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ABSTRACT

Nonlinear Approximation Using Blaschke Polynomials

Daniel Van Vliet

This dissertation, entitled Nonlinear Approximation Using Blaschke Polynomials, is mo-

tivated by questions arising from Empirical Mode Decomposition (EMD). EMD is a signal

processing method which decomposes input signals into components called intrinsic mode

functions (IMFs). These IMFs often have the desirable property that the instantaneous

frequency of their analytic signals is positive. However, this is not always the case.

The first two chapters are introductions to approximation in general, and Empirical Mode

Decomposition, respectively.

The third chapter presents a characterization of which analytic signals have the property

of non-negative instantaneous frequency. These ’analytic signals with non-negative instan-

taneous frequency’ (ASNIFs) are described using Hardy spaces on the unit disc. Analogous

results are also found for analytic signals which are boundary values fof elements of Hardy

spaces on the half-plane.

The fourth cahpter describes in general terms how one might construct an approximation

method using ASNIFs, or possibly some restricted subclass of ASNIFs, as approximants.

The fifth chapter introduces a special set of ASNIFs: Blaschke polynomials. These are

functions which are linear combinations of Blaschke products, which are a special kind of

ASNIF. Blaschke polynomials are a natural extension of other classical approximating sets,

and have soem interesting properties of their own. Some of these properties are explored.

The sixth chapter contains an implementation of a signal decomposition method using

Blaschke polynomials, and a discussion of the results.

The seventh chapter further explores the conclusions of this work, and lays out future

research questions.
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Chapter 1

Introduction

The fields of signal processing, approximation theory, wavelets, time-frequency analysis, and

other related areas have undergone a rapid evolution since the development of wavelet theory.

Wavelets brought with them powerful tools for analysis, compression, encoding, and pretty

much any other task one might ever need to do with signals or images. As wavelet methods

have evolved and matured, it has become clear that they are not without limitations. Due to

their inherently linear structure, they may not be the best tool for analyzing highly nonlinear

problems. Recently, new methods have been proposed which show some promise in dealing

with highly nonlinear signals. The Empirical Mode Decpomposition (EMD), developed by

Norden Huang[13],is one such method. EMD represents a bold attempt to address some of

the shortcomings that linear signal processing methods have when dealing with nonlinear

nonstationary signals. EMD has produced some promising results, but is hampered by what

might be its greatest strength: it is (currently) only defined algorithmically. There is no

analytic representation of how EMD produces its output.

In some important ways, EMD serves as a prototype of the next generation1 of signal

processing methods:

• Components are selected by a nonlinear process.

• The set of potential component functions is much larger than that of any wavelet (or

other linear) method.

These characteristics are typical of methods being studied currently in the field of nonlinear

approximation theory (see [6]). Interesting research problems have presented themselves

regarding EMD. In Chapter 2, some of these problems are outlined. In this work, we address

some of these problems in a way that will hopefully benefit not only EMD research, but

other aspects of nonlinear approximation theory as well.

1after wavelet type methods
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1.1 Preliminaries, Definitions, and Notation

Hilbert spaces provide the simplest setting within which to explore the problems of approx-

imation theory. The results obtained for Hilbert spaces are rich enough that they illustrate

many important aspects of modern approximation theory, and the results for Hilbert spaces

often extend quite naturally to more general settings when necessary. Unless stated other-

wise, the results presented in this work are developed within the context of separable Hilbert

spaces. This introduction closely parallels chapter 2 of [6], with some omissions. For a more

thorough introduction, see [6].

Let X be a separable Hilbert space, with inner product 〈∗, ∗〉X , and the norm induced

by the inner product given by ‖∗‖X =
√
〈∗, ∗〉X . (When there is no ambiguity, the subscript

X may be dropped from the norm and inner product.) Let {ηk}∞k=1 be an orthonormal basis

for X.

Definition 1.1.1. Let X be a separable Hilbert space, Y ⊂ X , and M be a surjective mapping

M : X → Y. Such a mapping M is called an approximation method. The set Y is called

the set of approximants.

Definition 1.1.2. If M : X → Y is a linear map, then it is called a linear approximation

method. If M is not a linear map, then M is called a nonlinear approximation method.

For linear approximation, we use the notation Y = Xn := span ({ηk : 1 ≤ k ≤ n}) for the

n-dimensional subspace of X used to approximate an element f ∈ X . The error of the best

approximation in Xn is given by

En(f)X := inf
g∈Xn

‖f − g‖X . (1.1)

When performing nonlinear approximation, we construct the set of n-term approximations

which replaces Xn by the space Y = Σn consisting of all elements g ∈ X which can be

expressed as

g =
∑
k∈Λ

ckζk, ck ∈ C

where Λ ⊂ N is a set of indices with |Λ| ≤ n.2 The ζk’s will initially be elements of the

orthonormal basis {ηk}. Later, when looking at highly nonlinear approximation methods the

ζk’s will be chosen from a set which is much larger than {ηk}. Notice that the space Σn is

not linear. While Σn is closed under scalar multiplication, a sum of two elements of Σn may

require up to 2n terms in its representation by the ζk. Analogous to the linear space En, we

2We use #S to denote the cardinality of the set S.
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define the error of the best n-term approximation for a nonlinear approximation method as:

σn(f)X := inf
g∈Σn

‖f − g‖X .

Definition 1.1.3. For a linear approximation method, an n-term best approximation to

f ∈ X is an element f ∗ ∈ Xn which satisfies

‖f − f ∗‖ = En(f)X

For a nonlinear approximation method, an n-term best approximation to f ∈ X is an element

f ∗ ∈ Σn which satisfies

‖f − f ∗‖ = σn(f)X

Basic questions concerning the best approximation are: existence, uniqueness, charac-

terization (Can one recognize f ∗ without comparing it to every other element of Xn or Σn),

and construction. Some approximant sets lend themselves to the easy computation of the

best approximation. For others it may be impractical to calculate the best approximation;

for these methods, we are often interested in comparing the resulting approximation with

the best approximation in order to see how “good” the method is. Even if the best approxi-

mation is not available, it may be possible to obtain useful bounds on the distance between

a given approximation and the best approximation.

Definition 1.1.4. An iterative approximation method is a sequence {Mn} of approximation

methods.

A simple result which characterizes the structure of iterative best approximation methods

is:

Theorem 1.1.5. If the family of maps {Mn}∞n=1 is an iterative approximation method for

which Mn(f) = f ∗ is given by the best approximation from Yn, and the error of approximation

‖f − f ∗‖X is non-increasing in n for all f ∈ X , then

Y1 ⊆ Y2 ⊆ Y3 ⊆ . . .

Proof. Choose an element y ∈ Ym. The error of the mth approximation is 0. If ‖y −Mn(y)‖X
is non-increasing in n, then ‖y −Mn(y)‖X = 0 ∀n ≥ m. Therefore y ∈ Yn ∀n ≥ m.

This result states that if the error of approximation is monotonically decreasing for all

f , then the individual iterations of the approximation method will have a lot in common

structurally. This is true of most commonly used approximation methods. After all, if each

3



iteration of an approximation method has very little in common with each other, then there

is often not much to be gained by considering them together as a family.

In this work, one goal is characterizing more precisely in what way various nonlinear

approximation methods are nonlinear. To aid in exploring this perspective, we introduce the

following notation and terminology.

Definition 1.1.6. R − S − T Factorization. Let Z be a linear space. Choose operators

T : X → Z, S : Z → Z and R : Z → Y which satisfy

R ◦ S ◦ T = M,

and ∀z ∈ Z , there exists a linear projection operator Pz : Z → Z such that S(z) = Pz(z).

Then T is called a decomposition operator, S is called a selection operator, and R is called

a reconstruction operator for the approximation method M .

In approximation literature, the decomposition operator may also be called a analyzing

operator, or a frame operator.

The parameter space Z may be a Hilbert space, or it may have some other structure3. In

the case that Z is countable, the elements of Z are called coefficients. If Z is uncountable and

equipped with a non-discrete topology, the elements of Z are often simply called variables

or parameters.

Given an approximation method with mapping M , there always exists a factorization

as in Definition 1.1.6. For a mapping M , a trivial factorization is given by letting Z = Y ,

T = M , and R and S both be the identity map on Y . Then T is an decomposition operator

for M , S is a selection operator, and R is a reconstruction operator for M . Of course,

this factorization is not very useful or instructive. Thankfully, the factorization of M into

decomposition and reconstruction operators is far from unique. Often, there is great latitude

in choosing this factorization; this will be exploited to help illustrate the common structure

of many approximation methods.

1.1.1 Order of Approximation

If we have a sequence of subsets {Yn}∞n=1, Questions about order of approximation consider

the behavior of En(x) = dist (x,Yn) as a function of the parameter n. The first question

is whether or not limn→0En(x) = 0. This cuts to the heart of whether the sets {Yn}
3Definition 1.1.6 may even be modified so that Z is not a Banach space. However, defining the selection

operator appropriately becomes somewhat tricky in the absence of a linear structure. It can be done in terms
of the image of the composition R ◦ S, but the purpose becomes less clear. Also, this is not needed for any
of the results in this work, as the parameter space Z will always have at least a linear structure.

4



are a reasonable choice for doing approximation at all. (Of course, if Yn = Xn, then this

convergence is obvious. However, when considering other alternatives for Yn, this question

may become nontrivial.) The next question is how fast or slow this convergence is for

particular subsets of X . Usually the rate of convergence is compared with some standard

function, e.g. n−α. For a particular class of functions Z ⊂ X , there are two major classes of

results regarding the degree of approximation:

1. Jackson type results: x ∈ Z ⇒ En(x) ∈ O(g(n))

2. Bernstein type results: En(x) ∈ O(g(n))⇒ x ∈ Z

These two types of results give different insights into how suitable the class Z is for doing

approximation in the space X .

1.2 Fourier Series

Any approximation method which uses an orthonormal basis is a generalized Fourier series.

Such methods include orthonormal wavelet decompositions, the “standard” sine and cosine

series, and many other orthogonal decompositions.

For a function f ∈ X , the Fourier series of f is given by:

f =
∞∑
k=1

〈f, ηk〉 ηk.

This summation converges absolutely in ‖·‖X (see [15]).

We consider first the case of linear approximation based on the Fourier series. The best

approximation to f from Xn is given by the projection

Pn(f) :=
n∑
k=1

〈f, ηk〉 ηk

onto Xn and the approximation error is given by

En(f)2
X =

∞∑
k=n+1

|〈f, ηk〉|2 .

5



This linear approximation method admits a natural R− S − T factorization:

T : f 7→ {〈f, ηk〉∞k=1} (1.2)

Sn : {ck} 7→ {c1, c2, c3, . . . , cn, 0, 0, . . . } (1.3)

R : {ck} 7→
∞∑
k=1

ckηk (1.4)

This is not the only factorization for M , but this factorization will help emphasize the sim-

ilarities between this linear Fourier series approximation method and the nonlinear (thresh-

olding) Fourier series which will be introduced next. While it may seem pedantic to split an

operator as simple as Pn(f) into three factors, each of the factors in the R−S−T factoriza-

tion has a particular role: T evaluates the coefficient values, S selects which coefficients will

be used in the reconstruction of the approximant, and R performs the actual reconstruction.

Notice that only the selection operator Sn depends on the parameter n; the decomposition

and reconstruction operators are identical for all values of n.

1.2.1 The Thresholding Fourier Series

Nonlinear approximation methods arise from the Fourier series as well. It is quite natural

to ask what happens if one selects a subset of the Fourier coefficients not according to

a prescribed cutoff in index value, but according to some prescribed cutoff in coefficient

magnitude, i.e.

f ≈
∑
|cn|≥K

cnηn

The approximation method given by MK(f) =
∑
|cn|≥K cnηn is nonlinear. This is easily

shown:

MK(Kη1) = Kη1 6= 0 = KMK(η1)

Despite being nonlinear, the thresholding Fourier series still has a lot in common with the

truncated Fourier series. The mapping MK can still be factored into a form that is almost

identical to the truncated Fourier series. The coefficients that end up being selected in the

reconstruction are clearly identical to the coefficient values in the truncated Fourier series.

The only difference is which coefficients are selected. This suggest a factorization of the form

M = R ◦ SK ◦ T

where T and R are the decomposition and reconstruction operators given in equations 1.2

6



and 1.4 respectively, and S is a selection operator given by

SK ({ck}) = {c̃k} , c̃k =

{
0 , |ck| < K

ck , |ck| ≥ K

The thresholding Fourier series is prototypical of many nonlinear approximation methods.

Some common methods which are similar to (or examples of) the thresholding Fourier series

are greedy algorithm based methods (see [22]), and even the wavelet shrinkage method (see

[7]). Even though the thresholding Fourier series is nonlinear, there is a lot about it that is

linear. The (nonzero) coefficient values are all calculated by means of a linear projection.

The reconstruction is also accomplished by a linear map.

1.3 Wavelets and Frames

An introduction to modern approximation methods would not be complete without men-

tioning of wavelets and frames. Wavelets have been an area of very active research, with

many exciting results in linear and nonlinear approximation.

In the realm of linear approximation, wavelets have brought to the forefront the general

setting within which they reside: frames. A frame is a set F = {fj} of vectors for which

there are constants 0 < A ≤ B <∞ such that the frame condition

∀x ∈ X A ‖x‖2
X ≤

∑
j

〈fj, x〉2 ≤ B ‖x‖

is satisfied. If A = B, the frame is said to be tight. This property allows frames to be

used for approximation in a manner similar to a basis. Frames may be used for both linear

and nonlinear approximation. The most commonly used frame-based aproximation meth-

ods (including wavelet methoods) use a common decomposition operator, called the frame

operator.

Definition 1.3.1. Let X be a separable Hilbert space, and let F = {fj}∞j=1 be a frame for

X . The frame operator TF : X → l2(C) is given by

TF(x) := {〈fj, x〉}∞j=1

Because of the frame condition, the frame operator TF is a bounded linear operator, and

has a bounded inverse. This inverse operator is used as a reconstruction operator for frame

based approximation methods.

7



1.4 Highly Nonlinear Methods

There are many ways to construct nonlinear approximation methods. The simplest is to

apply some kind of nonlinear component selection to a linear approximation method (like

the thresholding Fourier Series). Such methods are nonlinear, but they are not radically

different from linear approximation methods. They use a linear operator to evaluate the

coefficient values, then impose a nonlinear component selection operator, and finally a linear

reconstruction operator. The only real difference between such a nonlinear approximation

method and the linear method from which it is derived is the component selection step -

which is a decidedly simple process. In fact, there is very little about the process that is

nonlinear at all. To aid in this discussion, we introduce the following terminology:

Definition 1.4.1. A nonlinear approximation method M is weakly nonlinear if there is an

R−S − T factorization for M in which both R and T are linear. An approximation method

M is highly nonlinear if it does not admit an R − S − T factorization for M in which both

R and T are linear.

Weakly nonlinear approximation methods have some compelling advantages over highly

nonlinear methods:

• Linear decomposition and reconstruction operators typically translate into very fast

computer implementations.

• It is relatively easy to compare a given approximant to the best approximation, when

the best approximation is available.

• It is easy to compare the properties of a set of weakly nonlinear methods which share

common decomposition and reconstruction operators.

• There are many powerful theoretical tools available to study the general properties of

algorithms that employ linear operators.

Notwithstanding all of these benefits, there are some problems for which weakly nonlinear

methods are unsatisfactory. This may be because the problem being addressed does not

have a linear structure which can be exploited easily, or because the most natural way of

attacking a problem with linear operators leads to ill-posedness or instability of some kind.

There is very little general theory pertaining to nonlinear methods - especially for highly

nonlinear methods.
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Chapter 2

The Empirical Mode Decomposition

2.1 Introduction

The empirical mode decomposition (EMD) is a new signal decomposition method developed

by Norden E. Huang, Zheng Shen, Steven R. Long, Manli C. Wu, Hsing H. Shih, Quanan

Zheng, Nai-Chyuan Yen, Chi Chao Tung and Henry H. Liu. The empirical mode decomposi-

tion as laid out in [13] consists of a two stage process. First, the input signal is decomposed

into component signals called intrinsic mode functions or IMFs using a “sifting algorithm”.

Second, the IMFs are used to create analytic signals (by adding their Hilbert transform

as a complex conjugate function) whose instantaneous frequencies are used to generate a

“Hilbert spectrum”. This “Hilbert spectrum” is used to interpret the original input signal,

in a manner similar to a spectrogram, windowed Fourier transform, or wavelet transform.

The EMD method seems quite promising, as it yields results which seem very good in cases

where more conventional methods (like wavelets) have trouble. However, it is hard to say

precisely what is meant by “good results”, as it is unclear what it is the EMD algorithm is

actually doing.

In this chapter we present a brief summary of the EMD method, with an emphasis on

the motivation behind the elementary definitions of the method. The complete details of the

method and its implementation, and the relevant computer code are available in [13] and

[10].

2.1.1 Definitions and Notation

“Time” refers to a real-valued variable, denoted by t. Let g(t) be a real-valued function of

the variable t. H {f} (t) denotes the Hilbert transform of the function f(t). If f : R → R,
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then H {f} (t) is given by

H {f} (t) =
1

π
P.V.

∫ ∞
−∞

f(s)

t− s
ds,

where P.V. denotes the Cauchy principal value of the integral. The Hilbert transform exists

for functions in any class Lp (see [23]).

The functions f(t) and H {f} (t) are then used to form a complex pair

F (t) = f(t) + iH {f} (t) = A(t)eiθ(t), where (2.1)

the resulting signal F (t) is called the analytic signal of f(t). For more detail on the uses of

the analytic signal in time-frequency analysis, see [3].

The instantaneous frequency of an analytic signal F (t) is given by

ωF (t) =
d

dt
θ(t), (2.2)

where θ(t) is the phase angle of F (t).

2.1.2 The sifting algorithm

The first stage of the EMD method is a signal decomposition algorithm called the sifting

algorithm. In this step, the input function is decomposed into component functions called

intrinsic mode functions, or IMFs. The sifting algorithm is a fairly intuitive process. It is

only defined algorithmically - making it fairly simple to implement, and difficult to comment

on from a theoretical point of view.

The basic idea of the sifting algorithm is to identify the highest frequency oscillations

within a signal f(t) by subtracting a sort of moving average from the input. This moving

average is found by interpolating the local maxima of the signal (typically using a spline

curve) to construct an upper envelope1 for f(t), and likewise interpolating the local minima

to yield a lower envelope for f(t). The mean envelope (i.e. the mean of the upper and lower

envelopes) is then subtracted from f(t), and the same process is applied to the remainder.

