Diesel)a 88.067 kg 

CBTL (Gasoline)a 52.966 kg 

Electricity_CBTL 122.54 MJ 

Natural Resources 

Water, unspecified natural origin/kgb 65.83 kg 

Materials/fuels 

Syncrudea 165.41 kg 

Light Gasesa 24.81 kg 

Emissions to air 

Carbon dioxide, fossil 26.9 kg 

Carbon monoxide, fossil 1.51 kg 
a Simulation based on Aspen Plus: Jiang, Yuan, Bhattacharyya, Debangsu. 2015. Modeling and Analysis of an 

Indirect Coal Biomass to Liquids Plant Integrated with a Combined Cycle Plant and CO2 Capture and Storage. 

Energy and Fuels, 29 (8): 5434-5451. 

b Ecoinvent 2.2.  
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Table B-17. Process “Distribution, 60 miles”. 

Products and co-product 

Distribution, 60 milesa 1 gal 

Emissions to air 

Carbon dioxide, fossil 28.29 g 

Methane 0.0015 g 

Dinitrogen monoxide 0.0009 g 

Sulfur oxides 0.1389 g 

Nitrogen oxides 0.1223 g 

Carbon monoxide, fossil 0.1638 g 

VOC, volatile organic compounds  0.0011 g 

Particulates, unspecified 0.0235 g 
a Revised from “Marano and Ciferno 2001”. 

 

 

Table B-18. Process “Liquid fuels pumped into vehicle”. 

Products and co-product 

Liquid fuels pumped into vehiclea 0.2973 gal 

Electricity/heat 

Electricity, low voltage, at grid/US Ub 0.0026495 kWh 

Liquid storage tank, chemicals, organics/CH/I Ub 9.4e-12 p 

Distribution, 60 miles 0.297348 gal 

Rubber and plastics hose and belting 7.49E-12 USD 

Measuring and dispensing pumps  9.17E-15 USD 
a Revised from “Hsu et al. 2010”;  

b Ecoinvent 2.2. 

 

 

Table B-19. Process “Transmission of Electricity”. 

Products and co-product 

Electricity, Transmission and distributiona 1,000 MJ 

Electricity/heat 

Zinc, primary, at regional storage/RER with US 

electricity U 0.000267 kg 

Glass tube plant/DE/I with US electricity U 2.26E+08 p 

Cement, unspecified, at plant/CH with US electricity U 4.17E-06 kg 

Steel 1.37E-06 kg 

Electricity_CBTL 1.00E+03 MJ 
a Revised from Jorge, R.S., Hawkins, T.R., Hertwich, E.G. 2011. Life cycle assessment of electricity transmission 

and distribution power lines and cables. International Journal of Life Cycle Assessment, 17 (1): 9-15. 
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Table B-20. Process “Gasoline Combustion”. 

Products and co-product 

Gasoline Combustiona 52.966 kg 

Electricity/heat 

CBTL (Gasoline) 52.966 kg 

Liquid fuels pumped into vehicle 2.12E+01 

Emissions to air  

Carbon dioxide, fossil 1.56E+02 kg 

Carbon dioxide, biogenic 8.78E+00 kg  

Carbon monoxide, fossil 2.35E+00 kg  

Nitrogen oxides 7.41E-02 kg 

Sulfur oxides 2.76E-03 kg 

Methane 4.27E-03 kg 
a Revised from “Marano and Ciferno 2001”. 

 

 

Table B-21. Process “Diesel Combustion”. 

Products and co-product 

Diesel Combustiona 88.067 kg 

Electricity/heat 

CBTL (Diesel) 88.067 kg 

Liquid fuels pumped into vehicle 2.12E+01 

Emissions to air  

Carbon dioxide, fossil 2.55E+02 kg  

Carbon dioxide, biogenic 1.43E+01 kg 

Carbon monoxide, fossil 6.23E-01 kg 

Nitrogen oxides 1.42E-01 kg 

Methane 4.27E-03 kg 
a Revised from “Marano and Ciferno 2001”. 
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APPENDIX C. SUPPLEMENTAL INFORMATION FOR CHAPTER 4 

C.1. VARIABLES AND PARAMETERS IN THE ECONOMIC MODEL 

Table C-1. Data Sets and Descriptions. 

Set Description 

𝐼 Set of county |I|=54;  

𝐿 Set of possible plant scale levels, |L|=8 for fast pyrolysis and |L|=19 for ethanol;  

𝐽 Set of plant candidates, |J|=22;  

𝑀 Set of operation periods, |M|=12. 

 

Table C-2. Parameters and Descriptions. 

Parameter Description 

𝐴𝐿𝑖𝑚  Available logging residue in county i at period m (dry tons); 

𝐴𝑀𝑖𝑚  Available mill residue in county i at period m (dry tons); 

𝐶𝑜𝑣  Liquid fuel yield of liquid fuels from biomass (barrel ∙ ton-1); 

𝐷𝑖𝑗  Distance between in-site place i to candidate plant j (km); 

𝑓𝑡  Federal tax rate applied to the CBTL facilities (40%); 

𝐻𝐶  Harvest cost ($12.92 ton-1); 

𝐿𝐷𝐿  Loading cost of logging residue 

𝐿𝐷𝑀  Loading cost of mill residue ($10 ton -1) 

𝑂𝑀 Total operation and maintenance cost of the plants ($5 ton-1). 

