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ABSTRACT

Economic and Environmental Analyses of Biomass
Utilization for Bioenergy Products in the Northeastern
United States

Weiguo Liu

A mixed-integer programming model was developed to optimize forest carbon
sequestration considering carbon price, biomass price, harvest area restriction, and harvest
method. The model was applied to examine the harvest scheduling strategies and carbon
sequestration in a mixed central Appalachian hardwood forest. Sensitivity analyses were
conducted over a range of carbon and biomass to timber price ratios, harvest area limitations
and harvest methods. The results showed that the carbon sequestration rate of the central
Appalachian hardwood forests could gradually increase as the carbon to timber price ratio
changed from 0.0 to 1.0 with an average sequestration rate of 0.917 Mg-ha~' - year™'. The
rise of biomass to timber price ratio reduces the carbon sequestration potential. Additionally,
the carbon sequestration potential would decrease when harvest area limitation varied from 0
(no harvest) to 100 ha. The decrease could be 97.4% and 70.8% respectively when the carbon
to timber price ratios were 0.0 and 0.25. Low intensity partial cut could have a higher carbon
sequestration rate comparing with clearcutting when the carbon to timber price ratio was low.

We analyzed the economic feasibility and environmental benefits of an alternative
technology that converts coal and biomass to liquid fuels (CBTL), using West Virginia as a real
case scenario with considerations of woody biomass harvest scheduling optimization, feedstock
transportation and siting options of potential CBTL plants. Sensitivity analyses on required
selling price (RSP) were conducted according to feedstock availability and price, biomass to
coal mix ratio, liquid fuel yield, IRR, capital cost, operational and maintenance cost. A cradle-
to-grave life cycle assessment (LCA) model was also developed to analyze the environment
benefits of the CBTL processes. The study of siting and capacity showed that feedstock mixed
ratio limited the CBTL production. Sensitivity analysis on RSP showed the price of coal had
more dominant effect than that of biomass. Different biomass mixed ratio in the feedstock and
liquid fuel yield led to RSP ranging from $104.3 - $157.9/bbl. LCA study indicated that
greenhouse gas (GHG) emissions ranged from 80.62 kg CO2eq to 101.46 kg CO2eq/1,000 MJ
at various biomass to coal mix ratios and liquid fuel yield if carbon capture and storage (CCS)
was applied. Most of water and fossil energy were consumed in conversion process ata CBTL
facility. Compared to petroleum-derived-liquid fuels, the reduction in GHG emissions in West
Virginia was estimated to be between -162 and 555 million tons over a 30-year period.

A mixed integer linear programming (MILP) model and life cycle assessment (LCA)
model were developed to analyze economic and environmental benefits by utilizing forest
residues for small scale production of bioenergy in West Virginia. The MILP was developed to
optimize the costs and required selling price of biofuels under different strategies. The cradle-



to-gate LCA was developed to examine the greenhouse gas emissions, blue water and fossil
energy consumption associated with the biomass utilization. The RSP in base case was
$90.87/bbl ethanol and $126.08/bbl for diesel and gasoline. The sensitivity analysis on RSP
showed that liquid fuel yield had most prominent effect and followed by internal rate of return
(IRR) and feedstock price. The LCA showed that the GHG emissions from the production of
1,000 MJ energy equivalent ethanol was 9.72 kg CO2 eq which was lower than fast pyrolysis
(9.72 kg CO2 eq). Fast pyrolysis had high water and energy consumption. The uncertainty
analysis showed the change of environmental impact by the change of liquid fuel yield. The risk
of biomass to liquid via fast pyrolysis (BLFP) to have a negative energy output was expected
when the liquid fuel yield was low. The production of ethanol required lower cost and had
lower environmental impact, that is to say, the costs for reducing 1 kg CO2 eq GHG emissions
was low in biomass to ethanol (BTE), but more biomass was required to produce same amount
of energy equivalent liquid fuels.

Finally, a modeling process was developed to examine the economic and environmental
benefits of utilizing energy crops for biofuels and bio-products. Three energy crops (hybrid
willow, switchgrass and miscanthus) that can potentially grow on marginal agricultural land or
abandoned mine land in the Northeastern United States were considered in the analytical
process for the production of biofuels, biopower and pellet fuel. The supply chain components
for both the economic and life cycle modeling processes include feedstock establishment,
harvest, transportation, storage, preprocessing, energy conversion, distribution and final usage.
Sensitivity analysis was also conducted to assess the effects of energy crop yield, transportation
distance, bioproduct yield, different pretreatments, facility capacity and internal rate of return
(IRR) on the production of bioenergy products. The RSPs were ranged from $7.39/GJ to
$23.82/GJ for different bioproducts. The production of biopower had the higher required selling
price (RSP) where pellet fuel had the lowest. The results also indicated that bioenergy
production using hybrid willow demonstrated lower RSP than the two perennial grass
feedstocks. Biopower production presented the lowest GHG emissions (less than 10 kg CO2eq
per 1,000 MJ) and fossil energy consumption (less than 160 MJ per 1,000 MJ) but with the
highest water consumption. The production of pellet fuel resulted in the highest GHG
emissions. Sensitivity analysis indicated that bioproduct yield was the most sensitive factor to
RSP and followed by transportation distance for biofuel and biopower production. Bioproduct
yield and transportation distance of feedstock presented great effects on environmental impact
for the production of liquid fuels and biopower.



Acknowledgements

This dissertation is a long journey to work at West Virginia University with Dr. Jingxin
Wang’s guidance. First, | would like to thank my major professor Dr. Jingxin Wang for
providing me with this opportunity and his patient guidance that brings my learning to the
current level. He continuously provided opportunity to improve my professional knowledge and
skill. He also helped me to navigate through my course works and research projects. |1 would also
like to thank my committee members: Dr. Debangsu Bhattacharyya, Ms. Kara Cafferty, Dr.
Shawn Grushecky, Dr. Jamie Schuler, Dr. Kaushlendra Singh, and Dr. Sabrina Spatari for their

precious time, valuable comments and suggestions.

Additionally, 1would like to thank my parents for their support during my study at WVU.
They provided endless encouragement and reassurance during the last five years. | would also

like to thank my friends | have made in WVU who brought a lot joy and made my life easier.



Table of Contents

(IS A ) = o (=R viii
Y o 10 0 (SRR X
IO 1)1 (0 1o (304 1o ] o O OSORPRR 1
2.  Modeling of Forest Harvest Scheduling and Carbon Sequestration in Central Appalachian
MIXEA HAAWOOO FOTESES ....vvviiiiiiiiiiie ittt ettt e e st e e s ebb e s s bt e e s b e e e s be e e sabaaeesrbeeeanes 11
F AN 1) =10 ST 12
22 SR [ 11 (0 To LUe3 1 Yo I OR 13
2.2, Materials and MEethOUS .........ooiviiiiiii e 15
2.2.1.  MoOdel DeVelopMENL........cvoiii ettt 15
R D - | - N 23
2.2.3. Base Case and Sensitivity ANAIYSIS .........ccoveviiieiiieiiiie e 25
G T = =Y U] | P 27
R T T = - Ty B0 o | (o J 27
2.3.2.  Carbon to TIMDEr PriCe RALIO ....ccvvviivie ittt 27
2.3.3. Biomass to TIMDer Price RALIO .......cccvveiiiie ittt 29
2.3.4.  Harvest Area LIMItAtiON........cocceiiiiiiiiii ettt e e e s sbaa e e e eabree s 31
2.3.5.  HarVeSt MEtNOAS .......cooiiiiiiii e 32
S B 1S o] U 1S3 To ] [ OTRS 32
2.4.1. Carbon to TIMDEr PriCe RALIO ...cccvvveivieicie ettt 32
2.4.2.  Timber Demand and Biomass UtIHZatioN..........cccceeviiiiiiiiiiiiin e 33
2.4.3. Harvest Area Limitation and Harvest Methods ............cccoceevviieiiieciciee e 34
N Y (o (] I =T o (0] 1 [ (o= OO 34
2 TR O] 0 od 111 (o] o'~ PR 35
SR (Y (] 401 36
3. Economic and Environmental Analyses of Coal and Biomass to Liquids Plants................. 40
AN 1) = (0 41
KR T [ 0110 o 1UTo3 1 (o o TR 42
3.2, Materials antd MELNOUS .......cuviiiiiieicii et ba e e sbae e 45
T TS (30 Y N T USSR RTRRPRRN 45
3.2.2. Biomass antd Coal FEEASIOCKS........uiiiviiiiiieiiriie ettt 45
3.2.3.  Process model of the CBTL plant.........ccceoveiiiiiiice e 49
3.2.4.  Economic model for CBTL PIANTS ......c..ooviiiiiiiiiiiieiceess e 50
3.2.5.  Life CYCle ASSESSIMENL.......cciuiiieiieiie ettt e et e e see e sreenee s 54
3.2.6.  SENSILIVILY ANAIYSES .....cuiiitieiecie ettt et te e sreenre e 56
K TR = (=LY U] | <3P 58
3.3.1.  Plant Siting and CapaCity .........ccciueiierieiiieieeie e 58
3.3.2. ECONOMIC IMPACE .....oeeiiiiiiie ettt ae s 58
3.3.3.  Environmental IMPaCT.........cccooiiiiiiiiiee e 61
K S B Yo U [S1] (o] o [P ROROTR 62
3.4.1.  Feedstock AvailabDility ..........cccooiiiiiiiii i 62
3.4.2. SItING AN CAPACTLY ....vveveeiiiieieeiie sttt nre s 62
343, COSES ANA RSP ...ttt 63
K S I 07 A N0 ) i O = 3 I IO 64



3.5 CONCIUSIONS ..ottt nsnsnsnnnenennnnnnnnnnnnnnns 65

ACKNOWIBAGEMENT ... bbbttt sb bbb ane s 66
RETEIEINCES ...ttt bttt ettt eas 66
4. Economic and Life Cycle Analyses of Small-Scale Woody Biomass Utilization for

BIOENEIQY PrOUUCTS ......evieiecie ettt e st e b e e be e st e eneesneeteeneenneennas 72
AADSETACT ...ttt bbb R bbbt h e bt na e beete b 73
Ot O 1011 70T 1304 {0 o ISR PRSPPI 74
4.2, Materials and MELNOUS .........cueiiiiriiieiiie e 76
4.2.1.  Study Area and FEEUASIOCK ..........cueiuiiiiiiiiciie et 76
4.2.2.  ECONOMIC MOGEBIING ...cvviiiiiiiiiie e 77
4.2.3.  Life CYCle ASSESSIMENL.......ccciiiieiiieii et re e sre e 81
4.2.4,  SENSILIVILY ANAIYSIS ...oiviiiiieiiici et res 83
4.3, RESUIS ...t ae e e nre e 84
4.3.1. Productionand Required Selling Price of Biofuels .........ccccoeveiveieii i 84
4.3.2.  ENvVIronmental IMPaCt.........ccooiiiiiieiie e 85
N D 1S F£S1S] 0 USSR 87
4.4.1. Fuel Productionantd RSP ... 87
4.4.2.  SENSIEIVIEY OF RSP .....oouiiiiiiiii s 89
4.4.3. LCA and Uncertainty ANalYSIS........cccooiiiiiiiiiiiiieiese e 90
444, GHG EMISSIONS REAUCTION ....ouviiiiiiiiesiiesieee et 91
T O] o] 113 1o o SRRSO POR 91
ACKNOWIBUGEMENTS ...ttt e te e e e st e s re e aeeneesre e seesaeeneesneeneeas 92
RETEBIENCES ...ttt ettt bt nre e 92

5.  Economic and Life Cycle Analyses of Biomass Utilization for Bioenergy and Bioproducts
99

Y 01 - T PP P PSPPI 100
TS0 10110 T Lo 1 o SRR 101
5.2, Materials and MethOdS ........cccoiiiiiiiiiiiic s 104
5.2.1. Study Area and Base Case SCENAIO ........cccuereeuerieiieie et 104
5.2.2.  ECONOMIC MOGEBIING ..cvviuiiiiiiiiiiie e 105
5.2.3.  Life CYCle ASSESSIMENL........coiiiiiiiie e 108
5.2.4. Sensitivity and Uncertainty ANaIYSeS ........ccoovriiiiiiiii e 111
5.3.  RESUILS ..ttt 112
5.3.1.  BaSe CaSE SCENMAIIO ....cuveueeriiieiieitistietiaie ettt sttt st se et e e e sbe st b s 112
5.3.2.  Sensitivity Analyses of ECONOMIC BENeTit ........ccoovviiiiiiiiiiiiceeeec 116
5.3.3.  Sensitivity of Life Cycle IMPact .........ccooeviiiieie e 116
5.4, DISCUSSION ..vvvieiiete ittt ettt b et se e e et e b et e s be et e e b e e ne et sbeabenbenreenes 122
54.1. Cost Components and RSP ..o s 122
5.4.2.  Environmental IMPaCt.........ccooviieiieriiie e 123
5.4.3.  SENSILIVILY ANAIYSES ...c.viiiiieiie ittt 124
TR T ] o] [175] (o] ST 125
ACKNOWIBUGEMENT ...ttt et e esreeteeneeeneenreeneeenee e 126
RETEIENCES ...t ettt ettt e bbbt e e be e re et enee s 127
0. SUMIMEIY ...ttt b etk b et b et e e e e st e st e e e e e e neenne 135
Appendix A. Supplemental Information for Chapter 2 ..o 139
1. Variable in thiS MOEI.........ooviiiie e e 139

vi



2. The Parameters Used iN ThiS MOUEL.......ooooooooeieeeeeeee e 140

3. JAVA Code t0 SOIVE the ProbIem .......ccviiiiiee e 142
Appendix B. Supplemental Information for Chapter 3...........cccoooeiieii i 150
1. Variables and Parameters inthe ECONOMIC MOAE] ..........ccovveiiiiiiiiiiiiiiec e 150
2. LCA Processes iN SIMAPTO ......c..eiiiiii ittt ettt e e st e e sbae s anbee s 152
Appendix C. Supplemental Information for Chapter 4. 158
1. Variables and Parameters inthe ECONOMIC MOAE] ..........ocovviiiiiiiiiiiiiiiic e 158
2. LCA ProCesses iN SIMAPTO .........eiiiiiiiiiie ettt ettt e e eabee s 160
Appendix D. Supplemental Information for Chapter 5 ... 169
1. LCA ProCesses IN SIMAPTO .......ueviiiiriiie et s vt setee e e st e e e e s sbaae e s s sabaeaesssbraneesaaes 169
2. STALISTICAL ANAIYSIS .....vie ettt e e e te e ae e e ns 183

vii



LIST OF TABLES

Table 2-1 Descriptive statistics of the inventoried stands used in the case study............ccccceev..... 22
Table 2-2. Parameter configuration for the base Case. ........cccccevveviiii i 24
Table 2-3. Description of parameter configurations in each case SCenario. .........ccccceeeervereernenne. 25
Table 2-4. Optimized results of carbon sequestration, timber and revenue by carbon to timber

O] oT= 3 7= 10 1TSS PRS 28
Table 3-1. Base case configuration 0f the CBTL PrOCESS. ......ccccerverierieriirenieniieieniesie e 51
Table 3-2 Percentage change of RSP according change of capital cost and operation and
MAINTENANCE COST. ...vteiteitieitiete ettt ettt et e et e st e sbeebe e st e sbeete e st e ebeenbe e nbeeneeabeebeeneesreeneas 60
Table 3-3. Process based environmental impact for the base case. ..........cccovvvviiiiiciiiiic 60
Table 4-1. Configurations of case scenarios of biomass to ethanol and biomass to liquids via fast
07101 1] TSRS 78
Table 4-2. Computational results from the economic model. .........ccccovoeiiieii i 84
Table 4-3. Environmental impact of LCA by bioenergy products and processes. ..........ccccvevene. 86
Table 4-4. Efficiency of reduction of 1 kg CO2 eq GHG eMmiSSIONS. .......ccccovvviiriciiiniieieenes 86
Table 5-1. Physical properties and requirements of three energy crops for three bioenergy
Q100 0o TSP PRSPPI 104
Table 5-2. Parameters for base case and Sensitivity analysis. ... 111
Table 5-3. Required selling price of bioenergy products by energy Crops. .......cccccevvevveviesneenne. 113

Table 5-4. GHG emissions for the production of the three energy products by energy crops. .. 113

viii



LIST OF FIGURES

Fig. 2-1 Representations and application procedures of stand adjacencies for a maximum

permissible CONtIQUOUS NArVESE @rEa ...........ccveiuiiieiieiecie e 17
Fig. 2-2 lllustrations of stand age constraints over a planning horizon ...........ccccceeevenenciennnnnns 19
Fig. 2-3 Quadratic functions for stand age vs. (a) total carbon and (b) carbon in above ground

0] 10 T2 OO RPN 23
Fig. 2-4. Different carbon components of the forest at different carbon to timber price ratio, (a)
0.1, (1) 0.5, (€) .0 weeueeiiieiee sttt bbb bbb e bbb 26
Fig. 2-5. Variations of (a) carbon sequestration rate and (b) total forest revenue by carbon to
TIMDET PIICE TATIO. ..ttt bbb ettt b b 29
Fig. 2-6. Method for choosing a suitable carbon price by considering timber demand and carbon
L0110 OSSP 30
Fig. 2-7 Carbon sequestration rate by (a) biomass to timber price ratio; (b) harvest area size (ha);
(C) MANAGEMENT SEFAIEUIES. . .eeveeieeitieiteeie ettt et ettt et et e st e sse e s b e e teeseesreeteeneesreenseenseanee e 31
Fig. 3-1. Distributions of logging residue (a), mill residue (b), coal production level (c), and
locations of candidate CBTL plants (d) in the study area. ..........cccooeveiiieniiieiciee e 47
Fig. 3-2. Block flow diagram of the indirect CBTL plant with CCS..........ccccooviiiiiiiiiieccceie 48
Fig. 3-3. System boundary of the CBTL LCA framework model. ... 55

Fig. 3-4. Sensitivity analyses by liquid fuel yield and biomass to coal mix ratio for CBTL fuel
production in thousand bbl/day (a); required selling price of CBTL fuels $/bbl (b), GHG
emission kg COzeg/f.u. (c),and GHG reduction compared to petroleum derived diesel in

thousand toNS CO2 E/NVEAN (1), «..eoveiuieiieieie et ettt 57
Fig. 3-5 Change of RSP based on different IRR at different mix ratio and liquid fuel yield. ...... 59
Fig. 4-1. System boundary of LC A model for biomass to bioenergy products. ...........cccccecevennnne 82
Fig. 4-2. Sensitivities of feedstock price, liquid fuel yield, IRRONRSP. .......c.ccccvevvevviieinne. 85
Fig. 4-3. Monte Carlo simulations of the environmental impact by bioenergy products: (a) GHG

emissions, (b) blue water consumption, and (c) fossil energy consumption. ..........cccccecevervreene. 88
Fig. 5-1. System boundary and processes of the three energy crops for three bioenergy products.

..................................................................................................................................................... 109
Fig. 5-2. Cost components of the biomass supply chain by energy crops and bioenergy products:

(@) biofuel; (b) bIOPOWET; (C) PEIIEL. ... e 113

Fig. 5-3. LCA impact of GHG emissions, fossil energy consumption, blue water consumption
and human health impact by energy crops: (a) willow by bioenergy products; (b) switchgrass by

bioenergy products and (c) miscanthus by bioenergy products. ..........cccocevevivivieiii e, 115
Fig. 5-4. Sensitivities of crop yield, transportation distance, facility capacity and IRR by energy
crops and bioenergy products: (a) willow; (b) switchgrass; (c) miscanthus. ............ccccceevvernnen. 117
Fig. 5-5. Sensttivities of LCA impact by energy crops and bioenergy products: (a) willow; (b)
SWItchgrass and (C) MISCANMTNUS. ........ccuoiuiiuiiiiiiieieei et 119



1. INTRODUCTION



The amount of carbon dioxide (CO32), one of the major greenhouse gases (GHGs), has
increased from 315 ppm to 400 ppm since 1959 (Tans and Keeling 2015). Terrestrial uptake of
CO2 has a significant role in the overall carbon budget (Fan et al. 1998; Schimel 1995), and
terrestrial forests are the major carbon sink. Forests have a great potential of absorbing
atmospheric carbon dioxide. Their efficiency has been estimated by previous studies which were
begotten in response to global climate change (Richards and Stokes 2004, Pan et al. 2011,
Hardiman et al. 2013). Additionally, carbon prices can effectively motivate carbon mitigation
(McCarl and Schneider 2001). A higher carbon price could result in a longer forest rotation

(Asante etal. 2011).

Though the best strategy to sequester carbon is never to harvest forest, harvesting is
considered to be one of the most important forest management practices, which provides
timber for commercial usage and brings financial benefits to landowners. Clearcutting has
the lowest harvest cost comparing to partial cut (Gutrich and Howarth 2007), but it
increases the potential of land erosion and reduces shelter for some wildlife. The
limitation of open area through environmentally sound management has been addressed
(Thompson et al. 1973), and well defined (O’Hara et al. 1989, Murray and Church 1996).
According to those concerns and requirements, Murray (1999) developed an area
restriction model (ARM) to maximize the economic benefit from harvest with the
limitation of open area. Sharma (2010) analyzed the carbon sequestration potential based
on the area restriction model and found high potential of carbon sequestration in center
Appalachian hardwood forest. The increase of carbon subsidy could effectively increase
carbon sequestration (McCarl and Schneider 2001) and Sharma (2010) indicated the

necessity to study this effect with consideration of open area.



Besides the carbon sequestration by forest growth, the utilization of biomass has also been
given a high priority to substitute fossil fuels and reduce the carbon emissions. Woody biomass
is an abundant clean energy resource that could bring lots of environmental benefits. In the study
of the Union of Concerned Scientists (UCS 2012), total estimated sustainable available biomass
resources are just under 680 million tons each year within the U.S. As one of the largest
underexploited energy resources, woody biomass is identified as a potentially important
feedstock for biofuels and bioproducts (Perlack et al. 2005). The production of bioproducts from
biomass usually has much less GHG emissions compared to fossil fuel (Mann and Spath 1997,

Hsu et al. 2010, Guest et al. 2011).

There are several pathways to convert biomass to biofuels and bioproducts. Fast pyrolysis
is a thermal decomposition process in the absence of oxygen to upgrade biomass to valuable high
energy density liquid fuels. The dark liquid yields could be 30 wt% - 70 wt% depending on the
feedstock (Bridgwater 2012). The pyrolysis-derived- liquid fuels need to be upgraded and can be
blended with petroleum-derived- liquid fuels. The introduction of biomass into coal to liquid
technology (CTL) known also as coal and biomass to liquids (CBTL) can further reduce GHG
emissions. Generally, biomass as a single feedstock could bring more reduction of GHG
emissions, but it typically requires higher procurement cost and lower energy conversion
efficiency (Bartis etal. 2008). The mix of coal or natural gas and biomass effectively solves this
dilemma — the tradeoff between GHG reduction and cost. Recently, the economic feasibility of
CBTL or natural gas and biomass to liquids (GBTL) has been studied extensively to address the
potentials of bioenergy production based on these processes (Marano and Ciferno 2001; Tarka

2009; Van Bibber et al. 2007; Wu et al. 2012).



Both economic and environmental analyses have been extensively conducted on biomass
utilization in terms of feedstock delivered costs, capital, operation and maintenance costs of
conversion facilities. Economic analyses were conducted on biomass utilization to determine the
feasibility of bioproducts. Studies conducted on CBTL from 2001 to 2011 showed that the
required selling price (RSP) of CBTL was higher than the price of petroleum-derived fuels
(Marano and Ciferno 2001; Van Bibber etal. 2007; Tarka 2009; Wu et al. 2012). With the
increase of petroleum-derived-fuels price and carbon price, the CBTL plant could be feasible
under certain scenarios. The economic analyses conducted on ethanol resulted lower RSP (from
$1/gal to $1.49/gal) than CBTL (Phillips et al 2007, Gnansounou and Dauriat 2010). The
estimation of RSP of liquid fuel by fast pyrolysis was from $1.93/gal - $3.7/gal according to the
techno-economic analysis conducted by Brown (2015). Previous techno-economic analysis had
lower RSP ($0.40/gal - $3.07/gal) than that in Brown’s study (Ringer et al. 2006; Wright et al.
2010). The production of pellets had large variation in RSP according to the logistics cost of
feedstock. Its RSP ranged from $122/ton to $170/ton (Sultana et al. 2010) and eancould be as
high as $199/ton (Pirraglia et al. 2013). The production of biopower usually had high cost which
is difficult to compete with electricity from coal. The analysis conducted by the International

Renewable Energy Agency (IRENA) had capital cost of $1.8-$5.7 million/MW (2012).

Life Cycle Assessment (LCA) is a standardized method to systematically evaluate the
environmental impact of a product or service throughout its full life cycle (1SO 2006). Four
general steps are typically required to finish a proper LCA study: scope and goal definition
which defines the system boundary, life cycle inventory which provides material input and
output for every process, impact assessment which usually summarizes the impact based on

available data and analyzes the method, and interpretation which discusses the results. Currently,



LCA is a mainstream environmental analysis tool to evaluate the impact of bioenergy products,

such as pellets, biopower, ethanol, biodiesel and other liquid fuels.

The first biomass fired power plant was available in the U.S. in 1989 (U.S. DOE 1992).
The study on the production of biopower showed that GHG emissions were 49 g CO2 eq/kWh
which was 95% reduction comparing to coal fired power plant (Mann and Spath 1997). A LCA
study in New York showed that, by combining biomass and coal at power plant, a reduction of
GHG by 7-10% was achieved with only 10% biomass mixed with coal (Heller et al. 2004). A
recent LCA study conducted on biomass based combined heat and power plant (CHP) showed

higher thermal efficiency and more reduction of GHG (Guest et al. 2011).

Although some studies have been conducted on economic analysis and life cycle
assessments of biomass utilization, there is a necessity to further examine the economics and life
cycle impact of biomass utilization for bioenergy products in the northeastern United States.
Therefore, this dissertation targeted the optimization of the forest harvest scheduling, and
biomass utilization for bioenergy products by specifically including the following four
objectives: (1) Modeling the forest carbon sequestration in mixed hardwood forests, (2)
Analyzing economic and environmental impact of transforming coal and biomass to liquids, (3)
Conducting economic input/output life cycle assessment of woody biomass utilization for
bioenergy products, and (4) Assessing economic and life cycle impact of energy crops for

bioenergy products in the northeastern U.S.
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ABSTRACT

A mixed-integer programming model was developed to optimize forest carbon
sequestration considering carbon price, biomass price, harvest area restriction, and harvest
method. The model was applied to examine the harvest scheduling strategies and carbon
sequestration in a mixed central Appalachian hardwood forest. Sensitivity analyses were
conducted over a range of carbon and biomass to timber price ratios, harvest area limitations
and harvest methods. The results showed that the carbon sequestration rate of the central
Appalachian hardwood forests could gradually increase as the carbon to timber price ratio
changed from 0.0 to 1.0 with an average sequestration rate of 0.917 Mg-ha™! - year~*. The
rise of biomass to timber price ratio reduces the carbon sequestration potential. Additionally,

the carbon sequestration potential would decrease when harvest area limitation varied from O

(no harvest) to 100 ha. The decrease could be 97.4% and 70.8% respectively when the carbon to

timber price ratios were 0.0 and 0.25. Low intensity partial cut could have a higher carbon

sequestration rate comparing with clearcutting when the carbon to timber price ratio was low.

12



2.1. INTRODUCTION

Carbon dioxide plays a vital role in global warming, along with other greenhouse gases
(GHGs), such as water vapor, methane, nitrous oxide, ozone and chlorofluoromethane (Mitchell
1989). Since 1959, the concentration of CO2 in atmosphere has increased 25% (Tans and Keeling
2014). The increase of atmospheric carbon has led to increased scrutiny of the global carbon
budget. One of the factors that could significantly mitigate atmospheric carbon is the terrestrial
uptake of COz, in which terrestrial forests are a major carbon sink (Fan etal. 1998; Schimel
1995).

