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Abstract 
 
 

Emissions Characterization and Particle Size Distribution from a 
DPF-Equipped Diesel Truck Fueled with Biodiesel Blends. 

 
 

Idowu O. Olatunji 
 

Biodiesel may be derived from either plant or animal sources, and is usually 

employed as a compression ignition fuel in a blend with petroleum diesel (PD). 

Emissions differences between vehicles operated on biodiesel blends and PD 

have been published previously, but data do not cover the latest engine 

technologies. Prior studies have shown that biodiesel offers advantages in 

reducing particulate matter, with either no advantage or a slight disadvantage for 

oxides of nitrogen emissions. Literature also suggests that diesel engine exhaust 

particle number emissions are dominated by nucleation mode particles (NMPs) if 

present, while the mass emissions are dominated by accumulation mode particles 

(AMPs). This thesis describes a recent study on the emissions impact and exhaust 

particles size distribution and composition, under steady state condition, of a 2007 

medium heavy duty diesel truck (MHDDT) fueled with two biodiesel blends, B20A 

and B20B, and PD. The truck was tested in a chassis dynamometer laboratory 

using three steady state driving cycles. The cycles include vehicle run at 20 mph 

for 30 minutes (MD1), 32 mph for 30 minutes (MD2) and 50 mph for 20 minutes 

(MD3). Emissions were measured using a full exhaust dilution tunnel equipped 

with a subsonic venturi and secondary dilution for PM sampling. A fast particle 

spectrometer (DMS 500) was used to measure the particle number concentration 

and size distribution from the vehicle exhaust. 

The study showed that emissions were more speed dependent than fuel 

type. For any given cycle, the differences in CO2 and NOx tailpipe emissions 

produced by the PD, B20A and B20B were statistically insignificant with variations 



  

of between 0.5-1.4%, and 0.5-3.4%, respectively at 95% confidence level. The 

results further showed that, for MD2, CO2 emissions produced were lowest with 

corresponding highest fuel economy (miles per gallon (mpg) of fuel consumed). 

The NOx emissions produced for B20A and B20B were slightly higher than those 

of PD, except for MD2. Generally, low particulate matter (PM) emissions were 

produced from the test results due to the truck diesel particulate filter (DPF). The 

carbon monoxide (CO) and hydrocarbon (HC) emissions were also low, with HC 

being difficult to quantify as a result of oxidation in the DPF.  

Analysis of the exhaust particle data showed that, for all of the driving 

modes, the exhaust particles existed in two distinct modes with the particle number 

concentration dominated by the NMPs for all three test fuels. The particle mass 

concentration, dominated by the AMPs, substantially correlated with the pattern 

observed in the gravimetric PM mass emissions measurement. It was observed 

that factors such as DPF loading, dilution conditions (temperature, humidity) that 

are not fuel related strongly affected particle size formation especially in the NMP 

range. It was also observed that the total exhaust particle number concentration 

and the geometric mean diameter (GMD) increased with propulsion power. 

However, the GMD values were typically in the range of 25-40 nm for all driving 

modes and fuel type combinations. This is further confirmation that exhaust 

particles were dominated by nanoparticles that have been reported to cause 

respiratory diseases and other health effects in humans.   
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1. Introduction 

Reports of adverse health effects from the use of diesel engines [1 – 4] 

have generated concerns for regulators and decision makers around the world, 

despite the diesel engine's advantages of durability, better fuel consumption and 

efficiency than gasoline engines. In response, diesel engine emission regulations 

are becoming more stringent, particularly for particulate matter (PM) and oxides of 

nitrogen (NOx) emissions. In the USA, the Environmental Protection Agency's 

(EPA) 2007 heavy-duty engine emissions standard represents an order of 

magnitude reduction in brake specific PM emissions from 0.1 g/bhp-hr to 0.01 

g/bhp-hr (0.134 g/kW-hr to 0.0134 g/kW-hr) over the 2004 engine emissions 

standard. NOx emissions were also reduced by 90% from 2 g/bhp-hr to 0.2 g/bhp-

hr (2.68g/kW-hr to 0.268 g/kW-hr) in the 2007 EPA emissions standard over the 

2004 emissions standard. The NOx emissions reductions were in phases over a 

period of 2007 to 2010. This required 50% of heavy-duty vehicles sold in the USA 

between 2007 and 2009 to meet the 0.2 g/bhp-hr while full compliance was 

enforced in 2010. Table 1 shows the EPA diesel engine emissions regulations for 

NOx and PM emissions since 1988 [5]. This could even become stricter in the near 

future. In addition to health issues, increased extraction and consumption of fossil 

fuels have caused declines in underground non-renewable petroleum-based 

resources [6]. This suggests that the world will be short of transportation fuel 

supply unless something is done to augment the ever-increasing world energy 

demand.  Consequently, attention has focused on research in alternative fuel 

sources that can substitute for the depleting fossil fuel sources and that can 

possibly reduce the adverse health effects of diesel engine emissions.  
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Table 1: EPA diesel engine emissions regulations for NOx and PM since 1988 [5]. 

Year NOx (g/bhp.hr) PM (g/bhp.hr) 
1988 10.7 0.60 
1991 5.0 0.25 
1998 4.0 0.10 
2004 2.0 0.10 
2007 0.2 0.01 

Biodiesel, one of the viable alternative fuels, has the potential to displace 

5% or more of PD market share in the next five or more years [7]. Biodiesel has 

the following benefits/properties which make it a good substitute for PD: it is 

renewable; it is non-toxic; it has excellent lubricity; it usually has higher cetane 

number than petroleum fuel; it produces lower CO2, CO, HC and PM emissions 

compared to PD; It can be produced locally; and it can be used to power diesel 

engines without any need for engine modification. 

Furthermore, a life-cycle assessment study done by Hong et al. [8] showed 

that biodiesel has less energy use and has lower emissions than PD. The study 

used the Greenhouse Gases, Regulated Emissions, and Energy Use in 

Transportation (GREET) model to assess the life-cycle impacts of biodiesel and 

PD. The GREET model revealed that, with biodiesel, it was possible to reduce 

fossil energy use and petroleum energy use by more than 52% and 88%, 

respectively, compared to PD.  Biodiesel use could also reduce greenhouse gas 

emissions by more than 57% relative to PD. Biodiesel, chemically known as alkyl 

(methyl, ethyl or propyl) ester, is an oxygenated fuel produced from natural oils 

obtained from plant or animal source through a process called transesterification. 

Transesterification is a process by which plant oil or animal fat is chemically 

combined with excess alcohol in the presence of a basic or acidic catalyst to 

remove glycerin from the oil or fat molecular structure to make it suitable for use in 

a diesel engine [9]. Today, in the USA, biodiesel is being used to power diesel 

engines in blended form with PD. The biodiesel blends approved for use by USA 

diesel engine manufacturers are B5 and B6-20. B5's properties make it possible to 
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be used as a PD substitute without giving any performance-related problems [10]. 

B20 is the most commonly used biodiesel blend for two main reasons. First, it 

balances performance, emission levels, cost and availability. Second, B20 is the 

minimum blend level that qualifies as an alternative fuel in the USA, in line with the 

Energy Policy Act of 1992. Feedstocks for biodiesel production are obtained from 

edible and non-edible oil sources. Edible oils are obtained from species such as 

soybean, rapeseed, sunflower, and cotton, while non-edible oil sources include 

jatropha, honge, sea mango, and algae. However, more than 95% of biodiesel 

feedstocks come from edible oil sources because the properties of biodiesel 

produced from them are more suitable to be used as biodiesel [11]. Presently, 

biodiesel is mainly produced from soybean oil in the USA, canola or rapeseed and 

sunflower oils in Europe and palm and coconut oils in Asia [6]. This increases 

competition in the edible oil market and leads to high cost of edible oils and 

biodiesel [12]. As a result, researchers are focusing attention on biodiesel 

production from non-edible oils. A recent trend is biodiesel production from 

microalgae [13]. 

This thesis discusses a recent study on 2007 MHDDT using a chassis 

dynamometer testing laboratory. Tailpipe emissions, exhaust particle 

concentration and size distribution were characterized using two biodiesel blends, 

B20A and B20B, and PD. Comparisons were made among the three fuels to 

document, fuel or other effects on regulated and CO2 emissions, exhaust particles 

size distribution and vehicle performance (in terms of fuel economy) of the MHDDT 

with an engine equipped with exhaust gas recirculation (EGR), diesel particulate 

filter (DPF) and variable geometry turbocharger (VGT). 
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2. Literature Review 

In the USA and in Europe, diesel engine technology has evolved rapidly 

over the last two decades. In the early 90's, mechanically injected engines were 

replaced in the fleet with electronically managed engines. These engines had 

higher injection pressures, superior air management, and better in-cylinder charge 

motion than the previous models. However, these engines still relied largely on 

managing the start of injection for emissions control. Electronically managed waste 

gates for turbochargers were introduced, allowing for more control flexibility. To 

meet 2004 emissions standards, most manufacturers were obliged to employ EGR 

and advanced injection techniques for reduction of NOx emissions. Engine 

management became substantially more complex as both EGR control and VGT 

control were needed. To meet 2007 PM emissions standards, engines were fitted 

with DPFs, and the regeneration of these units required further control 

sophistication. Also in 2007, the average NOx emissions standard was further 

reduced [5], increasing the role of EGR in the combustion behavior. Little or no 

data exist for these late diesel engines in terms of performance and emissions 

using alternative fuel sources. Thus there is need for more testing to add to the 

available emissions and performance data inventory from alternative fuel sources, 

such as biodiesel, to help facilitate policy decision making. This chapter reviews 

the processes involved in the production of biodiesel from feedstocks and biodiesel 

use effects on engine emissions and performance. The chapter also reviews 

biodiesel and biodiesel blends effects on particle size distribution.  

2.1. Biodiesel Production  

Direct use of raw plant oils or animal fats in diesel engines has been shown 

to cause poor combustion, carbon build-up, choking, oil contamination that may 

result in engine failure in the long-term [14]. Hence the raw oils or fats need to be 

refined or processed to ensure engine durability. There are four different methods 

that can be used to produce biodiesel. These primary methods include micro-
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emulsions, direct use and blending, thermal cracking (pyrolysis) and 

transesterification [15]. The transesterification process is the most widely used 

method because of its benefits over the others. The main purpose of 

transesterification is to reduce the viscosity of the plant oils or animal fats to a level 

that is comparable to PD so that the combustion properties of the oils or fats can 

be improved. The process involves a reaction between plant oils or animal fats 

(esters of saturated and unsaturated monocarboxylic acids with the trihydric 

alcohol glyceride) and alcohol in the presence of a basic, acidic or enzymic 

catalyst to improve the reaction rate [14,15]. The basic chemical reaction equation 

is shown in equation 1 below [15]: 

 

 

 

 

 

R1, R2 and R3 are long chain hydrocarbons called fatty acid chains. 

Methanol and ethanol are the most widely used alcohol for the transesterification 

reaction. However, methanol is preferred to ethanol because of its lower cost and 

its physical and chemical advantages. Sodium hydroxide and potassium hydroxide 

are the most commonly used catalysts in commercial transesterification process. 

The use of these basic catalysts is preferred because of their low cost and higher 

reaction rates compared to acidic and enzymic catalysts. The composition of the 

feedstock to be used for biodiesel production plays a role in the quality and yield of 

the biodiesel. Most biodiesel raw materials (feedstocks) usually contain 

triglycerides (esters), free fatty acids (FFA), water and other contaminants in 

various proportions [15]. A pretreatment is required for biodiesel feedstocks 

containing more than 2.5% of FFA by weight before transesterification process so 

that the biodiesel yield can be improved upon [16]. Methods of reducing or 

Equation 1 

CH2-O-CO-R3 
 

CH-OH 

CH-OH 

CH2-O-CO-R1 
 

CH2-O-CO-R2 +   3ROH                   CH-OH       R-O-CO-R2 

(Triglyceride) (Alcohol) (Glycerol) (Fatty acid esters) 

R-O-CO-R1 

R-O-CO-R3 
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removing FFA, water and other contaminants from biodiesel raw materials for high 

yield are detailed in reference [15]. It is also important to separate the fatty acid 

esters (biodiesel) from glycerol (by-product) after the transesterification reaction 

before purification and quality control processes. Refined glycerol may be used for 

manufacture of different industrial products such as medicines, soaps, 

moisturizers, cosmetics and other products [17-19]. Figure 1 below shows a 

process flow chart for biodiesel production using basic catalyst. Details of the 

various steps involved are well documented in reference [15].  