𝑜𝑚𝑙 Operation and maintenance cost of a plant if its scale size is l ($); 

𝑅𝑣 Total revenue ($);  

𝑃  A feasible price of the products ($ 180 barrel-1); 

𝑝  Construction period; 

𝑃𝐶𝐿  Price of sawmill residue ($1 ton-1); 

𝑃𝐶𝑀  Price of sawmill residue ($50 ton-1); 

𝐹  Total costs for harvesting, purchasing, transporting and storing feedstocks ($);  

𝑅𝑒  Cost of equity (15%); 

𝑅𝑑  Cost of debt (8%); 

𝑟 Interest rate (0.03); 

𝑅𝐵𝑙  Required biomass at level l (ton); 

𝑆𝐶  Storage cost of biomass ($5 ton-1) 

𝑇𝐶𝐿 Round trip transportation cost of logging residue ($0.23 ton -1∙ km-1); 

𝑇𝐶𝑀  Round trip transportation cost of sawmill residue ($0.15 ton -1∙ km-1); 

𝑇𝐶 Total cost ($); 

𝑇𝑃𝐶  Total capital costs ($); 

𝑡𝑝𝑐𝑙  Capital costs if a plant is operated in level l ($);  

𝑊𝐴𝐶𝐶  Weighted average cost of capital. 

𝑤𝑒  Equity proportion (40%); 

𝜁 Amortization factor; 

𝜓 Sum of plant maintenance factor; 
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Table C-3. Variables and Descriptions. 

Variable Description 

𝑥𝐿𝑖𝑗𝑚  Quantity of logging residue transported from county i to plant j at period m (dry tons); 

𝑥𝑀𝑖𝑗𝑚  Quantity of mill residue transported from county  i to plant j at period m (dry ton); 

𝑥𝑃𝑗𝑚  Quantity of biomass processed in plant j at period m (dry ton); 

𝑥𝑆𝑗𝑚 Quantity of wood residue stored in plant j at period m (dry ton); 

𝑦𝑗𝑙  Binary variable decides if the plant j operated in level l. 
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C.2. LCA PROCESSES IN SIMAPRO 

Table C-1. Processes involved in on the LCA model. 

 

Table C-5. Process “Grapple Skidder”. 

Products and co-product 

Grapple Skiddera 24 ton 

Materials/fuels 

Diesel, combusted in industrial equipment/USb 13.758 gal 

Lubricant oil (1)b 0.247644 gal 
a Wu, Jinzhuo, Wang, Jingxin, Cheng, Qingzheng, DeVallance, David. 2011. Assessment of coal and biomass to 

liquid fuels in central Appalachia, USA. International Journal of Energy Research. 36(7): 856-870; 

b Ecoinvent 2.2. 

 

 

Table C-6. Process “Grapple Loader”. 

Products and co-product 

Grapple Loadera 24 ton 

Materials/fuels 

Diesel, combusted in industrial equipment/USb 6.54 gal 

Lubricant oil (1)b 0.1172 gal 
a Wu et al. 2011; 

b Ecoinvent 2.2.  

Process Name Table Number 

Grapple Skidder C-5 

Grapple Loader C-6 

Chipper C-7 

Forest residues processed and loaded at the landing C-8 

Forest residues (dried, stored) C-9 

Preprocessed residue, at conversion facility C-10 

Thermochemical conversion plant C-11 

Indirect heated softwood C-12 

Dry wood residue combustion C-13 

Residue Dried C-14 

Denatured ethanol C-15 

Distribution, 60 miles C-16 

Ethanol, forest residue, at blending terminal C-17 

Liquid fuels pumped into vehicle C-18 

Ethanol combustion C-19 

Bio-oil C-20 

Upgrade C-21 

Gasoline combustion C-22 

Diesel combustion C-23 
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Table C-7. Process “Chipper”. 

Products and co-product 

Chippera 24 ton 

Materials/fuels 

Diesel, combusted in industrial equipment/USb 14.52 gal 

Lubricant oil (1)b 0.26136 gal 
a Wu et al. 2011; 

b Ecoinvent 2.2. 

 

 

Table C-8. Process “Forest residues processed and loaded at the landing”. 

Products and co-product 

Forest residues processed and loaded at the landing a 1 ton 

Natural Resources 

Carbon dioxide, in air 942 kg 

Energy, from biomass 8561 MJ 

Materials/fuels 

Grapple Skidder 1 ton 

Grapple Loader 1 ton 

Chipper 1 ton 
a Revised from “Hsu, David D., Inman, Daniel, Heath, Garvin A., Wolfrum, Edward J., Mann, Margaret K., Aden, 

Andy. 2010. Life cycle environmental impact of selected U.S. ethanol production and use pathway in 2022. 
Environmental Science and Technology. 44: 5289-5297”; 

 

 

Table C-9. Process “Forest residues (dried, stored)”. 

Products and co-product 

Forest residue (dried, stored)a 0.772 ton 

Materials/fuels 

Forest residues processed and loaded at the landing 0.62 ton 

Transport, lorry 16-32t, EURO5/RER Ub 148.73 tkm 

Dried roughage store, non ventilated/CH/I Ub 9.75E-8 m3 

Conveyor belt, at plant/RER/I Ub 3.47E-5 m 

Fodder loading, by self-loading trailer/CH with US electricity 

US 

2.27 m3 

Sawmill Residue 0.16 ton 
a Revised from “Hsu et al. 2010”; 

b Ecoinvent 2.2. 
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Table C-10. Process “Preprocessed residue, at conversion facility”. 

Products and co-product 

Preprocessed residue, at conversion facilitya 1 ton 

Materials/fuels 

Forest residue (dried, stored) 1 ton 

Transport, lorry 16-32t, EURO5/RER Ub 20 tkm 
a Revised from “Hsu et al. 2010”; 

b Ecoinvent 2.2. 

 

 

Table C-11. Process “Thermochemical conversion plant”. 

