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ABSTRACT 

ANALYSIS OF A CURVED BUOYANT JET IN AN ENCLOSURE USING LES 

Allen E. Badeau Jr. 

 The objective of this study is to investigate curved buoyant jets in an enclosure 
using Large Eddy Simulation (LES) methods with an Implicit Turbulent Model (ITM).  
To accomplish this goal, a numerical solver was written, named DREAM®, which is 
capable of solving three dimensional, transient flows using an accurate monotonic and 
non-oscillatory upwinding scheme.  The three-dimensional Navier-Stokes equations are 
solved in Cartesian coordinates, with the control volume approach being implemented on 
a staggered grid.  The numerical scheme uses a fractional time step method, with the 
overall spatial and temporal accuracy being second order. 

 In ITM simulations, there is no explicit subgrid-scale model (SGS) used for the 
modeling of the small scale vortical structures.  ITM simulations assume that through 
strict conservation of the fluxing quantities in and out of the cell, the grid resolution is 
fully capable of capturing the important scales of the flow.  The volume averaging 
techniques used in the ITM methods acts as an implicit subgrid-scale model, and the 
resolvable scales of the flow are only dependent on the grid resolution within the domain.  
Comparison of the available experimental data, as well as simulations that used SGS 
models, to the ITM simulations from DREAM® compare favorably for most results. 
 For the simulations presented in this study, oil is injected at a specified flow rate 
into a water filled tank, initially taken to be stagnant.  Results show that the density 
stratification tends to damp the amount of turbulence present within the jet near the 
interface, but overall increases turbulence because of the acceleration of the fuel.  
Analysis of the curved buoyant jet shows that at an appropriate downstream location, 
similarity is achieved, and the energy spectrum shows the appropriate inertial subrange 
characteristics.  Impingement of the curved buoyant jet onto the upper wall increases the 
amount of turbulent present within the enclosure and comparison to vertical buoyant jet 
simulations with comparable dimensionless parameters shows wall effects may never be 
completely eliminated from the analysis.  Comparison between the curved buoyant jet 
simulations to the available experimental data from experiments performed explicitly for 
this study shows good agreement for the buoyant path centerline locations based on the 
internal densimetric Froude number.  The application of these methods to immiscible 
fluids shows a new dimension to ITM and allows for a high resolution of the resulting 
flow field without the need for an explicit SGS model.  Simulations for the vertical and 
curved buoyant jet indicate the necessity for small timesteps and increased grid 
resolution. 
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1.0   INTRODUCTION 
1.1    Motivation and Objectives 

 Multi-phase flows exist throughout nature, and their behavior is governed by 

turbulence effects more often than not.  A fundamental characteristic of multi-phase 

flows is the existence of complex interactions between the phases, whereby a range of 

characteristic lengths scales are present.  From the complexity of determining the amount 

of transfer of mass, momentum, and energy across the interface, modeling of these types 

of flows is not trivial. As the flow becomes more turbulent, the range of turbulent length 

scales increases, compounding the problem.   

The refueling process in naval destroyer Compensated Fuel Ballast Tanks has a 

variety of mixing phenomena taking place within the tank as water is expunged as fuel is 

pumped in.  Mixing layers, buoyant jets, and droplet formation and entrainment at the 

immiscible liquid-liquid interface cause a generation of turbulence and may lead to fuel 

becoming entrained into the effluent water and pumped overboard, which is an 

environmental concern.  The relative lack of direct knowledge of the behavior of the 

curved buoyant jet within the Compensated Fuel Ballast Tank has led to this study.  For 

more information of the flow physics during the refueling process within the 

Compensated Fuel Ballast Tank, the reader is referred to Badeau (2000). 

 Computational fluid dynamics, CFD, has allowed for modeling of these flows 

with some success; however, the demands on the available resources are immense using 

current techniques.  As computational resources increase, the ability to model these flows 

using Large Eddy Simulation (LES) has improved.  The objective of LES is to compute 

the three-dimensional time-dependent details of the relatively large scales of motion, 

which carry most of the total energy within the flow, while modeling the small scale 

eddies using some sub-grid scale (SGS) models.  Due to the averaging and filter process 

of the Navier-Stokes equations, traditional LES simulations necessitate the use of some 

closure model capable of modeling the effects of the small scale structures present in the 

flow.  A high degree of resolution of the domain must be maintained, necessary for 

acceptable accuracy because SGS models yield the best results when the cut-off wave 

number lays within the inertial subrange.  A variety of SGS models are available, and 
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have been applied to a wide range of flows.  The reader may refer to Fureby (1999) or 

Gel (1999) for more details on SGS models.   

Unfortunately, traditional LES models have difficulties with complex flow 

geometries, as well as some difficulties in wall bounded, complex geometries.  Often, due 

to the need for high order accuracy to adequately predict turbulence, many of the SGS 

models are unstable for certain types of flows due to backscattering of the turbulent 

kinetic energy (Shi, 2001; Margolin et. al. 2002).  Thus, a fairly newly applied approach 

to LES modeling will be utilized within this study to solve for curved buoyancy driven 

flows within an enclosure, namely Implicit Turbulence Modeling, ITM, techniques.  The 

cascading effect of turbulent flows is conspiring with scientists to allow this type of 

numerical technique to be used.  As most of the energy is contained within the largest 

eddies, interactions with smaller eddies, generally no more than an order of magnitude 

less, allows for this energy to be dissipated at a rate proportional to the resolution of the 

flow field.  Often times, the energy is fully dissipated long before reaching the viscous 

length scale, even one to two hundred times greater than this length scale.  Thus, the 

smallest scales may not be as crucial to the global behavior of the flow (Margolin and 

Rider, 2002). 

In ITM methods, the Navier-Stokes equations are discretized using a flux 

conserving, non-oscillatory, control volume technique.  These methods not only prevent 

unphysical oscillations, they also preserve positivity and monotonicity (Oran and Boris, 

1993).  They are highly stable, and correlate well with the underlying physics of turbulent 

flows.  Therefore, because of the inherent conservative nature of the discretization 

scheme, these methods have demonstrated the ability to simulate turbulent flows without 

the need for explicitly using a SGS model.  Results clearly show the ability of the ITM 

methods to predict the inertial subrange of turbulent flows, even for first order upwinding 

methods, as long as sufficient grid resolution is maintained.  Because of the prediction of 

the inertial subrange, it is evident that ITM methods are capable of dissipating 

appropriate amounts of turbulent kinetic energy to the smaller unresolved scales (Porter 

et. al. 1994).  Success of ITM methods is from the treatment of each computational cell 

as a finite volume, as strict flux conservation schemes allow for an accurate 
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representation of the coarse-grained equations of motion.  ITM methods have compared 

very well, often times performing better than the SGS models, for a variety of shear 

dominated flows.   

To perform these simulations using ITM methods, a computational code, named 

DREAM®, was developed at West Virginia University under the guidance of Dr. Ismail 

B. Celik.  DREAM® is a fully transient, three dimensional Navier-Stokes solver using 

accurate second order upwinding discretization schemes, accompanied with a fractional 

step or projection method.   DREAM® is an iterative code by design, while being positive 

definite, conservative, and computationally efficient.  However, DREAM does use a 

predictor-corrector type method, which accompanied with ITM methods does require 

small time steps, which hinders the computational efficiency.  In order to accurately use 

ITM methods, high grid resolutions must be maintained.  Unfortunately, to adequately 

resolve the flow field physics, ITM needs a higher grid resolution than many SGS 

models, as they incorporate important small scale physics at larger grids.  Very little 

research has been performed for application of ITM methods to curved buoyant jet flows, 

let alone the application to buoyancy driven impingement flows.  In this study, an ITM 

method is used to investigate the behavior of these flows.  The curved buoyant jet 

properties are investigated, as well as the effects of the jet on the global flow field.  The 

behavior of vertical buoyant jet impingement is also investigated using DREAM®.  The 

results verify the feasibility of LES and ITM methods for simulation of variable density, 

turbulent jets, and lend weight to the global strength of this research. 

 

1.2    Summary 

The objectives of this study are as follows: 

1. Validate the ITM methods as implemented into DREAM®  for standard turbulent 

flow phenomenon, 

2. Investigate the physics of vertical stably stratified buoyant jets flows, 

3. Validate solutions with available experimental data, 

 



Badeau, Jr. 4

4. Investigate the physics of curved buoyant jets injected into stagnant, liquid in an 

enclosure, 

5. Validate solutions with experimental data. 
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2.0   LITERATURE REVIEW 
Introduction 

The turbulent mixing of a buoyant jet in a density stratified flow is of significant 

importance in engineering problems.  The turbulent shear generated by the plume 

discharge into the atmosphere results in efficient mixing, and the reduction of the 

concentration of the pollutants.  In stratified fluids, density stratification limits the 

vertical rise of a buoyant jet, as well as restricting mixing with the surrounding ambient 

fluid.  Although much work has been performed in the study of un-hindered buoyant jets, 

little research has been done pertaining directly to the impingement of a buoyant jet on a 

solid surface, and the resulting flow within that region.  Simulation of these types of 

flows is difficult using Large Eddy Simulation (LES) techniques because of 

computational and numerical demands.  To capture the important physics of the flow, 

most would contend the need in using a sub-grid scale model for closure of the Navier-

Stokes equations and to ensure the appropriate cascading effects observed in turbulent 

flows.  However, this work will use a fairly new technique in LES known as Implicit 

Turbulence Modeling, or ITM.  This study will be one of the first applications of ITM in 

LES with solid boundary and buoyant flow conditions.  As this is a fairly new 

methodology in LES, most of the available literature is examined in Section 2.1.  The 

literature review of buoyant jets released onto a free surface are briefly summarized in 

Section 2.2, with this section being used to quantify the momentum dominated region of 

the buoyant events. Section 2.3 examines the impingement of buoyant jets, released 

either horizontally or vertically.  This section will also be used in the validation of the 

buoyant jet simulations using DREAM® and ITM methods. 

 

2.1    Implicit Turbulence Modeling 

 The future of CFD codes in turbulence modeling, as computers become faster and 

faster, is in the numerical technique of Large Eddy Simulation, or LES.  A LES is a 

numerical method, where the largest eddies are computed directly with most simulations 

resolving the smallest eddies using a sub-grid scale (SGS) model to represent subgrid 

stresses.  The idea behind LES is that the largest eddies that are directly affected by the 

boundary conditions, account for most flow field energy, and therefore may be computed 
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directly.  The small-scale turbulence possessed by the smaller eddies is much weaker, 

contributing less to the Reynolds stresses, and is therefore less critical for many flows.   

In traditional LES, models are explicitly introduced in the low-pass filtered Navier-

Stokes equations (NSEs) as SGS closures developed in physical space.  These methods 

provide a mechanism by which dissipation of turbulent kinetic energy accumulated at 

high wave numbers occurs.  New research into the field of LES has introduced a new 

class of LES models, known as Implicit Turbulence Modeling (ITM), where 

monotonically integrated techniques are used to discretize the Navier-Stokes equations 

(NSEs), with no pre-filtering being implemented directly.  As there are many different 

numerical control volume algorithms displaying monotonic properties, this section serves 

the purpose to examine the resulting physics from using ITM type methodologies, and 

not the resulting mathematical equations.  However, Section 3 examines the 

implementation of these methods into DREAM®.  For more information on traditional 

LES methods, accompanied with standard sub-grid scale models, the reader is referred to 

Gel (1999). 