 

Figure 1: Chart showing the process involved in biodiesel production [15]. 

2.2. Biodiesel Emissions and Engine Performance Characteristics 

It is generally agreed in the literature that the use of biodiesel and biodiesel 

blends in internal combustion engines reduces levels of some regulated 

emissions. Specifically, biodiesel use has been shown to reduce CO and HC 

emissions and substantially reduce PM emissions. However, while some 

investigators reported NOx emissions increase with biodiesel use, others reported 
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NOx emissions reduction when compared to that of PD. Engine model year, brand 

and technology have a big influence on the variability of NOx emissions reported in 

the literature. The impact of biodiesel use on performance in diesel engines (i.e. 

fuel consumption and combustion characteristics such as injection timing, ignition 

delay, ignition temperature and pressure, heat release and combustion efficiency) 

has also been documented in the literature. Biodiesel is an oxygenated fuel, 

typically containing between 11% – 12% of oxygen by weight [20]. This and other 

physical and chemical properties of biodiesel such as viscosity, compressibility, 

cetane number, degree of unsaturation, density, etc, have been attributed for the 

unique behavior of biodiesel fuel. Following is a brief review of biodiesel use 

impact on engine emissions and performance.  

In 2002, EPA produced a technical report that reviewed and published 

available biodiesel emissions data for heavy-duty engines. The summary of the 

report for regulated emissions is shown in Figure 2 below [21]. The report indicated 

that B20 use led to a reduction in PM, CO and HC emissions compared to PD. The 

report further showed that higher levels of reduction were possible with higher 

biodiesel blend percentage in the fuel. However, an overall average of 2% 

increase in NOx emissions, which varied with biodiesel blend proportion, was also 

reported.  
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Figure 2: Biodiesel emissions impact for heavy-duty highway engines [21]. 

Wang et al. [22] investigated the effects of B35 (35% biodiesel and 65% 

PD) on emissions from two different heavy duty truck models tested in a chassis 

dynamometer testing laboratory using two driving cycles. The test results showed 

that B35 produced lower PM, CO and HC emissions than PD. NOx emissions 

results were mixed: one truck with 1989 model engine (older) produced slightly 

higher NOx emissions and the other with 1994 model engine (newer) produced  

slightly lower NOx emissions, but the NOx emissions changes were statistically 

insignificant compared to the PD. This suggests that the effects of engine design 

may have played a role in this. Lin et al. [23] compared the performance of 

biodiesel from eight different vegetable oil sources with PD in a single cylinder, DI 

diesel engine (YANMAR TF110-F). The results showed that the use of the 

biodiesel fuels produced a reduction of 50% to 73%, 22.5% to 33% in smoke and 

HC emissions, respectively, compared to PD. However, slightly higher NOx 

emissions and fuel consumption were noticed, to varying degrees than PD, 

regardless of the biodiesel source. The study also showed that the use of biodiesel 

led to improved ignition quality because of its higher cetane number, and higher 
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combustion efficiency fuel due to its oxygen content, higher bulk modulus and 

better fuel atomization. Nabi and co-workers [24] conducted performance 

evaluation tests on a single cylinder, DI diesel engine using cotton seed oil 

biodiesel blends (B10, B20 and B30) and PD. The results showed lower PM 

emissions (24% reduction) were produced with B10 and 24% reduction in CO 

emissions with B30 compared to PD. Higher NOx emissions and slightly lower 

thermal efficiency were noticed, which varied with the biodiesel blend proportion. 

The results of engine emissions  tests  performed by Mazumdar et al. [25] using 

biodiesel blends from waste cooking oil in a IDI diesel engine and Raheman et al. 

[26] using biodiesel from karanja (Pongamia Pinnata) oil in a DI diesel engine were 

largely in agreement except for NOx emissions. Mazumdar et al. and Raheman et 

al. agreed and reported that biodiesel produced lower smoke, CO and HC 

emissions than PD.  However, Mazumdar et al. showed that used cooking oil 

biodiesel blends produced higher NOx emissions, while Raheman et al. reported 

that NOx emissions decreased with karanja oil biodiesel. McCormick et al. [27] 

conducted tests in an engine laboratory on two direct injection engines inter-cooled 

with cooled high-pressure EGR, a 2002 Cummins ISB and a 2003 DDC Series 60, 

using PD and B20 as fuels. The B20 was obtained from four different feedstocks 

namely soybean oil, canola oil, yellow grease and beef tallow. The test results 

showed that, compared to PD, NOx emissions increased slightly (by 3%) from the 

two engines with biodiesel blends, while PM emissions were significantly reduced 

by about 25%. Nine et al. [28] also conducted engine dynamometer testing on 

diesel–fueled marine engine (1972 Westerbeke 40) using blends of soybean 

biodiesel and PD. The “dry” (without water contact in the exhaust stream) 

emissions results revealed that pure biodiesel was able to reduce PM and CO 

emissions by 45% compared to PD. B50 and B100 resulted in 7% and 17% 

increase in NOx emissions, respectively, compared to PD. The results of 

investigation of biodiesel impact on engine emissions done by McCormick et al. 

[29] and Nuszkowski et al. [30] were all consistent with the conclusions of most 

investigators above. Their results showed 10% – 35% reduction in PM emissions, 
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14% – 18% decrease in CO and HC emissions and a 2% – 4.3% increase in NOx 

emissions in biodiesel blend (B20) emissions, as compared to PD. The 

investigation done by Thompson et al. [31] on biodiesel blends (B10 and B20) and 

PD fuel showed that variation in NOx emissions were partially due to PD fuel 

properties relative to the biodiesel fuels properties. The result showed that NOx 

increased with the biodiesel blends when their cetane numbers were significantly 

higher than that of PD. NOx emissions reduction was also noticed when the PD 

fuel cetane number was closely matched with the neat biodiesel's cetane number.  

The studies cited above clearly show that investigators agreed that the use 

of biodiesel produced low HC, CO and PM emissions. Moreover, the renewable 

nature of biodiesel has the potential to reduce dependency on PD as 

transportation fuel by at least 5% by 2015 [7] and reduce life cycle CO2 emissions 

[32]. These benefits make biodiesel a viable substitute for PD. However, it is 

noticed that majority of the above reviews suggest that biodiesel use also 

produces slightly higher NOx emissions than PD. This could limit the market 

penetration of biodiesel especially in the non-attainment areas, such as California 

and Texas, where strict NOx emissions regulations are in effect. In view of this, 

research is now being focused on mitigating the NOx emissions increase which 

results from the use of biodiesel. It is known that high temperature and oxygen 

promote formation of NOx (thermal NOx) in the combustion chamber by “Zeldovich 

mechanism” [33]. The properties of biodiesel, contribute to high temperature and 

pressure combustion in the combustion chamber through advanced combustion 

which promote NOx formation. It is believed that some other mechanisms/effects 

could also affect biodiesel NOx emissions. For instance, some biodiesel NOx 

emissions reducing strategies, such as fuel additive for cetane improvement and 

injection timing retard, have been investigated for 2004 and older trucks. These 

strategies may not be effective for 2007 and newer trucks, and more research 

needs to be done. These NOx reduction mechanisms/effects have not been fully 

understood and they are still been investigated so that an effective mitigating 
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mechanism can be put forward. The works of Mueller et al. [34], Thompson et al. 

[31] and Lapuerta et al. [35] provide a valuable insight to this line of research.  

 Two of the methods used to control engine NOx emissions are the use of 

EGR and selective catalytic reduction (SCR). EGR involves recycling a portion of 

the exhaust gases into the combustion chamber. The recycled gases reduce the 

amount of oxygen and also serve as heat absorbers in the combustion chamber. 

The overall effect is to reduce in-cylinder temperature, which leads to reduction in 

thermal NOx emissions. SCR uses hydrolysis-reduction principle to reduce NOx 

emissions using urea which is stored as a separate fluid on the vehicle. EGR is 

commonly used in United States as a NOx emissions mitigant while SCR is more 

popular in Europe. The effects of these devices on engine emissions are well 

documented in literature. For instance, Miller et al. [36] showed that NOx engine-

out emissions were reduced by over 70%, HC emissions by 100% reduction, PM 

by over 20% reduction with the use of urea-SCR after-treatment system. However, 

there was slight increase in CO emissions with the use of the urea-SCR system.  

Although numerous studies showed that while EGR is effective in 

substantially reducing NOx emissions, it also leads to increase in PM, CO and HC 

and CO2 (measure of fuel consumption) emissions. The results of investigation 

done by Tsolakis et al. [37] using canola oil biodiesel blends in naturally aspirated 

diesel engine equipped with EGR showed that NOx emissions decreased with 

increasing EGR rates. However, other engine emissions such as CO, HC and 

smoke (usually used as a measure of PM emissions) increased with increasing 

EGR rates. The results also indicated that the use of EGR led to increase in fuel 

consumption. The performance evaluation test conducted by Rajan et al. [38] 

revealed that HC and CO emissions increased with the use of EGR but with 

corresponding decrease in NOx emissions especially at high loads. Because of the 

trade-off between NOx and PM emissions with EGR use, it is usually used together 

with a DPF so that the increase caused by the use of EGR on PM, CO and HC can 

be mitigated. The combined use of EGR and DPF as an after-treatment system in 
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diesel-powered vehicles has been shown to be very effective in reducing all 

regulated emissions from diesel engines to below or at United States 2007 and 

Euro IV emissions regulation limits. Verbeek et al. [39] conducted performance 

evaluation tests on a DAF Euro IV heavy duty diesel engine equipped with both 

EGR and DPF. The results showed that the after-treatment system was an 

effective way to meet the emissions regulation applicable to the engine model 

year. Hohl et al. [40] tested Euro III and older engines retrofitted with EGR and 

DPF. The results showed that it was possible to reduce NOx emissions by 50% 

while the filtration efficiency of the DPF for PM emissions reduction was greater 

than 99%. Chatterjee et al. [41] retrofitted the EGR-DPF system on 2000 and 2001 

diesel-powered vehicles, which were tested on a chassis dynamometer. The 

results revealed that the system was able to reduce NOx emissions by 50% - 60% 

and greater than 90% reduction in PM, CO and HC emissions. With 2007 NOx 

emissions regulation fully enforced in 2010 in the United States, many engine 

manufacturers were obliged to improve their after-treatment solutions starting from 

their 2010 model engines to achieve the NOx emissions target. One possible 

option is the use of an advanced EGR solution (EGR + DPF) system which is 

being used by Navistar International [42]. Other manufacturers are considering the 

use of urea + SCR with the existing system. Although the use of DPF technology 

has the tendency to reduce PM emissions by over 90%, questions still remain 

about the constituents of the PM emitted. The constituents are reported to be 

predominantly made up of particles of less than 50 nm in diameter that could pass 

through the filters of the DPF as a result of the DPF surface affinity.  

2.3. Particulate Emissions from Diesel and Biodiesel Fuels 

2.3.1. Particulates  

 In their report, Khair et al. [43] defines particulates, also known as PM, as 

particles present in combustion engine exhaust of an internal combustion engine 

that can be trapped on a sampling filter medium at 125oF (25oC) or less. While 
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particulates are emitted from both spark-ignition (SI) and diesel engines, a study 

by Johnson et al. [44] clearly showed that, on a one to one basis, particle mass 

and number engine-out emissions from diesel engines contribute significantly to 

atmospheric aerosols compared to SI engines. Hence PM emissions regulations 

have mostly targeted particulate emissions from diesel-powered engines. 