Products and co-product 

Thermochemical conversion planta 1 p 

Materials/fuels 

Concrete, sole plate and foundation, at plant/CH U 39100 m3 

Steel, low-alloyed, at plant/RER U 526000 kg 

Steel, converter, unalloyed, at plant/RER U 1240000 kg 

Chromium steel 18/8, at plant/RER U 456000 kg 

Zinc, primary, at regional storage/RER U 271000 kg 

Copper, at regional storage/RER U 113000 kg 

Nickel, 99.5%, at plant/GLO U 10100 kg 

Transport, lorry 20-28t, fleet average/CH U 3140000 kg 

Transport, freight, rail/CH U 1570000 tkm 

Diesel, burned in building machine/GLO U 3.84E+05 MJ 

Electricity, medium voltage, at grid/US U 4.65E+04 kWh 

Emissions to air 

Heat, waste 1.67E+05 MJ 

Waste Treatment 

Disposal, building, concrete gravel, to final disposal/CH S 8.59E+07 MJ 
a Revised from “Hsu et al. 2010”; 

 

 

Table C-12. Process “Indirect heated softwood”. 

Products and co-product 

Indirect heated softwood, plywood dryinga 411 kg 

Materials/fuels 

Particulates, unspecified 0.159 kg 

Carbon monoxide, biogenic 1.27E-02 kg 
a Revised from “Hsu et al. 2010”; 
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Table C-13. Process “Dry wood residue combustion”. 

Products and co-product 

Dry wood residue combustiona 1055 MJ 

Emissions to air 

Particulates 45.5 g 

Particulates, < 10 um 33.6 g 

Particulates, < 2.5 um 29.5 g 

Nitrogen oxides 222 g 

Sulfur dioxide 11.4 g 

Carbon monoxide, biogenic 272 g 

Hydrogen chloride 8.63 g 

Methane, biogenic 9.53E+00 g 

Organic substances, unspecified 1.77E+01 g 

VOC, volatile organic compounds  7.72E+00 g 

Nitrous acid 5.90E+00 g 
a Revised from “Hsu et al. 2010”; 

 

 

Table C-14. Process “Residue Dried”. 

Products and co-product 

Forest residue (dried) 1055 MJ 

Materials/fuels 

Dried roughage store, non ventilated/CH/I U 0.00 m3 

Sawmill Residue 0.16 ton 

Fodder loading, by self-loading trailer/CH with US electricity 

U 2.27 m3 

Conveyor belt, at plant/RER/I with US electricity U 0.00 m3 

Forest residues processed and loaded at the landing 0.62 ton 

Transport, lorry 16-32t, EURO5/RER U 148.73 tkm 
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Table C-15. Process “Denatured ethanol”. 

Products and co-product 

Ethanol, denatured, (from forest residues via thermochemical) a 21202 kg 

Mixed alcohols (from thermochemical) 3791 kg 

Sulfur (from thermochemical) 53.6 kg 

Resources 

Oxygen, in air 77634 kg 

Nitrogen, in air 253790 kg  

Water, cooling, unspecified natural origin/kg 74002 kg 

Water, process, unspecified natural origin/kg 13348 kg 

Materials/fuels 

Silica sand, at plant/DE U 244 kg 

Thermochemical conversion plant 5.95E-06 p 

Magnesium oxide, at plant/RER U 3.16 kg 

Zeolite, powder, at plant/RER S 45.4 kg 

Chemicals inorganic, at plant/GLO U 4.63E+01 kg 

Monoethanolamine, at plant/RER U 2.72E+01 kg 

Hydrochloric acid, 30% in H2O, at plant/RER U 0.4 kg 

Sodium hydroxide, 50% in H2O, production mix, at plant/RER 

U 0.4 kg 

Sulphite, at plant/RER U 4.00E-01 kg  

Chemicals inorganic, at plant/GLO U 4.54E-01 kg 

Diesel, low-sulphur, at regional storage/RER U 3.13E+01 kg 

Dry wood residue combustion, EPA AP-42 3.90E+05 MJ 

Indirect heated softwood, plywood drying 41768 kg 

Forest residue (dried)_Ethanol 1.13E+05 kg 

Petrol, unleaded, at regional storage/RER with US electricity U 276 kg 

Emissions to air 

Ammonia 0.454 kg 

Carbon dioxide, biogenic 107598 kg 

Nitrogen 2.64E+05 kg  

Oxygen 1.20E+04 kg 

Water 6.31E+04 kg 

Nitrogen dioxide 8.40E+01 kg 

Sulfur dioxide 3.91E+01 kg 

Waste treatment 

Disposal, wood ash mixture, pure, 0% water, to sanitary 

landfill/CH U 1.10E+03 kg 

Disposal, inert material, 0% water, to sanitary landfill/CH U 4.54E+01 kg 

Treatment, sewage, unpolluted, to wastewater treatment, class 

3/CH U 797 kg 
a Revised from “Hsu et al. 2010”;  
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Table C-16. Process “Distribution, 60 miles”. 

Products and co-product 

Distribution, 60 milesa 1 gal 

Emissions to air 

Carbon dioxide, fossil 28.29 g 

Methane 0.0015 g 

Dinitrogen monoxide 0.0009 g 

Sulfur oxides 0.1389 g 

Nitrogen oxides 0.1223 g 

Carbon monoxide, fossil 0.1638 g 

VOC, volatile organic compounds  0.0011 g 

Particulates, unspecified 0.0235 g 
a Revised from “Marano and Ciferno 2001”. 

 

 

Table C-17. Process “Ethanol, forest residue, at blending terminal”. 

Products and co-product 

Ethanol, forest residue, at blending terminala 0.81 kg 

Electricity/heat 

Ethanol, denatured, (from forest residues via 

thermochemical)_Ethanol 0.81 kg 

Electricity, medium voltage, at grid/US U 8.60E-04 kWh 

Liquid storage tank, chemicals, organics/CH/I U 8.50E-11 p 
a Revised from “Hsu et al. 2010”; 

 

 

Table C-18. Process “Liquid fuels pumped into vehicle”. 