 In the numerical solution of the Navier-Stokes Equations, the filtered momentum 

equation is given by 

2 1r
j j ij

i i i j

DU U p
x x x xDt

τ
ν

ρ
∂∂ ∂

= − −
∂ ∂ ∂ ∂  

(2.1.1)

where the first term on the left hand side is the substantial derivative, the overbars 

indicate a filtering, and p is the modified pressure with the gravitational forces included.  

Various numerical errors are incurred during the discretization of Eq. (2.1.1), with the 

most important being the spatial truncation error.  If Eq. (2.1.1) is modified to include 

this error, Eq. (2.1.1) becomes 

( )
2 1j j r h

ij ij
i i i j

DU U p
x x x xDt

ν τ τ
ρ

∂ ∂ ∂
= − + −

∂ ∂ ∂ ∂  
(2.1.2)

which is satisfied by the numerical solution.  The spatial truncation error appears as an 

additional stress, which depends on the numerical grid spacing, h.  If the spatial 
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discretization is pth-order accurate, then the spatial stress is of order hp (Tamura and 

Kuwahara (1989)).  It is the treatment of this spatial stress numerically where arguably, 

the largest debate in the field of LES is currently.   

The simplest viewpoint is that LES equations should be solved accurately, and 

that for a given filter width, the grid spacing, h, should be chosen sufficiently small to 

allow the spatial numerical stress to become negligible.  The opposite viewpoint is that 

no explicit filtering should be done and not explicit residual stress model should be used.  

However, other viewpoints are possible.  This means that an appropriate numerical 

method must be used to solve the Navier-Stokes equations for the mean velocity.  Using 

appropriate grid resolution, which is approximately less than 150 times the viscous length 

scale, the numerical spatial stresses arise, thus the filtering and residual-stress modeling 

are performed implicitly by the numerical method.  This is why the higher the grid 

resolution, the more accurate the flow calculations (Okong’o and Knight (1998)).  If the 

appropriate numerical scheme is chosen, such as a control-volume method using accurate 

positive and monotonic methods, the longer wavelengths contributions to the mean 

velocity is well resolved.  However, implicit turbulence methods are less capable of 

resolving the shorter wavelength characteristics.  The cascading phenomena observed in 

turbulent flows is also accurately modeled, as the energy is removed from the resolved 

eddies at a numerical dissipation rate of  

h
ijnum ij Sε τ= −  

(2.1.3)

This allows for the power spectra to observe the -5/3 slope of the inertial subrange 

(Knight et. al. (1998)). 

In turbulent flows, there is a wide range of scales present throughout the flow, 

with the largest being the vortical structures, down to the viscous length scale 

(Kolmogorov length scale).  It is a general rule that the larger the turbulent region, the 

more length scales present within the flow.  Oran and Boris (1993) were some of the first 

to use Implicit Turbulence modeling, ITM, to solve for practical turbulent flows.  The 

authors state that there are three circumstances that allow turbulent problems to be solved 
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without resolving all of the length scales in the flow.  The first two circumstances are 

based on the behavior of the spectrum of the turbulent kinetic energy as a function of the 

flow structures in the system, which determines the wavelength.  Oran and Boris (1993) 

state that as the wavelength decreases, the energy spectrum drops off so quickly that the 

shortest scale lengths do not contain a large percentage of the total energy within the 

flow.  Therefore, the short length scales are not important dynamically because the 

cascade of energy from the largest to smallest scales move through intermediary scales.  

This fact is supported by theory, experiment and computation, where very few features of 

the flow are important at the viscous length scale, or even scales that are ten to fifty times 

larger.  The last observation by Oran and Boris (1993) is that the nonlinear monotone 

methods properly connect the flow at the smallest computed scale to the flow at the 

unresolved scales, which makes the solution reliable down to the smallest resolved scale 

in the calculation.  This means that the higher the grid density, the higher the flow field 

resolution. 

 In ITM simulations, the intrinsic high-frequency filters are built directly into the 

convection discretization, which couples naturally to the resolvable scales of the flow 

because of the integral control volume and flux limiting techniques used to discretize the 

NSEs allows for energy to be dissipated through spreading of the eddies over more than 

one grid cell (Fureby and Grinstein, 1999).   This is evident in the analysis of the energy 

spectrum of the turbulent kinetic energy, where the spectrum drops off at a rate of Ε(k) ≈ 

[kL]-5/3 where k is the turbulent kinetic energy and L is a characteristic length scale.  In 

this range, the energy extraction from a given scale occurs as a result of interactions 

between eddies no more than an order of magnitude different in size (Oran and Boris, 

1993).  Simulations performed by Oran and Boris (1993) for oxygen-hydrogen mixing 

layers were able to obtain accurate results with resolved scales 25 to 50 times larger than 

the viscous length scale because most of the energy in the flow is dissipated at longer 

wavelengths, long before they even reach the viscous length scale.   

 One of the critical observations of ITM simulations is that the spatial and 

temporal order of the numerical method is less important than ensuring that the control 

volume, flux-limiting scheme preserves monotonicity and positivity.  Monotonicity 
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means that the numerical algorithm does not add unphysical oscillations to the solution.  

Positivity refers to the particular instance of monotonicity when the quantity is a positive-

definite convected quantity.  In fact, work has focused up to this point on second order, 

upwinding numerical methods.  Although there are different numerical schemes to 

achieve both second order and non-oscillatory effects, one common feature of all ITMs is 

that they apply to finite volumes of the fluid (Margolin and Rider, 2002).  Only finite 

volume schemes in flux form are considered in this study, because as shown in Section 

3.0, DREAM® utilizes this type of scheme.  In flux form, the advective terms are the sum 

of the fluxes entering and leaving a volume, instead of estimating these terms at a single 

grid point.  Conservation of the fluxes ensures the flux into the cell is exactly the negative 

of the flux leaving its neighbor.  Therefore, flux-limiting schemes are naturally 

conservative to the level of numerical round-off error.  Causality, another important 

property of ITM methods, requires that a fluid being convected from point 1 to point 3 

must pass through all cells between them.  This results in allowing second order schemes, 

and in fact, even first order upwinding schemes, to work equally well in ITM simulations 

as compared to higher order methods, such as fourth order central differencing schemes, 

as long as the grid resolution is properly posed (Margolin et. al. 2002).  These methods 

work well in mixing problems because they filter out structures smaller than a few grid 

spacing by spreading out these structures on the grid, thus dissipating them.  Therefore, 

the local, time-dependent dissipation in nonlinear monotone algorithms behave as a 

subgrid turbulence model for scales smaller than several resolved grid sizes.  ITM 

methods, for certain flow phenomena, properly connect the larger energy containing 

scales with the unresolved subgrid-scale of motion through this process.  Thus, the higher 

the grid resolution, the smaller the length scales that may be resolved, respectively 

(Margolin et. al. (2002); Smolarkiewicz and Margolin (1997)).  Application of ITM in 

LES by Margolin et. al. (2002) to determine the decay of turbulence in homogenous 

incompressible fluids within a triply periodic cube was analyzed, as well as a comparison 

of the enstrophy results from ITM simulations to pseudo-spectral solutions in DNS.  They 

found that as the viscosity is reduced, enstrophy calculations diverged in the pseudo-

spectral methods; however, up to a certain point in the calculations, there was a high 

degree of agreement between the two solutions.  As the viscous dissipation was 
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increased, the pseudo-spectral simulations were solvable, with the results closely 

agreeing with those of the ITM LES simulations.   

 For most of the papers reviewed up to this point, application of ITM methods in 

shear layer simulations was examined.  As mentioned previously, there has not been 

much work in the ITM realm of LES outside of these types of simulations.  Breuer (1998) 

was one of the first to use ITM methods in LES for non-shear flow simulations.  

Simulations for turbulent flow past a circular cylinder, Re = 3900, was studied.  

However, it is not the physics of the flow past the circular cylinder that is being 

investigated, but the flow behavior when different SGS and ITM methods were applied.  

The two SGS models were the standard and dynamic Smagorinsky models.  Breuer 

(1998) mentions that after selecting a mathematical model, the discretization of the 

Navier-Stokes equations leads to two different types of errors, being the discretization 

and convergence errors.  For ITM type solutions, the ease in the reduction of this error is 

in the refinement of the grid.  This is appropriate for even first order monotonic schemes, 

which is why Breuer (1998) uses a first order, hybrid type scheme in his analysis to show 

the inherent success of ITM methods.  The second type of error is the convergence error, 

which again depends on the matrix solver and the convergence criterion.  In all 

simulations, time advancement is performed by a predictor-corrector type scheme.  A 

multi-stage Runge-Kutta method is used in the predictor step, with the Poisson equation 

being implicitly solved for in the corrector step.  An interesting note is that due to the 

higher stability limit of the Runge-Kutta scheme, an increase of two in computational 

efficiency was found over use of Adams-Bashforth type schemes.  In the description of 

the ITM scheme, Breuer (1998) states that a more appropriate name for the ITM methods 

are “LES without a sub-grid scale model.”     Results of the simulations found that the 

ITM methods performed very well for three-dimensional simulations, using appropriate 

grid resolution.  However, for two dimensional simulations, it was found that all 

simulations produced unphysical results, whereby the counter-rotating vortices were not 

captured, which again lends weight to the ineffectiveness of two-dimensional LES.  An 

important point that Breuer (1998) emphasizes is the fact that all simulations were 

performed using a 165x165x32 non-uniform grid, with the discretization schemes used in 

the Smagorinsky simulations being fourth order.  Breuer (1998) concluded that there is a 
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small influence of the subgrid-scale model on the back side of the cylinder, where the 

sub-grid scale models yields a one percent improvement over ITM methods.  However, 

the prediction of the downstream values of k and skin-friction coefficient using the ITM 

methods do perform better than the Smagorinsky SGS models by as much as seven 

percent as compared to the experimental data. 

 Fureby (1999) used ITM methods to investigate the flow over a backward facing 

step with a constriction at the outlet for various Reynolds number flows.  The traditional 

LES methods are briefly explained, with the rationale behind the SGS models being 

presented in the paper.  Fureby (1999) explains that monotone methods are capable of 

handling vorticies in a similar manner as their ability to capturing shocks, making them 

highly suitable for LES because of the imbedded non-linear filters.  Again, the flux-

corrected concept is implemented, which attempts to incorporate the correction term of 

the convection without violating the physical principals of causality, positivity, and 

monotonicity.  Fureby (1999) uses a linear interpolation scheme, accompanied with a first 

order upwinding approximation.  Time integration is carried out through a Crank-

Nicholson scheme.  Results from the ITM type scheme, again, compare well with the 

available experimental data.  Averaged energy spectra at various downstream locations 

do in fact predict the inertial subrange, lending weight to the use of ITM methods.  The 

re-attachment lengths are predicted well for all simulations, with the ITM methods 

performing slightly better for the higher Reynolds number cases than the SGS models.  