However, particle engine-out emissions from SI engines may have equal or even 

more significant effects on atmospheric aerosol because of the large number of SI 

vehicles on the road. Diesel exhaust particles are mostly composed of highly 

agglomerated carbonaceous and adsorbed materials, ash volatile and semi-

volatile organic and sulfur compounds [45]. Typically, during combustion, locally 

rich regions promote the formation of solid carbon, much of which is subsequently 

oxidized and the remainder is exhausted as agglomerates [45]. In addition, a small 

proportion of atomized and evaporated lubrication oil escape oxidation and form 

the volatile or semi volatile organic compounds generally called soluble organic 

fraction (SOF) in the exhaust. In fact, Andersson et al. [46] showed in their study 

that sulfur and phosphorous contents of lubrication oil that enter the chamber 

during combustion contribute to the engine exhaust particles formation. 

 The SOF, formed from the fuel or/and lubrication oil, primarily contains 

polycyclic aromatic compounds having oxygen, nitrogen and sulfur atoms or 

molecules [47]. The sulfur content of the fuel/lubricant present in the combustion 

chamber is usually oxidized to sulfur dioxide (SO2) while a small fraction is 

oxidized to sulfur trioxide (SO3) [45]. It is the SO3 that leads to the sulfuric 

compounds in the exhaust particle. Also the metallic compounds in the fuel and 

the oil are oxidized to form small amounts of organic ash that are usually present 

in the exhaust particle [45]. Figure 3 shows a typical particulate composition for a 

heavy-duty diesel engine tested under transient condition [45].The amount of each 

component present in a typical diesel engine exhaust is strongly affected by many 

processes including dilution conditions, cooling, adsorption, coagulation, collision, 

agglomeration, etc [48-53]. These processes determine the mass, number and 

size distributions of exhaust particles. For example, Abdul-Khalek et al. [53] 
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studied the influence of dilution and other conditions on exhaust particle size 

distribution measurements. They found out that particle size distribution and 

number measurements were strongly dependent on a host of measuring 

conditions such as dilution temperature and ratio, residence time, relative humidity 

and fuel sulfur content. When normal dilution conditions usually observed in the 

laboratory were varied, the change in particle concentration of up to two orders of 

magnitude was observed [53]. This suggests that particle dynamics is highly non-

linear for exhaust particle measurements but strongly depends on conditions 

mentioned above. Hence there should be universal testing and measuring 

procedures to allow for comparison among studies. Efforts are underway to ensure 

this is achieved in future regulations [54].  

 

Figure 3: Constituents of a typical diesel engine exhaust particles [45]. 

2.3.2. Particle Size Distribution  

 Studies on particle size distribution of diesel particulates have received a 

great deal of attention from researchers and investigators in recent years. This is in 

anticipation that future emissions regulations are expected to cover restriction for 

particle size distribution and number concentration, most especially in Europe [54], 
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because current emissions regulations do not. The main reason for this is that 

various studies have shown that small exhaust particles cause adverse health 

effects and visibility problems [55]. It has also been shown that particle size 

distribution could not be inferred from mere measurement of particulate mass 

emissions [55]. It is generally agreed in literature that the current aftertreatment 

systems such as DOC-DPF and DPF only systems are very effective in reducing 

particulate mass emissions with filtration efficiency greater than 90%. More in-

depth studies on aftertreatment systems revealed an increase in very small particle 

emissions from low-mass emission engines equipped the aftertreatment systems 

[56-60]. For instance, Kittelson and co-workers [56] performed on-road evaluation 

on two diesel exhaust aftertreatment (DPF). They found out that, although the 

DPFs were effective in reducing PM mass emissions, the DPF use led or could 

lead to production of large quantities of NMPs. The investigation conducted by Lee 

et al. [57] on a DPF equipped diesel engine revealed that most of the particles not 

trapped by the aftertreatment device were mainly ultrafine particles that are less 

than 100 nm in diameter. Abdul-Khalek et al. [58] showed that nearly all the 

number particle emissions produced downstream of a diesel engine equipped with 

ceramic filter are NMPs. The particle emissions were, however, strongly influenced 

by residence time. Meyer et al. [59] also studied the influence of different 

particulate traps on exhaust particle emissions. The result obtained was in 

agreement with [56] that large concentration of ultrafine particles were produced 

downstream of the particulate traps. However, a study by Baumgard et al. [61] 

showed that the increase in NMPs may not solely depend on aftertreatment 

systems’ effect but also on the complexity of engine design. They tested a 1988 

and a 1991 diesel engines using both ceramic particle trap and oxidation catalyst 

converter as aftertreatment system. The 1991 engine was designed for lower 

particulate mass emissions than the 1988 engine. The results obtained highlighted 

the differences between the 1988 and 1991 engines’ exhaust particle size 

distributions. They concluded that the trap-equipped 1991 engine produced more 

NMPs and less AMPS than the trap-equipped 1988 engine when tested with the 
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same fuel. These very small diameter particles (nanoparticles) have been reported 

to have higher toxicity level because toxicity increases as particle size decreases 

[62]. In addition, nanoparticles have the higher tendency of inhalation and 

deposition in the respiratory system because of their very small size in the 

atmosphere. Hence, nanoparticles are likely to cause inflammation, respiratory 

disorder and other diseases [1-4, 62]. It is expected that better DPF technology will 

be developed in the near future that will be effective in reducing or suppressing PM 

mass emissions as well as particle number emissions. 

Particle diameter is a commonly used metric to categorize size distributions 

of exhaust particles. Particle diameter can be expressed as Stokes diameter or 

aerodynamic diameter [63]. The diameter used would depend on the range of 

particle diameter of interest and the measuring instrument. Stokes diameter is 

usually used in size distributions based on light scattering and electrical mobility 

principles and it is independent of particle density. Hence it is appropriate for size 

distribution of small diameter particles in the range 1 nm to about 500 nm [63]. 

Aerodynamic diameter is density dependent and is mainly used to describe size 

distribution of particles with a diameter range greater than 500 nm. For example, 

aerodynamic diameter is used to describe size distributions resulting from the use 

of cascade impactors as the analyzer. In prior studies reviewed in the present 

study, majority of the size distributions were reported in Stokes diameter because 

of the particle diameter range involved with the exception of few that were reported 

in aerodynamic diameter.  

Particle number emissions from diesel engine typically exist in tri-modal 

lognormal distribution form [45, 64-66]. These include the NMPs, AMPs and the 

coarse mode particles (CMPs) as shown in Figure 4. The NMPs (mostly described 

as nanoparticles) have diameter of less than 50 nm. The diameter of the AMPs 

typical ranges from 50 nm to 1000 nm and the CMPs have diameter greater that 

1000 nm. The NMPs are primarily composed of semivolatile organic and sulfur 

compounds, elemental carbon, metallic compounds and other species. They could 
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make up to 20% of the total particle mass and more than 90% of the total particle 

number [64]. The AMPs, composed mainly of agglomerated carbon compounds 

and adsorbed materials, account for most of the particulate mass emissions. The 

CMPs are mainly re-entrained AMPs that were previously deposited on cylinder 

and exhaust system surfaces. CMPs typically make up 5-20% of the total particle 

mass [64]. Figure 4 shows a typical exhaust particle distribution in terms of number 

weighting, mass weighting and alveolar deposition fraction [64]. Note that in the 

figure, the concentration in any size range is proportional to the area under 

corresponding curve in that range. It is clear from Figure 4 that the NMPs dominate 

the particle number while AMPs dominate the particle mass. The alveolar 

deposition fraction relates to the deposition tendency of the particles and the 

pattern corroborated the fact that smallest particles are mostly inhaled and 

deposited in the respiratory tract.  

 

Figure 4:“Typical engine exhaust mass and number weighted size distributions 
shown with alveolar disposition fraction” [64]. 
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2.3.3. Biodiesel Particle Emissions versus PD Particle Emissions 

From the review of literature, it may be difficult to compare and conclude on 

which of the two fuel types (diesel and biodiesel or biodiesel blends) would 

produce less or more exhaust particles in one mode or the other when used in a 

diesel engine. This is because, as noted above, particle number and size 

distribution measurements are strongly dependent on the dilution and other 

conditions during measurement. This alone may introduce discrepancies and bias 

when comparing reports of different investigators and researchers. Various 

physical and chemical properties of biodiesel have been used by researchers to 

explain or justify both increases and decreases in the number of small exhaust 

particles emitted over that of PD. For instance, on one hand, the very low or no 

sulfur content of biodiesel may contribute to reduce the smallest particles since it is 

known that fuel sulfur content is associated and promotes the formation of the 

NMPs. On the other hand, higher viscosity and higher compressibility of biodiesel 

may lead to higher injection pressure, advanced injection process, reduce injection 

timing and advance combustion process all of which have been associated to an 

increase in the number of small particles in literature. 

Nevertheless, the majority of researchers and investigators have reported 

increases in the number of small exhaust particles with biodiesel when compared 

to PD. Krahl and co-workers [67] conducted emissions comparison test on a 

DaimlerChrysler turbocharged diesel engine using pure canola oil biodiesel, PD 

and ultra low sulfur PD. The results obtained clearly showed an increased number 

of particles in the 10-40 nm diameter range, but a reduced number of particles 

above 40 nm range, when biodiesel was compared with PD. However, they also 

found a larger number of exhaust particles over the whole diameter range with 

ultra low PD when compared with biodiesel. Tan et al. [68] investigated exhaust 

particle emissions from turbocharged, Euro III diesel engine fuelled with PD and 

Jatropha biodiesel blends (B10, B20, B50 and B100). The exhaust particle number 

and size distribution were obtained using the Engine Exhaust Particle Sizer 
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(EEPS). The results revealed that the number of NMPs increases and the number 

of AMPs decreases with biodiesel when compared to the PD. The results further 

showed that the number of exhaust particles in each mode increases as the 

biodiesel blend ratio increases. Sinha et al. [69] conducted tests on a single 

cylinder, direct injection diesel engine equipped with EGR and fuelled with PD and 

biodiesel blends (B20, B40, B60, B100). The particle size distribution was 

measured by Scanning Mobility Particle Sizer (SMPS) at different injection 

pressures and a dilution ratio of 35:1. The results showed that all the biodiesel 

blends produced a higher number of NMPs and less AMPs when compared with 

PD at an injection pressure of 1200 bars. Jung et al. [70] examined particle 

emissions from a 1996 John Deere off-highway diesel engine using pure soy 

biodiesel and PD. They found that, with biodiesel, the particle number 

concentration of AMPs reduced by 38% resulting in a decrease in geometric 

number mean diameter in the same mode from 80 nm to 62 nm when compared to 

PD. Simultaneously, they found an increase in NMPs in terms of number 

concentration. The results of investigation conducted by Tsolakis [55] corroborated 

the conclusions of other investigators mentioned above. Tsolakis [55] found that, 

compared to PD, biodiesel produced lower particle mass emissions but higher 

number concentration of particles with low aerodynamic diameters when 

compared to the PD. Kim et al. [71] conducted emission performance evaluation of 

biodiesel using a common rail direct injection diesel engine equipped with 

aftertreatment device. The results showed that the particulate mass emissions 

were reduced with biodiesel blend compared to PD. However, the biodiesel blends 

produced higher particle number concentration for particles lower than 50 nm in 

diameter than the PD. Tinsdale et al. [72] carried out emissions tests on Euro IV 

diesel engine vehicle using biodiesel blends (B5, B10, B30) and PD over two drive 

cycle. The results obtained for engine exhaust particles indicated that biodiesel 

blends produced lower particulate mass emissions as a result of lower number of 

AMPs and higher number of NMPs produced compared to PD. The results further 

revealed that much more NMPs and much less AMPs were produced as biodiesel 



 

 20 

blend proportion increased. Park et al. [73] analyzed exhaust emissions from a 

diesel engine fuelled with biodiesel blend (B20) and PD. They concluded that, 

compared to PD, the B20 produced a higher number of exhaust particles in the 

diameter range less than 50 nm (nanoparticles) and lower number of ultrafine and 

fine particles. Tan et al. [74] performed emissions tests on a direct injection, high 

pressure common rail diesel engine for passenger cars with jatropha biodiesel 

blends and PD. The analysis of the exhaust particle using Engine Exhaust Particle 

Sizer (EEPS) showed that the biodiesel blends produced higher number of NMPs 

but lower number of AMPs when compared with PD.     

