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ABSTRACT  

A Multiple-Objective Framework for Sustainable Forest Management 

under Uncertainty in the U.S. Central Hardwood Region 

Wu Ma 

Despite the economic and ecological significance of oak-hickory forests in the Central 

Hardwood Region (CHR), major challenges are faced by both private and public landowners 

and policymakers due to the lack of reliable growth and yield models as well as the absence 

of useful tools for multi-criteria management. Moreover, the effects of climate change and 

fire disturbance on these forests and their management are largely unknown.   

The second chapter of the dissertation is directed towards the study of the community 

and population structure of CHR forests under climate change and associated changes of fire 

regimes. The Central Hardwood Region of the United States constitutes one of the most 

diverse ecoregions in North America and the most extensive temperate deciduous forest in 

the world. Despite the economic and ecological significance of the CHR, the long term 

effects of changes in climate and fire regime on forest structures remain largely unknown. In 

this study, we developed an integrated climate sensitive matrix framework to synchronously 

couple (1) forest dynamics, (2) mean fire interval, (3) population density, and (4) future 

climate scenarios to study the community and population structure of CHR forests under 

climate change and associated changes of fire regimes. Using Monte Carlo simulations and 

coupled forest dynamics-disturbance models, we projected that the CHR would undergo a 

major shift in population structure from the present to year 2100. The fundamental changes 
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would consist of a transition of dominant species from oak and hickory to maple species, 

reduced species diversity (9.6 – 11.5%), and substantial declines in stand basal area (55.1 – 

62.0%) and stand volume (56.3 – 62.4%) compared to year 2010. These projected changes 

may have profound ecological and economic implications. Ecologically, changes in tree 

species diversity favoring maples would alter ecosystem processing of nutrients and 

subsequent nutrient flows to drainage waters within the region. Habitat change would alter 

the broad spectrum of organisms relying on the forest, leading to a redistribution of wildlife 

species, further heightening the risks for endangered species. Economically, the total 

stumpage value throughout the CHR would be reduced by 54.5 – 59.8% from approximately 

$ 1,317 billion to $ 529 – 599 billion. On the brink of these fundamental shifts, our study 

calls for ecologically and economically informed conservation and mitigation strategies to 

better prepare society for the associated changes in ecosystem services and economic benefits 

derivable from the CHR forests.   

The third chapter further addresses assessments of management impacts on central 

hardwood forests under climate and fire uncertainty. Central hardwood forests, in the absence 

of management, are predicted to undergo a species shift and decline in stocks due to climate 

change and increased fire frequencies. Here I quantified how various management intensities 

would influence these forests in terms of the net present value (NPV) of harvests, tree species 

and size diversity, and carbon stocks in four pools: above-ground biomass, fine roots, dead 

organic matters, and soil. Predictions were based on simulations of forest growth under 

uncertain fire and subject to low (20%), medium (50%), and high (80%) management 

intensities in four IPCC future climate scenarios RCP2.6, 4.5, 6.0 and 8.5 from 2010 to 2100. 
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Partial, diameter-limit, and diameter-cap harvesting practices were assessed with harvesting 

cycles of 10 and 20 years, respectively. The major findings are: low intensity (20%) 

management would cause the highest carbon stock and size diversity, but the lowest NPV and 

species diversity; medium intensity (50%) management would lead to a lower carbon stock 

but produce satisfactory levels of species diversity, size diversity, and NPV; high intensity 

(80%) management would result in the lowest carbon stock and size diversity but the highest 

NPV and species diversity. The NPV of harvests with a 10-year harvesting cycle was more 

than twice of that with 20 years, yet the total carbon stock was only 1.3% – 5.0% lower. An 

uncertainty analysis with fuzzy sets shows that when considering uncertain climate and fire, 

the NPV, size diversity, and total carbon stock would be distinctively different in climate 

scenarios RCP2.6 and RCP8.5 with high certainty. However, for species diversity, similar 

climatic effects on species diversity may exist across most management regimes. 

The fourth chapter focused on modeling multi-stage scenario-based optimization 

under uncertainty in climate-induced fire disturbance. I developed multi-stage scenario-based 

optimization models for managing central hardwood forests under uncertainty in climate 

change and associated fire regimes. Based on a climate-sensitive matrix growth model and a 

mean fire interval model, four future climate scenarios and attendant fire intervals combined 

with two fire severity regimes were transformed into 36 and 20 tree growth scenarios for 

harvesting cycles of 10 and 20 years, respectively. Three alternatives of optimization 

formulations were proposed: 1) optimize for the maximum objective value under each 

individual scenario independently; 2) based on results from (1), find the compromise 

management plan that’s feasible for all scenarios while minimizing the weighted sum of 
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deviations between the realized and maximum objective values; and 3) derive the optimal 

management plan over the entire scenario tree. Four objectives were considered: the net 

present value (NPV) of harvests, total carbon stock, tree species diversity, and tree size 

diversity. Finally I determined the trade-off between economic and ecological benefits by 

quantifying the opportunity cost of increasing ecological benefits in terms of NPV. Without 

considering any constraints for the optimization approach, the maximum NPV varied from 

$ 30,396 to $ 35,378 ha-1 for 36 scenarios with harvesting every 10 years, and $ 17,838 to 

$ 18,992 ha-1 (53.7% – 58.7% of 10 years) for 20 scenarios with doubled harvesting cycle. 

The optimization approach produced 9.7% – 22.4% (10 years) and 29.7% – 38.1% (20 years) 

more NPV than the deterministic approach. Among the values of the same criterion derived 

with all three methods, as expected, the one from optimizing the individual scenario was the 

highest. With harvesting cycles of 10 and 20 years, the feasible NPV declined $ 123 – $ 944 

ha-1, $ 435 – $ 1,270 ha-1, $ 376 – $ 2,011 ha-1, and $ 73 – $ 483 ha-1, $ 229 – $ 646 ha-1, $ 204 

– $ 1,022 ha-1 when each unit of species diversity, size diversity, and carbon weights 

increased from 1 to 10, respectively, while the other criterions were held fixed.
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1. Introduction 
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The Central Hardwood Region (CHR) of the United States, covered by approximately 58 million 

ha of forests stretching from the upper Southeast to Indiana and from Oklahoma to Pennsylvania, 

constitutes the most extensive temperate deciduous forest in the world (Box & Fujiwara, 2015). 

This region is well known for its variety of oak-hickory forest resources that provide significant 

economic and ecological benefits to local, regional, and national communities. It is home to a 

wide array of flora and fauna species (Schmidt & McWilliams, 2003) and is one of the most 

diverse ecoregions in North America (Mueller, 1996). Ninety percent of hardwoods in the 

continental United States is located in the CHR, accounting for one third of the total forest 

growing stock (Hicks, 1998). The high quality hardwood timber resources play a vital role in 

regional employment by wood related industries. The CHR forms the headwaters for many major 

U.S. rivers and plays critical roles in improving and protecting soil and water resources as well 

as in mitigating flooding (Bernhardt & Palmer, 2011).  

In the CHR, the ownership distribution has remained relatively static over time (Schmidt 

& McWilliams, 2003), with more than 80 percent of the timberland area in private ownership, 

including nonindustrial private (over 80%) and industrial private, and the rest publicly held by 

Federal, State and local governments (Hicks, 1998). While timber production is still one primary 

management goal, especially for private landowners, and is expected to remain so in future, the 

provisioning of nontimber ecosystem services has been likewise deemed as a critical component 

of sustainable forestry for both private and public ownerships. Among those services, carbon 

sequestration is of particular importance in a world undergoing global climate change.  

Major challenges are faced by both private and public landowners and natural resources 

policy makers in the region. First of all, reliable models predicting structured forest populations 

are lacking for the CHR forests. Secondly, forest composition and dynamics in this region have 
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been shaped historically by natural disturbances especially by stand-replacing fires, so they must 

be accounted for in future management. In addition, climate change is expected to alter both 

forest growth and disturbance regimes in this region. Thus a quantitative framework of 

sustainable forest management is much needed. It must be based on a dependable growth and 

yield model and take into account uncertainty of climate change and natural disturbances. The 

framework requires the capacity of evaluating the consequences of various management 

practices under climate change. To further assist in decision making, it is essential to address 

multiple economic and ecological benefits that CHR forests provide and derive their trade-offs. 

Of particular interest is it to estimate the opportunity cost of conservation, for example, for 

carbon sequestration, in terms of foregone timber income, which will likely facilitate the making 

of conservation and climate change policies.  

This study aims at building a multiple-objective framework for sustainable management 

under uncertainty in the U.S. Central Hardwood Region. The specific objectives of this proposed 

study are: 

(1) to develop an empirical model of forest growth and yield that predicts the dynamics and 

composition of CHR forests with climatic variables;  

(2) to estimate future fire regimes under climate change with a mean fire interval model and 

future human population density;  

(3) to integrate the models from objectives (1) and (2) and use Monte Carlo simulations in an 

effort to project future forest states under four future climate scenarios: RCP2.6, RCP4.5, 

RCP6.0, and RCP8.5 and associated fire regime changes;  

(4) to quantify the influences of forest management of various intensities and explorative 

adaptive measures on forest states and carbon in four pools: above-ground biomass, soil, 
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fine roots, and dead organic matters, based on the aforementioned integrated models and 

a soil carbon model (Yasso07);   

(5) to evaluate economic and ecological performance of these management practices in terms 

of the net present value of harvests, structural and species diversity, and other appropriate 

ecological metrics;  

(6) to develop a stochastic multi-stage optimization model of multiple objectives that 

accounts for uncertainty in climate change and fire disturbance and derive optimal 

decision guidelines for different ownership types;  

(7) to determine the trade-off between various objectives, especially between economic and 

ecological benefits, with the stochastic optimization model.  
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Figure 1-1 Integrated sustainable management framework 

Figure 1-1 illustrates the conceptual multiple-objective framework for sustainable forest 

management under uncertainty. In this framework, I will couple (1) the model of forest dynamics, 

(2) mean fire interval model, (3) human population density model, (4) future climate scenarios, 

(5) soil carbon model (YASSO07), (6) forest management regimes, and (7) multi-stage scenario-

based optimization model.  
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Abstract 

The Central Hardwood Region (CHR) of the United States constitutes one of the most diverse 

ecoregions in North America and the most extensive temperate deciduous forest in the world. 

Despite the economic and ecological significance of the CHR, the long-term effects of changes 

in climate and fire regime on forest structure remain largely unknown. In this study, we 

developed an integrated climate-sensitive matrix framework to synchronously couple (1) forest 

dynamics, (2) mean fire interval, (3) population density, and (4) future climate scenarios to study 

the community and population structure of CHR forests under climate change and associated 

changes of fire regimes. Using Monte Carlo simulations and coupled forest dynamics-

disturbance models, we projected that the CHR would undergo a major shift in forest community 

structure from the present to year 2100. The fundamental changes would consist of a transition of 

dominant species from oak and hickory to maple species, reduced species diversity (9.6% – 

11.5%), and substantial declines in stand basal area (55.1% – 62.0%) and stand volume (56.3% – 

62.4%). These projected changes will have profound ecological and economic implications. 

Ecologically, changes in tree species diversity favoring maples would alter ecosystem processing 

of nutrients and subsequent nutrient flows to drainage waters within the region. Habitat change 

would alter the broad spectrum of organisms relying on the forest, leading to a redistribution of 

wildlife species, further heightening the risks for endangered species. Economically, the total 

stumpage value throughout the CHR would be reduced by 54.5% – 59.8% from approximately $ 

1,317 billion to $ 529 – 599 billion. On the brink of these fundamental shifts, our study calls for 

ecologically- and economically-informed conservation and mitigation strategies to better prepare 

society for the associated changes in ecosystem services and economic benefits derived from 

CHR forests.   
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2.1 Introduction  

A growing body of evidence suggests that global climate change will have significant impacts on 

forest ecosystems by affecting the distribution and variation of key environmental factors, such 

as CO2, humidity, and incoming solar radiation (e.g., Aber et al., 2001, Allen et al., 2010, 

Boisvenue & Running, 2006, Latta et al., 2010, Lindner et al., 2010, Schoene & Bernier, 2012) .  

These changes will affect species composition and the productivity of forest ecosystems in this 

region (Aber et al., 2001, Boisvenue & Running, 2006, Latta et al., 2010, Shugart et al., 2003, 

Smith et al., 1995) as well as forest ecosystem processes through alterations in resource 

acquisition and resource utilization efficiency (Hansen & Dale, 2001, Hansen et al., 2001, 

Helmick et al., 2014, Juday et al., 2005). Precipitation and temperature, and their seasonality and 

extremes, may change species’ ranges, inter-species relationships, fire frequency, and other 

ecosystem processes in the CHR that will have broad ecological and economic implications 

across the region and beyond (Alexander & Arthur, 2010, Lafon et al., 2005, Parisen & Moritz, 

2009). In addition, recent theoretical advances and empirical evidence (Cardinale et al., 2012, 

Liang et al., 2015, Naeem et al., 2012, Tilman et al., 1997) have revealed substantial impact of 

the loss of biodiversity on the functioning of ecosystems. The impact of climate change and 

biodiversity loss on CHR forests, however, has yet to be quantified. 

Natural disturbances are a major factor affecting forest dynamics and composition 

(Fischer et al., 2013), and influence the development of effective ecosystem restoration and 

management practices (Foster, 2000, Zhou & Buongiorno, 2006). Throughout the CHR, forest 

dynamics have been driven historically by high intensity stand-replacing fires necessary for the 

successful regeneration of shade intolerant species (Albrecht & Mccarthy, 2006, Brose et al., 

2013, McEwan et al., 2011, McEwan et al., 2007, Schuler et al., 2012, Signell et al., 2005). 
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However, human intervention has reduced both the intensity and area of CHR forests burned 

since 1940, which has led to a widespread transition in dominant species from oak (Quercus spp.) 

and hickory (Carya spp.) to other early successional maple species (Acer spp.). This transition is 

termed the mesophication of the eastern hardwood forests (Fralish & McArdle, 2009, Nowacki 

& Abrams 2008). Accompanying this transition has been a reduction in area of bottomland 

hardwood forests and original oak savannas (Schmidt & McWilliams, 2003). In modeling fire 

impacts, fire regimes are typically based on the vegetation associations (Hann et al., 2004, Keane 

et al., 2002). Recent modeling efforts consider climate variables as predictors (Jiang et al., 2012, 

Parisen & Moritz, 2009, Westerling et al., 2006), and synthesize existing fire history information 

and mean fire intervals (MFI) based on physical mechanisms associated with dry climatic 

conditions (Guyette et al., 2010). Temperature, precipitation, and their interaction prove to be the 

most significant factors controlling fire frequencies and intensity in forest ecosystems (Morgan et 

al., 2001), and these environmental factors are predicted to change in the future. 

Reliable forest growth models are lacking for the CHR. One of the first forest growth 

models for the region was established by Perkey (1985). This whole-stand model simulated 

stand-level attributes, but did not specify population structure. Later, the distance-independent 

individual tree growth and yield system OAKSIM (Hilt, 1985) was developed for even-aged 

upland oak stands in southern Ohio and southeastern Kentucky, but this model has rarely been 

used due to limited applicability and a lack of stability (Brooks & Miller, 2011). Three more 

recent models for the region, namely SILVAH (Marquis & Ernst, 1992), the Forest Vegetation 

Simulator (FVS, Bush, 1995), and the Stand Damage Model (Colbert & Racin, 1995), have 

substantial prediction bias ranging from 20 to 140% of actual trees per acre (Brooks & Miller, 

2011). Another whole-stand growth and yield model (Brooks, 2012) demonstrates better 
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accuracy, but a lack of recruitment module renders this model inappropriate for long-term 

projections. More recently, LANDIS PRO has been developed to project forest successional 

trajectories and stand development patterns (Wang et al., 2014). However, data are missing for 

several key tree species including yellow poplar, white ash, and black gum (He et al., 2012); 

consequently, this model is susceptible to errors in terms of structured forest populations.  

The primary objective of this study was to develop an empirical model of forest dynamics 

to study the successional patterns of CHR forests under future climate change. I then extended 

this modeling framework to account for climate-induced changes of fire regimes. I further 

employed Monte Carlo simulations in projecting future forest states and stumpage values under 

four future climate scenarios: RCP2.6, RCP4.5, RCP6.0 and RCP8.5. Ecological and economic 

implications of the simulation results are discussed in relation to known ecosystem services 

provided by CHR forests. 
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2.2 Materials and Methods 

2.2.1 Forest and Stumpage Price Data 

The CHR encompasses three ecoregions, namely the Blue Ridge Mountains, the historic Great 

Valley, and the ridges and valleys of the Allegheny Mountains (see Bailey, 2004 and references 

therein). Additionally, the CHR covers a wide range of stand states, community species 

composition, and climatic conditions (Fig. 2-1). Data used for model calibration consisted of 

5,196 re-measured permanent sample plots (PSP’s) from the Forest Inventory and Analysis (FIA) 

database (Sharon et al., 2011) following three criteria. First, stand characteristics of the sample 

plots were closely monitored and re-measured. Second, stands had at least one live tree at the 

time of both measurements. Finally, plots were located in forests without any evidence of 

silvicultural treatments or any other forms of human interference, such as harvesting and 

artificial regeneration. For validation purposes, we acquired an additional 1,107 plots randomly 

located throughout the region to test model accuracy. 



13 
 

 

Figure 2-1 Geographic distribution of the calibration (dots) and validation () plots, in the 

Central Hardwood Region (CHR). Inset shows the relative location of CHR in the contiguous 

United States. The box indicates the CHR region where the future relative changes of 

temperature and precipitation (trend ratio) were extracted for four future climate scenarios. 

 For each sample plot, physical site attributes included geographic coordinates, slope, 

aspect, and elevation. Tree data, including species, diameter, and status (recruitment, live, or 

dead), were also collected on site. The research area is largely dominated by seven major species: 

Quercus alba (white oak), Quercus velutina (black oak), Quercus rubra (northern red oak), 

Carya glabra (pignut hickory), Acer saccharum (sugar maple), Acer rubrum (red maple), and 

Liriodendron tulipifera (yellow-poplar). White oak had the highest basal area of all the species 
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(13.9%), followed by black oak (10.9%), northern red oak (5.8%), pignut hickory (4.7%), sugar 

maple (4.5%), red maple (4.4%), and yellow-poplar (3.9%) (see Supplemental Information, 

Table A1). Due to the high diversity in this region, there also exist over 100 other tree species. 

For simplicity and due to computational constraints, we classified all tree species into seven 

species groups according to their taxonomic features: white oak species (Quercus – Quercus, 

QQ), red oak species (Quercus – Lobatae, QL), Juglandaceae (JD), Sapindaceae (SD), 

Gymnosperms (GS), Fagus (FG), and Other Angiosperms (OA) (see Supplemental Information, 

Table A1). Within each species group, trees were further categorized into seventeen diameter at 

breast height (DBH) classes of 5-cm increments, except for the first class (2.54 – 7 cm) and the 

last (82 cm and above) class. 

 Among all the variables studied (Table 2-1), the average recruitment (R) and total stem 

density (N) were the highest for Sapindaceae (SD) and lowest for Fagus (FG, see Supplemental 

Information, Table A2). The average interval between two inventories was roughly 6 years. At 

the individual tree level (see Supplemental Information, Table A3), the Quercus – Lobatae (QL) 

had the largest diameter at breast height (D) and the highest average annual diameter growth (g). 

Juglandaceae (JD) had the lowest mortality rate (m), and Gymnosperms (GS) had the highest. 
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Table 2-1 Definitions and units of variables used in the CSMatrix model for CHR forests. 

Variable Unit Definition/explanation 

B  m2 ha-1 Total stand basal area 

C  m3 ha-1 yr-1 Site productivity  

D cm Diameter at breast height 

g cm yr-1 Annual diameter growth 

E km Plot elevation 

S degrees Plot slope 

Hd  Tree size diversity in Shannon’s index 

Hs 

  

 Tree species diversity in Shannon’s index 

T °C Mean annual temperature 

P 100 mm month-1 Annual average of monthly mean precipitation 

m yr-1 Annual tree mortality  

N  trees ha-1 Number of trees per hectare  

R trees ha-1 yr-1 Recruitment, the number of trees per hectare growing into the 

smallest diameter class (2.54-7cm) in a year  

V m3 ha-1 Stem volume 

MFI year Mean fire interval 

 

For the analysis of stumpage values, we used the stumpage price data for the CHR in 

2015 from the West Virginia Timber Market Report (http://ahc.caf.wvu.edu/ahc-resources-

mainmenu-45/timber-market-report-mainmenu-62, accessed July 3, 2015) and assumed constant 

real prices in 2015 dollars in the region until 2100 to provide a current value estimate to 

understand implications in today’s dollars. 

2.2.2 Climate Data and Method  

We assembled the historical records (30-year mean for 1981-2010) of the average annual 

temperature (°C) and annual average of monthly mean precipitation (100 mm month-1) from the 

downscaled 4-km resolution Parameter-Elevation Regression on Independent Slopes Model 

(PRISM) datasets (Daly et al., 2008). PRISM calculates a climate-elevation regression for each 

digital elevation model grid cell, so the climate variables from PRISM, especially precipitation, 

are applicable for interpolation over mountain ranges (Daly et al., 2008). The PRISM data set 

was shown to be a more accurate representation of spatial climatic patterns in the United States 
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than the WorldClim and Daymet datasets (Daly et al., 2008). For the prediction of future climatic 

changes in the CHR, we extracted the future relative changes (trend ratio) over the region 

(75°W-95°W and 34.5°N-42°N; shown as the box in Figure 1) for the four scenarios of the IPCC 

AR5 report (Blyth et al., 2007). The trend ratios of temperature and precipitation were obtained 

from the KNMI Climate Change Atlas (http://climexp.knmi.nl/, last accessed 10-August-2015). 

The four future climate scenarios of Representative Concentration Pathways (RCPs) were chosen 

to span a wide range of possible future conditions: RCP8.5 is a business-as-usual scenario with 

increasing greenhouse gas emissions over time, leading to high greenhouse gas concentration 

levels; RCP6.0 is a stabilization scenario in which emissions rise quickly until 2060 and then 

decrease; RCP4.5 assumes quicker action to limit greenhouse gas emissions with emissions 

peaking in 2040 and declining strongly until 2080; and RCP2.6 describes an all-out effort to limit 

global warming to below 2 °C, with emissions decreasing sharply after 2020 and to zero 

emissions from 2080 onward (IPCC, 2013). 

 We estimated future temperature and precipitation changes in the study area in three steps. 