In response to global climate change, more attention has been paid to find ways to slow
down or reverse the trend of global warming. One of the approaches examined is the efficiency
of forest carbon sequestration through appropriate forest management activities. Spring et al.
(2005) analyzed the carbon sequestration benefits of forests around Thomson catchment in
southeastern Awustralia using stochastic dynamic programming and found that the optimal
decision depends on the change of fire frequency and water availability. Sharma (2010)
developed a model that simultaneously optimized sustainable biomass utilization and carbon
emission reduction. By solving this model, Sharma et al. (2011) reported that forest carbon
sequestration potential could be enhanced through using efficient forest management strategies
to increase the mean annual carbon sequestration rate between 6% and 79% for central
Appalachian hardwood forests.

Carbon subsidy has been found to be a driver that increases the motivation of landowners
to manage their forests for carbon sequestration (McCarl and Schneider 2001). The subsidy is
typically financially incentivized policies that encourage the employment of GHG offset

activities, with the aim of influencing management decisions. As the amount of subsidy

13



increases, it has been shown that the optimal management alternative in terms of economic
benefit is to tend away from harvest activities (\VVan Kooten et al. 1995). A simulation of
response of management policies to price changes for CO2 storage suggested that a higher
carbon price could result in a longer rotations and no harvest would occur when carbon
price was higher than $35/ton (Asante et al. 2011).

However, forests are also managed for both ecological and societal services.
Harvesting is one of the most commonly used management practices in forest operations.
Although partial cut or selective harvesting has been used for years, they might result in an
increase of management costs (Gutrich and Howarth 2007). Clearcutting could possibly
reduce management costs. To conform to harvesting and sustainability requirements and
regulations, clearcutting typically requires a limitation on maximum open area. The
applications of harvesting carry some inherent risks of land erosion and disruption of
wildlife habitats (Barahona et al. 1992). However, these risks could be effectively
mitigated through careful planning and implementation of forest best management
practices (BMPs, WVDOF 2014), such as harvest area limit and buffer size of streamside
management zones (SMZs). Murray (1999) proposed an area restriction model (ARM)
using mixed-integer nonlinear programming with consideration of the maximum
permissible contiguous harvest area. This area could be different in different forests but the
average size must not exceed 120 acres (Murray et al. 2004). An even flow of timber
supply was also considered in the model because a consistent supply of timber is always a
mandate requirement (Vielma et al. 2007).

Many of the previous forest harvest scheduling and carbon sequestration studies

usually considered either timber values or carbon values but neither took into account the
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potential biomass utilization, nor multi-time periods of harvests. As a result, there appears to be
an opportunity to advance the knowledge of harvest scheduling and forest carbon sequestration
through optimizing scheduling scenarios with considering carbon sequestration rate, harvest area
limitation relative to BMPs, even flow of timber supply, biomass production and harvest
methods. Specifically, the objectives of this study were to: (1) model forest harvest scheduling
and carbon sequestration to maximize the total revenue of forests from timber, biomass, and
carbon, and (2) apply the model to a mixed hardwood forest in the central Appalachian region to
analyze the effects of carbon to timber price ratio, biomass to timber price ratio, harvest area and

harvest method on carbon sequestration.

2.2. MATERIALS AND METHODS
2.2.1. Model Development

The objective of the model is to maximize the total revenue (z) of the forests in terms of
carbon (C), timber (W), and biomass (B) values. The objective function of the model is
formulated as:
max z=C+W+B (2-1)
Where C is the monetary value of carbon sequestered and is calculated by equation (2-2).

s T
C= Tcozpcoz Z Z{fci(ait) - Tdry5xit[Gi,t—1 + fbi(ai,t—l)]} (2-2)

i=1t=1
A harvest decision for a stand at a given time is denoted by a binary variable:

. = {1, if stand i is harvested at period ¢;
it (0, otherwise.

Where, t=1... T, and i=1 ... S. T is the total management periods. S is the total number of
stands. An integer variable a;, represents stand age of stand i at time period t. A continuous

variable G, is the above-ground dry biomass in metric tons (Mg) of stand i at period t.
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fpi(a;;) = Growth function of the aboveground dry biomass of stand i at period t (Mg);

f.i(a;;) = Stand carbon storage function of stand i at period t (Mg);
p©°2 = The present carbon price in term of carbon dioxide ($- CO, Mg™);
Tco, = Coefficient used to convert Carbon into CO, equivalent;

T4ry = Coefficient used to convert dry biomass into carbon;

6 = Percentage of wood products other than long lived wood products;
Similarly, W is the value of timber and B is the value of biomass. They can be
computed by equations (2-3) and (2-4), respectively.

s T
W= pTEZ UTxit[Gi,t—l +fbi(ai,t—1)]

i=1t=1

T

s
B=p- PBZZ anit[Gi,t—l + fbi(ai,t—l)]

i=1t=1
Where:
p® = The present price of biomass($- Mg™?);
pT = Average present price of timber, ($- dry Mg™1);
1Nz = Percentage of wood residue which includes logging and mill residues;
1y = Percentage of timber in total aboveground biomass;
p = Percentage of biomass that is economically available.

The objective function is subject to the following constraints:

(2-3)

(2-4)
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Harvest area restrictions

A symmetric adjacency (ADJ) matrix is constructed to describe the adjacency of every two

stands:
ADJ,, = {1, if stand.i and stand j are physically adjacent or i = j;
Y 0, otherwise.
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(d) (e) (f)
Fig. 2-1 Representations and application procedures of stand adjacencies for a maximum

permissible contiguous harvest area. Each circle represents a managed stand and two stands are
physically adjacent if they are next to each other. Solid black circles represent stands that can
be potentially harvested at the same time and the dotted lines represent the virtual adjacency. (a)
no virtual adjacency; (b) virtual adjacency; (c), (d), (e), and (f) procedures that can be applied

to form a maximum permissible contiguous harvest area.
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Another binary variable is defined to represent the harvest of two stands at the same
time:
1,if stand i and stand j are havested at the same time period ¢,

Vije = and they are virtually adjacentori=j; j=1..5;
0, otherwise.

Virtual adjacency is defined when two stands are harvested at the same time period
and located in the same contiguous harvest area. The decision of harvesting a stand is
based on a virtual adjacency matrix (Fig. 2-1a, b).

Equations (2-5) and constraints (2-6) ensure that every contiguous harvest area does
not exceed the maximum permissible contiguous harvest area (Murray 1999). Fig. 1c-f
show the procedures to check if a continuous harvest area exceeds the maximum
permissible contiguous area. To illustrate the procedures, we define that the stands
represented by solid circles are harvested at period 1, stands 1-5are harvested in period 1
and belong to the same contiguous area, y,,,, =1 for m, n=1, 2, 3, 4, 5. If the total size of
this harvest area consisting of stands 1, 2, 3, 4 and 5 exceeds AR, the area constraint (6) is

violated.

yijt = xit 'xjt ) AD]U,Vi,j = 1 ...S AVt = 1 ---T /\AD]U = 1
S

- (2-5)
Vije = z Xie" Xje* Yike " ADJjy , V1, j = 1..SAVt =1..T AADJ;; #1
k=1
s s s
Zyithj+ xitZAj < AR +ZA]-,VL‘ =1.5vt=1..T (2-6)
j=1 j=1 j=1

Where:

A; = The area of stand j (ha);

AR = The maximum permissible contiguous harvest area (ha);
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Fig. 2-2 lllustrations of stand age constraints over a planning horizon. This figure assumes two

cases when x25=0 and 1 to illustrate the value of aTemz25 according to x2s.

Stand age and even flow of timber supply

Constraint (2-7) imposes the restriction of average ending stand age for harvest, which

means the average stand age at the end of a planning horizon should be greater than the

minimum permissible stand age for harvest. Constraint (2-8) ensures even flow of timber supply

among planning periods.

S

S

(1_A)Z Lt[Glt 1 +fbl(alt 1)] Z Lt+1 Glt+fbl(alt)]

<1+ A)let[G

it-1 T fbi(ai,t—l)] )

vVt=1..T—-1

2-=7)

(2-8)
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Where:
AgeR= The minimum permissible average ending stand age.
A=Allowable variation of timber supply in even flow constraint.

A binary variable aTem,,, (k < t) is used to calculate stand age and is defined as:

aTem,,, = {1' if (i * XNy = 0)V(xy = 1Ak = 1)
0, otherwise.
Equations (2-9) and (2-10) compute the stand age at each period over the planning
horizon. These two equations ensure that aTem,,, will be set to 1 when x;, is 1, and

aTem, will also be setto 1if x;, is not 1 but aTem;, . , is 1. We take stand 2 in time

period 5 as an example (Fig. 2-2). If x25=0, all the aTems for that stand are kept the same as
they are in the previous planning period. If x25=1, all the aTems, except for aTemp2ss,
should be 0. Equations (2-11) initialize the stand age at the beginning of harvest schedule.
Equations (2-12) calculate the stand age in each time period. Constraints (2-13) mandate
stands that are qualified to be harvested when they are older than a certain age ah.
Equations (2-14) and (2-15) compute the amount of above-ground dry biomass of every

stand in each planning period.

aTemy, = aTemy, (1 —x;),Vi=1..SAVt=2..T Nk <t; (2-9)
aTem;;, = x;, Vi=1..SAVt =1..T Nk =t¢; (2-10)
a,, =age;,Vi=1..5; (2-11)
t
a;, = age; +tY — Z aTemp;,.(age; + kY),Vi=1..SAVt =1..T; (2-12)
k=1
a;, = x;,(ah—Y), Vi=1..SAVt=1..T; (2-13)
Gi; = G, Vi=1...5; (2-14)
Ge=(1—x)[Gieey + fri(aie—i) | Vi=1..SAVE=1..T; (2 —15)
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Where:
age; = The initial stand age of stand i;
ah = The minumum allowed age of a stand could be harvested;
G,o = The initial aboveground biomass of stand i (dry tonnes);
Y = The length of each planning period (years);
Linearization

A linearization process was adopted to simplify the quadratic formulations of the model in
order to improve its solving and computing efficiency. Specifically, the expression
Xie|Gieoq + fi(aie_y) | is linearized as [G;,_; + fyi(a;,—1) — Gy This is because G;,_, +
fvi(@;c_, ) represents the accumulated biomass of stand i in time t if this stand is not harvested in
time t. If it is harvested in time t, G;, will be 0. Therefore, the objective function (equations 2-1,
2-2,2-3, 2-4), and constraints/equations 2-5, 2-8, 2-9, 2-14 can be expressed as equations 2-16,
2-17,2-18, 2-19, and 2-20.

S T
maxz = 7”c0210m2 ZZ{fci(ait) - Tdry5[Gi,t—1 +fbi(ai,t—1) - Git]}

i=1t=1

T]Txlt i,t—1 +fbl(alt 1) Glt]

+
=
3
N
1+

o~
1l
ey

Uszt it—1 +sz(azt 1) Glt] (2—16)

+
=
oo}
N
M-

~+
1]
[S

St
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(Vije 2 (Xie + %o —1),Vi,j =1..S AVE=1..T AADJ;; = 1
Vije < Xit;_x .t,Vi,j =1.SAVtE=1..T /\AD]ij =1
. S_ . . 2—17
Vije 2 Xy + xy — 2 A 2k v g §AVE=1..TAADJ, # 1 ( )
bl : : S . .
(i < (s 0.5)2(;lt+x]t) + 2k=1y12kStAD]]k Vi, j=1..SAvt =1 "'T/\AD]ij +1
S S
(1 - A)Z [Gi,t—l + fbi(al"t_l) - Glt] S Z[Glt‘l' fbl (alt) - Gi,t+1]
i i
s
<(1+ A)E[Gi_t_l + foi(ay) = Gu] VE=1..T -1 2 18)
i
aTemy,, = aTemy,, 1 —x;,Vi=1..SAVt=2..T Ak <t
1+aTemy,, | — (2-19)

X
aTemy,, < L Vi=1..SAVt=2..T Nk<t

2

G <MA—-x,)Vi=1..5S AVt=2..T
G <Gy +filagy ) Vik=1..5S AVt=2..T (2 —20)

- 4

Glt 2 Gi,t—l +fl(a,l't_1 ) - Mxlt,Vi,k = 1 .--S /\Vt = 2 ...T
Where, M is a large constant that M>> G,

Table 2-1 Descriptive statistics of the inventoried stands used in the case study.

N Mean StdDev Maximum Minimum Median
Number of measurement points 92 21 6 31 5 22
Tree height (m) 14008 18 11 44 2 22
Diameter at breast height (DBH) (cm) 14008 36 15 132 3 36
Quadratic mean diameter (cm) 14008 28 3 36 21 28
Trees per ha 92 497 210 1505 232 439
Basal area (m?-ha?) 92 30 11 72 11 28
Merchantable volume (m®-ha?) 92 1784 625 4802 557 1668
Forest C stock(Mg-ha™) 92 147 49 363 74 136
Merchantable C stock(Mg-ha™?) 92 69 24 170 21 64
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2.2.2. Data

Data for a case study of the model application were from an inventory conducted in 2000
for West Virginia University Research Forest, a mixed hardwood forest of 3,042 ha, located
approximately at 39.66°N, 79.78° near Morgantown, West Virginia, USA. The forest has 92
cutting units (i.e. equivalent to stands) with area varying from 7 to 41 ha. Recent forest inventory
data were acquired from West Virginia University Division of Forestry and Natural Resources.
Each stand had at least 5 cruise points and altogether 14,008 tree records were available for this

study. A description of these stand parameters is given in Table 2-1.
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Fig. 2-3 Quadratic functions for stand age vs. (a) total carbon and (b) carbon in above ground
biomass. The decrease of total carbon in the first few years after harvest is because the
decomposition of dead root and release of soil carbon.

The Forest Vegetation Simulator (FVS) (Dixon 2013; Stage 1973) Northeast Variant (NE)
with Fire and Fuels Extension (FFE) was used on the inventoried stand data to simulate the
growth and yield, harvest impact, carbon stocks, and biomass production at each time period of 5
years over a planning horizon of 50 years. A gquadratic relationship between stand age and
growth rate as well as between stand age and the total carbon accumulation, was developed for
each stand (Fig. 2-3). Then f,;(a;.) and f;(a;,) were calculated as increment of biomass

accumulation and carbon sequestration between planning periods.
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Table 2-2. Parameter configuration for the base case.

Name Definition Value Reference
A; The area of stand j (ha) Inventory
ADJ describe the adjacency of every two stands Inventory
AgeR The minimum permissible average ending stand age 40 Sharma et al. 2011
age; The initial stand age of stand i 80 Inventory
ah The minumum allowable age of a stand could be harvested 20
AR The maximum permissible contiguous harvest area (ha) 40 Sharma et al. 2011
fpi(a;;)  Growth function of the aboveground dry biomass of stand i Simulation

at period t (Mg)
f.:(a;)  Stand carbon storage function of stand i at period t (Mg) Simulation
Gy The initial aboveground biomass of stand i (dry tonnes) Inventory
Tco, Coefficient used to convert Carbon into CO, equivalent 3.667
Tary Coefficient used to convert dry biomass into carbon 05 de Wit et al. 2006
Y The length of each planning period (years) 5
p Percentage of biomass that is economically available 0.65 Wu et al. 2012
é Percentage of wood product other than long lived wood product 82% Sharma et al. 2011
Ng Percentage of wood residue which includes logging and mill residues 60% Sharma et al. 2011
Nr Percentage of timber in total aboveground biomass 60% Sharma et al. 2011
A Allowable variation of timber supply in even flow constraint 0.15 Goycoolea et al.

2005
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Table 2-3. Description of parameter configurations in each case scenario.

Clearcutting

Clearcutting

Clearcutting  Clearcutting

Partial-cut: basal area removal

Description - oo o
Base Case Sensitivityl  Sensitivity 2 Sensitivity 3 5% 50% 75%
Enforce Area
Restriction A L L A N N N
Enforce Even Flow Y Y Y Y Y Y Y
Enforce Minimum
Permissible Stand Y Y Y Y N N N
Age
Number of Planning
Periods 10 10 10 10 10 10 10
Carbon to Timber 0-1, 0-1, 0-1, 0-1,
Price Ratio 0.05 increased by 0.05 0.05 increased increased  increased
0.05 by 0.05 by 0.05 by 0.05
Biomass to Timber 0-1,
) . 0.005 0.005 increased by 0.005 0.005 0.005
Price Ratio 0.005
0.05
Permissible Harvest _0-100 ha,
A 40 40 40 increased by - - -
rea 10

2.2.3. Base Case and Sensitivity Analysis

The base case scenario of this study is to schedule the harvest of the above mentioned

mixed hardwood forest of 3,042 ha. A clearcutting with an area limit of 40 ha was used in the

base case management scenario. We assumed the timber product price at $100/dry Mg according

to a timber market report (AHC 2014), carbon price at $5/ Mg CO: eq based on the historical

data by Chicago Climate Exchange (2011), and average woody residue price at $2/dry Mg (Wu

et al. 2011). The configurations of all other parameters are listed in Table 2-2.

25



Carbon Stock (Mg/ha)
/.
=

Carbon Stock (Mg/ha)

2057 2067 2077 2087 2097 2017 2027 2037 2047 2057 2067 2077 2087 2097
Year Year

(2) (b)

2037 2047

2017 2027

Carbon Stock (Mg/ha)

2017 2027 2037 2047 2057 2067 2077 2087 2097
Year

(9]

O Standing Live OBelowground Live mBelowground Dead
O Standing Dead @Down Dead Wood 8 Forest Floor

Fig. 2-4. Different carbon components of the forest at different carbon to timber price ratio, (a)
0.1, (b) 0.5, (c) 1.0. Growth of 100 years was simulated in FVS.

The sensitivity of carbon sequestration was analyzed over a range of carbon to timber price
ratio, biomass to timber price ratio, harvest area limit, and harvest method (Table 2-3). The
partial cut was set at removal levels of 25%, 50%, and 75% of the stand’s basal area. The carbon
to timber price ratio varied from 0 to 1 at the increment of 0.05 (from $0-$100/ CO2 eq Mg). The
biomass (wood residue) to timber price ratio ranged from 0 to 0.7 at the increment of 0.05 (from
$0-$70/dry Mg of biomass). The carbon sequestration potential was also examined with

consideration of a permissible harvest area ranging from 0 to 100 ha at an increment of 10 ha.
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The model in this case study was solved using ILOG CPLEX 12.5 on a computer with
8GB memory and 2.93 GHz processor. Necessary programs were written in JAVA to implement

the model and a 5000-second time limit was set to achieve a convergence gap of less than 1%.

2.3. RESULTS

2.3.1. Base Scenario

The optimized carbon sequestration rate of the base case scenario over the planning
horizon of 50 years was 0.408 Mg - ha™! - year ~*. Among different carbon components of the
forest (Fig. 2-4a), aboveground living stands were the major contributor (59.6%) to the total
carbon storage, followed by belowground living component (15.6%). The forest carbon
sequestration rate drastically decreased right after each harvest. However, it will gradually return
to pre-harvest rate with enough time for new growth (20-50 years). The revenue could be up to
$21.2 ha™! - year ! where carbon sequestration accounts for 40%, timber and biomass account
for 59% and 1%, respectively.
2.3.2. Carbon to Timber Price Ratio

Most of the case scenarios at different carbon prices were solved with a convergence gap
of less than 1% (Table 2-4). A noticeable increase of carbon sequestration rate was generally
observed as carbon to timber price ratio increased. The sequestration rate of mixed Appalachian
hardwood forests ranged from 0.325 to 1.253 Mg - ha™! - year ! with an average of 0.917 Mg -
ha™! - year™! as the carbon to timber price ratio increased from 0.0 to 1.0. The carbon storage
of the forest could be sustained in a planning horizon when the carbon to timber price ratio was

higher than 0.5 (Fig. 2-4b, c). Consequently, the total revenue from the forest grew steadily from
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Table 2-4. Optimized results of carbon sequestration, timber and revenue by carbon to timber

price ratios.
Cark;qn to Timber Ca_r?on (M%i Tlmﬁaer‘i(MgI Re;\ienue ($_'1 A'::;V(is:' Final convergence Gap?
rice Ratio ha™" -year™") year—1) ha=" -year™) year—1)

0 0.325 0.796 20.386 55.7 0.02%
0.05 0.405 0.782 21.198 54.9 b
0.1 0.408 0.766 22.531 54.9 0.09%
0.15 0.413 0.764 24.150 54.1 0.10%
0.2 0411 0.769 25.503 54.0 0.17%
0.25 0.540 0.698 26.646 49.3 -
0.3 0.624 0.633 28.051 472 -
0.35 0.655 0.576 29.829 445 -
04 0.803 0.504 32.186 373 -
0.45 1.125 0.235 34.833 22.6 -
0.5 1.195 0.162 37.808 15.8 -
0.55 1.211 0.140 40.929 14.3 -
0.6 1.216 0.132 44.135 14.1 -
0.65 1.228 0.114 47.389 134 -
0.7 1.230 0.109 50.656 12.8 -
0.75 1.230 0.109 53.935 12.8 -
0.8 1.231 0.103 57.231 12.8 -
0.85 1.253 0.000 60.466 0 -
0.9 1.253 0.000 64.023 0 -
0.95 1.253 0.000 67.580 0 -

1 1.253 0.000 71137 0 -

Note:

2 Final gap for sub-optimal solution when the optimal solution was notachieved:;
® A hyphen indicated an optimal solution was obtained.

$20.8 to $71.2ha"! - year . The number of stands harvested would be reduced as the carbon to
timber price ratio increased.

The peak of the increment of carbon sequestration rate (marginal rate) was located when
the carbon to timber price ratio was at 0.45 (Fig. 2-5a). The rate reached 0 when the carbon to
timber price ratio was greater than or equal to 0.8. Accordingly, the revenue steadily increased

from $0.8 to $3.6 ha-l-year! as the carbon to timber price ratio increased from 0.0 to 1.0. When
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Fig. 2-5. Variations of (a) carbon sequestration rate and (b) total forest revenue by carbon to
timber price ratio (A= 0.05).
the price ratio was greater than or equal to 0.8, the increment of forest revenue attained a flat
plateau.

The clear increasing trend of carbon sequestration rate and decreasing trend of timber
harvest intensity were observed when the carbon to timber price ratio was between 0.2 and 0.5.
When carbon price was higher than or equal to 0.8, the carbon sequestration rate was flatted out
while timber production was dramatically dropped (Fig. 2-6). The carbon to timber price ratio is
a tradeoff between carbon stock and timber demand. As shown in Fig. 6, to achieve a carbon
sequestration rate of C (0.64) Mg -ha™! - year ™1, a carbon to timber price ratio should be P
(0.33), then M (0.6) Mg -ha™!-year 'is determined as the amount of raw timber products
available for the market.

2.3.3. Biomass to Timber Price Ratio
If the carbon to timber price ratio was 0.0, the carbon sequestration rate slightly varied
from 0.325to 0.323 Mg - ha™! - year ™! as biomass to timber price ratio increased from 0.0 to 0.7

(Fig. 2-7a). As woody biomass price increased, the carbon sequestration rate declined. When a
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carbon to timber price ratio of either 0.0 or 1.0, the carbon sequestration rate would decline
approximately 2%. But an obvious decline of carbon sequestration rate was noticed when the

carbon to timber price ratio was 0.5 (63.4%, Fig. 2-7a).
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Fig. 2-6. Method for choosing a suitable carbon price by considering timber demand and carbon

sequestration. Note: C: carbon sequestration; M: Raw timber; P: Carbon to Timber price ratio.
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Fig. 2-7 Carbon sequestration rate (Mg - ha™! - year~1) by (a) biomass to timber price ratio;

(b) harvest area size (ha); (c) management strategies: partial-cut vs. clearcutting.

2.3.4. Harvest Area Limitation

Limitation of the harvest area is important to prevent wildlife habitat in the forest from
disruption and fragmentation, it reduces soil erosion, and ensures a sustainable manner of forest
resource management. For a given carbon to timber price ratio, the size restriction of continuous
harvest areas becomes a primary factor affecting the amount of carbon sequestrated in a forest
stand. The maximum potential carbon sequestration rate of 1.253 Mg- ha™! - year ~* was
achieved when the harvest area was limited to less than 20 ha for lower carbon to timber price
ratio (Fig. 2-7b). Assuming the carbon to timber price ratio was 0.0, the carbon sequestration

rate steadily declined from 1.253 to 0.03 Mg - ha™! - year ~! with the harvest area changed from
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0 to 100 ha. When the carbon to timber price ratio was high, the carbon sequestration rate
changed slightly as the harvest area varied.
2.3.5. Harvest Methods

Generally, the carbon sequestration of clearcutting was higher than that of partial cut;
specifically, when the carbon to timber price ratio was higher than 0.4. Without carbon credit,
the carbon sequestration rate of the partial cuts of 75% and 25% of stand basal area removal
scenarios was 165.7% lower and 55% higher than clearcutting, respectively (Fig. 2-7c). All
stands would be reserved for carbon storage when the carbon to timber price ratio was 1.0 for
partial cuts of 50% and 25% basal area removal scenarios. If the carbon to timber price ratio
remained the same, as the removal intensity of partial cuts increased, the carbon sequestration
rate generally decreased (Fig.2- 7c). The sequestration potential among various harvest methods
could be largely differentiated when the carbon to timber price ratio was lower than 0.45.
However, this difference became smaller when the carbon to timber price ratio was higher (Fig.

2-7c).

2.4. DISCUSSION

2.4.1. Carbon to Timber Price Ratio

Carbon price could substantially affect the potential of forest carbon sequestration rate. For
the Appalachian mixed hardwood forests, the carbon sequestration rate could be up to 1.253 Mg -
ha™! - year~* when the carbon to timber price ratio was over 0.8. As Asante et al. (2011)

indicated, forest might never be harvested if carbon price was high enough. In this study, for
example, forest stands might not need to be harvested when the carbon to timber price ratio was

higher than 0.8.
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A noticeable change of carbon sequestration rate was observed when the carbon to timber
price ratio was between 0.4-0.5. This was because a stand would not be treated as ‘no harvest’ at
a lower carbon price unless the economic benefit of reserving the stand for carbon was higher
than its harvest revenue. This threshold was dependent on growth and management strategies of
forest stands and most thresholds were around 0.4-0.5in our case. As the further increase of
carbon price, carbon sequestration rate became stable and the increment reached 0 eventually.
When the carbon to timber price ratio was near 0, because most of the stands would be
harvested, a reduction of carbon storage in the forest was expected within the planning horizon.
An increase of carbon to timber price ratio allowed less cut and more sustainable carbon storage.
2.4.2. Timber Demand and Biomass Utilization

If the amount of timber harvested is lower than the market demand, timber price would
increase until the demand is met. To maintain a certain level of carbon sequestration rate, an
increase of carbon price is needed. If timber demand is not a driving factor of the supply, then
the carbon to timber price ratio could become a major factor motivating forest managers and
landowners to manage their forests for carbon sequestration.