A number of investigators and authors agreed that biodiesel use produced 

less particulate mass but found no or insignificant increase in the number of small 

exhaust particles when compared to PD. For instance, Lapuerta et al. [75] 

measured particulate emissions from two different used cooking oil biodiesel fuels 

and PD. They obtained results that showed a decrease in the particle GMD with 

respect to that obtained from the PD. They contended that the decrease was due 

to a sharp reduction in the emission of AMPs rather than by an increase in the 

emissions of NMPs. The work of Bagley et al. [76] agreed with the conclusions of 

Lapuerta [75]. Bagley et al. [76] found a similar decrease in exhaust particle 

volume (mass) emissions with the use of soybean-oil biodiesel compared to PD. 

They concluded that particulate mass emissions were caused by up to 65% 

reduction of particles in the AMPs rather than by increase in the other particle 

modes. Some authors even found no significant effect of biodiesel use across  the 

whole particle size diameter range although they agreed that biodiesel use 

produced less particulate mass compared to PD. Chen et al. [77] conducted tests 

on a single-cylinder engine under steady states conditions using soybean biodiesel 

and PD. They found that there was no significant difference in the GMD of the 

particle size distribution between biodiesel and PD fuels, although there were 

reductions both in mass and number of emitted particles with biodiesel use. 

Lapuerta et al. [78] examined particulate emissions from a diesel engine fuelled 
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with biofuels derived from vegetable oils and PD. They observed a sharp reduction 

in the number of particles emitted but not in their size distribution. 

A few other reports suggested that biodiesel use actually produced a 

reduction in the number of smallest exhaust particles (NMPs). For instance, Aakko 

et al. [79] performed emissions evaluation on a bus diesel engine fuelled by canola 

oil biodiesel blends and PD. The results obtained showed that there was a 

decrease in the number of particles in the nucleation mode range with the 

biodiesel blends by using three different particle size distribution measuring 

instruments. 

Finally, the review of literature showed that the use of biodiesel and its 

blends in compression ignition engines offer potential benefits over PD especially 

in terms of vehicle emissions (CO2, CO, HC and PM), renewability and 

environmental impact. Particle number emissions advantage of biodiesel over PD 

is still unclear as this depends on many conditions, in addition to fuel effects, 

during measurement. Available literature data on biodiesel fuel performance 

mostly cover diesel engines and trucks of model year 2006 and earlier. Little or no 

biodiesel fuel use data exists for 2007 and later models of engines and trucks. The 

objective of this study is to add to the available data inventories on biodiesel use 

through the testing of a 2007 MHDDT in a chassis dynamometer laboratory. This 

could aid policy and decision makers to make informed decisions.    
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3. Experimental Set-Up and Procedures 

The testing for the present study was conducted at one of the research 

laboratories of Center for Alternative Fuel Engines and Emissions (CAFEE) of 

West Virginia University located in Morgantown, WV. Specifically, chassis 

dynamometer testing for the MHDDT was done using the center’s Heavy Duty 

Chassis Dynamometer Emissions Testing Laboratory located in the Industrial Park 

of Morgantown. This laboratory has fully transportable chassis dynamometers and 

a mobile container that were designed to meet EPA 2004 and 2007 and beyond 

emissions measurement specifications. The testing for the present study took 

place in November 2009. The procedure involved setting up a 2007 MHDDT, 

fuelled with biodiesel blends and PD, on a chassis dynamometer and measuring 

the regulated emissions (NOx, CO and HC) and CO2 emissions through the use of 

gaseous analyzers housed in the container. PM mass emissions were measured 

gravimetrically by collecting samples on filter that were later taken to an 

environmentally controlled mass measurement room. In addition to emissions 

characterization, exhaust particles were also measured in terms of number 

concentrations and size distribution in the range 5-1000 nm with the use of a 

Cambustion Fast Particulate Spectrometer (DMS 500). 

3.1. Test Fuels  

Three different fuels, namely PD, B20A, and B20B, were employed in this 

study. The PD was an ultra low sulfur diesel (ULSD) containing less than 15 ppm 

(parts per million) sulfur content. It was the recommended fuel for diesel engine 

use by EPA throughout the United States to help achieve the goal of meeting EPA 

2007 PM emissions regulations. The PD used was obtained from part of the stock 

supplied by a local fuel delivery service (Guttman) to the laboratory at the time. 

Some of the physical and chemical properties of the PD are shown in Table 2 

below. B20A was a biodiesel blend prepared by blending 20% by volume of 

biodiesel feedstock obtained from chicken fat with 80% (by volume) of the PD. The 
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biodiesel feedstock was 100% pure and was sold by Export Fuel Company 

(Export, Pennsylvania) and the certification sheet containing the property of the 

biodiesel provided by the seller. Similarly, B20B was prepared by blending 20% by 

volume of the biodiesel feedstock obtained from soybeans oil with 80% (by 

volume) of the same PD used in blending B20A. The soybeans feedstock was 

99.9% pure with 0.1% PD. It was sold by Guttman Oil Company (Elkins, West 

Virginia) and the specification sheet provided by the company. The fuel blending 

was done gravimetrically at the CAFEE engine research laboratory. The process 

involved calculation of mass of each of the biodiesel feedstocks and the PD to 

make the required volumetric ratio using the specific gravities of the respective 

fuels and mixing them thoroughly.  The specific gravity of each fuel was measured 

in the laboratory and was temperature corrected before being used in the blending 

calculation. The 0.1% PD in the soybeans feedstock was assumed to have the 

same properties as that of the PD used in blending. Samples of the biodiesel 

blends were sent for fuel properties analysis using ASTM D7467-09A test 

procedure. Some of the test analysis results are shown in Table 2. The complete 

fuel analysis report can be seen in the Appendix. It is noted that B20B does not 

meet the oxidation stability specification of 6 hours minimum. This, normally, 

should not affect the test results in any way as this specification only relates to 

storage capability for a certain period (6 months) before degradation sets in. The 

B20B was used a few days after being blended. 

3.2. Test Vehicle 

The test vehicle was a 2007 MHDDT manufactured by International Vehicle 

and Engine Corporation. The vehicle had a 2007 heavy duty diesel engine 

manufactured by the same manufacturer and meets EPA 2007 emissions 

regulation. The truck’s engine was equipped with VGT and EGR. The engine was 

also equipped with DPF as an aftertreatment device.  The test vehicle and engine 

details are shown in Table 3. Figure 5 also shows the MHDDT on the chassis 

dynamometer during testing.  
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Table 2: Selected properties of the fuels employed in this study. 

Fuel Properties B20A B20B1 Petroleum 
Diesel 

API Gravity (D 287) 37.1 37.8 39.12 
Cetane No. (D613) 51.8 59.4 52.5 
Sulfur Content (D5453) 1.0 ppm 1.5 ppm N/A 
Flash Point P.M. (D93) 168oF 170oF N/A 
Cloud Point (D 2500)  12oF 20oF N/A 
Sulfated Ash (D874) <0.001% <0.001% N/A 
Viscosity (D445) 2.78 cST 2.24 cST N/A 
Oxidation Stability (EN 14112) 6.07 Hrs 3.18 Hrs N/A 

N/A – Not Available; B20A - Animal biodiesel blend; B20B - Soybean biodiesel blend; 1 biodiesel blend obtained from 
99.9% soybean biodiesel feedstock; 2 based on measured specific gravity of  0.8293. 

Table 3: Vehicle and engine details. 

MY 2007 
Manufacturer International Truck and Engine 

 Model Chassis 
Odometer Reading (mile) 15053 
Tire Size 245/75R22.5 
Tire Diameter (inch) 38.2 
Gross Vehicle Weight (lb)  25500 
Curb Weight (lb) 10480 (without bed) 
Engine Manufacturer International Truck and Engine 

 Engine Model GBT210 
Engine Year 2007 
Engine Peak Torque (ft-lb) 560 @ 1400 rpm 
No. of Engine Cylinder 6 
Transmission Type Auto (Allison Transmission) 
Transmission Speed 4 
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Figure 5: MHDDT used for this study. 

3.3. Test Vehicle Parameters 

Normally, before any vehicle testing is done on a chassis dynamometer, 

coast down procedures are usually performed with some known vehicle 

parameters. This is done to ensure that real life driving conditions are accurately 

simulated in the laboratory before the actual testing begins.  In the coast down 

procedure, the actual road load of the vehicle is replicated on the dynamometer by 

using the pre-defined vehicle parameters. For the present study, the vehicle 

parameters used, which gave satisfactory results from the coast down procedure, 

are shown in Table 4. The vehicle speed was plotted against time for the actual 

coast down data. Figure 36 of the appendix shows some of the plotted data. 

Table 4: Test vehicle parameters. 

Test Vehicle Weight (lb)  23050 
Drag Coefficient  0.665 
Coefficient of Rolling Friction (µ) 0.00930 
Frontal Area (sq. ft) 71 



 

 26 

3.4. Drive Cycles 

The vehicle was tested under steady state condition at the laboratory. Thus 

the vehicle was tested using three different steady speed schedules representing 

three different vehicle road loads. The steady speed drive cycles used were MD1, 

MD2 and MD3. The speed-time traces of the drive cycles are shown in Figure 6 

below. It is important to say that each of the vehicle tests started after an initial 

warm up and after the desired vehicle speed was reached.  

 

Figure 6: Time-speed traces for MD1, MD2 and MD3. 

3.5. Chassis Dynamometer 

Tailpipe vehicle emissions measurement requires the use of a chassis 

dynamometer alongside with other systems in order to quantify the emissions. 

Specifically, the test vehicle is usually set on a chassis dynamometer in order to 

obtain instantaneous mass emissions while the vehicle is being tested under 

realistic driving situations. Currently, CAFEE has dynamometers that are capable 

of simulating vehicle weight from 40,000lbs to 70,000lbs [80] and can be 

transported to clients’ testing sites for use. One of these dynamometers was used 
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to test the 2007 MHDDT. The dynamometer bed consists of the ramp, two sets of 

rollers, joints, differentials, drive shafts, speed and torque measurement 

instruments (transducers), flywheel, motor and the power absorbers. The 

dynamometer was controlled by a Dyn-Loc IV digital dynamometer controller 

located at the data acquisition (DAQ) rack in the mobile container and integrated 

with test measurement system software. The test vehicle was rolled onto the test 

bed and hooked up to the dynamometer with the use of hub adapters by removing 

the outside rear tire on each side of the rear drive axle. The vehicle was held in 

place by the use of chains to help reduce vibration and tire slippage during testing. 

The other end of the hub adapters were attached directly to the dynamometer 

drive shafts to allow power to be drawn directly from the drive axle and to further 

reduce slippage. During testing, the vehicle drive axle’s speed and torque were 

continuously measured and recorded to the DAQ. The flywheel was used to 

simulate the vehicle test weight. Figure 7 show the picture of the dynamometer 

used before the vehicle was loaded on it while Figure 8 shows the layout of the 

dynamometer. 

 

Figure 7: Laboratory dynamometer bed. 
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Figure 8: Layout of the chassis dynamometer [80]. 