First, we extracted the 30-year (1981-2010) average annual temperature and annual average of 

monthly mean precipitation at all the plots (5,196 for calibration and 1,107 for validation plots) 

using the PRISM data. Second, the trend ratios of temperature and precipitation over the CHR 

were obtained under the four RCP scenarios of future climate change (2010-2100) from the 

KNMI Climate Change Atlas. Third, we multiplied the extracted historical normal (30-year mean) 

temperature and precipitation by the future trend ratios to estimate the future temperature and 

precipitation changes, respectively, at the validation plot sites in the CHR during 2010-2100. 

Over the area represented by the validation plots, future annual temperature showed an 

increasing trend under all four RCP scenarios, and the annual average of monthly mean 
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precipitation did not change significantly over time under any scenario, compared to 2010 

climate (Figure 2-2). Average annual temperature and annual average of monthly mean 

precipitation were predicted to have the greatest changes of +3.6 °C under RCP8.5 and +14.3 

mm month-1 under RCP6.0, respectively, over the next 90 years. RCP2.6 has the smallest 

increase of temperature, +0.8 °C, and decline of precipitation, -0.6 mm month-1 (Fig. 2-2a, b). 

For the study area, the future climate in general would be the warmest in RCP8.5, whereas 

precipitation on average would be the highest in RCP 6.0 (Fig. 2-2a, b). The precipitation in 

RCP4.5 had a similar trend as that in RCP6.0, but the temperature was lower in the second half 

of the century. In RCP2.6, the temperature appeared relatively stationary and stayed the lowest 

beyond 2050. 
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Figure 2-2 Temporal changes of mean annual temperature (°C), annual average of monthly 

mean precipitation (100 mm month-1) and mean fire interval (year) across the 1107 sample 

plots estimated under four climate scenarios of RCP2.6, RCP4.5, RCP6.0, and RCP8.5, and 

the climate constant at year 2010. 
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2.2.3 Population Density Data  

We collected the historical records of mean human population density in 2000 from Gridded 

Population of the World (GPW), v3 database 

(http://sedac.ciesin.columbia.edu/data/collection/gpw-v3, last accessed 09-June-2015). The range 

of population density over the entire CHR was from 0 to 1023 km-2 and the mean population 

density is 28.2 km-2. Spatially specific future population density across the CHR was estimated 

based on the current CHR population density and the overall population trend in the United 

States in year 2000 for 2025, 2050, 2075 and 2100 (see Supplemental Information, Fig. A1) (Bos 

et al., 1994), assuming a constant CHRnationwide population ratio.   

2.2.4 Forest Dynamics 

We studied forest dynamics and successional patterns using the matrix model, a type of 

ecological population model that uses transition matrices to estimate the dynamics of structured 

populations (e.g., Caswell, 2001, Fieberg & Ellner, 2001, Liang & Picard, 2013). Developed 

from ecological studies that date back to the 1940’s (Leslie, 1945, Lewis, 1942), matrix models 

have been widely employed to study the dynamics of forest ecosystems all over the world due to 

their accuracy and robustness in depicting structured forest populations (see Liang & Picard, 

2013 and references therein). 

 A conventional matrix model predicts the structured population dynamics of forest stands 

from time t to t+1:  

    RyGy ε1  tt                            (2-1)
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where yt = [yijt] is a column vector representing the number of live trees per hectare of species i 

(i = 1,2,. . .,m) and diameter class j (j = 1,2,. . .,n) at time t and ε is a random error. G is a state- 

and time-dependent transition matrix describing how trees grow or die between t and t+1. 

In a Climate-Sensitive Matrix (CSMatrix) model, an extension of the conventional matrix 

model to control for the climate variability (Liang et al., 2011), G and R are revised to be 

functions of mean annual temperature (T) and annual average of monthly mean precipitation (P). 

Thus, Eq. (2-1) was extended to control for climate-sensitivity by recognizing effects of 

temperature and precipitation on tree growth, mortality, and recruitment as follows: 

    RyGy ε),(),(1  PTPT tttt
                      (2-2)  

For the CSMatrix model, the time increment unit—the interval in year between t and t+1 of Eq. 

(2-2)—was one year. The detailed matrix growth model is described in the Supplemental 

Information. 

The dependent variables, i.e., the rates of upgrowth, mortality, and recruitment (see 

Supplemental Information for definitions), were estimated from tree and stand attributes for 17 

size classes and seven species groups using repeated measurements of 5,196 FIA permanent 

sample plots. For parsimony and accuracy, we only retained variables that met three rigorous 

criteria: statistical significance, expected biological responses, and contribution to the model 

goodness-of-fit. To avoid compromised type-I error rates and severe artifacts commonly 

associated with model selection procedures (Mac Nally, 2000), explanatory variables were 

selected using hierarchical partitioning (HP) by the average independent contribution of each 

variable to the overall goodness-of-fit (Chevan & Sutherland, 1991). The HP analysis was 

conducted with the hier.part package of the R program (Mac Nally & Walsh, 2004). 
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 Accuracy of the resulting model was evaluated through short-term prediction errors of the 

validation plots, defined as the difference between the observed and the predicted stand state 

variables at the second inventory. Predicted stand state variables were obtained by setting the 

first inventory as the initial condition and applying Eq. 2-2 iteratively over the elapsed period 

between the two inventories. 

 We further compared the stand state variables predicted by the present model with those 

predicted with the conventional matrix model and LANDIS PRO. For a fair comparison, an 

independent post-sample validation dataset (Fig. 2-1) was used for the simulations. For each 

model, the root mean squared errors (RMSE) (Wooldridge, 2012) were calculated based on the 

difference between the predicted and observed basal area by species and diameter class as a 

comparable measure of accuracy.  

2.2.5 Fire Disturbance 

To take into account impacts of altered wildfire regimes induced by climate change, I adopted a 

mean fire interval (MFI) model by Guyette et al. (2010) specifically designed for the fire 

management plans in the eastern and southern United States. The historical MFI model is 

parameterized using mean maximum temperature, precipitation, their interaction, and estimated 

population density to account for climate change as a main driver of fire regimes. The detailed 

MFI model structure and definition of fire severity classes are explained in the Supplemental 

Information. 

We followed the conventional assumption that fire occurrence had an exponential 

distribution with its probability at time t, 

MFItetp /1)(                           (2-3) 

In our simulations, p(t) was drawn as a uniformly distributed random variable ranging from 0 to 
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1. Thus the year of fire occurrence, t, is calculated by –ln(1-p(t))MFI. MFI was updated every 

decade based on the projected climate data and every 25 years based on projected population 

density data from 2010 to 2100 for all four climate scenarios, respectively. The following 

probabilities were assigned to fire severity classes 1 to 5 (see Supplemental Information, Table 

A6), respectively, based on the rationale that lower severity fires tended to happen more 

frequently: 40, 25, 20, 10, and 5%.  

2.2.6 Integrated Framework 

It is important to represent interactions among the components to comprehensively assess how 

landscapes in this region may respond to climate change. Such an integrated model has the 

potential to provide resource managers the ability to better visualize potential future landscapes 

resulting from the interaction of biological and physical processes. In this study, we developed 

an integrated CSMatrix framework to couple (1) the model of forest dynamics, (2) the mean fire 

interval model, (3) the population density model, and (4) future climate scenarios. We 

synchronously coupled the three models and future climate data to evaluate the long-term effects 

of changes in climate and fire regime on forest structure in the CHR, represented as the average 

predicted values from Monte Carlo simulations (Fig. 2-3). The simulated changes in landscape 

structure have important implications for the management of natural resources in eastern United 

States.  
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Figure 2-3 Conceptual diagram showing how the CSMatrix framework integrated forest 

dynamics, climate data, and the Mean Fire Interval Model to project the population dynamics 

of CHR forests under future climate change scenarios.  

2.3 Results 

2.3.1 Forest Dynamics 

Starting from a large amount of explanatory variables (see Supplemental Information, Equations 

S4-S7), we selected a subset to be in the final model (Table 2-2) based on statistical and 

biological significance and contribution to the goodness-of-fit. The primary control variables for 

the final matrix model, DBH (D), stand basal area (B), and stem density (N), were significant at 

the α≤0.05 level and contributed highly to the overall goodness-of-fit (see Supplemental 
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Information, Table A4). All other selected variables had independent contributions greater than 

the average and most were significant and had consistent signs over different species groups.  
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Table 2-2 Estimated parameters of the CSMatrix model for CHR forests.  

     QQ    QL    JD      SD       GS      FG    OA 

Diameter growth 

Const 0.066 *** 0.202 *** 0.051 *** 0.077 *** 0.181 *** 0.492 ***            0.0619    *** 

D 0.006 *** 0.007 *** 0.009 *** 0.004 * -0.001 * 0.004 *                0.0194    *** 

D2 -0.0001 *** -0.0001 *** -0.0001 ***   -0.0001 * -0.0001 ***      -0.0004 *** 

Hd           -0.167 ***   

P*D 0.003 *** 0.001 * 0.001 * 0.002  -0.003 * 0.001 *                 0.0026   ** 

P*D2       -0.0001 * 0.0001 *   -0.0001   * 

P*B   0.018  -0.016 *         

T*D 0.0002 *** 0.0001  0.00004  0.001 *** 0.001 *** 0.0003 *     -0.0006 *** 

T*D2       -0.0001 * -0.0001 *   0.00002   *** 

T*B 

Adjusted-R2 

Prob(F) 

0.32 

<0.001  

-0.002 

0.20 

<0.001 

* 

 

 

0.001 

0.33 

<0.001 

 

 

   0.31 

<0.001 

 

 

0.21 

<0.001  

0.19 

<0.001 

 

 

0.34 

<0.001 

 

 

Mortality 

Const -0.418 *** -0.723 *** -0.570 *** -1.200 *** 0.066 * -1.465 ***   -0.5454 *** 

D -0.007  0.044 *** -0.051 ***         

D2 0.001 ***   0.001 ***         

B -1.372 *** -1.631 *** -1.494 *** -0.953 ***       -0.9055 *** 

Hs         -0.665 ***     

Hd           -0.285    

S           0.018 *   

C           0.035 *   

P*D -0.021 *** -0.039 ***           

P*B 0.567 *** 0.899 *** 0.459 *** 0.290 **       0.1885 *** 

P*Hs         0.079 *     

P*S           -0.002    

P*C               

T*D -0.002 **             

T*B 0.036 * 0.025 ** 0.030 ** 0.029 *     0.0098  

T*Hs         -0.004 *     

T*S 

AIC 

BIC 

 

18578 

18645  

 

19852 

19902  

 

1092 

1132  

 

14563 

14620  

 

10350 

10436  

-0.001 

9167 

9210 

* 

 

 

19850 

19948  

Recruitment 

Const 32.102  -79.636 *** -36.633 *** -80.766 *** -0.010 *** -0.012 ***    0.1220  

N 0.186 *** 0.313 *** 0.121 *** 0.166 *** 0.189 ** 0.212    0.1020 *** 

N2 -0.046 *** -0.004  -0.022 *** -0.041 ***   -0.463 *      0.0008  

Hd -18.360 ***             

Hs -20.975    3.572          

P -65.815 *          -   0.5110 * 

P2 6.071              0.0001 * 

P*N -0.035 * -0.131 *** 0.010 * -0.021 * -0.028 * -0.011 *      -0.0114  

P*Hs 15.286              

P*Hd     -25.734 ***         

T*N -0.004 * -0.004 * -0.004 * -0.002  -0.005  0.008  -0.0053 ** 

T*N2   -0.004        0.023 *   

T*P 

Chi-Sq 

P-Value 

 

257.37 

<0.001  

 

289.58 

<0.001  

 

262.83 

<0.001  

 

210.43 

<0.001  

 

317.18 

<0.001  

 

247.31 

<0.001  

-0.8770 

182.47 

<0.001  

Note: Significance levels: *≤0.05; **≤0.01; ***≤0.001. 
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Trees grew significantly faster when they were larger for all species groups, except for 

Gymnosperms (GS). Fitted mortality equations indicated that the probability of dying declined 

with tree diameter for most species, consistent with previous results (Lin et al., 1998, Schulte & 

Buongiorno, 2004, Zenner, 2005). Mortality rate decreased significantly with stand basal area. 

The parameters in the recruitment equations from maximum-likelihood estimation showed that 

the recruitment of a species increased strongly with the density of that species in the stand. Total 

number of trees (N) was the most significant predictor of recruitment and its effect was 

consistent over most species groups. 

 For the 1,107 validation plots, the basal area by species and diameter class predicted by 

the final model fell within the 95% confidence interval of the observed values in all the 119 

species-diameter classes, demonstrating a high accuracy of the CSMatrix model (Fig. 2-4). 

Compared with the conventional matrix model and LANDIS PRO, our final model had 9.2 – 

16.3% lower RMSE than the conventional matrix model, and LANDIS PRO had the worst short-

term accuracy, with 49.1 – 266% higher RMSE than the CSMatrix model across all the species 

(Fig. 2-4). 
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Figure 2-4 Average predicted and observed stand states at the second inventory for the 

conventional matrix model (CON), climate-sensitive matrix model (CS), and LANDIS PRO 7.0 

on the 1107 post-sample validation plots, with the 95% confidence interval of the observed 

mean. 
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DBH, square DBH, stand basal area, and site productivity were the most significant 

variables for the volume models (see Supplemental Information, Table A7). The explanatory 

variables presented here accounted for 93.8 – 97.0% of the variability in stem volume across all 

species.  

2.3.2 Simulations with Fire and Climate Scenarios 

In all four scenarios, mean fire intervals were predicted to decrease considerably in 90 years, 

relative to the one predicted with 2010 climate (Fig. 2-2c). RCP8.5 had the shortest interval, 

slightly over 4 years, while RCP2.6 the longest, ~6 years, as it approached 2100. RCP4.5 and 

RCP6.0 had the average intervals, ~5 years, over the next 90 years.  

Absent of fire disturbance, climate change increased the total stand basal area but the 

effect appears to be limited (Fig. 2-5) and mixed for individual species groups (Supplemental 

Information Figs.A2 – A8). When both climate change and associated fire disturbances were 

simultaneously accounted for, based on 100, 000 simulations, the projected forest states over the 

next 90 years displayed completely different patterns. Total stand basal area under the four RCP 

scenarios declined dramatically over the first 70 years by approximately 50 percent, and 

converged to around 14.9 m2 ha-1 for RCP2.6, followed by 14.2 m2 ha-1 for RCP4.5, 14.0 m2 ha-1 

for RCP6.0, and the lowest 13.0 m2 ha-1 for RCP8.5 (Fig. 2-5). The current average total basal 

area throughout the CHR is 29.1 m2 ha-1, but would decline by 55.1 – 62.0% to 11.1 – 12.7 m2 

ha-1 by 2100 given climate and fire predictions. 



29 
 

 

Figure 2-5 Stand basal area under wildfire disturbance under four climate scenarios RCP2.6, 

RCP4.5, RCP6.0, and RCP8.5 from year 2010-2100. 
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In terms of species composition in percentage basal area, current forests in the CHR are 

dominated by oak (QQ 22.5%, QL 20.5%) and hickory (JD 15.4%) species. Maple species (SD) 

account for only 8.9% of the total stocking (Fig. 2-6a). Under climate change and associated 

alterations of fire regimes, forests in the CHR in year 2100 would be dominated by maple 

species (SD 55.2 – 60.4%), whereas oak species (QQ, QL) would diminish to 25.5 – 31.5%. GS 

and JD together would only account for 3.0 – 3.4% of the total stand stocking (Fig. 2-6b). These 

potential changes were consistent across all four climate change scenarios (Fig. 2-6b). Tree size 

diversity would increase by 27.9 – 30.6% over the first 20 years, and gradually drop back to a 

level similar to the present (Fig. 2-7). In contrast, tree species diversity would monotonically 

decrease by 9.6 – 11.5% over the next 90 years (Fig. 2-7).  
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Figure 2-6 Species composition in terms of basal area in year 2010 (a) and year 2100 under 

wildfire disturbance with four climate scenarios RCP2.6, RCP4.5, RCP6.0, and RCP8.5 (b). 

Vertical bars represent one standard error of the average predicted values from Monte Carlo 

simulations. The pie charts to the right show the corresponding percentage of basal area by 

species and climate scenario. 
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Figure 2-7 Tree species (a-d) and size diversity (e-h) under wildfire disturbance with 4 climate 

scenarios RCP2.6, RCP4.5, RCP6.0, and RCP8.5 from year 2010-2100. 
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Similarly, total stand volume exhibited a steep decline during the first 50 years of the 

model run and, despite some fluctuations, converged to 330.4 m3 ha-1 for RCP2.6, followed by 

313.1 m3 ha-1 for RCP4.5, 310.1 m3 ha-1 for RCP6.0, and 307.5 m3 ha-1 for RCP8.5 (Table 2-3). 

Total volume stocking would decline by 56.3 – 62.4% from 633.5 m3 ha-1 currently to 257.6 – 

276.8 m3 ha-1 throughout the region. OA had the greatest volume stocking decline (191.6 – 203.6 

m3 ha-1), followed by JD (51.3 – 52.5 m3 ha-1), QL (45.6 – 47.8 m3 ha-1), and QQ (37.6 – 41.2 m3 

ha-1), whereas SD (-11.9 – 15.3 m3 ha-1) had the least reduction. Assuming constant stumpage 

prices in 2015 dollars, the total current stumpage value throughout the CHR is approximately 

$1,317 billion. Our projected change of forest population structure would lead to a 54.5 – 59.8% 

reduction in the total value to $529 – 599 billion in current dollars over the next 90 years. 

Table 2-3 Total average volume (m3 ha-1) for climate scenarios RCP2.6, RCP4.5, RCP6.0, 

RCP8.5 from year 2010-2100. 

     Year RCP2.6 RCP4.5 RCP6.0 RCP8.5 

2010-2020 461.1 468.7 448.5 443.6 

2020-2030 394.6 392.1 367.2 380.9 

2030-2040 369.6 355.4 339.4 352.4 

2040-2050 352.2 320.2 327.4 325.0 

2050-2060 330.4 313.1 316.7 307.5 

2060-2070 316.1 294.0 296.8 286.2 

2070-2080 307.0 283.6 297.8 270.5 

2080-2090 292.7 270.3 269.7 257.8 

2090-2100 276.8 257.6 261.7 238.2 
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2.4 Discussion 

According to the post-sample validation, the CSMatrix model is the most accurate for 

gymnosperms (RMSE=0.89) and maple species (RMSE=1.87), and is the least accurate for 

beech (RMSE=3.57) and white oak species (RMSE=3.03). The results suggested that the growth 

of beech and white oak species may depend on some factors other than those already controlled 

for by the CSMatrix model and, upon the emergence of additional data, efforts to improve the 

current model should focus these two species groups. Nevertheless, the CSMatrix model was 

accurate over all the species and diameter classes because the predicted means were all within 

the 95% confidence interval of the observed means. In terms of RMSE, the CSMatrix model also 

demonstrated a higher accuracy than its predecessors. 

            Our study has addressed the direct and indirect effects of climate change on forest 

dynamics in the CHR. The direct effects refer to the influence of climate change on upgrowth, 

ingrowth, and mortality of trees. The indirect effects refer to the climate-induced changes in fire 

disturbance and consequent influences on forest dynamics. Contrary to the prevailing view that 

climate change will boost forest growth (Boisvenue & Running, 2006, Pretzsch et al., 2014), we 

only found slight differences between total stand basal area predicted under constant climate and 

any of the four climate scenarios. This result seems more in line with research suggesting that 

warmer temperature and prolonged growing seasons may not have a strong positive effect on 

forest growth in southeastern U.S. (Melillo et al., 2014) and tropical regions (van der Sleen et al., 

2014). The indirect effect of fire was in fact much greater in magnitude and substantially 

decreased the total stand basal area (Fig. 2-5). This may be attributable to the smaller predicted 

changes in precipitation (-0.5% to 12.7%) and temperature (6.6% to 29.6%) than fire frequency 

(26.1% to 52.9%) relative to the baseline climate. In all, our study suggests that, for the CHR 
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study area, climate-induced changes in natural disturbances may have greater impacts on forest 

dynamics than the direct effects of climate on tree growth. This is consistent with previous 

findings of the compounding effects of stochastic shocks on ecological processes and the crucial 

impact of the interaction between stochastic shocks and nonlinearity on shaping the ecosystem 

dynamics (Zhou & Buongiorno, 2004, Fortin & Langevin, 2012).  

 Contrary to an earlier projection of an increased tree species richness under climate 

change in the eastern U.S. (Iverson & Prasad, 2001), our projected 9.6 – 11.5% decline in tree 

species diversity in the CHR (Fig. 7) is due to the reduction of oak and hickory species caused by 

altered fire regimes (see Supplemental Information, Fig. A2 – A8). Historically, shade intolerant 

oak and hickory species in the region were maintained by high-intensity fires that reduced 

competition and promoted regeneration (Nowacki & Abrams, 2008, Ruffner, 2005). Projected 

shortening of mean fire intervals (Fig. 2-2c) indicates that high-intensity fires will be gradually 

replaced by more frequent low-intensity fires, diminishing advantages to oak and hickory species 

and leading to a gradual mesophication of the CHR forests and dominance of shade-tolerant 

maple species in the long term (Nowacki & Abrams, 2008). Our projections, consistent with the 

overall biodiversity trend observed throughout this region (Alexander & Arthur, 2010, Fralish & 

McArdle, 2009, Iverson et al., 1997), present a great challenge from climate change to biological 

conservation in the region: changes in precipitation, temperature, and associated fire regimes will 

lead to a decline in tree species richness that may translate to a widespread decline in overall 

plant and ecosystem diversity.  

The projected replacement of dominant oak and hickory species by maple species in the 

CHR would have profound ecological and economic impacts (Nowacki & Abrams, 2008). The 

shift in tree dominance will alter fundamental ecosystem processes, as litter inputs and chemistry, 
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throughfall quantity and quality, and soil nutrient cycling change in response to species 

replacement. Within forest soils, dominant tree species influence soil processes and nutrient 

cycling through their influence on microbial communities, litter quantity and quality, and direct 

weathering of soil minerals (Lambers et al., 2009). The different soil symbiotic mycorrhizal 

fungi that form obligate associations with tree roots control many of these processes. Oaks and 

hickories form symbioses with ectomycorrhizal (ECM) fungi, whereas maples form arbuscular 

mycorrhizal (AM) associations. These associations differ extensively in their influences on soil 

nutrient cycling and scavenging processes (Phillips et al., 2013), and these activities influence 

leaf litter quality and subsequent decomposition (Cornelissen et al., 2001, Hobbie et al., 2006). 