Fureby (1999) also states that the predicted probability density of vorticity appears to be 

largely independent of the SGS model for low-intensity vortical structures, with only a 

slight influence being observed for the higher-intensity flows.  From the results of the 

backward facing step simulations, Fureby (1999) concludes that with an appropriate grid 

resolution, ITM methods can correctly channel kinetic energy out of the wave number 

close to the cutoff wave number, which prevents aliasing.  However, an important point 

to note, one that Fureby (1999) doesn’t directly state, is that inclusion of SGS models 

with coarse grid simulations outperform the ITM simulations.  Thus, this only lends to 

the conclusion that grid resolution is the key to ITM methods.  This is due to the coupling 

of the turbulent viscosity to the grid size used in the simulations in all directions of the 

flow. 
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 All reviews thus far have focused on application of ITM to incompressible and 

subsonic flows.  Urbin and Knight (2001) utilize ITM methods in the investigation of a 

compressible, supersonic boundary layer.  Their scheme is second order accurate in both 

space and time, with the standard monotonicity preserving, control volume formulations 

being implemented as utilized by Boris et. al. (1992).  Again, ITM methods are able to 

capture the high-frequency energy from the subgrid-scale stresses and heat transfer 

implicitly through the numerical algorithm.  These simulations are compared to the 

standard Smagorinsky SGS model.  One of the difficulties in turbulence modeling, 

especially in boundary layer flows, is in the determination of the best method of 

capturing the effects near the wall.  To resolve the scales at a wall, the straightforward 

extension of the classical law of the wall is used.  The height of the first cell wall grid is 

approximately one wall unit.  This value is kept constant throughout all grids.  Identical 

grid sizes are used for each of the different SGS and ITM models studies, which are 1.7, 

0.32, and 3.2 million grid cells.   

 Urbin and Knight (2001) selected the first grid wall unit so as to be comparable 

with available DNS studies, although the grid spacing near the edge of the boundary layer 

is substantially larger than would be used in DNS simulations.  Results show that the 

friction and streamwise velocities for the coarsest grid simulations are nearly identical, 

with the same trend being observed in the comparison of the wall-normal velocity 

fluctuations.  Analysis of the local turbulent viscosity predicted by the Smagorinsky 

model never exceeds 27% of the molecular viscosity, which indicates that inclusion of 

the Smagorinsky model has a negligible effect on the turbulence statistics.  Thus, this also 

lends weight to the fact that ITM methods are capable of capturing turbulence without the 

need for an explicit SGS for low Reynolds numbers.  In the grid refinement studies 

performed only for the ITM simulations in comparison to the available DNS and 

experimental data, the ITM simulations again perform very well for all grids considered. 

 The behavior of the energy spectrum in turbulent flows has been fairly well 

understood, whereby the largest eddies transfer energy to the smallest ones in a cascading 

process until being completely dissipated.  Thus, for any type of turbulent simulations to 

be credible, as already mentioned, they must be able to appropriately predict the energy 
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spectra in decaying turbulent flows.  Porter et. al. (1994) used an ITM type method, in 

conjunction with a piece-wise parabolic method, to investigate the behavior of the energy 

spectra in supersonic flows in wakes.  Initially, the Mach number was unity, with the 

initial conditions mean velocity fluctuations being that of a random flow with a 

prescribed spectrum and characteristic scale.  The velocity Fourier spectrum is separated 

into two components for analysis and characterization, being the solenoidal and 

compressional modes, with the ratio of the compressional modes to the velocity spectrum 

being 6.8%.  As these simulations are ITM, the smallest resolvable scales are based on 

the density of the grid in the wake of the flow, which were 512x512x512 uniformly sized 

grids.  The boundary conditions are periodic in all directions.   

 Porter et. al. (1994) described the flow based on three temporal regimes, with the 

time units being those of acoustical time.  Initially, for 0 < t < 0.3, shock formations are 

observed, with 0.3 < t < 2.1 being a supersonic phase and having strong density 

fluctuations, which develop and maintain themselves.  These density fluctuations arise 

from the shock interactions, where vortex sheets are produced, with the roll up taking 

place.  Porter et. al. (1994) observed that in this phase, the enstrophy reaches its 

maximum, and being a small-scale quantity, increases with the mesh resolution.  This 

maximum peak is highly dependent on the grid resolution, and varies by 8% from the 

coarsest to the finest grid.  The last phase is a post-supersonic phase, where t > 2.1 and 

the turbulent velocity spectrum exhibits self-similar decay properties, with the velocity 

spectrum being dominated by the solenoidal component of the spectrum.  In this regime, 

the Taylor wave number reaches its plateau, with the magnitude being dependent on the 

grid resolution.  Further analysis of the energy spectrum showed that during the 

supersonic phase, compressional modes establish a k-2 velocity power spectrum by t = 

0.5, and settles to a k-5/3 spectrum by t = 2.0, with the solenoidal modes building up more 

slowly.  This again shows that the buildup phase is compatible with a Kolmogorov 

spectrum, and the decay of the energy behaves appropriately.  

 Fureby and Grinstein (1999) compared various conventional SGS methods to 

ITM simulations in the studies of forced homogenous isotropic turbulence.  The results 

showed that the simulated energy spectrum depends on the effects of the SGS model only 
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toward the high-wave number end of the inertial range and into the viscous subrange. 

However, results are independent of the SGS model if the resolution is fine enough to 

ensure that the cutoff wave number lies in the inertial subrange.  All of the SGS models 

performed well in the prediction of the energy spectrum and integral quantities, with 

improved predictions being obtained with the ITM simulations.  Fureby and Grinstein 

(1999) also state that trying to simulate more complex flows in domains containing walls, 

ITM simulations have a large advantage over conventional LES SGS methods because 

there is no explicit filtering in ITM simulations, and thus no commutation error arises, as 

occurs in the conventional simulations.  However, some SGS models do not have an 

explicit filtering function, which reduces the commutation error as well. 

 In conclusion, the literature shows the inherent success of ITM methods if proper 

grid resolution is maintained.  Clearly, as ITM simulations are dependent on the grid 

resolution, coarse grids are less capable of resolving enough of the small eddies to 

dissipate an appropriate amount of energy out of the flow.  This causes not only a lower 

accuracy in the calculations, but prevents the inertial subrange from being adequately 

captured to refer to the simulations as LES.  Due to the control volume, flux limiting 

formulation, which ensures conservation of critical properties, ITM may predict 

turbulence without the explicit use of a SGS model.  It is for these reasons that an ITM 

scheme is utilized in this study, and applied to the NSEs in DREAM®. 

 

2.2    Buoyant Jets 
 

As buoyant flow events will be extensively studied in this work using ITM 

computational techniques, basic properties of the jets must be examined.  Hwang and 

Chang (1995) performed numerical simulations of a vertical forced plume in a cross flow 

of stably stratified fluids.  A three-dimensional, time averaged model was employed, 

which treated the conservation of mass, momentum, and salinity simultaneously.  The 

two-equation standard k-ε turbulence model was used to simulate the turbulent transport 

quantities.  A constant injection velocity issued vertically into a uniform velocity, cross 

flow of stably linear stratified fluid was employed.  The density of the fluid is computed 
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by using Knudsen’s formula and the stratification in the environment is caused only by 

the salinity variation within the system.  The numerical computations were performed on 

a non-uniform and staggered marker in cell grid system.  The SIMPLEC algorithm was 

used to solve the pressure field.  Hwang and Chang (1995) described the flow field 

surrounding the vertical jet in two ways; 1)  To surround the fluid, the discharged jet 

behaves similar to an obstacle placed in front of the flow, where the windward side is the 

retarding region of high pressure, while the lee side is the low-pressure wake region.  

Secondly, with respect to the jet flow, the horizontal momentum of the cross flow, the 

shear layer and the wake entrainment lead to the deflection of the jet in the cross flow 

direction causing mixing with the surrounding fluid.  The surrounding cross flow passes 

and penetrates through the jet shear layer, resulting in the formation of a pair of vortices 

on the jet cross-section.  The turbulent shear generated by the discharge results in 

efficient mixing, which rapidly reduces the tracer concentration.  In a stably stratified 

environment, the plume first behaves like a buoyant jet.  The initial momentum and the 

buoyancy of the plume cause the jet flow to move upward, bend over in the cross-stream 

direction and mix with the heavy bottom fluid.  The retardation of the flow development 

influenced by the stratified environment then leads to the formation of a second and a 

third pair of vortices above and below the primary vortex pair with a reverse direction.  

These newly formed vortices grow and suppress the growth of the first set of vortices as 

the plume flows downstream.  As the stratification of the ambient fluid is increased, the 

retardation of the jet flow from its source efflux becomes more significant, which leads to 

the alteration of the entrainment mechanism in the stratified cross flow (Hwang and 

Chang (1995)). 

The evolution of uniform, circular, thin shear-layers (jet-like flow) subject to small 

perturbations were computed using Fourier-spectral discretizations in space and fourth-

order predictor-corrector integration in time by Mathew and Basu (1994).  The goal of 

the study was to determine a mechanism of entrainment in circular jets.  The flow was 

incompressible, nominally aligned with the z-axis and periodic with respect to all three 

Cartesian coordinates.  The Reynolds number, based on the initial jet-diameter and the 

velocity differences across the shear layer, is 1600 and 2400 for cases one and two.  It 

was found that entrainment of the ambient fluid by the jet leads to an increase in the 

 



Badeau, Jr. 16

region occupied by fluid that is rotational, suggesting that the vorticity exceeds some 

threshold at this point.  In turbulent flows, this is also a region of fluctuating vorticity.  

Mathew and Basu (1994) states that the mechanism of entrainment is no longer viscous 

diffusion alone: the jet draws toward itself and ingest irrotational fluid, which then 

acquires vorticity through the diffusion mechanism.  Analysis of the data shows the initial 

roll-up of the circular shear-layer into four vortex rings per time period.  The stages were 

pairing, instability, growth of the stream-wise structures and the transition to a disordered 

state.  The simulations exhibit the critical features of experimental, spatially developing 

jets.  In the low Reynolds number case, a transition point, which shows the most rapid 

growth, connects the two stages, which occurs following the breakdown of the rings and 

the disappearance of the potential core, allowing the stream-wise structures to dominate.  

In case two, the breakdown occurs much sooner (Mathew and Basu (1994)). 

Mathew and Basu (1994) found that four kinds of fluxes across the jet boundary 

occur, being rotational, irrotational, positive fluxes entering the jet, and the negative 

fluxes leaving the jet.  Larger fluxes occurred at earlier times due to the larger surface 

areas.  Mathew and Basu (1994) determined that the fluxes are all much larger than the 

differences between each type of flux, suggesting growth and shrinkage during transition 

from one fluid mechanism to the next.  The underlying mechanism is nearly symmetrical 

and the small differences in the fluxes result in a net growth.  Thus, engulfment of the 

fluid is not the complete picture of turbulent entrainment.  The drawing of the fluid 

packets into the turbulent region by vortical structures must be included, and encircle 

these structures due to induction, being ingested and expelled several times as it acquires 

vorticity by viscous diffusion.  Thus, it is shown that the entraining flows are strong and 

clearly associated with vortex rings at early times.   

