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Abstract

RESERVOIR CHARACTERIZATION USING

INTELLIGENT SEISMIC INVERSION

F. Emre Artun

Integrating different types of data having different scales is the major challenge in reser-

voir characterization studies. Seismic data is among those different types of data, which is

usually used by geoscientists for structural mapping of the subsurface and making interpre-

tations of the reservoir’s facies distribution. Yet, it has been a common aim of geoscientists

to incorporate seismic data in high-resolution reservoir description through a process called

seismic inversion. Using geostatistical models in this kind of studies becomes insufficient in

dealing with the uncertainty and the non-linearity, because of the stationarity assumption

of variogram models. As an alternate, soft computing has been widely used in reservoir

characterization, as a method which is tolerant of uncertainty, imprecision, and partial

truth.

In this study, a new intelligent seismic inversion methodology is presented to achieve a

desirable correlation between relatively low-frequency seismic signals, and the much higher

frequency wireline-log data. Vertical seismic profile (VSP) is used as an intermediate step

between the well logs and the surface seismic. A synthetic seismic model is developed by

using real data and seismic interpretation. This model represents the Atoka and Morrow

formations, and the overlying Pennsylvanian sequence of the Buffalo Valley Field in New

Mexico. Generalized regression neural network (GRNN) is used to build two independent

correlation models between; 1) Surface seismic and VSP, 2) VSP and well logs. After

generating virtual VSP’s from the surface seismic, well logs are predicted by using the

correlation between VSP and well logs. The values of the density log, which is a surrogate

for reservoir porosity, are predicted for each seismic trace through the seismic line with a

classification approach, having a correlation coefficient of 0.81. The same methodology is

then applied to real data taken from the Buffalo Valley Field, to predict interwell gamma ray

logs and neutron porosity logs through the seismic line of interest. The same procedure can

be applied to a complete 3D seismic block to obtain 3D distributions of reservoir properties

with less uncertainty than the geostatistical estimation methods, which would hopefully

help to increase the success of drilling new wells during field development.
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Chapter 1

Introduction and Motivation

1.1 Statement of the Problem

Reservoir characterization is the study of building a spatial numerical model of the reservoir

by using available appropriate data gathered from previous studies. This numerical model

is then used in flow simulators, which are used to predict the reservoir performance. Field

development plans are mainly based on these predictions. That is why an accurate and

reliable reservoir characterization study is indispensable in reservoir management. Due to

many different types of data available; the major challenge in reservoir characterization is

to integrate all different kinds of data in one accurate and high-resolution reservoir model.

The concept of data analysis forms the basis of reservoir characterization. In data

analysis, many issues about the data such as the uncertainty, unreliability, and large variety

of scales due to different origins of source must be taken into consideration. Together with

the immense size of data to deal with, these issues bring complex problems, which are

hard to address with conventional tools. That is why unconventional computation tools

have gained much interest in data analysis in recent years. Among those modern tools, the

use of intelligent systems is an example, which mimics the mechanism of the human mind

and, by which it is possible to deal with imprecision and partial truth [1]. Since the same

issues also apply to data that is used in reservoir characterization, it should not surprise us

that using intelligent systems in reservoir characterization studies has become a widely-used

method in the petroleum engineering literature.

Let’s consider different types of data used in reservoir characterization: core samples

provide very high resolution information about the reservoir (fraction of inches), while

seismic data have a resolution in tens of feet, and well logs have in one of inches. Because

1
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of its low resolution, seismic data is routinely used only to attain a structural view of the

reservoir. On the other hand, unlike core samples or well logs, which are only available at

isolated localities of a reservoir, seismic data frequently provides 3D coverage over a large

area. Because of this areal coverage, researchers have always aimed to use seismic data in

reservoir description.

Inverse modeling of reservoir properties from the seismic data is known as seismic in-

version in the literature. The process presented in this study includes modeling of the

well logs from seismic data, which is also an inverse modeling process (Figure 1-1). This

approach attracts a lot of interest and is very important because of the necessary shift from

exploration to development of existing fields [2].

Figure 1-1: Seismic inversion process. Modeling high-frequency well logs from low-
frequency seismic data [2].

1.2 Literature Review

1.2.1 Intelligent Reservoir Characterization

Reservoir characterization is a data-driven business. The common aim is to develop an

accurate reservoir model by making the best use of the available data. Issues like uncertainty,

size of the data to deal with, unreliability, and the data coming from different sources bring

the need of using unconventional tools such as soft computing. Some statistics basically

show how applying these new technologies can improve success of petroleum engineering

applications. The rate of success in exploration has risen to 40% in 1990 from 30% in the

1980s. Oil and gas well drilling success has risen to an average of 47% in 1996 from 3-30%

in the early 1990s. The U.S. gas production is expected to increase 2 trillion cubic feet
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(Tcf)/yr, and the U.S. oil production is expected to increase 100 million bbls/yr by using

these new techniques in data acquisition. In general; these techniques can be useful in

reducing costs and risks of exploration, and having more efficient production of remaining

oil and gas to increase the producing life of reservoirs [1].

As the problems in reservoir characterization get more complex with the multi-dimensional,

chaotic and imprecise data; they get harder to solve with the scope of human ability and

understanding. The classical data processing tools are becoming insufficient to deal with

such kinds of problems. Nikravesh and Aminzadeh [1] have made a list of data fusion and

data mining techniques, which are being replaced with the conventional tools (Table 1.1).

Table 1.1: Data fusion and data mining techniques [1].

Data mining techniques Data fusion techniques
Deductive database client Deterministic:

Trasform-based, functional evaluation-based,
Inductive learning correlation-based, optimization-based, ...

Clustering Non-deterministic:
Hypothesis testing, statistical estimation, discrimination

Case-based learning function, neural network, fuzzy logic, ...

Visualization Hybrid:
Genetic algorithms, Bayesian network, ...

Statistical package

They have defined the reservoir data mining concept with the chart shown in Figure

1-2, which shows the main components of an integrated reservoir characterization study.

They have classified the algorithms as rockphysical, geostatistical, and intelligent, which

can be used to obtain the reservoir properties from other sources of data such as seismic.

They have given examples for intelligent algorithms as; using supervised and unsupervised

training of artificial neural networks, clustering, genetic algorithms (GA), and simulated

annealing (SA). A comparison of geostatistical and intelligent algorithms is made in Table

1.2.

Intelligent algorithms have been used by many researchers in reservoir characterization.

One of the common applications is generating synthetic logs for undrilled locations by using

available log data gathered from existing wells. In other words, this process is logging a well
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prior to drilling, which may help to make decisions on locations of the development wells.

Figure 1-2: Reservoir data mining [1].

Mohaghegh et al. [3; 4] generated virtual magnetic resonance imaging (MRI) logs which

are useful in determining the critical parameters for reserve estimations such as; water

saturation, porosity and permeability. They have used available conventional logs such

as gamma ray, spontaneous potential (SP), caliper, density and resistivity. The neural

network is trained with the data of wells having all of these logs including the MRI logs.

The obtained neural network model is then applied to other wells in the field to generate

virtual MRI logs. In a similar study, among gamma ray, resistivity, density and neutron

logs, Rolon [5] generated synthetic density, resistivity and neutron logs separately by using

other three types of logs.

Another common application is estimating permeability by using logs and cores for net-

work training. Mohaghegh et al. [6] developed a back-propagation neural network model

with the permeability gathered from core samples as output, and gamma ray, density and

deep induction logs as inputs. The model has successfully predicted the permeability values

for the locations, which were not included in the training data of the neural network. In an-

other study, Arpat et al. [7] estimated permability using porosity, water saturation, depth,
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Table 1.2: Comparison of geostatistical and intelligent algorithms [1].

Geostatistical Intelligent
Data: Data assumption: a certain Data automatic clustering and

probability distribution expert-guided segmentation
classification of relationship
between data and targets

Model: Weight functions come from Weight functions come from
variogram trend, stratigraphic supervised training based on
facies, and probability constraints geological and stratigraphic information

Simulation: Stochastic, not optimized Optimized by GA, SA, ANN, and BN.

and percentages of shale, dolomite and limestone as inputs. They have also used back-

propagation algorithm for training, and they have introduced a neighborhood approach,

which uses upper and lower neighbor data points as well in the input layer. As a different

type of application, Weiss et al. [8] estimated bulk volume oil and oil production rate for the

first year in the Lower Brushy Canyon, by using LLD, LLS, density porosity, and neutron

porosity as inputs. They have selected those types of logs after applying fuzzy ranking to

all available logs.

Using intelligent systems in reservoir characterization is getting more common each

day, as the oil industry realizes the power of such kinds of tools, and their applicability in

petroleum engineering. Many applications other than the ones presented here can be found

in the petroleum engineering literature.

1.2.2 Seismic Inversion

Incorporating seismic data in reservoir description studies has attracted a lot of interest

through out the years. Barnes [9] recently summarized the modern seismic pattern recog-

nition process, which includes feeding a set of seismic attributes together with other types

of data such as logs to obtain information about the reservoir facies distribution, lithology

and other reservoir properties. The flow chart of this process includes using a black-box

algorithm such as neural networks as a prediction or classification tool (Figure 1-3).
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Figure 1-3: Basic flow chart of seismic pattern recognition (multi-attribute analysis) [9].