In the current case, oaks and their associated ECM fungi produce litter with high C:N ratio and 

low calcium (Ca) availability, which limits decomposition by soil microbes and invertebrates 

(Fox et al., 2010, Hobbie et al., 2006). In contrast, litter in sugar maple-influenced stands 

exhibits low C:N ratios and elevated Ca availability in soils relative to many other CHR species  

(Dijkstra, 2003, Dijkstra & Fitzhugh, 2003). This trend in localized N and Ca enrichment may 

function to enhance decomposition and nitrification, leading to elevated nutrient losses from 

watersheds draining the CHR (Christ et al., 2002, Piatek et al., 2010). 

Fundamental shifts in tree species will alter habitat structure — canopy light, temperature, 

moisture, and litter and decaying wood—ultimately affecting broader community characteristics 

(Alexander & Arthur, 2010, Martin et al., 2011). Soil and arboreal invertebrate communities 

differ between oak and maple forests (Huebner et al., 2012), and changes from oak to maple-

dominated communities will affect not only nutrient cycling facilitated by invertebrates but 

changes in habitat and higher-level trophic interactions within the forest as well, resulting in 

distribution changes among wildlife dependent on these habitat characteristics (Fox et al., 2010, 
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Huebner et al., 2012, Rodewald & Abrams, 2002, Summerville et al., 2003, Wilhelm, 1991). 

Oak and hickory are keystone species that provide essential food and habitat for many wildlife 

species (Fralish, 2004). In the eastern United States, an estimated 44 wildlife species, the 

majority being birds, are highly dependent on oak and hickory trees, which provide more 

abundant food resources for wildlife relative to maple due to a higher amount of mast, i.e., nuts, 

buds, twigs (Fralish, 2004). For most terrestrial species, such as the Southern flying squirrel 

(Glaucomys volans), projected transition in dominant tree species would lead to declines in 

habitat availability from the loss of oak/hickory forests. This species’ diet consists primarily of 

nuts and acorns (Helmick et al., 2014, Thomas & Weigl, 1998), especially in the winter 

(Saunders, 1998). The transition would also affect avian species, as average abundance of 

neotropical migrants is higher in oak forests compared to mesic sites (Sierzega & Eichholz, 

2014). However, the response may not be universal, as some species, such as the Kentucky 

warbler (Oporornis formosus), may instead increase in abundance in more mesic sites. Fire can 

also influence habitat choices by wildlife. The Indiana bat (Myotis sodalis), a federally-listed 

endangered species, prefers to roost in hickory trees. However, roosting preferences can change 

when fire occurs (Johnson et al., 2010). In unburned forests, Indiana bats will roost in hickories, 

oaks, or maples. When a forest has been burned, however, the Indiana bat prefers to roost in fire-

killed maples. 

In addition to ecological changes accompanying keystone species shifts, climate change 

and associated changes in tree species composition and productivity will affect the long-term 

production of timber within the CHR. Such loss of timber production, especially among oak 

species, would have profound implications for forest management and economic vibrancy in the 

region. In order to reduce potentially large losses in the future, landowners and managers must 
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adapt their management practices to the predicted changes. Alternate harvesting plans or rotation 

lengths would immediately be called for in response to the emergence of new dominant species 

(Spittlehouse & Stewart, 2004). Forest operations must take into account warmer and more 

variable climates with more frequent fires. Forest industries should prepare for changes in wood 

quality and size induced by species shifts. The predicted reduction in timber volume could 

presage a certain degree of transition of employment from traditional timber management and 

production to the provision of nontimber forest products, especially forest farming that produces 

high-value specialty crops for culinary and medicinal purposes, such as mushrooms and ginseng 

(http://nac.unl.edu/practices/forestfarming.htm, accessed September 15, 2015). As a result, the 

regional economy would likely be impacted significantly. Natural resource policies that promote 

active adaptation and risk management are thus in urgent need for this region. It remains a 

subject of debate if fire intervention and suppression is cost-effective and ecologically beneficial 

(Hand et al., 2015), therefore caution must be used when making policy recommendations 

regarding wildland fire management.  

The success of forest migration, or management plans to mitigate climate change impacts 

on forested ecosystems, will depend not only on tree species’ capacity to move geographically  

but also on the suitability of soils and soil microbial communities for invasion. In the current 

study, the large change in MFI frequency within the CHR may potentially be constrained by 

edaphic factors existing throughout this region. Maples have greater Ca requirement/demand 

than oaks and soil Ca is typically higher in soils associated with sugar maple (Christ et al., 2002, 

Dijkstra & Fitzhugh, 2003). Soil acidification in the eastern regions of the CHR over the past 

half century has compromised the capacity of these areas to sustain sugar maple (Elias et al., 

2009, Fenn et al., 2006, St. Clair et al., 2008). Areas further west may be less impacted 
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(Huntington, 2000), and the capacity of sugar maple to thrive throughout the CHR may depend 

on the soil base status of potentially invaded sites. Finally, differences in the reproductive 

systems between the ECM fungi and AM fungi may also limit the migration capacity of maple 

(Wilkinson 1998). Thus, the health and function of a future forest will depend on soil chemical 

and microbiological factors needed to support migrating species establishment within these 

evolving systems. 

The CSMatrix model, like all other empirical models, has its inherent limitations, and our 

results should be interpreted in an appropriate context. In this study, we used the variance of 

temperature and precipitation across space as a surrogate for the temporal variance in climatic 

conditions to analyze the effects of climate change on CHR forests. Therefore, there would be an 

extrapolation bias should future climatic conditions move beyond the range of temperatures and 

precipitation used herein (see Supplemental Information, Table A2). Because the estimated 

future climatic conditions over the next 90 years largely match the current range, our 90-year 

simulation is minimally affected by the extrapolation bias. However, any long-term projection 

results beyond 90 years using the CSMatrix model should be interpreted with caution. Although 

the CSMatrix model did not account for other natural disturbances except for wildfire, our results 

offer a striking illustration of forest population dynamics under climate change and associated 

change of fire regimes, and may be of unprecedented value to policy making in the United States 

as well as many ongoing and upcoming ecological studies. 

2.5 Conclusion 

In summary, we developed a Climate-Sensitive Matrix model to estimate forest dynamics as a 

function of climate, fire disturbance, and shifting forest population structures in diverse 

ecosystems for the CHR of the U.S. Under four IPCC climate change scenarios and 
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accompanying alterations of fire regimes, we projected that the total stand basal area would 

decline dramatically by approximately 60% over the first 70 years, and converge to around 14.9 

m2 ha-1 for RCP2.6, followed by 14.2 m2 ha-1 for RCP4.5, 14.0 m2 ha-1 for RCP6.0, and the 

lowest 13.0 m2 ha-1 for RCP8.5. Similarly, total stand volume had a steep decline during the first 

50 years and, despite some fluctuations, converged to 330 m3 ha-1 for RCP2.6, followed by 313 

m3 ha-1 for RCP4.5, 310 m3 ha-1 for RCP6.0, and 308 m3 ha-1 for RCP8.5. Tree size diversity 

increased by 27.9 – 30.6% over the first 20 years, and then decreased to a level similar to the 

present. In contrast, tree species diversity would gradually decline by 9.6 – 11.5% over the next 

90 years. These changes in forest structure within the CHR will have regional ecological and 

economic repercussions. Changes in diversity favoring maples will alter ecosystem processing of 

nutrients and subsequent nutrient flows to drainage waters within the region. Habitat change will 

alter the broad spectrum of organisms relying on the forest, with concomitant changes in 

ecosystem-wide biodiversity. Finally, changes in species composition, stocking, and productivity 

of CHR forests will reduce the direct and indirect economic benefits generated by timber in the 

CHR. One uncertainty to these projections is the capacity of soil chemical and microbiological 

factors needed to support migrating forest tree species establishment within these evolving 

ecosystems. Such preferences and influences may function to structure communities in new 

unforeseen ways and may further influence forest ecosystem development under future climate 

regimes. 

The challenge to traditional forestry as well as to the economy brought upon by climate 

change is by no means unique to the CHR. Globally, changes have been observed or predicted. 

Response to the expected changes and associated risks summons actions from both private and 

public sectors. Landowners and managers need to adjust and adapt their practices while public 
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policies must promote and facilitate such adjustments and adaptations in order to sustain both the 

forests and their related ecosystem services in the future. 
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Abstract 

Central hardwood forests, in the absence of management, are predicted to undergo a species shift 

and decline in stocks due to climate change and increased fire frequencies. Here we quantified 

how various management intensities would influence these forests in terms of the net present 

value (NPV) of harvests, tree species and size diversity, and carbon stocks in four pools: above-

ground biomass, fine roots, dead organic matters, and soil. Predictions were based on simulations 

of forest growth under uncertain fire and subject to low (20%), medium (50%), and high (80%) 

management intensities in four IPCC future climate scenarios RCP2.6, 4.5, 6.0, and 8.5 from 

2010 to 2100. Partial, diameter-limit, and diameter-cap harvesting practices were assessed with 

harvesting cycles of 10 and 20 years, respectively. The major findings are: low intensity (20%) 

management would cause the highest carbon stock and size diversity, but the lowest NPV and 

species diversity; medium intensity (50%) management would lead to a lower carbon stock, but 

produce satisfactory levels of species diversity, size diversity, and NPV; high intensity (80%) 

management would result in the lowest carbon stock and size diversity, but the highest NPV and 

species diversity. The NPV of harvests with a 10-year harvesting cycle was more than twice of 

that with 20 years, yet the total carbon stock was only 1.3 % – 5.0 % lower. An uncertainty 

analysis with fuzzy sets shows that when considering uncertain climate and fire, the NPV, size 

diversity, and total carbon stock would be distinctively different in climate scenarios RCP2.6 and 

RCP8.5 with high certainty. However, for species diversity, similar climatic effects on species 

diversity may exist across most management regimes.
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Introduction 

Drastic changes have been predicted to take place in forests around the globe due to a warmer 

climate and shortened fire intervals (Bowman et al. 2009). A recent study by Ma et al. (2016) 

forecasts that, in the U.S. Central Hardwood Region (CHR), the dominant species would shift 

from oaks to maples and the total forest stock would decline considerably in the absence of 

management. It is naturally of great interest to assess how forest management will affect the 

economic viability and ecosystem services of these forests.  

In the CHR, partial harvesting is the dominant form of timber management (Fajvan et al. 

1998) and is recognized for its importance in mimicking the typical outcome of natural 

disturbances in the region (Franklin et al. 2007; Palik et al. 2002): frequent small-scale canopy 

gaps rather than stand replacement (Seymour et al. 2002). Biodiversity and ecosystem resiliency 

are affected as tree species are selectively removed during repeated partial harvesting (Schuler 

2004), but quantifications of such impacts are lacking. Long deemed as a poor silvicultural 

practice in the CHR (Nyland 1992), selective harvesting removing only large-diameter trees, i.e., 

diameter-limit harvesting, degrades forest yields in the long run (Nyland 1996) and may result in 

patchy and reduced regeneration and increased abundance of less desirable shade-tolerant 

species such as sugar maple and red maple (Fajvan 2006; Schuler and Gillespie 2000; Smith and 

Miller 1987), reduced growth of desired residuals trees (Schuler 2004; Trimble 1971), and 

irregular yields with lower volume production (Nyland 2005).  

It is an increasingly important goal of forest management to maintain biological diversity, 

genetic makeup, the variations in life forms, ecological niches, and biological process in a given 

area (Oliver, 1992). Moreover, management impacts on forest carbon stocks are of high interest 

for they are a crucial component of global carbon cycles. Worldwide, abundant studies have 
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assessed how these carbon stocks can be influenced by forest management through varying 

regimes and intensities (Nilsen and Strand 2008; Ruiz-Peinado et al. 2013). For example, forest 

management modifies the structure and density of forest stands and consequently affects 

aboveground biomass (Ruiz-Peinado et al. 2013). It could also alter soil temperature and 

moisture conditions, and cause a decrease of soil carbon inputs followed by a reduction in litter 

fall rates (Roig et al. 2005; Vesterdal et al. 1995). But there is also plenty of evidence suggesting 

that soil organic carbon is more resistant to changes in forest management and disturbances than 

the carbon stored in living trees (Bradford et al. 2008; Peichl and Arain 2006). Most researchers 

have reported that only a small, temporal reduction in soil organic carbon occurs after harvesting 

(Nave et al. 2010; Peltoniemi et al. 2004; Yanai et al. 2000). Nonetheless, without quantification 

of these effects for this particular region, it is ambiguous whether forest management could lead 

to increased or decreased total carbon stocks in such ecosystems over a long time period. In 

addition, little information is available as to how forest ecosystems might respond to different 

harvesting intensities and strategies, making informed management and policymaking difficult 

(Zenner et al. 2013).  

The primary objective of this study was to quantify how management of various 

harvesting intensities would influence the financial returns, tree diversity, and forest carbon 

stocks in the CHR when the fire regimes were expected to be changed by climate change. Based 

on a climate-sensitive matrix model and volume equations developed from the Forest Inventory 

and Analysis (FIA) database, a soil carbon model (YASSO07), and a mean fire interval (MFI) 

model, this work aimed at assessing the economic and ecological performances of the partial, 

diameter-limit, and diameter-cap harvesting regimes in terms of the net present value (NPV), tree 

species and size diversity, and carbon stocks under four IPCC RCP climate scenarios. In addition, 
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I also explored two regimes addressing the species shift in the CHR. Two harvesting cycles were 

used, respectively, 10 and 20 years. Fuzzy sets were adopted to represent variability in 

predictions caused by uncertain fire and climate.  
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3.1 Materials and methods 

3.1.1 Data 

The growth model and volume equations to predict forest dynamics and yield were built based 

on the Forest Inventory and Analysis (FIA) database (Sharon et al. 2011) with a total of 6,303 

Permanent sample plots (PSPs) in the CHR forests of the United States, 5,196 of which were 

used for model calibration, and the rest for validation and prediction. There exist over 100 tree 

species in the region, thus they were categorized into seven groups: white oak (Quercus – 

Quercus, QQ), red oak (Quercus – Lobatae, QL), Juglandaceae (JD), Sapindaceae (SD), 

Gymnosperms (GS), Fagus (FG), and Other species (OA). Within each species group, all trees 

were further grouped into seventeen diameter classes, except for the first class (2.54 - 7 cm) and 

the last class (82 cm and above), all the other classes were 5 cm increments (Ma et al. 2016).  

In order to analyze the financial returns, the stumpage price data from 1989 to 2016 was 

retrieved from the West Virginia Timber Market Report (WVTMR, available online at 

http://ahc.caf.wvu.edu/ahc-resources-mainmenu-45/timber-market-report-mainmenu-62, last 

accessed May 10, 2016), adjusted for inflation by using Consumer Price Index (base year=2015), 

and the average was taken over the period for each individual price series. Four species groups in 

this study, QQ, QL, JD and OA, corresponded to the species definitions used by WVTMR and 

no adjustment of prices was needed for them. The average price of hard and soft maple reported 

by WVTMR was taken to represent the price of SD, 87.5% of white oak price to GS, and 50% of 

white oak to FG.  Three commercial sizes were defined: poles (1-6 diameter classes), small 

sawtimber (7-12), and large sawtimber (13-17) (Miller et al., 1995, Miller et al., 1997). The 
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method in Miller et al. (1997) was further used to modify all priced to these commercial sizes. 

The adjusted stumpage price of each species group and commercial size is shown in table 3-1. 

Table 3-1    Adjusted real average stumpage prices ($ m-3) (base year=2015) for three 

commercial sizes and seven species groups.          

Species 

group* 

Commercial size ($ m-3) 

 Pole Small 

sawtimber  

Large 

sawtimber  

QQ 50 80 110 

QL 60 90 120 

JD 30 40 50 

SD 90 120 150 

GS 40 70 100 

FG 20 40 60 

OA 40 60 80 
* QQ: Quercus–Quercus (white oak species), QL: Quercus–Lobatae (red oak species), JD: Juglandaceae (Hickory), 

SD: Sapindaceae (maple family), GS: Gymnosperms (Softwoods), FG: Fagus (American beech), OA: Other 

Angiosperms (other species).  

In order to predict future climatic changes in the CHR, the future relative changes (trend 

ratio) over the region were extracted for the four climate scenarios (RCP2.6, RCP4.5, RCP6.0, 

RCP8.5) of the IPCC AR5 report (Blyth et al. 2007). The trend ratios of temperature and 

precipitation were obtained from the KNMI Climate Change Atlas (Available online at 

http://climexp.knmi.nl/, last accessed 10-August-2015). Then the historical temperature and 

precipitation were multiplied by the future trend ratios to estimate the future climate at the 

validation plots during 2010-2100. Assuming a constant CHRnationwide population ratio, 

spatial- specific future population density across the region was estimated from the current CHR 

population density and the overall population trend in the United States in year 2000 for 2025, 

2050, 2075, and 2100 (Bos et al. 1994).  For detailed estimations of future temperature, 

precipitation, and population density, see Ma et al. (2016). 



61 
 

3.1.2 Predicting Forest Dynamics under Climate Change 

A Climate-Sensitive Matrix (CSMatrix) model controls for temperature (T) and precipitation (P) 

on tree growth, mortality and recruitment as follows (Ma et al. 2016): 

    RyGy ε),(),(1  PTPT tttt
                                                                                       (3-1)  

in which Gt is the growth matrix describing transition of trees between size classes as well as 

mortality. See Table B1 in the appendix for a complete list of variables.  

The diameter growth of the kth tree of species i and size class j from t and t + 1 is 

represented by the following model: 

ijiisidiiiiitkitkiiijtk PTHHSECBDDb   1110987654

2

321                                 (3-2)                  

Tree mortality, mijt, was a Probit function: 

jiiisidiiiiitkitkiiijtk PTHHSECBDDm   )( 1110987654

2

321
    (3-3) 

where Ф is the standard normal cumulative function.   

Recruitment of species i, Ri is a Tobit model (Tobin, 1958): 

)()(
11 

 itiiiitiiitiit xxxR                       (3-4) 

with  

ijiisidiiiiiiiiiti PTHHSECBNNx   1110987654

2

321                       (3-5)        

where Ф is the standard normal cumulative distribution function and φ is the standard normal 

probability density function.   
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3.1.3 Simulation of Uncertain Fires 

A mean fire interval (MFI) model developed by Guyette et al. (2010) and specifically designed 

for eastern and southern U.S. was used to simulate changes in fire frequencies induced by 

climate change, with the following equation:  

dcbaeCMFI  00763.041.250.1139.0

                                                                               (3-6)  

 

where C is a constant value (59.12) for average-intensity fire models. a is the mean maximum 

temperature (°C), b is the reciprocal moisture index (1/cm/°C), c is human population density 

(per km2), and d is the mean annual total precipitation (cm).   

It is assumed that fire occurrence had an exponential distribution with its probability at 

time t being
MFItetp /1)(  . In the simulations, p(t) was uniformly distributed and drawn 

from 0 to 1 as a random variable. Thus, the t was calculated with –ln(1-p(t))MFI. Because fire 

has various impacts on species and size classes, five fire tolerance classes were designed to 

reflect differences in impacts on species and five fire susceptibility classes to reflect differences 

in effects on tree sizes within each species group (For details, see Ma et al. 2016).  

3.1.4 Estimation of Carbon Stocks 

As part of my examinations of the ecological criteria, I quantified carbon storage in four pools in 

the CHR forests: aboveground biomass, fine roots, dead organic matters, and soil.  

The single-stem volume by size and species (vij) was represented by the following model: 

ijiitkitkiiji CBDDv   )1ln()1ln()1ln()1ln()1ln( 54

2

321,                  (3-7) 

See Table B2 in the appendix for a complete list of variables and estimated coefficients. The 

total volume was estimated as the product of the stem volume and the tree density. Tree stem 
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biomass was them calculated as the total stand volume multiplied by wood density and 0.5 – the 

conversion factor for dry biomass (Birdsey 1992). The models of Jenkins et al. (2003) were 

applied to determine the biomass of other tree components.   

Given no readily available biomass models for fine roots, they were assumed to be forty 

percent of foliage biomass (Helmisaari et al. 2007). Dead trees and annual litter production were 

used as input to the dead organic matters pool. Litter production was calculated from biomass 

using turnover rates in Liski et al. (2006). The initial chemical compositions of different dead 

matter inputs (Table B3) were obtained from Liski et al. (2009). Since physical size of litter 

affects decomposition rates (Tuomi et al. 2011a), litter from different tree compartments is added 

up on the basis of litter size class. For instance, litter from branches and coarse roots are under 

the fine woody litter size class. Litter size classifications of the seven species groups were shown 

in table B4. Finally, soil carbon was estimated with the Yasso07 model (Liski et al. 2009; Tuomi 

et al. 2011a; Tuomi et al. 2011b) which simulates the transitions between acid-soluble, water-

soluble, ethanol-soluble, nonsoluble and humus components (AWENH-components and total 

summing up to 1) of the soil organic matter, as well as the decomposition of each component 

(Tuomi et al. 2011a).  

3.1.5 Evaluation of Forest Management of Various Intensities 

Economic Criteria 

The economic criteria chosen here was the NPV of harvests over the planning period (2010 to 

2100),  





t

t

tij

r

npxv
NPV

)1(
                                                                                                               (3-8) 
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where t was the harvesting cycle in years, xt = [xij]t, a column vector representing the percentage 

of trees per unit of land area of species group i (i=1,…,7) and diameter class j (j=1,…,17) at time 

t, n is number of trees, vij, a row vector in which vij was the volume of a single tree of species 

group i and diameter j. p represented the matrix of stumpage prices (Table 3-1), assumed 

constant over time, and r was the annual interest rate, assumed 3% here.          

Ecological Criteria 

Both species (Hs) and size (Hd) diversity were calculated with Shannon’s formulas (Pielou 1977):   


i

ii
s

B

B

B

B
H )ln(

      


j

jj

d
B

B

B

B
H )ln(                                  (3-9) 

where Bi, Bj and B were, respectively, the basal area of species group i, diameter class j and total 

basal area.  

The total carbon stock (Q) was the total of carbon estimated in the aforementioned four 

pools: 





4

1z
z

QQ                                                                                                                                (3-10)  

Management Regimes Descriptions 

Management regimes of low (20% of trees removed), medium (50%), and high (80%) harvesting 

intensities and explorative measures adaptive to species shift were described below. harvesting 

cycles of 10 and 20 years were, respectively, applied to each management regime.   

1. Partial harvesting practices: harvesting trees with varying intensities across different 

diameter classes and species groups; 

2. Diameter-limit harvesting: harvesting trees larger than 37cm in diameter with varying 

intensities across different diameter classes and species groups; 
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3. Diameter-cap harvesting: harvesting trees smaller than 42cm in diameter with varying 

intensities across different diameter classes and species groups; 

4. Adaptive measures: Adaptive1- harvest 50% of trees smaller than 42cm in diameter of QQ 

and QL, 20% of trees smaller than 42cm of JD, 5% of trees larger than 37cm of SD. Adaptive2 - 

harvest 10% of trees larger than 37cm in diameter of QQ and QL, 5% of trees larger than 37cm 

of JD, and 80% of trees smaller than 42cm of SD.  