3.6. CAFEE Mobile Laboratory 

The newly constructed CFR 1065 compliant laboratory was used for the 

testing. The transportable laboratory is housed in a 30 foot long container. The 

mobile container houses the emissions sampling and measurement systems 

including two primary dilution tunnels, a subsonic venturi, a secondary tunnel for 

PM sampling and a gaseous emissions instrumentation system. The container 

also houses the HEPA primary dilution unit, an air-conditioning system, a chassis 

dynamometer control system, and a computer-based data acquisition and control 

system. Figure 9 shows an outside photographic view of the container. Figure 10 

shows a 3-dimensional representation of the inside of the laboratory container [80]. 
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Figure 9: Photographic view of the laboratory container. 

 

Figure 10: Three dimensional (3-D) representation of the laboratory container [80]. 

(1- Exhaust inlet of dirty tunnel; 2- Exhaust inlet of clean tunnel; 3- Clean tunnel; 4- Dirty tunnel; 5- Air 

compressor; 6- Vacuum pumps; 7-  Oven; 8- PM sampling box; 9- Glove box; 10- Zero air generator; 11- 

MEXA-7200D motor exhaust gas analyzer; 12- Computer table; 13- Air tank; 14- DAQ rack; 15- Subsonic 

venturi; 16- Air conditioner deck; 17- Outlet to blower; 18- Ventilation fan; 19- HEPA filters) 
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As seen in Figure 10 above, the laboratory contains two primary dilution 

tunnels. Each dilution tunnel is of 18 inches ID and 20 feet long and was made of 

316 stainless steel material. The primary dilution tunnels facilitate the 

measurement capability for both low emissions vehicles as well as traditional 

diesel-fueled vehicles. The upper tunnel referred to as the “clean tunnel” is used 

whenever low emissions vehicles are being tested. The “dirty tunnel” (lower tunnel) 

is usually used for the traditional diesel-fueled vehicles with high PM levels [80]. 

This arrangement helps to reduce tunnel history effects between test programs 

having different exhaust emission compositions. For the present study, the upper 

dilution tunnel was used since the vehicle was equipped with the DPF. 

3.7. Vehicle Testing Sequence/Method 

MD1, MD2 and MD3 were used as drive cycles for the vehicle testing using 

the three test fuels mentioned above. The test for MD2 using PD was repeated 

three times to demonstrate test repeatability and data capture consistency while all 

other tests were performed only once. The vehicle cruise control system was 

employed during testing to ensure steady speed operations except for the MD1 

drive cycle. This was because the vehicle speed for MD1 was too low for the 

cruise control system operation. Hence the vehicle could not be held steady with 

the cruise control system at this speed.   

3.8. Emissions Sampling System Method 

The emissions sampling system principle of the laboratory is based on the 

subsonic venturi - constant volume sampler (SSV-CVS). The first step involved in 

emissions sampling was that raw exhaust from the vehicle was ducted towards the 

inlet of the primary tunnel through the use of transfer pipe. The raw exhaust was 

diluted with high efficiency particulate air (HEPA) filtered air just before the 

upstream of a mixing orifice with the mixture flow rate being controlled by the SSV 

– blower system situated at the end of the dilution tunnel. The streams were further 

mixed in the mixing region downstream of the 10-inch orifice plate [80]. The diluted 
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gaseous exhaust samples were collected by sample probes inserted at sampling 

plane located at approximately 10 times the tunnel diameter downstream of the 

mixing orifice, including samples for the PM analysis. The gaseous samples were 

then delivered to a Horiba MEXA 7200D motor exhaust gas analyzers and DMS 

500 for quantification of the concentrations of CO2, CO, HC and NOx emissions 

and exhaust particles analysis, respectively. The PM sample was further drawn 

into the secondary tunnel, where it was diluted with more HEPA-filtered air, and 

passed through a cyclone separator. This was to separate particles that were 

greater than certain size in diameter (usually 10 µm). Figure 11 shows the 

schematic of the emissions sampling system [80].  

3.9. Gaseous Emissions Measurement 

As noted above, gaseous emissions samples were delivered to a Horiba 

MEXA 7200D motor exhaust gas analyzer system housed inside the laboratory 

container. The system is capable of measuring regulated emissions including NOx, 

CO, THC and CO2 emissions on a continuous basis. The MEXA system primarily 

consists of basic units namely the gas divider, the main control unit (MCU), the 

interface unit (IFC), the analyzer rack (ANR), the power supply unit (PSU), the 

solenoid valve unit (SVS), the sample handling unit (SHS) and the OVN-700 

module [81]. The MCU is a computer system that houses the software that 

monitors and controls all other units of the system via the IFC which is the 

network/communication device. The ANR provides housing for the analyzer 

modules and can accommodate up to five analyzer modules. The SVS controls the 

flow of the operational and calibration gases to the analyzer modules while the 

SHS filters conditions and pumps the exhaust sample gas to the analyzer 

modules. Presently, three analyzers are fitted to the ANR. These include the AIA-

721A CO analyzer, the AIA-722 CO/CO2 analyzer and the CLA-720 “cold” NOx 

analyzer. The OVN-700 module separately houses the FIA-725A THC and the 

CLA-720MA NOx analyzers that need heated gaseous samples for proper 

operations. The AIA-721A CO and the AIA-722 CO/ CO2 analyzers measure CO 
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and CO2 emissions by using the non-dispersive infrared detection (NDIR) principle. 

The CO analyzer is capable of measuring between 50-5000 ppm range while the 

CO/CO2 analyzer measures CO levels over 0.5-12 volume percent (vol%) and 

CO2 levels over 3-20 vol%. The NOx analyzer uses the principle of 

chemiluminesecent detection (CLD) to measure NOx emissions. It is capable of 

measuring NOx emissions over 10-10000 ppm range. The THC analyzer can 

measure emissions over 10-5000 ppm range and uses the heated flame ionization 

detection (HFID) principle. Figure 12 below shows the photo of the MEXA 7200D 

system 

 

Figure 11: “Schematic of emissions sampling system” [80]. 
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Figure 12: MEXA 7200D motor exhaust gas analyzer systems. 

3.10. Secondary Dilution Tunnel and PM Sampling System 

Gravimetric measurement of PM emissions is not completely determined in 

the laboratory but the sampling process is started during gaseous emissions 

sampling. The process is completed only after the masses of the PM filters are 

measured on a microbalance in an environmentally controlled room. For the 

present study, exhaust sample from the primary dilution tunnel was ducted to the 

secondary dilution tunnel maintained at 47°C where it was further diluted with 

treated air as required by the CFR 1065.  At the end of the secondary dilution 

tunnel, the sample was drawn into a subsystem enclosure containing PM cyclone 

and PM filter holder where it passed through a pre-weighted TX-40 filter held in the 

filter holder. The enclosure temperature was maintained at 47°C so that the filter 

face temperature was within 47±5°C as stipulated in the CFR 1065. The filter was 

then carefully removed after testing and sent to class 1000 clean room for 

gravimetric analysis. Figure 13 below shows the diagram of the PM sampling 

subsystem showing the secondary dilution tunnel [80]. 
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Figure 13: System for PM sampling [80]. 

3.11. Cambustion DMS 500 Fast Particle Spectrometer 

DMS 500 was used to collect exhaust particles data during testing. This 

purpose was to quantify exhaust particle number concentration and size 

distribution so that comparisons could be made between PD and biodiesel blends’ 

exhaust particles. In addition, the DMS 500 data analysis in terms of mass could 

also be used to validate the gravimetric PM emissions measurement. To achieve 

this, an assumption about the particle shape and density needs to be made.  

Some studies had assumed spherical particles with unit density for particle mass 

estimation [82]. Other studies developed empirical relationships to estimate mass 

of particles using the electrical mobility diameter of the particles [83]. In this report, 

the second approach was used for particle mass estimation. Electrical mobility 

property of particles is what is employed in the DMS 500 measuring principle. 

Electrical mobility is a measure of the ease of electric field deflection of charged 

particle and it is a function of charge on the particle as well as its aerodynamic 

drag. The DMS 500 instrument is capable of counting particles between 5 nm and 

1000 nm electrical mobility diameter. The instrument operates by charging the 

particles that enter the instrument using a diffusion charging process. The charged 

particles then flow into a strong electric field contained in a classification column. 
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The electric field inside the column deflects the particles towards 22 electrometer 

detectors according to each particle’s electrical mobility [84]. When the deflected 

particles impinge on the detectors, it results to changes in electrical current which 

can be measured and processed into spectral equivalent diameter and other 

desired particle data [84]. Figure 14 shows the picture of the DMS 500 with the 

data acquisition computer used to collect exhaust particle data during testing. 

 

Figure 14: DMS 500 fast particle spectrometer. 

3.12. Engine Control Unit (ECU) Data Collection 

For each of the test runs, the vehicle engine performance data were 

collected. These include the ambient air temperature, current torque to maximum 

available torque, engine speed, coolant temperature and oil temperature. The 

performance data were collected via SAE 1587 communication protocol. SAE 

1587 protocol is one of the heavy duty vehicle serial data communication 

standards that specify information sharing via datalink. Datalink is the process by 

which various subsystems of the vehicle communicate and share data among 
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themselves. The process involves conversion of information, in parallel form, from 

one subsystem to serial form for transport to other subsystems where the 

information is converted back to the parallel form [85].     

Although engine performance data were collected, the actual engine torque 

and power demand could not be obtained from the data. The absolute torque data 

were not available because the lug curve required to do this could not be obtained 

from the engine manufacturer. However, the torque and power demand were 

estimated using the power available at the wheels to approximate the engine 

power with the assumption of 85% overall powertrain efficiency. 
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4. Results and Discussions 

This chapter describes the emissions results and comparison among the 

three test fuels (PD, B20A, B20B) used for the present study. As noted in the 

previous chapter, tailpipe emissions from a 2007 MHDDT equipped with a 2007 

turbocharged engine with EGR and DPF were compared for the three fuels. To 

arrive at these results and comparisons, three different steady state drive cycles 

(Figure 6) were used with a single test weight of 23050 lb. Regulated emissions 

including CO, NOx, HC and PM together with CO2 emissions and fuel consumption 

were reported and compared. All emissions were reported in the units of g/mile 

while fuel consumption data were reported in mpg. 

In addition, exhaust particles’ data obtained from the use of DMS 500 

during testing were analyzed, reported and compared for the three fuels in terms of 

particle number concentration, particle GMD and particle mass concentration. 

Wherever applicable, particle mass concentration data were estimated by using 

the particle mass–diameter relationship previously developed and used by 

Symonds and co-workers [83]. The relationship is numerically defined as follows: 

                                        Mass (µg)= 1.54×10-16× D3.19                 Equation 2 

D is the diameter of the particle in nanometers. Each of the particles’ data 

was further analyzed to compare the number and mass proportions of NMPs, 

AMPs and CMPs. Finally, the gravimetric PM results and exhaust particles mass 

concentration results were compared with each other and the similarities and/or 

differences observed are discussed.  

4.1. Statistical Analysis 

The student t-test method was used to analyze differences in emissions 

results from the test data. All the statistical tests were done at 95% confidence 

level. To allow for the statistical computations, each of the single-run tests was 

divided into three time bins before being analyzed except for the test that had 
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repeat runs. It is noted that the t-test was performed on limited data using three 

data points and this may introduce some inaccuracies in the statistical results 

because of limited amount of data available for this study. For each of the exhaust 

particle data analyzed, GMD of the particles were obtained, reported and 

commented on in addition to particle number and mass concentration analysis. 