Ideal vortex rings don’t mix, but move as blobs through the fluid without exchange 

with their environment.  Jets are known to entrain more effectively when they are 

turbulent, and entrainment becomes stronger when the geometry of the jet is changed in 

such a fashion that the generation of individual vortices is enhanced.  Auerbach (1991) 

studied the phenomena of entrainment and ejection in vortex ring flow using an 

experimental apparatus consisting of a motor driven piston, which displaces a preset 

volume of water into a glass walled tank.  During the vortex roll-up, the growing vortex 
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ejects no fluid into its wake and entrainment is the sole mixing process active, thus the 

quiescent fluid is continuously entrained into the vortex by fluid convection.  Auerbach 

(1991) found that increasing the piston velocity history causes less amounts of 

entrainment, where as decreasing the piston velocity history leads to an increase in the 

entrainment.  Within the range of 3000< Re <49000, entrainment properties of the 

vortices are not effected, meaning that those generated from the tubes for a fixed length 

are not effected, whereas those generated at the orifices are.  When the piston stops 

moving and the roll-up phase ends, the convective entrainment stops abruptly, and the 

vortex rings appears to be self-similar, which is also independent of the Reynolds 

number.  During the laminar and wavy phases, the reduced entrainment is now 

predominantly diffusive and takes place continuously.  A further abrupt jump takes place 

in the mixing properties of rings when they become turbulent, i.e. playing a vital role in 

the nature and duration of this phase.  Entrainment remains of an essentially continuous 

diffusive nature.  The volume of fluid ejected by the ring was found to be dependent on 

the elapsed time of turbulent ring motion and the volume of each of these hairpins 

(Auerbach (1991)). 

 The flow and density distribution produced by injecting dense fluid upwards at 

the bottom of a homogenous fluid were investigated experimentally and theoretically by 

Baines et. al. (1990).  Salt water was injected into a tank of fresh water, with both 

axisymmetric and line sources being studied using a small scale experiment.  The 

experiments performed by Baines et. al. (1990) are very similar to those performed by 

Friedman et. al. (1999).  As in the Friedman simulations, the turbulent fountain formed 

rises to a maximum height, which was related to the inflow Froude number, and then falls 

back and spreads.  If the inflow is continued, the box begins to fill yielding a stable 

stratified environment.  The evolution is determined by the rate of entrainment into the 

fountain from the ambient fluid.  Re-entrainment of fluid into the fountain continually 

changes the density profile in the mixed fluid collecting at the bottom of the chamber.  

The top of the fountain rises linearly in time, at a rate which, for axisymmetric fountains, 

has been shown both experimentally and theoretically to be half the rate of rise of the free 

surface due to the inflow.  Baines et. al. (1991) concluded that once the mixed fluid at the 

bottom of the chamber has risen above the fountain, its density profile remains constant.  
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For line fountains, the results are less precise.  This is most likely due to the instability 

within the jet, which causes the flow to switch irregularly from a symmetrical state to one 

in which the downflow occurs on one side only, and with a smaller maximum height.  

The experimental values corresponded well with the theoretically calculations based on 

an inlet densimetric Froude number. 

Experiments and simulations have found that the ability of a turbulent plume to 

spread is highly dependent on the amount of ambient fluid that may be entrainment 

within the jet.  Turner (1986) investigates the entrainment assumption by relating the 

inflow velocity to the local mean velocity of a turbulent flow.  The entrainment 

assumption, as stated by Turner (1986) is “the mean inflow velocity across the edge of a 

turbulent flow is assumed to be proportional to a characteristic velocity, usually the local 

time averaged maximum mean velocity or the mean velocity over the cross-section at the 

level of inflow.”  Turner (1986) successfully applied the entrainment assumption to 

describe a variety of natural phenomena over a wide range of turbulence length scales.  

The first application was to plumes rising in stably stratified surroundings, and it was 

later extended to inclined plumes and other buoyancy driven problems.  Turner (1986) 

explicitly states that these buoyant forces inhibit mixing across a density interface.  

Another important contribution by Turner (1986) is in the investigation of the behavior of 

the plume with very different physical properties, such as viscosity differences.  Turner 

(1986) found that when the viscosities are comparable, there is appreciable turbulent 

entrainment; however, for larger variations, it may become completely hindered with no 

entrainment taking place. 

 

 2.3    Impingement of Buoyant Jets on a Non-Free Surface 

The unobstructed vertical turbulent buoyant jet has been studied extensively 

theoretically and experimentally.  The behavior of the jet downstream of the inlet is 

known; however, in the region near the jet impact zone, little research has been 

performed, as experimental quantification is difficult.   

 An experimental study was performed by Noutsopoulos et. al. (1979), which 

investigated the effects of a round, vertical, turbulent, buoyant jet of diameter d, 

impinging on a horizontal concentric circular solid disk.    As previous studies have 
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shown, turbulent mixing causes considerable dilution, which may reduce pollution in a 

variety of environmental flows.  The buoyant flow was generated using a water jet, 

released vertically into an ambient salt-water solution.  The densimetric Froude number is 

used to characterize the flow, expressed as 
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where ρo and Vo are the inlet density and velocity of the water, g is the gravitational 

constant, d is the diameter of the inlet (hydraulic diameter may be used for non-circular 

jets), and ρa is the ambient density of the salt water.  Noutsopoulos et. al. (1979) divided 

the overall flow field into three distinct regions, being; A) Flow field a distance dt before 

the disk, where no effects of the plate are felt, B) The flow field a distance dt to the disk, 

were the flow field is highly effected by the plate, and C) The flow field after impacting 

the disk.  The experiment was designed to allow for the plate to move to help in 

determining densimetric densimetric Froude number dependence on the downstream 

plume resulting from an impact.  Results from experiments found that at a certain 

distance before the impact region, which depends on the densimetric densimetric Froude 

number and distance between the jet and the impact plate, the jet develops as though it 

were unobstructed.  The region after the buoyant jet impacts the flow and continues 

behaves like a plume, which is dominated by buoyancy.  No results are presented for the 

region just before impaction, as like most experimental studies, it is difficult to obtain 

measurements within this region (Noutsopoulos et. al. (1979)).  A comparison of 

homogenous non-buoyant jets to the buoyant jet results indicates a wider spreading 

before the impact region of the buoyant jet.  This allowed Noutsopoulos et. al. (1979) to 

conclude that as spreading is a measure of a turbulence scale, then larger turbulence 

length scales are present in the buoyant jet. 

 A submerged water discharge into a cold and stratified body of water is often 

encountered in engineering and environmental flows.  Gu (1998) investigated the 

behavior of a two-dimensional buoyant jet resulting from temperature gradients.  An 

example of this flow is when submerged warm water discharges into a stratified lake or 

reservoir with an ice cover.  The goal of this study was to determine the large-scale 

convective re-circulation and flow processes in a cold body of water, induced by the 
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resulting buoyant jet.  The two-dimensional simulation consisted of a horizontal buoyant 

jet, injected at a given flow rate and temperature, into an ambient fluid with a different 

temperature.  This allowed for the study of both the standard buoyant jet, along with a 

negative buoyant jet depending on the inlet temperature of the water.  The simulation 

times needed for buoyant jet boundary impingement are presented for different 

temperatures. The standard k-ε epsilon turbulence model was used in the simulations, 

where variations in the transverse direction were in fact ignored.  Gu (1998) specified the 

ice cover on the upper boundary using a liquid wall boundary condition for the velocities, 

accompanied with a temperature specification.  An outlet boundary condition was also 

specified.  The flow was studied for a variety of densimetric densimetric Froude and 

Reynolds numbers.  Gu (1998) found that re-circulation due to jet entrainment and 

ambient water replenishment in the regions above and below the jet create a vortex on 

each side of the jet.  Dilution of the resulting jet is highly sensitive to the temperature 

gradient of the flow, which may cause the jet, after enough dilution, to become a negative 

buoyant jet (Gu (1998)). 

 Through experimentation by many researchers, it has been shown that a three-

dimensional vertical wall-jet has a large rate of spread in the direction parallel to a wall, 

and a small rate in the direction perpendicular to it.  The turbulent zone is much wider in 

the direction parallel to the wall than perpendicular to it as well (Baines (1985)).  

Experiments performed by Baines (1985) determined the wall effects on entrainment and 

jet behavior in a negative, one-percent density difference, buoyant, vertical forced plume 

flowing parallel to the wall.  The entrainment rate is different for a jet along a wall 

compared to a free jet due to the cross-sectional differences between the two types of 

flows.  The entrainment rate should increase as the peripheral length increases; however 

due to the wall effects on the turbulent flow field, the entrainment rates have actually 

been shown to decrease.  Baines (1985) compared the volume flux between the free jet 

and wall bounded jet and concluded that close to the source, the wall bounded jet has a 

higher rate of entrainment near the wall, and farther from the wall, the effects reduce.  

This allowed for two conclusions namely; 1) the distortion of the cross-section gives a 

larger surface over which entrainment may occur, and 2) the wall proximity has changed 

the turbulent field enough as to alter the driving mechanism of entrainment. 
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 The characteristics of plane self-preserving buoyant turbulent adiabatic wall 

plumes were examined experimentally by Sangras et. al. 2000).  Measurements of the 

velocity properties of the adiabatic wall plume were described, with emphasis being 

placed on conditions of the jet far from the source, where self-preserving behavior is 

approximated.  The experiments used helium as the buoyant jet, which was allowed to 

rise along a smooth, plane, vertical wall.  A porous material was used on the top of the 

experimental apparatus, and measurements were not taken in this region.  Laser-induced 

fluorescence (LIF) was used to measure properties of the velocity field.  A density ratio 

of 0.75 was used in the experiments, with Reynolds and densimetric densimetric Froude 

numbers being 740 and 3.50, respectively.  The densimetric  Froude number is actually 

the source densimetric  Froude number, which was based on the density difference, and is 

used to approximate the densimetric  Froude numbers far downstream of the source as 

well.  The buoyant jet was observed to become self-preserving approximately 92 – 156 

source widths from the source.  This yielded larger near-wall mean velocities than 

observations within the flow development region near the source.  Close to the wall, the 

behavior of the buoyant jet was similar to velocity fluctuation intensities in non-buoyant 

jet experiments.  The power spectra obtained from the velocity fluctuations exhibit the 

well known -5/3 power inertial-convective decay region, but the measurements were 

unable to reproduce the -3 power inertial diffusive decay region that is generally 

observed in buoyant turbulent flows (Sangras et. al. 2000)). 