Biomass is considered as a carbon neutral energy resource, so the benefit from forest
carbon sequestration can be further enhanced, if the reduction of GHG emissions is considered
through utilizing woody biomass such as residues for bioenergy (Fantozzi and Buratti 2010;
Perilhon et al. 2012; Augustinova et al. 2013). Any increase of biomass price can affect the
carbon sequestration and forest management decision as well (Saud ez al. 2013; Wu et al. 2011).
In this study, the price of woody biomass was assumed to be a ratio of timber price ranging from
0 to 0.7. Biomass production would affect carbon sequestration as the biomass to timber price

ratio increased. Biomass utilization for bioenergy would generally encourage more harvest as
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biomass price increased. Biomass price did not have any noticeable effect when the carbon
to timber price ratio was either high or low, due to price of biomass being considered as
part of benefit from harvest and have little effect on the carbon to timber price ratio.
2.4.3. Harvest Area Limitation and Harvest Methods

Harvest area limitation, related BMPs regulations and harvest site terrain conditions, all
affect carbon sequestration. Clearcutting with appropriate area limitation could enhance carbon
sequestration of the forest compared to partial cuts. When the carbon to timber price ratio is low,
most stands will be profitable if be harvested rather than reserved for carbon storage, thus lower
area limitation could ensure more carbon can be stored in forest stands. In this study, harvest
intensity of a partial cut presented a direct effect on the carbon sequestration rate. High intensity
of partial cut will allow more removal of timber and biomass, and reduce the carbon
sequestration rate. But when the carbon to timber price ratio is low, more stands would be
harvested in clearcutting scenario. When the carbon to timber price ratio rises, the advantage of
clearcutting becomes prominent because area limitation restricts the feasible harvest decision and
responses to the rise quickly.
2.4.4. Model Performance

Few approaches were previously discussed for modeling harvesting area restrictions

(Constantino et al. 2008; Goycoolea et al. 2005; McDill et al. 2002 ), and the cluster packing
formulation could be an efficient approach (Goycoolea et al. 2009). However, it could not be
used directly in this case study because multiple harvesting for a stand needs to be considered
during multiple planning horizons. Thus some of the stands in a feasible cluster might need to be
harvested at different time periods to achieve an optimal solution. The approach developed in

this study can be intentionally used to schedule harvest of a stand multiple times during different
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planning horizons. The CPLEX solver was used to optimize the scenarios in this case study with
3,207 rows, 1,536 columns, and 11,478 non-zero elements contained in the modelling matrix.
Five types of variables were defined in the model, including x;., y;j,, a;;, Gj,and aTem,, and
they made the computing a very complex task. Solving a larger optimization problem is always
challenging. However, the modeling approach developed in this study proved to be useful and
efficient in making decision in sustainable forest management. Modeling process and algorithms
could be further improved to reduce the number of variables and to enhance solving efficiency

for larger problems.

2.5. CONCLUSIONS

Harvest area restriction, carbon price, biomass price, and harvest method all affected the
carbon sequestration rate of the central Appalachian mixed hardwood forests to some extent.
Carbon price was the most sensitive factor to the carbon sequestration rate, followed by harvest
intensity. The average carbon sequestration potential was 0.408 Mg- ha=?! - year~1 in the central
Appalachian hardwood forests at a carbon price of $5/Mg CO2 eq. This potential could be
enhanced as carbon price increased. The marginal revenue for carbon sequestration and timber
demand also affect the sequestration strategies. Increased biomass utilization for bioenergy
would encourage more harvest to promote the long-term carbon sequestration. Larger area
limitation could encourage more harvest when carbon price is low. When the carbon to timber
price ratio is low, lower harvest intensity of partial cut would allow more carbon storage

compared to clearcutting.
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3. ECONOMIC AND ENVIRONMENTAL ANALYSES OF COAL

AND BIOMASS TO LIQUIDS PLANTS?
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ABSTRACT

We analyzed the economic feasibility and environmental benefits of an alternative
technology that converts coal and biomass to liquid fuels (CBTL), using West Virginia as a real
case scenario with considerations of woody biomass harvest scheduling optimization, feedstock
transportation and siting options of potential CBTL plants. Sensitivity analyses on required
selling price (RSP) were conducted according to feedstock availability and price, biomass to coal
mix ratio, liquid fuel yield, IRR, capital cost, operational and maintenance cost. A cradle-to-
grave life cycle assessment (LCA) model was also developed to analyze the environment
benefits of the CBTL processes. The study of siting and capacity showed that feedstock mixed
ratio limited the CBTL production. Sensitivity analysis on RSP showed the price of coal had
more dominant effect than that of biomass. Different biomass mixed ratio in the feedstock and
liquid fuel yield led to RSP ranging from $104.3 - $157.9/bbl. LCA study indicated that
greenhouse gas (GHG) emissions ranged from 80.62 kg CO2 eq to 101.46 kg CO2 eq/1,000 MJ
at various biomass to coal mix ratios and liquid fuel yield if carbon capture and storage (CCS)
was applied. Most of water and fossil energy were consumed in conversion process ata CBTL
facility. Compared to petroleum-derived-liquid fuels, the reduction in GHG emissions in West

Virginia was estimated to be between -162 and 555 million tons over a 30-year period.
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3.1. INTRODUCTION

Uncertain supplies of oil, climate change and attempts to increase the nation’s fossil fuel
independence are concerns that has evoked a renewed interest in alternative sources of energy.
Substitutes for traditional fossil fuels could be liquid fuels produced from coal or biomass which
enables the USA to reduce its reliance on foreign oil (Paul 2009). Since the Fischer-Tropsch (FT)
technology was first developed in Germany in the 1920s, it has been popularly used for
producing synthetic fuels (Ho0k and Aleklett 2010; Bartis and Van Bibber 2011). There are two
processes that could be developed to produce liquid fuels from coal: direct and indirect (Paul
2009; Jiang and Bhattacharyya 2014, 2015). Direct approach has higher product yield compared
to indirect approach, but the product quality is lower and the operating conditions are severe
(Bellman et al. 2007).

Both direct and indirect coal-to-liquids (CTL) methods have been commercialized in South
Africa and China. Sasol in Africa was able to produce 27% of the total liquid fuel produced in
2012 (Tennant 2014). Five CTL projects processing a total of 930,000 ton coal per year were
planned in China in 2013 and two will completed in 2015 (Li et al. 2013). Currently, there is no
CTL plant in the U.S. because liquid fuels derived from coal cannot compete on price with the
fuels derived from crude oil (\Van Bibber et al. 2007; Tarka 2009). Additionally, another main
drawback of CTL is the high carbon footprint in the conversion processes, which is more than
twice of petroleum-derived-fuels (Tarka 2009). Carbon capture and storage (CCS) is an approach
to capture carbon emission during the production of liquid fuels at facility, which can efficiently
reduce greenhouse gas (GHG) emissions. If asimple CCS'is considered (91% carbon captured),
a 5-12% reduction in life cycle emission can be achieved in comparison to the petroleum-

derived-diesel (Tarka 2009).
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Biomass has always been considered as a carbon neutral energy resource. The introduction
of biomass to CTL, known as coal and biomass to liquids (CBTL) process, can further reduce
GHG emissions (Gray et al. 2007; Tarka 2009). Biomass-to-liquids (BTL) processes have very
low GHG emissions and most emissions are associated with harvesting, collection and
transportation of biomass feedstock, but they usually associate with high costs (Bartis et al.
2008). Combination of coal and biomass allows biomass to offset the emissions in the CTL
process. Inclusion of CCSin the CBTL process can maintain the total emissions at a lower level.
A study from the U.S. Department of Energy’s National Energy Technology Laboratory (DOE
NETL) reported that a mixture of 8% biomass and 92% coal (by weight) can produce fuels
which have 20% lower life cycle GHG emissions than petroleum-derived diesel fuel (Tarka et al.
2009).

Life Cycle Assessment (LCA) has been considered as a good tool to analyze GHG emissions
since it was first proposed in 1970 (Hunt and Franklin 1996) and fully developed in the early
1990s (Boustead 1996). The International Organization for Standardization (ISO) accredited
LCA when the process was completed and published between 1996 and 1998. A second edition
of this standardization has become available since 2006 (ISO 14040 2006). Many studies have
been conducted on LCA of biofuel, CTL, and CBTL fuel productions. A study of CTL by
Marano and Ciferno (2001) reported 18.7 kg CO2eq GHG emissions per gal of liquid fuels
produced from coal. GHG emission of 16.4 — 58.9 kg CO2eq per 1,000 MJ ethanol produced
from biomass is 43-57% lower than those of petroleum-derived-gasoline (Hsu et al. 2010).
Kumar and Murthy (2012) found that fossil energy consumption for ethanol production from
grass straw is 57.43 - 112.67% lower than that of gasoline. Compared to the traditional jet fuel,

CBTL can result in up to 30% lower GHG emissions when 31% switchgrass is mixed with coal
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(Skone 2011). Wu et al. (2012) reported a 27% lower GHG emissions with a biomass to coal
mix ratio of 15/85.

Economic feasibility of CBTL were studied by considering siting optimization, delivered
costs of feedstocks and techno-economic analysis. Wu et al. proposed a two-stage GIS suitability
model for deciding the suitable site for biomass to liquid fuel facility which considered
topography condition, biomass handling cost and environmental impact (Wu et al. 2011). The
CBTL plant could become economically feasible if the prices of petroleum-derived-fuels keep
rising or the price of carbon is quite high (Marano and Ciferno 2001; VVan Bibber et al. 2007,
Tarka 2009; Wu et al. 2012). Marano and Ciferno (2001) estimated the price of FT liquid fuels
for a 50,000 bpd CBTL plant to be $52.8 bbl-*-$96.6 bbl* in 1998%s based on the amount of
biomass content in the feedstock. This price was not competitive with petroleum derived
gasoline and diesel. In the work of Van Bibbler etal. (2007), the average FT liquid fuels price
was reported to be $81.5bbl!. Tarka (2009) reported that the CBTL plant becomes feasible when
the price of crude oil is higher than $100 bbl! and when less than 30% of biomass is added to the
mixture. Based on Wu et al.’s study (2012) conducted for the central Appalachia, the price was
$84.19 bb1-$86.74 bbl?! in 2009%s and was able to compete with petroleum derived fuels with
high government subsidy.

The abundant coal and biomass resources in West Virginia provide a compelling
opportunity for the production of liquid fuels using CBTL technologies, but it is imperative that
these resources can reach the facility at a reasonable price. There are many factors that influence
the delivered cost to a facility, including but not limited to, the abundance of feedstock, presence
of an infrastructure to handle the feedstock, and existing competing uses. There appears a

necessity to further examine both environmental and economic benefits of the CBTL processes.

44



Hence, the objectives of this study are to: (1) examine the economic efficiency of CBTL
processes by developing a mixed integer linear programming model; (2) perform a life cycle
assessment to analyze the environmental benefits of CBTL; and (3) conduct sensitivity analysis
of economic and environmental impact of the CBTL applications in terms of feedstock

availability, feedstock price, liquid fuel yield, biomass to coal mix ratio and plant capacity.

3.2. MATERIALS AND METHODS

3.2.1. Study Area

Our study area is the state of West Virginia (WV). West Virginia extends from 37°12' N to
40°39' N and from 77°43" W to 82°39' W in the U.S. More than 80% of the total land area is
covered with forests, which makes it the third most heavily forested state in term of coverage.
The total forest area is 4.9 million ha of which 98% is timber land. The annual yield of woody
residue is approximately 2.19 million dry tons according to information on timber products
output, published by US Department of Agriculture (USDA TPO 2009).

The state of West Virginia (WV) is the nation’s second largest coal-producing state,
producing more than 143 million metric tons of coal in 2010, about 13% of the U.S. total
(National Mining Association 2011, West Virginia Coal Association 2011). The majority of the
coal in the state is produced in the southern half of the state. Eight counties in the southern
central part of the state (Boone, Kanawha, Logan, McDowell, Mercer, Mingo, Raleigh and
Wyoming) produce approximately 55% of the state’s coal.

3.2.2. Biomass and Coal Feedstocks
An area restriction model (Murrary 1999) was used to estimate the biomass in West

Virginia. The planning horizon was 80-year with planning period of five years. The forest
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inventory data were downloaded from the Forest Inventory & Analysis database (USDA FIA
2012). The growth of forest stands was simulated by the Forest Vegetation Simulator (FVS)
Northeast Variant (NE) with Fire and Fuels Extension (FFE) (Dixon 2013). The land cover data
were obtained from the United States Geological Survey National Gap Analysis Program - Land
Cover Data 2006 (USGS 2012).

It was assumed that a total of 10% of the timberland would not be harvested because of
landowners’ preferences to maintain forests for future values, aesthetics and other reasons. The
amount of logging residues left in the forests was 2/3 of the raw timber and mill residues was 1/3
of the raw timber (Sharma 2010). The availability of mill residue was estimated based on the
amount of timber harvested and capacity of sawmills. The location of sawmills in West Virginia
were obtained from the Appalachian Hardwood Center (AHC) at West Virginia University. A
total of 171 sawmills were recorded. The distances from logging sites to sawmills were
calculated based on the 2010 road network downloaded from TIGER/Line Shape files of the U.S.
Census Bureau.

The costs of handling biomass were based on a study by Wu et al. (2012). All costs are in
2012 dollars and all the tons are metric tons. The harvest costs were $12.92 dry ton'! using
grapple skidder-chips system and the price of logging residue was set to be $1 dry ton! as the
average price in the base case, although some logging residues could be obtained free from some
landowners (Wu et al. 2012). We assumed that 65% of total logging residue is economically
available. The purchase price of mill residue was assumed to be $50 dry ton't. We also assumed
that 40% of the total woody residue from sawmill was economically available. The round-trip
transportation costs was $0.23 dry ton't-knr! for logging residue and $0.15 dry tont- knv? for

wood chips (Kerstetter and Lyons 2001). All the biomass was assumed to be evenly supplied to
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the CBTL plants and no storage occurred at plant sites from previous year. The distribution of

logging and sawmill residues in 2012 are shown in Fig. 3-1a and b.

Available Mill Residue:
Dry tons

[ 10-3,160
13,160 - 7,077
7,077 - 12,348
12,348 - 20,127
20,127 - 28,734

Available Logging Residue:
Dry tons

_10-1,780

771,780 - 4,295
4,295 - 7,215
7,215 - 10,551

Il 10,551 - 19,007

/ Coal Production: Tons
’/‘; [ 0-791,987

/ [71791,987 - 2,469,784
I 2,469,784 - 4,665,637
I 4,665,637 - 14,210,571
I 14,210,571 - 20,903,227

(©) ©)
Fig. 3-1. Distributions of logging residue (a), mill residue (b), coal production level (c), and

locations of candidate CBTL plants (d) in the study area.
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Fig. 3-2. Block flow diagram of the indirect CBTL plant with CCS

The regional coal production data are available in Annual Coal Report by the U.S. Energy

Information Administration (Harris et al. 2013). The average sales price was $90.17 ton1. The

locations of coal mines were obtained from the West Virginia Department of Environmental

Protection Technical Applications & GIS Unit. We assumed a round-trip transportation cost of

coal at $0.1 ton- k! for the base case. Coal was primarily consumed for coal-fired power

generation that provided approximately 99% of the electricity in West Virginia and the total

amount of coal used for power generation is 29.52 million tons in 2012 in West Virginia (EIA

2013). A consistent and sufficient supply of coal was assumed over the next 30 years in this
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region, while over half of this production potential could be used to meet the feedstock request of
CBTL plants (Fig. 3-1c). Distances between coal miles to CBTL facilities were calculated in the
same way as we did for biomass feedstock.
3.2.3. Process model of the CBTL plant

A block flow diagram of the indirect CBTL plant is shown in Fig. 3-2. In the indirect
CBTL plant, pre-treated coal and biomass are sent to the gasifier producing raw syngas,
consisting mainly of Hz, CO, H20, CO2, COS, H2S. The raw syngas is then cooled and sent to
the COS hydrolysis unit and water gas shift unit to convert COS to H2S and adjust the H2/CO
ratio in the stream. Then the syngas is sent to the heat recovery unit, where most of the H20 is
condensed. After that it is sent to the acid gas removal (AGR) unit where the physical solvent
Selexol is used for selective capture of CO2and H2S. The physical absorption process is
preferred to remove CO: from syngas because the syngas from gasification unit is available at
high pressure, which can provide enough driving force for absorption, while the CO2 released
from the solvent regeneration is also available at high pressure, which can reduce the penalty of
the downstream CO2 compressor. The clean syngas from the AGR unit and the recycle stream
from the autothermal reformer, containing mainly Hz and CO, are sent to the Fischer-Tropsch
(FT) unit to produce syncrude, where additional COz2 is produced. The vapor product from the
FT unit is sent to the post-FT CO2 removal unit, using chemical absorption technology, to
remove CO: from unreacted syngas and light hydrocarbons. The advantage of using chemical
absorption process for post-FT CO2 remove is that it can avoid hydrocarbon loss, which is
significant in a physical absorption unit. The liquid product is sent to the product upgrading
section, including hydrotreating, isomerization, catalytic reforming and hydrocracking unit, to

produce on-spec gasoline and diesel. The H: required for product upgrading is generated from
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the recycled syngas in the Hz recovery unit using pressure swing adsorption. A portion of the
fuel gas generated in the FT unit and product upgrading unit is used as utility in the furnaces,
while the remaining portion is sent to the gas turbine for power generation. Steam generated at
multiple pressure levels in the syngas cooler, heat recovery and FT synthesis units is either
directly utilized in various unit operations or sent to the heat recovery and steam generation
section for superheating. Superheated steam is sent to the steam turbine for power generation.
Some amount of steams is also extracted from the steam turbine for being utilized in the process
(Jiang and Bhattacharyya, 2014, 2015)
3.2.4. Economic model for CBTL plants

An economic model is developed to maximize the total profit of the CBTL process. The
liquid fuel yield from biomass to liquid fuels is 1.53 bbl - ton! and from coal to liquid fuels is 2.38
bbl-ton'? (Wu et al. 2012, Jiang and Bhattacharyya 2014, 2015). The base case conditions for this
CBTL process are reported in Table 1. The cost components consist of feedstock purchase cost,
transportation, facility construction, operational and maintenance costs. Capital costs and
operation and maintenance costs of different plant sizes are estimated in Aspen Process Economic
Analyzer® (APEA) based on a steady-state process model developed in Aspen Plus®. All of the
distillation columns are sized in Aspen Plus®. All of the heat exchangers are sized in Exchanger
Design and Rating®. Reactors are specified as quoted equipment in APEA, of which the costs are
estimated from the throughput (Jiang and Bhattacharyya, 2015; Baliban et al., 2010). The main
outside battery limit (OSBL) equipment is the cooling water system, which is designed by
Analyzer Utility Modules (AUM) available in APEA. The remaining project components are
designed in APEA. Other than reactors, the capital cost of each sized equipment is estimated in

APEA® hased on Aspen Icarus database. The costs are then scaled to different capacity based on
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Table 3-1. Base case configuration of the CBTL process.

Parameters

Assumptions

Plant capacity (bpd)

Conversion method

Carbon capture and storage (%)

Liquid fuels yield — Coal (bblton1)
Liquid fuels yield — Biomass (bbl-ton-1)
Price of logging residues ($ dry ton-1)
Price of sawmill residues ($- dry ton-1)
Price of Coal ($- ton'?)

Biomass to coal mix ratio: mass

Plant life (years)

Equity proportion (%)

Cost of Equity (%)

Cost of Debt (%)

Operating time (days/year)

Internal Rate of Return (%)

Federal tax (%)

10,000
Indirect liquefaction

88
2.38!
153

2

50
90.17
8/92

30

40

15

8
350
15
40

1 Cited from Jiang and Bhattacharyya 2014.

NETL report (Gray et al. 2007). A set of candidate locations (Fig. 3-1d) were selected using a two-

stage GIS-based suitability model by Wu et al. (2011, 2012).

The high heating value (HHV) of FT liquid fuels (diesel equivalence) is 44.7 MJ- kgt while

for petroleum-derived diesel it is 43.1 MJ-kg? (Jiang and Bhattacharyya 2014, 2015). An

incremental cost of $2.95 bb! would incur for applying CCS (Tarka 2009). We assume a 15%

internal rate of return (IRR) on equity in the base case in order to make the project economically

feasible. The RSP was calculated according to feedstock costs, liquid fuel yield, mix ratio of

biomass to coal, and the internal rate of return on equity. The model is shown as follows (The

configurations and explanations of other necessary parameters considered in the model are in

Appendix B):
Max z=Rv —-TC

where:

TC=FC+Tr+vy-0M+{-TPC.

B-1)

B-2)
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P
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i s c
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c i s l

€T2. (3-16)

xS

xI spts

ipts xCCpt =>0,vce(C,Viel,Vse SVt eT2.

o — {1, if plant p is operated at capacity level |,
pt = 0, otherwise.

Equations (3-2) to (3-10) compute the related cost components, amortization factor ({),
weighted average cost of capital (WACC), plant maintenance factor (i), total revenue (Rv),
feedstock costs (FC), transportation costs (Tr), operation & maintenance (OM) and capital costs
(TPC), respectively. Constraints (3-11) ensure a consistent capacity of a CBTL plant over its
entire operational period. Constraints (3-12) — (3-14) impose the condition that the total amount
of feedstocks transported from a feedstock location cannot be greater than its availability in that
location. Equations (3-15) ensure that the amounts of biomass and coal transported to a CBTL
plant equal to the required mix ratio of biomass to coal under difference case scenarios.
Constraints (3-16) limit the total production of a plant that cannot exceed its designed capacity.

All the models were solved using the program ILOG CPLEX 12.2, Academic Version on a
computer with 16 G memory and 1.8 GHz 8 CPUs. Required programs to implement the model

were written in the JAVA programming language and 5000 seconds was set as a time limit.
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3.2.5. Life Cycle Assessment

3.25.1. Goal and Scope

A cradle-to-grave life cycle assessment model was developed to examine the CBTL process
with a focus on global warming potential, blue water and fossil energy consumption. The
reduction potential in GHG emissions through using woody biomass in the CBTL process over
the next 30 years was assessed. The functional unit was defined as 1,000 MJ energy equivalent
FT liquid fuels. All energy inputs and outputs were calculated in HHV. The system boundary of

this CBTL process is described in Fig. 3-3.

3.25.2. Life Cycle Inventory (LCI)

This LCA model included seven basic processes consisting of biomass collection, coal
mining, transportation of coal, transportation of biomass, thermo-chemical conversion, liquid
fuels distribution and final combustion. Feedstock included logging residue, mill residue and
coal. Mill residue did not require any specific harvests since they were already available at
sawmills. The extraction of logging residue involved grapple skidder, chipper and grapple
loader. Data on processes of coal mining were obtained from the US LCI database provided by
National Renewable Energy Laboratory (NREL). The transportation related processes were also
derived from the US LCI database. Hauling distances of feedstocks were obtained through
solving the economic model in the previous section.

The emissions in the conversion process were adapted from the inventory data by Marano
and Ciferno (2001). A simple CCS was considered to reduce CO2 emission in the thermos-
chemical conversion process. It was assumed that 88% of CO2was captured (Jiang and
Bhattacharyya 2014, 2015). At the distribution stage, we assumed an average transportation

distance of 100 km from plants to refueling stations. We also assumed that the FT liquid fuels of
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CBTL were combusted in a flex-fuel passenger car (Wang 2009). All other background
processes were based on Ecoinvent 2.2 database. GHG emissions of 98.8 kg CO2 eq per 1,000
MJ of petroleum-derived-diesel were used as a base reference for comparison (Keesom and

Unasch, 2009). All the detailed processes were in Appendix B.
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Fig. 3-3. System boundary of the CBTL LCA framework model.

3.2.5.3. Life Cycle Impact Assessment

The LCA model was developed by the environmental modeling tool SimaPro 8 (PRé
Consultants 2011). The impact of GHG emissions was calculated using 100-year global warming
potentials (Forster etal. 2007). All emissions were converted to CO2 equivalent (kg CO: eq).
The reduction of GHG emissions was calculated as the difference between the emissions from

petroleum-derived-diesel and the emissions from coal and biomass derived liquid fuels. The
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calculation of blue water consumption (BWC: kg) was done following Boulay et al.’s method
(2011). Fossil energy consumption (FEC: MJ) was calculated based on Frischknecht et al.’s
work (2007).
3.2.6. Sensitivity Analyses

Sensitivity analyses on RSP was conducted by changing price of coal and biomass,
biomass to coal mix ratio, liquid fuel yield, plant capacity and internal rate of return (IRR). The
price range of coal and biomass were $40 ton't- $100 ton't and $40 ton? - $140 ton'?,
respectively. The liquid fuel yield ranged from 1.36 to 1.7 bbl - ton! for biomass to liquid fuels
and from 2.22 to 2.54 bbl - ton? for coal (Edwards et al. 2011; Jiang and Bhattacharyya 2014,
2015; Liu etal, 2011; Wu et al. 2011). The energy efficiency ranged from 40%-50%. The liquid
fuel yield for different mix ratio were linear combinations of liquid fuel yield of coal and
biomass (Andre et al., 2005). The IRR was set to 20% and 10% to test its effect on RSP. The
effects of 20% change of capital costand operation and maintenance cost were studied. The
sensitivity analysis of liquid fuel yield and mix ratio on GHG emissions was studied in the same

way as on RSP.
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Fig. 3-4. Sensitivity analyses by liquid fuel yield and biomass to coal mix ratio for CBTL fuel
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3.3. RESULTS

3.3.1. Plant Siting and Capacity

The siting and capacity of a CBTL plant were typically determined by several major factors
such as availability of feedstocks, infrastructure, and others. The total production of all open
plants decreased with a decrease in liquid fuel yield and an increase in mix ratio (Fig. 3-4a).
Differences among the various mix ratios showed a greater effect than that among the various
liquid fuel yield. The highest production was 471,223 bbl/day (bpd) with highest liquid fuel yield
and no biomass was mixed with coal. When the biomass to coal mix ratio was 30/70 and the
liquid fuel yield a minimum, the overall production was 27,971 bpd.

A total of 22 potential CBTL plant site candidates were considered under different
availability of feedstock, infrastructure and biomass to coal mix ratios. Most candidate sites were
not suitable for CBTL plants. The number of CBTL plants, as well as their production, decreased
as the liquid fuel yield declines. In the case where the mix ratio was 8/92 and the liquid fuel yield
changed from 2.473 to 2.151 bbl - ton'!, the production changed from 157,805 bpd to 137,261
bpd. Multiple plants were operated if the amount of available biomass increased and the capacity
of plant did not increase.

3.3.2. Economic Impact

Cost analysis indicated that the purchase of coal and operational and maintenance cost
accounted most of the total cost. In the base case (defined in Table 3-1), the purchase of coal
accounted 60.7% of the total cost. Operational and maintenance cost accounted 17%. The
transportation of biomass cost more than purchasing them. When the mix ratio increased, which
meant more biomass mixed with coal, the unit transportation cost of biomass became to decrease

and unit transportation cost of coal increased.
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The RSP of liquid fuels was calculated based on all the cost components in the project. The
RSP in the base case was $113.01 bbI! with a payback period of 7 years for the project. The RSP
rose with the increase in the price of feedstock, where the RSP was calculated when the mix ratio
was 8/92 and the liquid fuel yield was 1.53 bbl - ton'! for biomass and 2.38 bbl - ton'! for coal.
The effect of coal on RSP was more pronounced than that of biomass. The RSP was $91.9 bbl?!
when the price of coal and biomass were $40- tont. The RSP increased to $115.8 bbl* when the

price of coal was $100 tont, and increased to $94.7 bbk! when the price of biomass was $100

ton',
o
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Fig. 3-5 Change of RSP based on different IRR at different mix ratio and liquid fuel yield.
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Table 3-2 Percentage change of RSP according change of capital cost and operation and

maintenance cost.

Mix Capital Cost Operation & Maintenance

Ratio 0% 25% 50% 5% 100% 0% 25% 50% 75%  100%
0/100 10.01% 10.05% 10.16% 10.19% 10.29% 212% 2.14% 220% 221% 2.26%
8/92 10.75% 10.96% 10.96% 11.14% 11.14% 2.09% 215% 215% 221% 221%
15/85 10.84% 10.84% 10.84% 10.84% 10.84% 212% 212% 212% 212% 2.12%
20/80 11.30% 11.30% 11.30% 11.30% 11.30% 2.04% 2.04% 204% 2.04% 2.04%
25/75 11.78% 11.75% 11.75% 11.75% 11.75% 2.02% 2.01% 201% 201% 2.01%
30/70 1197% 11.97% 1197% 11.97% 11.97% 193% 193% 193% 193% 1.93%

The RSP was $104.3 bbl! when no biomass was used at the maximum liquid fuel yield

when the prices of coal and biomass were same as the base case. The highest RSP was $157.9

bbl! when the mix ratio was 30/70 with the minimum liquid fuel yield. The RSP kept increasing

when more biomass was mixed with the coal and lower liquid fuel yield was assumed (Fig. 3-4-

b). When the mix ratio was low, the RSP changed with a change of liquid fuel yield than when

more biomass was mixed. The reduction of IRR significantly reduced the RSP, especially when

more biomass was mixed with coal (Fig. 3-5). The change in capital cost by 20% would change

the RSP by 10%-12%. The change in operation and maintenance cost by 20% would change the

RSP by 1.93%-2.26%. (Table 3-2).