4.2. Emissions Measurement Results 

Before reporting the emissions results from the study, it is imperative to 

show or ascertain that the vehicle operation during testing was steady. To 

demonstrate this, continuous emissions measurement data (CO2 and NOx) from 

the three repeat runs using PD for MD2 were plotted against time. Figure 15 and 

Figure 16 show the variations in instantaneous CO2 and NOx emissions mass rate 

(g/sec) with time for the three repeat runs to show consistency of data collected at 

steady state conditions. These figures show that instantaneous emissions were 

fairly constant with time even though there was a high test-to-test variation (less 

than 11%) for NOx emissions. Table 5 shows the integrated emissions data for the 

repeat runs with 1.2% and 10.8% variations in CO2 and NOx emissions 

measurement, respectively. The CO2 data, with COV of 1.2% from run to run, 

imply that the engine fuel consumption and engine efficiency remained 

reproducible. However, NOx emissions levels depend on many factors including in-

cylinder EGR rates, the boost and back pressure, and the injection strategy among 

others. It is possible that changes in ambient conditions (Figure 17), or very small 

change in load, might result in different operating points for the EGR and for the 

turbocharger. Although variability in NOx emissions would not be expected for 

legacy engines, the complexity of late model diesel engine controls can cause the 

type of variability seen in Figure 16.  
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Figure 15: Instantaneous CO2 emissions for three repeat runs. 

 

Figure 16: Instantaneous NOx emissions for three repeat runs. 

. 
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Figure 17: Variations in ambient air temperature during repeat runs. 

Table 5: CO2 and NOx emissions data for repeat test runs 

 CO2 (g/mile) NOx (g/mile) 
Run1 660.4 2.420 
Run2 658.4 2.490 
Run3 646.3 2.026 
Mean 655.0 2.312 
Std. dev 7.63 0.250 
COV (%) 1.2 10.8 
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It is noted that the CO and HC emissions data were not analyzed for data 

consistency. This was because CO and HC emissions data showed a very high 

run to run variability because these emissions were of very low concentration for 

the trap equipped vehicle and consequently, very difficult to measure and quantify. 

The measurement accuracy for these emissions are further complicated by the 

combined effects of the vehicle EGR and DPF, fluctuations in engine load and 

measuring equipment resolution. It should also be noted that the effect of the 

engine fan operation may introduce some inaccuracies and uncertainty into the 

measurement of emissions. 

For the single-run tests, each continuous data set was analyzed to 

ascertain any systemic change with time. Each of the data set was divided into 

three time bins and COV calculated for each bin. The purpose was to compare 

COV values of the three bins for a given data set with one another for each of the 

emissions species to determine the extent of data variation over time. Table 6 

shows some data analysis for B20B representative of the extent of data variation in 

the other time bins for each of the emissions species based on the COV values. 

For instance, in the table, analysis from bin1 was shown for HC but represents the 

level of variation of HC emissions data in the other two time bins. Bin2 and bin3 

data analysis were also shown for CO2, NOx and CO, which are also 

representative of data variation in the other two time bins for each of the emissions 

species. Similar data analysis trends (not shown) were observed for PD and B20A. 

Hence, it can be inferred that continuous data collected were steady with time 

basically for CO2 and NOx (with COV less than 10%) while the same could not be 

said of CO and HC. CO and HC continuous data showed very high variability with 

high COV as high as 206% and 620% respectively.  

4.2.1. Vehicle Operating Parameters 

The vehicle ECU data broadcast (engine speed), was used to infer the 

engine torque using the road load power requirement with 85% powertrain 

efficiency assumption. These estimations indicated that the vehicle operated at an 
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engine speed between 1370 rpm and 1500 rpm with an average engine torque of 

60.9 ft-lbf for MD1. The high variability noticed in the engine speed was due to the 

fact that the cruise control system could not be used during testing. For the MD2, 

the engine operated at a speed between 1210 rpm and 1220 rpm with a 

corresponding average torque of 172 ft-lbf. Similarly, the vehicle operated at an 

engine speed between 1730 rpm and 1740 rpm with an average engine torque of 

245 ft-lbf for MD3 (Table 7). As noted in the previous chapter, the vehicle cruise 

control system was used only during MD2 and MD3 testing. Figure 18 shows an 

instantaneous engine torque representative of vehicle operating condition for MD1, 

MD2 and MD3. Figure 18 showed that a lower variability in engine torque for MD2 

and MD3 than MD1 during each testing.  The average power requirements for 

MD1, MD2 and MD3 are 16.9 hp (12.6 kW), 39.8 hp (29.7 kW) and 80.8 hp (60.3 

kW) respectively. Torque variations were more pronounced for MD1 because of 

the variability noticed in engine speed. This is attributable to the fact that the 

vehicle cruise control system could not be employed for MD1 testing.  

Table 6: Variability of continuous emissions data for B20B. 

  HC CO2 NOx CO 
MD1 Bin 1 Bin 2 Bin 3 Bin 3 
Average (mg/sec) 0.0261 4643 13.0 0.0244 
St. Dev. (mg/sec) 0.162 153 0.865 0.0501 
COV (%) 620 3.3 6.7 206 
MD2     
Average (mg/sec) -0.105 6290 20.9 0.133 
St. Dev. (mg/sec) 0.108 52.9 0.208 0.0636 
COV (%) -103 0.841 0.995 47.8 
MD3     
Average (mg/sec) -0.0367 13212 21.8 0.130 
St. Dev. (mg/sec) 0.0716 98.9 0.576 0.0548 
COV (%) -195 0.749 2.64 42.1 
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Table 7: Average engine torque and power consumption for the drive cycles. 

MD1 MD2 MD3 

Torque 
(Nm) 

Power 
(kW) 

Torque 
(Nm) 

Power 
(kW) 

Torque 
(Nm) 

Power 
(kW) 

86.2 12.6 233.2 29.7 332.2 60.3 

 

 

Figure 18: Plots of engine torque vs. time for the driving modes. 

4.2.2. CO2 Emissions and Fuel Economy  

Figure 19 shows the variation of CO2 emissions with the three test fuels for 

each of the drive cycle. The chart reveals that CO2 emissions in the units of g/mile 

are vehicle speed dependent. The chart further reveals that, at any given speed, 

fuel type has little or no effect on CO2 emissions as the same level of emissions 

were produced at a given vehicle speed which varied between 0.5% and 1.4%. 

Statistical analysis using a student t-test method at 95% confidence level showed 
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that the variations in emissions are insignificant, especially for MD1 and MD2.  

MD3 data analysis tended to show that statistically significant differences in 

emissions was evident among the three test fuels, but were still within the 

emissions variations mentioned above. This suggests that it could be possible to 

have marked differences in CO2 emissions among the fuels at very high vehicle 

speed where more fuel is consumed. In general, all statistical analysis and error 

bars on the various charts were made possible by dividing the single-run 

continuous emissions data into 3 time bins. Fuel consumption, a metric for vehicle 

performance measurement, is related to the carbon content of the fuel. Therefore, 

it is noted in Figure 20 that at a given vehicle speed; the use of B20A and B20B 

produced lower fuel economy compared to PD. This is expected since PD typically 

contains high carbon content and no oxygen and thus higher heating value than 

biodiesel or biodiesel blends. This is consistent with the conclusions of many 

authors [23, 25] that less fuel is consumed with the use of PD compared to 

biodiesel blends because of the lower carbon content in biodiesel. Figure 20 

represents fuel economy results from the test data. The fuel economy for PD was 

approximately 6% higher than the biodiesel blends for all the drive cycles. The 

carbon compositions of the fuels were estimated to be 87%, 84.7% and 84.8% by 

mass for PD, B20A and B20B respectively. The estimated carbon content of the 

biodiesel blends suggests that B20B may have the same or slightly higher fuel 

economy than B20A. This is evident in Figure 20 especially for MD2 and MD3. 

MD1 may not truly represent the differences in fuel economy among the fuel of the 

driver variability since cruise control was not employed for MD1 testing. It is also 

clear that the vehicle has better fuel economy at MD2 than at MD1 and MD3. This 

is expected because at light load (20 mph), engine is less efficient. In addition, any 

small changes in engine load with time detract from low vehicle speed efficiency. 

Inherent losses associated with low speed operations result in high fuel 

consumption. High fuel consumption also results at very high speeds (50 mph) 

when aerodynamic drag dominates the power requirement for propulsion. Thus, it 

can be concluded that the test truck would consume least amount of fuel at an 
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"intermediate" speed between a low speed and a high speed that balances the two 

factors mentioned above. In this case, the "intermediate" speed appeared to be 

around 35 mph. The above assertion is corroborated by the CARB (California Air 

Resources Board) report on the carbon dioxide emissions modeling and fuel 

economy estimation [86]. 

 

Figure 19: CO2 emissions comparison for the test fuels. 
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Figure 20: Fuel economy comparison for the test fuels. 

4.2.3. CO Emissions.  

 The CO emissions obtained from the test data are displayed in Figure 21. It 

can be observed that PD produced lower CO emissions than the biodiesel blends, 

while B20A produced relatively higher CO emissions than B20B for all tests. It has 

to be noted that the level of CO emissions concentrations from the tests were 

approximately at the same level as the background CO concentration. The low CO 

emissions concentrations are attributable to the oxidation action of the DPF during 

testing. The low concentration, as a result of the DPF action, makes it difficult to 

accurately quantify the CO emissions and the measurement accuracy is further 

complicated by the slight fluctuations in engine load. A comparison can be made 

between the levels of CO emissions of this study with CO emissions from older 

trucks to see the effects of the DPF. Specifically, this can be compared with CO 

emissions from 2001 medium heavy duty diesel truck manufactured by Navistar 

International Truck Company. The 2001 truck emissions data were obtained from 

CRC Report No. E55/59 (page 304 of the Appendix to the report) by Clark et al. 

[87]. The report shows that the 2001 non-DPF truck emitted 0.97g/mile of CO 
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emissions, compared to between 0.015 g/mile to 0.02 g/mile for the 2007 truck 

equipped with both EGR and DPF. One reason for the reduction and the 

emissions pattern is the oxidation effect of the truck's DPF. The high variability in 

the instantaneous emissions pattern for CO suggests that factors other than the 

fuels may have contributed to the emissions pattern noticed in Figure 21. Although 

factors such as EGR action and multiple injections may marginally affect CO 

emissions, the effect of the DPF is far more dominant. The operation of the DPF is 

usually influenced by the exhaust temperature and DPF's loading. With the loading 

of the DPF changing with time, it would be difficult to maintain repeatability from 

run to run with DPF-equipped vehicles especially for emissions types such as CO 

and HC that are oxidized in the DPF. Another factor that could contribute to the 

high variability in CO emissions is ambient conditions. Consequently, the 

emissions pattern of Figure 21 was probably due to the DPF action and not the 

fuels. 

 

Figure 21: CO emissions using three driving cycles and test fuels. 
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4.2.4. HC Emissions  

 The HC emissions obtained from the test data are shown in Figure 22. As it 

can be seen in the figure, the tunnel HC emissions concentration levels were at or 

slightly higher than the background HC levels. In fact, some measured 

concentration levels were even below the background levels resulting in negative 

emissions shown in the figure. The low concentration levels, due mainly to the 

DPF oxidation effects, make it difficult for the HC emissions to be accurately 

quantified. In addition, the quantification process has been made complicated by 

fluctuations in engine load and equipment resolution resulting in no definite pattern 

in Figure 22. Consequently, fuel effects on HC emissions could not be easily 

ascertained just as in the case of CO emissions.  

 

Figure 22: HC emissions comparison for the test fuels. 

4.2.5. NOx Emissions  

Figure 23 shows the NOx emissions from this study. Except for B20B, NOx 

emissions at MD2, the biodiesel blends produced slightly higher NOx emissions 

than the PD but these variations are statistically insignificant at 95% confidence 
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level for MD1 and MD2. MD3 data analysis showed that statistically significant 

differences in emissions started to manifest between the PD and the biodiesel 

blends. These results are consistent with the findings of many investigators that 

biodiesel produces slightly higher NOx emissions than PD. Engine NOx emissions 

relationship with vehicle power depends on the units in which they are reported. 