Seismic inversion has been applied by several authors with different approaches. Hamp-

son et al. [2] and Leiphart and Hart [10] have compared different techniques such as multiple

linear regression, backpropagation and probabilistic neural networks. They have predicted

porosity logs from seismic attributes and both have suggested probabilistic neural networks

to use in this type of problems considering its mathematical simplicity and success.

Balch et al. [11] have used fuzzy ranking to see which type of seismic attribute is related

to the target reservoir property. They have modeled correlations between those selected

attributes and porosity, water saturation and net pay thickness by using a backpropagation

neural network. Chawathe et al. [12] used neural networks to predict gamma ray log

from seismic attributes; amplitude, phase, frequency, reflection strength, and quadrature.

However, they have used higher-resolution crosswell seismic data instead of surface seismic

as a new approach. Soto and Holditch [13] have used the same types of attributes from

surface seismic to predict the gamma ray log with neural networks.

Reeves et al. [14] introduced a new methodology, which divides the whole seismic inver-

sion problem into two parts. They have considered cross-well tomography as an intermediate

step in their procedure, after finding a correlation between surface seismic and cross-well

seismic. They have suggested producing virtual cross-well seismic data, before dealing with

logs. Giving Chawathe et al.’s [12] work as an example, they stated that, well logs can
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easily be predicted from virtual cross-well seismic data. According to the authors, using

crosswell seismic as an intermediate scale data can provide improved vertical resolution,

increase constraints and reduce the uncertainty of reservoir description.

In this study, a similar methodology is followed. Instead of cross-well seismic which is

rather hard to obtain, vertical seismic profile (VSP) is incorporated into the study as the

intermediate scale data (Figure 1-4). This is due to the fact that VSP is available more

frequently, and is less expensive to obtain than cross-well tomography. It is a common type

of data that can be found in many fields.

Together with integrating a third type of data, another unique feature of this study

was developing a synthetic model and its integration in the research, before dealing with

real data. Having a synthetic seismic model that we had the full control of, gave the

opportunity to develop and test the proposed methodology better before applying it to

real data. This model represents the gas producing Atoka and Morrow formations with

the overlying Pennsylvanian sequence of the Buffalo Valley Field in New Mexico. Surface

seismic and VSP responses of this model are computed. Artificial neural networks are used

to develop two independent correlation models between; 1) Surface seismic and VSP, 2)

VSP and well logs. Density log has been selected as the target log, and is predicted from

the seismic line. In the second case, field data have been used and gamma ray and neutron

porosity distributions are produced through a seismic section.

Figure 1-4: Proposed correlation map. Two major steps of correlation: 1) Surface seismic
- VSP, 2) VSP - well logs.

1.3 Structure of the Thesis

This thesis includes 6 chapters:

• Chapter 1 is the current introduction chapter, which includes the statement of the

problem, literature review, and the structure of the thesis.
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• Chapter 2 is named as ‘Theoretical Background’ and it includes explanation of con-

cepts; seismic surveys, artificial neural networks, and basic correlation statistics based

on the methodology followed in this study.

• Chapter 3 and Chapter 4 are the chapters, which contain detailed analysis of the

synthetic model study, and the field study, respectively. Background information,

available data, and methodologies are explained in these chapters.

• Chapter 5 is the ‘Results and Discussions’ chapter, and it includes all results obtained

from two studies explained in Chapters 3 and 4, as well as their discussions.

• Chapter 6: ‘Concluding Remarks’ is the last chapter. The major conclusions of this

study, and potential future work is explained in that chapter.



Chapter 2

Theoretical Background

2.1 Seismic Surveys

2.1.1 The Seismic Method

The seismic method is the most widely used tool in the exploration of hydrocarbon reser-

voirs. It is a common method to obtain a structural view of the subsurface geology. The

basic theory of the seismic method is based on the movements of signals through the sub-

surface. Seismic surveys are usually done by two types of methods [15]:

1. Refraction Method: is useful in identifying rock units with acoustic velocity. It can

be used in detailing rock structure of deep, high-velocity carbonate and evaporite

sediments.

2. Reflection Method: is used relatively more than the refraction method, and it is useful

in identifying formation tops.

Before understanding the theory of the seismic method, some key terms should be

understood clearly. A seismic trace is the response of a single seismic detector to the

earth’s movement due to seismic energy. If these traces are displayed side-by-side, then it is

a seismic record (Figure 2-1). A processing stage comes after obtaining a seismic record, to

enhance the signal, to minimize noise and increase the resolution. These processed images

are then put together to produce the final output of the seismic survey: a seismic section

(Figure 2-2) [15].

9
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Figure 2-1: A seismic record [15].
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2.1.2 Seismic Principles

When a pebble is dropped into the water, one can observe waves propagated away from

the center, creating definite circles, which get larger and larger in diameter. The same

process can be observed in the vertical plane, which shows that wave propagation is a

three-dimensional phenomenon. Seismic wave propagation works out in the same way.

Once the seismic energy is induced to the ground by a vibrating or explosive source, energy

propagates through the layers of the earth. Considering the waves moving away from the

center, the leading wave is called the wave front [15].

Figure 2-2: A seismic section [15].

If the propagating wave strikes a boundary between two media having different velocities,

part of the energy is reflected from the boundary, and the remainder is transmitted into

the next layer. This way, the energy is divided into various components. These relative

portions of the energy transmitted and reflected are determined by the contrast in the

acoustic impedances of the rock layers on each side. Acoustic impedance, Z, is the product

of the density, ρ, and the velocity, v, of the rock, and it is usually higher when the rock is

harder.

If we consider a ray of amplitude A0 which is normally incident on an interface between

two media differing in velocities and densities, a transmitted ray (having amplitude A1)

would travel through the interface in the same direction, and the reflected ray of amplitude
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A2 would return to the source. The reflection coefficient, R is defined as the ratio of the

amplitude A1 of the reflected ray, to the amplitude A0 of the incident ray. In terms of

acoustic impedances, for a normally incident ray, Zeoppritz’s equation states that:

R =
Z2 − Z1

Z2 + Z1
(2.1)

where; Z1 and Z2 are the acoustic impedances of the first and second layers respectively.

This equation can also be written in terms of the velocity and density as;

R =
(ρ2v2 − ρ1v1)
(ρ2v2 + ρ1v1)

(2.2)

Another term is the transmission coefficient, which is the ratio of the amplitude trans-

mitted to the incident amplitude:

T =
A2

A0
(2.3)

Snell’s Law

Snell’s Law describes the relationship between the velocities and the angles which the rays

make before being reflected and after being transmitted through the next layer. After a

portion of the ray is reflected from the boundary, remaining portion is transmitted to the

next layer by changing its direction and is called the refracted ray. Snell’s Law states that;

the ratio of the angle, θ, to the velocity is constant:

sin θ1/V1 = sin θ2/V2 (2.4)

or;

sin θ1/ sin θ2 = V1/V2 (2.5)

Snell’s Law is illustrated in Figure 2-3.
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Figure 2-3: Snell’s Law.

2.1.3 Vertical Seismic Profiling (VSP)

Vertical seismic profiling differs from conventional seismic surveys with the location of signal

receivers. In VSP surveys, the receivers are located in the borehole instead of surface. By

this way, signals moving towards up or down can be both received. This is the theory behind

higher resolution of data (approximately 2 times larger) gathered with VSP comparing to

data gathered with surface seismic. Figure 2-4 is schematic view of how VSP surveys are

conducted. VSP surveys are very similar to velocity surveys in terms of where the sources

and receivers are located. However, they differ from each other with two issues [15]:

1. The distance between geophone recording depths (smaller in VSP, every 15-40 meters)

2. Collection of information (Only first break times are collected in velocity surveys. In

VSP, upgoing and downgoing events are also collected.)

The basic components required for a VSP survey are; 1) a borehole, 2) an energy source,

3) a downhole geophone, and 4) a recording system. For each of these components, the

required conditions must be met to conduct a VSP survey.

Borehole

In a vertical well, interpreting the results of a VSP survey is much easier. If the well is

deviated, then an accurate deviation survey should be conducted before the survey. A
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survey in a deviated well has some advantages, such as better lateral resolution of the

subsurface beneath the borehole.

Figure 2-4: Schematic view of a typical VSP survey.

In terms of casing and cementing, the important issue is to make sure that seismic

waves are transmitted across the borehole/formation interface to the downhole geophone

with minimum waveform character distortion. A cased hole is ideal for that purpose in the

case that it is cemented as cement is a good transmitter of the seismic energy. In the case of

an uncased hole, it is recommended to determine the recording depths after analyzing the

caliper log. In the order of preference; four common borehole environments can be listed

as;

1. Single casing, cemented.

2. Uncased.

3. Single casing, uncemented, old enough for mud and cuttings in annulus to have solid-

ified.
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4. Recently cased, uncemented.

In terms of data, a well having different types of logs, core samples, and drill cuttings

should be preferred for a VSP survey to a well having less amount of data.