 Buoyant jet flows have been extensively studied by fire investigators in the hope 

of determining the heat transfer to the walls from a fire driven plume.  As the air becomes 

heated and rises, especially if a point source is used, a buoyant jet ensues.  This jet 

behaves in a similar manner to liquid-liquid buoyant jets.  Cooper (1989) performed 

experiments with the goal of determining the total heat transfer to walls during fires with 

buoyant plumes.    Estimates for the mass, momentum, and enthalpy flux were obtained 

immediately upstream of the ceiling-wall junction.  Results indicated that depending on 

the proximity of the plume to the wall, energy releases were found to be in the range of 

200 – 2000 kW (Cooper (1989)). 

 An experimental study dealing with the impact of a turbulent, 2-D plane, nominal 

buoyant jet with a submerged solid boundary was studied by Cavalletti and Davies 
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(2003).  The experimental data demonstrated that the impact of a turbulent plane buoyant 

jet causes a complex disturbance field to be generated near the site of impingement.  The 

principal features of the disturbance field, i.e. rebound vortices, out flowing current, etc., 

are qualitatively self-similar.  This fact is regardless of flow incidence angle with respect 

to the wall.  The quantitative effects of impingement upon the structure of the velocity 

and concentration fields within the approaching buoyant jet are manifested primarily in 

(1) a distortion of the free buoyant jet decay in centerline velocity, and (2) a distortion in 

the concentration profiles associated with the far-field buoyant jet flow.  The placement 

of the solid boundary was at a distance so as to not to allow for the development of a 

plume.  The authors note that these types of cases require much more study, and only 

indirect conclusions have been made thus far, whereby experimental data has been 

extended (Cavalletti and Davies (2003)).   

 Flow and heat transfer to a circular cylinder with a hot impinging air jet was 

studied by Kang and Greif (1992).  The effects of the Reynolds and Grashof numbers on 

the flow and heat transfer, as well as those of the wall temperature, the jet width, and the 

distance between the nozzle and the cylinder were investigated.  The authors also present 

correlation curves with experimental data.  The results presented in the paper were stable 

and symmetric over all dimensionless parameters used to describe the flow.  The 

interaction of the buoyant impinging jet with the cylinder, as well as with the 

surroundings makes the flow and heat transfer to the cylinder very different from that of 

uniform flow (Kang and Greif (1992)).  The authors found that the effects of buoyancy, 

diffusion, and cooling of the jet ahead of the cylinder, the development of a wall jet, and 

the re-circulating bubble all affect the flow and heat transfer.  The width of the inlet jet, 

as well as the distance between the jet and the cylinder also had a strong effect on the 

heat transfer to the cylinder, which is what was expected.  It was concluded that the 

average Nusselt number increases with increasing Reynolds and Grashof numbers and 

narrow banded correlation curves are obtained by introducing an effective Reynolds 

number. 

Friedman et. al. (2001) performed experiments dealing with droplet formation and 

the prediction of size distributions from an immiscible interface impinged with a vertical, 

negatively buoyant jet.  Experiments showed that when an upward-flowing water jet 
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impinges on an interface with an immiscible layer of lighter oil above it, the jet 

momentum lifts the interface and forms a cavity.  Below a threshold based on the jet 

Richardson and Reynolds numbers, no droplets will form; however, above this threshold, 

oil drops are formed by two mechanisms.  At high Richardson numbers, an oil lip created 

at the edge of the cavity detaches to form oil droplets in the water below, whereas at a 

low Richardson number, the water cavity becomes unstable and alternately collapses and 

reforms.  As the water impinges on the solid surface, a negative buoyant force drags fuel 

entrained into the water downward, which then break and form droplets. The collapsing 

cavity impacts the interface, it drags down fingers of the lighter phase, which then breaks 

and form oil droplets.  Experimental observations suggest a log normal distribution of 

droplet sizes, with mode diameters ranging from 0.6 to 1.5 mm.  Characteristic diameters 

decrease primarily with increasing Reynolds number, Richardson number, and to a lesser 

extent with decreasing viscosity ratio (Friedman et. al. (2001)).  The results from this 

paper have been used in the verification and quantification of the performance of buoyant 

jets using ITM LES methods as implemented into DREAM®, and further discussion is 

deferred to Chapter 6.0. 

 Shy (1995) studied mixing processes involving organized large-scale and chaotic 

small-scale motions across a sharp density interface using a pH-sensitive, laser induced 

fluorescence technique in a water tank.  This non-intrusive technique allows one to 

distinguish fluid that has been molecularly mixed from that which has been merely 

stirred.  A turbulent round jet impinged from above on the sharp density interface over a 

flow Reynolds numbers between 2500 ≤ Re ≤ 25,000 and flow Richardson numbers 

ranging from 0 ≤ Ri ≤ 5, each based on the local jet scales at the interface.  It was found 

that at large Reynolds numbers, molecular mixing first occurs at the perimeter of the jet 

front, forming a mixed layer, in contrast to a jet in a uniform environment, where 

engulfment occurs in the back of the large vortical structures.  For relatively weak 

stratification approaching the atmospherically relevant situations, as the jet penetrates 

into the density interface and continues to advance, the mixed layer develops into a 

complex reverse jet that ejects backward along the sides of the original jet core.  

Surprisingly, the latter remains little mixed.  Shy (1995) reasoned that this was the 

explanation to why the undiluted cloud base air has been found at all levels within 
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cumulus clouds during aircraft penetration.  At moderate stratification, a mixing 

transition was observed across which the mixed layer thickness changed by an order of 

magnitude, showing that the Reynolds number also plays a role in mixing in stratified 

flows.  With stronger stratification, the jet front barely penetrates the interface.  A 

physical model was presented by Shy (1995) in order to explain the jet transport and the 

mixing transition across the density interface.  Shy (1995) concluded from this physical 

model that entrainment at the density stratified interface is not solely dependent on the 

Richardson number, but also depends on the Reynolds number.   
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3.0   IMPLICIT TURBULENCE MODELING 

 

3.1 LES with Implicit Turbulence Modeling Techniques 

 This chapter explains the numerical development of DREAM®, a CFD code 

developed at West Virginia University (Celik and Badeau, 2003), including the 

justification for use of implicit turbulent modeling (ITM).  Developing a new CFD code 

is a tedious, difficult, and constantly ongoing process.  The control volume discretization 

techniques as applied to DREAM® in its soundest and most fundamental form are 

explained, as well as gridding, coupling effects, and other important features inherent to 

the workability of the solver.   

DREAM® was developed to be a fully transient, three dimensional Navier-Stokes 

solver using accurate second order, upwind discretization schemes, accompanied with a 

fractional time step or projection method.   DREAM® was an iterative scheme by design, 

while being positive definite and conservative.  It is these properties of the method that 

allows for ITM to be used in the LES simulations without an explicit sub-grid scale 

model.  Validation of DREAM® is elucidated by Celik and Badeau (2003), with more 

validation cases presented in Chapter 4.  Simplicity is the key to this code, where 

everything is kept to its most basic form, such as Cartesian coordinates, staggered, 

uniform or non-uniform grids etc. The equations solved for are put in a general form 

given by 

( )d F S
dt
Φ

= Φ +  
(3.1.1)

where F  is the net flux per unit mass through the surface of a control volume, and S is 

the source term including the pressure gradient.  All equations take the generalized form 

as given by Eq. (3.1.1).   

 Integration of Eq. (3.1.1) is the beginning of the differences between the 

traditional LES methods as compared to ITM methods.  In practical LES implementation, 

the prefiltering of Eq. (3.1.1) really has no explicit effect on the variables that are solved, 

as the filtering is performed when deriving the LES equations, which then are discretized, 

although the filtering does have an indirect effect on producing unresolved transport 
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terms that required additional closure modeling.  Therefore, cell averaging may be treated 

as a built in filtering process, which is similar to a square, top-hat, filtering function 

(Fureby and Grinstein, 1999). 

 

3.2  Discretized Equations in DREAM®  

In this section the derivation is given for the discretized equations for a generic 

transport variable.  These equations are applicable to any of the primitive flow variables, 

such as volume fraction, density, temperature, or velocity, etc.  As volume fraction, 

density, and temperature are never negative quantities, it is important that the numerical 

scheme used does not produce un-physical quantities, which is why positivity is so 

important in using ITM methods, but not required. 

The generalized transport equation for a generic field variable φ is 

( )
j

j j

u S
t x x φ

ρφ φρ φ
⎛ ⎞∂ ∂ ∂

+ −Γ =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
 

 

(3.2.1)

where repeated j index implies a summation, ρ is the density, Γ is the diffusion 

coefficient, and u is the velocity.  It is important to note that Eq. (3.2.1) applies to single 

fluid or single component flows only; however, for many of the simulations presented for 

buoyant jet cases, where there is a mixture between two fluids the following substitution 

can be applied; 
*  and   k k k k k k kρ ε ρ ε ρ ε⇒ Γ⇒ Γ = Γ  (3.2.2a) 

where the subscript “k” represents the property of the kth component, and ε denotes the 

volume fraction.  If the density is treated as a mixture density, then only one set of 

conservation equations needs to be solved for.  The volume fraction is computed using 

another scalar transport equation, ranging from 0 to 1, which then allows for the mixture 

density to be calculated for the entire domain, given by 

1 1 1 2(1 )mρ ε ρ ε ρ= − +  (3.2.2b) 

The volume fraction can also be treated as a porosity for a liquid-solid or gas-solid 

mixture.  To account for the slip-velocity between the two phases, a pressure based three 

dimensional slip velocity relationship, as shown in Kandil (2001), is utilized using a 
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constant droplet size of 2.5 mm.  This droplet diameter corresponds to the experimental 

observations by Friedman et. al. (2001).  This slip velocity is added to the mixture 

momentum equation as a source term.  This model is not explained further here as it was 

only implemented into DREAM®, and for details on this model, the reader is referred to 

the Kandil’s (2001) study.  Note that the phase density can be zero when the volume is 

zero, and this must be handled separately.  For example, the equation of continuity for the 

kth component is written as (no summation over repeated k index) 

( ) ( )k k
k k j m

j

u S
t x

ε ρ
ε ρ

∂ ∂
+ =

∂ ∂
 

(3.2.3)

where Sm denotes any possible mass interchange among the components or phases with 

substitutions of the kind given by Eq. (3.2.2).  The continuity equation is given by 

( ) ( )j m
j

u S
t x

ρ
ρ∂ ∂

+ =
∂ ∂

 
(3.2.4)

To simplify the derivation process, only one-dimension is considered, i.e. the x-direction, 

and thus re-writing Eqs. (3.2.4) and (3.2.1) as 

( ) u S
t x x φ

ρφ φρ φ
∂ ∂ ∂⎛ ⎞+ −Γ =⎜ ⎟∂ ∂ ∂⎝ ⎠

 

( ) ( ) mu S
t x
ρ

ρ
∂ ∂

+ =
∂ ∂

 

(3.2.5)

 

 

(3.2.6)

For definition and simplification purposes, two new variables Jx, the total flux, and Fx, the 

convective flux, are defined as 

x xJ F
x
φφ ∂

= −Γ
∂

 

 

(3.2.7)

 

(3.2.8)
xF uρ=

Hence, Eqs. (3.2.5) and (3.2.6) become 

( ) ( )J Sxt x φ

ρφ∂ ∂
+ =  

∂ ∂

( ) ( )x mF S
t x
ρ∂ ∂

+ =
∂ ∂

 

  

 (3.2.9) 

 

(3.2.10) 
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Performing some algebra, the reasons for which will become clear later, multiplying Eq. 