For instance, brake specific NOx emissions in g/bhp-hr increase with power while 

distance specific NOx emissions reported in g/mile may decrease with vehicle 

power. This explains the observation in Figure 23, where NOx emissions (in g/mile) 

for MD1 and MD2 are much higher than that of MD3. This is in agreement with the 

findings of Durbin et al. [88] for a 2005 heavy duty truck where distance specific 

NOx emissions reported in g/mile were lower at 70 mph compared to 65 mph on I-

5 Freeway using cruise control.  

 

Figure 23: NOx emissions comparison for the test fuels. 

Moreover, NOx emissions from this study were compared to NOx emissions 

obtained from emission factor (EMFAC, 2007 version) modeling tool developed by 

CARB [89-91]. Base Emission Rates (BER) were estimated from EMFAC tool for 

the Los Angeles district for this comparison. The NOx speed correction factor was 
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applied to the BER to obtain estimates for NOx emissions for PD fuel only. For the 

model implementation, ambient temperature of 20oC and relative humidity of 75% 

were assumed. The month of testing used in the model was November for 

calendar year 2009 and the NOx speed correction factors used for correction were 

obtained from Figure 40 in the appendix. Figure 24 shows the comparison 

between the NOx emissions from this study with those obtained from EMFAC. The 

EMFAC results corroborated the fact that lower NOx emissions in units of g/mile 

were produced at high speed compared to low speed as observed in this study. 

For MD2, B20B produced lower but statistically insignificant NOx emissions (Figure 

23). This may be due to the fact that a higher EGR rate was employed by the 

engine during testing. If this was the case, then higher EGR rates should translate 

to higher PM emissions. However, Figure 25 shows that this was masked by the 

fact that most or part of the PM emissions from B20B at MD2 were oxidized in the 

DPF. The DPF operation depends on many factors including engine backpressure, 

exhaust temperature, DPF loading and regeneration rate, and substrate oxidation 

rate [92].     

 
Figure 24: NOx emissions comparison between this study and EMFAC for PD. 
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4.2.6. PM Emissions  

Figure 25 shows the gravimetric PM emissions obtained from the tests. The 

figure also shows that there is no distinct pattern for the PM emissions. The error 

bar on PD plot (three repeat runs) shows the level of variability that could be seen 

in quantifying low PM mass emissions from DPF equipped vehicles. The lack of 

definite pattern observed in the figure is due mainly to the operating states of the 

DPF during each of the test runs which depend on the control strategy of the 

emissions control system. The emissions from the 2007 truck are generally lower 

when compared to older trucks. For instance, PM emissions for MD2 from this 

study are much lower than those obtained in the E-55/59 report for medium heavy 

duty diesel truck using the MHDDT cruise mode driving schedule. While the 

emissions for the 2007 truck is of the order of 0.003 g/mile for PD, the E-55/59 

reported PM emissions between 0.4 g/mile to 0.8 g/mile for 1999-2002 model year 

truck (Figure 41 of the E-55/59 final report). This is obviously due to soot oxidation 

in the DPF, which may mask the effects of other factors such as the fuel. 

Consequently, it may be difficult to infer the fuel effects on PM emissions without a 

high count of repeat tests or very long tests to provide high DPF loading. 
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Figure 25: PM emissions comparison for the test fuels. 

4.3. Particle Emissions Results 

The particle count data collected by DMS500 that are analyzed and 

reported were low in magnitude especially at MD1 and MD2. This is because of 

the low vehicle speed operations and the fact that the vehicle was DPF equipped. 

The low vehicle speed operations (MD1 and MD2) mean that the vehicle operated 

in light to medium load conditions. Because of the low level of magnitude of 

particle count data recorded at low speed operations, it is possible that some of the 

collected data may have been affected by the level of the electrical noise of the 

DMS 500 equipment (usually below 104 dN/dlogDp/cc). Other factors that could 

impact the results include dilution ratio, dilution temperature, injection pressure, 

fuel composition, relative humidity, EGR composition and the residence time. In 

the paragraphs that follow, exhaust particles data were analyzed and compared in 

terms of particle number concentration, particle GMD, particle mass concentration 

for each of the drive cycles. This is necessary to show any observable differences 

that may help explain fuel effects on exhaust particle emissions. 
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It is also important to show how particle emissions varied with time during 

testing. The continuous particle emissions data were integrated over the whole 

size range for each time to estimate the total number of particles emitted at a given 

time. The total particle number was plotted against time to show how particle 

emissions varied with time. Figures 37, 38 and 39 of the appendix show the plots 

for MD1, MD2 and MD3, respectively with outlier points removed. Some of the 

plots show that particle emissions were nearly constant with time (MD1 and MD2) 

while others increased over time (MD3). This trend suggest that particle dynamics 

is highly non linear. It depends on many other factors such as dilution conditions, 

lubricant effects, and DPF conditions that could explain the trends noticed in the 

figures.  

4.3.1. Lognormal Distribution of Exhaust Particles 

4.3.1.1. Particle Size and Number Distributions of PD for MD1, MD2 and MD3  

Graphical comparison was made among the data collected for PD for the 

three drive modes. Figure 26 below shows a bi-modal particle size distribution with 

most number of particles recorded at MD3, followed by MD2 and MD3, 

respectively. MD3 requires most power for propulsion which means that most fuel 

will be consumed. Since more fuel is burned in the engine cylinder, more particles 

will be formed as a result of longer diffusion combustion duration. It is expected 

that more volatile particles, which serve as precursors for NMPs, and more 

carbonaceous agglomerates, which lead to more AMPs, will be produced. Similar 

argument holds for MD2 and MD1. Figure 26 is representative of the distribution 

patterns observed for B20A and B20B. Hence, charts for B20A and B20B are not 

shown. 
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Figure 26: Particle size and number comparison for PD for all drive cycles. 

4.3.1.2. Particle Size and Number Distribution for the Test Fuels for MD1  

Figure 27 shows a lognormal distribution for the test fuels for MD1. The 

figure further reveals that exhaust particles existed in two modes namely NMPs, 

AMPs. The data for the figure were obtained by averaging the data collected over 

the test duration for each of the test fuel since it was assumed that testing was 

done at steady state condition. It is observed that, for any of the test fuel, the 

particle number is predominantly dominated by the NMPs. This is more evident 

from Figure 30, which shows the number contribution of each of the particle modes 

for each of the drive cycles. It is also observed, from Figure 27, that PD produced 

higher number of particles than B20A and B20B. Many factors could contribute to 

this observation. First, the sulfur and phosphorous contents of lubrication oil that 

could have entered the combustion chamber affected exhaust particle number 

emissions in the NMP range. It has been shown by Andersson et al. [46] that sulfur 

and phosphorous contents of the lubricant that escaped into the chamber lead to 

higher number of exhaust particles emitted in the NMP range. The sulfur content of 

the test fuels have little or no effects on nanoparticles emissions because of the 
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very low sulfur concentrations (between 1-2 ppm concentrations) of the fuels. 

During dilution and cooling of hot exhaust, heterogeneous nucleation of sulfuric 

acid and water takes place. This promotes the growth, by deposition, of initial 

nucleated particle of about 1 nm during condensation and thus leading to their 

detection by the particle measuring instrument [53]. Second, the fuel injection 

pressure may have affected the number of particles produced especially for the 

AMPs. Biodiesel fuels possess physical properties that make them to have higher 

injection pressure than PD. It does seem that the higher injection pressure 

contributed in reducing the NMPs and AMPs produced compared to PD. This 

observation is in agreement with the conclusions of the Sinha et al. [69] that higher 

injection pressures lead to lower particle emissions especially for AMPs. 

Furthermore, the oxygen content of biodiesel fuels also contribute to advanced 

combustion and better fuel atomization and oxidation in locally rich fuel zones. This 

helps to further reduce particle emissions especially particle mass concentrations.  

 

Figure 27: Particle size and number comparison for the test fuels for MD1. 
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4.3.1.3. Particle Size and Number distribution for the Test Fuels for MD2 

Figure 28 shows a lognormal distribution for the test fuels for MD2. Similar 

to the Figure 27, the exhaust particles also existed in two modes. Two major 

observations are noticed from the figure. First, it is observed that the particle 

number concentration levels produced are higher than that of MD1. Figure 30 

clearly shows this. Second, it is also observed that B20B produced higher number 

of particles than PD deviating from the trend observed in Figure 28. The number of 

exhaust particles produced from B20B (1.76 x 105 particles) is about two times that 

of PD (9.19 x 104 particles). The ambient conditions seemed to have dominating 

effects on the particle formation. The PD particle data were an average of three 

repeat runs done at 25°C, 22°C and 18°C ambient air temperature while the single 

run B20B data were collected at 15°C. The error bars show the data variability in 

the three repeat runs for PD. The error bars indicate that particle measurement is 

highly non-linear and highly susceptible to variations as a result of small change in 

the measuring condition. This also suggests that the relative humidity and dilution 

temperature would be different for the test runs. The ambient air temperature could 

be said to be the dilution temperature since exhaust samples were diluted with 

HEPA filtered air at the entrance of the primary dilution tunnel. 

Thus it can be concluded that more particles, especially the NMPs, were 

produced at lower ambient temperature (dilution temperature) and higher relative 

humidity and vice versa. This conclusion is in line with the findings of Abdul-Khalek 

et al. [53] that dilution temperature and relative humidity affect exhaust particle 

formation during dilution and cooling processes. Factors such as the DPF action 

(e.g. loading over time and subsequent regeneration) together with the magnitude 

of the exhaust temperature and composition of the exhaust gas re-circulated back 

to the engine (EGR) may have also played a part in this.    
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Figure 28: Particle size and number comparison for the test fuels for MD2. 

4.3.1.4. Particle Size and Number Distribution for the Test Fuels for MD3  

From Figure 29 below, it can be seen that two distinct particle forms were 

present in the vehicle exhaust similar to that of MD1 and MD2. For MD3, most 

particles were produced mainly because more fuel was consumed compared to 

MD1 and MD2. PD produced more exhaust particles than B20A and B20B 

possibly because the lubricant effect entering the combustion chamber during 

testing. Between B20A and B20B, many factors could have impacted B20A to 

produce more particles than B20B. For instance, a report [56] showed that, 

although the DPF is very effective in removing diesel PM, it produces more 

quantities of NMPs which increase in quantity as a function of exhaust 

temperature. In this case, the exhaust temperature data for B20A was slightly 

higher than that of B20B and this would favor more particles to be produced for 

B20A. Even at the same flow rate, if the re-circulated exhaust gas (EGR) 

composition contained more volatile compounds (sulfates), formation of more 

exhaust particles in the NMP range will be favored. 
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Figure 29: Particle size and number comparison for the test fuels for MD3. 

4.3.2. Comparison of Particle Number Concentration for the Test Fuels  

Figure 30 shows the comparison of absolute values of number 

concentrations for each particle modes for the three driving cycles. It can be 

observed that MD3 produced highest number of particles followed by MD2 and 

MD1 respectively. This is expected as highest power was required and most fuel 

was consumed at MD3 thereby producing most exhaust particles. Similarly, MD2 

required more power and fuel than MD1 but less power and fuel than MD3 

producing more particles than MD1 but less particles than MD3. Another 

observation is that the particle number comparison is dominated by NMPs for the 

three fuels under the three driving conditions. This corroborates the fact that 

exhaust particle number distribution is mainly dominated by NMPs if present. This 

is especially true for DPF-equipped vehicles. The dominance of exhaust particles 

number concentration by NMPs is clearly seen in Figure 31. Figure 31 shows that 

for all the driving modes, the proportion of exhaust particles for each of the particle 

modes is 60-73% for NMPs and 33-40% for AMPs. In addition, analysis of the all 
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exhaust particles data for GMD, based on bin widths, reveals the following: For 

MD1, the GMD for the three fuels ranges between 17.8-22.8 nm for NMPs and 71-

73.8 nm for AMPs. For MD2, the GMD for the three fuels ranges between 23.8-26 

nm for NMPs and 74.7-76.3 nm for AMPs. Also, for MD3, the GMD for the three 

fuels ranges between 25.8-27.3 nm for NMPs and 73.1-74.2 nm for AMPs. Thus, it 

can be inferred that not only does the increase in vehicle power leads to increase 

in the  number of particles emitted for the three fuels; it also increases the size of 

the particle modes except for AMPs for MD3. 