3.1.6 Fuzzy Sets Representing Uncertainty 

Uncertain climate and wild fires led to high variability in predicted values of NPV, tree diversity, 

and carbon stocks. The averages of these predicted criteria are useful point estimations but to 

understand the associated risk, ranges or sets indicating uncertainty in predictions are essential. 

Here I used fuzzy sets which involved defining membership functions that determined the level 

of uncertainty (Zadeh 1965). A trapezoidal fuzzy set was used, mathematically expressed as f (x; 

a, b, c, d) = max (min (x – ab – a, 1, d – xd – c), 0). [b, c] represented the certainty interval for 

which the membership degree is 1. [a, b) and (c, d] were the uncertainty intervals with 

membership degrees ranging from 0 to 1. [a, d] was a measure of total range of uncertainty 

arising from climate change and fire occurrences. Following Weckenmann and Schwan (2001), 

given the average value of one of the aforementioned criterion (𝑋̅ ) and its relative standard 

deviation (Sr) from simulations, a, b, c, d values can be constructed as follows:  

b =  
𝑋̅

1+0.5S𝑟
 

c = 𝑋̅(1 + 0.5Sr)                                                                                                                              

a = b − 𝑋̅(  
1

1+0.5S𝑟
 – 

1

1+2.5S𝑟
 ) 

d = c + 𝑋̅∙2Sr                                                                                                                            (3-11) 
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3.2 Results  

3.2.1 Management of Various Intensities 

When both changes of climate and fire regimes were simultaneously accounted for, on average, 

the climate scenario RCP2.6 resulted in the highest values for NPV, size diversity and total 

carbon stock under all management intensities, and the highest species diversity under most 

intensities. In year 2100, in general, the 20-year harvesting cycle led to higher total carbon stock 

and size diversity but lower NPV and species diversity. Low-intensity management caused the 

highest total carbon stock (10 years: 823 – 854 ton ha-1; 20 years: 864 – 888 ton ha-1) and size 

diversity (10 years: 1.93 – 2.11; 20 years: 1.95 – 2.10) but the lowest NPV (10 years: $ 9,318 – 

$ 9,955 ha-1; 20 years: $ 3,426 – $ 4,056 ha-1) and species diversity (10 years: 1.28 – 1.31; 20 

years: 1.18 – 1.22). Lower total carbon stock (10 years: 778 – 814 ton ha-1; 20 years: 800 – 828 

ton ha-1) were expected with medium intensity but satisfactory species diversity (10 years: 1.50 – 

1.53; 20 years: 1.36 – 1.39), size diversity (10 years: 1.47 – 1.59; 20 years: 1.91 – 2.02), and 

NPV (10 years: $ 18,721 – $ 19,812 ha-1; 20 years: $ 7,749 – $ 9,596 ha-1). High intensity 

resulted in the lowest total carbon stock (10 years: 740 – 775 ton ha-1; 20 years: 768 – 794 ton ha-

1) and size diversity (10 years: 0.89  – 1.02; 20 years: 1.27 – 1.40), but the highest NPV (10 years: 

$ 26,749 – $ 27,440 ha-1; 20 years: $ 13,302 – $ 13,757 ha-1) and species diversity (10 years: 

1.58 – 1.61; 20 years: 1.53 – 1.56) (Tables 3-2, 3-3, 3-4).  

Diameter-limit and diameter-cap harvesting with low, medium, and high intensities 

displayed similar trends as partial harvesting practices for NPV of harvests, size diversity, and 

carbon stocks, while diameter-cap harvesting with high intensity had lower species diversity. The 

NPV of harvests and species diversity with a 10-year harvesting cycle was more than with 20 
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years, but carbon stocks were only 1.3% – 5.0% lower. A 10-year harvesting cycle produced 

lower size diversity than with a 20-year cycle under most intensities. In addition, soil carbon 

made up approximately 80% of total carbon stock and displayed relatively low variability in 

response to harvesting intensities (Table 3-4).  

Table 3-2 Average net present value ($ ha-1) for low, medium, and high intensities of partial 

harvesting, diameter-limit and diameter-cap harvesting, and two adaptive measures from 2010 

to 2100. 

Management regimes RCP2.6 RCP4.5 RCP6.0  RCP8.5 

Harvesting cycle (10 years) 
Partial harvesting (low) 

 

9,955 

 

9,594 

 

9,425 

 

9,318 

Partial harvesting (medium) 19,812 19,361 19,018 18,721 

Partial harvesting (high) 27,440* 27,233 27,034 26,749 

Diameter-limit (low) 4,655 4,442 4,298 4,059 

Diameter-limit (medium) 9,738 9,461 9,290 9,058 

Diameter-limit (high) 12,938 12,747 12,535 12,063 

Diameter-cap (low) 7,046 6,872 6,727 6,402 

Diameter-cap (medium) 15,112 15,048 14,823 14,531 

Diameter-cap (high) 21,547 21,395 21,193 20,857 

Adaptive1 14,762 14,212 13,964 13,714 

Adaptive2 

Harvesting cycle (20 years) 
Partial harvesting (low) 

Partial harvesting (medium) 

Partial harvesting (high) 

Diameter-limit (low) 

Diameter-limit (medium) 

Diameter-limit (high) 

Diameter-cap (low) 

Diameter-cap (medium) 

Diameter-cap (high) 

Adaptive1 

Adaptive2 

2,668 

 

4,056 

9,596 

13,757 

1,960 

4,661 

7,444 

2,863 

6,524 

10,121 

6,562 

1,017 

2,584 

 

3,886 

8,926 

13,591 

1,887 

4,426 

7,318 

2,635 

6,191 

9,948 

6,394 

978 

2,542 

 

3,650 

8,354 

13,495 

1,854 

4,318 

7,255 

2,560 

5,985 

9,789 

6,128 

901 

2,423 

 

3,426 

7,749 

13,302 

1,763 

4,209 

7,110 

2,446 

5,722 

9,511 

5,910 

815 

* Numbers in bold were the highest values among all management regimes. 
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Table 3-3 Average tree diversity for low, medium, and high intensities of partial harvesting, 

diameter-limit and diameter-cap harvesting, and two adaptive measures in 2100. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Management regimes RCP2.6  RCP4.5  RCP6.0  RCP8.5  

Harvesting  cycle (10 years) 

Species diversity 

Partial harvesting (low) 

 

 

1.30 

 

 

1.28 

 

 

1.31 

 

 

1.29 

Partial harvesting (medium) 1.50 1.52 1.53 1.51 

Partial harvesting (high) 1.58* 1.61 1.60 1.59 

Diameter-limit (low) 1.12 1.14 1.15 1.14 

Diameter-limit (medium) 1.14 1.09 1.11 1.12 

Diameter-limit (high) 1.17 1.15 1.16 1.20 

Diameter-cap (low) 1.23 1.20 1.22 1.24 

Diameter-cap (medium) 1.21 1.19 1.21 1.22 

Diameter-cap (high) 1.20 1.18 1.19 1.17 

Adaptive1 

Adaptive2 

1.06 

1.33 

1.05 

1.31 

1.03 

1.30 

1.04 

1.28 

Size diversity 

Partial harvesting (low) 

 

2.11 

 

2.07 

 

2.01 

 

1.93 

Partial harvesting (medium) 1.59 1.56 1.53 1.47 

Partial harvesting (high) 1.02 0.98 0.93 0.89 

Diameter-limit (low) 2.17 2.12 2.08 2.04 

Diameter-limit (medium) 1.97 1.95 1.95 1.88 

Diameter-limit (high) 1.84 1.81 1.77 1.69 

Diameter-cap (low) 1.95 1.91 1.90 1.81 

Diameter-cap (medium) 1.54 1.50 1.50 1.42 

Diameter-cap (high) 1.24 1.21 1.19 1.13 

Adaptive1 2.09 2.05 2.03 1.93 

Adaptive2 

Harvesting  cycle (20 years) 

Species diversity 

Partial harvesting (low) 

Partial harvesting (medium) 

Partial harvesting (high) 

Diameter-limit (low) 

Diameter-limit (medium) 

Diameter-limit (high) 

Diameter-cap (low) 

Diameter-cap (medium) 

Diameter-cap (high) 

Adaptive1 

Adaptive2 

Size diversity 

Partial harvesting (low) 

Partial harvesting (medium) 

Partial harvesting (high) 

Diameter-limit (low) 

Diameter-limit (medium) 

Diameter-limit (high) 

Diameter-cap (low) 

Diameter-cap (medium) 

Diameter-cap (high) 

Adaptive1 

Adaptive2 

1.80 

 

 

1.22 

1.36 

1.53 

1.11 

1.13 

1.15 

1.19 

1.25 

1.14 

1.08 

1.31 

 

2.10 

2.02 

1.40 

2.17 

2.10 

1.97 

2.06 

1.85 

1.90 

2.09 

1.86 

1.79 

 

 

1.18 

1.37 

1.55 

1.13 

1.12 

1.11 

1.17 

1.20 

1.11 

1.06 

1.28 

 

2.06 

1.99 

1.37 

2.10 

2.06 

1.89 

2.01 

1.80 

1.81 

2.06 

1.81 

1.75 

 

 

1.21 

1.38 

1.56 

1.14 

1.13 

1.13 

1.18 

1.22 

1.13 

1.07 

1.30 

 

2.02 

1.96 

1.30 

2.07 

2.05 

1.85 

2.00 

1.77 

1.74 

2.04 

1.77 

1.63 

 

 

1.20 

1.39 

1.54 

1.12 

1.11 

1.14 

1.16 

1.23 

1.21 

1.10 

1.29 

 

1.95 

1.91 

1.27 

2.06 

2.00 

1.80 

1.89 

1.68 

1.58 

1.94 

1.67 
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Table 3-4 Average total carbon and soil carbon (ton ha-1) for low, medium, and high 

intensities of partial harvesting, diameter-limit and diameter-cap harvesting, and two adaptive 

measures in 2100. 

 Total carbon Soil carbon 

Management regime RCP2.6 RCP4.5 RCP6.0 RCP8.5 RCP2.6 RCP4.5 RCP6.0 RCP8.5 

Harvesting cycle (10 years) 
Partial harvesting (low) 

 

854 

 

845 

 

834 

 

823 

 

681 

 

675 

 

668 

 

659 

Partial harvesting (medium) 814 803 790 778 650 642 633 624 

Partial harvesting (high) 775 761 752 740 619 609 603 592 

Diameter-limit (low) 897 882 866 852 718 705 692 681 

Diameter-limit (medium) 859 849 838 826 688 678 670 662 

Diameter-limit (high) 811 800 788 777 648 638 630 621 

Diameter-cap (low) 914 902 891 878 731 720 712 703 

Diameter-cap (medium) 883 872 860 848 706 696 688 677 

Diameter-cap (high) 834 823 811 800 665 660 645 637 

Adaptive1 941* 932 913 905 750 744 731 724 

Adaptive2 

Harvesting cycle (20 years) 
Partial harvesting (low) 

Partial harvesting (medium) 

Partial harvesting (high) 

Diameter-limit (low) 

Diameter-limit (medium) 

Diameter-limit (high) 

Diameter-cap (low) 

Diameter-cap (medium) 

Diameter-cap (high) 

Adaptive1 

Adaptive2 

890 

 

888 

828 

794 

928 

878 

841 

941 

902 

857 

959 

910 

881 

 

879 

818 

786 

919 

870 

834 

933 

891 

846 

951 

903 

877 

 

872 

809 

777 

910 

861 

821 

921 

883 

835 

945 

895 

860 

 

864 

800 

768 

897 

850 

811 

912 

871 

826 

938 

887 

711 

 

711 

660 

635 

741 

701 

673 

753 

720 

687 

767 

726 

705 

 

702 

652 

626 

736 

698 

665 

745 

711 

677 

761 

724 

700 

 

696 

649 

621 

730 

688 

656 

738 

706 

666 

758 

715 

689 

 

690 

641 

614 

715 

682 

646 

730 

695 

659 

749 

710 

* Numbers in bold were the highest values among all management regimes. 

3.2.2 Measures Adaptive to Species Shift 

As expected, the projected outcomes of two adaptive measures demonstrated completely 

different patterns over the next 90 years. NPV, species diversity, size diversity and carbon stocks 

of Adaptive1, which entailed intensive harvesting of oak species and maintaining maple species, 

were $ 14,762 ha-1, 1.06, 2.09, and 941 ton ha-1 for the climate scenario RCP2.6 with harvesting 

cycle in 10 years, respectively, while the climate scenario RCP8.5 had $ 13,714 ha-1, 1.04, 1.93, 

and 905 ton ha-1 under the same harvesting cycle (Tables 3-2, 3-3, 3-4). In addition, the RCP4.5 

had $ 6,394 ha-1, 1.06, 2.06, 951 ton ha-1 and the RCP6.0 had $ 6,128 ha-1, 1.07, 2.04, 945 ton ha-
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1 with harvesting cycle in 20 years over the next 90 years, respectively (Tables 3-2, 3-3, 3-4). 

With Adaptive2 of intensive harvesting of maples, NPV, species diversity, size diversity, and 

carbon stocks under four climate scenarios converged to $ 2,423 – $ 2,668 ha-1, 1.28 – 1.33, 1.63 

– 1.80, and 860 – 890 ton ha-1 when harvested every 10 years, and $ 815 – $ 1,017 ha-1, 1.28 – 

1.31, 1.67 – 1.86, and 887 – 910 ton ha-1 when the harvesting cycle doubled, in 2100, 

respectively (Tables 3-2, 3-3, 3-4). To summarize, Adaptive1 led to higher NPV (453% – 625%), 

size diversity (14.5% – 18.4%) and carbon stocks (4.1% – 5.8%), but lower species diversity 

(14.7% – 20.3%), than Adaptive2 with both harvesting cycles. It was also worth noting that 

Adaptive1 performed better than diameter-limit, diameter-cap and partial harvesting practices in 

terms of total carbon stocks. The two adaptive regimes exhibited totally different species 

composition at the end of 21st century. Under Adaptive1, maple trees accounted for 38.3% – 

45.5% of the total aboveground biomass, while oak trees made up 34.6% – 43.1% in all four 

climate scenarios (Figure 3-1). When adopting Adaptive2, maple trees only made up 1.1% – 

3.1%, but oak trees maintained their dominance in the total aboveground biomass, ranging from 

62.8% – 72.9% under four climate scenarios.  
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Figure 3-1 Percentages of above-ground biomass in seven species groups under management 

regimes Adaptive1 and Adaptive2 and with harvesting cycles of 10 and 20 years, respectively.  

QQ: Quercus–Quercus (white oak species), QL: Quercus–Lobatae (red oak species), JD: 
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Juglandaceae (hickory), SD: Sapindaceae (maple family), GS: Gymnosperms (softwoods), FG: 

Fagus (American beech), OA: Other Angiosperms (other species).   

3.2.3 Uncertainty Analysis 

To account for variability in the simulation results, fuzzy sets were constructed for all 

management criteria based on equation 11 (Figures 3-2, 3-3, 3-4, 3-5) for the two harvesting 

cycles, respectively. Using a 10-year harvesting cycle, partial harvesting with low intensity and 

Adaptive1 clearly outperformed the other regimes financially under RCP 2.6, with high certainty. 

Adaptive 2 led to the lowest NPV with high certainty under RCP 8.5. Medium and high 

intensities could lead to similar NPVs under four climate scenarios, given the amount of overlap 

among the fuzzy sets. With a 20-year cycle, it was highly certain that the lowest NPV would 

occur under RCP 8.5 for all regimes except for Adaptive1 and medium-intensity harvesting 

would generate the highest NPV under RCP 2.6. Also with high certainty, RCP 2.6 would lead to 

higher NPV under all regimes than RCP 6.0 and 8.5. However, it is possible that all regimes 

except for medium-intensity harvesting would produce similar NPVs under RCP 2.6 and 4.5 

(Figure 3-2).  

In addition, when harvesting trees every 10 years, Adaptive1 led to the least species 

diversity with high certainty under RCP6.0 and Adaptive2 caused the lowest under RCP8.5 

(Figure 3-3). All management regimes would lead to the lowest size diversity with high certainty 

under RCP8.5 (Figure 3-4). According to the overlaps among the fuzzy sets, low, medium, and 

high intensities could result in similar total carbon stocks under four climate scenarios. 

Adaptive2 would have the least total carbon stock with high certainty under RCP8.5 (Figure 3-

5). When the harvesting cycle doubled, as shown in Figure 3, medium- and high-intensity 

harvesting practices could lead to similar species diversity under different climate scenarios, 
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while RCP 4.5 resulted in much lower species diversity than the other scenarios under low-

intensity regime. RCP 8.5 would generate the highest species diversity with high confidence 

under Adaptive1. Partial harvesting with low intensity, Adaptive1 and Adaptive2 could lead to 

the lowest size diversity with high certainty under RCP8.5 (Figure 3-4). However, all 

management regimes could lead to similar total carbon stocks under four climate scenarios based 

on the obvious overlap among the fuzzy sets (Figure 3-5).  

In sum, there were no overlaps between fuzzy sets of NPV, size diversity and total carbon 

stock under RCP2.6 and RCP8.5 with both harvesting cycles (Figures 3-2, 3-4, 3-5), indicating 

that when considering uncertain climate and fire, these criteria would be distinctively different in 

RCP2.6 and RCP8.5 with high certainty. However, for species diversity, the existing overlaps 

among four climate scenarios (Figure 3-3) suggested the possibility of similar climatic effects on 

species diversity across most management regimes, when taking account of uncertainty.   



74 
 

 
Figure 3-2 Fuzzy sets representing uncertainty in the NPV of low, medium, and high 

intensities of partial harvesting, adaptive1 and adaptive2 with harvesting cycles of 10 and 20 

years from 2010 to 2100.  
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Figure 3-3 Fuzzy sets representing uncertainty in the species diversity of low, medium, and 

high intensities of partial harvesting, adaptive1 and adaptive2 with harvesting cycles of 10 and 

20 years in 2100.   
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Figure 3-4 Fuzzy sets representing uncertainty in the size diversity of low, medium, and high 

intensities of partial harvesting, adaptive1 and adaptive2 with harvesting cycles of 10 and 20 

years in 2100. 
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Figure 3-5 Fuzzy sets representing uncertainty in the carbon stocks of low, medium, and high 

intensities of partial harvesting, adaptive1 and adaptive2 with harvesting cycles of 10 and 20 

years in 2100.   
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3.3 Discussion and Conclusion 

In this study, I applied a climate-sensitive matrix model to quantify economic and ecological 

impacts of various harvesting intensities (20% - 80%) in the CHR when fire intervals were 

predicted to be considerably shortened by a changing climate. It is vital to consider climate-

induced alterations to fire regimes to identify the way in which forest management affects stand 

carbon stocks (Rubio et al. 2011) and other ecosystem services. Nevertheless, existing dynamic 

global vegetation models such as, MC1 (Bachelet et al. 2001), LPJ (Sitch et al. 2003) and 

ORCHIDEE (Krinner et al. 2005), simulate ecosystem processes at the continental extent and 

thus do not capture frequent low-intensity fires and species-specific processes, such as tree 

mortality and regeneration. They, however, are important bottom-up forces on carbon balance 

(Loehman et al. 2014) and are essential for estimating stand-level tree growth and yield.  

Management intensity is important for determining optimal carbon sequestration in 

managed forest ecosystems (Cooper 1983; Parker et al. 2000; Taylor et al. 2008), but it directly 

influences the financial return of harvested timber. 20% of trees removal management may be 

more effective than 50% and 80% to enhance carbon sequestration at the expense of lower 

income for landowners. Similarly, harvesting treatments that maintain a large proportion of 

larger-diameter trees could be superior, in terms of maintaining carbon stocks, to those 

associated with more intensive removals (Harmon et al. 2009; Keyser 2010; Taylor et al. 2008), 

but lead to lower NPV of harvests. My simulation results agreed with these findings. The 

diameter-cap harvesting stored the most carbon, followed by diameter-limit and partial 

harvesting practice, also consistent with previous results (Harmon and Marks 2002; Peng et al. 

2002).  
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My work estimated forest carbon stocks in four pools. The soil organic carbon was 

predicted with YASSO07, which is applicable to both temperate and boreal forests (Liski et al. 

2006). It was shown that soil organic carbon was highly resilient to varying intensities and 

accounted for nearly 80 percent of total stand carbon, thus in line with the previous studies 

arguing that harvesting does not significantly affect soil carbon (Johnson and Curtis 2001; 

Rashid 2013; Yanai et al. 2003). The result also indicated that appropriate management 

treatments may maintain or enhance forest carbon stocks, as opposed to no management, 

consistent with McKinley et al. (2011) and Stephens et al. (2012). My study further revealed that 

the NPV of harvests with a 10-year harvesting cycle was more than twice of 20 years, but carbon 

stocks were only 1.3 % – 5.0 % lower for all management regimes. This suggested that more 

frequent harvests might produce higher NPVs without causing significant reductions of carbon 

stocks. The carbon stored in harvested wood products was not under consideration in this study 

and calls for an examination in the future.   

Maintaining and increasing species and size diversity in forest stands have become a 

recent focus of forest management related to climate change adaptation (D’Amato et al. 2011; 

Puettmann et al. 2009; Liang et al. 2015). Ecosystems with low levels of diversity may be more 

vulnerable to potential changes in climate and disturbance regimes (Seidl et al. 2011). This study 

showed that 80% of trees removal may result in 18.6% – 22.9% greater species diversity but 18.1% 

– 25.7% lower size diversity than 50% and 20%. One possible explanation is that light gaps from 

intensive removals increased growth of shade-tolerant species and reduction in large-diameter 

trees decreased structural diversity. Warmer climates may have similar consequences on species 

and size diversity, probably because they caused more frequent fires that mimicked the effects of 

intensive harvests.  

http://dict.youdao.com/w/appropriate/
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I recognize that there is uncertainty in model projections related to climate change and 

fire disturbance (Nunery and Keeton 2010). Fire disturbance could impact carbon sequestration 

through rapid flux of carbon from living biomass to dead organic matters. In response to warmer 

and drier conditions, fire regimes are projected to alter in the coming decades not only in terms 

of shortened fire intervals, but also of prolonged fire season length and increased cumulative area 

burned (Flannigan et al. 2006; McKenzie et al. 2004). In my study, hindered by the complexity 

of modeling fundamental fire processes in forests including fuel particle ignition and fire spread, 

I only examined the climatic impacts on fire frequencies. Moreover, fires confer many important 

ecological benefits not discussed in this study. Besides, I did not account for wind damage, insect, 

disease, and other natural disturbances. Hence the model presented here had limited predictive 

power thus caution should be used to interpret the simulation results. On the other hand, more 

uncertainty is expected to rise in the projections when taking account of these missing aspects 

partly due to the incomplete knowledge of climate change and associated disturbances. How to 

take these sources of uncertainty into decision and policy making largely remains an open issue.   