(3.2.10) by φ, and then subtracting it from Eq. (3.2.9), yields 

( ) ( ) ( )x x mJ F S S
t x x φ

ρ φ
φ φ

∂ ∂ ∂
+ − = −

∂ ∂ ∂
 

(3.2.11) 

Eq. (3.2.11) will be used as the working equation, and integrating it over a control 

volume using the usual assumptions employed in the so-called control volume approach 

(Patankar (1980)), results in 

( )P e w P e wV J J F F sφp
mP

d
V s V

dt
φ

ρ φ− − − = φ∆ + ∆ − ∆  
 
(3.2.12) 

where the indexes  P, e, and w are as shown in Figure 3.2.1. 

W
w

P
e

E

n

s

N

S

 

Figure 3.2.1 – Grid used for integration of transport equations 
 
In Eq. (3.2.12), the over bar, “-“, indicates a volume averaged quantity.  The expressions 

for Je, Jw, Fe, and Fw, and another variable D, the diffusion flux, are given by 

   and     e wD  
e w

d dD A A
dx dx
φ φ⎛ ⎞= Γ = Γ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

(

⎛ ⎞  

) ( )     and     e we w
F uA F uAρ ρ= =

w w

 

     and     e e e wJ F D J F= − = D−  

(3.2.13a) 
 
 
(3.2.13b)
 
(3.2.13c) 

where A denotes the cell face areas.  The source term is linearized in the usual manner, 

giving 
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p p p cs s sφ= +  
(3.2.14) 

It is important to note that the source term linearization should be selected such that sp < 

0, always.  Also, the treatment of the source terms allows for the inclusion of baffles and 

walls within the domain.  For more on this type of treatment, the reader is referred to 

Appendix B.2.  Moving all non-derivative terms in Eq. (3.2.12) to the right hand side and 

re-writing yields 

( ) ( )
( )

e P e w P w
rhs

p m P c

J F J F
f

s s V s V
φ φ

φ
⎡ − − − +⎤

= − ⎢ ⎥
− ∆ + ∆⎢ ⎥⎣ ⎦

 

PdV frhsdt
φρ∆ =  

 

(3.2.15) 

 

(3.2.16) 

Now, the time discretization of Eq. (3.2.16) can proceed in many ways.  It is desirable to 

have the options of (i) fully implicit, (ii) fully explicit, (iii) Crank-Nicholson, etc.  It is 

also desirable to have the option of making only the diffusion terms explicit and handling 

the convection terms implicitly.  The spatial discretization can also be changed by simply 

changing the method for evaluation of the cell face values in the fluxes, Je and Fe, etc.  

Analysis of Eqs. (3.2.15) and (3.2.16) is the critical component in ITM because in the 

application of flux limiting methods, it is important to choose a higher-order convective 

flux function that works well in smooth regions and a lower order flux function that 

works well near discontinuities, such as upwind differencing.  The hybridization of these 

functions into a single function will then lead to a proper unconditional monotone 

method, with a high enough order to ensure that the numerical diffusion doesn’t hinder 

the results, such as second order methods. 

Therefore, we shall employ a generalized scheme as follows: 

( ) (1 ) (1rhs d d rhsV f f f )o oP
d d

d f
dt
φρ α α α α+ − + − α∆ = + −  

 
(3.2.17) 

where fd = De – Dw, α is the implicitness factor, αd is the implicitness factor for the 

diffusion, -α fd cancels the diffusion included already in the right hand side of Eq. 

(3.2.15), and the other two terms constitute the implicit and explicit part of the diffusion 

term.  Now what remains is the spatial discretization scheme for evaluation of the frhs and 
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fd.  This is done following the generalized scheme described by Patankar (1980), thus 

giving 

( )    and    ( )e e P E P E w w P W W PJ F a J F aφ φ φ φ φ φ− = − − = −  (3.2.18a&b) 

The diffusion terms may be accurately represented by central differentiation, i.e.  

( )e E E P
e

dD A d
dx
φ φ φ⎛ ⎞= Γ = −⎜ ⎟

⎝ ⎠
 

( )w W P W
w

dD A d
dx
φ φ φ⎛ ⎞= Γ = −⎜ ⎟

⎝ ⎠
 

    and     E Wd d
x

= =
∆

   
e w

A A
x

Γ Γ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟∆⎝ ⎠ ⎝ ⎠

 

 

     (3.2.19a) 

 

     (3.2.19b)

 

(3.2.20a&b)

Thus, 

( )
( )

E W P E E W W

rhs
p m P c

a a a a
f

s s V s V

φ φ φ

φ

⎧− + + + +⎫⎪ ⎪= ⎨ ⎬
− ∆ + ∆⎪ ⎪⎩ ⎭

( )d E W P e E w Wf d d d d

 

φ φ φ= − + + +  

 
(3.2.21) 
 
 
(3.2.22) 

Here, the coefficients aE and aW are calculated from the relations given by Patankar 

(1980), which are: 

( ) ( )max ,0E e e ea D A P F= + −  

( ) ( )max ,0W w w wa D A P F= +  

e
e

e

FP
D

=  and  

     (3.2.23a)
 
 
     (3.2.23b)
 
(3.2.23c&d)
 

w
w

w

FP
D

=

The appropriate choice for ITM simulations is the power law scheme for determining 

A(abs(Pe)), which has shown to be second order as it toggles between upwind 

differencing and central differencing schemes depending on the value of the Peclet 

number.  However, in LES simulations, the Peclet number is generally smaller than 2.0, 

which ensures that the central differencing scheme will be generally utilized, which is 

second order in nature. Also, this indicates that the leading truncation error of the scheme 

is now proportional to the grid spacing.  This lends weight to the statement that the grid 

resolution behaves as a SGS model (Brewer, 1998), in which Brewer (1998) successfully 
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used a hybrid function in the numerical simulations, which is first order accurate.  The 

power law scheme is defined as 

( ) ( )5max 0.0,1.0 0.1eA P = − Pe  
(3.2.24) 

Therefore, utilizing this type of formulation, an ITM type formulation is used in 

DREAM® which is second order accurate in space, conservative, and monotonic. 

Equation (3.2.24) clearly exhibits positive definite properties, as the coefficients are not 

allow to be negative. The examination of the temporal discretization scheme is described 

in the following section. 

 

3.3 Fractional Step (Projection) Method  

The fractional step method, also known as the projection method, is the fundamental 

numerical method used for solving the incompressible Navier-Stokes equations.  In this 

document, the terminology of fractional step and projection method will be used 

interchangeably.  Generally speaking, the major difficulty in obtaining time-accurate 

solutions for incompressible flows arises from the fact that the continuity equation 

doesn’t contain pressure and it’s time derivative explicitly.  The constraint of mass 

conservation is achieved by an implicit coupling between the continuity equation and the 

pressure term within the momentum equation.  Handling this type of flow may be 

difficult, especially when trying to maintain stability; thus the projection method is used, 

whereby the projection step is calculated through subtracting the pressure contribution to 

find starred velocity field, then a Poisson equation is solved to find the new pressure 

field.   
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Figure 3.3.1  -  Staggered grid used in the DREAM® code 
 

Generally speaking, there are a variety of methodologies in which the projection method, 

or fractional step method may be implemented into DREAM®.  The discretized 

momentum equations are represented by the following functional relationships; 

1
1 1

~~

n n
n nn nu u f f P

t
ρ α β

+
+ +⎛ ⎞−

= + −∇⎜ ⎟∆⎝ ⎠
 

(3.3.1)

Since the pressure at the n+1 time level is not known, we must approximate Eq. (3.3.1) as  

*
*

~~

n
n n nu u f f P

t
ρ α β

⎛ ⎞−
= + −∇⎜ ⎟∆⎝ ⎠

 
 
(3.3.2)

It is assumed that the velocity field in un and the pressure field Pn satisfy the continuity 

equation, but u* calculated from Eq. (3.3.2) does not necessarily satisfy the same 

continuity equation.  If Eq. (3.3.2) is subtracted from Eq. (3.3.1) then 

( )
1 *

1 * 1

~~ ~

n
nn n nu u f f P P

t
ρ β

+
+ +

⎛ ⎞⎛ ⎞− ⎜ ⎟= − −∇ −⎜ ⎟ ⎜ ⎟∆⎝ ⎠ ⎝ ⎠
 

 

(3.3.3)

At this point in the derivation, it is assumed that the difference between fn+1 and f* is 

small.  This constitutes the change in u* if fn+1 were to be used in Eq. (3.3.2) instead of f* 

= f(u*).  Usually, the implicit part of Eq. (3.3.1) includes the difference term, hence 

neglecting the term fn+1-f* amounts to the error in treating the diffusion terms semi-
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implicitly instead of fully explicitly.  Thus, using this justification, Eq. (3.3.3) is re-

written as  

( )
1 *

1

~

n
n n nu u P P

t
ρ

+
+⎛ ⎞−

= −∇ −⎜ ⎟∆⎝ ⎠
 

(3.3.4)

Special care must be taken to ensure that the density term in Eq. (3.3.4) never equals 

zero, as this would cause singularities in the solution.  Thus, taking the divergence of Eq. 

(3.3.4) and assuming that un+1 satisfies continuity yields 

( ) ( )
1

2 1

~ ~

1 *
n

n n nP P u
t t

ρρ
+

+ ⎡ ⎤∂
−∇ − = ∇ +⎢ ⎥∆ ∂⎣ ⎦

 
 

(3.3.5)

Thus, once P’ (P’=P n+1-Pn) is calculated from Eq. (3.3.5), the velocity field and pressure 

field at the n+1 time level are calculated, respectively, from 

1

~

1

* '

'

n
n

n n

tu u P

P P P
ρ

+

+

∆
= − ∇

= +
 

 

(3.3.6)

Thus, the general formulation for the projection method is to guess an initial pressure 

field and solve for an initial velocity field, then project that velocity field onto a new 

pressure field.  Use the new velocity field and correct for the pressure, then calculate the 

corrected velocity field.  Although this is the general formulation, there are many other 

ways to achieve the same goal.  

 

3.4    Solution of System of Algebraic Equations 

DREAM®, as well as other commercially available CFD codes, produces large sets 

of equations from the momentum and Poisson’s equation.  The general form of the linear 

system of equations is 

Ax b=
r r

 
(3.4.1)

where A is a square matrix of order N, x is the solution vector, and b is the right hand 

side of the equations.  The computational efficiency of any CFD code is highly dependent 

on the use of an appropriate equation solver, which is why this section will examine the 

linear equation solvers available in DREAM®.  Generally speaking, there are three types 
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of techniques available, classified as direct, semi-direct, and iterative methods.  Direct 

methods, which are not used in DREAM®, yield an exact solution, in the absence of 

round off errors, in a finite number of operations that can be determined in advance.  