Table 3-3. Process based environmental impact for the base case.

Impact E/Ioiﬁling '(E(r)aar}sport- (Fégil?clﬁon -Fl;gi]jsgn- Conversion  Distribution ~ Combustion  Total
126 0.1 0.17 0.06 1717 0.64 6286 936
CHG  1346%  0.11% 0.18% 0.06% 18.34% 0.68% 67.16% 100%
0.632  0.838 0.0721 0. 998 44.46 221 0.09 49.3
BWC  128%  1.70% 0.15% 2.02% 90.18% 4.48% 0.18% 100 %
105 131 0.101 1639 34 0.584 0.016 38.7
FEC 271 330% 0.26% 4.24% 87.86% 151% 0.04% 100%
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3.3.3. Environmental Impact

There were seven major processes in the LCA model. For the base case, the GHG emissions,
water and fossil energy consumption of each process and the percentage of their total amount of
emission were shown in Table 3-3. Most emissions originated from the combustion in vehicles
and thermos-chemical conversion, which contribute 62.86% and 17.17% to the overall GHG
emissions, respectively. The portion of FT fuels derived from biomass was considered as carbon
neutral. The emissions from 1,000 MJ of products ranged from 80.62 kg CO2eq to 101.46 kg
CO2eq for various mix ratio and liquid fuel yield. The CBTL facility consumed over 80% of the
water and fossil energy in the system.

Fig. 3-4c shows the GHG emissions at each mix ratio are a function of liquid fuel yield.
GHG emissions are lower when more biomass is mixed with coal. Given the same mix ratio,
more GHG emissions occur when the liquid fuel yield is low. The mix ratio and liquid fuel yield
also affect the transportation distance of the feedstock, but the emissions due to transportation
only account for a low percentage in the entire life cycle.

By producing FT liquid fuels, the total reduction in GHG emissions over 30 years is
estimated to range from -162 to 555 million tons COzeq for various liquid fuel yield and mix
ratios in our simulation (Fig. 3-4d). The reduction in emissions is calculated by considering the
emissions due to production and combustion of the equal amount (in energy) of petroleum-

derived-fuel minus the emissions due to coal and biomass derived liquid fuels.
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3.4. DISCUSSION

3.4.1. Feedstock Availability

A constant growth of forest was simulated using the FVS over a relatively short term (i.e.,
60 years). Wildfire was included in the simulation but its intensity was low and no other natural
disturbance was simulated. This allowed a constant increment of the available biomass before the
forests reach maturity. The availability of woody biomass could reach its peak as the timber
production could not exceed the capacity of sawmills in our model. However, this availability of
biomass could be changed due to other uncertain factors such as growth of short rotation woody
crops on marginal agricultural land and abandoned mine land, natural disturbances or increment
of carbon subsidies (Asante et al. 2011). There usually was abundant coal available in West
Virginia. We had, in general, assumed that the supply of coal will not decline over the next 30
years. Coal was also easy to handle with and always have lower transportation cost than biomass.
3.4.2. Siting and Capacity

The optimal location of CBTL plants was based on a set of candidate locations and the
availability of feedstock (Wu et al. 2011, Hartley 2014). Candidate location was selected by
considering many criteria such as cost, environmental impact, site physical condition and human
society (Wu etal. 2011, Hartley 2014). The best locations were those surrounded by coal mines
since coal was the dominant feedstock for CBTL plants. When more biomass was mixed with
coal, smaller CBTL plant was operated, and hauling distance of biomass was decreased and
hauling distance of coal was increased. This is because biomass is difficult to handle with and
cost more than coal in transport.

When only coal was used as feedstock to produce FT fuels, the total productivity was not

limited by biomass and could be very high. When biomass was involved, production will decline
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because of limited biomass availability. The decision of operating one large scale plant or several
small plants also depended on the capital and operational costs besides the distribution of
feedstocks. Coal was more concentrated in Southern West Virginia than biomass. So if only coal
was used as feedstock, the best location was the candidate location in Boone county.

3.4.3. Costs and RSP

The feasibility of CBTL is largely depended on the total costs. Costs were low when only
coal was supplied as feedstock and increased when biomass was mixed with coal. This is
because higher costis always expected to handle biomass (Ruiz etal. 2013). The feasibility is
also depended on the price of crude oil. Tarka (2009) shows that CBTL (with 30% biomass or
lower) was feasible when the price of crude oil was over $100 bbl!. As the average crude oil
price in 2012 was $94 bblt, CBTL could be feasible if the required internal rate of return is
allowed to be lower than 10%. But the low price of fossil fuels from the end of 2014 till date has
made CBTL hard to compete with conventional petroleum-derived fuels (EIA 2015).

By changing the price of coal and biomass, our investigation showed close relationship of
RSP and the price of feedstock. The price of coal had a more pronounced effect because coal is
always the dominant feedstock in a CBTL plant. Because the price of coal for our investigation
were higher than in previous studies and because we also considered lower liquid fuel yield, the
RSP in our study could be higher than the feasible price. The liquid fuel yield is one important
factor because this rate may vary due to coal type, tree species and other factors. The rise in the
RSP did not linearly follow increases of mix ratio and decreases in liquid fuel yield. This is
because the CBTL plant is operated under its capacity in some scenarios. So a more sophisticated
biomass supply chain is needed to be developed and the improvement of conversion efficiency

was required to reduce the high RSP of CBTL. IRR had significant effect on RSP especially
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when more biomass was mixed with coal because higher capital cost was usually required. Wu et
al. (2011) assumed 5% and 10% change in capital cost which changed the RSP by 2% and 5%,
respectively. The results on the sensitivity of capital cost in this study were consistent with Wu et
al.’s study (2011).

3.4.4. LCA of CBTL

This study showed that the major contribution to GHG emissions was from the thermo-
chemical conversion of FT fuels and their final combustion in vehicles. The emissions released
in land use changes were neglected because the candidate sites were selected from pre-existing
industrial sites. We also did not consider the environmental impact of waste since the slag can be
used as a concrete mix where it performs well (Slag Cement Association 2013). Differences in
GHG emissions at the same mix ratio were caused by various liquid fuel yield. The location and
size of CBTL plants had a direct influence on the distance for transporting feedstock. But this did
not change the life cycle emissions to any great extent because transportation accounts for less
than 0.5% of the overall emissions. The electricity required in conversion process was provided
by waste heat and light hydrocarbons, so the fossil energy consumption was low in CBTL plant.
But the water consumption could be high to generate power from coal.

When the liquid fuel yield increased, the reduction in GHG emissions to produce same
amount of liquid fuels was higher because less coal and biomass were required. Improvements in
the liquid fuel yield and capture of carbon dioxide can further benefit the environment, such as
aggressive CCSiis able to capture 95% of the total emissions (Tarka 2009). But aggressive CCS
will dramatically increase the cost (Jiang and Bhattacharyya 2015). The contribution of GHG
emission reduction from biomass utilization may be overestimated because we did not include

most natural disturbances, such as extreme weather, wild fire, insect and disease, which will
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disturb the growth of forest. The LCA model also will systematically underestimated
environmental impact by ignoring some less important processes and information gap. High
ratios of biomass was only preferred when biomass was abundant. This implied that the option of
relatively lower amount of biomass in feedstock was chosen if high GHG emission reduction

was expected when biomass availability was low.

3.5. CONCLUSIONS

In this study, we analyzed the economic and environmental effect of coal and biomass
utilization for production of liquid fuels. The location of CBTL facility preferred the site
surround with coal mines. If there was abundant biomass and the biomass ratio in feedstock was
low, large plant sizes should be selected and high owverall liquid fuel production was expected.
RSP was calculated by changing biomass to coal mix ratio, liquid fuel yield, price of coal and
biomass, IRR, capital cost, and operational and maintenance costs. The price of feedstock
directly affected RSP. Coal had more pronounced effect than biomass on RSP. RSP increased
when more biomass was mixed and liquid fuel yield was low. Lower IRR could obviously
reduce RSP. Thermo-chemical conversion and combustion in vehicles account for most GHG
emissions. Most of blue water and fossil energy were consumed in conversion process at CBTL
facility. The effects of biomass to coal mix ratio and liquid fuel yield on GHG emissions were
assessed in this study. High biomass ratio in the feedstock will reduce the GHG emissions, but
GHG emission reduction will also decline because of limited biomass availability. The

improvement of liquid fuel yield consistently reduced the GHG emissions.
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ABSTRACT

A mixed integer linear programming (MILP) model and life cycle assessment (LCA)
model were developed to analyze economic and environmental benefits by utilizing forest
residues for small scale production of bioenergy in West Virginia. The MILP was developed to
optimize the costs and required selling price of biofuels under different strategies. The cradle-to-
gate LCA was developed to examine the greenhouse gas emissions, blue water and fossil energy
consumption associated with the biomass utilization. The RSP in base case was $90.87/bbl
ethanol and $126.08/bbl for diesel and gasoline. The sensitivity analysis on RSP showed that
liquid fuel yield had most prominent effect and followed by internal rate of return (IRR) and
feedstock price. The LCA showed that the GHG emissions from the production of 1,000 MJ
energy equivalent ethanol was 9.72 kg CO2 eq which was lower than fast pyrolysis (9.72 kg
CO2eq). Fast pyrolysis had high water and energy consumption. The uncertainty analysis
showed the change of environmental impact by the change of liquid fuel yield. The risk of
biomass to liquid via fast pyrolysis (BLFP) to have a negative energy output was expected when
the liquid fuel yield was low. The production of ethanol required lower cost and had lower
environmental impact, that is to say, the costs for reducing 1 kg CO2eq GHG emissions was low
in biomass to ethanol (BTE), but more biomass was required to produce same amount of energy

equivalent liquid fuels.
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41. INTRODUCTION

Biomass is a carbon neutral energy resource which can be utilized as a feedstock for
bioenergy and bioproducts and has a great potential to reduce the carbon emissions from fossil
fuels. The interest in the use of cellulosic biomass as feedstock for biofuels has been increased to
reduce energy dependence on fossil fuels. As one of the largest unexploited sources of cellulosic
biomass, woody biomass is identified as a potentially important feedstock for biofuels (Perlack et
al. 2005). Current biofuels are typically converted from energy crops which require change of
land covers and introduce carbon debt that needs a considerable amount of time to pay back
(Fargione et al. 2008). Woody biomass is given high priority to produce biofuels in terms of
effectively managing land cover changes and carbon emissions. There are several pathways to
convert biomass to biofuels or bioproducts, including biomass-to-ethanol (BTE) and biomass to
liquids via fast pyrolysis (BLFP). Many analyses have been conducted on these approaches in

terms of economic analysis and environmental or life cycle assessments.

Ethanol is one of the biofuels which currently widely produced in the United States, 10.8
billion gallon of ethanol was produced in 2009 (Renewable Fuels Association Statistics 2014)
and most of them were from corn grain (Gecan and Johansson 2010). The production of ethanol
has increased to 13.3 billion gallon in 2013 (Renewable Fuels Association Statistics 2014). The
required selling price (RSP) of ethanol from biomass was around $1.00/gal (Gnansounou and
Dauriat 2010). Phillips et al. (2007) studied the hybrid poplar chips to ethanol and reported a
RSP of $1.07/gal. An estimation of the global ethanol program cost target in 2012 showed
$1.49/gal in US$ of 2007 (EIA 2009). The Economic Research Service (2015) summarized a
historical survey of corn derived ethanol showed that the price of ethanol was peaked in 2006

($3.58/gal) and reduced to $1.67/gal in 2015. The average price was $1.91/gal from 2005 to
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2015. Kocoloski et al. (2010) indicated that larger facilities would be able to decrease ethanol
cost by $0.20-0.30/gal by analyzing the impact of facility size and location on ethanol cost.
Although the improvement of biomass derived liquid fuel production, the low price of fossil
fuels from the end of 2014 till date has made biomass derived liquid fuel hard to compete with

conventional petroleum-derived fuels (EIA 2015).

Fast pyrolysis is a good approach to produce reliable higher energy density liquid fuels
from biomass. The energy density of pyrolysis-derived diesel and gasoline can be 40.6MJ/kg and
42.3MJ/kg, respectively (Wang 2009). In fast pyrolysis, biomass is quickly heated to 400°C to
500°C in the absence of oxygen and the biomass decomposes very rapidly. Dark brown liquid fuel is
generated after cooling and condensation of the pyrolysis vapours (Bridgwater 2012; Hsu 2012). The
liquid fuel needs to be upgraded by hydrotreating and hydrocracking before using as transportation
fuels (Augustinova et al. 2013). The pyrolysis-derived-liquid fuels also can be blended with
petroleum-derived-liquid fuels and filled in passenger vehicle. Some economic analysis conducted in
recent years found that these biofuels had economic advantages to compete with other alternative
fuels and the estimated costs ranged from $0.40/gal to $3.07/gal (Ringer et al. 2006; Wright et al.
2010).. A review of recently techno-economic analysis on fast pyrolysis found the RSP changed
from $1.93-$3.70/gal of gasoline equivalent (Brown 2015).

Life cycle assessments (LCA) were conducted separately to analyze environmental
impact of biomass utilization. Kumar and Murthy found 15 kg to 57 kg CO2 eq GHG emissions
and 57% - 113% reduction in fossil energy consumption to produce 1,000 MJ of ethanol from
grass straws (2012). The LCA study of biodiesel from rapeseeds showed that the climate change
potential was 73% lower than petroleum derived diesel (Herrmann et al. 2013). The study of
different agricultural feedstock (corn stover, sugarcane and sugar beet) to produce ethanol

showed a reduction of GHG emissions from 46% to 65% compared to fossil based ethanol
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(Munfz etal. 2013). However, because ethanol has lower energy density which is 26.8 MJ/kg
(Edwards et al. 2011) and the possible damage of engine (Lavelle 2010), the manufacturers have
no willing to increase the blending percentage of ethanol. Hertel et al. (2010) also argued that the
change of land use may eliminate the benefit of ethanol on global warming. The lab research of
fast pyrolysis generally brings more reduction in GHG emissions comparing to ethanol. Fan et
al. (2011) studied the GHG emissions for pyrolysis oil to generate electricity and found it can
saving 77%-99% of GHG emissions relative to fossil fuels combustion. GHG emissions could be
reduced 56-77% from pyrolyzed biofuels compared to fossil fuels (Snowden-Swan and Male
2012, Hsu 2012).

Located in the central Appalachian region, West Virginia is the third most heavily
forested state in the U.S. and can produce roughly 2.5 million dry tons of biomass annually. This
biomass resource can definitely be used as a feedstock for biofuels or bioproducts to benefit the
environment. There appears a necessity to analyze the economic and environmental impact of
increased woody biomass utilization at a regional scale. The objectives of this study were to: (1)
develop an economic model to optimize and analyze the conversions of forest residues to
bioenergy through both biological and thermos-chemical pathways; (2) develop LCA model to

analyze the environmental impact of biomass utilization.

4.2. MATERIALS AND METHODS

4.2.1. Study Area and Feedstock
This study area is located in West Virginia, of the United States with more than 80% of
total land area covered with forest. The total forest area in West Virginia is 4.9 million hectares

and 98% of them are timber land. The annual yield of wood residue is approximately 2.19
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million dry tons in this region according to the timber products output by the US Department of
Agriculture (USDA TPO 2009). This biomass resource can be utilized as a feedstock for BTE

and BLFP of up to 10,000 barrels per day, respectively.

4.2.2. Economic Modeling

4.22.1. Feedstock handling costs

The availability of forest residues was derived from the Bioenergy Knowledge Discovery
Framework (KDF) by U.S. Department of Energy. The monthly availability of biomass (from
Jan. to Dec.) was assumed to be 8.3, 8.3, 8.3,8.3,7.5,7.5,7.5,7.5,9.2,9.2,9.2 and 9.2% of the
yearly available forest residues. The logging residue availability was based on the historic
harvest activities and the impact of monthly precipitation on the accessibility to harvested sites in
West Virginia (US DOS 2014). The stumpage price of logging residue was set to be $2 dry ton!
as average price for the base case in spite some logging residue could be free from land owners.
Grapple skidder-chips system was used to collect logging residues. The harvest costs were
$13.19 dry ton! according to Wu et al. (2012). It was assumed that 65% of total logging residue
was economically available. The purchase costs of mill residue were assumed to be $50 dry ton
LIt was also assumed that 40% of total mill residue in sawmill was economically available. The
round-trip transportation costs for logging residue and wood chips are $0.23 dry ton- knr! and

$0.15 dry ton- knr! respectively (Kerstetter and Lyons 2001).
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Table 4-1. Configurations of case scenarios of biomass to ethanol and biomass to liquids via fast

pyrolysis.
Conversion Parameters Base case Sensitivity and References
pathways uncertainty
Biomass to Liquid fuel yield: bblton-1  1.99 17-21 Hsu et al. 2010; Wang, 2009.
ethanol
Conversion Method Fermentation
Fast pyrolysis Liquid fuel yield: bblton-1  2.44 195 - 2.6 Hsu 2012.
derived liquid
fuels Conversion Method Pyrolysis
Price of logging residues $1/dry ton Wou et al. 2012
Price of sawmill residues $50/dry ton
Plant life 30 years
Operating time 350
days/year
Internal Rate of Return 15%
Equity proportion (%) 40
Cost of Equity (%) 15
Cost of Debt (%) 8
Federal tax (%) 40
Energy density  Ethanol 26.8 WTT Report 2011
(HHV MJ/kg)
Fast Pyrolysis derived 40.6 Wang 2009
diesel
Fast Pyrolysis derived 42.3 Wang 2009
gasoline

4.2.2.2. Economic Model Development

This economic model is to maximize the total profit of biofuel production. In the base
case, the capactty, liquid fuel yield, and other parameters are listed Table 4-1. The total costs
include feedstock harvest, purchase, transportation, storage, facility construction and operation &

maintenance. Capital costs of different plant capacities were adjusted from a study by Kocoloski
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et al. (2011) for BTE and a study by Shackley et al. (2011) for BLFP. The siting of the bioenergy

candidate plants (Fig. 4-1) was optimized by Wu et al. (2011, 2012) and Hartley (2014). The

plant life was assumed to be 30 years. The distances between the sites of residues and the

candidate locations of bioenergy product plants were calculated based on the 2010 road network

downloaded from the U.S. Census Bureau’s TIGER/Line Shape files. In this study, a 15%

internal rate of return on equity was assumed for the base case. The RSP for two conversion

pathways was calculated based on the total costs and internal rate of return on equity.

The objective function of the mixed integer linear programming model consists of two

major components (total revenue and total cost), which is expressed as follows (The definitions

and configurations of variables and parameters considered in the model are in Appendix C):

Maxz=Rv—-TC

Where:
] 12

Rv = P-cov-ZZxij;
j=1m=1

TC=F+0OM+ ¢-TPC;

gVt —1 q" -1 r.

€=1’b'l(q—l)-q"’“”_(q—l)-q’”

q=0+WACC)-(1+r);

WACC =w, R, + (1—w,) R, - (1 —f£.);

“4-1
(4-2)
(4-3)
(4-4)
(4-5)
(4—6)
(4-7)
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TPC= ) ) vy tpa; (4-8)

j=11=1

S.t.:
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L
Z vy < 1,Vj; (4-10)
=1
]
Z XLijpm < AL, Vi, m; (4-11)
j=1
]
j=1
1
(XLijm +XMyjp) + XS g = XPiy — XS} = 0, ¥, m; (4—13)
i=1
L
XPpy = Z(yﬂ *RB)),Vj,m; (4—14)
=1
xSjo = 0,VJ; (4—15)
XPjys XL jny XMy, XS5 2 0,V € ], Vi € L,Ym €{1, ..., 12},

_ {1, if plant j is operated in level |,
710, otherwise.

Expressions (4-2) — (4-8) compute the total revenue (Rv), total costs (T'C), amortization

factor ({), weighted average cost of capital (WACC), operation and maintenance costs (OM), and
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total capital costs (T PC), respectively. Equation (4-9) calculates the handling costs of feedstock
including feedstock purchase cost, harvest, transport, loading and storage. Constraints (4-10) are
to ensure that a candidate site can only have at most one facility and only be operated in one of
certain capacity. Constraints (4-11) and (4-12) impose that the amount of feedstock transported
from a supply location cannot be greater than the total available amount at that location.
Constraints (4-13) balance the storage at a bioenergy product facility. The amount of biomass
being transported to a facility plus the storage from previous period should be equal to the
biomass processed and stored in this time period. Equations (4-14) initialize the amount of
biomass being processed at each time period at each facility. Equations (4-15) ensure no storage

before the facility is opened.

All the models were solved using the IBM ILOG CPLEX 12.2, academic version on a
computer with 16 GB memory and 1.8 GHz 8 CPU. Required programs to implement the model

were written in JAVA and 5000 seconds was set as a time limit of solution convergence.

4.2.3. Life Cycle Assessment

4.2.3.1.  Scope definition

The cradle-to-gate life cycle assessment included feedstock collection, transportation,
preprocessing and storage, liquid fuel production, distribution, final usage and waste disposal in
terms of GHG emissions, blue water consumption, and fossil fuel consumption (Fig. 4-1). The

functional unit (f.u.) of the biomass supply chain system was 1,000 MJ of biofuel produced.
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Fig. 4-1. System boundary of LCA model for biomass to bioenergy products.

4.2.3.2.  Life cycle inventory

Feedstock collection included the collection of logging and mill residues. Specifically,
logging residue was collected using mechanized harvesting system and chipped on site. The fuel
consumption of this harvest system was based on Wu et al.’s study (2012). Data on
transportation process were primarily adapted from the US LCI database. The liquid fuel yield of
BTE and BLFP were adjusted according to Hsu’s studies (2010, 2012), respectively. A hauling
distance of 100 km was used in the base case as an average transportation distance from
bioenergy plant to refueling station (Marano and Ciferno 2001). The liquid fuels were finally
combusted in a flex-fuel passenger car (GREET 1.8c). All the other background processes were
based on the processes defined in Ecoinvent 2.2. The GHG emissions of 98.8 kg CO2eq per
1,000 MJ for petroleum-derived-diesel were used as a base reference for comparisons (Keesom

and Unasch, 2009). All the detailed processes were in Appendix C.
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4.2.3.3.  Impact Assessment

The environmental impact of each process were assessed using the environmental
modeling tool SimaPro v8 (PRé Consultants 2011). The impact of GHGs was calculated using
100-year global warming potentials (Forster et al. 2007). All the emissions were converted into
the carbon dioxide equivalent amount (kg CO:2 eq). The reduction of GHG emissions was
calculated as the difference between the emissions from petroleum-derived-diesel and the
emissions from liquid fuels produced using BTE and BLFP. The calculation of blue water
consumption (BWC: kg) was based on the method by Boulay et al. (2011). Fossil energy
consumption (FEC: MJ) was calculated based on Frischknecht et al. (2007). The economic
input/output LCA (EIO-LCA) model was also examined on the processes based LCA model to
estimate the overall environmental impact of the biomass utilization (Suh 2004, Jiang et al. 2011,
Cooper et al. 2013). An input-output matrix of physical flows A was created for each pathway.
This matrix indicated quantitative relationship between each two processes. The environmental
impact (GHG, BWC, FEC) for each process was represented as a row vector b which was
derived from SimaPro based on the functional unit. The total demand of each processes was
represented as a column vector y. Amount of liquid fuel in y was given based on the functional
unit and all the other processes in y was set to zero. The total life cycle environmental impact (E)

was calculated by:

E =bAly (5 — 16)

4.2.4. Sensitivity Analysis

Sensitivity analyses on RSP and environmental impact were conducted according to

feedstock price of biomass, liquid fuel yield, plant capacity and internal rate of return (IRR)
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(Table 4-1). The delivery cost of biomass was examined by changing from $40/dry ton -
$140/dry ton. Sensitivity analyses of liquid fuel yield were conducted by testing the maximum
and minimum liquid fuel yield. The IRR was set from 10% to 20% to test its effect on RSP.
The Monte Carlo uncertainty analysis for environmental impact focused on the liquid fuel
yield. Triangular distribution was assumed on each liquid fuel yield according to Hsu’s studies

(2010, 2012). A total of 1,000 random trials were conducted to study the effect of uncertainty.

4.3. RESULTS

4.3.1. Production and Required Selling Price of Biofuels

Three and seven small scale facilities can be supported for BTE and BLFP, respectively
(Table 4-2). The production for both BTE and BLFP was at 10,000 bpd. The biomass
consumption as feedstock was at 1.91, 1.95 million dry tons for BTE, BLFP, respectively. The
procurement radius of forest residues were slightly longer for producing ethanol than for diesel
and gasoline. Among the cost components, the operation and maintenance accounted for 30.4% -
38.8% of the total cost, and it was followed by feedstock handling costs (35.8% - 37.8%). The
RSP of ethanol ($90.87/bbl) was lower than that of diesel and gasoline, but the energy based

RSP of ethanol was higher.

Table 4-2. Computational results from the economic model.

Average transportation distance
of feedstock (knvton) # of Productivity: RSP RSP

Technology facilities  (bbliday:bpd)  (§/bbl)  ($/1,000MJ)
Logging residue Mill residue

BTE 86.928 73.824 3 10,437 90.87 38.06

BLFP 71.952 67.408 7 13,048 12608 2195

84



Sensitivity analyses were conducted according to the price of feedstock, liquid fuel yield
and IRR (Fig. 4-2). The biomass price affected the RSP of both BTE and BLFP. An increase of
10% delivered cost of biomass would increase the RSP by 2.68% and 1.57% for BTE and BLFP,
respectively. The liquid fuel yield was a factor that affected the overall costs and RSP. The RSP
would reduce 5.98% for BTE and 6.94% for BLFP if the liquid fuel yield would be improved
10%. A required IRR of 15% was set in base case. A change of IRR to 10% or 20% would
reduce or increase the RSP up to 9.26% or 10.50% for BTE and 8.65% or 9.57% for BLFP,

respectively.

$20/dry ton $140/dry ton

BTE-Biomass Price

BLFP-Biomass Price 4 $20/dry ton $140/dry ton

BTE-Liquid fuel yield - max min
BLFP-Liquid fuel yield - max min
BTE-IRR 10% 20%
BLFP-IRR 4 10% 20%
T f T T T T T
-20 -10 0 10 20 30 40 50 60

Percentage change of RSP based on base case: %

Fig. 4-2. Sensitivities of feedstock price, liquid fuel yield, IRR on RSP.

4.3.2. Environmental Impact
The GHG emissions of BTE were lower than that of BLFP. Most of the GHG emissions

in BTE were accounted in biomass collection and transportation processes. The conversion
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process accounted most of the GHG emissions in BLFP (80.26%). For the same amount of
energy equivalent liquid fuel produced, the BLFP consumed higher amount of water and fossil
energy. The processes of transportation, storage and preprocessing and conversion together
accounted for more than 80% of the total water or fossil fuel consumptions. Table 4-3also
showed the analysis of biogenic GHG emissions from the biomass to liquid fuels system. The
biogenic GHG emissions were very high in BTE and BLFP. Almost all the emissions were from

conversion process.

Table 4-3. Environmental impact of LCA by bioenergy products and processes.

LCA impact of each process, %
Bioenergy Impact

Total
product Factors Feedstgck Transportation Storage anq Conversion  Distribution Waste
Collection Preprocessing Disposal

GHG 28.41 45.18 8.92 13.09 4.02 0.38 9.72

BWC 2.07 54.56 9.63 32.02 123 0.49 254.61
Ethanol e 0.72 12.87 10.29 75.01 0.81 03 125.24

Biogenic

GHG 0 0.02 0 99.98 0 0 190

GHG 6.41 10.15 217 80.26 0.96 0.05 305

BWC 0.3 8.18 141 89.79 0.28 0.04 711.72
Pyrolyzed
fuel FEC 0.18 3.18 2.54 93.95 0.11 0.04 589.13

Biogenic

GHG 0 0.03 0 99.97 0 0 68.59

Table 4-4. Efficiency of reduction of 1 kg CO2 eq GHG emissions.