Energy Source

VSP is usually used to be correlated with the surface seismic. Therefore, they should have

the same wavelet and high-frequency content. In general, this correlation happens after the

data processing stage.

The energy source must generate a consistent and repeatable shot wavelet. Its output

level should be carefully selected for optimum response. In all VSP surveys, the downgoing

events are stronger than the upgoing ones. If the output strength us increased, more

downgoing events would be created. The increase in the number and amplitude of the

downgoing events must be greater than the gain of the amplitude of the upgoing events.

The most common surface energy sources for VSP surveys are dynamites, mechanical

impulse sources, vibrators, and air guns.

The Downhole Geophone

The downhole geophone is very different than the geophones designed for surface. They are

carried within a massive housing, which makes the geophone resistant to high pressure, and

high temperature.

The Recording System

Resolution, dynamic gain, and recording format are the important issues that need to meet

the standards for a VSP survey. The responses should be recorded with enough resolution

to be able to capture high-resolution wavelets.

By Gadallah [15], common applications of VSP surveys are listed as;

1. Exploration applications

• Determining reflection coefficients.

• Identification of seismic reflectors.

• Comparison of VSP with synthetic seismogram.
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• Fresnel zone and VSP horizontal resolution.

• Seismic amplitude studies.

• Determining physical properties of the rocks.

• Seismic wave attenuation.

• Thin bed stratigraphy.

2. Reservoir engineering and drilling applications

• Predicting depths of seismic reflectors.

• Predicting rock conditions ahead of the bit.

• Defining reservoir boundaries.

• Locating faults.

• Monitoring secondary recovery processes.

• Seismic tomography and reservoir description.

• Predicting high-pressure zones ahead of the bit.

• Detection of man-made fractures.

2.1.4 Seismic Attributes

According to Chen [16]; seismic attributes are specific measurements of geometric, kine-

matic, dynamic, or statistical features derived from seismic data. Similarly, they can be

defined as all the information obtained from seismic data, either by direct measurements

or by logical or experience-based reasoning. Since their introduction in the early 1970’s,

complex seismic trace attributes have gained considerable popularity, first as a convenient

display form, and later, as they were incorporated with other seismically-derived mea-

surements, they became a valid analytical tool for reservoir characterization. The study

and interpretation of seismic attributes provide us with some qualitative information of

the geometry and the physical parameters of the subsurface [17]. Many different meth-

ods have been used to invent and compute hundreds of seismic attributes. These methods

include complex trace analysis, interval statistics, correlation measures, Fourier analysis,

time-frequency analysis, wavelet transforms, principal components, and various empirical

methods [9]. Detailed explanations of instantaneous attributes are shown in Table 2.1. The

attributes which are used in this study can be defined as;
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Trace amplitude: The instantaneous amplitude is the measure of the strength of the

reflected signal. Indicates changes in physical properties of various lithological entities.

It can sometimes be used to detect gas presence [12]. There are two important features

of instantaneous amplitude:

1. Instantaneous amplitude is not simply the magnitude of the real seismic trace,

which is a popular concept for measuring the amplitude of seismic data.

2. The maximum of the instantaneous amplitude function does not necessarily occur

at the maximum amplitude of the real seismic trace.

Instantaneous phase: Phase angles range from -180 degrees to +180 degrees. Envelope

and phase are combined as polar components of a trace signal [18].

Instantaneous frequency: This attribute describes how long it takes the phase to com-

plete 360 degrees of rotation [18].

Trace envelope: Represents the reflection strength. The envelope is independent of the

phase and it relates directly to the acoustic impedance [18].

Hilbert transform: This amounts to a 90-degree phase rotation. Amplitude and Hilbert

transform are combined as Cartesian components of a trace signal [18].

Paraphase: This attribute is the instantaneous phase with the predictable trend removed.

As such, it assists visualizing the structural picture because phase tracks geologic

boundaries [18].

Average energy: This attribute integrates the envelope between paraphase events. It

highlights stratigraphic detail through energy fluctuations across traces. Values are

in degrees [18].

Signed frequency: This attribute allows removal of the clip against non-positive values

[18].

Barnes [9] made a timeline diagram, which shows the development of seismic attribute

analysis since 1950 which included the introduction of using neural networks in seismic

pattern recognition in early 1990s (Figure 2-5). Key attributes are shown italicized, and

representative papers are shown in diagonals in the figure.
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2.1.5 Synthetic Seismic Modeling

Synthetic seismic modeling is a forward modeling process. A seismic wavelet gathered from

real data can be convolved with a reflection coefficient in order to simulate the seismic

response. Reflection coefficient (R) is defined above with the equation (2.1). As a result of

this process, a synthetic seismic trace can be obtained. During the modeling process, the

tuning thickness can be determined after the vertical resolution has been calculated with

the relationship [24];

V R =
v

4f
(2.6)

where; VR is the vertical resolution in ft/(sec×Hz), v is the interval velocity in ft/sec

and f is the dominant frequency in Hz.

2.2 Artificial Neural Networks

2.2.1 Biological Neural Networks

Artificial Neural Networks (ANN) draw much of their inspiration from the biological ner-

vous system. It is therefore very useful to have some knowledge of the way this system is

organized.

Most living creatures, which have the ability to adapt to a changing environment, need

a controlling unit, which is able to learn. Higher developed animals and humans use very

complex networks of highly specialized neurons to perform this task. The control unit - or

brain - can be divided in different anatomic and functional sub-units, each having certain

tasks like vision, hearing, motor and sensor control. The brain is connected by nerves to the

sensors and actors in the rest of the body. The human brain consists of a very large number

of neurons, about 1011 in average. These can be seen as the basic building bricks for the

central nervous system (CNS). The neurons are interconnected at points called synapses.

The complexity of the brain is due to the massive number of highly interconnected simple

units working in parallel, with an individual neuron receiving input from up to 10,000 others.

The neuron contains all structures of an animal cell. The complexity of the structure

and of the processes in a simple cell is enormous. Even the most sophisticated neuron
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Figure 2-5: Timeline of seismic attribute analysis from 1950 to the present [9].
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Table 2.1: Instantaneous attributes with their descriptions and applicability [16].
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models in artificial neural networks seem comparatively toy-like.

Structurally the neuron can be divided in three major parts: the cell body (soma), the

dendrites, and the axon, see Figure 2-6 for an illustration. The dendrites receive the signals

from other neurons. The signals are electrical impulses, and transmitted with a chemical

process. Chemical transmitters modify the incoming signal, which is similar to what weights

do in artificial neural networks. The received signals are then summed up in the soma. If

sufficient input is received, the cell fires (i.e. transmits the signal to over its axon, to other

cells.). This process occurs as a result of concentrations of different types of ions such as;

potassium, sodium, and chloride.

In many ways, the mechanism of artificial neural networks have received their motivation

from biological neural networks. One of the key features is the ability of being fault tolerant,

which can be explained as being able to recognize many different input signals that we have

not seen before, or being tolerant to damages in the neural system [19].

Figure 2-6: Schematic view of a bi-polar neuron [20].

2.2.2 Introduction to Artificial Neural Networks

Artificial neural networks (ANN) can be broadly defined as information-processing systems,

which mimic the human mind as a mathematical model representation of the biological
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neural networks which is explained above. They have gained an increasing popularity

in different fields of engineering in the past few decades, because of their capability of

extracting complex and non-linear relationships.

The simplest unit of a neural network is the neuron (processing element). Figure 2-7

shows a typical neuron. The basic information processing occurs like the following; outputs

(In) coming from another neuron are multiplied by their corresponding weights (Wn), and

summed. An activation function is then applied to the summation, and the output of that

neuron is now calculated and ready to be transferred to another neuron [20].

The internal state of a neuron after the activation function is applied, is called its

activation. Thus, for the neuron shown in the figure, its activation, y, would be equal to

f(
∑

IkWk); where f(x) can be any activation function. A very common activation function

is the sigmoid function (s-shaped curve) and it is defined as;

f(x) =
1

1 + exp(−x)
(2.7)

The mechanism of artificial neural networks is based on the following assumptions [19]:

1. Information processing occurs in many simple elements that are called neurons (process-

ing elements).

2. Signals are passed between neurons over connection links.

3. Each connection link has an associated weight, which, in a typical neural network,

multiplies the signal being transmitted.

4. Each neuron applies an activation function (usually non-linear) to its net input to

determine its output signal.

A neural network can be characterized by its pattern of connections between the neurons

(i.e. its architecture), its method of determining the weights on the connection links (i.e.

training algorithm), and its activation function.

In addition to petroleum engineering and many other engineering disciplines, artificial

neural networks have been used in many different kinds of applications such as; signal

processing, control, pattern recognition, medicine, speech recognition, speech production,

and business [19].
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Figure 2-7: Schematic diagram of an artificial neuron or a processing element [20].

2.2.3 Generalized Regression Neural Network (GRNN)

GRNN is a modification to probabilistic neural network that has been suggested by au-

thors, who have studied seismic inversion [2; 10]. GRNN has also been successfully used

in geological pattern recognition applications such as; synthetic log generation [5] and total

organic carbon content prediction from logs [25]. Besides, GRNN has been used in the

closest application to this study, which is using cross-well seismic as the intermediate scale

data [14; 26]. Huang et al. [25] described GRNN as an easy-to-implement tool, which has

efficient training capabilities, and the ability to handle incomplete patterns.