Products and co-product 

Liquid fuels pumped into vehiclea 0.2973 gal 

Electricity/heat 

Electricity, low voltage, at grid/US Ub 0.0026495 kWh 

Liquid storage tank, chemicals, organics/CH/I Ub 9.4e-12 p 

Distribution, 60 miles 0.297348 gal 

Rubber and plastics hose and belting 7.49E-12 USD 

Measuring and dispensing pumps  9.17E-15 USD 

Eth, forest residue, at blending terminal 1 kg 
a Revised from “Hsu et al. 2010”;  

b Ecoinvent 2.2. 
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Table C-19. Process “Ethanol combustion”. 

Products and co-product 

Ethanol combustiona 0.080135 kg 

Electricity/heat 

Carbon dioxide, biogenic 2.14E+02 g 

Methane 6.80E-03 g 

Nitrous acid 7.52E-03 g 
a Revised from “Hsu et al. 2010”;  

 

 

Table C-20. Process “Bio-oil”. 

Products and co-product 

Bio-oil (from wood via pyrolysis)a 68038.8 kg 

Resources 

Water, process, unspecified natural origin/kg 6000 lb 

Air 350000 lb 

Water, cooling, unspecified natural origin/kg 180000 lb 

Water, unspecified natural origin/kg 84800 lb 

Materials/fuels 

Electricity, medium voltage, at grid/US U 12000 kWh 

Hydrochloric acid, 30% in H2O, at plant/RER U 0.667 lb 

Sodium hydroxide, 50% in H2O, production mix, at plant/RER 

U 0.667 lb 

Sulphite, at plant/RER U 0.667 lb 

Chemicals inorganic, at plant/GLO U 1 lb 

Thermochemical conversion plant 5.95E-06 p 

Forest residue (dried) 2.83E+05 lb 

Emissions to air 

Oxygen 24400 lb 

Nitrogen 270000 lb 

Water 180000 lb 

Hydrogen 2.01 lb 

Carbon dioxide, biogenic 88100 lb 

Carbon monoxide, biogenic 504 lb 

Water 1.28E+05 lb 

Water 2.01E+04 lb 

Water 3.20E+04 lb 

Water 1.20E+03 lb 

Waste treatment 

Disposal, wood ash mixture, pure, 0% water, to sanitary 

landfill/CH U 3.60E+03 lb 

Treatment, sewage, unpolluted, to wastewater treatment, class 

3/CH U 2.18E+00 m3 
a Revised from “Hsu 2011”; 
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Table C-21. Process “Upgrade”. 

Products and co-product 

Gasoline (from bio-oil via upgrading) 28600 lb 

Diesel (from bio-oil via upgrading) 38400 lb 

Resources 

Water, cooling, unspecified natural origin/kg 6070 lb 

Water, unspecified natural origin/kg 56400 lb 

Air 230000 lb 

Materials/fuels 

Natural gas, high pressure, at consumer/RER U 374000 MJ 

Zeolite, powder, at plant/RER S 85 lb 

Zeolite, powder, at plant/RER S 0.371 lb 

Zeolite, powder, at plant/RER S 3.27 lb 

Electricity, medium voltage, at grid/US U 12600 MJ 

Bio-oil (from wood via pyrolysis) 68038.8 kg 

Refinery/RER/I U 3.30E-06 p 

Emissions to air 

Water 2.90E+04 lb 

Nitrogen 1.76E+05 lb 

Oxygen 9.74E+03 lb 

Water 6.83E+01 lb 

Hydrogen 1.23E+02 lb 

Carbon dioxide, biogenic 1.75E+03 lb 

Carbon dioxide, biogenic 6.71E+02 lb 

Ethane 4.02E+02 lb 

Propane 3.39E+02 lb 

Isobutane 3.01E+02 lb 

Heptane 3.76E+02 lb 

Cyclohexane, propyl- 7.24E+00 lb 

Hydrocarbons, aliphatic, alkanes, unspecified 1.52E+00 lb 

Hydrocarbons, alkanes, cyclo-, C6 2.87E+00 lb 

Xylene 1.08E+00 lb 

Water 6.07E+03 lb 

Water 3.41E+02 lb 

Water -3.45E+02 lb 

Carbon dioxide, biogenic 8.39E+04 lb 
a Revised from “Hsu 2011”; 

 

 

  



168 

Table C-22. Process “Gasoline combustion”. 

Products and co-product 

Gasoline combustion 0.112 kg 

Materials/fuels 

Gasoline (from bio-oil via upgrading) 0.112 kg 

Liquid fuels pumped into vehicle 0.038638215 gal 

Emissions to air 

Carbon dioxide, biogenic 3.43E+02 g 

Methane, biogenic 1.00E-02 g 

Dinitrogen monoxide 1.20E-02 g 

VOC, volatile organic compounds  1.51E-01 g 

Carbon monoxide 3.48E+00 g 

Nitrogen oxides 6.90E-02 g 

Particulates, < 10 um 2.90E-02 g 

Particulates, < 2.5 um 1.40E-02 g 

Sulfur oxides 6.00E-03 g 
a Revised from “Hsu 2011”; 

 

 

Table C-23. Process “Diesel combustion”. 

Products and co-product 

Diesel combustion 0.0944 kg 

Materials/fuels 

Diesel (from bio-oil via upgrading) 0.0944 kg 

Liquid fuels pumped into vehicle 2.8E-02 gal 

Emissions to air 

Carbon dioxide, biogenic 3.02E+02 g 

Methane, biogenic 3.08E-03 g 

Dinitrogen monoxide 1.23E-02 g 

VOC, volatile organic compounds  6.16E-02 g 

Carbon monoxide 5.48E-01 g 

Nitrogen oxides 8.22E-02 g 

Particulates, < 10 um 3.08E-02 g 

Particulates, < 2.5 um 1.54E-02 g 

Sulfur oxides 2.05E-03 g 
a Revised from “Hsu 2011”; 
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APPENDIX D. SUPPLEMENTAL INFORMATION FOR CHAPTER 5 

D.1. LCA PROCESSES IN SIMAPRO 

Table D-1. Processes involved in on the LCA model. 