Tradeoffs between multiple management objectives are often necessary as enhancing one 

objective (economic or ecological) may inevitably compromise the others. For example, as 

shown here, 20% of trees removal led to higher carbon stocks but lower NPV while 80% of trees 

removal behaved the opposite way. Balancing economic and ecological objectives requires a 

constrained optimization paradigm. More detailed analyses assisted with stochastic optimization 

could examine what harvesting intensity optimizes ecological objectives while providing a 

satisfactory level of NPV. Determining the opportunity cost of carbon sequestration in forests 

will be one key to addressing the societal needs for environmental sustainability and economic 

viability simultaneously. That is what my future research will focus on.  



81 
 

Acknowledgement 

This study was supported by the Davis College of Agriculture, Natural Resources & Design, 

West Virginia University, under the US Department of Agriculture (USDA) McIntire–Stennis 

Funds WVA00105.  



82 
 

References 

Bowman DM, Balch JK, Artaxo P et al. (2009) Fire in the Earth system. Science, 324, 481-484. 

Bradford JB, Birdsey RA, Joyce LA, Ryan MG (2008) Tree age, disturbance history, and carbon 

stocks and fluxes in subalpine Rocky Mountain forests. Global Change Biology, 14, 

2882-2897. 

Blyth W, Yang M, Bradley R (2007) Climate policy uncertainty and investment risk. OECD 

Publishing. 

Bos E, Vu M, Massiah E, Bulatao R (1994) World Population Projections 1994–95: Estimates 

and projections with related demographic statistics. New York: Johns Hopkins University 

Press. 

Birdsey, RA (1992) Carbon storage and accumulation in United States forest ecosystems. USDA 

Forest Service General Technical Report. WO-59. Washington, DC. 

Bachelet D, Neilson RP, Lenihan JM, Drapek RJ (2001) Climate change effects on vegetation 

distribution and carbon budget in the United States. Ecosystems, 4, 164-185. 

Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science, 320, 

1456-1457. 

Cooper CF (1983) Carbon storage in managed forests. Canadian Journal of Forest Research,  13, 

155-166. 

D’Amato AW, Bradford JB, Fraver S, Palik BJ (2011) Forest management for mitigation and 

adaptation to climate change: insights from long-term silviculture experiments. Forest 

Ecology and Management, 262, 803-816. 

Fajvan MA, Grushecky ST, Hassler CC (1998) The effects of harvesting practices on West 

Virginia’s wood supply. Journal of Forestry, 96, 33-39. 



83 
 

Franklin JF, Mitchell RJ, Palik BJ (2007) Natural disturbance and stand development principles 

for ecological forestry. Gen. Tech. Rep. NRS-19, Newtown Square. 

Fajvan MA (2006) Research on diameter-limit cutting in Central Appalachian forests. In: 

Proceedings of the conference on diameterlimit cutting in Northeastern Forests. USDA 

For. Serv. GTR NE-342, Newtown Square. 28-32. 

Flannigan MD, Amiro BD, Logan KA, Stocks B, Wotton B (2006) Forest fires and climate 

change in the 21st century. Mitigation and Adaptation Strategies for Global Change, 11, 

847-859. 

Guyette RP, Stambaugh MC, Dey DC (2010) Developing and using fire scar histories in the 

Southern and Eastern United States. Joint Fire Science Program Final Report. 

Hicks RR (1998) Ecology and management of central hardwood forests, John Wiley & Sons. 

Harmon ME, Moreno A, Domingo JB (2009) Effects of partial harvest on the carbon stores in 

Douglas-fir/western hemlock forests: a simulation study. Ecosystems, 12, 777-791. 

Harmon ME, Marks B (2002) Effects of silvicultural practices on carbon stores in Douglas-fir 

western hemlock forests in the Pacific Northwest, USA: results from a simulation model. 

Canadian Journal of Forest Research, 32, 863-877. 

Jenkins JC, Chojnacky DC, Heath LS, Birdsey R (2003) National-scale biomass estimators for 

United States tree species. Forest Science, 49, 12-35. 

Johnson DW, Curtis PS (2001) Effects of forest management on soil C and N storage: meta 

analysis. Forest Ecology and Management, 140, 227-238. 

Krinner G, Viovy N, De noblet-ducoudré N et al. (2005) A dynamic global vegetation model for 

studies of the coupled atmosphere‐biosphere system. Global Biogeochemical Cycles, 19. 



84 
 

Keyser TL (2010) Thinning and site quality influence aboveground tree carbon stocks in yellow-

poplar forests of the southern Appalachians. Canadian Journal of Forest Research, 40, 

659-667. 

Liski J, Tuomi M, Rasinmäki J (2009) Yasso07 User-Interface Manual. Finnish Environment 

Institute (Appendix). 

Liski J, Lehtonen A, Palosuo T et al. (2006) Carbon accumulation in Finland's forests 1922–

2004–an estimate obtained by combination of forest inventory data with modelling of 

biomass, litter and soil. Annals of Forest Science, 63, 687-697. 

Loehman RA, Reinhardt E, Riley KL (2014) Wildland fire emissions, carbon, and climate: 

Seeing the forest and the trees–A cross-scale assessment of wildfire and carbon dynamics 

in fire-prone, forested ecosystems. Forest Ecology and Management. 317, 9-19. 

Liang J, Zhou M, Tobin PC, Mcguire AD, Reich PB (2015) Biodiversity influences plant 

productivity through niche-efficiency. PNAS. 112, 5738-5743. 

Ma W, Liang J, Cumming JR et al. (2016) Fundamental shifts of central hardwood forests under 

climate change. Ecological Modelling, 332, 28-41. 

Miller GW, Schuler TM, Smith HC (1995) Method for applying group selection in central 

Appalachian hardwoods. USDA For. Serv. Res. Pap. NE-696. 

Miller GW, Johnson JE, Baumgras JE (1997) Deferment cutting in central Appalachian 

hardwoods: an update. Forest Landowner, 56, 28-31. 

Mckinley DC, Ryan MG, Birdsey RA et al. (2011) A synthesis of current knowledge on forests 

and carbon storage in the United States. Ecological Application, 21, 1902-1924. 

Mckenzie D, Gedalof ZE, Peterson DL, Mote P (2004) Climatic change, wildfire, and 

conservation. Conservation Biology, 18, 890-902. 



85 
 

Nyland RD (1992) Exploitation and greed in eastern hardwood forests. Journal of Forestry, 90, 

33-37. 

Nyland RD (1996) Silviculture: concepts and applications. McGraw-Hill, New York. 

Nyland RD (2005) Diameter-limit cutting and silviculture: a comparison of long-term yields and 

values for uneven-aged sugar maple stands. Northern Journal of Applied Forestry, 22, 

111-116. 

Nilsen P, Strand LT (2008) Thinning intensity effects on carbon and nitrogen stores and fluxes in 

a Norway spruce (Picea abies (L.) Karst.) stand after 33 years. Forest Ecology and 

Management, 256, 201-208. 

Nave LE, Vance ED, Swanston CW, Curtis PS (2010) Harvest impacts on soil carbon storage in 

temperate forests. Forest Ecology and Management, 259, 857-866. 

Nunery JS, Keeton WS (2010) Forest carbon storage in the northeastern United States: Net 

effects of harvesting frequency, post-harvest retention, and wood products. Forest 

Ecology and Management, 259, 1363-1375. 

Oliver CD (1992) A landscape approach: achieving and maintaining biodiversity and economic 

productivity. Journal of Forestry, 90, 20-25. 

Palik BJ, Mitchell RJ, Hiers JK (2002) Modeling silviculture after natural disturbance to sustain 

biodiversity in the longleaf pine (Pinus palustris) ecosystem: balancing complexity and 

implementation. Forest Ecology and Management, 155, 347-356. 

Peichl M, Arain MA (2006) Above-and belowground ecosystem biomass and carbon pools in an 

age-sequence of temperate pine plantation forests. Agricultral and Forest Meteorology, 

140, 51-63. 



86 
 

Peltoniemi M, Mäkipää R, Liski J, Tamminen P (2004) Changes in soil carbon with stand age–an 

evaluation of a modelling method with empirical data. Global Change Biology, 10, 2078-

2091. 

Pielou E (1977) Mathematical ecology. John Wiley & Sons, New York. 

Parker WC, Colombo SJ, Cherry ML et al. 2000. Third millennium forestry: what climate 

change might mean to forests and forest management in Ontario. The Forestry Chronicle, 

76, 445-463. 

Peng C, Jiang H, Apps MJ, Zhang Y (2002) Effects of harvesting regimes on carbon and 

nitrogen dynamics of boreal forests in central Canada: a process model simulation. 

Ecological Modelling, 155, 177-189. 

Puettmann K, Coates K, Messier C (2009) A critique of silviculture: managing for complexity. 

Island Press. 

Ruiz-peinado R, Bravo-oviedo A, López-senespleda E, Montero G, Río M (2013) Do thinnings 

influence biomass and soil carbon stocks in Mediterranean maritime pinewoods? 

European Journal of Forest Research, 132, 253-262. 

Roig S, Del río M, Canellas I, Montero G (2005) Litter fall in Mediterranean Pinus pinaster Ait. 

stands under different thinning regimes. Forest Ecology and Management, 206, 179-190. 

Rubio A, Gavilán RG, Montes F et al. (2011) Biodiversity measures applied to stand-level 

management: Can they really be useful? Ecological Indicators, 11, 545-556. 

Rashid MA (2013) Simulating the effect of thinning treatments on soil carbon stocks in Norway 

spruce in southern Sweden. Second cycle, A2E. Alnarp: SLU, Southern Swedish Forest 

Research Centre. 

 



87 
 

Seymour RS, White AS, Demaynadier PG (2002) Natural disturbance regimes in northeastern 

North America - evaluating silvicultural systems using natural scales and frequencies. 

Forest Ecology and Management, 155, 357-367. 

Schuler TM (2004) Fifty years of partial harvesting in a mixed mesophytic forest: composition 

and productivity. Canadian Journal of Forest Research, 34, 985-997. 

Schuler TM, Gillespie AR (2000) Temporal patterns of woody species diversity in a central 

Appalachian forest from 1856 to 1997. The Journal of the Torrey Botanical Society, 127, 

149-161. 

Smith HC, Miller GW (1987) Managing Appalachian hardwood stands using four regeneration 

practices: 34 year results. Northern Journal of Applied Forestry, 4, 180–185. 

Sharon W, Barbara L, Barbara M et al. (2011) The forest inventory and analysis database: 

database description and users manual version 5.1 for phase 2. 

Sitch S, Smith B, Prentice IC et al. (2003) Evaluation of ecosystem dynamics, plant geography 

and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global 

Change Biology, 9, 161-185. 

Stephens SL, Boerner RE, Moghaddas JJ et al.  (2012) Fuel treatment impacts on estimated 

wildfire carbon loss from forests in Montana, Oregon, California, and Arizona. 

Ecosphere, 3, 1-17. 

Seidl R, Rammer W, Lexer MJ (2011) Adaptation options to reduce climate change vulnerability 

of sustainable forest management in the Austrian Alps. Canadian Journal of Forest 

Research, 41, 694-706. 

Trimble G (1971) Diameter-limit cutting in Appalachian hardwoods: boon or bane? USDA 

Forest Service RP-NE-208, Upper Darby. 



88 
 

Tobin J (1958) Estimation of relationships for limited dependent variables. Econometrica: 

journal of the Econometric Society, 24-36. 

Tuomi M, Rasinmäki J, Repo A, Vanhala P, Liski J (2011a) Soil carbon model Yasso07 

graphical user interface. Model Software, 26, 1358-1362. 

Tuomi M, Laiho R, Repo A, Liski J (2011b) Wood decomposition model for boreal forests. 

Ecological Modelling, 222, 709-718. 

Taylor AR, Wang JR, Kurz WA (2008) Effects of harvesting intensity on carbon stocks in 

eastern Canadian red spruce (Picea rubens) forests: An exploratory analysis using the 

CBM-CFS3 simulation model. Forest Ecology and Management, 255, 3632-3641. 

Vesterdal L, Dalsgaard M, Felby C, Raulund-rasmussen K, Jørgensen BB (1995) Effects of 

thinning and soil properties on accumulation of carbon, nitrogen and phosphorus in the 

forest floor of Norway spruce stands. Forest Ecology and Management, 77, 1-10. 

Weckenmann A, Schwan A (2001) Environmental life cycle assessment with support of fuzzy-

sets. The International Journal of Life Cycle Assessment, 6, 13-18. 

Yanai RD, Arthur MA, Siccama TG, Federer CA (2000) Challenges of measuring forest floor 

organic matter dynamics:: Repeated measures from a chronosequence. Forest Ecology 

and Management, 138, 273–283. 

Yanai RD, Currie WS, Goodale CL (2003) Soil carbon dynamics after forest harvest: an 

ecosystem paradigm reconsidered. Ecosystems, 6, 197-212. 

Zenner EK, Dickinson YL, Peck JE (2013) Recovery of forest structure and composition to 

harvesting in different strata of mixed even-aged central Appalachian hardwoods. Annals 

of Forest Science. 70, 151-159. 

Zadeh LA (1965) Fuzzy sets. Information and Control. 8, 338-353. 



89 
 

 

 

 

 

 

 

 

 

 

4. Multi-criteria management of the central hardwood forest 
under climate and fire uncertainty with scenario-based 
models* 

                                                           
* This chapter will be submitted to Forest Ecology and Management with coauthor M. Zhou.  
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Abstract 

I developed multi-stage scenario-based optimization models for managing Central Hardwood 

Forests under uncertainty in climate change and associated fire. Based on a climate-sensitive 

matrix growth model and a mean fire interval model, four future climate scenarios and attendant 

fire intervals combined with two fire severity regimes were transformed into 36 and 20 tree 

growth scenarios for harvesting cycles of 10 and 20 years, respectively. Three alternatives of 

optimization formulations were proposed: 1) optimize for the maximum objective value under 

each individual scenario independently; 2) based on results from 1), find the compromise 

management plan that’s feasible for all scenarios while minimizing the weighted sum of 

deviations between the realized and maximum objective values; and 3) derive the optimal 

management plan over the entire scenario tree. Four objectives were considered: the net present 

value (NPV) of harvests, total carbon stock, tree species diversity, and tree size diversity. Finally 

I determined the trade-off between economic and ecological benefits by quantifying the 

opportunity cost of increasing ecological benefits in terms of NPV. Without considering any 

constraints for the optimization approach, the maximum NPV varied from $ 30,396 to $ 35,378 

ha-1 for 36 scenarios with harvesting every 10 years, and $ 17,838 to $ 18,992 ha-1 (53.7% – 58.7% 

of 10 years) for 20 scenarios with doubled harvesting cycle. The optimization approach produced 

9.7% – 22.4% (10 years) and 29.7 – 38.1% (20 years) more NPV than the deterministic approach. 

Among the values of the same criterion derived with all three methods, as expected, the one from 

optimizing the individual scenario was the highest. With harvesting cycles of 10 and 20 years, 

the feasible NPV declined $ 123 – $ 944 ha-1, $ 435 – $ 1,270 ha-1, $ 376 – $ 2,011 ha-1, and $ 73 

– $ 483 ha-1, $ 229 – $ 646 ha-1, $ 204 – $ 1,022 ha-1 when each unit of species diversity, size 
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diversity, and carbon weights increased from 1 to 10, respectively, while the other criterions 

were held fixed. 
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4.1 Introduction 

Forest management decision-making faces uncertainty and risk in diverse forms: climate change, 

natural disturbances (e.g., wildfire, wind damage, insect damage), market fluctuations, changing 

social acceptability of silvicultural treatments (Liang et al. 2006), etc. Consequently, the 

consideration of stochastic factors is vital to modern forest management and plays a critical role 

in establishing optimal harvesting rules (Perry and Maghembe 1989; Garcia-Gonzalo et al. 2016). 

Inclusion of randomness in optimization models, however, is not straightforward and presents 

major computational challenges, rendering them intractable in many cases.  

Hildebrandt and Knoke (2011) give a comprehensive overview of this subject under 

market uncertainty whereas Yousefpour et al. (2012) survey the approaches that handle 

uncertainty and risk under climate change. A few prominent examples are included here. Gove 

and Fairweather (1992) adopt a nonparametric bootstrap method and randomize the parameters 

of a deterministic programming model for uneven-aged northern hardwood management. Reeves 

and Haight (2000) apply Markowitz portfolio optimization to deal with timber price uncertainty 

in even-aged management and find optimal forest plans are highly sensitive to assumptions about 

the range of future prices. Tahvonen and Kallio (2006) analyze optimal harvesting decisions with 

different age classes under price uncertainty and conclude that optimal harvesting is too sensitive 

to periodic price level compared to the random walk case. Eyvindson and Kangas (2014) apply 

stochastic goal programming to balance competing criteria in forest planning under uncertainty 

in a systematic fashion. Millar et al. (2007) introduce a conceptual framework for managing 

forested ecosystems under climate change. Hanewinkel et al. (2011) provide a general scheme on 
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how to integrate risk from hazards (Strom, snow, insects, fire) under climate change into forest 

management decisions. 

Among the prevalent methods, Markov Decision Process (MDP) models are readily 

adaptable to forest management under multiple sources of uncertainty and standard solution 

methods are well developed, including linear programming and dynamic programming. Thus, 

MDPs have been applied to forest decision making with a mix of economic and ecological 

criteria under uncertainty (Lin and Buongiorno 1998; Zhou et al. 2008a; Zhou et al. 2008b). 

Zhou and Buongiorno (2006) incorporate Markov chain models describing stand transitions 

under the influence of natural disturbances into a stochastic optimization model to study the 

tradeoffs between landscape diversity and timber production. Recently, Zhou and Buongiorno 

(2011), and Buongiorno and Zhou (2011) extend the classical MDP models to account for 

fluctuations in the interest rate. Zhou (2015) couple a regime-switching model of climate policy 

with a MDP model to discuss the effects of uncertainty timing and magnitude of climate policy 

on sustainable forestry. For this study, however, MDP may not be the most appropriate candidate 

for three reasons: 1) Current knowledge of climate change is incomplete while MDP, as a 

probability/frequency based approach, usually assumes complete information of uncertainty; 2) 

Regimes of fire disturbance are expected to alter in the future, but MDP relies on stationary, i.e., 

non-time-varying, transitions between states; and 3) MDP calculates the optimal decision rules in 

the steady state, but, at present, it is most crucial to derive adaptive strategies before entering a 

new steady state.  

Another line of work on stochastic decision-making uses multi-stage scenario-based 

optimization models: decisions are revised at each stage and optimizations are based on the 
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uncertainty realized so far (Ahmed et al. 2003). Applications of such an approach are rare in 

forestry context with the following exceptions. Alonso-Ayuso et al. (2011) handle stochasticity 

in forest planning with uncertainty in price and future wood demand represented through 16 

scenarios. Veliz et al. (2015) incorporate uncertainty in forest growth and consider both 

harvesting and road construction decisions with up to 324 scenarios. This method is likely to be 

successful for this study because first, uncertainty in climate change is prevalently represented as 

climate scenarios thus could be readily incorporated in the optimization model; other forms of 

uncertainty, fire disturbances, could also be translated into scenarios thus compatible with the 

model too; lastly, decisions were adaptive and revised at each stage as new information of 

climate change becomes available.  

The primary objective of the current study was to develop a multi-stage optimization 

model that accounts for climate and fire uncertainty. A recent study by Ma and Zhou (2016) 

quantifies the impacts of various management intensities on ecological and economic criteria 

under climate change and fire disturbance using Monte-Carlo simulations. The next step is to 

derive the best management plan adaptive to different climate scenarios and fire regimes and 

determine the tradeoff between financial benefits and ecosystem services. Four climate scenarios 

and attendant fire intervals and two fire severity regimes were transformed into 36 and 20 tree 

growth scenarios with harvesting cycles of 10 years and 20 years, respectively. Three 

formulations were proposed to determine the optimal management plan: 1) optimize for the 

maximum objective value under each individual scenario independently; 2) based on results from 

1), find the compromise management plan that’s feasible for all scenarios while minimizing the 

weighted sum of deviations between the realized and maximum objective values; and 3) derive 

the optimal management plan over the entire scenario tree. Four objectives were considered: the 
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net present value (NPV) of harvests, total carbon stock, tree species diversity, and tree size 

diversity. Finally, I determined the trade-off between economic and ecological benefits by 

quantifying the opportunity cost of increasing ecological benefits in terms of NPV.  
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4.2 Materials and Methods 

4.2.1 Data 

Data used for developing the matrix growth model consisted of 6,303 re-measured permanent 

sample plots (PSP’s) from the Forest Inventory and Analysis (FIA) database (Sharon et al. 2011). 

Due to the high diversity in the CHR, I classified all tree species into seven species groups: 

Quercus-Quercus (QQ), Quercus-Lobatae (QL), Juglandaceae (JD), Sapindaceae (SD), 

Gymnosperms (GS), Fagus (FG), and Other Angiosperms (OA). In each species group, 

seventeen diameter classes were categorized for all the trees (Ma et al. 2016).  

The stumpage price data (1989 - 2016) in West Virginia Timber Market Report 

(WVTMR, available online at http://ahc.caf.wvu.edu/ahc-resources-mainmenu-45/timber-

market-report-mainmenu-62, last accessed May 10, 2016) was used for financial analysis, which 

was adjusted for inflation with Consumer Price Index (2015 =100) (Ma and Zhou, 2016). Four 

commercial species groups were defined: oak (QQ, QL), hickory (JD), maple (SD), other (GS, 

FG, and OA). In addition, three commercial sizes were defined: poles (1-6 diameter classes, cm), 

small saw timber (7-12), and large saw timber (13-17) (Miller et al. 1995; Miller et al. 1997). 

The adjusted stumpage price of each commercial species and size is shown in table 4-1. 

Table 4-1 Adjusted real average stumpage prices ($ m-3) (base year=2015) for three 

commercial sizes and four commercial species groups.              

Commercial 

species* 

Commercial size ($ m-3) 

 Pole Small sawtimber Large sawtimber 

Oak 55 85 115 

Hickory 30 40 50 

Maple 90 120 150 

Other 33 57 80 
* Oak: Quercus–Quercus (white oak species) and Quercus–Lobatae (red oak species); Hickory: Juglandaceae 

(Hickory); Maple: Sapindaceae (maple family); Other: Gymnosperms (Softwoods), Fagus (American beech), and 

Other Angiosperms (other species).  
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For future climate trends, at first I extracted the future trend ratio over the CHR for the 

four scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) of the IPCC AR5 report predicting 

future climatic changes (Blyth et al. 2007). Then, I multiplied the historical temperature and 

precipitation by the future trend ratios to estimate the future climate during 2010-2100. Future 

population density over the CHR was estimated from the current CHR population density and the 

overall population trend in America in year 2000 for 2025, 2050, 2075, and 2100 (Bos et al. 