Introduced by Specht [21] in 1991, GRNN is a one-pass learning algorithm with a highly

parallel structure. It is a memory-based network, which provides estimates of continuous

variables, and converges to the underlying regression surface. This approach is freed from

the necessity of assuming a specific functional form. Instead, the appropriate form is ex-

pressed as a probability density function (pdf) which can be determined from the observed

data. General regression uses y (a scalar random variable), the X (a particular measured

value of a vector random variable x ), and the non-parametric estimator of the joint pdf f(x,

y). After defining the scalar Euclidian distance function, D2
i ;

D2
i = (X−Xi)T (X−Xi) (2.8)

performing the integrations results with the following:

Ŷ (X) =
∑n

i=1 Y iexp(−D2
i

2σ )∑n
i=1 exp(−D2

i
2σ )

(2.9)

In order to define it in a simpler mathematical form; (2.4) is proposed instead of (2.2),
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since it has given similar results. Instead of the Euclidian distance, it uses the city block

distance, Ci;

Ci =
p∑

i=1

|(Xj −Xi
j)| (2.10)

Ŷ (X) =
∑n

i=1 Y iexp(−Ci
σ )∑n

i=1 exp(−Ci
σ )

(2.11)

The estimate Y (X) is defined as a weighted average of the observed values, Yi, where

each observed value is weighted exponentially according to its Euclidian or city block dis-

tance [21]. σ is the smoothing factor, and optimum smoothing factor is determined after

several runs according to the mean-squared error of the estimate, which must be kept at

minimum. The smoothing factor must be greater than 0 and can usually range from 0.01 to

1 with good results [22]. This process is named as the training of the network. If a number

of iterations passes with no improvement in the mean-squared error, that smoothing factor

is determined as the optimum one for that data set. In the production phase, that smooth-

ing factor is applied to data sets that the network has not seen before. While applying the

network to a new set of data, increasing the smoothing factor would result with decreasing

the range output values.

GRNN is especially useful in approximating continuous functions. It may have multidi-

mensional input, and it will fit multidimensional surfaces through data. It is a three-layer

network. In the hidden layer, there must be one hidden neuron for each training pattern

[22].

2.3 Correlation Statistics

Through out the text, some correlation statistics are included to define the quality of the

correlation models that have been developed. One of the major correlation statistics is the

coefficient of determination, which is known as r-squared. Defining Y , the set of actual

outputs, and Ŷ , the set of predicted outputs, and n, the number of samples; r-squared is

equal to [23]:

r2 = 1− SSE

SST
(2.12)
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where;

SSE =
∑

(Yi − Ŷi) (2.13)

SST = (
∑

Y 2
i )− (

∑
Yi)2

n
(2.14)

Another term used is the correlation coefficient, r, which is basically the square root

of r-squared. These terms can be between 0 and 1, and values closer to 1 indicate better

match. However, in the case of logs or any other geological patterns, r-squared might not

always be representative of the quality of the match, since the trends followed are basically

more important than the values. That is why visual analysis is considered more than the

correlation statistics in those cases.



Chapter 3

Synthetic Model Study

As one of the unique features of this study, a synthetic seismic model has been developed

before dealing with real data. It was aimed to find out the most appropriate methodology

to achieve the goals of this research.

This model has been built in a way that it is a representative model of the Pennsylvanian

stratigraphy of the Buffalo Valley Field in New Mexico. Real data from this field is used in

the real case study which is explained in Chapter 4. The geological structure of this field

is also explained in that chapter. In this chapter, information about how the model has

been built, the description of the model, the output of the model (i.e. available data for

the neural network studies), and the methodology followed are explained.

3.1 Model Development

The model has been developed by using Struct which is a modeling package in the Ge-

ographix Discovery Suite of Landmark Graphics. It is a comparative example of the strati-

graphic section of the Buffalo Valley Field, which includes Atoka and Morrow formations

together with the overlying Pennsylvanian sequence. It is developed by using a forward

modeling process, which has simulated straight rays traveling from the surface and avoiding

diffraction at interfering events. The model has been defined with properties like thickness,

geometry, lateral distribution, density and interval velocity of the rocks which were gathered

from the actual data set [24]:

Horizontal dimension - 4.9 mi, (7.9 km), equivalent to the dimension of the 3D survey.

26
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Vertical dimension - Real depth - approximately 7000 ft; and thickness of the sequence

- 200 ft. This data was measured from well logs.

Geometry of the sand channels and sand/limestone layers - After considering the

well log interpretation and seismic visualization, channels and layers were defined as

having thicknesses between 10 and 80 ft.

Density and interval velocity of shales and sand bodies - The average density and

velocity values were derived from well logs as shown in Table 3.1;

Table 3.1: Layers and corresponding density and velocity ranges in the synthetic model.

Lithology Density, g/cc Velocity, ft/s
Sandstone 2.4 - 2.7 12,500 - 16,000
Shale 1.9 - 2.10 9,000 - 11,000
Limestone 2.5 - 2.7 14,000 - 17,000

Surface Seismic and VSP Derived Models

Two separate models have been obtained by extracting wavelets from actual surface seismic

and VSP for the time window of Atoka and Morrow formations. The synthetic surface

seismic response (Figure 3-1) has been computed by using a wavelet derived from the zone

of interest in line 1034 of the 3D surface seismic data, and the synthetic VSP response

(Figure 3-1) has been computed by using a Butterworth wavelet derived from line 2064 of

the 3D VSP with a larger bandwidth. The properties of the wavelets used for each case are

shown in Table 3.2. Tuning thickness has been determined after the vertical resolution has

been calculated with the equation (2.6).

3.2 Model Description

In the model, the geological complexity increases with depth. The positive amplitudes (blue

in Figure 3-1) are produced at the top of the carbonates, reflecting the interface between

an overlying weak acoustic impedance rock (shales, layers in white) and an underlying high

acoustic impedance (carbonates). Negative amplitude (red) is produced due to the interface
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Table 3.2: Properties of wavelets used to compute seismic responses.

Property 3D Surface Seismic VSP
Bandwidth, Hz 11-95 20-110
Dominant Frequency, Hz 45 65
Dominant Period, sec 0.022 0.0154
Interval Velocity, ft/sec 15000-16000 15000-16000
Tuning Thickness, ft 83-88 57-61

between the strong acoustic impedance carbonate, and the underlying weak impedance shale

[24].

If the thickness of the layer exceeds the resolvable thickness, amplitude becomes very

low (white in Figure 3-1), since there is no reflectivity contrast in those regions. The reflec-

tion character is basically related to lateral stratigraphic changes. For Atoka and Morrow

formations, there is a lateral variation due to a series of lenses and layers of sandstones

and sands with carbonate content that are laterally and vertically stacked, and embedded

in shale. This results with a discontinuous seismic character with faster lateral variations

of the amplitude. Laterally, continuous marine sequences, such as the carbonate and in-

terbedded shales of the Strawn, Canyon and Cisco formations, produce laterally continuous

reflectors. On the other hand, laterally varying formations like Atoka and Morrow, produce

discontinuous seismic reflectors, which brings up more visible amplitude variations. This

character of Atoka and Morrow is mainly caused by lenses of sand channels, which are

pinching out and stacked on top of each other [24].

3.3 Model Output

The model is basically a seismic line of 100 traces, which includes three wells at traces 20,

50 and 80 with the well at trace 50 having a VSP. These wells had well logs of density and

velocity. The available data after developing the model were;

1. Surface seismic responses;

2. Vertical seismic profile responses;

3. Density and velocity distributions.
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Figure 3-1: Computed seismic responses (seismic sections). Top: Surface seismic re-
sponses - lower resolution, bottom: VSP responses - higher resolution.
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Seismic responses have been computed as distributions of the following attributes:

• Trace Amplitude

• Trace Envelope

• Average Energy

• Hilbert Transform

• Instantaneous Phase

• Instantaneous Frequency

• Paraphase

3.4 Methodology

The methodology in this study includes two major steps of correlation as proposed (Figure

1-4); 1) Correlation of surface seismic with VSP; 2) Correlation of VSP with well logs.

The available data which is mentioned above are used to find the best correlation models.

Instead of using all of the data available, the data of interval 0.8-1.124 seconds are used, as

only that interval was geologically rich in terms of information. This interval corresponded

to 6,600-9,000 ft. Next, these two steps of correlation will be explained in details.

3.4.1 Step 1: Correlation of Surface Seismic with VSP

As the first step of the proposed correlation methodology, correlations between surface

seismic attributes and VSP attributes have been looked for. First, the model has been visu-

alized by plotting the cross-sectional distributions of density, velocity and seismic attributes

for both surface seismic and VSP. The density distribution (Figure 3-2) clearly reflects the

arrangement of the rock layers, where in the middle zone, sand channels can be seen. The

model has a uniform distribution laterally.
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Figure 3-2: Cross-sectional density distribution of the synthetic model.