Process Name Table Number 

Plow D-2 

Disk D-3 

Cultipacker D-4 

Seeder D-5 

Site Preparation D-6 

Planter D-7 

Sprayer D-8 

Herbicides D-9 

Fertilization D-10 

Blower D-11 

Cut & Chip Harvester D-12 

Forage Wagon D-13 

New Holland FR series forage harvester D-14 

Transport, truck D-15 

Wheel Loader L150G D-16 

Plant site storage D-17 

Active Drier, MC<10%, Willow D-18 

Grinder, Particle size<2mm, Willow D-19 

Hammer Mill, Particle size<2mm, Willow D-20 

Preprocess, Pyrolysis, Willow D-21 

Grinder, Particle size<1/4", Willow D-22 

Hammer Mill, Particle size<1/4", Willow D-23 

Preprocess, Pellet D-24 

Cooling D-25 

Power Plant, Biomass D-26 

Pellet Mill, Willow D-27 

Pellet, distribution D-28 

Pellet, combustion, Willow D-29 

Disk, Grass D-30 

Horrow, New Holland T1530 D-31 

Land Preparation, Miscanthus  D-32 

Plow, Grass, 60 kW engine D-33 
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Process Name Table Number 

Fertilizing, Grass D-34 

Transplanter, Miscanthus D-35 

Herbicides, Grass D-36 

Baler D-37 

Disk Mowing, New Holland H6740 D-38 

Harvest, Grass D-39 

Rake, New Holland H5920 D-40 

Tedder, New Holland H5270 D-41 

Tractor with Wagon D-42 

Land Preparation, Switchgrass  D-43 

Hopper, Switchgrass D-44 

 

 

Table D-2. Process “Plow”. 

Products and co-product 

Plowa 1 ha 

Materials/fuels 

Diesel, at regional storage/CH with US electricity U 2.707566 kg 

Lubricating oil, at plant/RER with US electricity U 0.042926 kg 
a Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 Icorporation 

uncertainty into a life cylccle assessment model of short  rotation willow biomass crops. Biomass and Bioenrgy, 

7:48-59; 

 

 

Table D-3. Process “Disk”. 

Products and co-product 

Diska 1 ha 

Materials/fuels 

Diesel, at regional storage/CH with US electricity U 2.22976 kg 

Lubricating oil, at plant/RER with US electricity U 0.035323 kg 
a Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 Icorporation 

uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and Bioenrgy, 
7:48-59; 
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Table D-4. Process “Cultipacker”. 

Products and co-product 

Cultipackera 1 ha 

Materials/fuels 

Diesel, at regional storage/CH with US electricity U 1.130331 kg 

Lubricating oil, at plant/RER with US electricity U 0.017899 kg 
a Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 Icorporation 

uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and Bioenrgy, 

7:48-59; 

 

 

Table D-5. Process “Seeder”. 

Products and co-product 

Seedera 1 ha 

Materials/fuels 

Diesel, at regional storage/CH with US electricity U 0.159269 kg 

Lubricating oil, at plant/RER with US electricity U 0.002519 kg 
a Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 Icorporation 

uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and Bioenrgy, 

7:48-59; 

 

 

Table D-6. Process “Site Preparation”. 

Products and co-product 

Site Preparationa 1 ha 

Materials/fuels 

Disk 1 ha 

Plow 1 ha 

Cultipacker 1 ha 

Seeder 1 ha 
a Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 Icorporation 

uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and Bioenrgy, 
7:48-59; 

 

 

Table D-7. Process “Planter”. 

Products and co-product 

Plantera 1 ha 

Materials/fuels 

Willow Step planter 1 ha US U 0.142857 ha 

Site Preparation 1 ha 
a Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 Icorporation 

uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and Bioenrgy, 

7:48-59;  
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Table D-8. Process “Sprayer”. 

Products and co-product 

Sprayera 1 p 

Materials/fuels 

Diesel, at regional storage/CH with US electricity U 0.832 kg 

Lubricating oil, at plant/RER with US electricity U 0.013179 kg 
a Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 Icorporation 

uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and Bioenrgy, 

7:48-59; 

 

 

Table D-9. Process “Herbicides”. 

Products and co-product 

Herbicidesa  1 ha 

Materials/fuels 

Sprayer 0.957143 p 

Glyphosate, at regional storehouse/CH with US electricity U 0.357143 kg 
a Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 Icorporation 

uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and Bioenrgy, 
7:48-59; 

 

 

Table D-10. Process “Fertilization”. 

Products and co-product 

Fertilizationa 1 p 

Materials/fuels 

Sprayer 2.81 p 

Ammonium sulphate, as N, at regional storehouse/RER with US 

electricity U 100 kg 
a Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 Icorporation 

uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and Bioenrgy, 
7:48-59; 

 

 

Table D-11. Process “Blower”. 

Products and co-product 

Blowera 1 ha 

Materials/fuels 

Diesel, at regional storage/CH with US electricity U 5.408 kg 

Lubricating oil, at plant/RER with US electricity U 0.085694 kg 
a Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 Icorporation 

uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and Bioenrgy, 
7:48-59; 
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Table D-12. Process “Cut & Chip Harvester”. 

Products and co-product 

Cut & Chip Harvestera 1 ha 

Materials/fuels 

New Holland FR series forage harvester 1 ha 

Blower 1 ha  
a Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 Icorporation 

uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and Bioenrgy, 

7:48-59; 

 

 

Table D-13. Process “Forage Wagon”. 