BTE BLFP
Cost, $ 0.48 0.95
Fossil Energy input, MJ 1.343 7.951
Blue Water Consumption, kg 2.671 9.752
Biomass Requirement, kg 1.84 0.805
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The GHG reduction was 89.08, 68.3 kg CO:2 eq for BTE, BLFP, respectively,
compared to petroleum derived diesel. The costs, fossil energy, blue water and biomass
input per kg CO2 eq GHG reduction were used to determine the efficiency of GHG
emissions reduction (Table 4-4). BTE required lower cost to reduce GHG emission buit it
required more biomass as feedstock compared to BLFP. BLFP was a more energy and water

intensive technology comparing to the BTE.

Uncertainty analysis of Monte Carlo simulation indicated the comparative results of the
environmental impact (Fig. 4-3). It can be noticed that there was no overlap between the BTE
and BLFP technologies. However, the right tail of BTE and the left tail of BLFP were closer to
each other (18 kg CO2eqto 21 kg CO2 eq). The highest possible values of the three impact
factors were 59.8 kg CO2 eq GHG emissions, 1,914kg for water consumption and 1,525 MJ for
fossil energy consumption to produce gasoline and diesel. There was possibility that the energy
consumption larger than the energy output in the simulation of BLFP, but the possibility was

lower than 2.5%.

4.4, DISCUSSION

4.4.1. Fuel Production and RSP

There were more than one facility for BTE and BLFP opened and they were operated at
smaller scale (<5,000 bpd). This was because a larger facility typically demands more biomass
and accordingly increases the biomass handling cost (Sultana et al. 2010). Few small scale
facilities would be able to reduce the transportation distance of biomass. Unlike a fossil fuel

facility, handling cost of biomass is usually higher (Sharma et al. 2013).
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The energy content of ethanol was almost a half of fast pyrolysis derived gasoline and
diesel, but the RSP of ethanol was just slightly lower than the liquid fuels derived from fast
pyrolysis. Ethanol was not easy to compete with gasoline and diesel also because of potential
damage to engine (Lavelle 2010). The liquid fuels produced by fast pyrolysis were $3/gal which
was higher than the range of $2.34-2.48/gal (Brown 2015). The operation and maintenance cost
could be higher if bio-char and off-gas were not recycled (Jones and Male 2012). The sale of bio-
char can decrease the cost to produce liquid fuel (Shabangu et al. 2014). The amount of cost
reduction will depend on the yield of bio-char and liquid fuels. The average price of crude oil in
2011 was $104.4/bbl, but the price went down dramatically at the end of 2014 to its current price
of $48/bbl (EIA 2015). With this uncertainty of crude oil price, it is hard to favor the biofuel
production. The energy liquid fuel yield used in this study was 1.99 bblton! and 2.44 bblton!
for BTE and BLFP, respectively. Any improvement of conversion process would further lower

the RSP. However, the RSP will also be changed according to the demand/supply of feedstock.

4.4.2. Sensitivity of RSP

The effect of price of biomass, liquid fuel yield and IRR on RSP were studied in
sensitivity analyses. The liquid fuel yield was the most significant factor among the three factors.
The reduction of liquid fuel yield significantly rose the RSP, so improvement of conversion
efficiency was required to reduce the high RSP. When the liquid fuels are produced in industrial
scale, the liquid fuel yield is not easy as high as in laboratory condition (Oliveira et al. 2013).
Thus, a higher RSP could be expected when the liquid fuels are produced in industrial scale. The
rise of biomass price could also significantly increase the RSP of liquid fuels in our study. This
effect was more prominent in BTE because more biomass was required as feedstock. The price

of biomass could be expected to rise through the increased use of biomass. An Austria example
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showed that the increased use of biomass has doubled the wood chip price from 7.50 € m3in
2005 to 16.45 € m3in 2012 (Kristofel et al. 2014). IRR was sensitive in the production of liquid
fuels because large proportion of total cost was investment of capital cost and a competitive price

of liquid fuel could be obtained only when there is a low IRR required.

4.4.3. LCA and Uncertainty Analysis

The BTE presented low GHG emissions that was lower than Hsu et al.’s study (2010)
because of the reduced emission in transportation and distribution. However, the energy
conversion efficiency was low, thus more biomass was required than BLFP. BLFP had high
water and energy consumption, of which over 90% was attributed to the conversion process. The
fossil energy consumption can be reduced if the required electricity could be provided by
biomass as a portion of the feedstock. However, the GHG emissions for feedstock handling
would increase consequently. The bio-char from BLFP could be used for soil application to add
more environmental and economic benefits if the yield of bio-char is high (Miller-Robbie et al.

2015) and the price of liquid fuels might be reduced considerably (Gerhard et al. 2014).

Emissions from biomass are usually considered as carbon neutral, but large amount of
GHG emissions will increase the payback time from the regrowth of forest or grassland. In this
study, the BTE resulted in higher biogenic emissions because of its requirement of relatively
larger amount of biomass. Biogenic GHGs in BLFP will also increase if the fossil energy
consumption is substituted by biomass energy. This increase of biogenic GHGs means high
usage of biomass that leads to an increase of the environmental impact and costs in biomass

supply chain.

Uncertainty is inevitable for any industrial process but it could be minimized through

the robust planning and analyses. A range of liquid fuel yield for both BTE and BLFP was
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assumed based on the change of feedstock property, operation condition, facility scale (Hsu et al.
2010, Hsu 2012). Higher environmental impact could be expected if the liquid fuel yield was
low. This is because more biomass need to be supplied for producing same amount of liquid

fuels. Lower liquid fuel yield in BLFP also increased the expected fossil energy input which

increase the possibility of negative energy output, thought the possibility is lower than 2.5%.

4.4.4, GHG Emissions Reduction

The efficiency of GHG emissions reduction was assessed in terms of the costs, fossil
energy and water consumption by reducing one kg CO2 eq GHG emissions. BTE has higher cost
efficiency than BLFP in reducing GHG emissions. It took $0.48 for the BTE to reduce one kg
CO2 eq GHG emissions. However, to reduce same amount of GHG emissions, more biomass
was required to produce ethanol than diesel and gasoline. BLFP had much higher water and
energy consumption in the comparison to BTE. The utilization of biomass was emphasized for
GHG emissions reduction and energy independence. Each biomass to liquid fuel pathway in this
study had its disadvantage and advantage. The proper choice largely depends on what is the

major emphasize, costs, environmental impact or liquid fuels production.

45. CONCLUSIONS

The economic model was developed to maximize the profit of forest residue utilization.
Fast pyrolysis derived liquid fuels cost more and require higher RSP. Ethanol had the lowest
RSP. The RSP could be increased by increasing the price of biomass and decrease of IRR.
Liquid fuel yield had most prominent effect on RSP, followed by IRR and price of biomass. The
life cycle assessment showed the intensive water and energy consumption in BLFP. BTE had

lower GHG emissions to produce same amount energy equivalent liquid fuel. The uncertainty
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analysis of LCA showed that the fossil energy consumption in BLFP could be larger than 1,000
MJ, and the possibility was lower than 2.5%. The LCA study integrated with economic analysis
showed that all the technologies had their advantages and disadvantages, such as the costs to

produce ethanol were low but it required more biomass for same amount of product in energy.
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ABSTRACT

A modeling process was developed to examine the economic and environmental benefits of
utilizing energy crops for biofuels and bio-products. Three energy crops (hybrid willow,
switchgrass and miscanthus) that can potentially grow on marginal agricultural land or
abandoned mine land in the Northeastern United States were considered in the analytical process
for the production of biofuels, biopower and pellet fuel. The supply chain components for both
the economic and life cycle modeling processes include feedstock establishment, harvest,
transportation, storage, preprocessing, energy conversion, distribution and final usage.
Sensitivity analysis was also conducted to assess the effects of energy crop yield, transportation
distance, bioproduct yield, different pretreatments, facility capacity and internal rate of return
(IRR) on the production of bioenergy products. The RSPs were ranged from $7.39/GJ to
$23.82/GJ for different bioproducts. The production of biopower had the higher required selling
price (RSP) where pellet fuel had the lowest. The results also indicated that bioenergy production
using hybrid willow demonstrated lower RSP than the two perennial grass feedstocks. Biopower
production presented the lowest GHG emissions (less than 10 kg CO2eq per 1,000 MJ) and fossil
energy consumption (less than 160 MJ per 1,000 MJ) but with the highest water consumption.
The production of pellet fuel resulted in the highest GHG emissions. Sensitivity analysis
indicated that bioproduct yield was the most sensitive factor to RSP and followed by
transportation distance for biofuel and biopower production. Bioproduct yield and transportation
distance of feedstock presented great effects on environmental impact for the production of

liquid fuels and biopower.
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5.1. INTRODUCTION

Biomass is being considered as a carbon neutral energy resource. It is preferred to be a
substitution of fossil energy resources to reduce the greenhouse gas emissions. The interest in the
usage of cellulosic biomass for biofuels and bioproducts has been steadily increased due to the
environmental and energy independence concerns (Paul 2009). Biomass could be used to
produce different forms of bioenergy products, such as traditional firewood, pellet, electricity,
ethanol, and other biofuels. However, biomass feedstock production usually requires more land
cover change to provide the same amount of energy as fossil fuels (Searchiger etal. 2008).
Consequently, the production cost of bioenergy from biomass is typically higher than fossil fuels
(Brown 2015).

Cellulosic biomass has been traditionally combusted for heat in human history. The ash
from combustion is sprayed in field as fertilizer. To improve the biomass heating efficiency,
pellet was then introduced and is a product that densifies the loose biomass and becomes popular
as solid biofuel (Fantozzi and Buratti2010). The densification of biomass not only improves the
efficiencies in biorefinery facilities but also reduces its handling costs (Yancey et al. 2013), even
though densification itself also consumes energy. Biomass fired power plants produce electricity
and heat using either direct fired or gasification system (EPA 2007). The efficiency to produce
electricity using biomass may be low (<30%) but the product is easy to distribute (Perilhon et al.
2012). Biomass derived liquid fuels have been introduced in different pathways including
biological and thermochemical processes. Fast pyrolysis could also produce reliable liquid fuels
which can be blended with petroleum derived liquid fuels (Augustinova et al. 2013).However,
the production of lignocellulosic biofuels still faces many technical, economic, environmental

challenges.
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Many analyses have been conducted on biomass supply chains in terms of economic,
environmental or life cycle assessments. Earlier economic analysis of biomass utilization focused
on biomass-fired power plants (Kumar et al. 2003, Perilhon et al. 2012), such as optimization of
plant size based on available biomass, and the cost of different sizes of pellet facilities (Sultana
et al. 2010, Pirraglia et al. 2013). Onthe other hand, life cycle assessments (LCA) were
conducted separately to analyze environmental impact of biomass utilization. For example, GHG
emissions could be reduced 30-63% through utilizing biomass pellet fuels instead of natural gas
(Fantozzi and Buratti 2010), and 56-77% from using pyrolyzed biofuels compared to fossil fuels
(Snowden-Swan and Male 2012, Hsu 2012).

Although the utilization of biomass presents a lower environmental burden, the handling
cost of biomass is usually higher than fossil fuels (Sharma et al. 2013, Hartley 2014). The
techno-economic analysis conducted on fast pyrolysis estimated that the cost of this biofuel can
range from $0.40/gal to $3.07/gal (Ringer et al. 2006; Wright et al. 2010). Brown (2015)
recently reviewed techno-economic analyses of fast pyrolysis of biomass and found that the
required selling price (RSP) varied from $1.93-$3.70/gal of gasoline equivalent. Similarly, a
range of costs were shown using different boiler systems for biopower generation using biomass
(IRENA 2012), including the capital cost of $1.8-$5.7 million/MW and operational and
maintenance cost contribution 9%-20% of total cost. The production cost of biomass pellet also
varies dramatically according to the physical location and capacity of the pellet facility, ranging
from $122/ton to $170/ton (Sultana et al. 2010). For a 100,000 tons/year pellet facility, its
production cost could be up to $199/ton (Pirraglia et al. 2013). The RSP of pellet was $174/ton

when the biomass delivered cost was $45/ton (Hunsberger and Mosey 2014).
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Energy crops such as hybrid willow and warm-season grasses on abandoned and marginal
agricultural and mine lands in the Northeastern U.S. could be possibly utilized as sustainable
bioenergy feedstocks in this region. These energy crops could provide flexibility for processing
plants because they can be strategically deployed spatially and temporally to optimize efficiency
of biofuels production (Hinchee et al. 2009). Furthermore, these crops would provide a stimulus
to the regional rural economies through converting marginal agricultural and abandoned mine
lands to productive and profitable uses. Energy crops usually have high growth rates, and can be
genetically enhanced for robust adaptation to the biotic and abiotic stresses encountered in the
region, efficient processivity, and high energy content.

There appears necessity to analyze the environmental and economic impact of utilizing
bioenergy crops for major possible pathways at a regional scale. The objectives of this study
were to: (1) develop an economic model to analyze biomass energy supply chains in the
northeastern U.S., (2) perform a cradle-to-grave life cycle assessment (LCA) to examine the
environmental impact of utilizing the energy crops for bioenergy products, and (3) conduct
sensitivity analyses of the production of bioenergy products according to energy crop yield,

transportation distance, bioproduct vyield, facility capacity and internal rate of return (IRR).
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Table 5-1. Physical properties and requirements of three energy crops for three bioenergy

products.
Moisture Ash  Energy Density Yield
Name Content(w.b.) Content (HHV: MJ/kg) (odt/ha) References
10.7- Fahmi eral 2008; Stolarski ef al.
Willow 44% 2.33% 19 14.1 2013; Caputo et al. 2014.
Bai ef al. 2010; Sokhansanj et al.
2009; Fahmi et a/. 2008; Khanna et al.
Switchgrass 34% 4% 18 6.6-12.6 2008;Marra efal. 2012
10.9- Fahmi et a/. 2008; Khanna et a/. 2008;
Miscanthus 34% 3% 17 247 Brosse ef al. 2012. Miguez et al. 2009
Product Particle Size Moisture Content (w.b.) Citation
Brown and Holmgren 2009; Jones et
Biofuel <2 mm <10% al. 2009.
Biopower <2in <50% Mann and Spath 2001; EPA 2007.
Chen 2009; Fantozzi and Buratti
Pellet <U4in <10% 2010.

5.2. MATERIALS AND METHODS

5.2.1. Study Area and Base Case Scenario

The study focused on the northeastern U.S., including New York, Pennsylvania, West
Virginia and other states. The regions has available marginal agricultural land of over 2.8 million
ha (Graham 1994) and abandoned mine land of 0.5 million ha (Rodrigue and Burger 2004),
respectively. These lands are generally categorized with rocky and sloped soils and are
compatible to the development of perennial energy crops. The temperate climate in this regional
so provides the conditions of producing biomass of higher yield. Annual yield from hybrid
willow and miscanthus could be 10.7-14.1 odt/ha (Fahmi er a/ 2008; Stolarski ef a/ 2013;
Caputo ef a/ 2014) and 10.9-24.7 odt/ha (Fahmi er a/ 2008; Khanna er a/. 2008; Brosse ef al.
2012. Miguez et al. 2009).

Three biomass feedstocks: hybrid willow, switchgrass and miscanthus were included in

this study, which are being considered as the dedicated energy crops in the Northeastern U.S.
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The physical properties of these three feedstocks were described in Table 5-1.Three bioenergy
products were examined: biofuel by fast pyrolysis, biopower, and pellet fuel. The preprocessing
requirements of feedstocks for energy products are different according to different conversion
pathways, such as particle size, energy density, moisture content and ash content (Table 5-1).The
base case of the analyses primarily included the following process components: feedstock
development, storage, transportation, preprocessing, conversion and final uses of the biomass
energy products. The capacity was 1,000 bbl/day, 20 MW and 180,000 dry tons per year for
biofuel, biopower and pellet fuel facilities, respectively, based on a feedstock demand of 200,000

dry tons per year.

5.2.2. Economic Modeling

5.2.2.1.  Supply Chain Model Development

A mixed integer linear programming (MILP) model was formulated with the objective to
minimize the costs of delivering biomass feedstocks to the gate of a biomass energy facility. The
decision variables included quantity of feedstock harvested and quantity of feedstock transported
among harvest site, short-term storage, and location of bioenergy facility.

The total delivered cost () that consists of the following cost components: biomass
feedstock establishment (f), harvest (#), transport (z) and storage () can be formulated as
follows:

Miny=f+n+t+ u (5-1)

The cost of field handling system is made up of two parts: the cost of the actual
harvesting operations and investment for energy crops plantation. In this model, the investment
for plantation (pc,,) was calculated as dollars per dry metric ton where m was one of the energy

crop M. Different harvest systems were considered for short rotation willow crop and perennial
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grasses, and the cost of per dry metric ton of energy crop was represented as hc,,. The feedstock

establishment and harvest cost was calculated using the following equations:

T J] 1 M

F=) D0 g X Do (5-2)
T J I M

n=2222xmmxhcm 5—3)

Where x,,; . (dry metric ton) is the amount of energy crop m harvested in area i and
transported to location j at period t.

Transportation is a major cost element in all energy projects because of relatively low
energy density of biomass and its wide spatial distribution in comparison to fossil fuels. The
transportation of biomass feedstocks is affected by many factors including availability, demand

and spatial distribution. It can be calculated with the following equation:

T J] I M

Where tc,, ($ tont knt?) is unit transportation cost of energy crop m and d;; (km) is
distance from area i to candidate facility j.

The ability to store biomass will be a key to ensuring that a continuous, sufficient supply
is available throughout the year. Uncertainty in supply of feedstock will also necessitate a certain
level of storage to ensure sufficient supply during periods of reduced production. The cost of

storage is calculated with equation (5):

J 1 Mt
u=2222x5mijt><scm (5-5)
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Where sc,,is storage cost of energy crop mand xs,,; ;. (dry metric ton) is the amount of
energy crop m stored at location j from area i at period t.

The objective function developed is subject to a series of constraints such as material
balance, resource availability and operational constraints. Equation (5-6) ensures that there is
only one candidate location can be used for a bioenergy processing facility within a certain
procurement radius. Equation (5-7) ensures no feedstock will be delivered to a location that is
not open for bioenergy production. Equation (5-8) indicates that the amount of feedstock that is
transported from a harvest area is less than or equal to the total available amount. Equation (5-9)
represents that the feedstock shipped to a location plus the storage from previous period is equal
to the amount of feedstock processed and the storage. Equation (5-10) imposes the total amount

of feedstocks processed should not exceed the demand of a processing facility at a specific

location.
]
Zyj <1 5-6)
Xmije SCy,VmeM,i€l,je]JandteT (5-7)
J
meijtSAmit,VmEM,iEIanthT (5—-18)
I
meijt + XSpijt-1 = XPjme T XSmije, YM € M,j € ] andteT (5-9)
M
prjmt <Dy,VjejandteT (5—-10)
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Where C is a defined positive number that is larger than any possible x A ls the

mijt-
amount of harvestable energy crop m in area i at period t. xp;,,,, is the amount of energy crop m

processed in location j at period tand D, is feedstock demand of location j at period t.

5.2.2.2. Economic Model Configuration for Base Case

Feedstock development and harvest cost of energy crops included the machine costs for
land preparation, plantation, fertilizer, pesticide spray and harvest were based on the settings by
Duffy (2013) and Schweier and Becker (2012). The round-trip transportation of wood chips and
bales were assumed to be $0.24 ton't-knr®(Kerstetter and Lyons 2001) in the base case. Storage
cost of feedstock was assumed to be $5 dry ton't. The capital cost, operational and maintenance
cost of fast pyrolysis were based on the results of techno-economic analyses conducted by
Wright et al. (2010). Average costs of biomass fired power plant in IRENA’s report (2012) were
used as facility cost to produce biopower. A techno-economic analysis by Sultana et al. (2010)
provided costs to operate a pellet facility. Internal rate of return was assumed 15% in base case.
RSP at facility gate was calculated.

5.2.3. Life Cycle Assessment

5.2.3.1.  System Boundary and Life Cycle Inventory

The system boundary of this cradle-to-grave LCA model (Fig. 5-1)included land
preparation, plantation, harvest, transportation, storage, preprocessing, bioproduct conversion,
distribution final usage and waste disposal. The environmental impact will be assessed in terms
of the GHG emissions, blue water consumption, fossil fuel consumption and human health
impact. The health impact considered in this study were carcinogenics, respiratory effects, ozone
depletion and human toxicity. The functional unit (f.u.) was 1,000 MJ of energy equivalent

bioenergy product produced in the system.
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Fig. 5-1. System boundary and processes of the three energy crops for three bioenergy products.

The field operation of hybrid willow system includes 1-year land preparation and seven 3-
year rotations (Caputo et al. 2014) while the grass field operation system is 1-year land
preparation and ten 1-year rotations (Liu and Kemmerer 2011). The grass and willow use
different land preparation, planting and harvesting systems (Caputo et al. 2014; Duffy 2013; Liu
and Kemmerer 2011). The procedures of land preparation for willow include mowing, plowing,
disking and cultipacking. After the preparation, willow cuttings were planted by a planter. The
harvest system was a single pass cut-and-chip harvester with a short rotation coppice head. A
forage wagon was also included to transport biomass chips to a bigger van, the chips were then
transported to a storage area. For perennial grasses, disking, harrow, and plowing are typically
performed in land preparation while the harvest system includes disk mowing, tedding, raking
and baling.

The data on biomass transportation were derived from the US LCI database provided by
National Renewable Energy Laboratory (NETL) while energy and material usage at storage were

based on the Emery and Mosier’s results (2012). The energy consumptions of preprocessing
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including grinding, drying, hammer milling were based on the measurements of the ldaho
National Laboratory’s (INL) Process Demonstration Unit (PDU) (Kenney et al. 2013). The
percentage of feedstock needs to be processed in hammer mill usually depends on the required
particle size. For example, 25% of feedstock was needed to go through harmer mill if the
required particle size was less than 2mm and 15% if the required particle size was less than %"
(Kenney et al. 2013).

The LCA inventory data for fast pyrolysis and biopower generation were derived from
previous studies by Hsu (2011) and Spath et al. (1999). The resource consumptions in the
production of pellet fuel were based on the measurements by INL (Yancey et al. 2013). An
average distribution distance of 100 km (62.5 miles) was assumed for bioenergy products from
plants to end users. The liquid fuels were considered to be combusted in flex-fuel passenger cars
(Wang 2009). The maintenance of the distribution grid for biopower generation was adapted
from Jorge et al.’s results (2012). No emission was assumed for electricity in usage. Pellet was
combusted in industrial boiler and the emission was derived according to the properties of the
feedstock (Brassard et al. 2014). All the other related background processes were based on the

SimaPro built-in database Ecoinvent 3 processes. All the detailed processes were in Appendix D.

5.2.3.2.  Life Cycle Impact Assessments

The LCA model was developed using the environmental modeling tool SimaPro v8 (PRé
Consultants 2014). The following indicators were assessed in terms of life cycle impact
assessments. The 100-year global warming potentials of GHG (Forster et al. 2007) were
calculated in carbon dioxide equivalent amount (kg CO2eq).The blue water footprint (kg) was
analyzed following the Boulay et al.’s method (2011). The fossil energy consumption (MJ) was

based on the results by Frischknecht et al.(2007).Carcinogenics (CTUh), respiratory effects (kg
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PM2.5 eq) and ozone depletion (kg CFC-11 eq) were calculated using the methods provided in

TRACI (Bare 2012). The CML-1A was used to assess human toxicity (kg 1,4-DB eq). Two-way

ANOVA was applied to analyze the major factors that explain the variance of life cycle impact

indices. The difference of human health indices was studied by principal component analysis

(PCA). All the statistical analyses were conducted in R 3.1.1 software.

Table 5-2. Parameters for base case and sensitivity analysis.

Parameter Base Case Sensitivity Setting Note and references

Willow — Yield 12.4 odt/hal 10.7 - 14.1 odt/ha Yield increases from minimum

Switchgrass — Yield 9.6 odt/ha 6.6-12.6 odt/ha to maximum yield by 10% of

Miscanthus - Yield 17.8 odt/ha 10.9-24.70dt/ha their difference.

Transportation 50 miles 10 — 100 miles The distance increases by 10
miles each time.

Biofuel - 0.39 tons feedstock/bbl 0.33-0.45 odt Amount of feedstockdemand

Bioproduct yield of fuel feedstock/bblof fuel increases from minimum to

Biopower — 0.84 tons 0.63-1.05 odt feedstock/ maximum Yyield by 10% of their

Bioproduct yield feedstock/MWh of MWh of biopower difference.

biopower

Pellet — Bioproduct
yield

1.11 tons feedstock/ton
of pellet

1.05-1.17 tons
feedstock/ton of pellet

1<odt” is “oven dry metric ton”.

5.2.4. Sensitivity and Uncertainty Analyses

The effects of crop yield, transportation distance, bioproduct yield, facility size and IRR

on RSP were analyzed in terms of sensitivity and uncertainty (Table 5-2). Maximum and

minimum yield and bioproduct yield were tested for every energy crop and bioenergy product. A

range of 16-160 km (10 -100 miles) of hauling distance for feedstock were examined to test the

sensitivity of RSP on transportation distance. To analyze the effect of facility capacity, 20%

larger and 20% smaller facility than the base case were examined. An IRR ranging from 10%

and 20% was also examined for its effect on the RSP. The sensitivities of the environmental

impact of biomass utilization were also conducted on crop yield, biomass transportation distance

and bioproduct yield (Table 5-2).
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5.3. RESULTS

5.3.1. Base Case Scenario

The cost of each component was analyzed by feedstock and energy product (Fig. 5-2). The
total costs changed from $72.64/bbl to $78.31/bbl for biofuel ($14.44/GJ-$15.57/GJ), from
$73.57/MWh to $85.74/MWh for biopower ($20.44/GJ-$23.82/GJ) and from $125.18/ton to
$143.79/ton for pellet ($7.36/GJ-$7.99/GJ). The percentage of cost in transportation was ranging
from 13%-31%. Percentage of capital cost for facilities to produce pellet fuel (3.6%-4.1%) was
lower than the other two facilities (18.5%-22.2%). Operation and maintenance expenses ranged
from 9.54% in the production of biopower by miscanthus to 49.63% in the production of pellet
fuel by willow. Operation and maintenance costs for biopower generation accounted for 10-11%
of the total cost and were lower than for biofuel and pellet production. Cost of plantation
contributed 10.6%-27.7% of the total cost and cost of harvest contributed 5.6%-33.85%. Willow
had lower cost in plantation and harvest than the other two energy crops. Storage was a small
portion of total cost, which only accounted less than 1%.

The RSP ranged from $131.22/bbl to $136.9/bbl for biofuel, $160.12/MWh to
$172.28/MWh for biopower, and $132.99/ton to $151.6/ton for pellet fuel (Table 5-3). The
production of biopower presented higher RSP of $44.5/GJ-$47.9/GJ compared to $26.1/GJ-
$27.2/GJ and $7.8/GJ-$8.4GJ for the production of biofuel and pellet fuel, respectively (Table 5-
3). For the production of the same bio-energy product, the RSP using hybrid willow was 0.5%-

5.8% lower than using the other two energy crops.
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Table 5-3. Required selling price of bioenergy products by energy crops.

Biofuel: $/bbl Biopower $/MWh
Crops ($/Q7) ($/Q)) Pellet: $/ton ($/GJ)
Willow 131.22 (26.1) 160.12 (44.5) 132.99 (7.8)
Switchgrass 136.90 (27.2) 172.28 (47.9) 151.60 (8.4)
Miscanthus 13172 (26.2) 161.17 (44.7) 134.23 (7.9)

Capital Operation

Table 5-4. GHG emissions for the production of the three energy products by energy crops.