This “sifting” algorithm is iterated until the mean envelope is approximately zero everywhere

(within some prescribed tolerance), and the resulting signal is called the first IMF, or c1(t).

The sifting algorithm is then applied to the remainder r1(t) := f(t)−c1(t) to yield the second

1This is not an envelope in the strict sense, but only an approximation of an envelope. Notwithstanding
the standard definition, we will use the term here without any ambiguity to mean the approximate envelope
used in [13].
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IMF, c2(t). This process is repeated until the residual is a monotone function:

f(t) = c1(t) + r1(t)

= c1(t) + c2(t) + r2(t)

...

=
N∑
k=1

ck(t) + rN(t)

2.1.3 The Hilbert Spectrum

After the sequence of IMFs have been extracted from an input function, it is a simple

matter to apply the Hilbert transform to each component, in order to obtain an analytic

signal. Given a real-valued signal x(t), the analytic signal of x, written as A [x], is given by:

A [x] = f(t) +
i

π
P.V.

∫ ∞
−∞

x(τ)

t− τ
dτ

P.V. denotes the Cauchy principle value of the integral. For more details on the analytic

signal, and its significance in signal processing, the reader is referred to [3]. For simplicity

of notation, we will use the corresponding capital letters to denote analytic signals i.e. for a

real-valued function g(t), the analytic signal is written as A [g] (t) = G(t). The instantaneous

frequency ωG(t) of an analytic signal G(t) is defined to be the time-derivative of its phase,

wherever it exists:

ωG(t) :=
d

dt
θ(t),

where θ(t) is the phase angle of G(t) = A(t)eiθ(t).

After sifting the input to yield a sequence of IMFs, the analytic signals of the IMFs

are constructed. The instantaneous frequency of the IMFs is then used to study the input

f(t). The instantaneous frequency ωF (t) of a complex-valued function F (t) is defined as the

time-derivative of its phase:

ωF (t) :=
d

dt
θ(t), (2.3)

where θ(t) is the phase angle of F (t) = A(t)eiθ(t).

This simple fact is the key reason that the analytic signal is used in the EMD method:

the analytic signal of an IMF allows one to introduce a notion of frequency that is perfectly

localized in time. The frequency content of a signal in a way that appears to defy one of

the basic notions of signal processing: the uncertainty principle. This is one of the most

exciting (and controversial) aspects of EMD. Claims have been made which hint that EMD
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may have broken free from the constraint of the uncertainty principle:

Windowed Fourier and wavelet-signal-analysis techniques . . . suffer from an

uncertainty problem that can limit the accuracy of the frequency (scale for

wavelets) and timing information they yield.
...

[EMD] signal separations are not subject to this limitation and provide both

accurate frequency and accurate timing simultaneously. [EMD] has this unique

advantage over conventional time-frequency analysis techniques[16].

Given the ubiquity of the uncertainty principle throughout signal processing, physics, and

other fields which use applied mathematics, it is not surprising that claims like this raise

some eyebrows. The fact remains that an EMD analysis of a signal definitely does not lie

within the realm of any known setting for which an uncertainty principle applies. This may

be because it is unclear what realm or setting EMD actually resides within!

In order to more fully understand exactly what is going on with EMD, it is important

to explore the basic properties of the algorithm. While a conventional uncertainty principle

may not apply, there is the possibility that some more general type of principle still relates

the uncertainties in the time and frequency variables. There is clearly no uncertainty in the

instantaneous frequency of a given IMF, but there is very little that is known about how

certain one can be about the precision of that IMF. How sensitive is the output (the set

of IMFs) to perturbations in the input signal? Is the algorithm stable? Answering these

questions would go a long way towards understanding questions about uncertainty as they

relate to EMD.

2.2 Research Problems

EMD presents some exciting possibilities. It allows “ugly” signals to be analyzed in a way

that yields better looking results than more conventional methods. It appears not to be

bound by the uncertainty principle - a principle that characterizes almost every signal pro-

cessing method invented to date. However, these possibilities will remain unrealized until

some important questions have been answered:

• Given that IMFs are not guaranteed to have positive instantaneous frequency, how

should the Hilbert spectrum of a set of IMFs be understood? Are the counterexamples

found in [20] freak occurrences, or are they likely to affect real-world EMD results?

• Is the current definition of an IMF desirable, or should it be changed to avoid the
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problems in [20] - for example, are analytic signals with non-negative instantaneous

frequency (ASNIFs) a preferable class of approximants?

• If the current definition of an IMF is chosen, can the sifting algorithm be reformulated

in a way that is more theoretically precise?

• In what sense can the sifting algorithm be said to converge? Does the sifting algorithm

converge everywhere, or just for a certain class of approximants?

• How are the resulting IMFs affected by perturbations in the input signal?

These are all very significant questions. Until most of them are answered, EMD will not

be a viable option for real-world signal processing applications. This is especially true of the

last question, regarding error analysis.

Some very interesting progress has been made regarding the nature of the sifting algo-

rithm. In [5], the original sifting algorithm is replaced with a specialized nonlinear diffusion

process for estimation of the mean envelope. In the future this may help settle questions of

convergence of EMD, as well as error analysis.

In this work, the consequences of using ASNIFs as approximants for nonlinear approx-

imation are explored. Starting by characterizing ASNIFs (or at least a sizeable subclass

of them), we then explore various formulations of nonlinear approximation using classes of

ASNIFs as approximants, using the intuition gained from their characterization.

In order to construct a technique similar to (or possibly more accurately: inspired by) the

empirical mode decomposition, one is faced with a dilemma. Which aspect of EMD is more

important to focus on keeping intact: the sifting algorithm, or the non-negative instantaneous

frequency property of the components? This choice is an open one, and it is not obvious

whether the choices are mutually exclusive. In order to make quick headway without doubling

back too often to reconcile these two perspectives, we choose to pursue the second option.

Thus, the particular goal of this work is to explore what nonlinear approximation methods

we can build which use classes of ASNIFs as the component functions.

An optimization based decomposition technique is the basic framework for this inves-

tigation. Rather than delving into questions about the sifting algorithm itself, we replace

it with this more well-known decomposition technique. An optimization has the advantage

that the set of approximants can be tailored to any list of a priori characteristics by simply

constraining the optimization to the desired set of functions. It is therefore a natural way

to investigate decomposition algorithms which use ASNIFs as approximants.

The set of ASNIFs is a very large set to use as a starting point. It is probably best to

build up to this set gradually. This is also justifiable by virtue of the fact that IMFs are not
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representative of the entire set of ASNIFs. IMFs that arise from the sifting algorithm tend

to have very little amplitude modulation compared to their instantaneous frequency. This

is suggested by the ASNIF condition that the instantaneous frequency resulting from the

outer part must be compensated for by an inner factor whose instantaneous frequency is “big

enough”. However, the IMFs which EMD produces have much less amplitude modulation

than the “worst case” ASNIFs. In fact, most of the IMFs appearing in published EMD

applications appear to be very close to constant amplitude functions. (See [13], [14], and

[16].)

This investigation into ASNIF-based approximation methods will use only functions with

unit modulus as approximants. This has an added benefit of allowing natural comparisons to

be made with Fourier analysis. Recall that the traditional Fourier component functions are

a subclass of inner functions: functions analytic on the open unit disc, and whose boundary

values have modulus 1 almost everywhere. Expanding the set of approximants to a larger

class of inner functions is, in a sense, simply relaxing the orthogonality property of the

Fourier modes.
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Chapter 3

ASNIFs

The definition of an intrinsic mode function is designed to ensure that these signals are

narrow-band. Therefore their analytic signals will (hopefully) only have non-negative in-

stantaneous frequency. It has been demonstrated in [20] that there are IMFs which have

negative instantaneous frequency. This presents a conundrum: should the definition of an

IMF be modified to ensure that the resulting analytic signal has nonnegative instantaneous

frequency, or should the expectation of nonnegative instantaneous frequency be relaxed in

order to preserve the original definition of an IMF? Another perspective on this issue is to

ask the question: what are the tradeoffs involved in using IMFs to perform EMD, as op-

posed to using components whose analytic signals actually have non-negative instantaneous

frequency?

To answer to these questions, it is necessary to investigate some basics regarding EMD.

If the definition of an IMF is not sufficient to ensure that the resulting analytic signals are,

in fact, analytic signals with non-negative instantaneous frequency (or ASNIFs) then how

are ASNIFs characterized? If they can be characterized in a sensible way, we may then be

able to understand the tradeoffs involved in using IMFs as opposed to using ASNIFs for a

signal decomposition method.

In this chapter we consider analytic signals as being boundary value functions of elements

of a Hardy space. (They may also be defined for more general settings, i.e. in the sense of

distributions.) Periodic analytic signals can be mapped to the unit circle. These functions

have natural analytic continuations to the disc which are elements of a Hardy space for the

disc. Nonperiodic analytic signals can similarly be extended to elements of a Hardy space

for the upper half-plane. These spaces are a natural setting in which to consider analytic

signals. They are one of the most general settings in which one might encounter analytic

signals, and the body of theory available contains powerful tools. Using the tools from these

Hardy spaces, we can obtain a simple yet informative characterization of ASNIFs in the
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periodic and nonperiodic case.

Section 1 lays out some definitions, notation, and preliminaries. (The notation used in

this chapter may differ slightly from that used in previous chapters.) Section 2 explores the

consequences of Hardy spaces on the disc for instantaneous frequency. A characterization of

instantaneous frequency is found for sufficiently smooth elements of Hp (D). Parallel results

of this analysis are then stated for the Hardy spaces on the upper half plane.

3.1 Preliminaries, Definitions, and Notation

In this section we introduce the notation used and state classical results which are needed

to develop our results. Let z denote a complex number, whose real and imaginary parts are

given by x and y, respectively. i.e., z = x+iy. Whenever polar notation is used, the complex

variable z will be expressed as either z = reiθ or as z = ρeiφ to indicate the argument and

output value of a function, respectively. i.e. ρeiφ = f(reiθ).

D denotes the unit disc D = {z : |z| < 1}.
C+ denotes the upper half of the complex plane: C+ = {z = x+ iy ∈ C : y > 0}.
Hp (D) denotes the Hardy space of functions f , which are holomorphic on D and for

which the following holds:

sup
1>r>0

1

2π

∫ ∣∣f(reiθ)
∣∣p dθ = ‖f‖pHp <∞.

Hp (C+) (0 < p <∞) denotes the Hardy space of functions f , which are holomorphic on

C+ and for which the following holds.

sup
y>0

∫ +∞

−∞
|f(x+ iy)|pdx = ‖f‖pHp <∞. (3.1)

H∞(C+) denotes the Hardy space of functions f , which are holomorphic and uniformly

bounded on C+. The norm is given by

‖f‖H∞ = sup
z∈C+

|f(z)| <∞. (3.2)

The results found here apply to functions in Hp (C+), 0 < p ≤ ∞.

A Blaschke product for Hp (D) is a function of the form

B(z) = zm
∏
k

|zk|
zk

zk − z
1− zkz

. (3.3)
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Here, k is a nonnegative integer, and
∑

k(1− |zk|) <∞.
A Blaschke product for Hp (C+) is a function of the form

B(z) =

(
z − i
z + i

)m∏
k

|z2
k + 1|
z2
k + 1

z − zk
z − zk

. (3.4)

Here, k is a nonnegative integer, and
∑

k
yk

1+|zk|
<∞, where zk = xk + iyk.

A singular inner function for Hp (D) is a function of the form

S(z) = exp

(
−
∫ 2π

0

eit + z

eit − z
dµ(θ)

)
, (3.5)

where µ(θ) is a bounded nondecreasing function, and µ′(θ) = 0 almost everywhere.

A singular inner function for Hp (C+) is a function of the form

S(z) = exp

(
i

∫ ∞
−∞

1 + tz

t− z
dν(t)

)
, (3.6)

for some nondecreasing function ν(t) of bounded variation on R with ν ′(t) = 0 almost

everywhere.

An outer function for Hp (D) is a function of the form

G(z) = eiγexp

(
1

2π

∫ 2π

0

eit + z

eit − z
logψ(t)dt

)
, (3.7)

where γ ∈ R, ψ(t) ≥ 0, logψ(t) ∈ L1, and ψ(t) ∈ Lp.
An outer function for Hp (C+) is a function of the form

G(z) = eiγexp

(
1

πi

∫ ∞
−∞

(1 + tz)logψ(t)

(t− z)(1 + t2)
dt

)
, (3.8)

where γ ∈ R, ψ(t) ≥ 0,
∫∞
−∞

logψ(t)
1+t2

> −∞, and
∫∞
−∞

(ψ(t))p

1+t2
dt <∞.

One well-known result from Hardy spaces will be used. For the spaces Hp (D), we have:

Theorem 3.1.1. If f ∈ Hp (D), p > 0,and f not identically 0, then f(z) has a unique

decomposition

f(z) = B(z)S(z)G(z),

where B(z) is a Blaschke product in Hp (D), and S(z) is a singular inner function in Hp (D),

and G(z) is an outer function in Hp (D).

On the half plane, an analogous result holds:
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Theorem 3.1.2. If f(z) ∈ Hp (C+), p > 0, then f(z) has a unique decomposition

f(z) = eiαzB(z)S(z)G(z), (3.9)

where α ≥ 0, B(z) is a Blaschke product, S(z) is a singular function, and G(z) is an outer

function in Hp (C+).

For further details about Blaschke products, singular inner functions, and outer functions

for the classes Hp (D) and Hp (C+), and for the canonical factorization theorem, see [9, 11].

3.2 Instantaneous Frequency of Analytic Signals

Definition 3.2.1. Time will denote the arc-length parameterization of the boundary of the

Hardy domain in question. i.e. for f ∈ Hp (C+) time denotes the real valued coordinate

x = <(z); for f ∈ Hp (D), time is given by the angle θ = Arg(z) (ignoring for now the

optional multiples of 2π).

Definition 3.2.2. The instantaneous frequency of a complex valued function f is defined

to be the time-derivative of its phase, whenever it exists. It is referred to here as ωf (∗), or

as ω[f ](∗). This may also be written in terms of the complex logarithm:

ωf (z) =
d

dt
Im (Log(f)) .

For Hp (D), time is parameterized by t = θ; for Hp (C+), time is parameterized by the real

axis t = x.

Note that this expression may be evaluated on the interior of the Hardy domain, as well

as on the boundary. To avoid questions about what the time parameter t means on the

interior of the domain, we only consider the meaning of this expression on the boundary.

The following result applies to instantaneous frequency of a complex valued function f

independent of what space f is in.

Theorem 3.2.3. If f is analytic on an open set O ⊂ C, and has a representation f =∏
n gn(z) on O with convergence in the sense of uniform convergence on compacta of the

partial products, then the series representation

ωf (z) =
∑
n

ωgn(z)

converges pointwise on O, and uniformly on compacta in O\ {z : f(z) = 0}.
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Proof. Let A be a compactum contained in O\ {z : f(z) = 0}. Let fm =
∏m

n=1 gn on A.

Clearly Log (fm) is analytic on A, and

Log (fm)→ Log(f) + 2kπi for some k ∈ Z

uniformly on A. The result then follows from the Analytic Convergence Theorem.

Corollary 3.2.4. If f(z) = Cg(z), C constant, then ωf (z) = ωg(z).

Note that these results apply only on the open set O \ {z : f(z) = 0}. (O = D or C+as

appropriate.) Establishing strong results for the boundary values is beyond the scope of this

work. The boundary value results used here require that f belong to some smoothness class

within Hp.

3.2.1 Periodic Analytic Signals

Using the Cauchy-Riemann equations and Definition 3.2.2, we have

lim
|z|→1−

ωf (z) = lim
|z|→1−

Im

(
∂

∂θ
Logf(z)

)
= lim
|z|→1−

Im

(
iz
d

dz
Logf(z)

)
= lim
|z|→1−

Re

(
z
f ′(z)

f(z)

)
.

(The limits here are understood to be taken non-tangentially. See [9] and [11].) This limit

does not necessarily converge for f ∈ Hp. General conditions for boundary convergence of

the first derivative are still an open question for the Hardy spaces. To avoid these questions,

further conditions will be imposed when this formula is used to ensure convergence.

We restrict ourselves to functions f ∈ Hp (D) for which the boundary value function f(θ)

is differentiable, and satisfies

ωf (θ) = lim
|z|→1−

ωf (z). (3.10)

The sufficient conditions used to guarantee this are given in Theorem 3.2.9.

Lemma 3.2.5. The instantaneous frequency of a finite Blaschke product is non-negative on

∂D.

This result is not new (see [8]). It is easily shown for Blaschke products that the instan-

taneous frequency function ωB(θ) is given by a summation of Poisson kernels:

ωB(θ) =
∑
n

1− r2
n

r2
n − 2rn cos(θn − θ) + 1

> 0.
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Here zn = rne
iθn are the zeros of B(z). A proof is shown below, as the setting of the calcu-

lations and the notation in [8] are quite different, and also to illustrate how instantaneous

frequency can be defined on the interior of D.

Proof. The instantaneous frequency of a finite Blaschke product B(z) ∈ Hp (D) is given by

ωB(z) = ω

[
zm

N∏
n

z̄n
|zn|

zn − z
1− z̄nz

]
(z)

= ω[zm](z) +
N∑
n

ω

[
zn − z
1− z̄nz

]
(z)

= m+
N∑
n

Re

[
z

(
1

z − zn
+

z̄n
1− z̄nz

)]

Observe that allowing zn to be 0 no longer presents a problem, so there is no need to isolate

the instantaneous frequency of the zm term. Thus, incorporating the zeros at the origin into

the list {zn}Mn=1 , M = N +m gives

ωB(z) =
M∑
n=1

Re

[
z

(
1− z̄nz + zz̄n − r2

n

z − zn − z̄nz2 + r2
nz

)]

ωB(z) =
M∑
n=1

Re

[
1− r2

n

1− zn

z
− z̄nz + r2

n

]

ωB(z) =
M∑
n=1

1− r2
n

1− 2Re
[
zn

z

]
+ r2

n

ωB(z) =
M∑
n=1

1− r2
n

1− 2 rn
r

cos (θn − θ) + r2
n

> 0

(3.11)

ωB(z) is defined for all points in D, except at the points {zn}. For finite Blaschke

products, the boundary values can be evaluated directly. (The result also extends directly

to infinite Blaschke products for which the cluster points of the zero set {zn} have measure

zero on ∂D.)

ωB(θ) = lim
|z|→1−

ωB(z) = ωB(z)||z|=1

=
∑
n

1− r2
n

r2
n − 2rn cos (θn − θ) + 1

> 0
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Lemma 3.2.6. For a singular function S(z), whose singular support supp (dν) is a discrete

set, instantaneous frequency is non-negative almost everywhere on ∂D.