Products and co-product 

Forage Wagona 1 ha 

Materials/fuels 

Diesel, at regional storage/CH with US electricity U 10.816 kg 

Lubricating oil, at plant/RER with US electricity U 0.171072 kg  
a Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 Icorporation 

uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and Bioenrgy, 

7:48-59; 

 

 

Table D-14. Process “New Holland FR series forage harvester”. 

Products and co-product 

New Holland FR series forage harvestera 1 ha 

Materials/fuels 

Diesel, at regional storage/CH with US electricity U 101.1712 kg 

Fertilization 1 ha 

Herbicides 1 ha 

Planter 1 ha 

Lubricating oil, at plant/RER with US electricity U 1.59984 kg 
a Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 Icorporation 

uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and Bioenrgy, 
7:48-59; 
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Table D-15. Process “Transport, truck”. 

Products and co-product 

Transport, trucka 80 km 

Materials/fuels 

Transport, combination truck, diesel powered NREL /US 80 tkm 

Forage Wagon 0.080645 ha 

Cut & Chip Harvester 0.080645 ha 

Wheel Loader L150G 1 ton 
a Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 Icorporation 

uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and Bioenrgy, 
7:48-59; 

 

 

Table D-16. Process “Wheel Loader L150G”. 

Products and co-product 

Wheel Loader L150Ga 270000 ton 

Materials/fuels 

Sheet rolling, aluminium/RER U 266 kg 

Glass fibre, at plant/RER with US electricity U 3240 kg 

Polyethylene, LDPE, granulate, at plant/RER with US electricity 

U 102 kg 

Heavy fuel oil, at regional storage/RER with US electricity U 2992 kg 

Paper, woodfree, uncoated, at regional storage/RER with US 

electricity U 246 kg 

Wire drawing, steel/RER with US electricity U 1800 kg  

Synthetic rubber, at plant/RER with US electricity U 6960 kg 

Crude oil, at production/NG with US electricity U 450491 kg 

Hard coal, at regional storage/RNA with US electricity U 5545.23 kg 

Lignite coal, combusted in industrial boiler NREL /US 5733 kg 

Natural gas, production mix, at service station/CH U 44743 kg 

Peat, at mine/NORDEL with US electricity U 33 kg 
a Salman, O., Chen, Y. 2013. Comparative environmental analysis of conventional and hybrid wheel loader 

technologies. Master of Science Thesis, Stockholm. 

  



175 

Table D-17. Process “Plant site storage”. 

Products and co-product 

Plant site storagea 1 ton 

Materials/fuels 

Conveyor belt, at plant/RER/I with US electricity U 3.47E-05 m 

Transport, truck 80.40201 tkm 

Electricity, medium voltage, at grid/US with US electricity U 20 MJ 
a Jirjis, R. 1994. Storage and drying of wood fuel. Biomass and Bioenergy, 9(1):181-190. 

 

 

Table D-18. Process “Active Drier, MC<10%, Willow”. 

Products and co-product 

Active Drier, MC<10%, Willowa,b 2.865 ton 

Materials/fuels 

Electricity, medium voltage, at grid/US with US electricity U 350 kWh 

Transport, truck 208.3636 tkm 

Plant site storage 0.289394 ton 
a Nordhagen, E. 2011. Drying of wood chips with surplus heat from two hydroelectric plants in Norway. FORMEC, 
Austria. 

b INL PDU. 

 

 

Table D-19. Process “Grinder, Particle size<2mm, Willow”. 

Products and co-product 

Grinder, Particle size<2mm, Willow a 1 ton 

Materials/fuels 

Conveyor belt, at plant/RER/I with US electricity U 3.47E-05 m 

Transport, truck 72 tkm 

Plant site storage 0.1 ton 

Electricity, medium voltage, at grid/US with US electricity U 45.89 kWh 
a INL PDU. 

 

 

Table D-20. Process “Hammer Mill, Particle size<2mm, Willow”. 

Products and co-product 

Hammer Mill, Particle size<2mm, Willowa 1 ton 

Materials/fuels 

Electricity, medium voltage, at grid/US with US electricity U 34.51 kWh 

Grinder, Particle size<2mm, Willow 1 ton 

Conveyor belt, at plant/RER/I with US electricity U 3.47E-05 m 
a INL PDU. 
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Table D-21. Process “Preprocess, Pyrolysis, Willow”. 

Products and co-product 

Preprocess, Pyrolysis, Willowa 1 ton 

Materials/fuels 

Hammer Mill, Particle size<2mm, Willow 0.25 ton 

Grinder, Particle size<2mm, Willow 0.75 ton 
a INL PDU. 

 

 

Table D-22. Process “Grinder, Particle size<1/4", Willow”. 

Products and co-product 

Grinder, Particle size<1/4", Willowa 1 ton 

Materials/fuels 

Conveyor belt, at plant/RER/I with US electricity U 3.47E-05 m 

Transport, truck 72 tkm 

Plant site storage 0.1 ton 

Electricity, medium voltage, at grid/US with US electricity U 12.3 kWh 
a INL PDU. 

 

 

Table D-23. Process “Hammer Mill, Particle size<1/4", Willow”. 

Products and co-product 

Hammer Mill, Particle size<1/4", Willowa 1 ton 

Materials/fuels 

Electricity, medium voltage, at grid/US with US electricity U 9.8 kWh 

Grinder, Particle size<2mm, Willow 1 ton 

Conveyor belt, at plant/RER/I with US electricity U 3.47E-05 m 
a INL PDU. 

 

 

Table D-24. Process “Preprocess, Pellet”. 

Products and co-product 

Preprocess, Pelleta 1 ton 

Materials/fuels 

Hammer Mill, Particle size<1/4", Willow 0.15 ton 

Grinder, Particle size<1/4", Willow 0.85 ton 
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Table D-25. Process “Cooling”. 