; Total
Species Utilization  Plantation Harvest Storage anq Production  Distribution Final Waste (kg CO2

preprocessing Usage disposal eq)

Willow Biofuel 0.78 0.19 13.60 25.00 0.76 1.60 0.04 4143
Biopower  2.23 0.56 1.93 0.00 113 0.00 0.12 5.46

Pellet 0.63 0.13 7.34 41.79 0.78 0.46 0.03 51.02

Switchgrass  Biofuel 0.87 0.05 12.51 25.00 0.76 1.60 0.07 40.86
Biopower  2.50 0.15 344 0.00 113 0.00 0.20 743

Pellet 0.59 0.03 7.04 47.90 0.78 0.11 0.05 57.38

Miscanthus  Biofuel 0.49 0.03 16.20 25.00 0.76 1.60 0.05 44.14
Biopower  1.42 0.10 5.82 0.00 113 0.00 0.16 8.62

Pellet 0.33 0.02 7.96 47.90 0.78 0.10 0.04 58.08
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The most emissions occurred in the “Storage and preprocessing” and ‘“Production”
processes (Table 5-4). They together accounted for 30-60% of the total emission for biopower
generation, while for over 90% of the total emission for the production of biofuel or pellet fuel.
The biopower production presented the lowest GHG emission among the three bioenergy
products, with an average emission of less than 10 kg CO2eq per 1,000 MJ of electricity
produced. Among the three feedstocks, using willbw shrub for biopower generation
demonstrated the lowest emission at 5.96kg CO2 eq per 1,000 MJ. The GHG emission peaked
when using miscanthus to produce pellet fuel, which was 57.13kg CO2eq per 1,000 MJ of pellet
fuel produced.

Differences of life cycle impact were more significant among the three bioenergy
products than among the three energy crops (Fig. 5-3). Two-way ANOVA showed that more
than 95% of the life cycle impact variance was explained by different utilizations of bioenergy
products. Fossil energy consumption for biofuel production was 71%-73% and 6%-16% higher
than for the production of biopower and pellet fuel, respectively. More fossil energy was needed
to convert miscanthus feedstock to bioenergy products than using shrub willbw and switchgrass
(3.5%-10.5% higher). More water was consumed for biopower generation compared to the
production of biofuel and pellet (47.9%-69.7% higher), though it required a lower input of fossil
energy. The production of biofuel had higher impact on carcinogenics and ozone depletion while
the production of biopower emitted the highest amount of particulate matter 2.5 (PM2.5). The
highest amount of human toxicity materials were emitted when producing pellet fuel. The PCA

of human health impact indices of the biomass to bio-products showed the similar results.
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Fig. 5-3. LCA impact of GHG emissions, fossil energy consumption, blue water consumption and

human health impact by energy crops: (a) willow by bioenergy products; (b) switchgrass by

bioenergy products and (c) miscanthus by bioenergy products.
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5.3.2. Sensitivity Analyses of Economic Benefit

Several factors affect the RSP of bioenergy products including yield of energy crops,
transportation distance of biomass, bioproduct yield and the required IRR (Fig. 5-4). For the
production of biofuel and biopower, the RSP was very sensitive to IRR and bioproduct yield,
followed by transportation distance. The RSP change of 2.6-4.2% and 2.4-3.4% was expected
when IRR and bioproduct yield changed 10%, respectively. The RSP was most sensitive to
transportation distance for pellet fuel production. A 10% change of transportation distance
induced 1.9-2.1% change of RSP. The effect of crop yield on RSP was more prominent for pellet
fuel production, causing the RSP increase of 1.1-2.5% by a 10%.increase of crop yield. A 20%
change of plant scale could course a 0.37-1.0% change of RSP of bioproducts. The effects of
these factors on RSP were similar among energy crops. However, some differences could be
detected among the crops. Relatively lower effects of crop yield and bioproduct yield occurred
on the RSP of bioenergy products from willow feedstock than from perennial grasses.
5.3.3. Sensitivity of Life Cycle Impact

The bioproduct yield was the most significant effect on the environmental impact (Fig. 5-
5). The impact changed from 0.52% to 9.37% with 10% change of bioproduct yield from base
case. However, the effect was not prominent when biomass was used for pellet fuel production,
which the impact changed by 1.14% to 1.94%. By increasing the transportation distance, the
environmental impact was increased accordingly. The impact varied from 0.03%-4.73% with a
10% change of transportation distance. An increase of yield could reduce the environmental
impact. By comparing the environmental impact with changing yield of energy crops by 10%, it
usually had higher influence to produce biofuel (0.13%-0.36%) and biopower (0.23%-5.6%) than

to produce pellet fuel (0.09%-0.4%). However, blue water consumption did not have obvious
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change along the change of yield of crops (0.02%-0.04%). The sensitivity of environmental
impact on yield of crops, transportation distance and bioproduct yield were similar among all the

three energy crops.

54. DISCcUsSION

5.4.1. Cost Components and RSP

Operation and maintenance expenses were made up of up to 50% of the total cost, and
followed by transportation, feedstock plantation and harvest. The production of pellet fuel
required high cost for electricity consumption at facility, so the percentage of operation and
maintenance cost at pellet mill was higher than other two bio-product production systems
(Yancey et al. 2013). Using willbw always presented lower cost than perennial grasses because
of its high energy content that also leads to lower level consumption of biomass to produce the
same amount of energy equivalent bioenergy product. In this study, bio-char and off-gas were
recycled in the process of fast pyrolysis (Jones and Male 2012), so the operation and
maintenance cost for biofuel production could be higher. Because less pretreatment of biomass
was required in biopower generation, its operation and maintenance cost was mainly caused by
boiler systems (IRENA 2012).

In this study, the RSP of liquid fuels produced by fast pyrolysis was $3.14-$3.25/gal, which
is higher than a study by Brown (2015). It is hard to compete with conventional petroleum
derived fuels because the low price of fossil fuels from the end of 2014 till date (EIA 2015). The
price of biopower generation at $160.12/MWh-172.28/MWh was similar to the result by Kumar
et al. (2003) after converting their results to the current dollars. The average annual price of

electricity in 2013 by state in the Northeast ranged from $78.1/MWh in West Virginia to
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$159/MWh in Connecticut according to the EIA Electric Power Monthly Report (EIA 2015).
Our result of the RSP for biopower was a little higher than this range, so it implies the feasibility
of biomass fired power plants could happen in this region if the bioproduct yield can be
improved. Our study indicated that the price of pellet production could be lower due to efficient

feedstock logistics, and lower capital investment for these facilities in the region.

5.4.2. Environmental Impact

Most of the GHG emissions occurred in the “Storage and preprocessing” and ‘“Production”
processes at facility site. The change of GHG emissions among different bioenergy products
could be mostly explained by the different procedures being used at the facilities. The production
of biopower emitted less GHGs than the production of biofuel or pellet fuel. This is because the
heat and electricity in power plants were provided by biomass, thus more feedstock is required
(Perilhon 2012). The GHG emissions were higher when produce pellet fuel because of the high
electricity consumption for operating pellet mill, dryer, grinder and hammer mill. The electricity
consumption was considered as fossil energy produced by coal in the LCA model. If the
electricity consumed to produce biofuel and pellet fuel was generated by biomass or other
renewable resources, the emissions could be reduced. Fast pyrolysis is an energy intensive
process to produce biofuel, the energy consumption could be reduced through recycling
byproducts, off-gas and bio-char, for preheating (Jones and Male 2012). Power plant typically
needs more water for cooling, and consequently the water consumption of biopower generation
is higher than the production of biofuel and pellet fuel.

More energy is required to process miscanthus than switchgrass and willow due to its
properties which make it recalcitrant than other crops (Yancey et al. 2013). Willow has higher

energy content than perennial grasses, as well as specific physical and chemical properties
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(Stolarski et al. 2013), allowing it to be processed or handled easily. Low ash content also
ensures willow has a relatively higher energy bioproduct yield to bioenergy products (Fahmi et
al. 2008). Disposal of ash is always an issue during the production of bioenergy products.
However, ash may be collected and sprayed in the field as fertilizer without further negative
environmental impact.

We found that most of the variations of LCA impact could be explained by different
processes of three bioenergy products. Different feedstock requirements at facility required
different pretreatments with different liquid fuel yield to bioenergy products. The combustion of
biomass in biopower generation produced a relatively higher level of PM2.5 that could possibly
cause respiratory problems of workers. The emission of smoke and dust in power industry is
usually higher than in other industries (Yi etal. 2012). Fossil fuel power generation could
produce high emission of human toxicity materials (Korre et al. 2010). The higher emission of
human toxicity materials during the production of pellet fuel is mainly because of the usage of
the fossil fuel derived electricity. The environmental impact of the production of bioenergy
products did not significantly differ among the three energy crops. The differences were due
primarily to the different bioproduct yield, feedstock development and harvesting systems.
5.4.3. Sensitivity Analyses

Yield of energy crops, transportation distance of biomass, bioproduct yield and IRR were
analyzed to understand their effects on RSP. Bioproduct yield was sensitive in the production of
biofuel and biopower because a little change of bioproduct yield will bring more change on
demand of feedstock comparing to pellet fuel. Longer transportation distance would dramatically
increase the biomass delivered cost. It is essential to reduce the transportation cost through

optimizing biomass logistics (Wu et al. 2011). However, a longer procurement radius is always
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required for large scale biomass facilities. Larger facility requires more biomass which also
increases the biomass handling cost which leads to high RSP (Sultana et al. 2010), so an increase
of facility scale will increase RSP of bioproduct. IRR was sensitive to produce biopower
because large proportion of total cost was investment of capital cost.

Sensitivity analyses on environmental impact were conducted by changing yield of energy
crops, transportation distance and bioproduct yield. Prominent effects on environmental impact
were obtained by changing bioproduct yield. Thus, the improvement of biomass conversion
could significantly reduce GHG emission, fossil energy consumption, water consumption and
human health effects because of the reduction of feedstock demand. Fossil energy consumption
and human toxicity were also sensitive to transportation distance because of most of toxic
emissions were contributed by transportation fuel combustion. The environmental burden of
biopower showed a high sensitivity to feedstock transport distance. This is because a large
amount of biomass is typically required to produce 1,000 MJ energy equivalent biopower. High
biomass demand also leads to a sensitive response of environmental impact by changing the
yield of energy crops. Thus, because less amount of biomass is required to produce same amount
of energy equivalent pellet fuel, environmental impact in biomass to pellet fuel system was less

sensitive in the change of energy crop yield than the other two bioproducts.

5.5. CONCLUSIONS

The economic analysis showed the RSP of different bioproducts ranged from $7.8/GJ to
$27.2/GJ. Biopower had the highest RSP and pellet fuel required the lowest selling price. Most
of the costs were accounted by Operation and maintenance in the production of pellet fuel and

biofuel. The feedstock handling system accounted the most cost in the production of biopower.
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The LCA study obtained environmental impact of different cases. Different bio-products
required different specific preprocess and process procedures, so the variance of environmental
burden and cost were mostly explained by the production of different bio-products. Biopower
had lowest GHG emissions and fossil energy consumption, but had highest water consumption
and particulate matter emission. The production of pellet fuel has highest GHG emissions.

The change of RSP had different pattern among bio-products according to different change
of yield, transportation distance, bioproduct yield, facility capacity and IRR. IRR and bioproduct
yield were most sensitive when producing biofuel and biopower. Transportation distance had
most prominent effect on RSP when producing pellet fuel. The effects of crop yield on RSP was
higher when produce pellet fuel than biopower and biofuel. An increase of facility scale would
generally rise the RSP of bioproducts. The analyses of sensitivity on environmental impact
showed that bioproduct yield was the most significant effect. The increase of transportation
distance would increase the environmental burden accordingly. The increase of crop yield could

reduce the environmental impact.
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6. SUMMARY
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A set of modeling techniques were applied in this dissertation to assess the economics and
environmental impact of the utilization of biomass to produce bioenergy products in the
northeastern United States. According to the results from the models and case scenarios, as well

as sensitivity analyses, the following conclusions can be drawn:

Q) In the base case, the average sequestration potential was 0.408 Mg - ha™! - year 1.
Several factors affected the carbon sequestration rate of the central Appalachian mixed hardwood
forests. They included: permissible contiguous harvest area, carbon price, biomass price, and
harvest intensity. Carbon price and harvest intensity were the two most sensitive factors. The
results of the model showed that less timber would be harvested with the rising of carbon price.
If forest carbon price is high enough, harvest intensity would be limited and a maximum carbon
sequestration would be achieved. When the carbon to timber price ratio was low, lower harvest
intensity of partial cut would allow more carbon storage compared to clear-cut. Large area
limitation would be preferred when the carbon price was low. The increase of biomass price
could encourage more harvest which subsequently resulted in a reduction of carbon
sequestration.

2) Economic and environmental modeling is a viable process to analyze the effects of coal
and biomass utilization for the production of liquid fuels. The RSP of liquid fuels was
$113.01/bbl with the GHG emissions at 93.6 kg CO2eq/1,000 MJ for the base case. Over 80% of
the total cost was associated with the purchase of feedstock and operation and maintenance of
the facilities. Most of the GHG emissions were attributed to the thermo-chemical conversion and
combustion of final uses (85.5%). Most of blue water and fossil energy were consumed in
conversion process at CBTL facility. The price change of feedstock directly affected the RSP.

More biomass mixed with coal and lower liquid fuel yield would rise the RSP. The highest RSP
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was $157.9/bbl when the biomass/coal mix ratio was 30/70 at the minimum liquid fuel yield
while the lowest RSP was $104/bbl when no biomass was used and at the maximum liquid fuel
yield. Lower IRR would definitely allow to reduce the RSP. A 20% change of capital cost and
operational and maintenance cost could result in 10-12% and 1.93-2.26% change of the RSP for
different mix ratios. Sensitivity analyses conducted on LCA showed the effects of mix ratio and
liquid fuel yield on GHG emissions. High biomass ratio in the feedstock and high liquid fuel
yield would reduce the GHG emission.

3) Two potential utilizations of forest residues for small scale production of bioenergy in
West Virginia were analyzed for the economic and environmental effects. The RSP in base case
was $90.87/bbl for ethanol and $126.08/bbl for diesel and gasoline. The sensitivity analysis
showed RSP was significantly affected by liquid fuel yield and followed by IRR and price of
biomass. A 10% change of liquid fuel yield would lead 5.98% and 6.94% change of RSP for
BTE (biomass to ethanol) and BLFP (biomass to liquids via fast pyrolysis). The GHG emissions
were 9.72 kg CO2 eq and 30.5 kg CO:2 eq for BTE and BLFP, respectively. BLFP had more
intensive water and energy consumption than BTE. The uncertainty analysis of LCA showed the
possibility of negative net energy output but the possibility was lower than 2.5%.

4) The economic analysis showed the costs of bioproducts from energy crops changed from
$7.36/GJ to $23.82/GJ. Most of the costs in the production of biofuel and pellet fuel were
accounted by operation and maintenance of facilities. The feedstock handling attributed to the
most of the cost in the production of biopower. The RSP ranged from $7.8/GJ to $27.2/GJ for
different bioenergy products. Biopower had the highest RSP ($26.1/GJ-$27.2/GJ) and pellet fuel
required the lowest selling price ($7.8/GJ-$8.4/GJ). The environmental impact of biomass to

bioenergy products were assessed by LCA model. The GHG emissions ranged from 5.96 kg CO>

137



eq per 1,000 MJ to 57.13 kg CO2eq per 1,000 MJ. Biopower had the lowest GHG emissions
while pellet fuel bore the highest GHG emissions. Biopower also had the lowest fossil energy
consumption but required the highest water consumption compared to the other two products.
Different bioproducts required different specific preprocess and process procedures, so the
variances of environmental burden and cost were mostly explained by the production process of

different bioproducts.

Sensitivity analyses showed RSP was affected by crop yield, transportation distance,
bioproduct yield, facility capacity and IRR. In the production of biofuel and biopower, a 10%
change of IRR and bioproduct yield could change RSP by 2.6-4.2% and 2.4-3.4%, respectively.
The RSP was most sensitive to transportation distance in the production of pellet fuel. The
increase of facility capacity by 20% could only lead to a 0.37-1.0% increase of RSP. It also
showed that bioproduct yield was the most significant effect. A change of 10% of bioproduct
yield would change 0.52-9.37% of environmental impact. An increase of transportation distance

would also result in an increase of the environmental burden accordingly.
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APPENDIX A. SUPPLEMENTAL INFORMATION FOR CHAPTER 2

The difference of this model from the previous models is that it allows multiple cuts of a

stand in the planning horizon. This modification will provide more options to optimize the total

revenue and increase the carbon sequestration.

A.1l. VARIABLE IN THE MODEL

A binary variable x;, was defined to represent the harvest decision for a stand:

. = {1, if stand i is harvested at period ¢;
it |0, otherwise.

Binary variable y,;, is defined to represent the virtual adjacency:

are virtual adjacency stands or i = j;

1,if stand i and stand j are havested in same period t, and they
Yijt = {
0, otherwise.

An integer variable a;, represents stand age of stand i at time period t.

A continuous Vvariable G;.is the above-ground dry biomass in Mg of stand i at period t.

A binary variable aTem;;, (k < t) is defined as:

Lif (g # X3 A%y = )V (xy = TNk = 1)

alTem;,, = .
thet {0,otherw1se.
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A.2. THE PARAMETERS USED IN THIS MODEL

Table A-1. Explanation and configuration of parameters.

Name Definition Value Reference
A; The area of stand j (ha) Inventory
ADJ describe the adjacency of every two Inventory
stands
AgeR The minimum permissible stand age 40 Sharma et al. 2011
age; The initial stand age of stand i 80 Inventory
ah The minumum age of a stand could be h: 20
AR The maximum permissible contiguous h 40 Sharma et al. 2011
foi(air) Growth function of the aboveground dry Simulation
foi Caye) Stand carbon storage function of stand i Simulation
G; The initial aboveground biomass of stan Inventory
Tco, The coefficient used to convert Carbon 3.667
into COz equivalent
Tary The coefficient used to convertdry 05 de Wit et al. 2006
biomass into Carbon
Y The length of each period (year) 5
p The percentage of biomass that is 0.65 Wu et al. 2012
economically available
) Percentage of wood product other than = 82%
Np Percentage of woody residue in total 60%
above-ground biomass
Nr Percentage of raw timber in total above-  60%
ground biomass
A Allowable deviation in even flow constr: 0.15 Goycoolea et al. 2005

The parameters ng, 1, & were calculated according to the results in Sharma’s thesis

(Sharma 2010). It said, for 66 cubic meters of timber produced, there will be approximately 66

cubic meters logging residue left in the forest and 33 cubic meters mill residue. It is also assumed

that all the above-ground standing timber is harvested for a stand under clear cut scenario

including 30% of long lived wood products (US DOE, 2007).

_ 66 (logging residue) + 33(mill residue)

B

_ 66 (timber produced) + 33(mill residue)

66 + 66 + 33

Nr =

66 + 66 + 33

X 100% = 60%

X 100% = 60%
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66 (timber produced) X 30%
66 + 66 + 33

6=1 X 100% = 82%

The coefficient 7, was used to convert Carbon into CO2zequivalent. This is because the

1
27.27%

percentage of Carbon in COz s ﬁ X 100% = 27.27%. Then = 3.667.
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A.3. JAVA CODE TO SOLVE THE PROBLEM

* File: SolveEldorado.java
*Version 12.2

*

* Licensed Materials - Property of IBM

* 5725-A06 5725-A29 5724-Y48 5724-YA9 5724-Y54 5724-Y55
* Copyright IBM Corporation 2001, 2010. All Rights Reserved.
*

* US Government Users Restricted Rights - Use, duplication or
* disclosure restricted by GSA ADP Schedule Contract with
*IBM Corp.

*

*

* SolveEldorado.java - An implementation of an example from H.P.

* Williams' book Model Building in Mathematical
* Programming. This example solvesa

* food production planning problem. It

* demonstrates the use of CPLEX's

*

linearization capability.
*/

import ilog.concert.*;

import ilog.cplex™;

import java.io.*;

import java.util.Scanner;

import java.lang.Math;

public class SolveEldorado

{
public static void main(String[] args)throws IOException

{
int stand=92;
double areaR=40;
double discount=0.03;
int Y=5;
double le=5;
/linput manage periods and if there is even flow
Scanner pe=new Scanner(System.in);
System.out.print("Please input the total manage period:");
int period=pe.nextint();
double delta=0.5;

/linput the necessary data

FileReader input=new FileReader("area.txt");

double[] area=new double[stand];

pe=new Scanner(input);

for(int i=0;i<stand;i++)
area[i]=pe.nextDouble();

input=new FileReader("initial C.txt");

double[] clnitial=new double[stand];

pe=new Scanner(input);

for(int i=0;i<stand;i++)
cinitial[i]=pe.nextDouble ();
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input=new FileReader("initial B.txt");

double[] blinitial=new double[stand];

pe=new Scanner(input);

for(int i=0;i<stand;i++)
binitial[i]=pe.nextDouble();

input=new FileReader("adjacent.txt");
int[][] adjacent=new int[stand][stand];
pe=new Scanner(input);
for(int i=0;i<stand;i++)

for(int j=0;j<stand;j++)

adjacent[i][j]=pe.nextint();
if(i==j)
adjacent[i][j]=1;

input=new FileReader("age.txt");
int[] age=new int[stand];
pe=new Scanner(input);
for(int i=0;i<stand;i++)
{

age[i]=pe.nextint();

if(age[i]==-1)

age[i]=0;

}

input=new FileReader("linear carbon.txt");

double[] skrewC=new double[stand];

double[] intersectC=new double[stand];

pe=new Scanner(input);

for(int i=0;i<stand;i++)

{
skrewCJ[i]=pe.nextDouble();
intersectCl[i]=pe.nextDouble();
intersectCl[i]=(skrewC[i]*le* le+le*intersectC[i])*area[];
skrewCl[i]=2*le*skrewC[i]*area[i];

}

input=new FileReader("linear biomass.txt™);
double[] skrewB=new double[stand];
double[] intersectB=new double[stand];
pe=new Scanner(input);

for(int i=0;i<stand;i++)

skrewBJi]=pe.nextDouble();

intersectBJ[i]=pe.nextDouble();

intersectBJ[i]=(skrewB[i]*le* le+le*intersectBJ[i])*area[i]*4;
skrewBJi]=8*le*skrewB[i]*area[i];

}

/I** End input data

double price=100;

double[] pW=new double[period];

for(int t=0;t<period;t++)
pW/[t]=price/Math.pow(1+discount,t*Y);
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for(int aa=0;aa<=0;aa=aa+5)
for(areaR=0;areaR<=100;areaR=areaR+10)

{

double bb=(double)aa/10;

System.out.printin("bb="+bb);

double priceC=price*bb;

double[] pC=new double[period];

double[] pB=new double[period];

for(int t=0;t<period;t++)

{
pC[t]=priceC/Math.pow(1+discount,t*Y);
pBI[t]=pWI[t]*0.01;

}

try{
lloCplex cplex=new lloCplex();
cplexsetParam(lloCp lex.IntParam.NodeFileInd,2);
System.out.printin(cplexgetParam(llo Cplex.IntParam.NodeFileInd));
cplexsetParam(lloCp lex.DoubleParam.TiLim, 2000);
HoNumVar[][] x=new lloNumVar[stand][period];
for (int w = 0; w < stand; w++)
x{w]=cplex.numVarArray(period, 0, 1,
lloNumVarType.Int);//ddd
lloNumVar[][][1 y=new lloNumVar[stand][stand][period];
for(int wl=0;wl<stand;wl++)
for(int w2=0;w2<stand;w2++)
y[wl][w2]=cplexnumVarArray(period, 0, 1,
lloNumVarType.Int);

lloNumVar[][] a=new lloNumVar[stand][period];//ddd
for(int i=0;i<stand;i++)
a[i]=cplexnumVarArray(period,0,1000,
lloNumVarType.Int);

lloNumVar[][] G=new lloNumVar[stand][period];//ddd
for(int i=0;i<stand;i++)
Gli]=cplex.numVarArray(period,0,10000000);

lloNumVar[][][] aTemp=new lloNumVar[stand][period][period];//ddd
for(int i=0;i<stand;i++)
for(int j=0;j<period;j++)
aTemplil[jl=cplex.numVarArray(period,0,1,
lloNumVarType.Int);//define all the variables;

lloNumBxr[][] objvalsC=new lloNumBExpr[stand][period];

lloNumBxr[][] objvalsB=new IloNumBExXpr[stand][period];

lloNumBxXpr[][] objvalsCO=new lloNumExpr[stand][period];

lloNumBxpr[][] objvalsTO=new lloNumBExpr[stand][period];

lloNumBxpr[][] objvalsT=new lloNumExXpr[stand][period];
/IThe total revenue includes three components:carbon, timber and biomass(residue).
/IThe raw merchantable timber is 0.6 of the total timber calculated here.
/IThe residue include logging residue and mill residue are 0.6 of the total.

for(int k=0;k<stand;k++)

for(int m=0;m<period;m++)
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{
if(m>0)
objvals TO[K][m]=cplex.sum(cplex.sum(G[K][m-1],cplex.prod(-
1,GIKI[m])),cplex.sum(intersectB[K],cplex.prod(skrewB[k],a[k][m-1])));

else
objvals TO[K][m]=cplex.prod(x[K][m],bInitial[K]*area[K]);//biomass is wet weight;

objvals CO[K][m]=cp lex.prod(3.667,cplex.sum(cplex.sum(intersectC[ k] ,cplex.prod(skrewC[K],a[k][m])),cp lex.prod(-

0.82/4,0bjvals TO[K][M])));

objvalsC[K][m]=cplex.prod(pC[m],objvalsCO[k][m]);
objvals T[K][m]=cplexprod(pW[m]*0.6,0bjvals TO[K][m]);
objvalsB[K][m]=cplex.prod(pB[m]*0.6,0bjvals TO[K][m]);

}
lloNumBxr[] wvC=new lloNumExpr[stand];

lloNumBxr[] wvT=new lloNumBExpr[stand];
lloNumBxr[] wvB=new lloNumExpr[stand];
for(int i=0;i<stand;i++)
{
wvCli]=cplex.sum(objvalsCO[i]);
wvBJi]=cplex.sum(objvals TO[i]);
WvTIi]=cplexsum(objvalsTO[i]);

}

lloNumEXpr[] 12=new lloNumEXpr[stand];
for(int i=0;i<stand;i++)

12[i]=cplexsum(cplex.sum(objvalsC[i]),cplex.sum(objvalsB[i]),cp lex.sum(objvalsT[i]));
cplexaddMaximize(cp lex.sum(12));//objective function;

for(int i=0;i<stand;i++)
for(int j=i;j<stand;j++)
for(int p=0;p<period;p++)

if(adjacent[i][j]l==1){
cplexaddGe(y[il[jl[p].cplex.sum(cplex.sum(x[il[p].x[il [P]).-1.0));

cplexaddLe(y[il[j1[p]l.cp lex.prod(cplex.sum(x[il[p].x[i1[p1).0.5));}
}

for(int i=0;i<stand;i++)
for(int j=i;j<stand;j++)
if(adjacent[i][j]'=1)
for(int p=0;p<period;p++)

lloNumExpr[] v=new lloNumBExpr[stand-2];
int bv=0;
for(int k=0;k<stand;k++)

if(k'=i && k!=j)

v[bv]=cplexprod(y[i][k][p].ad jacent[j] [K]);
bv++;

lloNumExpr b=cplexsum(v);
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cplexaddGe(y[il[j1[p].cplex.sum(cplex.sum(-
2,cplexsum(qi][p].x[i1[p])).cplex.prod(b,1.0/(2.0*stand))));
cplexaddLe(y[il[jl[p]l.cplex.sum(cplex.prod((stand-
0.5)/(2*stand),cplexsum(x[i][p],X[i1[p1)).cple x.prod(1/ (2.0*stand),b)));
}

lloNumBxpr[] r=new lloNumBExpr[stand];
for(int p=0;p<period;p++)
for(int i=0;i<stand;i++)

for(int j=0;j<stand;j++)