Proof. The instantaneous frequency of a singular function in Hp (D) is given by

ωS(z) = Re

(
z
S ′(z)

S(z)

)
= Re

(
−
∫ π

−π

2zeiu

(eiu − z)2
dµ(u)

)
= −

∫ π

−π

2Re(ze−iu − 2 |z|2 + z̄ |z|2 eiu)
|eiu − z|4

dµ(u)

=

∫ π

−π

4 |z|2 + 2(1 + |z|2) |z| cos(θ − u)

|eiu − z|4
dµ(u) (3.12)

If supp (dν) is a discrete set, then boundary limits can be taken almost everywhere, and we

have:

ωS(θ) = lim
|z|→1−

∫ π

−π

4 |z|2 + 2(1 + |z|2) |z| cos(θ − u)

|eiu − z|4
dµ(u)

=

∫ π

−π

4(1 + cos(θ − u))

(|eiu|2 + |z|2 − 2 |eiuz| cos(θ − u))2
dµ(u), z /∈ supp(µ)

=

∫ π

−π

4(1 + cos(θ − u))

(2− 2 cos(θ − u))2
dµ(u), z /∈ supp(µ)

ωS(θ) =

∫ π

−π

1 + cos(θ − u)

(1− cos(θ − u))2
dµ(u) ≥ 0, z /∈ supp(µ) (3.13)

ωS(θ) ≥ 0 a.e.

Lemma 3.2.7. An outer function G(z) which has a meromorphic continuation to some open

set S containing D ∪ ∂D has mean instantaneous frequency given by:∫ 2π

0

ωG(θ)dθ = π
∑

zm∈∂D

Re

[
Res

(
G′(z)

G(z)
; zm

)]
.

Proof. The existence of a meromorphic continuation for G(z) ensures that ωG(z) is well-

defined almost everywhere on ∂D. The result then follows from the Residue Theorem.

Corollary 3.2.8. An outer function G(z) which is non-zero on ∂D, and which has an an-

alytic continuation to some open set S containing D ∪ ∂D has zero mean instantaneous

frequency. Particularly, any non-constant outer function which has such an analytic contin-

uation has negative instantaneous frequency at some point on ∂D.
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Theorem 3.2.9. If f ∈ Hp (D), and f has a meromorphic continuation to some open set

S containing D ∪ ∂D, then ωf (θ) can be decomposed into

ωf (θ) = ωB(θ) + ωS(θ) + ωG(θ),

where B, S, and G are determined by the canonical factorization of f .

Proof. The existence of a meromorphic continuation is a very strong condition. It implies

that the singular support supp (dν) of S(z) is discrete, and also that the Blaschke product

is finite. The result then follows from the Canonical Factorization Theorem and Theorem

3.2.3.

Corollary 3.2.10. A signal satisfying the conditions of Theorem 3.2.9 is an ASNIF if and

only if

−ωG(t) ≤ ωB(t) + ωS(t) ∀t

3.2.2 Nonperiodic Analytic Signals

Nonperiodic analytic signals are boundary functions of elements of a Hardy space for the

upper half-plane Hp (C+). The space Hp (C+) shares many characteristics with the spaces

Hp (D). (The most obvious difference is that non-zero constant functions are not elements

of Hp (C+), while they are elements of Hp (D).) Many of the proofs in this section are very

similar to the results for Hp (D). These proofs are in the appendix. Those proofs which

differ significantly from the results for Hp (D) have their proofs stated here.

We restrict ourselves to functions F (z) ∈ Hp (C+) which are “nice” on the boundary (as

a result of having a meromorphic continuation across the boundary), giving:

ωF (x) = lim
Im(z)→0+

Im

(
F ′(z)

F (z)

)
. (3.14)

This is not true in general; the boundary value function F (x) may not be differentiable,

meaning the left hand side of equation 3.14 is not defined. In order to use equation 3.14, it is

sufficient to assume that F (z) has a meromorphic continuation to an open domain containing

R ∪ C+.

The canonical factorization theorem (Theorem 3.1.2) for Hp (C+) is slightly different from

that for Hp (D). (See [11] and [9].)

Following the terminology forHp (D), we will refer to the parts of instantaneous frequency

in Hp (C+) given by the factors in equation 3.9 as the Fourier, Blaschke, singular, and

outer parts. Under similar conditions to Hp (D), the instantaneous frequency of the Fourier,
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Blaschke, and singular parts in Hp (C+) are all non-negative on R. There are some differences

that are worth noting:

1. It is sufficient to require that the zero set {zn} of the Blaschke product be a discrete

set (i.e. {zn} has no cluster points). Because the zero set {zn} has no cluster points

on R, ωB(z) is well defined on R. Note that in the case of Hp (D), the discreteness

condition implies finiteness of the Blaschke product. Thus, it is more appropriate to

think of discreteness as the principle which gives the result.

2. Similarly, it is sufficient to require that the singular support supp (dν) be a discrete

set.

Under these conditions we have

ω[eiαz](x) = α ≥ 0 (3.15)

ωB(x) =
∑
n

2

yn

1

(xn−x
yn

)2 + 1
≥ 0 (3.16)

ωS(x) =

∫ ∞
−∞

u2 + 1

(u− x)2
dν(u) ≥ 0 (3.17)

When evaluating ωB(x) above, we admit the possibility that zn = i. Proofs of equation 3.16

and 3.17 are in Appendix 8.

For outer functions in Hp (C+), we have the following result.

Theorem 3.2.11. Let G(z) be an outer function in Hp (C+) which has a meromorphic

continuation to some open set S containing C+∪R, and for which Res (G′(z)/G(z);∞) = 0.

Then

P.V.

∫
R
ωG(x)dx = π

∑
zk∈R

Re

[
Res

(
G′(z)

G(z)
; zk

)]
.

Proof. Let G(z) be an outer function in Hp (C+) which has a meromorphic continuation to

some open set S containing C+ ∪ R. Let {zk} be the set of points in C+ ∪ R at which G(z)

is not analytic. In fact, {zk} ⊂ R. Thus, G is analytic on C+\ {zk}, which is contained in S.

Let Γn be the boundary of the set (B(0, n) ∩ C+) \
(
∪kB(zk,

1
n

)
, whereB(p, r) = {z ∈ C : |z − p| < r}.

Then ∫
Γn

ωG(z)dz = Im

∫
Γn

G′(z)

G(z)
dz = 0
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for any n. Letting n→∞, we have:

0 = P.V.

∫
R
ωG(x)dx− Im

(
πiRes

(
G′(z)

G(z)
;∞
)

+ πi
∑
k

Res

(
G′(z)

G(z)
; zk

))

P.V.

∫
R
ωG(x)dx = Reπ

(
Res

(
G′(z)

G(z)
;∞
)

+
∑
k

Res

(
G′(z)

G(z)
; zk

))

= π
∑
zk∈R

Re

[
Res

(
G′(z)

G(z)
; zk

)]

Corollary 3.2.12. An outer function G(z) which is non-zero on R, and which has an an-

alytic continuation to some open set S containing C+ ∪ R has zero mean instantaneous fre-

quency. Particularly, any outer function which is non-zero on R which has such an analytic

continuation has negative instantaneous frequency at some point x0 ∈ R.

For nonperiodic signals, an analogous result to 3.2.9 then follows:

Theorem 3.2.13. If f ∈ Hp (C+), and f has a meromorphic continuation to some open set

S containing C+ ∪ R, then ωf (t) can be decomposed into

ωf (t) = ω[eiαt] + ωB(t) + ωS(t) + ωG(t),

where B, S, and G are determined by the canonical factorization of f .

Proof. The existence of a meromorphic continuation ensures that ω[eiαt], ωB(z), ωS(z), and

ωG(z) all exist and are well-defined on C+ ∪ R. The result then follows from the Canonical

Factorization Theorem and Theorem 3.2.3.

Corollary 3.2.14. A signal satisfying the conditions of Theorem 3.2.13 is an ASNIF if and

only if

−ωG(t) ≤ α + ωB(t) + ωS(t) ∀t

3.3 Constructing ASNIFs

In recent literature ([24], [8]) it is of particular interest how, given an amplitude function a(x),

one can construct an analytic signal with non-negative instantaneous frequency (ASNIF)

with prescribed amplitude. Using the results found here, we can give a more complete

answer to this problem. In this section, we only give each result for only one of Hp (C+) and

Hp (D). Analogous results are readily available with appropriate modification.
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From Theorem 3.1.2 it is clear that an analytic signal F (x) has amplitude |F (x)| = a(x)

if and only if its outer factor G(z) is equal to

G(z) = exp

{
1

iπ

∫ ∞
−∞

(1 + uz) log a(u)

(u− z)(1 + u2)
du

}
(3.18)

Thus, choosing a given amplitude function a(x) completely determines the outer factor

of any ASNIF F (x) for which |F (x)| = a(x). (In the rest of this section, any reference to

G(z) or G(x) will refer to the function given by equation 3.18. i.e. the outer function with

amplitude equal to a(x).)

We are then free to choose three other factors in the canonical factorization as needed in

order to ensure that F (z) = eiαzB(z)S(z)G(z) has non-negative frequency on the whole real

line. It remains to be shown under what conditions this is possible.

3.3.1 Outer Functions with Locally Bounded Instantaneous Fre-

quency

The easiest outer function to make into an ASNIF is one which satisfies the hypotheses of

Theorem 3.2.11. For such an outer function, instantaneous frequency is negative somewhere,

but it is locally bounded for all x. If it is uniformly bounded (by some M), all that is

needed is a factor of the form eiMx, giving F (x) = eiMxG(x) as an ASNIF with the required

amplitude.

This is not the only way to construct an ASNIF F (x), only the simplest. Multiplying two

complex signals is equivalent to the pointwise addition of their instantaneous frequencies.

Singular inner functions or Blaschke products may be used instead of eiMx. There are many

such choices available, and many different criteria that one might use to make that choice.

Those criteria are not dictated by the theoretical results presented here. That choice would

best be governed by application-specific concerns (such as minimizing the total variation of

phase, for example).

If ωG(x) is locally bounded but not uniformly bounded, we need to use an inner func-

tion I(z) whose instantaneous frequency ωI(x) is everywhere greater than −ωG(x)1. Such

a function can easily be shown to exist. One way is to iteratively “build” a Blaschke prod-

uct or singular function by adding zeros or adding point masses to the singular measure,

respectively, so that ωB(x) or ωS(x) is large enough on each successive pair of intervals

[−(k + 1),−k] ∪ [k, k + 1]. This can be done by a fairly simple induction.

1This is both necessary and sufficient, as ωI(x) ≥ 0 by definition. Thus ωI(x) ≥ −ωG(x) ⇔ ωI(x) ≥
min (0,−ωG(x))
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3.3.2 Outer Functions whose Instantaneous Frequency is not Lo-

cally Bounded

For signals with non-locally bounded instantaneous frequency, we look at signals from

Hp (D). If the outer function G(z) has zeros and/or poles on ∂D, then ωG(t) is not lo-

cally bounded. Even so, it may still possible to construct an inner function I(z) such that

the analytic signal I(t)G(t) has nonnegative instantaneous frequency almost everywhere.

We restrict ourselves to signals G(t) for which G(z) has an analytic continuation to some

open set O containing D ∪ ∂D, and for which the function G′(z)/G(z) has a finite number

of zeros and poles on ∂D. For such signals, G(z) can be factorized into the form

G(z) = G1(z)H(z), (3.19)

where G1(z) is an outer function which satisfies Corollary 3.2.8, and H(z) is of the form

H(z) =
∏N

k=1(z − zk)
pk , N < ∞. pk ∈ Z. (H(z) cannot have any essential singularities

as this would cause G(z) not to be an outer function. See [9, 11].) We need only concern

ourselves with the instantaneous frequency of H(z), as G1(z) was addressed in the previous

section. We then have

ωH(t) =
N∑
k=1

ω[(z − xk)pk ](t)

=
N∑
k=1

pkπ · δ(t− xk) = 0 a.e.

It is not clear how a jump in phase relates to instantaneous frequency. It is tempting to

simply treat these jumps as being components of a “weak” instantaneous frequency. Upon

closer inspection, it is clear that the value of a phase jump is not well-defined. A (non-zero)

phase jump value is only unique up to addition of 2nπ, n ∈ Z. Thus, it is not clear what

is meant by a positive (or negative) jump in instantaneous frequency. If a more precise

framework for treating phase jumps is desired, one might be tempted to define the phase

jump as the non-tangential limit of phase jump as one approaches the point in question.

However, this quantity is not well-defined by simply “taking the non-tangential limit of the

phase jump”. 2

We simply ignore the phase jumps, as there is currently no clear way to reconcile them

2There are problems with even stating the idea (hence the quotation marks) because there are two limits
involved: one in evaluating the jump, and one in taking the non-tangential limit. Obviously, evaluating
the jump first gives a value of 0. Taking the non-tangential limit first gives problems: the phase jumps for
discontinuous inner functions are either not well-defined or equal to −∞, depending on the order in which
the limits are evaluated.
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with the concept of instantaneous frequency. This simplifies things greatly, as ωH(t) = 0 at

every other point. We continue with this simplified analysis, but it is an open question how

the phase jumps should be properly understood.

We now have everything we need to construct an ASNIF whose amplitude is given by an

outer function G(z) which has a suitable meromorphic continuation. For any such G(z), find

the factorization G(z) = G1(z)H(z) prescribed in equation 3.19. Let B∗(t) be a Blaschke

product such that φB∗(t) ≥ |φG1(t)|. Then one ASNIF with outer part G is given by

F (t) = B∗(t)G(t)

3.4 Conclusions

It is important to note once more that the results presented in this chapter only apply to

a fairly exclusive subclass of analytic signals: those elements of Hp (D) or Hp (C+) which

admit an analytic continuation which is “nice enough.” The results as stated do not apply

to the entire Hardy space. There is significant work required to establish results which

properly address the questions of convergence for signals where the boundary values of

the first derivative (and thus the concept of instantaneous frequency itself) are not readily

available. However, for analytic signals which are generated by real-world time series data

the results of this chapter are often sufficient to conduct a meaningful analysis.

As progress is made towards a complete characterization of ASNIFs, we see more clearly

the parallels and differences between how one should understand “instantaneous frequency”

(IF) and the classical concept of “Fourier frequency” (FF).

The components of instantaneous frequency in the IF setting have natural parallels in the

FF setting. Blaschke products for Hp (D) are the natural generalizations of the individual

modes of the Fourier series3. With this perspective, inner functions are a single family

of “pure instantaneous frequency” functions which is a natural generalization of the “pure

Fourier frequency” functions for periodic and non-periodic signals.

The notion of what a “pure amplitude” function should be illustrates a divergence be-

tween the IF and FF perspectives. In the FF understanding, an amplitude function is

understood to be purely real (and non-negative). In the IF world, amplitude functions cor-

respond to outer functions, which are never purely real valued4. In fact, they always have

3The Fourier modes for periodic functions are in fact Blaschke products which have only one zero at the
origin. For nonperiodic signals, the Fourier transform modes correspond to singular inner functions which
have only one point mass at infinity. “At infinity” is used loosely here. The meaning is clear when looking
at a conformal mapping of D → H given by the Cayley transform. The singular inner functions for D which
have a point mass at 1 become the Fourier modes eiωt.

4In the Hp (D) setting, outer functions may be constant. Thus G(z) = c ∈ R is an outer function for
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non-zero instantaneous frequency if they have any amplitude modulation. At first glance,

this seems like a stark contrast between the IF and FF perspectives. A more careful read

on the situation brings to light a surprising parallel: Outer functions (that are reasonably

nice) have zero mean instantaneous frequency; The Fourier transform of a purely amplitude

modulated (AM) signal has symmetric support. This leads to analogous procedures for mak-

ing signals with positive frequency in both the IF and FF realms. In the FF realm, a band

limited signal is made to have positive Fourier frequency by modulating it with a carrier fre-

quency (a pure FF function) high enough to shift the Fourier frequencies above zero. (This

is the well known procedure for making an analytic signal out of an arbitrary band-limited

signal.) In the IF realm, an analytic signal is made to have positive instantaneous frequency

by modulating it with an inner function (a pure IF function) appropriately chosen to shift

the instantaneous frequencies above zero. The analogy is quite clear: ASNIFs are to analytic

signals as analytic signals are to “left band-limited signals”5.

3.5 Consequences for an “EMD-like” ASNIF decom-

position

In order to construct a technique similar to (or possibly more accurately: inspired by) the

empirical mode decomposition, one is faced with a dilemma. Which aspect of EMD is more

important to focus on keeping intact: the sifting algorithm, or the non-negative instantaneous

frequency property of the components?

If the property of non-negative frequency is the most important characteristic for the

component set of an EMD-like decomposition method, the results of this chapter have some

significant consequences for the design and implementation of such an algorithm. We will use

the term ASNIF decomposition to denote an algorithm which decomposes an input signal

into a sequence of component functions which are each ASNIFs, as well as a residual (which

may not be an ASNIF).

A general ASNIF decomposition algorithm would take an analytic signal F (t) as an input,

Hp (D). In Hp (C+), outer functions may not be constant, ruling out this possibility. In either case, there
are no non-trivial real-valued outer functions.

5That is to say, signals whose Fourier transform vanishes for ω < K ∈ R
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and decompose it into a series of ASNIFS iteratively. i.e.

F (t) =C1(t) +R1(t)

=C1(t) + C2(t) +R2(t)

...

=
N∑
j=1

Cj(t) +RN(t),

where Cj(t) are ASNIFs, and RN is the N th residual. (In order to apply such a method to

a signal which is not analytic, we must first construct the analytic signal using the Hilbert

transform.) The component selection may be done any number of ways. One very general

way to represent a component selection step is to specify a functional J(u, v), whose mini-

mizer (selected over all possible components u) yields the best component u, and the residual

v. The choice of functional then determines the decomposition.

This functional must be constrained to the set of candidate component functions. The

entire set of ASNIFs is a very large set, for the purposes of constrained optimization. Instead

of attacking this large problem head on, we will look at a simpler class of ASNIFs which

should still offer some insight into what an ASNIF decomposition does. The simplest class

of ASNIFs whose span generates the entire space L2 is the set of Fourier modes. Using this

set for approximation would yield approximation methods which don’t differ radically from

the Fourier series. Clearly a larger set is needed in order to gain any insight into an ASNIF

decomposition. A natural generalization of the set of Fourier modes has been suggested in

section 3.4. In the classical setting, the Fourier modes represent “pure frequency”; in the

instantaneous frequency setting, inner functions represent “pure instantaneous frequency”.