The main aim was to determine the most appropriate data that can be used in training

before starting to train the network. The predictability of a neural network model highly

depends on how and with what data it has been trained. Thus, the data should contain a

lot of information regarding the model, to get the most successful results in the production

phase. For this purpose, an effort has been made to identify special geological features

that can be useful in training the neural network. These include; edges of sand channels,

extreme value points, and unique geological structures. Although the model has a uniform

distribution laterally in most of the regions, those kinds of features can be found mostly in

the middle zone. In order to include those features in the training model, data of traces

32 and 57 have been decided upon to be used in training after several tests (Figure 3-3).

Number of traces that is used has been kept at two, because of the limitation in optimum

number of data rows. Two traces included 326 data rows.

The network structure used in training is shown in Figure 3-4. As shown, data of traces

32 and 57 have been used, to predict a VSP attribute from time and seven available surface

seismic attributes. 70% of the data were selected randomly, specifically for training. Among

the remaining 30%; 20% were used for calibration, and 10% were used for verification.
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At the end, seven separate prediction models have been developed for seven attributes,

which are based on data of t-32 and t-57. After having confidence with the prediction

abilities of these models, they have been applied to the whole seismic line to obtain network-

predicted distributions of available attributes. These distributions were then plotted to be

able to compare with the actual ones.

Figure 3-3: Cross-sectional Envelope distribution which was used to determine special
features that can be useful in the network training. Finally, traces 32 and 57
were decided to be used in training.

3.4.2 Step 2: Correlation of VSP with Well Logs

The second step of the correlation studies is the main goal of this study, which is deriving

logs from VSP data. Since t-50 is the trace which includes all of the data that are dealt with

theoretically (i.e. surface seismic, VSP and well logs), this trace has been used to develop

the model of this part of the correlation. Density log has been selected as the target log,

as it was the only log together with the velocity log which has a very similar structure
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Figure 3-4: Network structures used for training. Data of traces 32 and 57 have been
used, to predict a VSP attribute from time and surface seismic attributes.

with density. Methodology developed with the density log was then applied to velocity and

acoustic impedance (the product of density and velocity.)

When one looks at the density log of t-50, one can clearly see that there are a few

different averaged values of density (Figure 3-5), which have been later defined as classes.

Each of these classes actually represents a different type of rock layer defined in the model.

Finally, instead of using actual values of density, it was decided to use these classes as the

target values. By doing this, we have changed the nature of the neural modeling to one of

classification. Classification networks are sometimes simpler than networks that are built

to predict continuous values. In the initial trial; classes were defined as (Figure 3-5);

• σ ≈ 1.9 g/cc → Class 1

• σ ≈ 2.3 g/cc → Class 2

• σ ≈ 2.65 g/cc → Class 3

The data set has been re-arranged in a way that the corresponding class of that row is

equal to 1 and others are 0 (Table 3.3). Thus, the network structure was like the one in

Figure 3-6. All of the VSP attributes with time were used as inputs to predict one of the

density classes.

By using the generalized regression neural network algorithm, a reliable training model

has been built to be used in density prediction. With that model, the cross-sectional

density distribution has been produced through the seismic line, and that distribution has

been compared with the actual distribution. Same procedure was applied to velocity and

acoustic impedance. Results and discussions are included in Section 5.1.
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Figure 3-5: Density log of trace - 50. Proposed classification: Three classes at density
values 1.9, 2.3, and 2.65.
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Table 3.3: Rearranging the data. Introducing classes, where 0: false and 1: true.

Density, g/cc Class 1 Class 2 Class 3
2.592 0 0 1
2.599 0 0 1
2.273 0 1 0
1.923 1 0 0
2.286 0 1 0

...
...

...
...

Figure 3-6: Network structures used for training. Data of t-50 have been used, to predict
one of the density classes from time and VSP attributes.



Chapter 4

Real Case Study: The Buffalo Valley Field

4.1 Location and Geological Setting

The Buffalo Valley Field is located in Chaves County, southeast of New Mexico, USA

(Figure 4-1). Sanchez’s [24] description of the geologic setting of the Buffalo Valley Field is

as follows;

“Regionally, the area is situated in the Northwestern shelf of the Permian Basin, which is

situated in west Texas and southeastern New Mexico. The Permian Basin also includes the

Midland Basin, Central Basin Platform and Delaware Basin. The evolution of this basin

began with Ordovician to Devonian sedimentation associated with extensional tectonics

related to mid-continent rifting of its ancestor, the Tobosa Basin. Later, in the late Missis-

sippian and early Pennsylvanian periods, a collision between the Gondwana and Laurasia

plates triggered the Marathon-Ouachita Orogeny (Figure 4-2), causing the uplifting of the

Central Basin platform and consequently the fragmentation of the Tobosa Basin, which

created the Delaware Basin to the west, and the Midland Basin to the east.

Within the Delaware Basin, the stratigraphic sequence from middle Mississippian to

Permian reflects both paleotectonic activity and relative changes in sea level. In general,

through the middle to upper Mississippian, marine carbonate deposition is replaced by

black organic shales. During this time, the Delaware Basin experienced differential subsi-

dence with tilting to the east and vertical movements along Proterozoic weakness zones.

Deformation affected both the uplifted areas and the basin. A generalized stratigraphic

column of the Northwestern shelf is shown in Figure 4-3, along with a production summary

of the Pennsylvanian plays in the Permian Basin.

36
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Figure 4-1: Geographical location of the Buffalo Valley Field (Pointed with a star.).

During the early Pennsylvanian, with the beginnings of the Marathon Ouachita Orogeny,

activation of the Pedernal and Central Basin uplifts took place. These positive topographic

structures served as sediment sources for the depositional systems that filled the Delaware

Basin. The resultant alluvial, fluvio-deltaic, and basinal marine sequences pro-graded S-SW

from the Northwestern Shelf into the Delaware Basin (Figure 4-2). In the Buffalo Valley

Field, the Atoka and Morrow Formations recorded these conditions with the deposition of

sands, interbedded with shales and limestones. Based on the stratigraphic observations

in the Buffalo Valley Field, the Morrow Formation seems to have eroded the underlying

Mississippian shales and is unconformable to the Chester Formation. The stratigraphic

relationship between the Morrow and Atoka is conformable within the study area in most

of the southern areas of New Mexico.

Tectonic effects of the Marathon Ouachita Orogeny continued during the middle and late

Pennsylvanian. The result was a regional increase in the compressional regime, resulting

in faulting and folding primarily to the south of the Delaware Basin in the Marathon fold

belt, but, in some instances extending into the northern part of the basin. Simultaneously,

extensive carbonate shelves started to develop along the margin of the Delaware Basin.
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For example, the Atoka Formation records carbonate bank development and deposition of

shallow marine limestones to shallow marine sandstones. These conditions prevailed with

mostly carbonate sedimentation through the remainder of the Pennsylvanian, represented

by the Strawn, Canyon and Cisco Formations.”

Figure 4-2: Southeast New Mexico and west Texas. Pennsylvanian paleography of Per-
mian Basin. In blue dash line an approximate outline of the paleo Tobosa
Basin [24].

4.2 Atoka and Morrow Formations

A comprehensive analysis of Atoka and Morrow Formations has been made by Sanchez

[24]. Logs and well reports have been downloaded from the New Mexico Bureau of Geology

and Mineral Resources website. These files have been used to correlate formation tops and

thicknesses through cross-sectional analyses. Gamma ray log has been used as the main

indicator. Density, sonic and resistivity logs have also been used. Cross-sections in north-

south, east-west, and northeast-southeast orientations were constructed to understand the

behavior of the sequence (Figure 4-4). Since core samples were not available for this study,

petrophysical properties were derived from well logs. Apparent total porosity was generally

calculated using density, neutron porosity, and sonic logs. Well logs also reflected the

reservoir variability in these formations.

An integrated seismic interpretation was carried out using the 3D seismic volume, post

stack trace correlation seismic volume and well log response tied to the seismic data. The
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local character of the seismic traces on the well location reflect additional lateral information

from a radius equal to the Fresnel zone (horizontal resolution). It has been calculated as

approximately 1200 ft and 1000 ft for the 3D survey and the VSP respectively. The vertical

seismic resolution for the Atoka and Morrow in the synthetic seismogram is of few feet,

while for the 3D seismic survey and VSP volume yields to a tuning thickness between 83-88

ft, and 57-61 ft respectively [24].

Figure 4-3: Generalized stratigraphic section of the Northwest Shelf areas in the Permian
Basin, with the cumulative gas and oil production from the major reservoirs
of Pennsylvanian plays [24].

The sediments of the Morrow formation are mostly interbedded sandstones and shales.

Its thickness is very variable and ranges from 80 ft to 200 ft. It is characterized by a high

reservoir complexity having a high variability of porosity. It becomes deeper to the south
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east, having a subsea depth of 4,400-5,200 ft. It has a lower density and velocity, comparing

with Atoka (sandstone with carbonate content) and Chester (carbonates) formations. In

Sanchez’s study [24], Morrow is divided into three as upper, middle, and lower Morrow.