{
if(i<j)
rlil=cplexprod(y[il[il[r].arealj]);
else
rlil=cplexprod(y[jl[il[p].arealj]);

lloNumExpr vi=cplexsum(r);

lloNumExpr v2=cplexprod(x{i][p],10000);
lloNumExpr f=cplexsum(vl,v?2);
cplexaddLe(f,areaR+10000);//area restriction
}

for(int i=0;i<stand;i++)
for(int t=1;t<period;t++)
cplexaddGe(a[i][t-1],cplex.prod(x[i][t],20-Y));

for(int i=0;i<stand;i++)
for(int t=0;t<period;t++)
for(int k=0;k<t+1;k++)

if(k<t)

cplexaddGe(aTempli][t][K].cplexsum(@Templi][t-1][K].cp lex.prod (X[i][t].-1)));
cplexaddLe(aTempli][t][K],cplex.prod(cplex.sum(cplex.sum(l,aTemp[i][t-1][K]).cplex.prod(X[i][t].-

1)).0.5));

}
else if(k==t)
cplexaddEq(@aTemp[i] [t1[ K], x[i1[t]);
}
for(int i=0;i<stand;i++)
for(int t=0;t<period;t++)
{
int temp=t*Y+ageli;
lloNumBxpr[] r8=new lloNumBExpr[t+1];
for(int k=0;k<t+1;k++)
r8[K]=cplexprod(k* Y+age[i],aTemp[i][t][K]);
cplexaddEq(a[i][t],cplex.sum(temp,cplex.prod(-1,cplex.sum(r8))));
} /I compute the stand age in a certain age;

for(int i=0;i<stand;i++)
cplexaddEq(G[i][0], blinitial[i]*area[i]);//i should add new number here;

for(int i=0;i<stand;i++)
for(int t=1;t<period;t++)
{
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cplexaddLe(q[i][t],cplex.prod(cplexsum(l,cplex.prod(-1,x[i][t])),Math.pow(10,15)));

cplexaddLe(Q[i][t],cplex.sum(G[i][t-1],cp lex.sum(intersectB[i],cp lexprod(a[i][t-1],skrewB[i]))));

cplexaddGe(GJi][t],cplex.sum(cplex.sum(G[i][t-1],cplex.sum(intersectB[i],cplex.prod(a[i][t-
1],skrewB[i]))),cp lex.prod(-1*Math.pow(10,15),x[i][t])));

if(true)

{
for(int t=1;t<period;t++)

if(t==1)
{
lloNumBxpr[] rl=new lloNumExpr[stand];
for(int i=0;i<stand;i++)
ri[i]=cplexprod(x[i][t-1],bInitial[i]);
lloNumBxr[] r2=new lloNumBxpr[stand];
for(int i=0;i<stand;i++)
r2[i]=cplexsum(cplex.sum(G[i][t-1],cplex.prod(-1,G[i][t])),cplex.sum(cplex.prod(ali][t-
1],skrewBl[i]) intersectB[i]));
cplexaddLe(cplexprod(1-delta,cplex.sum(rl)),cplex.sum(r2));
cplexaddGe(cplex.prod(1+delta,cplex.sum(rl)),cplex.sum(r2));
}

else
{
lloNumBxpr[] rl=new lloNumExXpr[stand];
for(int i=0;i<stand;i++)
ri[i]=cplexsum(cplex.sum(G[i][t-2],cplex.prod(-1,G[i][t-1])),cplex.sum(cplex.prod(a[i][t-
2],skrewBJi]),intersectBJ[i]));
lloNumBxpr[] r2=new lloNumBExpr[stand];
for(int i=0;i<stand;i++)
r2[il=cplexsum(cplex.sum(G[i][t-1],cp lex.prod(-1,G[i][t])),cplex.sum(cplex.prod(a[i] [t-
1],skrewBJi]) intersectB[i]));
cplexaddLe(cplexprod(1-delta,cplex.sum(rl)),cplex.sum(r2));
cplexaddGe(cplex.prod(1+delta,cplex.sum(rl)),cplex.sum(r2));
}

} V¥/flow constraint

lloNumExpr[] r3=new lloNumExpr[stand];
for(int i=0;i<stand;i++)

lloNumBxpr[] rd4=new lloNumExpr[period+1];
for(int p=0;p<period;p++)

ra[p]=cplexprod(:{il[p].(p* Y+ageli]));
rd[period]=cplexprod(period* Y+age[i], cplexsum(l,cplex.prod(-1,cplex.sum(x[il))));
r3[i]=cplexsum(r4);

r3[i]=cplexprod(area[i],r3[i]);
}
double sumArea=0;
for(int b=0;b<stand;b++)

sumArea+=area[b];
cplexaddGe(cplexsum(r3),40.0*sumArea);//age restriction

if(cplexsolve())

{

System.out.printin("Solution status="+cplexgetStatus());
System.out.printin("Solution value="+cplexgetObjValue());
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System.out.printin("this is the price of timber "+price+" this is carbon price "+priceC);
System.out.printin("total C "+cplexgetValue(cplexsum(lwv C)));
System.out.printin("total B "+cplexgetValue(cplexsum(lwv B)));

System.out.printin();

String rr=Double.toString(bb)+"_"+Double.toString(areaR);

rr+=".tx";

PrintWriter re=new PrintWriter(rr);

double gap=100*(cplexgetBestObjValue()-cp lex.getObjValue())/cplex.getBestObjValue();

re.printin(“total carbon (Mg) total timber (Mg) Total Residue(Mg) total revenue ($)");

re.printin(cplexgetValue(cplex.sum(lwv C))+" "+0.6*cplexgetValue(cplex.sum(lwvT))+"
"+0.6*cplexgetValue(cplex.sum(lwvB))+" "+cplexgetObjValue()+" "+gap+"%");

for(int i=0;i<stand;i++)
{
re.print(i+" ");
for(int t=0;t<period;t++)

if(cplexgetValue(x[i][t])>0.5)
re.print(t+1+" ");

re.printin();
for(int i=0;i<stand;i++)
{

for(int j=0;j<period;j++)

if(cplexgetValue(objvalsT[i][j])>1)
re.print(cplexgetValue (objvals T[i][j])/pWIj]+" ");

else
re.print(0+" ");
}
re.printin();
}
for(int i=0;i<stand;i++)
{
for(int t=0;t<period;t++)
{
re.print(cplexgetValue(G[i[t])+" ");
}
re.printin();
}
re.printin();

for(int i=0;i<stand;i++)

for(int t=0;t<period;t++)
{
re.print(cplexgetValue(objvalsCLH)+" ")

re.printin();
}

re.close();
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-

cplexend();
}
catch(lloException e){
System.err.printin("Concert exception™+e+"'caught");}
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APPENDIX B. SUPPLEMENTAL INFORMATION FOR CHAPTER 3

B.1. VARIABLES AND PARAMETERS IN THE ECONOMIC MODEL

Table B-1. Data Sets and Descriptions.

Set Description

Set of coal mines, |C|=954;

Set of logging sites |I|=196;

Set of possible plant scale levels, [L|=12;
Set of plant candidates, |P|=22;

Set of sawmills, |S|=171,;

Set of operation periods, |T|=30.

Ny T =~

Table B-2. Parameters and Descriptions.

Parameter  Description

AC, Available coal in mine ¢ (tons);
Al Available logging residue in in-site place i (dry tons);
AS, Available wood residue in sawmill s (dry tons);

Covs, Liquid fuel yield of liquid fuels from coal (1.89 bbl- ton1);
Covs,, Liquid fuel yield of liquid fuels from biomass (1.26 bbl-ton-1);

ac,, Distance between mine ¢ to candidate plant p (km);
dly, Distance between in-site place i to candidate plant p (km);
dSgp Distance between sawmill s to candidate plant p (km);
f; Federal tax rate applied to the CBTL facilities (40%);
HC Harvest cost ($12.92 ton);
oM Total operation and maintenance cost of the plants ($).
om,; Operation and maintenance cost of a plant if its scale size is | ($);
P, Price of coal ($84.81 ton?);
B Price of logging residue ($1 ton1);
Rv Total revenue (3);
Dy A feasible price of the products ($ 120 bbI1);
P, Price of sawmill residue ($50 ton-1);
FC Total costs for harvesting and purchasing feedstocks ($);
R, Cost of equity (15%);
R, Cost of debt (8%);
Tom Plant maintenance factor (1.04);
TR, Round trip transportation costofcoal ($0.1 ton-1-knr?);
TR, Round trip transportation cost of logging residue ($0.23 ton-1-km?);
TR, Round trip transportation cost of sawmill residue ($0.15 ton-1- knv?);

TC Total cost ($);
TPC Total capital costs (3$);

tpc; Capital costs if a plant is operated in level | ($);
Tr Total transportation costs of the feedstocks ($);
WACC Weighted average cost of capital.
w, Equity proportion (40%);
{ Amortization factor;
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Parameter  Description

n Biomass and coal mix ratio (0/100, 8/92, 15/85, 20/80, 25/75, 30/70, 35/65);
Y Sum of plant maintenance factor;

Table B-3. Variables and Descriptions.

Variable  Description
xC Quantity of coal transported from mine c to plant p in period t (tons);

Xlipe Quantity of logging residue transported from place i to plant p in period t(dry ton);
XSgpt Quantity of wood residue transported from sawmills to plant p in period t(dry ton);
Binary variable decides if the plant p operated in level 1.

cpt

Opl
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B.2. LCAPROCESSESIN SIMAPRO

Table B-4. Processes involved in on the CBTL LCA model 2.

Process Name

Table Number

Loaded and transported to Prep Plant

Coal (dried, stored)

Grinding (Coal)

Preprocessed coal, at conversion facility
Grapple Skidder

Grapple Loader

Chipper

Forest residues processed and loaded at the landing
Forest residue (dried, stored)

Preprocessed residue, at conversion facility
CBTL (Syngas)

CBTL (Diesel)

Distribution, 60 miles

Liquid fuels pumped into vehicle
Transmission of Electricity

Gasoline Combustion

Diesel Combustion

B-5

B-6

B-7

B-8

B-9

B-10
B-11
B-12
B-13
B-14
B-15
B-16
B-17
B-18
B-19
B-20
B-21

@The numbers of all the processes are calculated in the mix ratio is 8/92.

Table B-5. Process “Loaded and transported to Prep Plant”.

Products and co-product

Loaded and transported to Prep Plant 1ton
Materials/fuels

Transport, lorry 16-32t, EURO5/RER U? 8 tkm
Bituminous Coal, at mineP 1ton

a2 Ecoinvent 2.2;

b US-LCI.

Table B-6. Process “Coal (dried, stored)”.

Products and co-product

Coal (dried, stored)? 0.98 ton
Materials/fuels

Loaded and transported to Prep Plant 1ton
Transport, freight, rail, diesel/US UP 29.68 tkm
Fodder loading, by self-loading trailer/CH with US 227 m3

electricity US

& Assuming 2% dry coal loss;

b Ecoinvent 2.2.
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Table B-7. Process “Grinding (Coal)”.

Products and co-product

Grinding (Coal)? 2 ton
Materials/fuels
Electricity, at Grid, US, 2008/RNA UP 6.19E1 kWh

a2 Revised from US-LCI;

b Ecoinvent 2.2.

Table B-8. Process “Preprocessed coal, at conversion facility”.

Products and co-product

Preprocessed coal, at conversion facility 1ton
Materials/fuels

Grinding (Coal) 1ton
Coal (dried, stored) 1ton

Table B-9. Process “Grapple Skidder”.

Products and co-product

Grapple Skidder? 24 ton
Materials/fuels

Diesel, combusted in industrial equipment/USP 13.758 gal
Lubricant oil (1)P 0.247644 gal

@Wu, Jinzhuo, Wang, Jingxin, Cheng, Qingzheng, DeVallance, David. 2011. Assessmentofcoal and biomass to
liquid fuels in central Appalachia, USA. International Journal of Energy Research. 36(7): 856-870;

b Ecoinvent 2.2.

Table B-10. Process “Grapple Loader”.

Products and co-product

Grapple Loader? 24 ton
Materials/fuels

Diesel, combusted in industrial equipment/USP 6.54 gal
Lubricant oil (1)P 0.1172 gal

a\Wu et al. 2011;

b Ecoinvent 2.2.
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Table B-11. Process “Chipper”.

Products and co-product

Chipper? 24 ton
Materials/fuels

Diesel, combusted in industrial equipment/USP 14.52 gal
Lubricant oil (1)P 0.26136 gal

a\Wu et al. 2011;

b Ecoinvent 2.2.

’

Table B-12. Process “Forest residues processed and loaded at the landing”.

Products and co-product

Forest residues processed and loaded at the landing? 1ton
Natural Resources

Carbon dioxide, in air 942 kg
Energy, from biomass 8561 MJ
Materials/fuels

Grapple Skidder 1ton
Grapple Loader 1ton
Chipper 1ton

@Revised from “Hsu, David D., Inman, Daniel, Heath, Garvin A., Wolfrum, Edward J., Mann, Margaret K., Aden,
Andy.2010. Life cycle environmental impact of selected U.S. ethanolproduction and use pathway in 2022.
Environmental Science and Technology.44: 5289-5297”;

Table B-13. Process “Forest residues (dried, stored)”.

Products and co-product

Forest residue (dried, stored)? 0.772 ton
Materials/fuels

Forest residues processed and loaded at the landing 0.62 ton
Transport, lorry 16-32t, EURO5/RER UP 148.73 tkm
Dried roughage store, non ventilated/CH/1 UP 9.75E-8 m®
Conveyor belt, at plant/RER/I UP 3.47E-5 m
Fodder loading, by self-loading trailer/CH with US 227 m3
electricity US

Sawmill Residue 0.16 ton

a2 Revised from “Hsu etal. 2010”;

b Ecoinvent 2.2.
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Table B-14. Process “Preprocessed residue, at conversion facility”.

2

Products and co-product

Preprocessed residue, at conversion facility? 1ton
Materials/fuels

Forest residue (dried, stored) 1ton
Transport, lorry 16-32t, EURO5/RER UP 20 tkm

aRevised from “Hsu etal. 2010”;

b Ecoinvent 2.2.

Table B-15. Thermal-conversion Process “CBTL (Syngas)”.

Products and co-product

Syncrude? 165.41 kg
Light Gases? 24.81 kg
Natural Resources

Water, unspecified natural origin/kg® 183.85 kg
Materials/fuels

Preprocessed coal, at conversion facility 500 kg
Preprocessed residue, at conversion facility 43.3 kg
Thermochemical conversion plant® 5.95E-9 p
Emissions to air

Carbon dioxide, fossil 415 kg
Carbon dioxide, biogenic 23.3 kg

& Simulation based on Aspen Plus: Jiang, Yuan, Bhattacharyya, Debangsu. 2015. Modeling and Analysis of an

Indirect Coal Biomass to Liquids Plant Integrated with a Combined Cycle Plant and CO> Capture and Storage.

Energy and Fuels, 29 (8): 5434-5451.

b Ecoinvent 2.2.

Table B-16. Thermal-conversion Process “CBTL (Diesel)”.

Products and co-product

CBTL (Diesel)? 88.067 kg
CBTL (Gasoline)? 52.966 kg
Electricity CBTL 122,54 MJ
Natural Resources

Water, unspecified natural origin/kg® 65.83 kg
Materials/fuels

Syncrude? 165.41 kg
Light Gases? 24.81 kg
Emissions to air

Carbon dioxide, fossil 26.9 kg
Carbon monoxide, fossil 151 kg

@ Simulation based on Aspen Plus: Jiang, Yuan, Bhattacharyya, Debangsu. 2015. Modeling and Analysis of an

Indirect Coal Biomass to Liquids Plant Integrated with a Combined Cycle Plant and CO> Capture and Storage.

Energy and Fuels, 29 (8): 5434-5451.

b Ecoinvent 2.2.
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Table B-17. Process “Distribution, 60 miles”.

Products and co-product

Distribution, 60 miles? 1 gal
Emissions to air

Carbon dioxide, fossil 28.29 g
Methane 0.0015 ¢
Dinitrogen monoxide 0.0009 ¢
Sulfur oxides 0.1389 ¢
Nitrogen oxides 0.1223 ¢
Carbon monoxide, fossil 0.1638 ¢
VOC, volatile organic compounds 0.0011 ¢
Particulates, unspecified 0.0235 g

aRevised from “Marano and Ciferno 2001”.

Table B-18. Process “Liquid fuels pumped into vehicle”.

Products and co-product

Liquid fuels pumped into vehicle? 0.2973 gal
Electricity/heat

Electricity, low voltage, at grid/US UP 0.0026495 kWh
Liquid storage tank, chemicals, organics/CH/I UP 9.4e-12 p
Distribution, 60 miles 0.297348 gal
Rubber and plastics hose and belting 7.49E-12 USD
Measuring and dispensing pumps 9.17E-15 USD

a2 Revised from “Hsu etal. 2010”;

b Ecoinvent 2.2.

Table B-19. Process “Transmission of Electricity”.

Products and co-product

Electricity, Transmission and distribution? 1,000 MJ
Electricity/heat

Zinc, primary, at regional storage/RER with US

electricity U 0.000267 kg
Glass tube plant/DE/I with US electricity U 2.26E+08 p
Cement, unspecified, at plant/CH with US electricity U 4.17E-06 kg
Steel 1.37E-06 kg
Electricity CBTL 1.00E+03 MJ

2 Revised from Jorge, R.S., Hawkins, T.R., Hertwich, E.G. 2011. Life cycle assessmentofelectricity transmission

and distribution power lines and cables. International Journal of Life Cycle Assessment, 17 (1): 9-15.
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Table B-20. Process “Gasoline Combustion”.

Products and co-product

Gasoline Combustion? 52.966 kg
Electricity/heat
CBTL (Gasoline) 52.966 kg
Liquid fuels pumped into vehicle 2.12E+01
Emissions to air
Carbon dioxide, fossil 1.56E+02 kg
Carbon dioxide, biogenic 8.78E+00 kg
Carbon monoxide, fossil 2.35E+00 kg
Nitrogen oxides 7.41E-02 kg
Sulfur oxides 2.76E-03 kg
Methane 4.27E-03 kg
@ Revised from “Marano and Ciferno 2001”.
Table B-21. Process “Diesel Combustion”.
Products and co-product
Diesel Combustion?® 88.067 kg
Electricity/heat
CBTL (Diesel) 88.067 kg
Liquid fuels pumped into vehicle 2.12E+01
Emissions to air
Carbon dioxide, fossil 2.55E+02 kg
Carbon dioxide, biogenic 1.43E+01 kg
Carbon monoxide, fossil 6.23E-01 kg
Nitrogen oxides 1.42E-01 kg
Methane 4.27E-03 kg

aRevised from “Marano and Ciferno 2001”.
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APPENDIX C. SUPPLEMENTAL INFORMATION FOR CHAPTER 4

C.1. VARIABLES AND PARAMETERS IN THE ECONOMIC MODEL

Table C-1. Data Sets and Descriptions.

Set Description

Set of county |I|=54;

Set of possible plant scale levels, |L|=8 for fast pyrolysis and |L|=19 for ethanol;
Set of plant candidates, |J|=22;

Set of operation periods, |M|=12.

St

Table C-2. Parameters and Descriptions.

Parameter Description

AL, Available logging residue in county i atperiod m (dry tons);
AM,;,, Available mill residue in county i at period m (dry tons);
Cov Liquid fuel yield of liquid fuels from biomass (barrel - ton-1);
D;; Distance between in-site place i to candidate plant j (km);
fi Federal tax rate applied to the CBTL facilities (40%);
HC Harvest cost ($12.92 ton-1);
LDL Loading costof logging residue
LDM Loading cost of mill residue ($10 tont)
oM Total operation and maintenance cost of the plants ($5 ton-1).
om, Operation and maintenance costof a plant if its scale size is | ($);
Rv Total revenue ($);
P A feasible price of the products ($ 180 barrel?);
p Construction period;
PCL Price of sawmill residue ($1 ton-1);
PCM Price of sawmill residue ($50 ton-1);
F Total costs for harvesting, purchasing, transporting and storing feedstocks ($);
R, Cost of equity (15%);
R, Cost of debt (8%);
r Interest rate (0.03);
RB, Required biomass at level | (ton);
Sc Storage cost of biomass ($5 ton-1)
TCL Round trip transportation cost oflogging residue ($0.23 ton-1-km);
TCM Round trip transportation cost of sawmill residue ($0.15 ton-1-kmrl);
TC Total cost ($);
TPC Total capital costs (3$);
tpc, Capital costs if a plant is operated in level | ($);
WACC Weighted average cost of capital.
w, Equity proportion (40%);
4 Amortization factor;
Y Sum of plant maintenance factor;
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Table C-3. Variables and Descriptions.

Variable  Description

XLijm Quantity of logging residue transported from county i to plant j at period m (dry tons);
xM;j,, ~ Quantity of mill residue transported from county ito plant j at period m (dry ton);
xP, Quantity of biomass processed in plant j at period m (dry ton);
XSjm Quantity of wood residue stored in plant j at period m (dry ton);

Vi Binary variable decides if the plant j operated in level I.
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C.2. LCAPROCESSESIN SIMAPRO

Table C-1. Processes involved in on the LCA model.

Process Name

Table Number

Grapple Skidder C-5
Grapple Loader C-6
Chipper C-7
Forest residues processed and loaded at the landing C-8
Forest residues (dried, stored) C9
Preprocessed residue, at conversion facility C-10
Thermochemical conversion plant C-11
Indirect heated softwood C-12
Dry wood residue combustion C-13
Residue Dried C-14
Denatured ethanol C-15
Distribution, 60 miles C-16
Ethanol, forest residue, at blending terminal C-17
Liquid fuels pumped into vehicle C-18
Ethanol combustion C-19
Bio-oil C-20
Upgrade c-21
Gasoline combustion C-22
Diesel combustion C-23
Table C-5. Process “Grapple Skidder”.
Products and co-product
Grapple Skidder? 24 ton
Materials/fuels
Diesel, combusted in industrial equipment/USP 13.758 gal
Lubricant oil (1)° 0.247644 gal

aWu, Jinzhuo, Wang, Jingxin, Cheng, Qingzheng, DeVallance, David. 2011. Assessmentofcoal and biomass to
liquid fuels in central Appalachia, USA. International Journal of Energy Research. 36(7): 856-870;

b Ecoinvent 2.2.

Table C-6. Process “Grapple Loader”.

Products and co-product

Grapple Loader? 24 ton
Materials/fuels

Diesel, combusted in industrial equipment/USP 6.54 gal
Lubricant oil (1)° 0.1172 gal

aWou et al. 2011;

b Ecoinvent 2.2.
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Table C-7. Process “Chipper”.

Products and co-product

Chipper? 24 ton
Materials/fuels

Diesel, combusted in industrial equipment/USP 1452 gal
Lubricant oil (1)P 0.26136 gal

a\Wu et al. 2011;

b Ecoinvent 2.2.

’

Table C-8. Process “Forest residues processed and loaded at the landing .

Products and co-product

Forest residues processed and loaded at the landing? 1 ton
Natural Resources

Carbon dioxide, in air 942 kg
Energy, from biomass 8561 MJ
Materials/fuels

Grapple Skidder 1 ton
Grapple Loader 1ton
Chipper 1 ton

@Revised from “Hsu, David D., Inman, Daniel, Heath, Garvin A., Wolfrum, Edward J., Mann, Margaret K., Aden,
Andy.2010. Life cycle environmental impact of selected U.S. ethanolproduction and use pathway in 2022.
Environmental Science and Technology.44: 5289-5297”;

Table C-9. Process “Forest residues (dried, stored)”.

Products and co-product

Forest residue (dried, stored)? 0.772 ton
Materials/fuels

Forest residues processed and loaded at the landing 0.62 ton
Transport, lorry 16-32t, EURO5/RER UP 148.73 tkm
Dried roughage store, non ventilated/CH/1 UP 9.75E-8 m®
Conveyor belt, at plant/RER/I UP 347E-5 m
Fodder loading, by self-loading trailer/CH with US electricity 227 md
us

Sawmill Residue 0.16 ton

a2 Revised from “Hsu etal. 2010”;

b Ecoinvent 2.2.
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Table C-10. Process “Preprocessed residue, at conversion facility”.

Products and co-product

Preprocessed residue, at conversion facility? 1 ton
Materials/fuels

Forest residue (dried, stored) 1ton
Transport, lorry 16-32t, EURO5/RER UP 20 tkm

aRevised from “Hsu etal. 2010”;

b Ecoinvent 2.2.

Table C-71. Process “Thermochemical conversion plant .

Products and co-product

Thermochemical conversion plant? 1p
Materials/fuels

Concrete, sole plate and foundation, at plant/CH U 39100 m3
Steel, low-alloyed, at plant/RER U 526000 kg
Steel, converter, unalloyed, at plant/RER U 1240000 kg
Chromium steel 18/8, at plant/RER U 456000 kg
Zinc, primary, at regional storage/RER U 271000 kg
Copper, at regional storage/RER U 113000 kg
Nickel, 99.5%, at plant/GLO U 10100 kg
Transport, lorry 20-28t, fleet average/CH U 3140000 kg
Transport, freight, rail/CH U 1570000 tkm
Diesel, burned in building machine/GLO U 3.84E+05 MJ

Electricity, medium voltage, at grid/US U

4.65E+04 kWh

Emissions to air

Heat, waste 1.67E+05 MJ
Waste Treatment
Disposal, building, concrete gravel, to final disposal/CH S 8.59E+07 MJ
aRevised from “Hsu etal. 2010”;
Table C-12. Process “Indirect heated softwood ”.
Products and co-product
Indirect heated softwood, plywood drying? 411 kg
Materials/fuels
Particulates, unspecified 0.159 kg
Carbon monoxide, biogenic 1.27E-02 kg

aRevised from “Hsu etal. 2010”;
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Table C-13. Process “Dry wood residue combustion .

Products and co-product

Dry wood residue combustion? 1055 MJ
Emissions to air
Particulates 455 g
Particulates, < 10 um 336 ¢
Particulates, < 2.5 um 295 ¢
Nitrogen oxides 222 g
Sulfur dioxide 114 g
Carbon monoxide, biogenic 272 ¢
Hydrogen chloride 8.63 g
Methane, biogenic 9.53E+00 ¢
Organic substances, unspecified 1.77E+01 ¢
VOC, volatile organic compounds 7.72E+00 ¢
Nitrous acid 5.90E+00 ¢
2 Revised from “Hsu etal. 2010”;
Table C-14. Process “Residue Dried ”.
Products and co-product
Forest residue (dried) 1055 MJ
Materials/fuels
Dried roughage store, non ventilated/CH/I U 0.00 m?
Sawmill Residue 0.16 ton
Fodder loading, by self-loading trailer/CH with US electricity
U 227 m?
Conveyor belt, at plant/RER/I with US electricity U 0.00 m?
Forest residues processed and loaded at the landing 0.62 ton
Transport, lorry 16-32t, EURO5/RER U 148.73 tkm
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Table C-15. Process “Denatured ethanol ”.

Products and co-product

Ethanol, denatured, (from forest residues via thermochemical) @ 21202 kg
Mixed alcohols (from thermochemical) 3791 kg
Sulfur (from thermochemical) 53.6 kg
Resources

Oxygen, in air 77634 kg
Nitrogen, in air 253790 kg
Water, cooling, unspecified natural origin/kg 74002 kg
Water, process, unspecified natural origin/kg 13348 kg
Materials/fuels

Silica sand, at plant/DE U 244 kg
Thermochemical conversion plant 5.95E-06 p
Magnesium oxide, at plant/RER U 3.16 kg
Zeolite, powder, at plant/RER S 45.4 kg
Chemicals inorganic, at plant/GLO U 4.63E+01 kg
Monoethanolamine, at plant/RER U 2.72E+01 kg
Hydrochloric acid, 30% in H20, at plant/RER U 0.4 kg
Sodium hydroxide, 50% in H20, production mix, at plant/RER

U 0.4 kg
Sulphite, at plant/RER U 4.00E-01 kg
Chemicals inorganic, at plant/GLO U 454E-01 kg
Diesel, low-sulphur, at regional storage/RER U 3.13E+01 kg
Dry wood residue combustion, EPA AP-42 3.90E+05 MJ
Indirect heated softwood, plywood drying 41768 kg
Forest residue (dried)_Ethanol 1.13E+05 kg
Petrol, unleaded, at regional storage/RER with US electricity U 276 kg
Emissions to air

Ammonia 0.454 kg
Carbon dioxide, biogenic 107598 kg
Nitrogen 2.64E+05 kg
Oxygen 1.20E+04 kg
Water 6.31E+04 kg
Nitrogen dioxide 8.40E+01 kg
Sulfur dioxide 3.91E+01 kg
Waste treatment

Disposal, wood ash mixture, pure, 0% water, to sanitary

landfill/CH U 1.10E+03 kg
Disposal, inert material, 0% water, to sanitary landfill/CH U 454E+01 kg
Treatment, sewage, unpolluted, to wastewater treatment, class

3/CH U 797 kg

aRevised from “Hsu etal. 2010”;
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Table C-16. Process “Distribution, 60 miles”.