Thus, it is of interest to investigate what approximation methods arise when we use inner

functions as approximants.

In practice, one typically only looks at finitely sampled signals, as computers cannot

represent continuous functions directly. Thus, we only need to consider a class of inner

functions which is general enough to include each finitely sampled inner function. A classical

interpolation result for Hardy spaces states that any inner function sampled at n points may

be interpolated by a finite Blaschke product of degree ≤ n. (See [9], [11].) It is sufficient to

use the set of finite Blaschke products to investigate the problem of approximation using inner

functions as approximants. This simplification is also available if one makes the assumption

that the analytic signals being investigated are continuously differentiable. The existence

of a complex derivative precludes any singular inner factors, infinite Blaschke products, or

singularities in the outer factor.
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Chapter 4

An ASNIF-based Signal

Decomposition

4.1 Introduction

EMD decomposes signals iteratively. The algorithm selects the “next” IMF from the previous

residual independent of the previous IMFs selected, and also independent of the IMFs yet

to be selected. While the choice of the nth IMF depends implicitly on the previous n − 1

IMFs (so that it would be incorrect to say that the IMF choices are independent of each

other), the sifting algorithm itself is blind to the previous IMFs which have been selected in

the course of a particular decomposition; the output of the sifting algorihm depends only on

the input (and the stoping criteria).

As a surrogate for the sifting algorithm, we will construct an optimization based decom-

position which will decompose an input signal into a component ASNIF, and a residual.

This approach is chosen in order to investigate what happens when one tries to implement

the basic idea of EMD - decomposing a signal into components with positive instantaneous

frequency - while strictly enforcing the requirement that the component functions have pos-

itive instantaneous frequency. This requirement may be enforced easily using a constrained

optimization wherein the components are restricted to a desired class of functions: ASNIFs,

or some subset of the set of ASNIFs.

It bears repeating that this is not the only way to construct a signal processing algorithm

which captures the ideas of EMD. One might opt to preserve the basic idea of the sifting

algorithm, while abandoning the strict positive instantaneous frequency requirement for

the component functions. Exciting work has been done in this direction using a nonlinear

diffusion process instead of the sifting algorithm (see [5]). This research direction is vital to

understanding exactly what the sifting algorithm and its many variants are actually doing.
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After all, it is clear that something interesting is happening, even if positive instantaneous

frequency is not strictly enforced by these algorithms. However, this is not the question we

are investigating in this work.

Definition 4.1.1. We will use the notation ‖·‖V to mean a (nonnegative, real-valued) weight

function with domain V. This might be a norm, seminorm, or some other non-negative

function.

There is no risk of confusion in redefining the conventional notation for a norm; the only

cases for which ‖·‖V is redefined to be something other than a norm are when V does not

have a norm. This seems appropriate, as ‖·‖V will act as a surrogate for a norm when none

is available.

We endeavor to develop an algorithm which adaptively decomposes a function f ∈ X
into component functions uj ∈ Y ⊂ X so that

f =
n∑
j=0

uj + vn,

where vn is a residual, which is small (in some sense). Component selection is done using

the algorithm

v−1 := f

uj := argmin·∈YJ(vj−1, ·, λj), j = 0, 1, 2, . . . n (4.1)

where J is a functional of the form

J (f, u, λ) = λ ‖f − u‖X + ‖u‖Y . (4.2)

A completeness result is needed for (4.1) to be meaningful. The specific form of this

result will depend on the nature of X , Y , and the weights ‖·‖X and ‖·‖Y . Uniqueness of

the minimizer in (4.1) is also an important question if a complete characterization of this

technique is desired. Fortunately, uniqueness is not necessarilly required in order for this

algorithm to yield a useful decomposition. It is of course required to guarantee a unique

decomposition. However, given the high degree of redundancy in the sets of approximants we

will use, it is not yet clear if uniqueness is desirable or even attainable in most circumstances.1

1Whenever a uniqueness result is easily obtainable, we will use it. When we look at larger approximant
sets, we will not be focused on questions of uniqueness for the two reasons stated: uniqueness results are
harder to come by, and it is not clear that uniqueness is a reasonable expectation. This is an issue that is
important for future research. However, it falls outside the scope of this work.
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After k steps, this yields a partial decomposition of f :

f =u0 + v0

=u0 + u1 + v1

...

=u0 + · · ·+ uk + vk (4.3)

This gives a decomposition f ≈ u1 + · · · + uk, with a residual vk. As k increases, the

decomposition captures more and more of the behavior that ‖·‖Y measures.

In cases where Y is a subspace of X , the J-functional technique yields decompositions

which lie in interpolation spaces between Y and X . Such an interpolation space method is

often refered to as a ‘(Y ,X ) decomposition’. In order to avoid unnecessary abuse of notation,

we will refer to any method for which Y is a subset of X , but not a subspace of X , as a

‘ (Y ⊂ X ) decomposition’.

Using this framework, we will develop tools for adaptive nonlinear decompositions. Fur-

ther assumptions about X , Y , and J will be made when appropriate.

4.2 An energy estimate for the (Y ⊂ X ) decomposition

Let us compare the decomposition of vj = uj+1 + vj+1, which comes from the minimizer of

J(vj, ·, λj+1), with the trivial decomposition vj = 0 + vj. If 0 ∈ Y , and ‖0‖Y = 0, we have

λj+1 ‖vj+1‖X + ‖uj+1‖Y ≤ λj+1 ‖vj‖X . (4.4)

If 0 /∈ Y , we can still obtain the same result if some further conditions are satisfied.

Lemma 4.2.1. If ∃ {mn}∞n=1 ⊂ Y such that:

1. ‖mn‖Y → 0, and

2. ‖g +mn‖X → ‖g‖X ∀g ∈ X

then (4.4) holds at the minimizer of J(vj, ·, λj+1).

Proof. Compare the value of the J functional at the optimizer (uj, uj+1, λj+1) with the points

(uj,mn, λj+1) , m = 1, 2, . . . :

J (uj, uj+1, λj+1) ≤ J (uj,mn, λj+1)

λj+1 ‖uj − uj+1‖X + ‖uj+1‖Y ≤ λj+1 ‖uj −mn‖X + ‖mn‖Y
λj+1 ‖vj+1‖X + ‖uj+1‖Y ≤ λj+1 ‖uj −mn‖X + ‖mn‖Y
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Taking the limit as n→∞ gives the desired result:

λj+1 ‖vj+1‖X + ‖uj+1‖Y ≤ λj+1 ‖uj‖X .

It then follows that∑
j≥0

1

λj
‖uj‖X =

1

λ0

‖u0‖X +
∑
j≥0

1

λj+1

‖uj+1‖X

≤ ‖f‖Y − ‖v0‖Y +
∑
j≥0

[
‖vj‖Y − ‖vj+1‖Y

]
≤ ‖f‖Y (4.5)

This bound on the energy of the components {uj} is completely generic. It requires no

particular assumptions to be made about the weight functions ‖·‖X or ‖·‖Y .

4.3 Examples of J Functional Based Decompositions

When constructing a decomposition for members of a space X in terms of a subspace of

functions Y ⊂ X , one typically constructs a functional using the norms of the two respective

spaces, such as the functional used by [19] and [21]:

J = λ ‖u‖2
2 + ‖v‖BV , f = u+ v.

If Y is not a subspace of X , the norm ‖·‖X may be used for the weight function ‖·‖Y as

well. Examples of this are the Fourier series, and the orthogonal wavelet decomposition. A

Fourier series decomposition can be obtained using a J-functional of the form:

J = λ ‖u‖2
2 + ‖v‖2

2 , f = u+ v, v = eikx, k ∈ Z

As long as λ > 1, this J-functional will yield the standard Fourier series decomposition,

with components arranged in descending order of magnitude2. This extends naturally to

generalized Fourier series (including orthogonal wavelet decomposition) by replacing the set

Y =
{
eikx, k ∈ Z

}
with an orthonormal basis of choice.

2Of course, this is not the traditional method of constructing the Fourier series. However, it is instructive
to highlight the fact that the J-functional framework includes many standard decompositions which may
not be thought of as being optimization based.
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4.4 Using the Bergman Norm ‖·‖0,2 as ‖·‖Y
For reasons to be given later, we will use a J-functional which uses the norm from the

Bergman space A0,2 as the wieght function for the set Y . We will analyze the behavior of

the decomposition that results from the functional

J (u; v, λ) = λ

√
π

2
‖v − u‖2

2 + ‖u‖0,2 , ‖u‖2
0,2 =

∫
D
|f(z)|2 dA (4.6)

Within this section, the functional above will be referred to as the “Bergman J-functional.”

4.4.1 Using the Bergman J-Functional with the Fourier basis func-

tions

As a first experiment, consider the set of functions which are analytic on the unit disc, and

whose boundary value functions are in L2. For such a function f , define

f = v0

for k = 1, 2, . . .

uk = arginfuk=bzmJ(uk; vk−1, λ)

vk = vk−1 − uk end

Let
∑∞

n=0,n6=m dnz
n be the Taylor polynomial of vk about the origin. The J-functional then

works out to be

J = λ

(√
π

2

)
‖vk−1 − czm‖2

2 + ‖czm‖2,0

by Parseval′s equality :

= λ

(√
π

2

)[( ∞∑
n=0,n6=m

d2
n

)
+ (dm − c)2

]
+ |c|

√
π

m+ 1

= λ

(√
π

2

)[
‖vk−1‖2

2 + c2 − 2cdm
]

+ |c|
√

π

m+ 1

For a given m value, the optimum c value (call it cm) can be found by setting ∂
∂c
J = 0.

0 =
∂

∂c
J(czm; vk−1, λ) = λ

√
π (cm − dm) + sign (cm)

√
π

m+ 1
, cm 6= 0

dm = cm +
sign (cm)

λ
√
m+ 1
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Note that dm and cm must have the same sign. Thus cm = dm− sign(dm)

λ
√
m+1

. Now, if cm 6= 0, then

|dm| > 1
λ
√
m+1

. We can then deduce that |dm| ≤ 1
λ
√
m+1
⇒ cm = 0. This gives a complete

solution for cm:

cm =

{
0 , |dm| ≤ 1

λ
√
m+1

dm − sign(dm)

λ
√
m+1

, |dm| > 1
λ
√
m+1

(4.7)

Evaluating the J-functional at cm (assuming cm 6= 0) gives:

J(cmz
m; f, λ) = λ

(√
π

2

)[( ∞∑
n=0,n6=m

d2
n

)
+

1

λ2 (m+ 1)

]
+ |bm|

√
π

m+ 1

= λ

(√
π

2

)[
‖f‖2

2 − d
2
m +

1

λ2 (m+ 1)

]
+

(
|dm| −

1

λ
√
m+ 1

)√
π

m+ 1

= λ

(√
π

2

)[
‖f‖2

2 − d
2
m +

1

λ2 (m+ 1)
+

2 |dm|
λ
√
m+ 1

− 2

λ2 (m+ 1)

]
= λ

(√
π

2

)[
‖f‖2

2 −
(
d2
m −

2 |dm|
λ
√
m+ 1

+
1

λ2 (m+ 1)

)]
= λ

(√
π

2

)[
‖f‖2

2 −
(
|dm| −

1

λ
√
m+ 1

)2
]

The global minimizer of J(cmz
m; f, λ) occurs at the index m for which

(
|dm| − 1

λ
√
m+1

)
is

the greatest. i.e. those coefficients dm whose absolute values exceed the threshold 1
λ
√
m+1

correspond to the coefficients which are extracted first.

Equation 4.7 gives some valuable insight into the nature of the decomposition that results

from the Bergman J-functional. Any function f whose Taylor coefficients {dm} satisfy

|dm| ≤ 1
λ
√
m+1

is essentially “noise.” i.e. applying the Bergman J-functional decomposition

will simply return the function f as a residual, with no components extracted. An immediate

consequence of this is that the residuals do not approach zero. Therefore, the partial sums

Sn =
∑n

k=1 vk do not converge to f , and therefore {Sn} are not truly approximants for f . It

is more proper to think of this algorithm as decomposing a signal f into two distinct pieces.

The “nice” part is given by f̃ = limn→∞ Sn, while the “noise” part is given by limn→∞ un.

This brings us to the final problem of deducing the significant characteristics of the “nice”

part f̃ = limn→∞ Sn and the residual limn→∞ un. One simple result sets the stage for this

discussion:

Lemma 4.4.1. If f ∈ H2 (D) with f =
∑∞

n=0 dnz
n, and {dn} ∈ O(n−1/2), then there is a

constant C such that applying the Bergman J-functional decomposition (BJFD) to Cf yields

u1 = f (and thus un = f∀ n).
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Proof. {dn} ∈ O(n−1/2) ⇒ {dn} ∈ O(
(
λ
√
n+ 1

)−1
, and thus ∃n0 ≥ 0,M1 > 0 such that

|dn| ≤ M1

∣∣∣ 1
λ
√
n+1

∣∣∣ ∀n > n0. Choose M2 such that M2 > maxn≤n0

(
|dn|λ

√
n+ 1

)
. Let

C < min( 1
M1
, 1
M2

). The function Cf =
∑∞

n=0(Cdn)zn, and the coefficients {Cdn} satisfy

|Cdn| < 1
λ
√
n+1

. Therefore applying the BJFD algorithm to the input signal Cf yields

u1 = f .

The decay condition on f in Lemma 4.4.1 is not very restrictive. Any signal f whose

boundary value function is a member of a “nice” smoothness class has Taylor coefficients

which decay at a corresponding rate: f ∈ Cm(∂D)⇔ {cn} ∈ O(n−m) (see [12]). This means

that for any f ∈ Cm(∂D), m ≥ 1 there is a multiple Cf for which the BJFD algorithm

yields C̃f = 0.

For any signal f whose Taylor series coefficients are O
(

1
λ
√
n+1

)
, the BJFD algorithm

must terminate after finitely many steps. This gives a decomposition into a polynomial part

f̃ , and a residual (f − f̃). The Taylor series of the residual can be thought of as being the

product of giving the Taylor series of f a “haircut”:

f̃ =
∞∑
n=1

d̃nz
n, d̃n =

{
dn , |dn| ≤ 1

λ
√
n+1

sign(dn)

λ
√
n+1

, |dn| > 1
λ
√
n+1

In the subsequent sections, we will be performing approximation using an algorithm

similar to the BJFD algorithm in this section, but using approximants from the set of

Blaschke products. Blaschke products are a natural generalization of {1, z, z2, . . . }, but

they lack many of the tools that were available in this section. Blaschke products are not

orthogonal to each other (in general), and thus finding the minimizer of the J-functional

in general is impractical at best. The simplicity of the calculations in this section will

definitely not translate well, as this was a result of the wealth of results that are available

for {1, z, z2, . . . }. Some valuable insights from this simple exercise ought to be highlighted.

The approximating sequence derived from the BJFD algorithm does not converge to the

input signal. Therefore it is not actually an approximation technique. However, this is not

entirely disastrous. The EMD technique yields a decomposition into IMF components, and

leaves a residual which may still contain a lot of energy (in the sense of L2). In general, the

only thing that can be said about the residual from EMD is that it is monotone. It is whatever

is left after all the significant oscillations have been removed form the signal. Therefore,

it may contain many interesting features - as long as they don’t create oscillations. When

generalizing the BJFD algorithm to a larger component set, we do not expect the component

sequence to approach the input precisely. Hopefully the residual will be small (in some sense),

and contain only the features we do not want to emphasize with the BJFD algortihm, but
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we should not expect the residual to approach zero as the algorithm progresses.

4.4.2 An algorithm for use with Blaschke products

Definition 4.4.2. Define BA to be the set of all finite Blaschke products whose zeros come

from some fixed set A = {a0, a1, . . . , an}. (Typically, it is desirable to have 0 ∈ A, so we’ll

assume a0 = 0 in this section.) i.e.

BA =

{
B(z) : B(z) = zm0

∏
k

= 1mk
|ak|
ak

ak − z
1− akz

}

In the previous subsection the Bergman J-functional decomposition (BJFD) algorithm

was applied to the component set {1, z, z2, . . . }. The next natural generalization is to perform

decompositions of input functions using a larger set of component functions. A simple,

incremental generalization of {1, z, z2, . . . } is a set like BA. As long as we include the Blaschke

products which are zero at the origin, the set of component functions includes the monomial

terms we used before.

The JFD algorithm for an input function f is defined as follows.

v0 := f

for j = 1, 2, . . . , iterate :

uj := argmin J(vj−1, ·)

vj := vj−1 − uj

where

J(v, cB(z)) = λ

√
π

2
‖v − cB(z)‖2

2 + |c|
√

π

1 +
∑n

k=0mk

and B(z) ∈ BA, c ∈ C

The major difference between the BJFD algorithm and the JFD algorithm given above

is the second term in the J-functional. If the JFD algorithm is applied to the smaller set

of approximants {1, z, z2, . . . }, the two functionals are identical. Rather than evaluating

the Bergman norm, the direct dependance on the deegree of the Blaschke product is used

instead. In the simple case of polynomial components, the two are identical. It was a simple

matter to evaluate the Bergman norm of any monomial. However, it is not easy to do in

general for Blaschke products, and would require a numerical integration for each evaluation

of the J-functional. This calculation is performed many times for each iteration of the JFD
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algorithm, because finding the minimizer of the J-functional requires an explicit search. For

this reason, simplifying the evaluation of the J-functional is of the utmost importance.

As a substitute for the Bergman norm, we use a term which is a function of the degree of

a Blaschke product. We use the same function of degree as in the BJFD algorithm. When

evaluated for the polynomial terms {1, z, z2, . . . }, it is identical to the Bergman norm. When

applied to the degree of a Blaschke product, this term performs much the same function as the

Bergman norm does in the BJFD algorithm: it characterizes exactly how many oscillations

the component in question has. The degree of a Blaschke product is much easier to compute

than its Bergman norm, as it only requires (at most) n additions.
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Chapter 5

Blaschke Polynomials

The optimization based component selection algorithm introduced in chapter 4 leaves only

one question to be settled before embarking on numerical experiments: How should we

choose the constraint set Y? The natural first response to this question is that Y should be

the set of ASNIFs contained in the space X (typically L2[0, 2π], as this would give the most

general ASNIF decomposition available. Unfortunately this is impractical as a first effort,

as the set of ASNIFs is too large to be searched efficiently without first establishing some

further approximation estimates.

Various subclasses of the set of ASNIFs are possible choices for a set of approximants

to use as a constraint set for the J-functional. The simplest choice is the set of powers of

z,
{
zk; k = 0, 1, 2, . . .