Products and co-product 

Coolinga 1 ton 

Materials/fuels 

Electricity, medium voltage, at grid/US with US electricity U 0.34 kWh 

Electricity, medium voltage, at grid/US with US electricity U 0.56 kWh 
a Fantozzi, F., Buratti, C. 2010. Life cycle assessment of biomass chains: Wood pellet from short rotation coppice 
using data measured on a real plant. Biomass and Bioenergy, 34(12): 1796-1804. 

 

 

Table D-26. Process “Power Plant, Biomass”. 

Products and co-product 

Power Plant, Biomass  a 1,000 MJ 

Resources  

Preprocess, Power Plant 0.234 ton 

Water, cooling, unspecified natural origin/m3 3.5 m3 

Materials/fuels 

Water, completely softened, at plant/RER with US electricity U 6 kg 

Water, decarbonised, at plant/RER with US electricity U 150 kg 

Emissions to air 

Carbon dioxide, biogenic 585 g 

Carbon monoxide, biogenic 389 g 

Nitrogen dioxide 779 g 

VOC, volatile organic compounds  214 g 

Particulates 97 g 

Sulfur dioxide 389 g 
a Spath, P.L., Mann, M.K., Kerr, D.R. 1999. Life cycle assessment applied to electricity generation from renewable 

biomass & Life Cycle Assessment of Coal-fired Power Production (NREL). NREL/TP-570-25119. 

 

 

Table D-27. Process “Pellet Mill, Willow”. 

Products and co-product 

Pellet Mill, Willowa 1 ton 

Materials/fuels 

Electricity, medium voltage, at grid/US with US electricity U 50 kWh 

Cooling 1 ton 
a INL PDU.  
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Table D-28. Process “Pellet, distribution”. 

Products and co-product 

Pellet, distributiona 1 ton 

Materials/fuels 

Wheel Loader L150G 1 ton 

Transport, combination truck, diesel powered/US 100 tkm 
a INL PDU.  

 

 

Table D-29. Process “Pellet, combustion, Willow”. 

Products and co-product 

Pellet, combustion, Willowa 1 kg 

Materials/fuels 

Methane, biogenic 0.035 g 

Carbon monoxide, biogenic 12.57 g 

Carbon dioxide, biogenic 1059 g 

Ammonia 0.002 g 

Nitrogen dioxide 0.643 g 

Dinitrogen monoxide 0.028 g 

Sulfur dioxide 4.226 g 

Particulates 0.063 g 

Waste treatment 

Disposal, wood ash mixture, pure, 0% water, to sanitary 

landfill/CH with US electricity U 0.033535 kg 
a Brassard, P., Palacios, J.H., Godbout, S., Bussières, D., Lagacé, R., Larouche, J.P., Pelletier, F. 2014. Comparison 

of the gaseous and particulate matter emissions from the combustion of agricultural and forest biomass es. 
Bioresource Technology, 155: 300-306. 

 

 

Table D-30. Process “Disk, Grass”. 

Products and co-product 

Disk, Grassa 1 ha 

Materials/fuels 

Diesel, at regional storage/CH with US electricity U 15.60832 kg 

Lubricating oil, at plant/RER with US electricity U 0.36 kg 
a Adjusted from: Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 

Icorporation uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and 

Bioenrgy, 7:48-59; 

  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Bussi%C3%A8res%20D%5BAuthor%5D&cauthor=true&cauthor_uid=24462881
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lagac%C3%A9%20R%5BAuthor%5D&cauthor=true&cauthor_uid=24462881
http://www.ncbi.nlm.nih.gov/pubmed/?term=Larouche%20JP%5BAuthor%5D&cauthor=true&cauthor_uid=24462881
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pelletier%20F%5BAuthor%5D&cauthor=true&cauthor_uid=24462881
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Table D-31. Process “Horrow, New Holland T1530”. 

Products and co-product 

Horrow, New Holland T1530a 1 ha 

Materials/fuels 

Diesel, at regional storage/CH with US electricity U 10.45824 kg 

Lubricating oil, at plant/RER with US electricity U 0.2 kg  
a Adjusted from: Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 

Icorporation uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and 

Bioenrgy, 7:48-59; 

 

 

Table D-32. Process “Land Preparation, Miscanthus”. 

Products and co-product 

Land Preparation, Miscanthus  1 ha 

Materials/fuels 

Disking 0.1 ha 

Transplanter, Miscanthus 0.1 ha 

Horrow, New Holland T1530 0.1 ha 

Plow, Grass, 60 kW engine 0.1 ha 

 

 

Table D-33. Process “Plow, Grass, 60 kW engine”. 

Products and co-product 

Plow, Grass, 60 kW enginea 1 ha 

Materials/fuels 

Diesel, at regional storage/CH with US electricity U 18.95296 kg 

Lubricating oil, at plant/RER with US electricity U 0.36 kg 
a Adjusted from: Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 

Icorporation uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and 
Bioenrgy, 7:48-59; 

 

 

Table D-34. Process “Fertilizing, Grass”. 

Products and co-product 

Fertilizing, Grassa 1 ha 

Materials/fuels 

Diesel, at regional storage/CH with US electricity U 2.33792 kg 

Lubricating oil, at plant/RER with US electricity U 0.04 kg 

Ammonium sulphate, as N, at regional storehouse/RER with US 

electricity U 100 kg 
a Adjusted from: Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 

Icorporation uncertainty into a life cylccle assessment model of short rotation willow biomas s crops. Biomass and 

Bioenrgy, 7:48-59; 
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Table D-35. Process “Transplanter, Miscanthus”. 