1994). For detailed estimations of future temperature, precipitation, and population density, see 

Ma et al. (2016). 

4.2.2 Defining Scenarios 

Uncertainty in climate change and fire from 2010 to 2100 were described as scenarios – tree 

growth under combinations of four IPCC climate scenarios (C) and two fire severity regimes (S). 

I used a climate-sensitive matrix model and a mean fire interval model to predict forest growth 

per period (10 and 20 years, respectively) under climate change and associated fire intervals over 

the planning horizon. The climate-sensitive matrix model was extended from a conventional 

matrix model to control for the effects of temperature and precipitation on tree growth, mortality, 

and recruitment (Ma et al. 2016). To account for impacts of fire induced by climate change, the 

growth model was coupled with a mean fire interval (MFI) model (Guyette et al. 2010) 

designated for fire management in the eastern and southern United States. It is a common 

practice to vary disturbance severities in ecological studies (Sturtevant et al. 2009). Thus the 

climate-sensitive matrix model, MFI model, and fire regime switches were combined to simulate 

the effects of climate change on fire disturbances and subsequently on the CHR forests. Two fire 

severity regimes, representing a baseline fire regime and a regime of more severe fires (see Table 

A6 in the appendix for the definition of fire severity classes) were hypothesized as follows: for 
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fire severity classes 1 to 5, in regime S1, the probability of each class was 40, 25, 20, 10, and 5%, 

respectively; in regime S2, it was 30, 25, 20, 15, and 10%, respectively, similar to the fire 

regimes specified in Yang et al. 2004 and Gonzalez et al. 2006. The more severe fire regime S2 

would affect larger areas of CHR forests through direct mortality and structural and species 

alterations, as well as incur larger economic losses. Consequently S2 would require more public 

firefighting resources. 

The following rule was used to establish tree growth scenarios (TGSs). When t = 1, there 

were 8 possible combinations of 4 climate scenarios and 2 fire severity regimes. For any t > 1, 

the climate scenario stayed the same as the previous node; in addition, if the previous node had 

S1, two branched came out of that node, one containing S1 and the other S2. If the previous node 

had S2, only one branch came out of that node and it contained S2. The underlying assumption 

was that once the fire severity regime changed to S2, it would stay in S2 for the rest of the 

planning period. This above described rule insured that: 1) there was a base TGS for each 

climate scenario with the constant fire severity regime S1; 2) there was one TGS for each climate 

scenario representing the alteration of fire intensity regime from S1 to S2 at any stage greater 

than 1. This rule generated 36 scenarios in total with a harvesting cycle of 10 years (Figure 4-1) 

and 20 scenarios with 20 years (Figure 4-2).  
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Figure 4-1 Scenario tree of with harvesting cycle of 10 years under 4 climate scenarios and 2 

fire severity levels. C1: RCP2.6; C2: RCP4.5; C3: RCP6.0; C4: RCP8.5; S1: Fire severity 1, 

S2: Fire severity 2; t: Harvesting stage; A: Scenario.  
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Figure 4-2 Scenario tree of with harvesting cycle of 20 years under 4 climate scenarios and 2 

fire severity levels. C1: RCP2.6; C2: RCP4.5; C3: RCP6.0; C4: RCP8.5; S1: Fire severity 1, 

S2: Fire severity 2; t: Harvesting stage; B: Scenario. 

4.2.3 Optimization of individual scenario 

Given a harvesting cycle, for each planning stage, twelve decision variables were needed at each 

stage for four commercial species groups and three commercial sizes: 1 (QQ, QL, 1-6), 2 (QQ, 

QL, 7-12), 3 (QQ, QL, 13-17), 4 (JD, 1-6), 5 (JD, 7-12), 6 (JD, 13-17), 7 (SD, 1-6), 8 (SD, 7-12), 

9 (SD, 13-17), 10 (GS, FG, OA, 1-6), 11 (GS, FG, OA, 7-12), 12 (GS, FG, OA, 13-17). I defined  

t

hkx  as the percentage of number of trees would be harvested in commercial species group h and 

commercial size k at stage t.  

Additionally, the following notation will be used: 

 

Sets 

 

T = period in planning horizon.  

 

t = harvesting cycle in years.  

 

z = scenarios.  

 

Deterministic parameters 

 

hkv  = volume of a tree in commercial species h and commercial size k. 

 

n = number of trees in commercial species h and commercial size k. 

 

r = interest rate per year. 

 

hkP  = stumpage price of a tree in commercial species h and commercial size k. 

 

)(zProb  = probability of the occurrence of scenarios. 
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The first approach I proposed was to formulate a deterministic model for each individual 

TGS, z, often referred to as a scenario subproblem, as  





t

t

hkhk

t

hkz

r

Pnvx
NPV

)1(
max                                                                                                           (4-1) 

or 
i

iiz

s
B

B

B

B
H )ln(max                                                                                                          (4-2) 

or 
j

jjz

d
B

B

B

B
H )ln(max                                                                                                                     (4-3) 

or 
t

t

z CarbonCarbonmax                                                                                                     (4-4) 

where Bi, Bj and B were, respectively, the basal area of species group i, diameter class j and total 

basal area. The carbon was the total of carbon estimated in the four pools: above-ground 

biomass, fine roots, dead organic matters, and soil (Ma and Zhou, 2016). 

The additional constraints were growth equations under TGS and bound constraints 

ensuring feasible harvest. These models were solved for each TGS, z, for the optimal 

unconstrained value that can be achieved for each criterion, u, denoted by 𝑀𝑢
𝑍. 

4.2.4 Global feasible-plan optimization 

Using the maximum values solved from models (4-1) to (4-4), I set up global models which 

linked all TGSs through the same decision variables, t

hkx . For a single criterion, u, the model 

took the following form: 

Min ∑ )(zProb (𝑧 𝑀𝑢
𝑧 − 𝑓𝑢

𝑧 ( t

hkx ))                                                                                                                    (4-5)  
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in which )(zProb represented the probability of TGS z and 𝑓𝑢
𝑧 represented the evaluation function 

of criterion u under TGS z, as described in models (4-1) to (4-4). The probabilities added up to 1. 

Growth equations under all TGSs and bound constraints were necessary too. This model sought a 

solution that was feasible for all TGSs and minimized the weighted sum of deviations of one 

achieved criterion from the maximum criterion over all TGSs.  

To pursue multiple objectives in this setup, one could augment model (4-5) by adding 

weighted sum of deviations of additional criteria. Altering the weights would change the 

management priority/importance of the extra criteria: larger weights implied higher 

priority/importance because the deviations would be more penalized in minimization. It is 

important to note that this class of models only derived nonadaptive solutions for the decision 

was identical for a certain species-size category and planning stage no matter the TGS. 

4.2.5 Scenario-tree optimization 

Here I proposed a third approach for global optimization across all the TGSs that determined 

TGS-specific optimal decisions. Thus, the approach was adaptive to uncertainty in climate and 

fire. Optimization of the scenario tree requires compliance with the well-known non-

anticipativity principle (Birge and Louveaux 2011; Rockafellar and Wets 1991; Wets 1975). 

According to this principle, the values of the decision variables must be identical up to a given 

stage if two different scenarios are identical up to that stage in the time horizon. This guarantees 

that the decision obtained from the scenario-based optimization model up to a given stage does 

not depend on information that is not yet available (Alonso-Ayuso et al. 2011; Garcia-Gonzalo et 

al. 2016). For example, for the scenario tree as described in figure 2, the values of decision 



105 
 

variables were identical up to stage 2 for scenarios 1, 2 and 3, and for scenarios 1 and 2, they 

were the same up to stage 3. 

This approach employed a much large set of decision variables because it was scenario 

specific. Let’s define 
zt

hkx ,
 as the percentage of number of trees would be harvested in commercial 

species group h and commercial size k at harvesting cycle t under scenario z. For maximizing the 

NPV, the objective function became  





t

t

hkhk

zt

hkrob

z r

PnvxzP
NPV

)1(

)(
max

,

                                                                                         (4-6) 

 

Growth equations under each TGS bound constraints, and the constraint on that the sum 

of all scenarios added up to one still applied. Moreover, there were a set of non-anticipative 

constraints as described above.  

The following constraints reflected multiple objectives in addition to the financial 

consideration.  

1. Minimum level for species diversity. 

  

minSPHs                                                                                                                                (4-7) 

 

2. Minimum level for size diversity.  

 

minSZHd                                                                                                                                (4-8) 

 

3. Minimum level for total carbon stock (ton ha-1).  

 

minCnTotalcarbo                                                                                                              (4-9) 

 

The trade-off between economic and ecological criteria would be changed in the values 

of the objective function by relaxing one of the constraints while keeping everything else the 

same.  



106 
 

4.2.6 Integrated framework 

 

Figure 4-3 The integrated multi-stage scenario-based optimization framework. 

Figure 4-3 illustrated the integrated multi-stage scenario-based optimization framework 

incorporating uncertainty in climate change and fire. In this framework, I coupled (1) forest 

dynamics, (2) mean fire interval, (3) population density, (4) future climate scenarios, (5) forest 

management, and (6) multi-stage scenario-based optimization to derive the optimal decision 

between economic and ecological criteria.  

4.3 Results 

When optimizing individual scenario, the maximum net present value (NPV) changed from 

$ 30,396 to $ 35,378 ha-1 for 36 scenarios with a harvesting cycle of 10 years, and $ 17,838 to 
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$ 18,992 ha-1 (53.7% – 58.7% of 10 years) for 20 scenarios with doubled harvesting cycle. In 

addition, with a harvesting cycle of 10 years, maximum average species diversity varied from 

1.69 to 2.02 and maximum average size diversity changed from 2.23 to 2.99; maximum carbon 

stocks varied from 1,041 to 1,420 ton ha-1. When harvesting every 20 years, maximum species 

diversity was consistently slightly lower, ranging from 1.59 – 1.88 (93.1% – 94.1% of 10 years). 

The other two criteria were in general larger: the maximum average size diversity was between 

2.38 and 2.91 (97.3% – 106.7% of 10 years) while the maximum carbon stocks ranged from 

1,492 to 1,672 ton ha-1 (117.8% – 143.3% of 10 years) (Tables 4-2 and 4-3).  
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Table 4-2 The maximum, feasible and adaptive net present values (NPV) ($ ha-1), species 

diversity (Hs), size diversity (Hd), and total carbon stocks (ton ha-1) in 2100 in each scenario, 

with harvesting cycle of 10 years, respectively.  

                 Maximum values               Feasible values                            Adaptive maximum values 

Scenarios NPV1 Hs Hd Carbon NPV Hs Hd Carbon NPV Hs Hd Carbon 

A1 353782 1.74 2.99 1420 35183 1.70 2.94 1354 35281 1.72 2.97 1387 

A2 35180 1.79 2.96 1409 34791 1.75 2.87 1346 35096 1.73 2.92 1358 

A3 34913 1.71 2.92 1392 34720 1.62 2.86 1338 34817 1.67 2.89 1314 

A4 34496 1.69 2.87 1361 34287 1.65 2.79 1294 34390 1.65 2.83 1328 

A5 33997 1.77 2.82 1323 33796 1.72 2.77 1245 33897 1.75 2.80 1284 

A6 33384 1.81 2.73 1277 32998 1.77 2.68 1206 33110 1.76 2.71 1242 

A7 32731 1.82 2.65 1214 32519 1.76 2.62 1150 32625 1.79 2.61 1182 
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2.44 

2.41 

2.30 

2.26 

2.24 

2.19 

2.17 

- 

1083 

 996 

1336 

1332 

1319 

1292 

1241 

1193 

1135 

1060 

 991 

1314 

1301 

1290 

1268 

1223 

1159 

1112 

1036 

 981 

1309 

1288 

1275 

1267 

1212 

1140 

1086 

1022 

 978 

 - 

31830 

30727 

34889 

34692 

34414 

33991 

33680 

33066 

32220 

31600 

30565 

34693 

34595 

34227 

33807 

33493 

32874 

32034 

31431 

30551 

34579 

34399 

34142 

33516 

33225 

32592 

31801 

31187 

30165 

33172 

1.81 

1.87 

1.77 

1.81 

1.74 

1.70 

1.76 

1.80 

1.82 

1.85 

1.91 

1.82 

1.85 

1.81 

1.79 

1.86 

1.82 

1.83 

1.91 

1.93 

1.94 

1.95 

1.85 

1.88 

1.91 

1.87 

1.92 

1.94 

1.99 

- 

2.53 

2.42 

2.77 

2.75 

2.71 

2.68 

2.58 

2.54 

2.45 

2.38 

2.29 

2.62 

2.56 

2.55 

2.53 

2.48 

2.43 

2.38 

2.27 

2.21 

2.52 

2.50 

2.48 

2.45 

2.34 

2.30 

2.27 

2.22 

2.20 

- 

1114 

1031 

1371 

1362 

1292 

1322 

1274 

1229 

1107 

1090 

1023 

1348 

1336 

1260 

1226 

1195 

1197 

1143 

1071 

1015 

1337 

1321 

1305 

1244 

1201 

1179 

1121 

1055 

1010 

- 
1 The NPV was maximized with an annual interest rate of 3%.   
2 The number in bold were the highest value achieved for one criterion among all scenarios. 

3 Weighted NPV =
zNPV

36

36

1
. 
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Table 4-3 The maximum, feasible and adaptive net present values (NPV) ($ ha-1), species 

diversity (Hs), size diversity (Hd), and total carbon stocks (ton ha-1) in 2100 in each scenario, 

with harvesting cycle of 20 years, respectively.  

                 Maximum values               Feasible values                              Adaptive maximum values 

Scenarios NPV1 Hs Hd Carbon NPV Hs Hd Carbon NPV Hs Hd Carbon 

B1 189922 1.61 2.91 1672 18693 1.59 2.85 1596 18749 1.56 2.87 1642 

B2 18893 1.63 2.89 1656 18572 1.60 2.82 1581 18524 1.61 2.83 1623 

B3 18764 1.59 2.86 1635 18354 1.51 2.79 1557 18407 1.54 2.82 1591 

B4 18551 1.62 2.82 1595 18237 1.52 2.73 1522 18296 1.54 2.77 1560 

B5 18302 1.66 2.77 1573 17999 1.64 2.68 1496 17955 1.63 2.72 1471 

B6 18812 1.68 2.72 1666 18504 1.62 2.66 1571 18565 1.64 2.69 1599 

B7 18724 1.74 2.70 1634 18322 1.68 2.63 1556 18265 1.69 2.65 1595 

B8 

B9 

B10 

B11 

B12 

B13 

B14 

B15 

B16 

B17 

B18 

B19 

B20 

Weighted3 

18589 

18385 

18144 

18680 

18595 

18464 

18262 

18009 

18497 

18427 

18293 

18095 

17838 

18466 

1.67 

1.59 

1.67 

1.73 

1.76 

1.74 

1.72 

1.81 

1.84 

1.86 

1.83 

1.87 

1.88 

- 

2.67 

2.65 

2.59 

2.56 

2.54 

2.53 

2.50 

2.43 

2.49 

2.46 

2.42 

2.41 

2.38 

- 

1607 

1576 

1528 

1624 

1603 

1582 

1564 

1501 

1611 

1587 

1566 

1543 

1492 

- 

18295 

17988 

17750 

18375 

18286 

18148 

17846 

17703 

18085 

18123 

17987 

17784 

17520 

18129 

1.60 

1.53 

1.62 

1.70 

1.69 

1.66 

1.68 

1.75 

1.79 

1.80 

1.78 

1.70 

1.83 

- 

2.61 

2.59 

2.53 

2.49 

2.46 

2.43 

2.39 

2.37 

2.45 

2.41 

2.40 

2.36 

2.23 

- 

1534 

1503 

1448 

1545 

1528 

1510 

1492 

1430 

1538 

1513 

1485 

1474 

1413 

- 

18358 

18034 

17807 

18423 

18240 

18191 

17892 

17756 

18136 

18172 

18051 

17830 

17483 

18157 

1.63 

1.54 

1.64 

1.69 

1.71 

1.69 

1.65 

1.78 

1.81 

1.78 

1.79 

1.74 

1.84 

- 

2.59 

2.58 

2.55 

2.52 

2.49 

2.47 

2.42 

2.35 

2.42 

2.40 

2.37 

2.34 

2.27 

- 

1506 

1534 

1476 

1578 

1501 

1552 

1530 

1459 

1572 

1543 

1522 

1509 

1449 

- 
1 The NPV was maximized with an annual interest rate of 3%.   
2 The number in bold were the highest value achieved for one criterion among all scenarios. 

3 Weighted NPV =
zNPV

20

20

1
. 

 With the global feasible-plan optimization, the highest NPV, species diversity, size 

diversity, and carbon stocks were $ 35,183 ha-1, 1.98, 2.94, 1,354 ton ha-1 with a harvesting cycle 

of 10 years, respectively. With cutting cycle of 10 years, the lowest NPV, species diversity, size 

diversity, and carbon stocks of all scenarios were $ 30,063 ha-1, 1.62, 2.17, and 978, ton ha-1, 

respectively. Similarly, harvesting every 20 years led to much lower NPV, lower species 

diversity and size diversity, but significantly higher total carbon stock. The scenario B1 led to the 

highest NPV ($ 18,693 ha-1, 53.1% of 10 years), size diversity (2.85, 96.9% of 10 years), and 

carbon stocks (1,596 ton ha-1, 117.9% of 10 years), and the scenario B20 resulted in the highest 

species diversity.  
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 Using scenario-tree optimization, I found that the range of NPV, species diversity, size 

diversity, and carbon stocks were $ 30,165 – $ 35,281 ha-1, 1.65 – 1.99, 2.20 – 2.97, and 1,010 – 

1,387 ton ha-1 when harvesting every 10 years. If the harvesting cycle doubled, the NPV, species 

diversity, size diversity, and carbon stocks varied from $ 17,483 ha-1, 1.54, 2.27, and 1,449 ton 

ha-1 to $ 18,749 ha-1, 1.84, 2.87, and 1,642 ton ha-1.  

Clearly, with all three approaches, scenarios A1 and B1, both representing climate 

scenario RCP2.6 and the constant fire severity regime S1 consistently resulted in the highest 

values for NPV, size diversity, and total carbon stock; A36 and B20, denoting RCP 8.5 and 

change of fire severity regime from S1 to S2 in the last planning period produced the highest 

species diversity with both harvesting cycles. Among the values of the same criterion derived 

with all three methods, as expected, the one from optimizing the individual scenario was the 

highest. The values of the same criterion derived from scenario-tree optimization were higher 

than those from the feasible plan under most scenarios. In addition, warmer climate scenario and 

more severe fires resulted in lower NPV, size diversity, and total carbon stocks, but for species 

diversity, there existed no obvious trend.  

When the species diversity, size diversity, and carbon weight increased from 1 to 10, 

representing accelerating managerial priority on these ecological criteria, the NPV decreased 

from $ 32,214 to $ 27,328 ha-1, $ 32,214 to $ 24,558 ha-1, and $ 32,214 to $ 21,489 ha-1 , 

respectively, with a cycle of 10 years, and from $ 17,577 to $ 15,062 ha-1, $ 17,577 to $ 13,650 

ha-1, and $ 17,577 to $ 12,071 ha-1 when it doubled.  In addition, one additional increase in one 

of these three weights would lead to a decline in  the NPV decreased significantly at the 

beginning and less and less later  when each unit of these weights increased from 1 to 10 (Figure 

4-4).   
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Figure 4-4 Changes of feasible net present value (NPV) over altering the weights of species 

diversity, size diversity, and carbon when other criterions fixed under global feasible-plan 

optimization.  
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The average total harvesting basal area by planning stages, commercial sizes, and species 

groups with both harvesting cycles were shown in the Table 4-4. With a cycle of 10 years, the 

highest harvested basal areas were 3.51 m2 ha-1 at stage 4 (2050), 9.65 m2 ha-1 for large 

sawtimber, and 7.75 m2 ha-1 for oak. The lowest were 2.03 m2 ha-1 at stage 5 (2060), 5.19 m2 ha-1 

for poles, 3.78 m2 ha-1 for maple. When the harvesting cycle doubled, the highest and lowest 

harvesting basal areas were 5.52 m2 ha-1 at stage 2, 3.56 m2 ha-1 at stage 3, 6.55 m2 ha-1 for large 

sawtimber, 4.68 m2 ha-1 for poles, and 6.56 m2 ha-1 for oak, 2.52 m2 ha-1 for other, respectively.  
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Table 4-4. Summary statistics of feasible decision variables (m2 ha-1) by harvesting stages, 

commercial size classes, and commercial species classes with harvesting cycles of 10 years and 

20 years. 

Harvest every 10 years Mean SD 

Harvest by stages   

1 2.26 0.14 

2 3.23 0.19 

3 3.01 0.17 

4 

5 

6 

7 

8 

3.51* 

2.03 

2.24 

2.43 

2.63 

0.18 

0.15 

0.13 

0.40 

0.37 

Harvest by sizes   

Poles 5.19 1.39 

Small sawtimber 6.48 0.81 

Large sawtimber 9.65 1.42 

Harvest by species    

Oak 7.45 1.01 

Hickory 4.05 0.41 

Maple 3.78 0.38 

Other 6.05 1.37 

Harvest every 20 years   

Harvest by stages    

1 4.52 0.28 

2 5.52 0.38 

3 3.56 0.29 

4 3.68 0.80 

Harvest by sizes   

Poles 4.68 1.39 

Small sawtimber 6.06 0.81 

Large sawtimber 6.55 1.40 

Harvest by species    

Oak 6.56 1.01 

Hickory 3.06 0.41 

Maple 2.52 0.38 

Other 5.15 1.29 

* The number in bold were the highest value achieved for each criterion. 
 

4.4 Discussion and Conclusion 

In this study, multi-stage optimization models were developed for determining management 

plans under climate and fire uncertainty. Four climate scenarios and two fire severity regimes 
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were transformed into tree growth scenarios, which were the basis for the proposed approaches, 

using a climate-sensitive matrix growth model and a mean fire interval model. A total of 36 

scenarios for a harvesting cycle of 10 years and 20 scenarios for a harvesting cycle of 20 years 

were constructed. These scenarios were integrated into the optimization model to determine how 

much timber would be cut in each future period so that four management objectives were 

maximized.   