These methods can be applied to any nonsingular matrix, and are well adapted to matrix 

inversion and linear equations.   

 Two semi-direct methods are available in DREAM®, being the Incomplete 

Cholesky Conjugate Gradient Method, ICCG, and the Bi-Conjugate Gradient Stabilized 

Method, BiCGSTAB.  The idea of ICCG is to decompose the matrix into the form LDLT, 

although other forms are just as possible, such as the LLT.  This type of form, known as 

the Cholesky form, has the advantage of needing less storage due to the symmetry of the 

matrix, and fewer operations are needed to perform the decomposition.  For a detailed 

derivation of the ICCG method, the reader is referred to Smith (1996).  The Bi-Conjugate 

Gradient Stabilized method is another popular solver not only because it is usable for 

nonsymmetrical matrices, but also because it converges smoothly where other conjugate 

gradient methods become unstable.  Usually, the BiCGSTAB outperforms CGSTAB 

methods in most cases.  Again, the reader is referred to (Smith (1996)) for more details of 

such solvers. 

 For most simulations performed using DREAM®, the SIP3D solver is used, which 

stands for Strongly Implicit Procedure, developed by Stone and Kwan (1969).  The 

SIP3D method solves large systems of equations through iteration and converts the finite-

difference equations into a series of matrices.  A series of sparse, symmetric matrices are 

formed in the process.  SIP3D is more computationally efficient than the other solvers 

mentioned, as it has an additional acceleration parameter, which is multiplied by the 

residual vector.  The number of iterations to convergence also tends to be less than the 

other solvers used in DREAM®.  For more information on SIP3D, the reader is referred 

to Stone and Kwan (1969). 

 

3.5    Boundary Conditions 

No discussion of numerical methods would be complete unless a discussion on 

boundary conditions was included.  Patankar (1980) presents a review of the boundary 

conditions for the pressure correction methods, which our method falls into.  For solid 
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wall boundaries, or boundaries where the flow is known, Dirichlet conditions are to be 

used for the velocity.  Since the velocity is known at this type of boundary, no correction 

need be made to it and the corresponding pressure correction boundary condition is 

∂P’/∂n=0.  If the pressure is known at a boundary, then the Dirichlet condition is used for 

the pressure correction, which usually becomes P’=0.  Therefore, the corresponding 

boundary condition for the velocity would be a Neumann conditions, ∂u/∂n=0. 

An important point, which will be addressed in Chapter 5 of the simulations for 

an impinging jet, is the behavior of ITM at or near solid boundaries.  Traditional LES 

methods, at times, have difficulties in capturing the flow characteristics in complex 

geometries.  It may be expected that for certain flows, unless the grid resolution is fine 

enough to capture the boundary layer at the wall, then the simulations will contain 

considerable amounts of error in the solution.  However, little work has been done in this 

field of ITM, and Chapter 6, Section 6.4.2 will try to address some of the effects of wall 

impingement by a curved buoyant jet on the global flow field, i.e. turbulence generation 

or suppression.   
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4.0   VALIDATION OF DREAM® CODE 
4.1    Introduction 

Large eddy simulations, LES, require the use of accurate numerical schemes in 

order to alleviate and prevent error propagation.  Generally, when considering the 

expansion of a function using a Taylor series, the higher the order of included terms, the 

more accurate the solution becomes as the truncation error is reduced.  Unfortunately, 

this is not an accurate perception of LES, as the higher the order of accuracy 

accompanied with coarse grid spacing may not produce reasonable results (Rai and Moin 

(1991)).  This section examines the performance of LES using ITM methods as 

implemented into DREAM®.  Results clearly show that with appropriate grid resolution, 

good agreement with available experimental data is achieved. 

 

4.2    LES of Flow Past a Square Cylinder 

The turbulent flow around a square cylinder has not been studied as extensively as 

the flow around a circular cylinder.  The flow topology between the two is expected to be 

identical, however differences in the length and velocity scales provides crucial insight 

into the relationship between the coherent vortex structures and the random turbulence 

characteristics.  In order to determine the performance of ITM methods utilized in 

DREAM®, experiments performed by Lyn et. al. 1995), accompanied with numerical 

simulations by Rodi (1997), Sohankar et. al. (2000), and Shi (2001) will be used to 

quantify various flow field properties.  The geometry used in the DREAM® simulations 

is shown in Figure 4.2.1.  The Reynolds number, based on the side length of the square 

cylinder and inlet velocity, for all experiments and simulations was 22000.  A uniform 

grid of 300 x 200 x 20 in the streamwise, vertical and spanwise directions, respectively, 

was used.  This corresponds to a uniform cell size of 0.005m x 0.005m x 0.025m.  This 

type of grid was used, because as Figure 4.2.1 indicates, the square cylinder traverses the 

entire spanwise direction, and thus the fluctuations are assumed to be homogenous in the 

spanwise direction, which justifies the use of a 5:1 grid ratio in the simulations.  Most 
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fluctuations are in the streamwise and vertical directions, thus the increased grid density 

in those directions.   

4.5D 15D

4D

14D

Uinlet = 1.0 m/sec

x

y z

 

Figure 4.2.1 – The geometry of the flow past a square cylinder 
 

In the simulations by Shi (2001) and Rodi (1997), non-uniform grids were used, 

which gave a higher resolution near the cylinder.  A uniform grid was used for the 

DREAM® simulations, which required a much larger number of grids throughout the 

entire domain to get equivalent grid spacing to those of the previous studies in the 

streamwise direction around the cylinder.  However, an increase in the overall grid size 

allowed for a higher resolution of the far field domain downstream of the cylinder.  

Symmetry boundary conditions were applied in the vertical direction, with inflow and 

continuum boundary conditions being used in the direction normal to the streamwise 

plane.  Periodic boundary conditions were applied in the spanwise direction.  A no-slip 

boundary condition is applied at the surface of the square cylinder.  Application of these 

boundary conditions assumes that the vortex shedding is equivalent in the z direction. 

Analysis of the mean streamwise velocity distribution from the ITM simulations, 

see Figure 4.2.2, shows good agreement with the available experimental data.  The total 
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averaging time is taken to be five times the period that corresponds to the shedding 

frequency.  The simulations by Shi (2001) are less accurate downstream of the square 

cylinder compared to the present results, which probably is due to the increased 

resolution used in the DREAM® simulations.  The high degree of fluctuations observed 

in the mean velocity calculations by Shi (2001) is most likely due to the lack of using 

sufficiently long averaging times and is clearly a statistical phenomenon.  Unfortunately, 

it would be difficult to use an equivalent as from the Shi (2001) simulations because the 

resolution of the square cylinder would be reduced. 

Although the improvement in using the ITM methods in DREAM® is less 

noticeable in Figure 4.2.2, the improvements become evident in Figure 4.2.3, where the 

streamwise turbulence intensity for the Shi (2001) and Lyn et. al. (1994) data are shown.  

Both simulations perform well in the location just downstream of the cylinder, but the 

DREAM® results are slightly better than those by Shi (2001) in the far field, which is 

again most likely due to the increased grid resolution.  Figure 4.2.4 shows a similar trend 

for the vertical velocity component of the turbulence intensity.  Figure 4.2.5 shows the z 

component of the vorticity and Figure 4.2.6 shows the streamlines at the center plane to 

which the cylinder is normal.  These figures exhibit very similar features that are also 

obtained by others, see. e.g. Rodi (1997) and Shi (2001) 

The results from the present simulations, when compared to the available 

experimental and computational data, lend weight to the initial hypothesis concerning 

ITM used in this study.   Thus, when an appropriate grid resolution is used, in 

conjunction with second-order, monotonic, control volume discretization technique, ITM 

is capable of simulating turbulent flows.  However, reduction in the time step used in the 

simulations will further decrease the amount of dissipation present within the simulations.  

However, it is clearly shown that the large scale vertical structures are well captured.  

This statement is further supported in the next section.  Although this will limit the 

efficiency of the solver, it becomes necessary because of the utilization of the projection 

method in the handling of the velocity-pressure coupling. 
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Figure 4.2.2 – Mean streamwise velocity distribution on the center plane of the 
cylinder. The experiments are by Lyn et al. (1994) and the data starts behind the 
cylinder.   The cylinder is located between -1 < x/D < 1.   (a) DREAM® simulations 
(b) The corresponding simulations are from Shi (2001) using the QUICK scheme 
with the Smagorinsky SGS model.   
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      (b) 
Figure 4.2.3 – Streamwise velocity component of the turbulence intensity of the flow 
past a square cylinder.   (a) The corresponding simulations are from Shi (2001) 
using the QUICK scheme with Smagorinsky SGS model.  (b) DREAM® simulations 
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      (b) 
 
Figure 4.2.4 – Vertical velocity component of the turbulence intensity of the flow 
past a square cylinder.   (a) The corresponding simulations are from Shi (2001) 
using the QUICK scheme with Smagorinsky SGS model.  (b) DREAM® simulations 
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Figure 4.2.5 – z component vorticity of the flow past a square cylinder for the 
DREAM® simulations 
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Figure 4.2.6 – Center plane streamlines for the flow past a square cylinder using 
DREAM®  
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4.3    LES of Plane Mixing Layer 

The study of mixing layer flows created from a variable velocity inlet condition 

allows for a more in-depth analysis of the capabilities of DREAM®.  The experiments 

from Rightley (1995) will be used in the quantification of the simulations using ITM, 

along with those from Shi (2001).  Original studies were performed to investigate the 

behavior of bubble dynamics in a turbulent shear layers; however, only the resulting 

turbulent flow field is examined in this study.    A non-uniform grid size of 194 x 66 x 42 

in Shi’s (2001) simulations.  Thus, it is important to note that a direct comparison to the 

Shi simulations is not possible; however, comparison does lend weight to the ability of 

DREAM to solve for these types of flows. 

The measurement domain used in the experiments by Rightley (1995) is shown in 

Figure 4.3.1, where dimensions are 0.55m x 0.2m x 0.2m in the x, y, and z directions, 

respectively.  These dimensions are also used in Shi’s (2001) simulations and the present 

work.  

 

 
Figure 4.3.1 – Schematic of plane mixing layer domain (Shi (2001)) 
 

The mixing layer is generated due to the interfacial shear resulting from the inlet velocity 

difference.  A splitter plate is located in the middle of the vertical plane, with the length 

and width of the plate equals 0.15 m and 0.003 m, respectively, spanning the entire 

transverse direction.  An inlet velocity of 0.28 m/s is specified for the lower layer and 

0.07 m/s for the upper one, with a standard outflow boundary condition applied at the 

outlet of the domain.  A sinusoidal driving force of five percent of the mean flow is added 

to the vertical velocity component of the lower layer.  The amplitude of the forcing 

frequency is 0.014, with the driving frequency being 2.2 Hz.  This driving frequency is 

chosen to ensure that at least two Kelvin-Helmholtz waves are present within the test 

area.  Also, all of the turbulence arises from the shear between the two velocity layers, 
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and the driving frequency is utilized to ensure than more than one Kelvin-Helmholtz 

wave is present within the test section. 