Middle Morrow is more homogeneous than upper and lower Morrow which are laterally

discontinuous. Matrix of these formations have been identified as quartz. Lower and middle

Morrow seemed to be located near the gas direction field, while upper Morrow seemed to

be having carbonate content.

Atoka formation has been reported to have a composition of sands, limestones, and

interbedded shales. The carbonate content of Atoka is higher than Morrow, and that is

why it has a higher density. It has a thickness between 70-150 ft at a subsea depth of

4400-5200 ft. Atoka formation is conformable with the underlying shales and sandstones

of the Upper Morrow. In Sanchez’s study [24], Atoka is divided into tow as upper and

lower Atoka. Lower Atoka has a lower density and higher porosity than the upper Atoka.

They are seperated from each other by a variable shale layer of 10-15 ft. Shale/sand ratio

is higher in lower Atoka. Lower Atoka also has a higher carbonate content with a matrix

of quartz. Upper Atoka has a matrix of calcite and quartz.

Specific characteristics of these formations are listed in Table 4.1.

4.3 Available Data

The database available from the Buffalo Valley Field can be classified in three sets of data

[24];

1. A 3D seismic survey covering an area of 24 mi2 with a vibroseis source, sweep frequen-

cies ranging from 8 to 98 Hz, and a sweep length of 17 seconds. This data set has been

loaned to the Department of Geology and Geography of West Virginia University by

WesternGeco, Houston, Tx.

2. A vertical seismic profile volume, with a two-LRS-315 vibrators source, covering an

area of approximately 3.5 mi2 in the southeast corner of the area.

3. Logs from around 40 wells, either paper or electronic copies. Available types of logs

included gamma ray, neutron, density, sonic, spontaneous potential, and resistivity.

Paper copies have been scanned, and then digitized together with other available
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electronic copies. Average total depth of those wells were ranging from 8,000 to 9,000

ft, intersecting the Atoka and Morrow formations.

Figure 4-4: Regional stratigraphic cross section of the Upper Mississippian, Lower Penn-
sylvanian, and Lower Permian Sequence in the Buffalo Valley Field [24].

In addition to these, well drilling reports, headers, and production data were incorpo-

rated in the interpretation and analysis. Those files were available on the official web sites of

New Mexico Bureau of Geology and Mineral Resources [27], New Mexico Energy, Mineral

and Natural Resources Department Oil Conservation Division [28], and the New Mexico

Tech Go-Tech [29].

A map showing the locations of the wells with the available types of logs is shown in

Figure 4-5. The well with the VSP survey is highlighted in the south-east part of the survey

area. Throughout the text, that well will be called Well #1.

Unfortunately, not all of the available well logs had a high visual quality. That made

them hard to be digitized accurately. An illustration for good quality logs and bad quality

logs are shown in Figure 4-6. It is a proven fact that; quality of the data has an important

role in building reliable neural network models. Reasonable amount of noise in the data is

acceptable, and even useful for a more realistic model. However, it is impossible to rely on

a model, which has been built with unreliable data. Rolon’s study [5] clearly states this

fact, by comparing two similar studies with well log data having different levels of quality.

After considering these, it has been decided to conduct a quality check of the digitized log

files. It was aimed to use data having an acceptable quality not to face with the problem

of building poor prediction models.
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Table 4.1: Characteristics of Atoka and Morrow formations.

Name of the Thickness, Thickness of Porosity Average
formation Composition ft sand channels, ft range, % porosity, %

Atoka

Sands,
Upper Atoka carbonates, 60-120 3-20 1-14 4-6

interbedded shales

Sands with
Lower Atoka some carbonate 30-40 10 4-14 8-9

content

Morrow

Sands with
Upper Morrow carbonate content 30 5-15 4-14 6-7

interbedded with shales

Stacked sands
Middle Morrow with interbedded 50-70 5-25 2-14 5-8

shales

Interbedded
Lower Morrow sandstones 70-90 5-30 7-18 8-10

with shale
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Figure 4-5: An illustration of logs having good and bad qualities.
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Considering the qualities of the logs, and the location of the VSP well, a seismic line

within the seismic survey area was determined to work on. It is a straight line in the SE-

NW direction, and is passing through five wells including the VSP well. It is shown in the

Figure 4-5 as a dashed line. The line included 173 seismic traces, with the VSP well, well-1,

located on trace 16. Other wells are located on traces 55, 90, 123, and 153, respectively.

The surface seismic amplitude distribution of the line is shown in Figure 4-7.

Table 4.2: Information about the wells on the selected seismic line including name, avail-
able logs with the time interval (sec.), and locations in terms of the trace
number.

Well logs
Well @
name Trace # Gamma ray Neutron porosity Sonic Velocity Neutrons

Well - 1 16 0.92-1.092 0.92-1.092 0.92-1.092
Well - 2 55 0.92-1.089 0.92-1.089 0.92-1.019
Well - 3 90 0.92-1.07 0.92-1.07
Well - 4 123 0.92-1.042 0.92-1.042
Well - 5 153 0.92-1.0415 0.92-1.055

In terms of the seismic data; VSP data were available only for Well-1. Surface seismic

data were extracted through the seismic line of interest and were avaliable for an interval

of 0.92-1.1 seconds. A total of 27 attributes were available. 11 of them were provided by

the Kingdom Suite, and other 16 attributes were calculated with theoretical relationships.

Table 4.3 shows the list of the available attributes.

4.4 Methodology

The same methodology with the one followed in the synthetic case study, was applied to

real field data.
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4.4.1 Step 1: Correlation of Surface Seismic with VSP

First, it was aimed to produce the VSP distributions through the seismic line just like the

available surface seismic distributions. Since, there was only one available VSP survey,

which was on Well-1, the required correlation models could have only been developed by

using the data of that well.

Figure 4-6: Map of wells available logs within the seismic survey area of the Buffalo Valley
Field. The seismic line chosen to work with, and the five wells on that line
are highlighted.

The eleven attributes which were obtained from Kingdom Suite, were used since other

attributes were derivable from them. As in the synthetic model study, eleven surface seismic

attributes were used together with time, as inputs, to predict the single VSP attribute.

Thus, eleven neural network models were developed for eleven attributes. The network

structure is shown in Figure 4-8.
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Results were similar to the results of the synthetic model study. They were assumed

to be reliable to apply to other sections of the seismic line. Cross-sectional distributions of

the eleven attributes were produced from these models for the interval: 0.92-1.1 seconds,

passing through 173 traces.

Figure 4-7: Amplitude distribution of the seismic line. Red dashed lines are the five wells
that the line is passing through. Well-1 is the well with the VSP survey.

4.4.2 Step 2: Correlation of VSP with Well Logs

The approach carried out in this part was to use all the available well data for training, and

to apply the model to other parts of the seismic line to obtain the distributions. The main

idea is to have a more reliable training model by using all the available data.

In this case, 90% of the total of 871 rows of data from five wells was used for training,

while 10% was used for calibration during training. Two types of logs; gamma ray and

neutron porosity were selected as target logs. Because of the large number of available

attributes a Key Performance Indicator (KPI) [30] study was carried out, to determine the

most influential attributes. As a result of this study each attribute had a coefficient between
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Table 4.3: Seismic attributes used for the field study.

From Kingdom Suite Deriven
Amplitude 1st derivative of amplitude
Average Energy 2nd derivative of amplitude
Envelope 1st derivative of envelope
Finite difference 2nd derivative of envelope
Frequency Instantaneous energy
Hilbert transform Instantaneous power
Paraphase Instantaneous acceleration
Peak-to-Trough Ratio Decay rate
Phase Instantaneous Q, quality factor
Signed Frequency Amplitude weighted phase
Seismic inversion Average frequency

Residual envelope
Integrated residual amplitude
Smoothed envelope
Integrated absolute amplitude
Smoothed inversion

0 and 1, which basically shows the influence of that attribute on the selected output (i.e.

logs). The attributes (including the time) were ranked based on their KPI coefficients,

and the ones having a coefficient larger than 0.5 were used as inputs. Those rankings for

gamma ray and neutron porosity are shown in Table 4.4. The best thirteen attributes for

the gamma ray, and the best eight attributes for the neutron porosity had coefficients higher

than 0.5, and they were used as the input attributes. The network structure for this part

is shown in Figure 4-9.

Training results were analyzed for each well separately, and upon applying those models

to the other traces on the seismic line, distributions of gamma ray logs and neutron porosity

logs were produced.
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Figure 4-8: Network structures used for training. Data of well-1 have been used, to
predict a VSP attribute from time and surface seismic attributes.

Figure 4-9: Network structures used for training. Data of all wells have been used, to
predict gamma ray and neutron porosity logs from time and VSP attributes.
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Table 4.4: Ranking of the seismic attributes based on their influence on each type of log,
determined by Key Performance Indicator (KPI) studies.