}
which was investigated in section 4.4.1. The next natural step is to

look at the set of finite Blaschke products. This is a significant set of approximants for

practical applications. Most practical data sets are modeled as a finite number of sample

points. There is a well known result which states that any inner function sampled at a

finite number of points on the boundary can be interpolated by a finite Blaschke product

(see [9]). Thus, finite Blaschke products are sufficient to represent decompositions over the

set of inner functions; one need not consider infinite Blaschke products or singular inner

functions to achieve a unique representation using inner functions as approximants, as each

finite Blaschke product can identified with the set of inner functions which it interpolates

over the given set of sample points.

After investigating decompositions over finite Blaschke products, one may want to con-

sider approximants which are ASNIFs with non-constant outer functions. This would be a

mature ASNIF Decomposition1 in every sense. A possible simplification for finitely sampled

signals would be to consider ASNIFs whose inner part is a finite Blaschke product. An

1The capitalized term ASNIF Decomposition will be used to denote a J-functional based decomposition
which uses a set of approximants which are ASNIFs whose outer parts may be non constant.
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ASNIF Decomposition will be easier to understand if some results are first established using

inner functions (or more practically, finite Blaschke products) as approximants.

Throughout this chapter unless otherwise stated, the terms Blaschke product and Blaschke

polynomial will be used to refer only to Blaschke products for the unit disc, and linear com-

binations of Blaschke products for the unit disc, respectively.

5.1 Blaschke Polynomials

Recall a Blaschke product for the space Hp (D) is a function of the form

B(z) = zm
ν∏
k=1

|ak|
ak

ak − z
1− akz

, ν ≤ ∞

provided that
ν∑
k=1

(1− |ak|) <∞. (5.1)

Alternatively, one could rewrite the list {ak} of the roots of B(z) without duplication, and

instead incorporate repeated roots with a multiplicity index to account for repeated roots:

B(z) = zm
ν∏
r=1

(
|ar|
ar

ar − z
1− arz

)mr

(5.2)

If we let ζ0 = z, m0 = m, and ζr =
(
|ar|
ar

ar−z
1−arz

)
, we have

B(z) =
ν∏
r=0

(ζr)
mr (5.3)

Blaschke products appear to be monomials in multiple variables {ζr} with coefficients equal

to 1. The J-functional decomposition returns a linear combination of Blaschke products as

an approximant, along with a residual. Linear combinations of Blaschke products appear to

be polynomials in many (possibly infinitely many) variables.

In order to further explore these unique polynomials we introduce some terminology.

Definition 5.1.1. A Blaschke factor zeta is a rational function of the form ζ = ar

|ar|
ar−z
1−arz

,

or ζ = z. The root of the Blaschke factor ζ is ar or 0, respectively.

Definition 5.1.2. A Blaschke product B(z) =
∏ν

r=0 (ζr)
mr has exponent α = (m0,m1, . . . ),

and has total degree d =
∑ν

r=0mr.
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Notice that an infinite Blaschke product has degree d = ∞. Also notice that any finite

product of Blaschke factors is a Blaschke product, but not all infinite products of Blaschke

factors are Blaschke products (because of the admissibility condition 5.1). Some details need

to be addressed when defining polynomial spaces which admit infinite degrees, as this is not

something that is ordinarily done.

When deriving some results dealing with Blaschke polynomials, it is important to re-

member that they are meromorphic functions of C. When dealing with the Hardy spaces

Hp (D) we often think of Blaschke products as being only functions defined on D, but the

fact that Blaschke products are meromorphic on C comes in handy from time to time.

Definition 5.1.3. A finite linear combination of Blaschke products for the space Hp (D) is

called a Blaschke polynomial for the space Hp (D).

Using the term Blaschke polynomial casually requires some justification. It is not obvious

that the polynomial ring generated by taking linear combinations of Blaschke products (and

treating the individual Blaschke factors as the indeterminants of the polynomial ring) is in

fact isomorphic to the space of Blaschke polynomial functions of the variable z. For an

“ordinary” polynomial ring over an infinite field there is a bit of housekeeping to do before

we can identify polynomials with their corresponding polynomial functions. Recall:

Definition 5.1.4. Let X = (x1, x2, . . . , xn). If f (X) ∈ k [X] define its polynomial function

f [ : kn → k by evaluation: If (y1, . . . , yn) ∈ kn, then

f [ : (y1, . . . , yn)→ f (y1, . . . , yn) .

This is a linear mapping, because it is a homomorphism of rings.

For polynomial rings k[X] over an infinite field k, the problem of identifying the poly-

nomial function f [ : kn → k with the polynomial f ∈ k[X] is a simple matter (see [18]).

Polynomial functions have a one to one correspondence with the corresponding elements of

the polynomial ring. This allows one to drop the (·)[ notation for polynomial functions in

practice, and refer to both the polynomials and the polynomial functions as “polynomials”.

In the case of Blaschke polynomials the correspondence between Blaschke polynomials

and Blaschke polynomial functions does not follow immediately from the standard result.

This is because the variables {ζr} are not independent of each other. Rather, they are all

functions of the single complex variable z. Surprisingly, this does not complicate matters

that much. We start by redefining the (·)[ notation to suit our purposes.

Definition 5.1.5. Let Z = (ζ1, ζ2, . . . , ζn), where ζr = |ar|
ar

ar−z
1−arz

. If f (Z) ∈ k [Z] define its

Blaschke polynomial function f [ : C → C by evaluation, with all removable singularities
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removed:

f [ : z → lim
ζ→z

f (ζ)

The identification result then follows quite simply.

Theorem 5.1.6. 2 Let Z = {ζ1, ζ2, . . . , ζν} be Blaschke factors for Hp (D) (ν ≤ ∞). If

f(Z), g(Z) ∈ C[Z] satisfy f [ = g[, then f(Z) = g(Z).

Proof. Assume f 6= g. Then (f − g) =
∑N

k=1 ckZ
αk
k . Now (f − g)[(z) = 0 ∀z ∈ C. Therefore

(f−g) cannot have any poles in C. Thus the degree of (f−g) must be zero, meaning (f−g)

is constant, and thus (f − g) = 0.

The proof above is quite simple. However it has significant implications for approximation

using Blaschke polynomials. The one to one correspondence of Blaschke polynomials with

Blaschke polynomial functions means that any set of distinct Blaschke products is linearly

independent. The importance of this for approximation cannot be understated.

The Fourier series approximation for boundary functions in Hp (D) uses a basis consisting

of the linearly independent functions {1, z, z2, . . . }. This basis is complete in L2(∂D) (as

well as many other norms), and thus is capable of generating approximating sequences for

any element of L2(∂D). The set of Blaschke products for H2 (D) includes the Fourier basis

functions, and is still linearly independent. It is only in the sense of L2 that there is any

dependency.

5.2 Spaces of Blaschke Polynomials

Blaschke polynomials form the basis for many different linear spaces, each amenable to

different types of applications. One might want to consider the space of all finite Blaschke

polynomials whose Blaschke factors come from a prescribed set when doing approximation

using an iterative decomposition algorithm. Alternatively, one might consider the space of

all Blaschke polynomials in order to explore questions of functional analysis using Blaschke

polynomials. These settings (and many others) correspond naturally to various linear spaces

of Blaschke polynomials.

2This author was unable to find any literaure containing any similar results. The literature on Blaschke
products typically uses them to characterize multiplier spaces, as factors of certain ideals, or extracts them
as factors from other functions - like the canonical factorization theorems. This author was left with the
impression that most of the interest in Blaschke products pertained to multiplying them with other objects;
adding Blaschke products together apparently wasn’t very interesting to other authors. This is somewhat
understandable, as Blaschke products are typically presented as a special topic in books on complex function
spaces. For the methods being developed there, another polynomial space might seem rather irrelevant.
Undoubtedly, if Blaschke products were covered in introductory books on complex amalysis, the proof of
theorem 5.1.6 would be one of the simpler homework problems.
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Ordinarily, polynomial spaces are defined as including only polynomials of finite degree.

The notion of Blaschke polynomials admits the possibility of defining a polynomial space

which includes polynomials of infinite total degree, because there are well-defined Blaschke

products with infinite degree.

5.2.1 C[ζ]

The trivial space C[ζ] warrants mention for two reasons: it serves as an explicit reminder

of the connection between Blaschke polynomials and ordinary polynomials C[z], and it also

provides a convenient setting in which to demonstrate a completeness result without any

unnecessary complications.

Clearly the choice of the root of the Blaschke factor ζ is the only difference between any

two different Blaschke polynomial spaces C[ζ1] and C[ζ2]. If one chooses ζ = z, one is left

with the ordinary polynomial space C[z]. It is well known that the polynomials C[z] are

dense in H2 (D). Using the mapping T (z) = ζ(z), it is simple to show that for any Blaschke

factor ζ, the set C[ζ] is also dense in H2 (D).

Theorem 5.2.1. If ζ = |a|
a

a−z
1−az for some 0 < |a| < 1, then C[ζ] is dense in H2 (D).

Proof. Observe that z(ζ) = a
|a|
|a|−ζ
1−|a|ζ . The Taylor series for z about the point ζ = 0 is

z =
∞∑
k=0

z(k) (0)

k!
ζk

= a+ a
(
|a|2 − 1

) ∞∑
k=1

|a|k−2 ζk.

This series converges absolutely for |ζ| < 1
|a| . Now, ζ is a conformal mapping from D

to D, with ζ : ∂D → ∂D, so the power series above converges absolutely for every z ∈
D∪∂D. Clearly then, for any polynomial p(z) there exists a power series

∑∞
k=0 ckζ

k which is

absolutely convergent for all z ∈ D∪∂D. Because the polynomials C[z] are dense in H2 (D),

the Blaschke polynomials C[ζ] must be dense in H2 (D) as well.

This result shows that any single Blaschke factor ζ generates a polynomial space C[ζ]

which is dense in H2 (D). A simple consequence is that any set which contains C[ζ] (for any

Blaschke factor ζ) is dense in H2 (D). For example, C[ζ1, ζ2, . . . , ζn] is dense in H2 (D).

5.2.2 C[ζ1, . . . , ζn]

The simplest non-trivial class of Blaschke polynomial spaces is constructed by selecting a

finite set of distinct points {ak}nk=1 ⊂ D, and using the corresponding Blaschke factors
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ζk = ak

|ak|
ak−z
1−akz

(or ζk = z if ak = 0) to generate the polynomial ring C[ζ1, . . . , ζn].

There are no infinite Blaschke products that can be constructed using a finite number

of Blaschke terms. Thus the polynomial space C[ζ1, . . . , ζn], defined in the usual way as all

finite linear combinations of finite products of {ζ1, . . . , ζn}, includes every Blaschke product

of the form
∏n

k=1 ζ
pk

k .

5.2.3 Spaces of Blaschke polynomials in infinitely many variables

There are many different Blaschke polynomial spaces that may be of interest which include

infinitely many Blaschke factors.

Definition 5.2.2. Given a set of Blaschke roots {aν} ⊂ D where ν are elements of an

index set for {aν}, C [{ζν}] denotes the set of all finite linear combinations of finite Blaschke

products involving the Blaschke factors {ζν}.

This is the ordinary definition of a space of polynomials in infinitely many variables.

Every polynomial f ∈ C[{ζν}] has finite degree.

If the set {aν} contains a sequence of points which satisfy the Blaschke condition 5.1,

then it is possible to construct infinite Blaschke products using {ζν}. The space C[{ζν}] does

not include these infinite Blaschke products.

Definition 5.2.3. Given a set of Blaschke roots {aν} ⊂ D where ν are elements of an index

set for {aν}, CB [{ζν}] denotes the set of all finite linear combinations of Blaschke products

involving the Blaschke factors {ζν}.

The two polynomial spaces C[{ζν}] and CB[{ζν}] may or may not be identical, depending

on the set {aν}. This dependence is characterized quite simply.

Lemma 5.2.4. Given a set of Blaschke roots {aν} ⊂ D, the polynomial spaces C[{ζν}] and

CB[{ζν}] are identical if and only if {aν} contains no infinite subsequence {ak} which satisfies

equation 5.1.

Proof. ⇒: Assume not. i.e. C[{ζν}] and CB[{ζν}] are identical, and ∃ {ak}∞k=1 ⊂ {aν} which

satisfies equation 5.1. Then B(z) =
∏∞

k=1 ζk ∈ CB[{ζν}]. However B(z) /∈ CB[{ζν}], so

C[{ζν}] 6= CB[{ζν}], a contradiction.

⇐: If {aν} contains no sequence of points which satisfy equation 5.1, then CB[{ζν}]
contains only finite Blaschke products. Therefore, CB[{ζν}] = C[{ζν}].

Corollary 5.2.5. If CB[{ζν}] 6= C[{ζν}], then {aν} is not closed.
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Proof. If CB[{ζν}] 6= C[{ζν}], then there is a sequence {ak} ⊂ {aν} which satisfies 5.1. Any

sequence which satisfies 5.1 must satisfy limk→∞ |ak| = 1. Now, {ak} is a bounded sequence,

so there is a convergent subsequence {akl
} ⊂ {ak}. Let liml→∞ akl

= a0. Observe that

|a0| = 1, so a0 /∈ D, and thus a0 /∈ {aν}. Therefore {aν} is not closed.

The converse of this result is false. i.e. it is not true that if {aν} is not closed, that

CB[{ζν}] 6= C[{ζν}]. For example, choose a set {aν} ⊂ D such that {aν} is not closed, and

{aν} ∪ ∂ {aν} ⊂ D. There is no sequence {ak} ⊂ {aν} for which limk→∞ |ak|, so no sequence

{ak} ⊂ {aν} can satisfy 5.1. Therefore CB[{ζν}] contains only finite Blaschke products, and

CB[{ζν}] = C[{ζν}].

5.3 Approximation Using Blaschke Polynomials

Definition 5.3.1. A Blaschke series in Hp (D) is a series of the form:

∞∑
k=1

ckBk,

where each Bk is a Blaschke product for Hp (D).

An immediate consequence of the size of the set of Blaschke products is that any non-

trivial3 set of Blaschke polynomials cannot be used to give a unique approximating sequence

for any element of L2(∂D). For example, take any Blaschke product B(z) = ζm for which

ζ 6= z. B(z) has a unique Blaschke series expansion in the space C[ζ], namely B(z) = ζm.

However, in the slightly larger space C[ζ, z], there are two readilly available Blaschke series

expansions (and infinitely many others as well). B(z) may still be represented trivially as

B(z) = ζm. It may also be represented by its Taylor series about the origin:

B(z) =
∞∑
k=0

B(k)(0)

k!
zk.

The nonuniqueness of Blaschke polynomial approximations means that the choice of al-

gorithm plays a key role in the decomposition one obtains. What makes one Blaschke poly-

nomial decomposition better than another may depend entirely on the particular application

at hand. Possible considerations include:

• sparsity of the representation,

3Nontrivial here means that more than one Blaschke factor is used, i.e. the set of Blaschke polynomials
being considered is not of the form C[ζ], or C[z].
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• orthogonality of the components,

• the distribution of the roots of the component Blaschke products,

• the informational content of the residual.

Clearly there is no one best way to set up a Blaschke series decomposition technique.

5.4 A Possible Extension to Singular Inner Functions

It is only natural to generalize Blaschke polynomial spaces to include singular inner functions

as well. After all, the inner functions - Blaschke products, and singular inner functions - are

the “pure instantaneous frequency” functions in H2 (D). A series representation which uses

approximants from this larger set is a natural generalization of The Fourier series. For lack

of better notation, we will call the linear span of all inner functions C[IF ]

It is not clear that polynomials are the best setting to study this function space. Blaschke

products translate naturally into the language of polynomials because the exponents on each

Blaschke factor are non-negative integers. For singular inner functions, the “exponents” in-

volved do not share this property. More precisely, the exponents on the monomials in the

space C[ζ1, ζ2, . . . , ζn] are elements of Nn (here N = {0, 1, 2, . . . }), and form a monoid under

the usual vector addition. The addition of two exponent vectors corresponds to the multipli-

cation of the corresponding two Blaschke products. The two operations are homomorphic;

in this sense, the exponent vectors provide a natural parametrization of the set of Blaschke

products. The monoid which consists of the set of Blaschke products in n Blaschke factors,

along with the operation of multiplication is thus naturally parameterized by the set Nn.

Thus it is natural to consider this a set of monomials - and thus the linear span of Blaschke

products may naturally be considered a polynomial space.

In the case of singular inner functions, the set of singular measures forms a similar

monoid with the usual addition operation, which is homomorphic to the monoid of singular

inner functions under the operation of multiplication. The homomorphism between these

two operations (multiplication of the singular inner functions, and addition of the singular

measures) is identical to the homomorphism used to parameterize the operations in the case

of Blaschke products (multiplication of Blaschke products, and addition of the exponents).

The critical difference is that the space of exponents4 is not discrete for singular inner

functions. The exponents of singular inner functions are not “nicely” parameterized by any

monoid of the form Nν - not even if ν is (countably) infinite.

4Exponent here is used to mean the set of objects in the monoid which, under the logarithm map, is
homomorphic to multiplication of the singular inner functions.
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Characterizing the set of singular inner functions as monomials in order to shoehorn them

into the language of polynomials seems premature at best, and disingenuous at worst. There

are certainly some interesting questions regarding the linear span of all inner functions. It is

a set which holds promise for approximation, but does not translate simply into the language

of polynomials.
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Chapter 6

J-functional Decomposition Using

Blaschke Polynomials

Blaschke polynomials provide intriguing opportunities for new approximation and decompo-

sition algorithms. There is a plethora of different Blaschke polynomial spaces available to

use for these techniques, and an infinite number of algorithms one could potentially use to

do approximation or decomposition over these spaces. In this chapter, we begin to explore

the possibilities with some simple examples.

6.1 Introducing the Algorithms

We will be using two algorithms to perform decompositions of analytic signals: the J-

functional decomposition (JFD) algorithm, and the iterative best approximation (IBA) method.

For both algorithms, some common notation will be used.

The set X = {exp (inπ/12)} , n = 0, 1, . . . 23 will be used as sample points. Input func-

tions will be of the form f : X → C, where f : D → C is a member of H2 (D), having an

analytic continuation to an open set O ⊃ (D ∪ ∂D).

For both algorithms, approximants will be elements of C[{ζn}], where {an} is given by

a0 = 0, an = R exp (inπ/3) , n = 1, 2, . . . , 6 and R =
√

5−1
2

, the conjugate golden ratio. Thus,

{ζn} =
{
z ∪

{
|an|
an

an−z
1−anz

, n = 1, 2, . . . , 6
}}

. 1 Only Blaschke products of total degree ≤ 12

will be used, for reasons given in Section 6.1.3.