Considering uncertainty is necessary in the development of forest management 

(Pasalodos et al., 2013). The principal contribution of this work consisted in formally 

incorporating uncertainty of climate change and associated fire into forest management through 

the analysis and optimization of discrete scenarios. Although the scenario-tree optimization 

moderately outperformed the global feasible plan in most scenarios, the latter was remarkably 

simpler to formulate and easier to solve. Besides, it had practical appeal to private landowners 

who usually do not modify forest management practices to adaptive changes as the other 

landowners. Thus, a management plan that was feasible under all scenarios while producing 

results relatively close to a much more sophisticated adaptive plan would appeal more to private 

landowners, especially NIPF owners in practice.  

Uncertainty in climate affects economic and ecological returns for forest landowners and 

managers in the long term (Bodin and Wiman, 2007; Zhou, 2015). Wildfires have impacts on 

vast areas and cause great damages with significant and lasting effects on ecosystem services, 

economy, and society (Lampin-Maillet et al., 2010). As shown in this study, when a warmer 

climate and more severe fires were simultaneously considered, the NPV and carbon stocks 

decreased. This was as expected because shorter and more severe fires would damage forests and 

cause loss in biomass and consequent timber income. This work also suggested that higher 
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species diversity and lower size diversity would be produced by warmer climate and more severe 

fire disturbance. One possible explanation is that warmer climate and more serious fires reduced 

large-diameter trees and increased growth of shade-tolerant species thus decreased size diversity 

and increased species diversity.  

In addition, the results presented here had major implications for fire prevention and 

protection policy and practices. The switch to more frequent and severe fires under climate 

change would require more public resources towards prevention in the CHR forests most of 

which are owned privately, in particular towards regions at higher risk of fire. Improving 

communication with communities, especially with private landowners, and establishing 

partnerships with insurers would be part of a broad spectrum of prevention approaches (Calkin et 

al. 2011) and help to direct private resources towards effective fire prevention. Improving the 

effectiveness of prevention program and rapid-response suppression operations should be 

prioritized (Thompson and Calkin, 2011). Overall, fire prevention and protection should be a 

central piece of climate change mitigation strategies for the CHR forests.  

Applying stochastic scenarios is proved to be superior to only using fixed management 

regimes (Alonso-Ayuso et al. 2011; Veliz et al. 2015), because the stochastic scenarios were 

generated as variations in historical data. Without considering any constraints for the 

optimization approach, the maximum NPV varied from $ 30,396 to $ 35,378 ha-1 for 36 

scenarios with harvesting every 10 years, and $ 17,838 to $ 18,992 ha-1 (53.7% – 58.7% of 10 

years) for 20 scenarios with doubled harvesting cycle. Under both harvesting cycles, all the 

maximum NPVs were higher than the highest NPVs (10 years: $ 27,440 ha-1, 20 years: $ 13,757 

ha-1) in the fixed management (Chapter 3). The optimization approach produced 9.7% – 22.4% 

(10 years) and 29.7% – 38.1% (20 years) more NPV than the deterministic approach. The results 
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suggested that the fixed management regimes were always inferior and landowners could benefit 

substantially from adopting optimization-based management rules, consistent with studies such 

as Garcia-Gonzalo et al., (2016). This study further revealed that the NPVs with a 10-year 

harvesting cycle were almost twice of 20 years, but carbon stocks were only 15.1% – 30.2% 

lower for all scenarios. This indicated that more frequent harvests might produce higher NPVs 

without causing significant reductions of carbon stocks.  

The global feasible model seeks to overcome limitations of classical optimization 

approaches for dealing with uncertainty (Better and Glover, 2008). In this study, the global 

feasible model was augmented with additional constraints on ecological criteria, resulting in 

multiple-objective management. For all three criteria, the marginal change in NPV for one 

additional unit of weight continuously declined as the ecological criteria improved (Figure 4-4). 

This illustrates that the opportunity cost of ecological conservation is not linear with the change 

in ecosystem conditions, suggesting that conservation incentives or subsidies for private 

landowners should not be “flat-rate”. Furthermore, increasing carbon storage would cost more 

than enhancing species and size diversity. However, if these additionally stored carbon stocks 

were to be traded in a carbon market, the loss in NPV could be at least partially offset by the 

income from selling carbon credits. For example, with a ten-year cutting cycle, changing the 

carbon weight from 1 to 10 was equivalent to storing 524 ton ha-1 of additional carbon by 2100. 

At the present national average carbon price of $ 5 ton-1, the potential carbon income could be up 

to $ 2,620 ha-1+while a carbon price of $ 30 ton-1 as suggested by the U.S. Environmental 

Protection Agency (EPA) could generate an income up to $ 15,720 ha-1, if no enrollment and 

inventory costs were to be considered. Therefore, both ecological and financial gains could stem 

from sustainably managing CHR forests in the presence of an active carbon market. However, 
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high uncertainty in the U.S. climate policy renders the economic potential of sustainably 

managing forests for carbon credits highly uncertain, discouraging landowners from participating 

in such practices (Zhou, 2015). It would be of interest to incorporate uncertain carbon prices in 

the current framework to shed lights on the economic and ecological consequences of policy 

uncertainty. Note that only four carbon pools were accounted for in this study as suggested by 

(Penman et al. 2003). Carbon stored in coarse roots and harvested wood products calls for an 

examination in the future.  

With the global feasible-plan optimization, the decisions for each planning stage, species, 

and size provided valuable guidelines for CHR landowners and managers. As suggested by Table 

4-4, more harvest at the middle stage of large oak trees and less harvest of small softwoods, 

beech, and maple trees thereafter might produce greater NPV with both harvesting cycles.  

This study demonstrated the value of explicitly introducing uncertainty of climate change 

and associated fire using an optimization approach. This enabled the forest planner to make more 

informed and robust decisions based on a range of climate and fire scenarios over time instead of 

merely analyzing a deterministic situation. A possible extension of this work would be to 

consider uncertainty from other sources, such as wind, insects, timber market fluctuation and 

policy changes. In particular, the timber market would likely experience structural changes given 

the predicted species shift from oaks to maples. Thus it would be of importance to address this 

issue for managerial purposes. In addition, future research efforts could also be directed towards 

solving large-scale landscape management problems for two reasons: 1. Forest stands interact 

through disturbances, such as fire diffusion. 2. The provision of ecosystem services are impacted 

by the extent and structure of forested landscape. But the major difficulty lies in the curse of 

dimensionality - as more scenarios and more stands were to be included over time, the number of 
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decision variables would increase exponentially. Therefore the presentation of a realistic problem 

for a long period would become intractable. Even approximate solutions may sometimes be 

difficult to achieve. How to compactly represent and efficiently solve large-scale problems 

within the scenario-optimization framework remains an open question and deserve future 

research efforts.   

Acknowledgement 

This study was supported by the Davis College of Agriculture, Natural Resources & Design, 

West Virginia University, under the US Department of Agriculture (USDA) McIntire–Stennis 

Funds WVA00105.   



119 
 

References 

Ahmed S, King AJ, Parija G (2003) A multi-stage stochastic integer programming approach for 

capacity expansion under uncertainty. Journal of Global Optimization, 26, 3-24. 

Alonso-Ayuso A, Escudero LF, Guignard M, Quinteros M, Weintraub A (2011) Forestry 

management under uncertainty. Annals of Operations Research, 190, 17-39. 

Buongiorno J, Zhou M (2011) Further generalization of Faustmann's formula for stochastic 

interest rates. Journal of Forest Economics, 17, 248-257. 

Blyth W, Yang M, Bradley R (2007) Climate policy uncertainty and investment risk. OECD 

Publishing. 

Bos E, Vu M, Massiah E, Bulatao R (1994) World Population Projections 1994–95: Estimates 

and projections with related demographic statistics. New York: Johns Hopkins University 

Press. 

Birge JR, Louveaux F (2011) Introduction to stochastic programming. Springer Science & 

Business Media. 

Bodin P, Wiman BL (2007) The usefulness of stability concepts in forest management when 

coping with increasing climate uncertainties. Forest Ecology and Management, 242, 541-

552. 

Better M, Glover F (2008) Scenario‐based risk management and simulation 

optimization. Encyclopedia of Quantitative Risk Analysis and Assessment. 

Calkin DC, Finney MA et al. (2011) Progress towards and barriers to implementation of a risk 

framework for US federal wildland fire policy and decision making. Forest Policy and 

Economics, 13, 378-389. 



120 
 

Eyvindson K, Kangas A (2014) Stochastic goal programming in forest planning. Canadian 

Journal of Forest Research, 44, 1274-1280. 

Garcia-Gonzalo J, Pais C, Bachmatiuk J, Weintraub A (2016) Accounting climate change in a 

stochastic optimization model in forest planning. Canadian Journal of Forest 

Research(ja). 

Gove JH, Fairweather SE (1992) Optimizing the management of uneven-aged forest stands: a 

stochastic approach. Forest Science, 38, 623-640. 

Guyette RP, Stambaugh MC, Dey DC (2010) Developing and using fire scar histories in the 

Southern and Eastern United States. Joint Fire Science Program Final Report. 

Gonzalez JR, Palahi M, Trasobares A, Pukkala T (2006) A fire probability model for forest 

stands in Catalonia (north-east Spain). Annals of Forest Science, 63,169-176. 

Hildebrandt P, Knoke T (2011) Investment decisions under uncertainty-a methodological review 

on forest science studies. Forest Policy and Economics, 13, 1-15. 

Hanewinkel M, Hummel S, Albrecht A (2011) Assessing natural hazards in forestry for risk 

management: a review. European Journal of Forest Research, 130, 329-351. 

Hicks RR (1998) Ecology and management of central hardwood forests, John Wiley & Sons. 

Liang J, Buongiorno J, Monserud RA (2006) Bootstrap simulation and response surface 

optimization of management regimes for Douglas-fir/western hemlock stands. Forest 

Science, 52, 579-594. 

Lin CR, Buongiorno J (1998) Tree diversity, landscape diversity, and economics of maple-birch 

forests: implications of Markovian models. Management Science, 44, 1351-1366. 



121 
 

Lampin-Maillet C, Jappiot M et al. (2010) Mapping wildland-urban interfaces at large scales 

integrating housing density and vegetation aggregation for fire prevention in the South of 

France. Journal of Environmental Management, 91, 732-741. 

Ma W, Zhou M (2016) Assessments of management impacts on central hardwood forests under 

climate and fire uncertainty. Forest Science (Under review). 

Ma W, Liang J, Cumming JR et al. (2016) Fundamental shifts of central hardwood forests under 

climate change. Ecological Modelling, 332, 28-41. 

Millar CI, Stephenson NL, Stephens SL (2007) Climate change and forests of the future: 

managing in the face of uncertainty. Ecological applications, 17, 2145-2151. 

Miller GW, Schuler TM, Smith HC (1995) Method for applying group selection in central 

Appalachian hardwoods. USDA For. Serv. Res. Pap. NE-696. 

Miller GW, Johnson JE, Baumgras JE (1997) Deferment cutting in central Appalachian 

hardwoods: an update. Forest Landowner, 56, 28-31. 

Perry DA, Maghembe J (1989) Ecosystem concepts and current trends in forest management: 

time for reappraisal. Forest Ecology and Management, 26, 123-140. 

Pasalodos-Tato M, Makinen A, et al. (2013). Assessing uncertainty and risk in forest planning 

and decision support systems: review of classical methods and introduction of new 

approaches. Forest Systems. 22, 282-303. 

Penman J, Gytarsky M, et al. (2003) Good practice guidance for land use, land-use change and 

forestry. Institute for Global Environmental Strategies. 

Reeves LH, Haight RG (2000) Timber harvest scheduling with price uncertainty using 

Markowitz portfolio optimization. Annals of Operations Research, 95, 229-250. 



122 
 

Rockafellar RT, Wets RJ (1991) Scenarios and policy aggregation in optimization under 

uncertainty. Mathematics of operations research, 16, 119-147. 

Sharon W, Barbara L, Barbara M, et al. (2011) The forest inventory and analysis database: 

database description and users manual version 5.1 for phase 2. 

Sturtevant BR, Scheller RM, et al.  (2009) Simulating dynamic and mixed-severity fire regimes: 

a process-based fire extension for LANDIS-II. Ecological Modelling, 220, 3380-3393. 

Tahvonen O, Kallio M (2006) Optimal harvesting of forest age classes under price uncertainty 

and risk aversion. Natural Resource Modeling, 19, 557-585. 

Thompson MP, Calkin DE (2011) Uncertainty and risk in wildland fire management: a 

review. Journal of Environmental Management, 92, 1895-1909. 

Veliz FB, Watson JP, Weintraub A et al. (2015) Stochastic optimization models in forest 

planning: A progressive hedging solution approach. Annals of Operations Research, 232, 

259-274. 

Wets RJ (1975) On the relation between stochastic and deterministic optimization. Control 

Theory, Numerical Methods and Computer Systems Modelling.  

Yousefpour R, Jacobsen JB, et al. (2012) A review of decision-making approaches to handle 

uncertainty and risk in adaptive forest management under climate change. Annals of 

Forest Science, 69, 1-15. 

Yang J, He HS, Gustafson EJ (2004) A hierarchical fire frequency model to simulate temporal 

patterns of fire regimes in LANDIS. Ecological Modelling, 180, 119-133. 

Zhou M, Liang J, Buongiorno J (2008a) Adaptive versus fixed policies for economic or 

ecological objectives in forest management. Forest Ecology and Management, 254, 178-

187. 



123 
 

Zhou M, Buongiorno J, Liang J (2008b) Economic and ecological effects of diameter caps: a 

Markov decision model for Douglasfir/Western hemlock forests. Forest Science, 54, 397-

407. 

Zhou M, Buongiorno J (2006) Forest landscape management in a stochastic environment, with 

an application to mixed loblolly pine–hardwood forests. Forest Ecology and 

Management, 223, 170-182. 

Zhou M, Buongiorno J (2011) Effects of stochastic interest rates in decision making under risk: a 

Markov decision process model for forest management. Forest Policy and Economics,  

13, 402-410. 

Zhou M (2015) Adapting sustainable forest management to climate policy uncertainty: A 

conceptual framework. Forest Policy and Economics, 59, 66-74. 

  



124 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Summary 
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At first, I built an integrated framework to synchronously couple forest dynamics, mean fire 

interval, population density, and future climate scenarios for the CHR forests. The framework 

predicted a transition of dominant species from oak and hickory to maple species, reduced 

species diversity, and substantial declines in stand basal area and volume, from the present to 

2100. These projections may have profound ecological and economic implications and call for 

adaptive management strategies and policies in response to predicted species shifts and 

associated changes in ecosystem services. Additionally, I quantified how various management 

intensities would influence the CHR forests in terms of the NPV, tree diversity, and carbon 

stocks in four pools. Predictions were based on simulations of forest growth under fire uncertain 

and subject to low, medium, and high management intensities in four IPCC future climate 

scenarios. Partial harvesting practice, diameter-limit harvesting, and diameter-cap harvesting 

were assessed with harvesting cycles of 10 and 20 years. Finally, I developed a multi-stage 

scenario-based optimization model that accounts for uncertainty in climate change and 

associated fire disturbance in an effort to determine the tradeoff between economic and 

ecological benefits and derive optimal decision. According to the results obtain from this study, 

the following conclusions can be drawn: 

  (1) The total stand basal area in CHR would decline dramatically and converge to around 

14.9 m2 ha-1 for RCP2.6, followed by 14.2 m2 ha-1 for RCP4.5, 14.0 m2 ha-1 for RCP6.0, and the 

lowest 13.0 m2 ha-1 for RCP8.5. Similarly, total stand volume converged to 330 m3 ha-1 for 

RCP2.6, followed by 313 m3 ha-1 for RCP4.5, 310 m3 ha-1 for RCP6.0, and 308 m3 ha-1 for 

RCP8.5. Tree size diversity increased by 27.9 – 30.6% over the first 20 years, and then decreased 

to a level similar to the present. In contrast, tree species diversity would gradually decline by 9.6 
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– 11.5% over the next 90 years. These changes in forest structure within the CHR will have 

regional ecological and economic repercussions.  

(2) Low intensity would have the highest carbon stocks and size diversity but generate 

the lowest NPV and species diversity; medium intensity would lead to lower carbon stocks but 

produce satisfactory species diversity, size diversity, and NPV; high intensity would result in the 

lowest carbon stocks and size diversity while have the highest NPV and species diversity. 

However, diameter-cap harvesting had opposite trend for species diversity. The NPV of harvests 

with a harvesting cycle 10-year was more than twice of that with 20 years, but carbon stocks 

were only 1.3% – 5.0% lower. In addition, more intensive harvests of oak trees, which produced 

highest carbon stocks among all management criteria, would lead to higher NPV (453% – 625%), 

size diversity (14.5% – 18.4%) and carbon stocks (4.1% – 5.8%), but lower species diversity 

(14.7% – 20.3%), than of maple trees with both harvesting cycles.  

(3) Four future climate scenarios and attendant fire intervals combined with two fire 

severity regimes were transformed into 36 and 20 tree growth scenarios for harvesting cycles of 

10 and 20 years, respectively. With a single management objective, the maximum NPV varied 

from $ 30,396 to $ 35,378 ha-1 for 36 scenarios with harvesting every 10 years, and $ 17,838 to 

$ 18,992 ha-1 (53.7% – 58.7% of 10 years) for 20 scenarios with doubled harvesting cycle. Under 

both harvesting cycles, the optimization approach produced 9.7% – 22.4% (10 years) and 29.7% 

– 38.1% (20 years) more NPV than fixed management rules. The multi-criteria model revealed 

that the opportunity cost of storing additional carbon was much higher than enhancing tree 

species and size diversity. In addition, for all three criteria, the marginal change in NPV for one 

additional unit of weight continuously declined as the ecological criteria improved.  
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Appendix A. Supplemental Information for Chapter 2 

Matrix Growth Model Structure 

 

Gt and Git are matrices used to model stand dynamics, where: 
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in which aijt represented the probability that a tree of species i and diameter class j stays alive in 

the same diameter class between t and t + 1. bijt, the probability of upgrowth, was estimated as 

the tree diameter growth gijt between t and t + 1 divided by the width of the diameter class, 

assuming that trees were evenly distributed within a diameter class. aijt and bijt were related by: 

 

ijtijtijt mba 1
                                                                                                                         (S2)

 

where mijt was the probability of tree mortality between t and t + 1.  

R was a state-, time-, and climate-dependent recruitment vector representing the number of trees 

naturally recruited in the smallest diameter class of each species, between t and t + 1: 
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The diameter growth of the kth tree of species i and size class j from t and t + 1 was 

represented by the following model: 

 

ijiisidiiiiitkitkiiijtk PTHHSECBDDg   1110987654

2

321                           (S4)            

in which αi’s were parameters to be estimated with the generalized least squares (GLS, see (Rao, 

1973)) for species i. Diameter growth of species i and diameter class j, gijt was then calculated 

with Eq. (S4) in which Dtk was replaced by the midpoint of each diameter class Dj. 

Tree mortality, mijt, was estimated with a Probit function: 

jiiisidiiiiitkitkiiijtk PTHHSECBDDm   )( 1110987654

2

321      (S5) 

where Ф was the standard normal cumulative function, δis were parameters estimated by 

maximum likelihood. Mortality of species i and diameter class j, mijt was then calculated with Eq. 

(S5) in which Dtk was replaced by the midpoint of each diameter class Dj. 

Recruitment of species i, Ri was estimated with a Tobit model (Tobin, 1958a, b): 

)()(
11 

 itiiiitiiitiit xxxR                        (S6) 

with  

ijiisidiiiiiiiiiti PTHHSECBNNx   1110987654

2

321     (S7)        

where Ф was the standard normal cumulative distribution function and φ was the standard 

normal probability density function. The Tobit model explicitly accounts for unobserved 

recruitment values that are left-censored at the preset diameter limit (2.54 cm).     

Stand Volume Model 

Total stand volume are calculated with the following equation: 

ti ' yvv                 (S8) 
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where v was a vector of single-stem volume by size and species (vij), which was represented by 

the following full model: 

ijiitkitkiiji CBDDv   )1ln()1ln()1ln()1ln()1ln( 54

2

321,                   (S9) 

Table 1 shows a complete list of the explanatory variables. Diameter and its square (D, 

D2) were used in the individual tree models (diameter growth, mortality) to capture the nonlinear 

effects of diameter. The number of trees of that species and its square (Ni, Ni
2), representing the 

size of seed bank (Peterson et al., 2013), were only used in the stand-level recruitment model. 

Many existing Matrix models used basal area (B) and site productivity (C) as key predictors, due 

to their significant effects on forest dynamics (Namaalwa et al., 2005; Boltz and Carter, 2006). 

Physiographic variables, elevation (E) and slope (S) were used to control for the site productivity 

(Lennon et al., 2002). In addition, stand diversity metrics of structural and species diversity were 

included to explicitly account for the effects of diversity on forest dynamics (Gustafson and 

Crow, 1996). Both structural (Hs) and species diversity (Hd) were calculated with Shannon’s 

formulas (Pielou, 1977a).   
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where Bi, Bj and B were, respectively, the basal area of species group i, size-class j and total 

basal area.  

Mean Fire Interval Model 

 

The MFI was predicted with the following equation, in the unit of years:  

dcbaeCMFI  00763.041.250.1139.0

                                                                              (S11)  

 

In which C was a constant and took the value of 59.12 for average-intensity fire models, 69.17 
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for low severity fire models, and 108.19 for high severity fire models. a was the mean maximum 

temperature (°C), b was the reciprocal moisture index (1/cm/°C), c was human population 

density (per km2), and d was the mean annual total precipitation (cm).  

Fire, as a bottom-up disturbance, has various impacts on species and affects smaller size 

classes first. Five fire tolerance classes (FTC’s) were designed to reflect the difference in fire 

tolerance among species. Based on the biological characteristic, Fagus (FG) had the lowest fire 

tolerance (I) and Gymnosperms (GS) had the highest fire tolerance (V). Other Angiosperms (OA) 

and Sapindaceae (SD) are designated as categories II and III, respectively, while Quercus – 

Quercus (QQ), Quercus – Lobatae (QL), and Juglandaceae (JD) are assigned to IV (Starker, 

1934). Fire susceptibility classes (FSC’s) were designed to reflect differences related to tree sizes 

within each species group. I defined the diameter size-span proportions (He and Mladenoff, 1999) 

as the ratio of diameter size to tree total diameter. Five diameter size-span proportions (0–20, 

21–50, 51–70, 71–85, and 85–100%) corresponded to diameter size classes 1-3, 4-8, 9-11, 12-14, 

and 15-17, and each represented a FSC from A to E, respectively. Class A was the most 

susceptible to fire-induced mortality, and class E was the least susceptible. Whether a species 

group of a certain range of diameter sizes can survive a fire event of a given severity class were 

jointly determined by FTC and FSC. Five fire severity levels (He and Mladenoff, 1999) were 

defined and their impacts varied across FSC and FTC.  For example, a severity level 1 fire would 

kill most FG) trees (FTC I) except for those with the largest diameter (FSC E), but had no 

impact on QQ, QL, and JD (FTC IV). When a severity level 5 fire occurred, all trees were to be 

removed (Table S6).  
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Table A1. Species frequency in terms of basal area in the CHR.  