Products and co-product 

Transplanter, Miscanthus a 1 ha 

Materials/fuels 

Diesel, at regional storage/CH with US electricity U 1.23968 kg 

Lubricating oil, at plant/RER with US electricity U 0.02 kg 
a Adjusted from: Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 

Icorporation uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and 

Bioenrgy, 7:48-59; 

 

 

Table D-36. Process “Herbicides, Grass”. 

Products and co-product 

Herbicides, Grassa 1 ha 

Materials/fuels 

Diesel, at regional storage/CH with US electricity U 0.796343 kg 

Lubricating oil, at plant/RER with US electricity U 0.012614 kg 

Glyphosate, at regional storehouse/CH with US electricity U 0.357143 kg 
a Adjusted from: Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 

Icorporation uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and 

Bioenrgy, 7:48-59; 

 

 

Table D-37. Process “Baler”. 

Products and co-product 

Balera 1 ha 

Materials/fuels 

Diesel, at regional storage/CH with US electricity U 13.8528 kg 

Lubricating oil, at plant/RER with US electricity U 0.26 kg 
a Liu, J., Kemmerer, B. 2011. Field performance analysis of a tractor and a large square baler. SAE Technical Paper. 
2011-01-2302. 
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Table D-38. Process “Disk Mowing, New Holland H6740”. 

Products and co-product 

Disk Mowing, New Holland H6740a 1 ha 

Materials/fuels 

Diesel, at regional storage/CH with US electricity U 5.05856 kg 

Land Preparation, Switchgrass  1 ha 

Fertilizing, Grass 1 ha 

Herbicides, Grass 1 ha 

Lubricating oil, at plant/RER with US electricity U 0.1 kg 
a Adjusted from: Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 

Icorporation uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and 

Bioenrgy, 7:48-59; 

 

 

Table D-39. Process “Harvest, Grass”. 

Products and co-product 

Harvest, Grass 1 ha 

Materials/fuels 

Baler 1 ha 

Disk Mowing, New Holland H6740 1 ha 

Rake, New Holland H5920 1 ha 

Tractor with Wagon 1 ha 

Wheel Loader L150G Switchgrass  17.8 ton 

Tedding, New Holland H5270 1 ha 

 

 

Table D-40. Process “Rake, New Holland H5920”. 

Products and co-product 

Rake, New Holland H5920a 1 ha 

Materials/fuels 

Diesel, at regional storage/CH with US electricity U 2.76224 kg 

Lubricating oil, at plant/RER with US electricity U 0.05 kg 
a Adjusted from: Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 

Icorporation uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and 

Bioenrgy, 7:48-59; 

 

 

Table D-41. Process “Tedder, New Holland H5270”. 

Products and co-product 

Tedder, New Holland H5270a 1 ha 

Materials/fuels 

Diesel, at regional storage/CH with US electricity U 3.22816 kg 

Lubricating oil, at plant/RER with US electricity U 0.06 kg 
a Adjusted from: Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 

Icorporation uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and 

Bioenrgy, 7:48-59; 
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Table D-42. Process “Tractor with Wagon”. 

Products and co-product 

Tractor with Wagona 1 ha 

Materials/fuels 

Diesel, at regional storage/CH with US electricity U 10.816 kg 

Lubricating oil, at plant/RER with US electricity U 0.057182 kg 
a Adjusted from: Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 

Icorporation uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and 

Bioenrgy, 7:48-59; 

 

 

Table D-43. Process “Land Preparation, Switchgrass”. 

Products and co-product 

Land Preparation, Switchgrass  1 ha 

Materials/fuels 

Disking 0.1 ha 

Hopper, Switchgrass 0.1 ha 

Horrow, New Holland T1530 0.1 ha 

Plow, Grass, 60 kW engine 0.1 ha 

 

 

Table D-44. Process “Hopper, Switchgrass”. 

Products and co-product 

Hopper, Switchgrass  a 1 ha 

Materials/fuels 

Diesel, at regional storage/CH with US electricity U 1.23968 kg 

Lubricating oil, at plant/RER with US electricity U 0.02 kg 
a Adjusted from: Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 

Icorporation uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and 
Bioenrgy, 7:48-59; 
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D.2. STATISTICAL ANALYSIS 

 

Fig. D-1. PCA of human health impact.  

Result of PCA 

> pca(x[,6:9])     

$pca.var      

[1] 3.1624 0.7845 0.0369 0.0163   

      

$var.p      

[1] 0.7906 0.1961 0.0092 0.0041   
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$pca.scores     

       V1      V2      V3      V4   

1 -0.4127  0.2355 -0.7007 -0.0534   

2  0.4255  0.1474  0.0221 -0.8195   

3 -0.0904 -0.4952 -0.3471 -0.0063   

4 -0.3444  0.3332  0.4570  0.0206   

5  0.4382  0.2071 -0.0530  0.4906   

6 -0.0540 -0.4436  0.2574  0.0489   

7 -0.3534  0.3062  0.2399  0.0157   

8  0.4460  0.1638 -0.0876  0.2856   

9 -0.0548 -0.4543  0.2120  0.0178   

      

$pca.coeff     

                         V1      V2      V3      V4 

Carcinogenics       -0.9579  0.2635 -0.0710  0.0888 

Respiratory.effects  0.9834  0.0884 -0.1586 -0.0067 

Ozone.depletion     -0.9317  0.3482 -0.0495 -0.0905 

Human.toxicity      -0.6400 -0.7655 -0.0653 -0.0114 

      

$pca.corr     

                         V1      V2      V3      V4 

Carcinogenics       -0.9579  0.2635 -0.0710  0.0888 

Respiratory.effects  0.9834  0.0884 -0.1586 -0.0067 

Ozone.depletion     -0.9317  0.3482 -0.0495 -0.0905 

Human.toxicity      -0.6400 -0.7655 -0.0653 -0.0114 
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