The JFD and IBA algorithms are very similar to each other. They are both iterative

1There is no clear choice for a best set {an} of Blaschke roots to construct a set of approximants. The
set constructed here was chosen for some geometric properties that it has. These properties may or may
not make for a good set of approximating functions. There is certainly much work to be done in order to
establish what makes a good space of Blaschke polynomial approximants. The problem is similar in nature
to establishing a sampling theorem.
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algorithms. At each step, a Blaschke monomial cB(z) ∈ C[{ζn}] is found which minimizes a

J-functional.2 Both algorithms may be written in the form below.

v0 := f

for j = 1, 2, . . . :

uj := argmin J(vj−1, ·)

vj := vj−1 − uj

For the IBA, J(v, cB(z)) = J1(v, cB(z)); for the JFD, J(v, cB(z)) = J2(v, cB(z)). These

are:

J1(v, cB(z)) =

√
π

2
‖v − cB(z)‖2

2 , and B(z) ∈ C[{ζn}], c ∈ C

J2(v, cB(z)) =

√
π

2
‖v − cB(z)‖2

2 + |c|
√

π

1 + degB(z)
, and B(z) ∈ C[{ζn}], c ∈ C

= J1(v, cB(z)) + |c|
√

π

1 + degB(z)

Because the set of approximants is so large, there may be more than one minimizer for

the J-functional being used. When this occurs, the first minimizer found will be chosen as

the next component in the representation.

For both of these algorithms, the optimal coefficient c can be solved for explicitly in terms

of the other inputs v,B(z).

6.1.1 The IBA Algorithm

The IBA algorithm for the constraint set CB[ZP ] is given by:

v0 := f

for j = 1, 2, . . . :

uj := argmin J1(vj−1, ·)

vj := vj−1 − uj

where J1(v, cB(z)) =
√
π

2
‖v − cB(z)‖2

2 , and B(z) ∈ C[{ζn}], c ∈ C.

This algorithm requires a search to be done in order to find the minimizer of J1(vj−1, ·).
For each possible Blaschke product B(z) ∈ C[P ], an optimal value c must be found, and

2It is a slight abuse of terminology to refer to one algorithm as the JFD algorithm, but there is no risk
of ambiguity within this work. It is more accurate to think of both algorithms as being JFDs, and the term
IBA simply highlights a special property which that particular algorithm has.
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the best resulting candidate cB(z) selected as the minimizer of the J-functional. There is a

problem here: C[{ζn}] is an infinite set. This problem will be partially addressed in Section

6.1.3.

6.1.2 The JFD Algorithm

The JFD algorithm was introduced in general in Section 4.4.2. In order to use this algorithm

in practice the parameter λ needs to be chosen. The parameter λ may be thought of as a

regularization parameter. (See[2].) With this perspective, it is clear that there may not be

one “best” value of λ. In this work, we set λ = 1 for simplicity.

The JFD algorithm we will use is given by:

v0 := f

for j = 1, 2, . . . :

uj := argmin J2(vj−1, ·)

vj := vj−1 − uj

where J2(v, cB(z)) =
√
π

2
‖v − cB(z)‖2

2 + |c|
√

π
1+

Pn
k=0mk

, and B(z) ∈ C[{ζn}], c ∈ C.

Notice that J2(v, cB(z)) = J1(v, cB(z)) + |c|
√

π
1+

Pn
k=0mk

. The problem of minimizing J2

is almost identical to that of minimizing J1. Once again, C[{ζn}] is an infinite set.

6.1.3 A Smaller Constraint Set

In both the IBA and JFD algorithm, a functional must be minimized over a space of Blaschke

polynomials set C[{ζn}], with zeros chosen from the set {an, n = 0, 1, . . . , 6}. This presents a

problem, as C[{ζn}] is an infinite set. It is necessary to either restrict the search to a (finite)

subset of C[{ζn}], or to develop results which can guarantee that a minimum has been found.

Using the Nyquist rate as a rough guide, we restrict our search domain for the minimiza-

tion step to those Blaschke products whose zeros are contained in the set {an}, and whose

total degree is no greater than 12.

Definition 6.1.1. Let B≤12
{an} be the set of all Blaschke products of the form:

B(z) = zm0

6∏
n=1

(
|an|
an

an − z
1− anz

)mn

,

where deg (B(z)) =
∑6

k=0mk ≤ 12.
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This reduces the problem to a finite one, but it is by no means trivial. When performing

IBA using approximants from C[z] of degree ≤ 12, we only need to compare 13 values at

each step. This is further simplified by orthogonality, which means we don’t really need to

perform any iterations. Once the optimal coefficients are found for each power of z in the

first iteration, the IBA is finished, as the coefficients are independent. The only thing IBA

does is rearrange them in descending order of magnitude.

Performing IBA or JFD using B≤12
{an} as a constraint set complicates things. B≤12

{an} is a

very large set:
∣∣∣B≤12
{an}

∣∣∣ =
(

19
7

)
= 50388. To make matters worse, the Blaschke products we

are using are not orthogonal to each other in general. This has two related consequences.

The first is that we must evaluate the optimal coefficient c for each Blaschke product when

searching for the minimizer of J1(f, ·) independently. (There is no obvious FFT-like acceler-

ation available - yet.) The other effect of nonorthogonality is that after the first component

has been extracted, a new search must be performed to find the next one. The net effect

bears repeating: we must evaluate 50388 different possible coefficients at each iteration of

the algorithm. Suddenly expanding the constraint set to allow Blaschke products with six

more possible zero locations doesn’t seem so simple.

It is important to re-emphasize that stopping the search at 50388 is essentially arbitrary.

Without any solid results to use as a guide, we are simply using the consequences of Nyquist

sampling as a rough guideline. There is not yet a coherent understanding of how instanta-

neous frequency relates to the standard concept of frequency as used in Fourier series (and

thus Nyquist sampling). However, the two quantities do mesh perfectly for the Blaschke

products {1, z, z2, . . . }.
Clearly using any Blaschke polynomial space larger than the ordinary polynomial space

C[z] introduces many orders of magnitude more computation. In order for such a method

to be usable, acceleration techniques are desperately needed. Such results could take many

forms: a condition that allows certain classes of Blaschke products to be ignored in the

optimization step, a generalization of orthogonality which allows optimizers to be found

directly for (subclasses of) Blaschke products, a method of combining calculations analogous

to the FFT, or some other type of acceleration.

6.2 Minimizing the IBA functional

The heart of the IBA algorithm (and also the JFD algorithm) is the minimization of the

J-functional. This step requires finding the Blaschke monomial cB(z), c ∈ C, B(z) ∈ B≤12
{an},

such that J1(vj−1, cB(z)) is minimized. Due to the simple structure of J1, this does not

require an explicit search algorithm such as steepest descent, conjugate gradients, etc.
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The J1 functional is quadratic in c, the coefficient of the Blaschke monomial. This means

that for each candidate Blaschke product B(z) ∈ B≤12
{an}, the best coefficient c = a + ib can

be solved for explicitly by two simple conditions:

∂

∂a
J1 = 0

∂

∂b
J1 = 0

For these calculations we introduce one more bit of notation.

Definition 6.2.1. The inner product 〈·, ·〉 : C24 × C24 → C is defined to be 〈u, v〉 =
1
24

∑24
n=1 unvn.

The norm induced by this inner product will be written without a subscript as ‖·‖. This

norm is clearly identical to the standard l2 norm on C24, when normalized appropriately.

J1 (v, cB(z)) =

√
π

2
‖v − cB(z)‖2

=

√
π

2

(
‖v‖2 − 2Re (〈v, cB〉) + ‖cB‖2)

=

√
π

2

(
‖v‖2 − 2Re (c 〈v,B〉) + |c|2

)
=

√
π

2

(
‖v‖2 − 2Re ((a− ib) 〈v,B〉) + a2 + b2

)
=

√
π

2

(
‖v‖2 − 2aRe (〈v,B〉)− 2bIm (〈v,B〉) + a2 + b2

)
0 =

∂J1

∂a
=

√
π

2
(−2Re (〈v,B〉) + 2a)

a = Re 〈v,B〉

0 =
∂J1

∂b
=

√
π

2
(−2Im (〈v,B〉) + 2b)

b = Im 〈v,B〉

c = a+ ib = 〈v,B〉 =
1

24

24∑
n=1

vnBn (6.1)
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Solving for J1 at this optimum c value gives:

J1 (v, cB(z)) =

√
π

2
‖v − cB(z)‖2

=

√
π

2

(
‖v‖2 − 2Re 〈v, cB〉+ ‖cB‖2)

=

√
π

2

(
‖v‖2 − 2Re (c 〈v,B〉) + |c|2

)
=

√
π

2

(
‖v‖2 − 2 |c|2 + |c|2

)
=

√
π

2

(
‖v‖2 − |c|2

)
(6.2)

This expression for J1 allows for a significant simplification of IBA decomposition algo-

rithm. The IBA algorithm requires the evaluation of argmin(J1) over all candidate Blaschke

products and coefficients. Clearly, equation 6.2 implies that the minimum J1 value is achieved

by the Blaschke product whose coefficient c has the largest absolute value. Thus there is no

need to evaluate the J1 functional value explicitly in order to find its minimizer. One need

only evaluate the optimum c value for each candidate Blaschke product, and pick the one

with the largest absolute value.

6.2.1 Consequences for Stopping Criteria

Error minimizing algorithms like IBA are among the oldest and most thoroughly studied

approximation methods. Convergence is guaranteed (asymptoticly at least), as long as the

component set being used forms a complete basis of the space being approximated. This is

certainly the case here, as there are many more than 48 linearly independent functions being

used to do approximation in C24, a 48 R-dimensional space. Sensible stopping criteria are

easy to come by. Some examples are:

• a prescribed number of components are extracted.

• the norm/energy of the residual is less than some fixed tolerance.

• the norm/energy of the residual is less than some proportion of the norm/energy of

the input signal.

6.3 Minimizing the JFD functional

Much like the IBA algorithm, the JFD algorithm basically boils down to finding the mini-

mizer J2. This requires finding the Blaschke monomial cB(z), c ∈ C, B(z) ∈ B≤12
{an}, such that
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J2(vj−1, cB(z)) is minimized. However, it turns out that the extra term in the J2 functional

makes this a slightly more subtle endeavor than for J1.

The best coefficient c = a+ ib can still be found directly for each Blaschke product B(z)

because J2 is also convex in each of a and b. (The proof of this is in Appendix 8.1.3.) For

this calculation, the Cartesian form and the polar form of c will be used interchangeably:

c = a+ ib = r(cos θ + i sin θ).

J2 =

√
π

2
‖v − cB‖2

2 + |c|
√

π

1 +D
,where D = deg (B(z))

=

√
π

2

(
‖v‖2

2 − 2Re (〈v, cB〉) + |c|2
)

+ |c|
√

π

1 +D

=

√
π

2

(
‖v‖2

2 − 2Re (c 〈v,B〉) + |c|2
)

+ |c|
√

π

1 +D

=

√
π

2

(
‖v‖2

2 − 2Re ((a− ib) 〈v,B〉) + a2 + b2
)

+
√
a2 + b2

√
π

1 +D

=

√
π

2

(
‖v‖2

2 − 2aRe (〈v,B〉)− 2bIm (〈v,B〉) + a2 + b2
)

+
√
a2 + b2

√
π

1 +D

0 =
∂J2

∂a
=

√
π

2
(−2Re (〈v,B〉) + 2a) +

a√
a2 + b2

√
π

1 +D

= −2Re (〈v,B〉) + 2a+
2a√
a2 + b2

1√
1 +D

= −Re (〈v,B〉) + r cos θ +
cos θ√
1 +D

r =
Re (〈v,B〉)

cos θ
− 1√

1 +D
(6.3)

0 =
∂J2

∂b
=

√
π

2
(−2Im (〈v,B〉) + 2b) +

b√
a2 + b2

√
π

1 +D

= −2Im (〈v,B〉) + 2b+
2b√
a2 + b2

1√
1 +D

= −Im (〈v,B〉) + r sin θ +
sin θ√
1 +D

r =
Im (〈v,B〉)

sin θ
− 1√

1 +D
(6.4)
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Equating 6.4 and 6.3 gives:

Re (〈v,B〉)
cos θ

− 1√
1 +D

=
Im (〈v,B〉)

sin θ
− 1√

1 +D
Re (〈v,B〉)

cos θ
=

Im (〈v,B〉)
sin θ

tan θ =
Im (〈v,B〉)
Re (〈v,B〉)

θ = arg (〈v,B〉)

As we are interested in the complex value c, the nonuniqueness of θ is not a concern. The

optimal c value is a real multiple of the quantity 〈v,B〉. Substituting θ into equation 6.4 we

have

c =

(
1− 1

|〈v,B〉|
√

1 +D

)
〈v,B〉 (6.5)

Evaluating J2 at the optimum c value gives

J2 =

√
π

2
‖v − cB‖2 + |c|

√
π

1 +D

J2 =

√
π

2

(
‖v‖2 − 2Re (〈v, cB〉) + |c|2

)
+ |c|

√
π

1 +D

J2 =

√
π

2

(
‖v‖2 − 2Re (c 〈v,B〉) + |c|2

)
+ |c|

√
π

1 +D

J2 =

√
π

2

(
‖v‖2 − 2

(
1− 1

|〈v,B〉|
√

1 +D

)
|〈v,B〉|2

+

(
1− 1

|〈v,B〉|
√

1 +D

)2

|〈v,B〉|2
)

+

(
1− 1

|〈v,B〉|
√

1 +D

)
|〈v,B〉|

√
π

1 +D

=

√
π

2

(
‖v‖2 − 2 |〈v,B〉|2 + 2

1√
1 +D

|〈v,B〉|+ |〈v,B〉|2 − 2
|〈v,B〉|√

1 +D
+

1

1 +D

)
+

√
π

1 +D
|〈v,B〉| −

√
π

1 +D

=

√
π

2

(
‖v‖2 − 1

1 +D
+ 2
|〈v,B〉|√

1 +D
− |〈v,B〉|2

)
=

√
π

2

(
‖v‖2 −

(
|〈v,B〉| − 1√

1 +D

)2
)

(6.6)

One possible problem is what happens if 〈v,B〉 = 0. If this is the case, then equation 6.5

is undefined. In this case, we must evaluate J2 directly. Comparing the value of J2(v, 0) to
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that of J2(v, cB) for c 6= 0 gives:

J2(v, cB)− J2(v, 0) =

(√
π

2
‖v − cB‖2 + |c|

√
π

1 + degB

)
−
(√

π

2
‖v‖2

)
=

√
π

2

(
‖v‖2 + |c|2 + |c|

√
π

1 + degB
− ‖v‖2

)
=

√
π

2

(
|c|2 + |c|

√
π

1 + degB

)
> 0

Thus if 〈v,B〉 = 0, the coefficient c which minimizes J2(v, cB) is c = 0.

6.3.1 Consequences for Stopping Criteria

The JFD algorithm is not guaranteed to converge (i.e. the residual does not approach 0).

However, equation 6.6 sheds some light on what is going on with the JFD algorithm, and

also on how to pick sensible stopping criteria.

Consider a constant input signal given by v = K. For any nonconstant finite Blaschke

product B(z), 〈v,B〉 = 0. Therefore, the only Blaschke product for which J2(v, cB) has

a non-zero minimizer is B(z) = 1. The first JFD iteration would produce a component

u1 =
(

1− 1
|K|

)
K, and a residual equal to v1 = K

|K| . The second iteration (and every

subsequent iteration) would produce a component equal to zero, and a residual equal to v1.

Essentially the JFD algorithm terminates after one iteration yielding an decomposition of

K into a component:
(

1− 1
|K|

)
K, and an error term: K

|K| .

This situation isn’t too bad if |K| >> 1. Clearly this decomposition is essentially mean-

ingless if |K| < 1. If |K| < 1, the resulting error is greater than the input signal!

In order to get a better feel for what is going on, let’s look at a more complicated

example. Consider an input signal v which is analytic on D with a Taylor series given by

v =
∑∞

k=1 dkz
k, for which the minimizer of J2(v, cB) is czm. If this is the case, then the

optimal coefficient c is given by

c =

(
1− 1

|dm|
√

1 +m

)
dm.

The first iteration of the JFD algorithm will return a component u1 and a residual v1
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given by

u1 =

(
1− 1

|dm|
√

1 +m

)
dmz

m

v1 = v − u1

=

(
∞∑

k=1, k 6=m

dkz
k

)
+

1√
1 +m

dm
|dm|

zm

It is now clear that the JFD algorithm is doing something very similar to the simpler

example in Section 4.4.1. At each iteration, a coefficient is truncated down to the level 1√
1+m

.

This suggests a stopping criterion for the JFD algorithm: terminate the algorithm after

the nth iteration if the Blaschke product B which minimizes J2(vn, cB) (where c is the optimal

coefficient) is such that:

|〈vn, B〉| ≤
1√

1 + deg(B)
(6.7)

At every step in the decomposition, this guarantees that that the act of extracting a compo-

nent is actually removing energy from the signal. If an input signal were such that ∀B(z),

|〈vn, B〉| ≤ 1√
1+deg(B)

, then “extracting” a component using the JFD algorithm would actu-

ally be adding energy to the signal. For example, take K < 1 in the earlier example with

the constant signal.

It is important to note that this stopping criterion does not guarantee that after the

algorithm terminates, that all inner products |〈vn, B〉| will be less than their respective

threshold values ≤ 1√
1+deg(B)

. The only guarantee is that when the algorithm terminates,

that the next component selected would have satisfied this condition.

6.4 Implementing the Algorithms

We now have all the tools in place to implement the JFD and IBA algorithms.

Single and double subscript indices will be used to refer to particular entries of vectors

or matrices, respectively. In keeping with Matlab’s conventions, a colon will be used to refer

to an entire row or colon of a matrix. e.g. M2,: refers to the entire second row of the matrix

M .

A bar over a quantity denotes complex conjugation.

f ∈ C24 is a column vector whose entries are the boundary values of the input function,

sampled at the points zn = enπi/12, n = 0, 1, . . . .

B ∈M50388×24(C). Each row of B contains boundary values of a unique element of B≤12
{an},

sampled at zn. Code used to produce B is in Appendix 8.2.1.
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d ∈ Z50388 is a vector containing the degrees of the Blaschke products in the corresponding

rows of B. i.e. d7 is the degree of the Blaschke product whose boundary values are given by

B7,: - the seventh row of B.