Common name                         Scientific name Frequency (%) 

Quercus – Quercus (QQ) 

White oak Quercus alba 13.94 

Chestnut oak Quercus prinus 3.33 

Post oak Quercus stellata 3.10 

Chinkapin oak Quercus muehlenbergii 2.09 

Swamp white oak Quercus bicolor 0.06 

Bur oak Quercus macrocarpa 0.03 

Swamp chestnut oak Quercus michauxii 0.02 

Quercus – Lobatae (QL) 

Black oak Quercus velutina 10.94 

Northern red oak Quercus rubra 5.77 

Scarlet oak Quercus coccinea 2.70 

Southern red oak                            Quercus falcata 1.03 

Pin oak Quercus palustris 0.50 

Blackjack oak Quercus marilandica 0.45 

Shumard oak Quercus shumardii 0.21 

Cherrybark oak Quercus pagoda 0.20 

Shingle oak Quercus imbricaria 0.18 

Willow oak Quercus phellos 0.05 

Water oak Quercus nigra 0.04 

Juglandaceae (JD) 

Pignut hickory Carya glabra 4.67 

Mockernut hickory Carya alba 3.10 

Shagbark hickory Carya ovata 3.00 

Hickory spp. Carya spp. 2.06 

Bitternut hickory Carya cordiformis 1.39 

Black walnut Juglans nigra 1.14 

Black hickory Carya texana 0.79 

Shellbark hickory Carya laciniosa 0.16 

Sand hickory Carya pallida 0.05 

Butternut Juglans cinerea 0.04 

Red hickory Carya ovalis 0.02 

Pecan Carya illinoinensis 0.01 

Sapindaceae (SD) 

Sugar maple Acer saccharum 4.50 

Red maple Acer rubrum 4.42 

Boxelder Acer negundo 0.14 

Silver maple Acer saccharinum 0.07 

Florida maple Acer barbatum 0.06 

Striped maple Acer pensylvanicum 0.04 

Gymnosperms (GS) 

Eastern redcedar Juniperus virginiana 1.79 

Shortleaf pine Pinus echinata 0.73 

Virginia pine Pinus virginiana 0.68 

Eastern white pine Pinus strobus 0.46 

Eastern hemlock Tsuga canadensis 0.43 
Pitch pine Pinus rigida 0.13 

Loblolly pine Pinus taeda 0.09 

Table mountain pine Pinus pungens 0.02 
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Hemlock spp. Tsuga spp. 0.01 

Norway spruce Picea abies <0.01 

Douglas fir Pseudotsuga menziesii <0.01 

Scotch pine Pinus sylvestris <0.01 

Carolina hemlock Tsuga caroliniana <0.01 

Red pine Pinus resinosa <0.01 

Fagus (FG) 

American beech Fagus grandifolia 1.94 

Other Angiosperms (OA) 

Yellow-poplar Liriodendron tulipifera 3.85 

White ash Fraxinus americana 2.34 

Black gum Nyssa sylvatica 1.91 

Sassafras Sassafras albidum 1.42 

Black cherry Prunus serotina 1.30 

American elm Ulmus americana 1.10 

Flowering dogwood Cornus florida 1.06 

Sourwood Oxydendrum arboreum 0.96 

Sweet gum Liquidambar styraciflua 0.95 

Slippery elm Ulmus rubra 0.84 

Black locust Robinia pseudoacacia 0.81 

American sycamore Platanus occidentalis 0.70 

Green ash Fraxinus pennsylvanica 0.69 

Winged elm Ulmus alata 0.64 

American basswood Tilia americana 0.58 

Sweet birch Betula lenta 0.53 

Eastern hophornbeam Ostrya virginiana 0.42 

Hackberry Celtis occidentalis 0.38 

Eastern redbud Cercis canadensis 0.32 

Common persimmon Diospyros virginiana 0.31 

Yellow buckeye Aesculus flava 0.29 

Cucumbertree Magnolia acuminata 0.23 

Bigtooth aspen Populus grandidentata 0.19 

Ailanthus Ailanthus altissima 0.17 

Honeylocust Gleditsia triacanthos 0.16 

Red mulberry Morus rubra 0.15 

American hornbeam, musclewood Carpinus caroliniana 0.14 

Blue ash Fraxinus quadrangulata 0.12 

Sugarberry Celtis laevigata 0.10 

Serviceberry spp. Amelanchier spp. 0.07 

Osage-orange Maclura pomifera 0.07 

River birch Betula nigra 0.06 

Ohio buckeye Aesculus glabra 0.05 

Hawthorn spp. Crataegus spp. 0.04 

Eastern cottonwood Populus deltoides 0.04 

Basswood spp. Tilia spp. 0.03 

Ash spp. Fraxinus spp. 0.03 

Yellow birch Betula alleghaniensis 0.03 

Paulownia, empress-tree Paulownia tomentosa 0.03 

Basswood spp. Tilia spp. 0.03 

Chittamwood, gum, bumelia 
Sideroxylon lanuginosum ssp. 

lanuginosum 
0.02 

Birch spp. Betula spp. 0.02 
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Mountain or fraser, magnolia Magnolia fraseri 0.02 

Apple spp. Malus spp. 0.02 

Pawpaw Asimina triloba 0.02 

Quaking aspen Populus tremuloides 0.02 

Sweet cherry, domesticated Prunus avium 0.02 

Elm spp. Ulmus spp. 0.02 

Kentucky coffeetree Gymnocladus dioicus 0.01 

American holly Ilex opaca 0.01 

White basswood Tilia americana var. heterophylla 0.01 

Smoketree Cotinus obovatus 0.01 

Unknown dead hardwood Tree broadleaf 0.01 

Other or unknown live tree Tree unknown 0.01 

Downy hawthorn Crataegus mollis <0.01 

All Species 100.00 
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Table A2. Summary statistics of plot-level variables. 

Variables Mean SD Max Min 

B (m2 ha-1) 23.44 12.69 108.89 0.11 

C (m3 ha-1 yr-1) 4.85 2.14 15.41 0.66 

Hs 1.20 0.32 1.92 0.00 

Hd 1.77 0.35 2.57 0.00 

T (°C) 13.08 1.66 17.02 6.45 

P (100 mm) 1.03 0.20 1.74 0.55 

t (year) 5.64 1.94 11.60 0.30 

E (km) 0.44 0.56 3.69 0.00 

S (°) 23.24 17.46 155.00 0.00 

N (trees ha-1)     

QQ 153.22 221.66 2379.98 0.00 

QL 119.82 208.87 3422.14 0.00 

JD 164.33 257.61 3703.29 0.00 

SD 178.36 330.32 4162.80 0.00 

GS 59.29 180.65 3051.82 0.00 

FG 27.14 127.72 2740.95 0.00 

OA 503.27 569.70 4735.73 0.00 

R (trees ha-1 yr-1)     

QQ 2.46 12.70 302.21 0.00 

QL 2.38 12.94 344.49 0.00 

JD 3.20 15.52 255.40 0.00 

SD 5.64 22.32 370.33 0.00 

GS 1.99 13.02 272.77 0.00 

FG 1.18 9.71 236.38 0.00 

OA 18.84 48.13 673.32 0.00 

B (m2 ha-1)     

QQ 5.30 5.30 61.95 0.00 

QL 5.18 5.80 81.39 0.00 

JD 3.84 4.18 40.46 0.00 

SD 2.16 3.60 45.20 0.00 

GS 1.02 2.53 38.86 0.00 

FG 0.45 1.65 29.59 0.00 

OA 5.49 6.40 85.17 0.00 

B for R (m2 ha-1)     

QQ 0.016 0.153 8.605 0.00 

QL 0.015 0.107 3.926 0.00 

JD 0.018 0.093 3.131 0.00 

SD 0.020 0.067 1.782 0.00 

GS 0.009 0.052 1.290 0.00 

FG 0.003 0.025 1.383 0.00 

OA 0.058 0.165 3.602 0.00 

Note: t (interval) and R (recruitment) are between the two inventories, and all the remaining variables are at the time 

of the first inventory. SD: standard deviation.  
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Table A3. Summary statistics for tree level variables. 

 Species 

 QQ  QL JD SD GS FG OA 

 D (cm) 

Mean 25.71 28.21 22.45 18.51 19.30 24.32 18.25 

SD 12.19 13.24 10.23 10.27 9.16 17.19 11.26 

Max 101.09 119.89 87.12 103.38 83.57 125.48 115.57 

Min 2.54 2.54 2.54 2.54 2.54 2.54 2.54 

n 28740 22521 24195 16122 6871 2188 37435 

 g (cm year-1) 

Mean 0.28 0.40 0.24 0.27 0.25 0.32 0.26 

SD 0.24 0.26 0.22 0.26 0.25 0.26 0.29 

Max 6.77 4.11 4.19 3.91 2.95 3.87 7.99 

Min -6.35 -2.19 -4.17 -3.27 -2.44 -0.99 -10.89 

n 28740 22521 24195 16122 6871 2188 37435 

 m (year-1) 

Mean 0.018 0.034 0.016 0.018 0.048 0.013 0.041 

SD 0.062 0.080 0.060 0.063 0.103 0.049 0.097 

Max 1.000 1.000 1.000 1.000 1.000 0.476 1.000 

Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

n 31720 27224 26356 17699 8838 2350 46867 

Note: D (diameter at breast height) was calculated at the first inventory, g (annual diameter growth) and m (annual 

mortality) were between the two inventories. SD: standard deviation; n: number of trees.  
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Table A4. Independent contribution (%) of independent variables to the goodness-of-fit of dependent variables. 

    QQ    QL     JD    SD    GS    FG  OA 

Diameter growth 

D 16.8 * 19.1 * 20.0 * 18.7 * 13.8 ** 15.1 *                      19.1   * 

B 7.1 ** 8.0 ** 8.2 ** -  -  -                        -  

Hd -  8.2 ** 7.6 ** -  -  9.9 **                   -  

P 2.9 ** 1.7 ** 1.5 ** 1.2 *** 1.4 *** 4.6 **                     1.1 *** 

T 1.8 ** 1.3 *** 1.3 ** 2.2 ** 2.2 *** 4.6 **            1.0     *** 

Mortality 

D 15.0 ** 11.0 ** 9.7 ** -  -  -                     7.6 ** 

B 13.5 ** 19.7 ** 16.2 ** 37.3 ** -  -                  22.1 ** 

Hs -  -  -  -  30.3 ** -                         -  

Hd -  -  -  -  -  23.2 **                    -  

S -  -  -  -  -  9.4 **                    -  

C -  -  -  -  -  8.5 **                    -  

P 2.3 *** 2.2 *** 5.4 ** 1.9 *** 2.9 *** 4.7 ***                     2.8 *** 

T 1.8 *** 2.0 *** 4.1 *** 3.9 *** 5.5 ** 4.4 ***                     2.4 *** 

Recruitment 

N 10.7 ** 20.0 ** 13.4 ** 19.4 ** 22.4 ** 20.5 *                       11.5 ** 

B -  -  -  -  -  -                     7.3 ** 

Hs 9.5 ** -  -  -  -  -                 -  

Hd 10.3 ** -  8.4 ** -  -  -                 -  

E -  -  -  -  -  -                     7.2 ** 

P 9.1 ** 6.8 ** 8.3 ** 4.6 ** 5.0 ** 0.7 ***                  11.4   ** 

T 3.4 *** 2.2 *** 3.1 *** 2.4 *** 1.3 *** 0.6 ***                      5.9 ** 

Note: Significance levels: *<0.05; **<0.01; ***<0.001; bold numbers represent independent contribution (%) of 

each explanatory variable that are larger than the average contribution. 
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Table A5. Estimated parameters of each explanatory variable to the goodness-of-fit of the response variables for the 

matrix model. 

     QQ    QL    JD      SD       GS      FG    OA 

Diameter growth 

Const 0.066 *** 0.202 *** 0.051 *** 0.077 *** 0.181 *** 0.492 ***            0.0619    *** 

D 0.006 *** 0.007 *** 0.009 *** 0.004 * -0.001 * 0.004 *                0.0194    *** 

D2 -0.0001 *** -0.0001 *** -0.0001 ***   -0.0001 * -0.0001 ***      -0.0004 *** 

Hd           -0.167 ***   

P*D 0.003 *** 0.001 * 0.001 * 0.002  -0.003 * 0.001 *                 0.0026   ** 

P*D2       -0.0001 * 0.0001 *   -0.0001   * 

P*B   0.018  -0.016 *         

T*D 0.0002 *** 0.0001  0.00004  0.001 *** 0.001 *** 0.0003 *     -0.0006 *** 

T*D2       -0.0001 * -0.0001 *   0.00002   *** 

T*B   -0.002 * 0.001          

Mortality 

Const -0.418 *** -0.723 *** -0.570 *** -1.200 *** 0.066 * -1.465 ***   -0.5454 *** 

D -0.007  0.044 *** -0.051 ***         

D2 0.001 ***   0.001 ***         

B -1.372 *** -1.631 *** -1.494 *** -0.953 ***       -0.9055 *** 

Hs         -0.665 ***     

Hd           -0.285    

S           0.018 *   

C           0.035 *   

P*D -0.021 *** -0.039 ***           

P*B 0.567 *** 0.899 *** 0.459 *** 0.290 **       0.1885 *** 

P*Hs         0.079 *     

P*S           -0.002    

P*C               

T*D -0.002 **             

T*B 0.036 * 0.025 ** 0.030 ** 0.029 *     0.0098  

T*Hs         -0.004 *     

T*S           -0.001 *   

Recruitment 

Const 32.102  -79.636 *** -36.633 *** -80.766 *** -0.010 *** -0.012 ***    0.1220  

N 0.186 *** 0.313 *** 0.121 *** 0.166 *** 0.189 ** 0.212    0.1020 *** 

N2 -0.046 *** -0.004  -0.022 *** -0.041 ***   -0.463 *      0.0008  

Hd -18.360 ***             

Hs -20.975    3.572          

P -65.815 *          -   0.5110 * 

P2 6.071              0.0001 * 

P*N -0.035 * -0.131 *** 0.010 * -0.021 * -0.028 * -0.011 *      -0.0114  

P*Hs 15.286              

P*Hd     -25.734 ***         

T*N -0.004 * -0.004 * -0.004 * -0.002  -0.005  0.008  -0.0053 ** 

T*N2   -0.004        0.023 *   

T*P             -0.8770  

Note: Significance levels: *<0.05; **<0.01; ***<0.001. 
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    Table A6. Fire impacts on different species groups and size classes.  

FSC       FTC 
FG 

Ⅰa 

OA 

Ⅱ 

SD 

Ⅲ 

QQ, QL, JD 

Ⅳ 

GS 

Ⅴ 

Ab 

(1-3)c 
1d,2,3,4,5 1,2,3,4,5 1,2,3,4,5 2,3,4,5 3,4,5 

B 

(4-8) 
1,2,3,4,5 1,2,3,4,5 2,3,4,5 3,4,5 4,5 

C 
(9-11) 

1,2,3,4,5 2,3,4,5 3,4,5 4,5 5 

D 

(12-14) 
1,2,3,4,5 2,3,4,5 3,4,5 4,5 5 

E 

(15-17) 
2,3,4,5 3,4,5 4,5 5 5 

a Fire tolerance class (FTC). 
b Fire susceptibility class (FSC).  
c Diameter size classes (cm). 
d Fire severity level.  
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Table A7. Estimation of stem volume equations. 

                               Independence variable 

                 D               D2                B                C           Const  

QQ      

Coeff. -2.8444 0.5405 0.0066 -0.1428 3.7477 
SE 0.0170 0.0026 0.0011 0.0263 0.0282 
R2 0.9381     
df 28735    

QL      
Coeff. -2.6014 0.5059 0.0046 0.0212 3.3537 
SE 0.0514 0.0027 0.0012 0.0013 0.0296 
R2 0.9513     
df 22516    

JD      
Coeff -3.0946 0.5856 -0.0053 0.0238 4.1286 
SE 0.0004 0.0076 0.0029 0.0038 0.0868 
R2 0.9704     
df 24190    

SD      
Coeff -2.7661 0.5356 -0.0007 0.0147 3.6105 
SE 0.0180 0.0028 0.0011 0.0013 0.0295 
R2 0.9439     
df 16117    
GS      
Coeff -2.8477 0.5453 -0.0043 0.0110 3.7839 
SE 0.0177 0.0027 0.0011 0.0013 0.0291 
R2 0.9570     
df 6866    

FG      
Coeff -2.8420 0.5346 0.0052 0.0499 3.7400 
SE 0.0298 0.0046 0.0018 0.0019 0.0239 
R2 0.9456     
df 2183    

OA      
Coeff -2.9695 0.5617 0.0018 0.0248 3.9461 
SE 0.0144 0.0022 0.0008 0.0010 0.0051 
R2 0.9410     
df 37430    

Note: Stem volume equations were estimated by ordinary least squares. Independent and response variables are ln+1 

transformed. The dependent variable, volume, is measured in units of trees. Coeff, coefficient; SE, standard error; R2, 

coefficient of determination; df, degrees of freedom. 
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Figure A1. The projected population density of CHR from year 2000-2100. 
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Figure A2. The basal area for QQ under wildfire disturbance with four climate scenarios RCP2.6, RCP4.5, RCP6.0, 

and RCP8.5 from year 2010-2100. 
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Figure A3. The basal area for QL under wildfire disturbance with four climate scenarios RCP2.6, RCP4.5, RCP6.0, 

and RCP8.5 from year 2010-2100. 
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Figure A4. The basal area for JD under wildfire disturbance with four climate scenarios RCP2.6, RCP4.5, RCP6.0, 

and RCP8.5 from year 2010-2100. 
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Figure A5. The basal area for SD under wildfire disturbance with four climate scenarios RCP2.6, RCP4.5, RCP6.0, 

and RCP8.5 from year 2010-2100. 
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Figure A6. The basal area for GS under wildfire disturbance with four climate scenarios RCP2.6, RCP4.5, RCP6.0, 

and RCP8.5 from year 2010-2100. 
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Figure A7. The basal area for FG under wildfire disturbance with four climate scenarios RCP2.6, RCP4.5, RCP6.0, 

and RCP8.5 from year 2010-2100. 
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Figure A8. The basal area for OA under wildfire disturbance with four climate scenarios RCP2.6, RCP4.5, RCP6.0, 

and RCP8.5 from year 2010-2100. 
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Appendix B. Supplemental Information for Chapter 3 

Table B1. Definitions and units of variables used in the climate-sensitive matrix model for the Central Hardwood 

forests. 

Variable Unit Definition/explanation 

B  m2 ha-1 Total stand basal area 

C  m3 ha-1 yr-1 Site productivity  

D cm Diameter at breast height 

g cm yr-1 Annual diameter growth 

E km Plot elevation 

S degrees Plot slope 

Hd  Tree size diversity in Shannon’s index 

Hs 

  

 Tree species diversity in Shannon’s index 

T °C Mean annual temperature 

P 100 mm month-1 Annual average of monthly mean precipitation 

m yr-1 Annual tree mortality  

N  trees ha-1 Number of trees per hectare  

R trees ha-1 yr-1 Recruitment, the number of trees per hectare growing 

into the smallest diameter class (2.54-7cm) in a year  
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Table B2. Estimated parameters of stem volume equations of the Central Hardwood forests.  

                               Independence variable 

                 D               D2                B                C           Const  

QQ      

Coeff. -2.8444 0.5405 0.0066 -0.1428 3.7477 
SE 0.0170 0.0026 0.0011 0.0263 0.0282 
R2 0.9381     
df 28735    

QL      
Coeff. -2.6014 0.5059 0.0046 0.0212 3.3537 
SE 0.0514 0.0027 0.0012 0.0013 0.0296 
R2 0.9513     
df 22516    

JD      
Coeff -3.0946 0.5856 -0.0053 0.0238 4.1286 
SE 0.0004 0.0076 0.0029 0.0038 0.0868 
R2 0.9704     
df 24190    

SD      
Coeff -2.7661 0.5356 -0.0007 0.0147 3.6105 
SE 0.0180 0.0028 0.0011 0.0013 0.0295 
R2 0.9439     
df 16117    

GS      
Coeff -2.8477 0.5453 -0.0043 0.0110 3.7839 
SE 0.0177 0.0027 0.0011 0.0013 0.0291 
R2 0.9570     
df 6866    

FG      
Coeff -2.8420 0.5346 0.0052 0.0499 3.7400 
SE 0.0298 0.0046 0.0018 0.0019 0.0239 
R2 0.9456     
df 2183    

OA      
Coeff -2.9695 0.5617 0.0018 0.0248 3.9461 
SE 0.0144 0.0022 0.0008 0.0010 0.0051 
R2 0.9410     
df 37430    

Note: Stem volume equations were estimated by ordinary least squares. Independent and response variables are ln+1 

transformed. The dependent variable, volume, is measured in units of trees. Coeff, coefficient; SE, standard error; R2, 

coefficient of determination; df, degrees of freedom. 
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Table B3. Chemical composition of litter and relative proportion to Yasso07 compartments. 

 

 

 

 

 

 

Liski et al. (2009) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Litter type Yasso07 compartments 

 A W E N H 

Fine root 0.510  0.130  0.130  0.230  0.000  

Foliage 0.560  0.150  0.150  0.140  0.000  

Branch, coarse root 0.660  0.015  0.015 0.310  0.000  

Stem, stump 0.690 0.005  0.005  0.300  0.000  
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Table B4. Litter size classification. 

Species 

group* 

                                                               Litter size classes  

                   Class 1  

                Non woody  

        (needle & fine roots)  

                     (cm) 

              Class 2  

            Fine woody  

(branches and coarse roots)  

                 (cm) 

           Class 3  

      Coarse woody  

(stem & stumps)  

        (cm) 

QQ                         0                  2.5              12 

QL                         0                  2.5              12 

JD                         0                  2.5              12 

SD                         0                  2.0              10 

GS                         0                  2.0              10 

FG                         0                  1.5              08 

OA                         0                  1.5              08 
* QQ: Quercus–Quercus (white oak species), QL: Quercus–Lobatae (red oak species), JD: Juglandaceae (Hickory), 

SD: Sapindaceae (maple family), GS: Gymnosperms (Softwoods), FG: Fagus (American beech), OA: Other 

Angiosperms (other species). 
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