Rank Gamma Ray Neutron Porosity
1 Peak-to-Trough Amp. weighted phase
2 Smoothed Envelope Time
3 Finite Difference Peak-to-Trough
4 Average Frequency Instant Energy
5 Instant Energy Smoothed Envelope
6 Envelope Envelope
7 Time Amplitude
8 Amp. weighted phase HF Inversion
9 Amplitude Finite Difference
10 Phase Average Energy
11 Hilbert Average Frequency
12 Smoothed Inversion Paraphase
13 HF Inversion Hilbert
14 1st der. of amplitude Smoothed Inversion
15 Average Energy Decay rate
16 Inst. acceleration Phase
17 Inst. Q factor Signed frequency
18 Decay rate Frequency
19 2nd der. of amplitude 1st der. of amplitude
20 Residual envelope Inst. residual envelope
21 Frequency Inst. abs. amplitude
22 Inst. abs. amplitude Inst. Q factor
23 Inst. residual envelope 1st der. of envelope
24 1st der. of envelope Residual envelope
25 Inst. power Inst. acceleration
26 Signed frequency 2nd der. of amplitude
27 Paraphase 2nd der. of envelope
28 2nd der. of envelope Inst. power
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Results and Discussions

5.1 Synthetic Model Study

5.1.1 Step 1: Correlation of Surface Seismic with VSP

Table 5.1 shows the correlation statistics of the training models developed for this step of the

study. Correlation coefficient, r, and r-squared values are included as accuracy indicators

of the match. Results for pattern (overall), training, calibration, and verification sets are

included.

Figure 5-1 shows the results of the training as actual vs. network-predicted plots for

training, calibration, and verification sets of seven attributes. Each set of data is shown

with a different symbol and color.

Statistical and visual results indicate that reliable models have been developed. These

models have been applied to the whole line (i.e. other traces of the synthetic model). The

seismic attribute distributions have been re-produced. They have been re-plotted to be able

to compare with the actual distributions. Figures 5-2, 5-3, and 5-4 show the comparison

plots for each attribute, after applying the models for these attributes to the entire line.

These plots also include the actual log lines of each attribute at traces 20, 35, 50, 65, and,

80, which makes it easier to assess the quality of the produced distributions.

5.1.2 Step 2: Correlation of VSP with Well Logs

For the second step where the density has been predicted; actual vs. network plot of the

model is shown in Figure 5-3a. Although the network seemed to be successful in most parts,

it has missed some points in the middle-valued region (0.9-0.96 sec), which was assumed to

50
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Table 5.1: Correlation statistics for seven VSP attributes, for the first correlation step of
the synthetic model study.

Amplitude Average Energy Envelope Frequency
r2 r r2 r r2 r r2 r

Pattern 1.00 1.00 0.83 0.91 0.97 0.98 0.76 0.87
Training 1.00 1.00 0.84 0.92 0.98 0.99 0.76 0.87
Calibration 1.00 1.00 0.79 0.89 0.90 0.95 0.81 0.90
Verification 1.00 1.00 0.75 0.86 0.91 0.95 0.73 0.86

Hilbert Transform Paraphase Phase
r2 r r2 r r2 r

Pattern 0.92 0.96 0.88 0.94 0.93 0.96
Training 0.93 0.96 0.89 0.94 0.97 0.99
Calibration 0.90 0.95 0.85 0.92 1.00 1.00
Verification 0.96 0.98 0.85 0.92 0.52 0.72

belong to Class 2: 2.3 g/cc. To overcome this problem, it has been decided to introduce

another class to our model. Class 4 was assigned to density values around 2.09 g/cc (Figure

5-3b). That has helped the network to be successful in that region, too (Figure 5-3b), and

this network model has been decided upon to be used in further studies. The correlation

statistics of this model are shown in Table 5.2 together with the results for the velocity log.

Table 5.2: Correlation statistics for density and velocity, for the second correlation step
of the synthetic model study.

Density Velocity
r2 r r2 r

Pattern 0.82 0.91 0.90 0.95
Training 0.94 0.97 0.93 0.96
Calibration 0.54 0.73 0.97 0.99
Verification 0.54 0.73 0.49 0.70

Actual VSP attributes were applied to this model, and density has been predicted along

the seismic line with a correlation coefficient of 0.82. This has been repeated with the

predicted VSP attributes coming from the first step of the correlation studies. Density has
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again been predicted through the seismic line with a correlation coefficient value of 0.81.

87% of the data points have been predicted correctly in terms of the proposed classes.

Figure 5-6 shows the final actual vs. network-predicted density distributions. It is seen

that, the lithological units as well as the sand channels have been successfully predicted

by the neural network. With this final result, the goal of predicting density log through

the two-step intelligent seismic inversion methodology has been accomplished. The same

procedure has also been applied to velocity and acoustic impedance, and their comparisons

are shown in Figure 5-7.

5.2 Real Case Study: The Buffalo Valley Field, NM

5.2.1 Step 1: Correlation of Surface Seismic with VSP

As in the synthetic case, surface seismic - VSP correlation models have been developed, by

using time and eleven surface seismic attributes to predict the single VSP attribute. The

study was done by using the attributes, which were obtained from the Kingdom Suite as

the other attributes can be derived by using those ones.

Table 5.3 shows the correlation statistics for these models for each attribute. Results

for pattern, training, calibration, and verification sets are included. Verification results

for phase, paraphase, frequency, and signed frequency seemed to be low. However, when

plotted it seemed that they were not as bad as they sound with their correlation coefficients.

Their actual vs. network graphs are shown in Figures 5-8 and 5-9. Actual vs. network plots

for other attributes are shown in Figure 5-10.

These models were then applied to other traces on the seismic line, with the available

surface seismic data. VSP distributions were produced through the entire seismic line.

5.2.2 Step 2: Correlation of VSP with Well Logs

Gamma ray and neutron porosity were selected as the target logs. The results for these two

types of logs are presented below separately.

Gamma Ray Log

Correlation statistics are shown in Table 5.4 for pattern, training, and calibration sets,

respectively. Results are showing both overall statistics, and separate well statistics. Graphs
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that show actual and network-predicted log lines are shown in Figures 5-11 and 5-12 for

all wells. Figure 5-13 shows the predicted gamma ray distribution of the seismic line using

these models. Actual log lines of five wells are also shown in the plot which may give a

chance to compare with the predicted one.

The same methodology has been applied by using surface seismic attributes. Table

5.5 shows the correlation statistics. Figures 5-14 and 5-15 show the actual log lines and

network-predicted log results of the training models for five wells. Figure 5-16 shows the

predicted distribution.

Neutron Porosity Log

Neutron porosity log was available in only two wells; well-1 and well-2. Thus, these two

wells were used in training. Correlation statistics of these models are shown in Table 5.6

and Table 5.7, for the models with inputs of VSP attributes and surface seismic attributes,

respectively. Figure 5-17 show the actual and network-predicted logs for two wells for the

model with VSP attributes. Figure 5-18 shows the logs for the model in which surface

seismic attributes were used as inputs. Predicted distributions of neutron porosity are

shown in Figures 5-19 and 5-20 for two models.

Finally, the most optimum smoothing factors found for each of the network models are

shown in Table 5.8 and Table 5.9 for synthetic model study, and real case study, respectively.
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Figure 5-1: Actual vs. network results for each attribute after training the network for
surface seismic - VSP correlation. Results for training, calibration, and veri-
fication sets are included with different symbols.
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Figure 5-2: Actual (left) and network-predicted (right) distributions for VSP attributes:
amplitude, average energy, and envelope.
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Figure 5-3: Actual (left) and network-predicted (right) distributions for VSP attributes:
frequency, Hilbert transform, and paraphase.
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Table 5.3: Correlation statistics for eleven VSP attributes, for the first correlation step
of the real case study.

Amplitude Average Energy Envelope Frequency
r2 r r2 r r2 r r2 r

Pattern 0.97 0.98 0.96 0.98 0.98 0.99 0.34 0.58
Training 1.00 1.00 0.98 0.99 0.98 0.99 0.92 0.96
Calibration 0.91 0.95 0.98 0.99 0.98 0.99 0.83 0.91
Verification 0.90 0.95 0.85 0.92 0.85 0.92 0.21 0.46

Finite Difference Hilbert Transform Phase Paraphase
r2 r r2 r r2 r r2 r

Pattern 0.92 0.96 0.98 0.99 0.64 0.80 0.79 0.89
Training 0.98 0.99 0.98 0.99 0.96 0.98 0.98 0.89
Calibration 0.98 0.99 0.98 0.99 0.74 0.86 0.90 0.95
Verification 0.83 0.91 0.92 0.96 0.41 0.64 0.29 0.54

Peak-to-Trough Signed Frequency Inversion
r2 r r2 r r2 r

Pattern 0.93 0.96 0.46 0.68 0.98 0.99
Training 0.98 0.99 0.98 0.99 0.98 0.99
Calibration 0.90 0.95 0.86 0.93 0.98 0.99
Verification 0.79 0.89 0.09 0.30 0.98 0.99

Table 5.4: Correlation statistics for the pattern, training, and calibration sets of the train-
ing model. VSP attributes were used as inputs to predict the gamma ray log.

Pattern Training Calibration
Well r2 r r2 r r2 r

All 0.77 0.88 0.79 0.89 0.60 0.77
Well-1 0.58 0.76 0.57 0.75 0.73 0.85
Well-2 0.75 0.86 0.76 0.87 0.67 0.82
Well-3 0.66 0.81 0.72 0.85 0.27 0.52
Well-4 0.76 0.90 0.77 0.88 0.27 0.52
Well-5 0.81 0.90 0.82 0.91 0.69 0.83
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Figure 5-4: Actual (left) and network-predicted (right) distributions for VSP attribute
phase.