6.4.1 IBA Pseudocode

r := f

for n = 1, . . . , N

k := 〈f,B〉

l := find(max |k|)

U:,n := klBl,:

r := r−U:,n

end

Matlab code for the IBA algorithm is in Appendix 8.2.2.

6.4.2 JFD Pseudocode

r := f

for n = 1, . . .

k := 〈f,B〉

l := find

(
max

∣∣∣∣|k| − 1√
1 + degB

∣∣∣∣)
if |〈f,B〉| ≤ 1√

1 + deg(Bl)
then break

k :=
(

1− 1/(2π |k|
√

1 + d)
)

k note

U:,n := klBl,:

r := r−U:,n

end

note: The operations in this line are all evaluated componentwise, not with the usual vector

operations. These componentwise operations are performed using the Matlab componentwise

operations which are prefixed by a period. This line could be replaced with a loop which

would be formally more correct, however the componentwise operations correspond to the
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Matlab implementation used in this work. There is no ambiguity or problem when written

in Matlab code.

Matlab code for this algorithm is in Appendix 8.2.3.

6.4.3 A further note on stopping criteria

When implementing the IBA and JFD algorithms on a computer, machine errors will in-

evitably arise. It would be nonsensical to force an algorithm to continue a decomposition

if the input signal for a given iteration is indistinguishable from machine error. Thus, an

appropriate stopping criterion for use on Matlab is: If ‖residual‖ < ‖original input‖ 10−14

then stop.

The purpose of this investigation is to compare the IBA and JFD algorithms to each

other. This can be used to give another stopping criterion for the IBA algorithm. It makes

sense to consider at least as many terms for IBA as the JFD returns. Also, because the

residual of the JFD algorithm does not converge to 0, JFD will typically stop when there

is still a non-trivial amount of energy in the residual. Thus, we should continue IBA for at

least a few terms more than the JFD algorithm returns, in order to extract some information

from the residual. The stopping criterion we will use for the IBA algorithm is: IBA will stop

if that the number of IBA terms is equal to (number of JFD terms)+8.

As a further safety measure, both the IBA and JFD algorithms will be terminated if the

norm of the residual increases.

6.5 Examples and Discussion

6.5.1 Calibration

Example 1a

It seems appropriate to begin investigating new decomposition techniques with a calibration

exercise. We start by performing IBA and JFD decomposition on a polynomial, given by

f(z) = 1000 + 100z10 + 10z7 + z2 + 0.1z6

All the components of f(z) are orthogonal to each other. It is reasonable to expect both

methods to resolve f(z) into the monomials above. Of course, JFD should only resolve those

terms whose coefficients are large enough to pass the stopping criterion. However, for the

larger terms the IBA and JFD results should appear very similar to each other. Matlab code

for this example is in Appendix 8.2.4, as ‘Example 1a’.
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The IBA decomposition performs as expected, producing:

f(z) = 1000 + 100z10 + 10z7 + z2 + 0.1z6.

The JFD algorithm did almost as good, recovering the three terms with the largest coeffi-

cients:

f(z) ≈ 1000 + 100z10 + 10z7.

The residual from the JFD decomposition has norm ‖residual‖ = 1.0202, while the IBA’s

residual is essentially zero (‖residual‖ = 1.14× 10−14).

Before performing any more actual decompositions, it would be helpful to get a better

idea of exactly what the IBA and JFD algorithms are doing, and how they relate to each

other.

6.5.2 Reconstruction Accuracy

With these examples, we investigate how well the JFD and IBA decompositions approximate

certain input signals. We start by constructing polynomials of the form

fm,r(z) = m
9∑

n=0

rnz12−n

By varying m and r, the task of separating different modes can be made easier or harder.

If r >> 1, the monomial components of f(z) should be very easy to extract. If r ≈ 1,

the task of separating the individual modes may become more difficult. The parameter m

ideally shouldn’t affect the outcome of the IBA algorithm. However, small values of m should

cause the JFD algorithm to terminate after extracting only a few (or possibly none) of the

components. As m increases, the results of the JFD algorithm should begin to resemble

those of the IBA algorithm.

In figures 6.1 and 6.2, the weighted residual log10 (residual)− logmr9(c) is plotted against

m and r. The upper right regions of these plots are empty due to NaN and Inf results for

the residuals. This is not surprising given the extremely large values of m and r in the upper

right region of the plots. The missing residual values can be thought of as being essentially

zero.

As predicted, the IBA algorithm is unaffected by the m value chosen. There is a clear

dependence on r, but m has no visible effect on the residual of IBA. There is a distinct r

value at which the character of the IBA algorithm changes dramatically. A more precise

calculation reveals that this cutoff value is log(r) ≈ 2.9 for IBA, and log(r) ≈ 3.36 for JFD.
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Figure 6.1: log(reducedresiduals) for IBA algorithm with input signals fm,r(z)

(Code for this calculation is in Appendix 8.2.4. The IBA code is ‘example2c.m’; the JFD

code is ‘example2d.m’.)

There are two clearly distinct regions3 of the graph in figure 6.2. The region log(m) > 0

appears almost identical in character to figure 6.1. In this region, the JFD algorithm behaves

in a quasi-linear fashion. Recall that at every iteration, the JFD algorithm selects a Blaschke

product as a component, and extracts most - but not all - of the correllation between the

signal and the new component. In the quasi-linear (log(m) > 0) region, the constant m is

large enough that these little remainders are negligible.

In the region log(m) < 0, the JFD algorithm takes on a completely different character

from the IBA algorithm. The residuals depend strongly on both variables m and r.

We wish to further explore the question of reconstruction accuracy, and how it can be

used to illustrate the nonlinearity of JFD. It is possible that the observations made from

figures 6.1 and 6.2 were a special consequence of the orthogonality of the components of the

input signal. It is important to ask what such results look like when we choose an input

signal from B≤12
P that is not an ordinary polynomial. For this exercise, we use input signals

3One might prefer to partition the m, r plane into two partitions according to the size of the reduced
residual (i.e. the color of the graph in figure 6.2. However, one loses the distinction between one quasi-linear
and one nonlinear region, as both regions’ boundaries depend on r.
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Figure 6.2: log(reducedresiduals) for JFD algorithm with input signals fm,r(z)

of the form:

gm,r(z) =m
(
r1z3ζ1ζ2ζ

3
3ζ

2
4ζ5ζ6 + r2zζ1ζ

2
2ζ

2
3ζ

3
4 + r3ζ1ζ

2
2ζ3ζ

3
4

+r4ζ1ζ
2
2ζ4ζ5 + r5ζ1ζ2ζ6 + r6ζ4

)
The analysis for {gm,r} is the same as for {fm,r}. The reduced residuals are plotted as a

function of m and r in figure 6.3 and 6.4. There are some strong similarities, and also

differences in the behavior of the IBA algorithm in figures 6.1 and 6.3. In both cases, there

is virtually no dependence on m. This is as expected, due to the linearity of IBA. However,

in the first case (figure 6.1), there was a very sharp demarcation between the regime of bad

approximation, log(r) < 2.9, and the region of good approximation, log(r) > 2.9. In figure

6.3, there is a gradual improvement in the approximation obtained from IBA as r increases.

For any given accuracy level, there is a value of r that will achieve satisfactory results.

However, the location of this threshold clearly depends upon the desired r value, and not on

some obvious feature of the residuals themselves. This is somewhat disappointing; it would

be nice to have some a priori knowledge about the character of the results. However, it is

not all that surprising that when analyzing a signal with non-orthogonal components, that

some features of the analysis might become “smeared”. This is typical of complex signals.

The JFD algorithm’s results are also interesting. It might be hard to definitively spot the
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Figure 6.3: log(reducedresiduals) for IBA algorithm with input signals gm,r(z)

Figure 6.4: log(reducedresiduals) for IBA algorithm with input signals gm,r(z)
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two regions on the graph in figure 6.4, had we not already seen the same analysis done for

the polynomial signals fm,r. It is fairly clear that there is a similar demarcation between a

pseudo-linear region and a nonlinear region in figure 6.4. In the region given by log(m) > 0,

there is essentially no dependence on m

6.5.3 Identification of localized frequencies

In the final example, we take a look at how IBA and JFD algorithms perform with signals

that are not sums of elements ofB≤12
{an}. Specifically, if an input signal is a Blaschke polynomial

which is close to another Blaschke polynomial (in the sense that the roots are close to each

other), will the IBA and JFD algorithms extract those components in the constraint set

which are close to the modes contained in the original signal?

We start by looking at a single Blaschke monomial: f(z) = 10000ζ̃4
3 ζ̃1, where the factors{

ζ̃n

}
have roots which have been slightly perturbed from the roots of {ζn}. Matlab code for

this example is in the file ‘example4a.m’, in Appendix 8.2.4.

The IBA and JFD algorithm returned very similar decompositions for the perturbed

Blaschke product. They agree up to the first six terms. (The two decompositions differ

slightly on the sixth term.) Those terms are:

f(z) ≈ (9997+31i)ζ4
3ζ1−(120+131i)ζ1ζ

3
3ζ

3
4−(118+72i)ζ4

3ζ4ζ
3
7−(35−73i)ζ4

3ζ
2
4 +(77−i)ζ4

3ζ
3
4ζ5ζ7

The decomposition above is very encouraging. Of course, a shorter series might have been

nicer (only some of the terms are shown above), but the result we obtained is not that

surprising. Perturbing a Blaschke product essentially introduces aliasing to the frequency

content of the boundary function. This can be seen by looking at the instantaneous frequency

of a Blaschke product. It is a sum of Poisson kernels, each depending on one of the Blaschke

root locations. Thus, shifting a root corresponds to shifting one of those Poisson kernels

along the boundary ∂D (as well as possibly squeezing or widening it). Whenever aliasing

is introduced, it is reasonable to expect that many (small) terms will be needed in order to

clean up the signal.

We finish with an example that is only slightly more complicated than th previous one:

f(z) = 10000ζ̃4
3 ζ̃1 − 800zζ̃1. The IBA and JFD algorithms return identical decompositions.

(This example was run with a maximum of 20 terms.) The first few terms are shown below.

f(z) ≈ (15111− 2953i)ζ4
3ζ1 − (7640 + 632i)ζ1ζ2ζ3 − (1811 + 4042i)ζ2ζ3ζ4 + . . .

The first term in the series is the Blaschke product we would have expected. The input sig-

nal’s leading term was a perturbation of the Blaschke product in the leading term. However
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that is where our luck runs out. Because the next term in the input signal has a smaller

coefficient, that information gets swamped by the residual from the first term’s extraction.

The first term of the approximant is not a perfect fit for the leading term in the input signal,

leaving a remainder of
(

10000ζ̃4
3 ζ̃1 − (15111− 2953i)ζ4

3ζ1

)
. Clearly, this is much larger than

the second input term −800zζ̃1, and this frequency information cannot be recovered cleanly.

While it is possible to set up more thorough experiments on this matter, it does not seem

a wise application of resources. After all, with only 24 data points, aliasing artifacts will no

doubt have a major impact on any experiments done with more than two perturbed terms.

There is a need for a thorough understanding of sampling effects with Blaschke polynomials

before trying to pack much more information into such a short data set.
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Chapter 7

Conclusions and Future Research

The research presented in this work is motivated by a desire to better understand the em-

pirical mode decomposition (EMD). As it turns out, the original results presented here do

not directly pertain to EMD. However, it is important to keep the larger goal in mind when

looking at these results in order to better see how they fit together. EMD presents the math-

ematical researcher with an ages old riddle: something seems to work without any apparent

explanation of why or how. By investigating some of the questions that this riddle poses,

we have come a little bit closer to possibly understanding how EMD works. As is so often

the case with mathematical research, we have stumbled upon answers to other questions as

well.

7.1 ASNIFs

The first problem posed by EMD addressed in this work a foundational one. The IMF

components produced by EMD are supposed to have positive instantaneous frequency[13].

This is certainly true much of the time, but counterexamples have been shown to exist[20].

This leads to two questions:

• What functions are characterized by the property of non-negative instantaneous fre-

quency?

• Why is it that, in spite of the counterexamples produced, the IMFs resulting from

real-world applications tend to have non-negative instantaneous frequency?

In Chapter 3, the first question has been answered for functions which admit an analytic

continuation to an open set which is “big enough”. A function which admits such an analytic

continuation is an analytic signal with non-negative instantaneous frequency (ASNIF) if and

only if its canonical factorization satisfies precise conditions. (See corollaries 3.2.10 and
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3.2.14.) These results are an extension of previous results which specified smaller classes

of ASNIFs ([8],[24]). In obtaining these results, a natural setting was found for further

investigation into larger classes of ASNIFs: Hardy spaces.

The results of chapter 3 also shed some light on the second question. The conditions of

theorems 3.2.9 and 3.2.13 are strikingly similar to the experimental outcomes of the sifting

algorithm: the rate of amplitude modulation of a given IMF is typically much lower than the

instantaneous frequency of the FM part of the IMF([13]). Of course this is not guaranteed,

otherwise there wouldn’t be any counterexamples! However it is interesting to see that the

typical output of the sifting algorithm matches quite nicely with the ASNIF criteria found

in Chapter 3.

7.1.1 Future research

Hardy spaces contain a rich assortment of functions which do not satisfy the criteria of

theorems 3.2.9 and 3.2.13, but which may be considered ASNIFs in a more general setting.

Further research into instantaneous frequency for these functions would require careful con-

sideration of boundary convergence. This is no small task; ensuring the convergence of the

boundary values of the first derivative is a difficult problem. (See [9], [11]) However, at least

it is clear how to proceed in order to obtain more general results.

Another research problem of more direct practical importance has arisen from Chapter

3: a new potential stopping criterion1 for the sifting algorithm. This criterion can be stated

most directly as: Continue sifting until the signal is an IMF. The results of Chapter 3

indicate that this would not be very difficult. However, it would require looking not only

at the real data values (as EMD currently does), but at the analytic signal of the candidate

IMF. Currently, HHT only constructs the analytic signals after all the sifting is completed

as an a posteriori analysis tool. The counterexamples in [20] show that this is insufficient;

simple criteria based solely on the real valued signal are insufficient to guarantee non-negative

instantaneous frequency. Introducing a new stopping criterion to the sifting algorithm (and

the fundamental change to the algorithm itself that it implies) obviously presents many new

avenues for research, as it would create an entirely new signal processing method.

The result presented in the later chapters of this work represent the first small steps on

another reseach program suggested by the ASNIF results. The factorization of ASNIFs into

component building blocks suggests a systematic way to build incrementally more general

ASNIF based signal decomposition/analysis methods. Various classes of ASNIFs may be

1The suggestion being made here is not necessarily that this condition would be a sufficient stopping
criterion. Rather that the criterion proposed here could be used to guarantee that an IMF is indeed an
ASNIF. Other criteria may still be desired in order to ensure that IMFs have other desirable properties, such
as relatively smooth amplitude modulation.
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defined. These may be used as sets of component functions for approximation methods

whose complexity increases with the size of the component set. Some such sets are:

• The set of all Fourier basis functions. ({zn} for Hp (D), and {einz} for Hp (C+))

• The set of all Blaschke products over a given set of roots.

• The set of all Blaschke products.

• The set of all singular inner functions.

• The set of all inner functions.

• The set of all ASNIFs which satisfy theorem 3.2.9 or 3.2.13.

• The set of all ASNIFs.

While these sets are not well-ordered by the containment relation, there is a general pro-

gression suggested by this list. Larger classes of ASNIFs allow decompositions which impose

fewer a priori restrictions on the component functions generated. Each class of ASNIFs

has distinct strengths and weaknesses which may make it suitable to a particular signal

processing application.

A decomposition which used all ASNIFs as approximants (or even those which satisfy

Theorem 3.2.9 or 3.2.13) would be very interesting to compare directly to EMD/HHT.

This would go a long way to settling many of the outstanding theoretical questions about

EMD/HHT.

On a less applied note, a decomposition or approximation method using the set of all inner

functions (for either Hp (C+)or Hp (D)) would present some fascinating problems for func-

tional analysis. Such a method would be a direct extension of the Fourier series/transform

methods. Such an inner function decomposition would be especially fascinating, as this set

of functions is the largest set of pure frequency (or “pure FM”) functions that exists within

the Hardy spaces. Clearly this presents many avenues of potentially fruitful research.

7.2 Blaschke polynomials

Theorem 5.1.6 (the fact that the linear span of the set of all Blaschke products (in Hp (D)or

Hp (C+)) is a polynomial space) is not a difficult result. It is not even a surprising result.

However, it is significant because it makes it explicitly clear that spaces such as C[ZP ] are

natural generalizations of ordinary polynomials C[z]. This is very important, as it suggests
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that many tools and methods from ordinary polynomials may translate quite naturally to

Blaschke polynomials.

One of the most obvious characteristics of Blaschke polynomial spaces is their sheer size.

Using only seven Blaschke roots, and degrees ≤ 12, the set B≤12
{an} contains 50388 elements.

This was quite manageable using modern (2007) computer hardware. It might not even be

a problem to use a few orders of magnitude more Blaschke products. However, any given

computer will be very easy to overburden, as the size of such a set of Blaschke products grows

super-exponentially with respect to the number of Blaschke roots2. The obvious implication

is that the method used in this work - choosing a set of Blaschke roots, creating a list of

all possible Blaschke products over those roots, and calculating all the 〈v,B〉 quantities - is

only practical for data sets of a known (short) length.

For any application where the data set is of unknown length, it is impossible to control

the size of the set of Blaschke products without inappropriately restricting the degree of the

Blaschke polynomials used3. Thus, the method used in this work is probably only useful for

simple test cases, or to obtain calibration results.

7.2.1 Future research

The IBA and JFD algorithms represent a small first step into the world of Blaschke polyno-

mial approximation methods. The IBA method is barely a departure from a classical Fourier

series. The only difference is that the set of basis functions has been expanded. The JFD

algorithm has much more in common with contemporary methods. It is nonlinear, but is

still well behaved enough that it may be thought of as pseudo linear, at least in some cases.

As implemented, these algorithms are unlikely to be of any practical use. The brute force

approach used (building a list of Blaschke products, and searching through the list for each

coefficient) does not scale well. The super-exponential growth rate of a set B≤nS with respect

to |S| means new methods are needed to minimize any functional used in a J-functional

decomposition. For the J1 and J2 functionals used in this work, there is a way to write an

algorithm that would scale much better with |S| and n. Rather than evaluating all possible

〈v,B〉 values to find the minimizer of J(v, cB(z)) (which requires constructing a very long list

of Blaschke products), it should be possible to search for the optimum Blaschke monomial

of a given degree. This would be done as follows:

1. Solve for the optimum coefficient c as a function of the Blaschke product B(z) and

2The size of a set of Blaschke products is given by
∣∣∣B≤n

S

∣∣∣ =
(|S|+n

n

)
. The situation gets even worse under

the reasonable assumption that both n and |S| increase proportionally with the length of the data set.
3This assumes that the appropriate number of Blaschke roots and the maximum degree of the Blaschke

products are increasing functions of the length of the data set. This may or may not be true

72



input function v.