Products and co-product

Distribution, 60 miles?

1 gal

Emissions to air

Carbon dioxide, fossil

Methane

Dinitrogen monoxide

Sulfur oxides
Nitrogen oxides

Carbon monoxide, fossil
VOC, volatile organic compounds
Particulates, unspecified

2829 g
0.0015
0.0009
0.1389
0.1223
0.1638
0.0011
0.0235

o O O

aRevised from “Marano and Ciferno 2001”.

Table C-17. Process “Ethanol, forest residue, at blending terminal”.

Products and co-product

Ethanol, forest residue, at blending terminal?

0.81 kg

Electricity/heat

Ethanol, denatured, (from forest residues via
thermochemical)_Ethanol

Electricity, medium voltage, at grid/US U
Liquid storage tank, chemicals, organics/CH/l U

0.81 kg
8.60E-04 kWh
8.50E-11 p

2 Revised from “Hsu etal. 2010”;

Table C-18. Process “Liquid fuels pumped into vehicle”.

Products and co-product

Liquid fuels pumped into vehicle?

Electricity/heat

Electricity, low voltage, at grid/US UP

Liquid storage tank, chemicals, organics/CH/I UP
Distribution, 60 miles

Rubber and plastics hose and belting

Measuring and dispensing pumps

Eth, forest residue, at blending terminal

0.2973 gal
0.0026495 kWh
9.4e-12 p
0.297348 gal
7.49E-12 USD
9.17E-15 USD
1 kg

2 Revised from “Hsu etal. 2010”;

b Ecoinvent 2.2.
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Table C-19. Process “Ethanol combustion”.

Products and co-product

Ethanol combustion? 0.080135 kg
Electricity/heat

Carbon dioxide, biogenic 2.14E+02 ¢
Methane 6.80E-03 ¢
Nitrous acid 7.52E-03 ¢

a2 Revised from “Hsu etal. 2010”;

Table C-20. Process “Bio-oil”.

Products and co-product

Bio-o0il (from wood via pyrolysis)? 68038.8 kg
Resources

Water, process, unspecified natural origin/kg 6000 Ib

Air 350000 Ib
Water, cooling, unspecified natural origin/kg 180000 Ib
Water, unspecified natural origin/kg 84800 Ib
Materials/fuels

Electricity, medium voltage, at grid/US U 12000 kWh
Hydrochloric acid, 30% in H20, at plant/RER U 0.667 Ib
Sodium hydroxide, 50% in H20, production mix, at plant/RER

U 0.667 Ib
Sulphite, at plant/RER U 0.667 Ib
Chemicals inorganic, at plant/GLO U 11lb
Thermochemical conversion plant 5.95E-06 p
Forest residue (dried) 2.83E+05 Ib
Emissions to air

Oxygen 24400 b
Nitrogen 270000 Ib
Water 180000 Ib
Hydrogen 201 Ib
Carbon dioxide, biogenic 88100 Ib
Carbon monoxide, biogenic 504 Ib
Water 1.28E+05 Ib
Water 2.01E+04 1Ib
Water 3.20E+04 1b
Water 1.20E+03 Ib

Waste treatment
Disposal, wood ash mixture, pure, 0% water, to sanitary

landfill/CH U 3.60E+03 Ib
Treatment, sewage, unpolluted, to wastewater treatment, class
3/ICH U 2.18E+00 md

@Revised from “Hsu 20117;
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Table C-21. Process “Upgrade .

Products and co-product

Gasoline (from bio-oil via upgrading) 28600 Ib
Diesel (from bio-oil via upgrading) 38400 Ib
Resources

Water, cooling, unspecified natural origin/kg 6070 Ib
Water, unspecified natural origin/kg 56400 Ib
Air 230000 Ib
Materials/fuels

Natural gas, high pressure, at consumer/RER U 374000 MJ
Zeolite, powder, at plant/RER S 85 |b
Zeolite, powder, at plant/RER S 0371 Ib
Zeolite, powder, at plant/RER S 327 Ib
Electricity, medium voltage, at grid/US U 12600 MJ
Bio-oil (from wood via pyrolysis) 68038.8 kg
Refinery/RER/1 U 3.30E-06 p
Emissions to air

Water 2.90E+04 Ib
Nitrogen 1.76E+05 Ib
Oxygen 9.74E+03 Ib
Water 6.83E+01 Ib
Hydrogen 1.23E+02 b
Carbon dioxide, biogenic 1.75E+03 Ib
Carbon dioxide, biogenic 6.71E+02 Ib
Ethane 4.02E+02 1b
Propane 3.39E+02 Ib
Isobutane 3.01E+02 Ib
Heptane 3.76E+02 1Ib
Cyclohexane, propyl- 7.24E+00 Ib
Hydrocarbons, aliphatic, alkanes, unspecified 1.52E+00 Ib
Hydrocarbons, alkanes, cyclo-, C6 2.87E+00 Ib
Xylene 1.08E+00 Ib
Water 6.07E+03 Ib
Water 3.41E+02 1b
Water -3.45E+02 Ib
Carbon dioxide, biogenic 8.39E+04 Ib

aRevised from “Hsu 2011”;
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Table C-22. Process “Gasoline combustion”.

Products and co-product

Gasoline combustion 0.112 kg
Materials/fuels
Gasoline (from bio-oil via upgrading) 0.112 kg

Liquid fuels pumped into vehicle

0.038638215 gal

Emissions to air

Carbon dioxide, biogenic 3.43E+02 ¢
Methane, biogenic 1.00E-02 ¢
Dinitrogen monoxide 1.20E-02 ¢
VOC, volatile organic compounds 151E-01 ¢
Carbon monoxide 3.48E+00 ¢
Nitrogen oxides 6.90E-02 ¢
Particulates, < 10 um 2.90E-02 ¢
Particulates, < 2.5 um 1.40E-02 ¢
Sulfur oxides 6.00E-03 ¢
@ Revised from “Hsu 20117
Table C-23. Process “Diesel combustion ”.
Products and co-product
Diesel combustion 0.0944 kg
Materials/fuels
Diesel (from bio-oil via upgrading) 0.0944 kg
Liquid fuels pumped into vehicle 2.8E-02 gal
Emissions to air
Carbon dioxide, biogenic 3.02E+02 ¢
Methane, biogenic 3.08E-03 ¢
Dinitrogen monoxide 1.23E-02 g
VOC, volatile organic compounds 6.16E-02 ¢
Carbon monoxide 548E-01 ¢
Nitrogen oxides 8.22E-02 ¢
Particulates, < 10 um 3.08E-02 ¢
Particulates, < 2.5 um 1.54E-02 g
Sulfur oxides 2.05E-03 ¢

@ Revised from “Hsu 2011”;
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APPENDIX D. SUPPLEMENTAL INFORMATION FOR CHAPTER 5

D.1. LCAPROCESSES IN SIMAPRO

Table D-1. Processes involved in on the LCA model.

Process Name

Table Number

Plow

Disk

Cultipacker

Seeder

Site Preparation

Planter

Sprayer

Herbicides

Fertilization

Blower

Cut & Chip Harvester

Forage Wagon

New Holland FR series forage harvester
Transport, truck

Wheel Loader L150G

Plant site storage

Active Drier, MC<10%, Willow
Grinder, Particle size<2mm, Willow
Hammer Mill, Particle size<2mm, Willow
Preprocess, Pyrolysis, Willow
Grinder, Particle size<1/4", Willow
Hammer Mill, Particle size<1/4", Willow
Preprocess, Pellet

Cooling

Power Plant, Biomass

Pellet Mill, Willow

Pellet, distribution

Pellet, combustion, Willow

Disk, Grass

Horrow, New Holland T1530

Land Preparation, Miscanthus
Plow, Grass, 60 kKW engine

D-2
D-3

D-4

D-5

D-6

D-7

D-8

D-9

D-10
D-11
D-12
D-13
D-14
D-15
D-16
D-17
D-18
D-19
D-20
D-21
D-22
D-23
D-24
D-25
D-26
D-27
D-28
D-29
D-30
D-31
D-32
D-33
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Process Name Table Number

Fertilizing, Grass D-34
Transplanter, Miscanthus D-35
Herbicides, Grass D-36
Baler D-37
Disk Mowing, New Holland H6740 D-38
Harvest, Grass D-39
Rake, New Holland H5920 D-40
Tedder, New Holland H5270 D-41
Tractor with Wagon D-42
Land Preparation, Switchgrass D-43
Hopper, Switchgrass D-44

Table D-2. Process “Plow”.

Products and co-product

Plow? 1 ha
Materials/fuels

Diesel, at regional storage/CH with US electricity U 2.707566 kg
Lubricating oil, at plant/RER with US electricity U 0.042926 kg

2 Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 Icorporation
uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and Bioenrgy,
7:48-59;

Table D-3. Process “Disk .

Products and co-product

Diskd 1ha
Materials/fuels

Diesel, at regional storage/CH with US electricity U 2.22976 kg
Lubricating oil, at plant/RER with US electricity U 0.035323 kg

2 Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 Icorporation
uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and Bioenrgy,
7:48-59;
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Table D-4. Process “Cultipacker”.

Products and co-product

Cultipacker? 1 ha
Materials/fuels

Diesel, at regional storage/CH with US electricity U 1.130331 kg
Lubricating oil, at plant/RER with US electricity U 0.017899 kg

2 Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 Icorporation
uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and Bioenrgy,
7:48-59;

Table D-5. Process “Seeder”.

Products and co-product

Seeder? 1 ha
Materials/fuels

Diesel, at regional storage/CH with US electricity U 0.159269 kg
Lubricating oil, at plant/RER with US electricity U 0.002519 kg

@ Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 Icorporation
uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and Bioenrgy,
7:48-59;

Table D-6. Process “Site Preparation”.

Products and co-product

Site Preparation? 1ha
Materials/fuels

Disk 1ha
Plow 1ha
Cultipacker 1ha
Seeder 1 ha

@ Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 Icorporation

uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and Bioenrgy,
7:48-59;

Table D-7. Process “Planter”.

Products and co-product

Planter? 1 ha
Materials/fuels

Willow Step planter 1 haUS U 0.142857 ha
Site Preparation 1 ha

@ Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 Icorporation
uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and Bioenrgy,
7:48-59;
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Table D-8. Process “Sprayer”.

Products and co-product

Sprayer? 1p
Materials/fuels

Diesel, at regional storage/CH with US electricity U 0.832 kg
Lubricating oil, at plant/RER with US electricity U 0.013179 kg

2 Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 Icorporation
uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and Bioenrgy,
7:48-59;

Table D-9. Process “Herbicides”.

Products and co-product

Herbicides? 1ha
Materials/fuels

Sprayer 0.957143 p
Glyphosate, at regional storehouse/CHwith US electricity U 0.357143 kg

2 Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 Icorporation
uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and Bioenrgy,
7:48-59;

Table D-10. Process “Fertilization”.

Products and co-product

Fertilization? 1p
Materials/fuels

Sprayer 28l p
Ammonium sulphate,as N, at regional storehouse/RER with US

electricity U 100 kg

2 Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 Icorporation
uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and Bioenrgy,
7:48-59;

Table D-11. Process “Blower”.

Products and co-product

Blower? 1 ha
Materials/fuels

Diesel, at regional storage/CH with US electricity U 5.408 kg
Lubricating oil, at plant/RER with US electricity U 0.085694 kg

a Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 Icorporation
uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and Bioenrgy,
7:48-59;
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Table D-12. Process “Cut & Chip Harvester”.

Products and co-product

Cut & Chip Harvester? 1 ha
Materials/fuels

New Holland FR series forage harvester 1ha
Blower 1ha

2 Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 Icorporation
uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and Bioenrgy,
7:48-59;

Table D-13. Process “Forage Wagon”.

Products and co-product

Forage Wagon? 1 ha
Materials/fuels

Diesel, at regional storage/CH with US electricity U 10.816 kg
Lubricating oil, at plant/RER with US electricity U 0.171072 kg

@ Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 Icorporation
uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and Bioenrgy,
7:48-59;

Table D-714. Process “New Holland FR series forage harvester ”.

Products and co-product

New Holland FR series forage harvester? 1ha
Materials/fuels

Diesel, at regional storage/CH with US electricity U 101.1712 kg
Fertilization 1ha
Herbicides 1ha

Planter 1ha
Lubricating oil, at plant/RER with US electricity U 1.59984 kg

2 Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 Icorporation

uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and Bioenrgy,
7:48-59;
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Table D-15. Process “Transport, truck ”.

Products and co-product

Transport, truck? 80 km
Materials/fuels

Transport, combination truck, diesel powered NREL /US 80 tkm
Forage Wagon 0.080645 ha
Cut & Chip Harvester 0.080645 ha
Wheel Loader L150G 1ton

@ Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014 Icorporation
uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and Bioenrgy,

7:48-59;

Table D-16. Process “Wheel Loader L150G .

Products and co-product

Wheel Loader L150G* 270000 ton
Materials/fuels

Sheet rolling, aluminium/RER U 266 kg
Glass fibre, at plant/RER with US electricity U 3240 kg
Polyethylene, LDPE, granulate, at plant/RER with US electricity

U 102 kg
Heavy fuel oil, at regional storage/RER with US electricity U 2992 kg
Paper, woodfree, uncoated, at regional storage/RER with US

electricity U 246 kg
Wire drawing, steel/RER with US electricity U 1800 kg
Synthetic rubber, at plant/RER with US electricity U 6960 kg
Crude oil, at production/NG with US electricity U 450491 kg
Hard coal, at regional storage/RNA with US electricity U 5545.23 kg
Lignite coal, combusted in industrial boiler NREL /US 5733 kg
Natural gas, production mix, at service station/CH U 44743 kg
Peat, at mine/NORDEL with US electricity U 33 kg

@ Salman, O., Chen, Y. 2013. Comparative environmental analysis of conventional and hybrid wheel loader

technologies. Master of Science Thesis, Stockholm.
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Table D-17. Process “Plant site storage .

Products and co-product

Plant site storage? 1ton
Materials/fuels

Conveyor belt, at plant/RER/I with US electricity U 347E-05 m
Transport, truck 80.40201 tkm
Electricity, medium voltage, at grid/US with US electricity U 20 MJ

@ Jirjis, R. 1994. Storage and drying of wood fuel. Biomass and Bioenergy, 9(1):181-190.

Table D-18. Process “Active Drier, MC<10%, Willow .

Products and co-product

Active Drier, MC<10%, WillowaP 2.865 ton
Materials/fuels

Electricity, medium voltage, at grid/US with US electricity U 350 kWh
Transport, truck 208.3636 tkm
Plant site storage 0.289394 ton

@ Nordhagen, E. 2011. Drying of wood chips with surplus heat from two hydroelectric plants in Norway. FORMEC,
Austria.

b INL PDU.

Table D-19. Process “Grinder, Particle size<2mm, Willow .

Products and co-product

Grinder, Particle size<2mm, Willow 2 1ton

Materials/fuels

Conveyor belt, at plant/RER/I with US electricity U 347E-05 m

Transport, truck 72 tkm

Plant site storage 0.1 ton

Electricity, medium voltage, at grid/US with US electricity U 45.89 kWh
2INL PDU.

Table D-20. Process “Hammer Mill, Particle size<2mm, Willow ”.

Products and co-product

Hammer Mill, Particle size<2mm, Willow? 1ton

Materials/fuels

Electricity, medium voltage, at grid/US with US electricity U 34.51 kWh

Grinder, Particle size<2mm, Willow 1ton

Conveyor belt, at plant/RER/I with US electricity U 347E-05 m
2 INL PDU.
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Table D-21. Process “Preprocess, Pyrolysis, Willow .

Products and co-product

Preprocess, Pyrolysis, Willow? 1ton

Materials/fuels

Hammer Mill, Particle size<2mm, Willow 0.25 ton

Grinder, Particle size<2mm, Willow 0.75 ton
aINL PDU.

Table D-22. Process “Grinder, Particle size<1/4", Willow ”.

Products and co-product

Grinder, Particle size<1/4", Willow? 1ton

Materials/fuels

Conveyor belt, at plant/RER/I with US electricity U 347E05 m

Transport, truck 72 tkm

Plant site storage 0.1 ton

Electricity, medium voltage, at grid/US with US electricity U 12.3 KWh
aINL PDU.

Table D-23. Process “Hammer Mill, Particle size<1/4", Willow ”.

Products and co-product

Hammer Mill, Particle size<1/4", Willow? 1ton

Materials/fuels

Electricity, medium voltage, at grid/US with US electricity U 9.8 kWh

Grinder, Particle size<2mm, Willow 1ton

Conveyor belt, at plant/RER/I with US electricity U 347E-05 m
aINL PDU.

Table D-24. Process “Preprocess, Pellet”.

Products and co-product

Preprocess, Pellet? 1ton
Materials/fuels

Hammer Mill, Particle size<1/4", Willow 0.15 ton
Grinder, Particle size<1/4", Willow 0.85 ton
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Table D-25. Process “Cooling”.

Products and co-product

Cooling? 1ton
Materials/fuels

Electricity, medium voltage, at grid/US with US electricity U 0.34 kWh
Electricity, medium voltage, at grid/US with US electricity U 0.56 kKWh

@Fantozzi, F., Buratti, C. 2010. Life cycle assessmentof biomass chains: Wood pellet from short rotation coppice
using data measured on a real plant. Biomass and Bioenergy, 34(12): 1796-1804.

Table D-26. Process “Power Plant, Biomass”.

Products and co-product

Power Plant, Biomass @ 1,000 MJ
Resources

Preprocess, Power Plant 0.234 ton
Water, cooling, unspecified natural origin/m3 35m

Materials/fuels
Water, completely softened, at plant/RER with US electricity U 6 kg

Water, decarbonised, at plant/RER with US electricity U 150 kg
Emissions to air

Carbon dioxide, biogenic 585 g
Carbon monoxide, biogenic 389 g
Nitrogen dioxide 779 g
VOC, volatile organic compounds 214 g
Particulates 97 g
Sulfur dioxide 389 g

aSpath, P.L., Mann, M.K., Kerr, D.R. 1999. Life cycle assessmentapplied to electricity generation from renewable
biomass & Life Cycle Assessmentof Coal-fired Power Production (NREL). NREL/TP-570-25119.

Table D-27. Process “Pellet Mill, Willow”.

Products and co-product

Pellet Mill, Willow? 1ton

Materials/fuels

Electricity, medium voltage, at grid/US with US electricity U 50 kWh

Cooling 1ton
2INL PDU.
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Table D-28. Process “Pellet, distribution ”.

Products and co-product

Pellet, distribution® 1ton
Materials/fuels
Wheel Loader L150G 1ton
Transport, combination truck, diesel powered/US 100 tkm
2INL PDU.
Table D-29. Process “Pellet, combustion, Willow”.
Products and co-product
Pellet, combustion, Willow? 1 kg
Materials/fuels
Methane, biogenic 0.035 g
Carbon monoxide, biogenic 1257 ¢
Carbon dioxide, biogenic 1059 ¢
Ammonia 0.002 ¢
Nitrogen dioxide 0.643 g
Dinitrogen monoxide 0.028 g
Sulfur dioxide 4226 g
Particulates 0.063 g
Waste treatment
Disposal, wood ash mixture, pure, 0% water, to sanitary
landfill/CH with US electricity U 0.033535 kg

@Brassard, P., Palacios, J.H., Godbout, S., Bussiéres, D., Lagacé, R., Larouche, J.P., Pelletier, F. 2014. Comparison

of the gaseous and particulate matter emissions from the combustion of agricultural and forest biomass es.

Bioresource Technology, 155: 300-306.

Table D-30. Process “Disk, Grass”.

Products and co-product

Disk, Grass? 1ha
Materials/fuels

Diesel, at regional storage/CH with US electricity U 15.60832 kg
Lubricating oil, at plant/RER with US electricity U 0.36 kg

@ Adjusted from: Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014

Icorporation uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and

Bioenrgy, 7:48-59;
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Table D-31. Process “Horrow, New Holland T1530".

Products and co-product

Horrow, New Holland T15302 1ha
Materials/fuels

Diesel, at regional storage/CH with US electricity U 10.45824 kg
Lubricating oil, at plant/RER with US electricity U 0.2 kg

@ Adjusted from: Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014
Icorporation uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and
Bioenrgy, 7:48-59;

Table D-32. Process “Land Preparation, Miscanthus ”.

Products and co-product

Land Preparation, Miscanthus 1 ha
Materials/fuels

Disking 0.1 ha
Transplanter, Miscanthus 0.1 ha
Horrow, New Holland T1530 0.1 ha
Plow, Grass, 60 KW engine 0.1 ha

Table D-33. Process “Plow, Grass, 60 kW engine .

Products and co-product

Plow, Grass, 60 kW engine? 1ha
Materials/fuels

Diesel, at regional storage/CH with US electricity U 18.95296 kg
Lubricating oil, at plant/RER with US electricity U 0.36 kg

@ Adjusted from: Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014
Icorporation uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and
Bioenrgy, 7:48-59;

Table D-34. Process “Fertilizing, Grass”.

Products and co-product

Fertilizing, Grass® 1ha
Materials/fuels

Diesel, at regional storage/CH with US electricity U 2.33792 kg
Lubricating oil, at plant/RER with US electricity U 0.04 kg
Ammonium sulphate,as N, at regional storehouse/RER with US

electricity U 100 kg

@ Adjusted from: Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014
Icorporation uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and
Bioenrgy, 7:48-59;
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Table D-35. Process “Transplanter, Miscanthus ”.

Products and co-product

Transplanter, Miscanthus? 1 ha
Materials/fuels

Diesel, at regional storage/CH with US electricity U 1.23968 kg
Lubricating oil, at plant/RER with US electricity U 0.02 kg

@ Adjusted from: Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014
Icorporation uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and
Bioenrgy, 7:48-59;

Table D-36. Process “Herbicides, Grass”.

Products and co-product

Herbicides, Grass? 1ha
Materials/fuels

Diesel, at regional storage/CH with US electricity U 0.796343 kg
Lubricating oil, at plant/RER with US electricity U 0.012614 kg
Glyphosate, at regional storehouse/CHwith US electricity U 0.357143 kg

@ Adjusted from: Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014
Icorporation uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and
Bioenrgy, 7:48-59;

Table D-37. Process “Baler”.

Products and co-product

Baler? 1ha
Materials/fuels

Diesel, at regional storage/CH with US electricity U 13.8528 kg
Lubricating oil, at plant/RER with US electricity U 0.26 kg

2 Liu, J., Kemmerer, B. 2011. Field performance analysis of a tractor and a large square baler. SAE Technical Paper.
2011-01-2302.
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Table D-38. Process “Disk Mowing, New Holland H6740 .

Products and co-product

Disk Mowing, New Holland H6740? 1 ha
Materials/fuels

Diesel, at regional storage/CH with US electricity U 5.05856 kg
Land Preparation, Switchgrass 1ha
Fertilizing, Grass 1ha
Herbicides, Grass 1ha
Lubricating oil, at plant/RER with US electricity U 0.1 kg

@ Adjusted from: Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014

Icorporation uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and

Bioenrgy, 7:48-59;

Table D-39. Process “Harvest, Grass”.

Products and co-product

Harvest, Grass 1 ha

Materials/fuels

Baler 1ha

Disk Mowing, New Holland H6740 1ha

Rake, New Holland H5920 1ha

Tractor with Wagon 1ha

Wheel Loader L150G Switchgrass 17.8 ton

Tedding, New Holland H5270 1ha
Table D-40. Process “Rake, New Holland H5920 .

Products and co-product

Rake, New Holland H5920? 1 ha

Materials/fuels

Diesel, at regional storage/CH with US electricity U 2.76224 kg

Lubricating oil, at plant/RER with US electricity U 0.05 kg

@ Adjusted from: Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014

Icorporation uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and

Bioenrgy, 7:48-59;

Table D-41. Process “Tedder, New Holland H5270 .

Products and co-product

Tedder, New Holland H52702 1 ha
Materials/fuels

Diesel, at regional storage/CH with US electricity U 3.22816 kg
Lubricating oil, at plant/RER with US electricity U 0.06 kg

@ Adjusted from: Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014

Icorporation uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and

Bioenrgy, 7:48-59;
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Table D-42. Process “Tractor with Wagon ”.

Products and co-product

Tractor with Wagon? 1 ha
Materials/fuels

Diesel, at regional storage/CH with US electricity U 10.816 kg
Lubricating oil, at plant/RER with US electricity U 0.057182 kg

@ Adjusted from: Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014
Icorporation uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and
Bioenrgy, 7:48-59;

Table D-43. Process “Land Preparation, Switchgrass ”.

Products and co-product

Land Preparation, Switchgrass 1ha
Materials/fuels

Disking 0.1 ha
Hopper, Switchgrass 0.1 ha
Horrow, New Holland T1530 0.1 ha
Plow, Grass, 60 KW engine 0.1 ha

Table D-44. Process “Hopper, Switchgrass ”.

Products and co-product

Hopper, Switchgrass @ 1 ha
Materials/fuels

Diesel, at regional storage/CH with US electricity U 1.23968 kg
Lubricating oil, at plant/RER with US electricity U 0.02 kg

@ Adjusted from: Caputo, J, Balogh, S.B., Volk, T.A., Johnson, L., Puettmann, M., Lippke, B., Oneil, E. 2014

Icorporation uncertainty into a life cylccle assessment model of short rotation willow biomass crops. Biomass and
Bioenrgy, 7:48-59;
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D.2. STATISTICAL ANALYSIS

-1.0 -0.5 0.0 0.5 1.0
| | | |
<
o
7
R 5
tone.depletion B
Aircinogenies.
N © — ___ PBespiratony
. I
O = 7
= /
/./'/
o ;
@ 7 f,//
4
Human.toxicity
»
@
6
3
! ' | I 1
0.4 0.2 0.0 0.2 0.4
PC 1

Fig. D-1. PCA of human health impact.

Result of PCA

> pca(x[,6:9])
$pca.var
[1] 3.1624 0.7845 0.0369 0.0163

$var.p
[1] 0.7906 0.1961 0.0092 0.0041
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$pca.scores
Vi V2 V3 V4

1-0.4127 0.2355 -0.7007 -0.0534
2 0.4255 0.1474 0.0221 -0.8195
3-0.0904-0.4952 -0.3471-0.0063
4 -0.3444 0.3332 0.4570 0.0206
5 0.4382 0.2071 -0.0530 0.4906
6 -0.0540-0.4436 0.2574 0.0489
7-0.3534 0.3062 0.2399 0.0157
8 0.4460 0.1638 -0.0876 0.2856
9-0.0548-0.4543 0.2120 0.0178

$pca.coeff

Vi V2 V3 V4
Carcinogenics -0.9579 0.2635 -0.0710 0.0888
Respiratory.effects 0.9834 0.0884 -0.1586 -0.0067
Ozone.depletion  -0.9317 0.3482 -0.0495 -0.0905
Human.toxicity ~ -0.6400-0.7655 -0.0653 -0.0114

$pca.corr

vVi V2 V3 V4
Carcinogenics -0.9579 0.2635-0.0710 0.0888
Respiratory.effects 0.9834 0.0884 -0.1586 -0.0067
Ozone.depletion  -0.9317 0.3482 -0.0495-0.0905
Human.toxicity = -0.6400-0.7655 -0.0653-0.0114
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