Table 5.5: Correlation statistics for the pattern, training, and calibration sets of the train-
ing model. Surface seismic attributes were used as inputs to predict the gamma
ray log.

Pattern Training Calibration
Well r2 r r2 r r2 r

All 0.94 0.97 0.69 0.83 0.82 0.91
Well-1 0.96 0.98 0.98 0.99 0.82 0.91
Well-2 0.93 0.96 0.95 0.97 0.77 0.88
Well-3 0.95 0.98 0.98 0.99 0.63 0.79
Well-4 0.91 0.99 0.92 0.96 0.80 0.90
Well-5 0.97 0.98 0.97 0.99 0.86 0.92
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Figure 5-5: Defining density classes, and the corresponding training results. a) Three
classes (1.9, 2.3, 2.65). Training r2 = 0.82, b) Four classes (1.9, 2.09, 2.3,
2.65). Training r2 = 0.94
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Figure 5-6: Actual (top), and network-predicted (bottom) distributions of density values
(r = 0.81). In terms of classes; 87% of the data points have been predicted
correctly.
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Figure 5-7: Actual (left), and network-predicted (right) distributions of velocity (top),
and acoustic impedance (bottom).
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Figure 5-8: Actual vs. network plots for frequency and signed frequency shown as logs.
Although having relatively low correlation coefficient values, visual plots show
promise.
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Figure 5-9: Actual vs. network plots for phase and paraphase shown as logs. Although
having relatively low correlation coefficient values, visual plots show promise.
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Figure 5-10: Actual vs. network plots for seven of the attributes, that had satisfactory
correlation statistics. Training, calibration, and verification sets are included
with different symbols and colors.
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Figure 5-11: Actual and network-predicted gamma ray logs for wells 1, 2, and 3. Values
for training, and calibration sets are included. VSP attributes were used as
inputs.
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Figure 5-12: Actual and network-predicted gamma ray logs for wells 4, and 5. Values
for training, and calibration sets are included. VSP attributes were used as
inputs.
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Figure 5-13: Network-predicted gamma ray distribution through the seismic line of inter-
est. Actual log lines are also shown for five wells on the line. VSP attributes
were used as inputs.
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Figure 5-14: Actual and network-predicted gamma ray logs for wells 1, 2, and 3. Values
for training, and calibration sets are included. Surface seismic attributes
were used as inputs.
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Figure 5-15: Actual and network-predicted gamma ray logs for wells 4, and 5. Values for
training, and calibration sets are included. Surface seismic attributes were
used as inputs.
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Figure 5-16: Network-predicted gamma ray distribution through the seismic line of in-
terest. Actual log lines are also shown for five wells on the line. Surface
seismic attributes were used as inputs.
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Table 5.6: Correlation statistics for the pattern, training, and calibration sets of the train-
ing model. VSP attributes were used as inputs to predict the neutron porosity
log.

Pattern Training Calibration
Well r2 r r2 r r2 r

All 0.95 0.97 0.96 0.98 0.82 0.91
Well-1 0.95 0.98 0.97 0.98 0.77 0.88
Well-2 0.94 0.97 0.95 0.97 0.89 0.94

Table 5.7: Correlation statistics for the pattern, training, and calibration sets of the train-
ing model. Surface seismic attributes were used as inputs to predict the neu-
tron porosity log.

Pattern Training Calibration
Well r2 r r2 r r2 r

All 0.85 0.92 0.83 0.93 0.78 0.88
Well-1 0.88 0.94 0.89 0.94 0.81 0.90
Well-2 0.80 0.89 0.81 0.90 0.76 0.87

Table 5.8: Optimum smoothing factors for GRNN prediction models for the VSP at-
tributes and logs for the synthetic model study.

Attribute / Log Smoothing factor, σ

Amplitude 0.01
Average energy 0.0411
Envelope 0.1342
Frequency 0.2895
Hilbert transform 0.076
Paraphase 0.1148
Phase 0.0411
Density 0.0255
Velocity 0.0255
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Figure 5-17: Actual and network-predicted neutron porosity logs for wells 1, and 2. Val-
ues for training, and calibration sets are included. VSP attributes were used
as inputs.
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Figure 5-18: Actual and network-predicted neutron porosity logs for wells 1, and 2. Val-
ues for training, and calibration sets are included. Surface seismic attributes
were used as inputs.
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Figure 5-19: Network-predicted gamma ray distribution through the seismic line of inter-
est. Actual log lines are also shown for two wells on the line. VSP attributes
were used as inputs.
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Figure 5-20: Network-predicted gamma ray distribution through the seismic line of in-
terest. Actual log lines are also shown for two wells on the line. Surface
seismic attributes were used as inputs.
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Table 5.9: Optimum smoothing factors for GRNN prediction models for the VSP at-
tributes and logs for the real case study.

Attribute / Log Smoothing factor, σ

Amplitude 0.1148
Average energy 0.2701
Envelope 0.0721
Finite difference 0.0411
Frequency 0.1304
Hilbert transform 0.0449
Inversion 0.0799
Paraphase 0.0411
Peak-to-trough ratio 0.2585
Phase 0.076
Signed Frequency 0.0411
Gamma ray (from VSP) 0.2585
Neutron porosity (from VSP) 0.0294
Gamma ray (from surface seismic) 0.1537
Neutron porosity (from surface seismic) 0.1342



Chapter 6

Concluding Remarks

The common aim of all geoscientists is to characterize the reservoir spatially, and with high-

resolution to be input to reservoir simulators to accurately predict the reservoir performance.

Data integration has remained as the most challenging issue for reservoir characterization,

due to the availability of many different type of multi-scaled data. In this thesis, a novel

solution for one of the most important problems in reservoir characterization is presented.

The methodology presented here includes predicting well logs from seismic data through

the integration of three types and scales of data: surface seismic, vertical seismic profile

(VSP), and well logs. As one of the major tools of soft computing, artificial neural networks

have been used to extract the complex and non-linear relationship between these three types

of data.

The study is divided into two by a synthetic model study, and a real case study. As

a result, different types of logs such as density, gamma ray, and neutron porosity have

been produced from seismic data with the proposed methodology. Main conclusions and

potential future work for this study are explained in the following sections.

6.1 Conclusions

Considering the results presented in Chapter 5, the major findings of this study can be

summarized as follows:

1. Even being in a complex and non-linear manner, it was shown that a relationship does

exist between various seismic attributes and reservoir properties. Such a relationship

can be extracted by using artificial neural networks, as one of the major soft computing

77
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tools. As an useful algorithm in approximating continuous functions, generalized

regression neural network (GRNN) was suggested and applied successfully in this

study.

2. Benefits of using a synthetic seismic model were clearly seen in developing the ap-

propriate methodology by identifying the most appropriate neural network algorithm

and testing to use other tools. The synthetic model not only made it easy to be

familiar with the type of data that is dealt with, but also provided the opportunity of

comparing results for a whole seismic section. Although it was not applicable for the

field study, the synthetic model was used for a classification (lithology identification)

approach.

3. Although there are several examples of using artificial neural networks to correlate

seismic attributes to reservoir properties, or well logs, this study is first of its kind

because of integrating three types and scales of data. The idea of using an intermediate

scale has been introduced by Reeves et al. [14] in 2002, but never has been utilized

in the same study. In this study, vertical seismic profile (VSP) has been used as an

intermediate scale data. This increases the accuracy and the constraints for the final

results. However, in the field study, it was seen that in the case of not having sufficient

data, it may be hazardous to develop training models. Seismic data acted better than

the predicted VSP data, simply because the training models, which were developed

with the data of one well, were not powerful enough for VSP prediction. This brought

the importance of the amount of representative data that is used in training.

4. To determine the data that should be used for training, model visualization can be

helpful. It was seen in the first correlation step of the synthetic model study that;

including unique geological behaviors in the training set can increase the prediction

abilities of the neural network models.

6.2 Future Work

The methodology presented here can be applied to a 3D seismic block, to obtain 3D dis-

tribution of reservoir properties through out the seismic survey area. The power of the

methodology can be assessed by doing this on real data taken from a field having high-

quality well log and seismic data. The final reservoir model can be compared with models
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obtained with other conventional methods such as geostatistical estimation methods. This

would give a better understanding of the accuracy of different methods. Reservoir models

that are produced with different methods can be simulated and history-matched for a final

validation.

The work can be furthered by using a comprehensive synthetic seismic data for network

training, and trying to apply that network model to real data that the network has not

seen before. This would assess the usefulness of incorporating synthetic models in reservoir

characterization. Such kind of a study would be an important achievement, if satisfactory

results are obtained.

Moreover, the number of types of data that are used can be increased. Although having

a limited availability, one of the major type of data that can be incorporated is the core

data, which has a higher resolution than others used in this study. Considering studies

that use neural networks to correlate logs with core-permeability data, extending the study

to the highest resolution of data available would help to complete the puzzle of intelligent

reservoir characterization.
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