 

Figure 30: Particle number concentration comparison for the test fuels. 
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Figure 31: Percentage particle number composition for the test fuels. 

4.3.3. Comparison of GMD for the Three Test Fuels 

In addition to estimating the GMD for each exhaust particle mode for each 

of the test runs, the overall GMD combining all the GMD for each of the particle 

modes was also obtained. Figure 32 displays the overall GMD for each of the test 

runs with geometric standard deviation of diameter used for the error bars. The 

figure shows that, for each of the driving mode, the GMD for PD is greater than 

that of B20A and B20B except for B20B at MD2. It is possible to obtain the GMD 

value at B20B for MD2 considering the fact that other factors such as ambient 

conditions (temperature and humidity), EGR fraction components, DPF action that 

are not fuel related strongly affect exhaust particle formation. The GMD trend 

observed for PD over the biodiesel blends is expected considering the fact that 

biodiesel normally has higher oxygen and lower carbon content than PD. Biodiesel 

physical properties create a higher fuel injection pressure than PD. These 

biodiesel fuel characteristics lead to advanced and more complete combustion and 

better fuel oxidation thus producing lower carbon soot than PD. In addition, the 

sulfur and phosphorous contents of the lubrication oil could have promoted higher 
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number of particle formation especially in the NMP range. 

 

Figure 32: GMD of exhaust particles for the test fuels. 

4.3.4. Comparison of Particle Mass Concentration for the Test Fuels  

Based on the dilution tunnel’s particle size and number distribution data 

(Figures 27, 28 and 29), exhaust particles’ mass in the units of g/mile was 

estimated using Equation 2 developed by Symonds et al. [83]. The results 

obtained were compared with the gravimetric PM mass measurement results 

shown in Figure 25. Figure 33 shows the graphical comparison of exhaust 

particles’ mass (DMS500) with that gravimetric PM mass measurement (Filter) for 

all the test fuels and the drive modes. This comparison is appropriate to see any 

similarities or differences since both measurements tend to quantify the magnitude 

of mass of the particulates emitted by the diesel engine. The PD plots of MD2 are 

average from three repeat runs while others are plots from single test run. As 

noted earlier, the PD error bars for MD2 depict the level of variability that may be 

seen when measuring low PM mass emissions of DPF equipped vehicle. 

However, one important observation is that the figure shows similar patterns for 

both measurements. In general, the order of magnitude of mass measurement for 
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a given cycle is similar. The differences noticed in both measurements, for a given 

cycle, are probably due to the accuracy of measurement problems associated with 

low mass filter weighing and also the error inherent in the use of the empirical 

equation to estimate particle mass from the DMS data. 

 

Figure 33: PM mass emissions measurement comparison for the test fuels. 

4.3.5. Particle Mass Composition for the Test Fuels  

Figure 33 above was further analyzed to determine the components of the 

mass concentration for the test fuels for the three drive modes. Figure 34, which 

shows the results of the analysis, reveals that AMPs dominate the exhaust particle 

mass and the magnitude increases with power consumption. This is expected and 

is in line with the conclusions of many authors that AMPs dominate the mass 

concentration while NMPs dominate the number concentration of exhaust particles 

of a vehicle. The reason for this is that the mass contribution of a particle is 

proportional to D3.19, according to Eqn.1, where D is the particle diameter. Since 

the size of the AMPs is much bigger than that of NMPs, it is logical that AMPs will 

contribute more to the mass concentration considering the index of 3.19 even 

though NMPs contribute more to the number concentration. The mass contribution 
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of each of the particle modes is more clearly shown in Figure 35. For all the driving 

modes, the NMPs contribute about 2-8% while the AMPs contribute as high as 

98% to the mass concentration. To obtain Figures 34 and 35, the particle size 

ranges were categorized such that the NMPs range between 5-50 nm while the 

AMPs range from 50-1000 nm.  

 

Figure 34: Particle mass composition for the test fuels. 
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Figure 35: Particle mass concentration for the test fuels. 
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5. Conclusions and Recommendations 

5.1. Conclusions 

Two biodiesel blend fuels (B20A and B20B) and PD fuel were tested on a 

2007 heavy duty diesel truck equipped with EGR, VTG and DPF under steady 

state conditions using three drive cycles. Distance-specific regulated emissions, 

CO2 emissions, and fuel consumption were quantified. In addition, exhaust particle 

emissions were also characterized and compared in terms of number, mass and 

size distributions. The following gives the conclusions drawn from this study.  

 Test results for the 20 mph, 35 mph and 50 mph vehicle speeds showed that 

CO2 emissions variations among the test fuels are statistically insignificant at 

95% confidence level. In addition, the vehicle performance in terms of fuel 

economy showed that PD had a better fuel economy compared to the biodiesel 

blends. This is because of higher carbon content in the PD which translates to 

higher heating value for the fuel.   

 The effects of the fuels on CO, HC and PM emissions were difficult to quantify. 

This is because the other non-fuel effects such as the EGR, the VGT and the 

DPF effects introduced more complexity into the in-cylinder combustion 

processes and the formation mechanism. 

 The high variability observed in the emissions patterns of CO, HC and PM was 

dominantly affected by the DPF. Factors which confounded emissions 

measurement include: 

a) Effects of the DPF loading that changed from time to time. 

b) Effects of changes in EGR and VGT settings as a result of small changes 

in load or operating conditions. 

c) Effects of changes in ambient conditions during measurement. 

 The fuels' effects on NOx emissions showed that there was an insignificant 

increases in the biodiesel emissions compared to PD except at the vehicle 

speed of 35 mph where B20B had lower emissions than the other fuels. This 
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suggests that the EGR effect also played a significant role on the NOx 

emissions pattern observed.  

 It is the conclusion of this study that at 0.2 g/bhp-hr NOx emissions standard, 

small variations in NOx emissions due to fuel composition will probably play a 

small role in the NOx emissions inventory while older trucks with 2.5 g/bhp-hr 

and 4 g/bhp-hr emissions standards still continue to operate. 

 This study showed that the pattern of exhaust particle emissions observed 

could not be alluded to fuel effects alone. Other non-fuel factors such as 

temperature, humidity, EGR fraction composition, DPF loading also played a 

significant role in exhaust particle composition and emissions. 

 The exhaust particle mass concentration distribution chart substantially 

corroborated the pattern observed from the results of gravimetric PM mass 

emissions measurement.  

 For all tests performed, exhaust particle number emissions are dominated by 

nanoparticles (NMPs) while the particle mass emissions are dominated by 

AMPs. 

 As the vehicle propulsion power increases, the total particle number and mass 

emissions increase. This study also shows that the GMD of exhaust particles 

also increase with vehicle propulsion power.  

5.2. Recommendations 

Based on the results obtained from this study, it is recommended that future 

research should be conducted with the following focus areas: 

 This study only investigated steady state condition up to the vehicle speed of 

50 mph. It is therefore suggested that more tests on 2007 model year engines 

be conducted using different biodiesel blend proportions under the same 

steady state condition but at vehicle speeds greater that 50 mph. This is to 

determine the emissions effects of the fuels at very high speeds as it is                 

m,jh nk nn possible, as noted in this study, that marked differences in CO2 and 

NOx emissions may be observed among the fuels.  
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 It is recommended that more testing on 2007 model year engines and trucks is 

required to produce more test data which can be used to study the combined 

effects of EGR, VGT and DPF on engine emissions. Moreover, since transient 

EGR and VGT management may differ from steady-state engine management 

strategies, more data are required for transient dynamometer test cycles. 

 It is also recommended that the impact of non-fuel effects such as dilution 

conditions, and ambient conditions be studied on 2007 or later model year 

truck both on the dynamometer in the laboratory and on the road. 
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Appendix 

The following tables below show the laboratory analysis report for B20A 

and B20B. The analysis was done by Meg Corp Fuel Consulting using ASTM 

D7467-09A test procedure. Table 8 gives the report for B20A while Table 9 gives 

report for B20B. 

Table 8: Laboratory analysis report for B20A 

METHOD RESULTS SPECIFICATION 

D 287 (API Gravity) 37.1 
(Composite)  30.0 minimum 

D 86 (Distillation) 

406               IBP            
438              10%           
510              50% 
620              90%         
646              FBP   

650 maximum °F 
For 90% 

D 4737 (Cetane Index) 51.9 Cetane 40 minimum 
D 613 (Cetane Number) 51.8 Cetane 40 minimum 

D 5453 (Sulfur) 1.0 ppm 15 ppm (ULSD) 

D 93 (Flash Point P.M.) 168°F 
(Composite)  125 °F minimum 

D 130 (Corrosion) 1a No. 1 maximum 
D 2500 (Cloud Point) 12°F Reported 

Viscosity (D 445) 2.78 cST 1.9-4.1 
D 7371 (Biodiesel Concentration) 20.7% % Volume 

EN 14112 (Oxidation Stability) 6.07 HRS    6 Hours minimum 
Water (D 6304 Karl Fischer) 58 ppm < 100 ppm* 

D 2709 (Water and Sediment) 0.00 vol. % 0.05 maximum Vol. % 
D 874 (Sulfated ASH) <0.001% 0.01% maximum 

D 524 (Carbon Residue) 0.08% 0.35% maximum 
D 664 (Acid Number) 0.06 mg KOH/g 0.30 maximum mg KOH/g 

D 6079 (Lubricity HFRR) 234  µm 520 max.imum µm 
D 4951 (Phosphorus Content) <0.001% 0.001% maximum 
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Table 9: Laboratory analysis report for B20B 

*Does not meet specification. 

METHOD RESULTS SPECIFICATION 
D 287 (API Gravity) 37.8 (Composite) 30.0 minimum 

D 86 (Distillation) 

408              IBP 
444             10% 
510              50% 
620              90% 
650              FBP 

650 maximum. °F 
For 90% 

D 4737 (Cetane Index) 53.7 Cetane 40 minimum 
D 613 (Cetane Number) 59.4 Cetane 40 minimum 

D 5453 (Sulfur) 1.5 ppm 15 ppm (ULSD) 

D 93 (Flash Point P.M.) 170°F 
(Composite) 125 °F minimum 

D 130 (Corrosion) 1a No. 1 maximum 
D 2500 (Cloud Point) 20°F Reported 

Viscosity (D 445) 2.24 cST 1.9-4.1 
D 7371 (Biodiesel Concentration) 21.3% % Volume 
EN 14112 (Oxidation Stability)* 3.18 HRS 6 Hours minimum 

Water (D 6304 Karl Fischer) 70 ppm < 100 ppm* 
D 2709 (Water and Sediment) 0.00 vol. % 0.05 maximum Vol. % 

D 874 (Sulfated ASH) <0.001% 0.01% maximum 
D 524 (Carbon Residue) 0.05% 0.35%  maximum 

D 664 (Acid Number) 0.12 mg KOH/g 0.30  maximum  mg KOH/g 
D 6079 (Lubricity HFRR) 249 µm 520  maximum   µm 

D 4951 (Phosphorus Content) <0.001% 0.001%  maximum 
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Figure 36: Vehicle speed versus time (coast down data). 
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Figure 37: Particle emissions versus time for MD1.  

 

Figure 38: Particle emissions versus time for MD2.  



 

 81 

 

Figure 39: Particle emissions versus time for MD3.  

 

Figure 40: NOx speed correction factor for EMFAC [90]. 
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