2. Write the J-functional as a function of v, and the zero locations of B(z).

3. Use a search method to minimize J(v, ζ1, ζ2, . . . , ζn).

This seems like a simple proposition, but there are some significant problems to be resolved

in order to realize such an algorithm. For a given J-functional, a continuity result is needed

of the form:

d ((ζ1, ζ2, . . . , ζn)− (ξ1, ξ2, . . . , ξn)) < δ ⇒ |J(v, ζ1, ζ2, . . . , ζn)− J(v, ξ1, ξ2, . . . , ξn)| < ε

For functionals like J1 and J2 used in this work, this might not be too difficult. However, it

is important to establish such a result in order to proceed. The most difficult part of such an

algorithm may be minimizing the functional J(v, ζ1, ζ2, . . . , ζn). If J(v, cB(z)) is nonlinear in

cB(z) and/or v, the functional J(v, ζ1, ζ2, . . . , ζn) may turn out to be incredibly complicated.

The difficulty of this optimization would increase with n. However even if this technique is

incredibly difficult, it may still allow for a significant improvement over the simpler approach

used in this work. The list of Blaschke products grows super-exponentially in n. If the search

algorithm proposed here is even slightly faster than that, the rewards will become clear as

n increases.

Ironically, the potential acceleration due to this more general approach requires using

a larger Blaschke polynomial space than the slower brute force method of enumerating all

Blaschke products. Performing a search over Blaschke root locations means there would be

no prescribed set of Blaschke polynomials. The size of the approximating set is therefore

determined by the precision of the search.

A cautionary note must be made regarding the precision of a search for approximants.

Determining how precisely one needs to, or is able to, determine an approximant, is analogous

to having a sampling theorem and an uncertainty principle, respectively. For example, if one

were performing a Blaschke J-functional decomposition on a data set of 10000 samples, it

would be important to know what the maximum degree of approximants should be. The

Nyquist rate was used as a rough guide in this work, but a more precise result would be

valuable for such a large data set. A rule which selects the maximum degree necessary to

analyze a signal would essentially be a generalized sampling theorem. Once a maximum

degree were established, a procedure for selecting Blaschke roots is needed. The precision

with which a set of Blaschke roots is determined implicitly determines how well the set of

component functions will be able to localize frequency. This is clearly equivalent (in some

sense) to an uncertainty principle. Knowing the nature of (whatever is analogous to) the
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uncertainty principle at work would be very valuable, as it would allow one to know how

much precision is needed in the calculation of the Blaschke roots. Needless to say, it would

also be invaluable for the interpretation of the results.
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Chapter 8

Appendix

8.1 Proofs

8.1.1 Proof of equation 3.16

Proof. Let B(z) be a a Blaschke product for Hp (C+), with a discrete zero set {zk}. (i.e.

{zk} has no cluster points.) Such a function is meromorphic on the entire complex plane.

Wherever B(z) is analytic, we have

ωB(z) = Im

[
B′(z)

B(z)

]
= Im

[∑
k

z − zk
z − zk

d

dz

(
z − zk
z − zk

)]

= Im

[∑
k

z − zk
z − zk

(
zk − zk

(z − zk)2

)]

= Im

[∑
k

zk − zk
|z − zk|2

]
=
∑
k

2yk

|z − zk|2

Now, {zk} has no cluster points in C, and thus no cluster points on R. Therefore B(z)

is analytic on the real line, and there is no problem taking the limit

ωB(x) = lim
z→x∈R

ωB(z)

=
∑
k

2yk

|x− zk|2
> 0
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8.1.2 Proof of equation 3.17

Proof. Let S(z) be a a singular inner function for Hp (C+), whose singular measure dν has

discrete support. Such a function is analytic on C\ ( supp dν). Wherever S(z) is analytic,

we have

ωS(z) = Im

[
S ′(z)

S(z)

]
= Im

[
i
d

dz

∫ ∞
−∞

1 + tz

t− z
dν(t)

]
= Re

[
d

dz

∫ ∞
−∞

1 + tz

t− z
dν(t)

]
Wherever S(z) is analytic, its derivative exists, so there is no problem switching the order

of the derivative and the integration above. (This becomes an issue if we wish to evaluate

the limit of ωS(z) as z approaches a cluster point of the singular support.)

ωS(z) = Re

[
d

dz

∫ ∞
−∞

1 + tz

t− z
dν(t)

]
= Re

[∫ ∞
−∞

t(t− z) + (1 + tz)

(t− z)2
dν(t)

]
= Re

[∫ ∞
−∞

1 + t2

(t− z)2
dν(t)

]
Because the singular support is discrete, there is no problem taking the limit of ωS(z) as

z → x ∈ R almost everywhere, to give:

ωS(x) = Re

[∫ ∞
−∞

1 + t2

(t− x)2
dν(t)

]
=

∫ ∞
−∞

1 + t2

(t− x)2
dν(t) ≥ 0 a.e.
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8.1.3 Proof of the convexity of J2 w.r.t. a and b

Proof.

J2 (a, b; v,B) =

√
π

2

(
‖v‖2 − 2aRe (〈v,B〉)− 2bIm (〈v,B〉) + a2 + b2

)
+
√
a2 + b2

√
π

1 + deg(D)

∂2

∂a2
J2 =
√
π +

2a2 + b2

(a2 + b2)3/2

√
π

1 + degB
≥ 0

∂2

∂b2
J2 =
√
π +

a2 + 2b2

(a2 + b2)3/2

√
π

1 + degB
≥ 0

Furthermore, ∂2

∂a2J2 and ∂2

∂b2
J2 are only equal to zero when both a and b are equal to zero.

i.e. ∂2

∂a2J2,
∂2

∂b2
J2 6= 0 ∀(a, b) 6= (0, 0). Thus J2 is strictly convex in a and b.
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8.2 MATLAB Code

8.2.1 makelists.m

%makelists.m

clear

a = 0.5*(sqrt(5)-1)* exp(i * pi * (0:5) /3 );

z = (0:23)’ * pi / 12;

zzeta = angle( (ones(24,1)* (abs(a)./a)).* ...

(( (ones(24,1)*a) - (exp(i*z)*ones(1,6)) ) ...

./(1- (ones(24,1)*conj(a)) .* (exp(i*z)*ones(1,6)) )));

zzeta = [zzeta z]; clear a; clear z;

exponents=zeros(7,50388); BPlist = zeros(24,50388);

k=0;

for n1 = 0:12

d=n1;

for n2 = 0:12-d

d=n1+n2;

for n3 = 0:12-d

d=n1+n2+n3;

for n4 = 0:12-d

d=n1+n2+n3+n4;

for n5 = 0:12-d

d=n1+n2+n3+n4+n5;

for n6 = 0:12-d

d=n1+n2+n3+n4+n5+n6;

for n7 = 0:12-d

k=k+1;

exponents(:,k)=[n1 n2 n3 n4 n5 n6 n7]’;

BPlist(:,k) = zzeta*exponents(:,k);

end

end

end

end

end

end

end

BPlist=exp(i*BPlist);
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exponents(8,:)=sum(exponents,1);

BPlist(25,:) = complex(exponents(8,:));

exponents=sortrows(exponents’,8)’;

BPlist = sortrows(BPlist’,25)’;

degree=exponents(8,:);

exponents=exponents(1:7,:);

BPlist=BPlist(1:24,:);

save exponents exponents; save degree degree; save BPlist BPlist;

clear
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8.2.2 IBA.m

function [c,e,res]=IBA(f,m)

load BPlist

load exponents

R=f;

for n=1:m

k = (BPlist’)*R(:,n)/24;

[C,l] = max(abs(k));

R(:,n+1) = R(:,n) - k(l)*(BPlist(:,l));

if (sum(abs(R(:,n+1).ˆ2)) > sum(abs(R(:,n)).ˆ2))

break

end

if (sqrt(sum(abs(R(:,n).ˆ2))/24) ...

/ sqrt(sum(abs(R(:,1).ˆ2))/24) < 10ˆ-14)

break

end

c(1,n) = k(l);

e(1,n) = l;

end

res = sqrt(sum(abs(R).ˆ2,1)/24);
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8.2.3 JFD.m

function [c,e,res]=JFD(f)

load BPlist

load degree

c(1,1) = 0;

e(1,1)=0;

f=f(:);

R(:,1) = f;

for n=1:100

k= (BPlist’) * R(:,n) / 24;

[C,l] = max(abs(abs(k) - sqrt(1+degree’)));

if (abs(k(l)) <= (1+degree(l))ˆ(-0.5))

break

end

kk=(1-(2*pi*abs(k(l))*sqrt(1+degree(l)))ˆ-1).*k(l);

R(:,n+1) = R(:,n) - kk*BPlist(:,l);

if (sum(abs(R(:,n+1).ˆ2)) > sum(abs(R(:,n)).ˆ2))

break

end

if (sqrt(sum(abs(R(:,n).ˆ2))/24) ...

/ sqrt(sum(abs(R(:,1).ˆ2))/24) < 10ˆ-14)

break

end

c(1,n) = kk;

e(1,n) = l;

end

res = sqrt(sum(abs(R).ˆ2,1)/24);
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8.2.4 Examples

example1.m

%Example 1

clear

load BPlist

f = 1000*BPlist(:,1) + 100 *BPlist(:,11441) + 10 * BPlist(:,1717) + ...

BPlist(:,9) + 0.1*BPlist(:,793);

[c1,e1,JFDres]=JFD(f);

[c2,e2,IBAres]=IBA(f,2*length(c1)+8);

JFDdecay = -diff(log(JFDres))

IBAdecay = -diff(log(IBAres))

[JFDres(length(JFDres)) IBAres(length(JFDres))]

JFDraw = conj([complex(e1)’ c1’])

IBAraw = conj([complex(e2)’ c2’])
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example2a.m

%Example 2a

clear

z = exp(i * (0:23) * pi / 12); z=z(:);

k1=20;k2=20;

m=logspace(-120,120,k1);

r=logspace(0,30,k2);r=r(:);

[R,M]=meshgrid(r,m);R=log10(R);M=log10(M);

res=zeros(k1,k2);

t=cputime;

record=zeros(k1*k2,4);

for n1= 1:k1

for n2=1:k2

f=zeros(24,1);

for k=0:9

f=f+m(n1)*r(n2).ˆk * z.ˆ(12-k);

end

[c1,e1,IBAres]=IBA(f,20); ll=length(IBAres);

res(n1,n2)=log10(IBAres(ll)/(m(n1)*r(n2)ˆ9));

record(n1*(k2-1)+n2,:)=[n1 n2 ll res(n1,n2)];

end

end

t=cputime-t

h=surf(R,M,res)

xlabel(’log10(r)’); ylabel(’log10(m)’); colorbar;

view(0,90); camproj(’orthographic’)

save ex2a res record
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example2b.m

%Example 2b

clear

z = exp(i * (0:23) * pi / 12); z=z(:);

k1=20;k2=20;

m=logspace(-120,120,k1);

r=logspace(0,30,k2);r=r(:);

[R,M]=meshgrid(r,m);R=log10(R);M=log10(M);

res=zeros(k1,k2);

t=cputime;

record=zeros(k1*k2,4);

for n1=1:k1

for n2=1:k2

f=zeros(24,1);

for k=0:9

f=f+m(n1)*r(n2)ˆk * z.ˆ(12-k);

end

[c1,e1,JFDres]=JFD(f,20); ll=length(JFDres);

res(n1,n2)=log10(JFDres(ll)/(m(n1)*r(n2)ˆ9));

record(n1*(k2-1)+n2,:)=[n1 n2 ll res(n1,n2)];

end

end

t=cputime-t

h=surf(R,M,res)

xlabel(’log10(r)’); ylabel(’log10(m)’); colorbar;

view(0,90); camproj(’orthographic’)

save ex2b res record
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example2c.m

%Example 2c

clear

z = exp(i * (0:23) * pi / 12); z=z(:);

k1=1;k2=200;

m=40;

r=logspace(1,2,k2);r=r(:);

[R,M]=meshgrid(r,m);R=log10(R);M=log10(M);

res=zeros(k1,k2);

t=cputime;

record=zeros(k1*k2,4);

for n1= 1:k1

for n2=1:k2

f=zeros(24,1);

for k=0:9

f=f+m(n1)*r(n2).ˆk * z.ˆ(12-k);

end

[c1,e1,IBAres]=IBA(f,20); ll=length(IBAres);

res(n1,n2)=log10(IBAres(ll)/(m(n1)*r(n2)ˆ9));

record(n1*(k2-1)+n2,:)=[n1 n2 ll res(n1,n2)];

end

end

t=cputime-t

h=plot(R,res)

xlabel(’log10(r)’); ylabel(’log of reduced residuals’);

save ex2c res record
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example2d.m

%Example 2d

clear

z = exp(i * (0:23) * pi / 12); z=z(:);

k1=1;k2=200;

m=40;

r=logspace(1,2,k2);r=r(:);

[R,M]=meshgrid(r,m);R=log10(R);M=log10(M);

res=zeros(k1,k2);

t=cputime;

record=zeros(k1*k2,4);

for n1= 1:k1

for n2=1:k2

f=zeros(24,1);

for k=0:9

f=f+m(n1)*r(n2).ˆk * z.ˆ(12-k);

end

[c1,e1,JFDres]=JFD(f,20); ll=length(JFDres);

res(n1,n2)=log10(JFDres(ll)/(m(n1)*r(n2)ˆ9));

record(n1*(k2-1)+n2,:)=[n1 n2 ll res(n1,n2)];

end

end

t=cputime-t

h=plot(R,res)

xlabel(’log10(r)’); ylabel(’log of reduced residuals’);

save ex2d res record

88



example3a.m

%Example 3a

clear

load BPlist

index = [40000 7000 2000 500 100 6 1];

BPs = BPlist(:,index); clear BPlist;

k1=20;k2=20;

m=logspace(-120,120,k1);

r=logspace(0,30,k2);r=r(:);

[R,M]=meshgrid(r,m);R=log10(R);M=log10(M);

res=zeros(k1,k2);

t=cputime;

record=zeros(k1*k2,4);

for n1=1:k1

for n2=1:k2

f=zeros(24,1);

for j=1:7

f=f+m(n1)*r(n2).ˆ(j-1) * BPs(:,j);

end

[c1,e1,IBAres]=IBA(f,20); ll=length(IBAres);

res(n1,n2)=log10(IBAres(ll)/(m(n1)*r(n2)ˆ9));

record(n1*(k2-1)+n2,:)=[n1 n2 ll res(n1,n2)];

end

end

t=cputime-t

surf(R,M,res)

xlabel(’log10(r)’); ylabel(’log10(m)’); colorbar;

view(0,90); camproj(’orthographic’)

save ex3a res record
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example3b.m

%Example 3b

clear

load BPlist

index = [40000 7000 2000 500 100 6 1];

BPs = BPlist(:,index); clear BPlist;

k1=20;k2=20;

m=logspace(-120,120,k1);

r=logspace(0,30,k2);r=r(:);

[R,M]=meshgrid(r,m);R=log10(R);M=log10(M);

res=zeros(k1,k2);

t=cputime;

record=zeros(k1*k2,4);

for n1=1:k1

for n2=1:k2

f=zeros(24,1);

for j=1:7

f=f+m(n1)*r(n2).ˆ(j-1) * BPs(:,j);

end

[c1,e1,JFDres]=JFD(f,20); ll=length(JFDres);

res(n1,n2)=log10(JFDres(ll)/(m(n1)*r(n2)ˆ9));

record(n1*(k2-1)+n2,:)=[n1 n2 ll res(n1,n2)];

end

end

t=cputime-t

surf(R,M,res)

xlabel(’log10(r)’); ylabel(’log10(m)’); colorbar;

view(0,90); camproj(’orthographic’)

save ex3b res record
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example4a.m

%Example 4a

clear

a = 0.5*(sqrt(5)-1)* exp(i * pi * (0:5) /3 );

z = exp(i*(0:23)’ * pi / 12);

zzeta = angle( (ones(24,1)* (abs(a)./a)).* ...

(( (ones(24,1)*a) - (z*ones(1,6)) ) ...

./(1- (ones(24,1)*conj(a)) .* (z*ones(1,6)) )));

zzeta = [zzeta angle(z)];

nota = [a 0];nota = nota + 0.002-0.001i;

notzeta = angle( (ones(24,1)* (abs(nota)./nota)).* ...

(( (ones(24,1)*nota) - (z*ones(1,7)) ) ...

./(1- (ones(24,1)*conj(nota)) .* (z*ones(1,7)) )));

BP2 = (notzeta(:,3)*4)+(notzeta(:,4)*3);

f = 10000*exp(i*BP2) ;

[c1,e1,JFDres]=JFD(f,20);

[c2,e2,IBAres]=IBA(f,50);

M1 = [conj(c1’) e1’];

M2 = [conj(c2’) e2’];

[M1 M2(1:size(M1,1),:)]
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example4b.m

%Example 4b

clear

a = 0.5*(sqrt(5)-1)* exp(i * pi * (0:5) /3 );

z = exp(i*(0:23)’ * pi / 12);

zzeta = angle( (ones(24,1)* (abs(a)./a)).* ...

(( (ones(24,1)*a) - (z*ones(1,6)) ) ...

./(1- (ones(24,1)*conj(a)) .* (z*ones(1,6)) )));

zzeta = [zzeta angle(z)];

nota = [a 0];nota = nota + 0.002-0.001i;

notzeta = angle( (ones(24,1)* (abs(nota)./nota)).* ...

(( (ones(24,1)*nota) - (z*ones(1,7)) ) ...

./(1- (ones(24,1)*conj(nota)) .* (z*ones(1,7)) )));

BP2 = (notzeta(:,3)*4)+(notzeta(:,4)*3);

BP3 = z+(notzeta(:,1));

f = 10000*exp(i*BP2) - 800*exp(i*BP3);

[c1,e1,JFDres]=JFD(f,20);

[c2,e2,IBAres]=IBA(f,50);

M1 = [conj(c1’) e1’];

M2 = [conj(c2’) e2’];

[M1 M2(1:size(M1,1),:)]
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