For the DREAM® simulations, two different uniform grids were used in the 

simulations, which were 200 x 80 x 40 and 300 x 120 x 60 in the x, y, and z directions, 

respectively.  Slip-wall boundary conditions are used in the vertical and spanwise 

directions.  In the DREAM® simulations, the flat plate is represented by a region of zero 

velocity.  This treatment corresponds effectively to a no-slip boundary condition.  In the 

simulations by Shi (2001), slip wall boundary conditions are used; however, it is the 

opinion of this author that using a no-slip boundary in the simulations is more 

appropriate.   Treating the splitter plate as a flat plate helps in the global flow field 

determination, as well as the fact that the end of the splitter plate induces fluctuations, 

which may only be captured using a zero-velocity boundary condition.  Shi (2001) uses a 

Smagorinsky sub-grid scale model, where as the DREAM® simulations use ITM type 

formulation, with no sub-grid scale model.   

Although the experiments were intended to investigate the behavior of bubbles 

within a mixing layer, the bubble concentration was kept low enough so as to eliminate 

dual coupling.  This makes it possible to treat the bubbles as marker particles, having no 

effect on the flow field and will not alter the mean and root mean square velocity 

distributions.  Data analysis from the experiments takes place at three different x/λ 

locations being 1.88, 2.5, and 3.66, where λ is a characteristic length scale equal to the 

shear layer width.  These test regions correspond to 15, 20, 25 cm downstream of the 

splitter plate end. 

Instantaneous velocity vectors are shown in figures 4.3.2 – 4.3.4 for three 

different vertical locations from Rightley (1995), Shi (2001) and the current DREAM® 

simulations.  These vectors are for the differential velocity field obtained by subtracting 

the mean velocity.  Comparison indicates a very good agreement between the three.  

Figures 4.3.5 – 4.3.6 depict a comparison of instantaneous contour plots from Shi (2001) 

and DREAM®.  Again, a very good agreement between the two is observed. 

One of the benchmarks of LES simulations should be in the prediction of the 

turbulent kinetic energy.  The instantaneous velocities within the shear flow are 

comprised of three components, being the mean flow, the average velocity of the 
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coherent vortices, in this case the Kelvin-Helmholtz vortices, and the random eddy 

velocity fluctuations.  Figure 4.3.7 shows the instantaneous velocity at two different 

points within the flow field.  Clearly, the fluctuations in the velocities indicate the 

presence of turbulence within the flow, with the bulk flow being from the vortical 

structures present within the shear layer.  Experiments found that the frequency of the 

Kelvin-Helmholtz waves equaled 2.2 Hz, with analysis of the results from DREAM® this 

was found to be 2.41 Hz, which is clearly visible in the spectral analysis (see Figures 

4.3.15 – 4.3.16).  Therefore, the averaging time of the data to determine the appropriate 

velocity component root mean square and average values was taken at least 5 times the 

vortex shedding period.  The mean flow is also indicated on the figure.  The spanwise and 

vertical rms and mean velocity calculations within the shear layer are depicted in Figures 

4.3.8 – 4.3.13, along with the experimental data.  Two different results from two different 

grids are presented from the current simulations, and clearly an improvement is achieved 

when grid refinement is performed.  In the coarse grid simulations, depicted in Figure 

4.3.8 and 4.3.12, the DREAM simulations appear to be shifted, with the peaks being at 

the centerline of the test section, although the magnitude of the peak is more accurately 

resolved than the Shi (2001) simulations.  This is due to the inability of the uniform grid 

to accurately capture the effects at the centerline as well as the non-uniform grid used by 

Shi (2001).  However, a clear improvement in the data is seen for the fine grid 

simulations, as the grid resolution at the interface is enhanced.  The DREAM® 

simulations appear to perform equal or better than the simulations by Shi (2001) over 

most of the domain.  The reason lies in the fact that a uniform grid distribution was used 

in the DREAM® code; as more grids are needed over the entire domain to equal those 

used within the shear layer by Shi (2001).  It is also possible that the current treatment of 

the splitter plate improve the overall quality of the DREAM® results. 

Unfortunately, the simulations by Shi (2001), and the experiments by Rightley 

(1995), do not explicitly present turbulent kinetic energy or the rms spanwise velocity 

component.  Therefore, an approximation to the experimental data was performed to 

allow for determination of the kinetic energy.  Vreman et. al. (1997) showed that the 

spanwise rms velocity fluctuations are approximately equal to the vertical rms velocity 

fluctuations for shear layer flows.  Therefore, for quantification purposes, the vertical rms 
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velocity fluctuations will be used, allowing for an approximation of the turbulent kinetic 

energy from the available experimental data in Rightley (1995).  Although this will in 

fact introduce some error into the analysis, it is believed to be small. The turbulent kinetic 

energy comparison between the DREAM® simulations (300 x 120 x 60 and 200 x 80 x 

40) and the approximated experimental data is shown in Figure 4.3.14.   

One of the important qualifications in using a ITM type LES methodology is in 

the determination of the energy spectrum, which provides information into the 

simulations not attainable through any other means.  It is known that turbulence usually 

receives its energy at the large scales, while dissipation of the turbulent kinetic energy 

takes place at the small scales.  The range of eddy sizes that are not affected by the 

energy maintenance and dissipation mechanisms is called the inertial subrange (Tennekes 

and Lumley, 1999).  For the fine grid solution, the resolvable length scale based on the 

grid size equals 0.1833 cm x 0.1667 cm x 0.33 cm and 0.275 cm x 0.275 cm x 0.5 cm for 

the coarser grid solution.  Thus, after computing the dissipation of turbulent kinetic 

energy, which was approximated by u3/l, and l is the integral scale assumed to be 0.1 

times the thickness of the shear layer and u is the r.m.s velocity.  Approximating the 

viscous length scale gives a range of 20 to 40 times less than the resolvable length scales 

used in the DREAM® simulations for the finest grid, and 30 to 50 times less for the 

coarser grid.  This falls into the accepted range for ITM simulations (Oran and Boris, 

1993).  The details and mathematics used in the analysis of the turbulence quantities may 

be found in Appendix A.6.  They are not explicitly presented in this section because 

similar treatment is utilized for the other test cases presented in later sections. 

In order to use ITM in LES, the energy spectrum must predict the inertial range.  

The streamwise and vertical fluctuation power spectra from Rightley (1995) are shown in 

Figure 4.3.15, with the results from the 300 x 120 x 60 DREAM® simulations being 

shown in Figure 4.3.16.  Analysis of Figure 4.3.16a clearly shows the prediction of the 

energy spectrum within the inertial subrange, which validates the simulations being 

presented, as well as the methodology behind the calculations.  Also, it is interesting to 

note that in viewing Figures 4.3.16 a and b, that the frequency of the Kelvin-Helmholtz 

waves is clearly visible at f ≈ 2.4 Hz, which is due to the perturbation of the high-speed 

stream at the inlet.  This increases the coherence of the large scale Kelvin-Helmholtz 
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structures within the spectrum.  The second peak corresponds to the forcing frequency of 

the lower layer, which again lends weight to the simulations. 

Thus, from these simulations, accompanied with a comparison to the available 

simulation and experimental data, it can be concluded that DREAM®, using appropriate 

grid resolution suitable for LES simulations, is capable of predicting turbulence within 

the flow to appropriate length scale, without explicitly using any sub-grid scale model for 

the turbulence.  Although most of the energy for this type of flow is due to the 

development of the Kelvin-Helmholtz vortical structures, fluctuations within the flow 

field are evident and predictable using DREAM®. 
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Figure 4.3.2 – Velocity vectors at x / λ = 1.25 (a) Measurements by Rightley (1995); 
(b) Simulations by Shi (2001); (c) Present DREAM® simulations (300 x 120 x 60) 
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Figure 4.3.3 – Velocity vectors at x / λ = 1.88 (a) Measurements by Rightley (1995); 
(b) Simulations by Shi (2001); (c) Present DREAM® simulations (300 x 120 x 60). 
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Figure 4.3.4 – Velocity vectors at x / λ = 2.5 (a) Measurements by Rightley (1995); 
(b) Simulations by Shi (2001); (c) Present DREAM® simulations (300 x 120 x 60).  
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Figure 4.3.5 – Vertical velocity contours from Shi (2001) 
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Figure 4.3.6 – Vertical velocity contours from DREAM® (300 x 120 x 60) 
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(b)      (c) 

Figure 4.3.7 – (a) Mean and instantaneous velocities at x/λ = 1.25 from DREAM® 
simulations within the mixing region.  Dashed lines are mean velocities at y = 0.185: 
------; and y = 0.210; Solid lines are at the same locations, and represent the 
instantaneous velocities; (b) Zoomed in view of the y = 0.210 profile showing 
turbulence fluctuations in velocity; (c) Zoomed in view of the y = 0.185 profile. 
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Figure 4.3.8 – Mean and rms streamwise velocity at x/λ = 1.25.  Symbols are from 
Rightley (1995): ◊: mean streamwise velocity; o: rms of streamwise velocity 
fluctuations.  Lines from Shi (2001): ______ : mean streamwise velocity; -----: rms of 
streamwise velocity fluctuations. 
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Figure 4.3.9 – Mean and rms streamwise velocity at x/λ = 1.25.  Symbols are from 
Rightley (1995): ◊: mean streamwise velocity; o: rms of streamwise velocity 
fluctuations.  Lines : ______ : mean streamwise velocity from DREAM® simulations 
(200x80x40); -----: rms of streamwise velocity fluctuations from DREAM® 
simulations (200x80x40). 
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Figure 4.3.10 – Mean and rms streamwise velocity at x/λ = 1.25.  Symbols are from 
Rightley (1995): ◊: mean streamwise velocity; o: rms of streamwise velocity 
fluctuations.  Lines : ______ : mean streamwise velocity from DREAM® simulations 
(300x120x60); -----: rms of streamwise velocity fluctuations from DREAM® 
simulations (300x120x60). 
 
 

 
Figure 4.3.11 – Mean and rms vertical velocity at x/λ = 1.25.  Symbols are from 
Rightley (1995): ◊: mean vertical velocity; o: rms of vertical velocity fluctuations.  
Lines from Shi (2001): ______ : mean vertical velocity; -----: rms of vertical velocity 
fluctuations. 
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Figure 4.3.12 – Mean and rms vertical velocity at x/λ = 1.25.  Symbols are from 
Rightley (1995): ◊: mean vertical velocity; o: rms of vertical velocity fluctuations.  
Lines from DREAM® Simulations: ______ : mean vertical velocity (200x80x40); -----
: rms of vertical velocity fluctuations (200x80x40). 
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Figure 4.3.13 – Mean and rms vertical velocity at x/λ = 1.25.  Symbols are from 
Rightley (1995): ◊: mean vertical velocity; o: rms of vertical velocity fluctuations.  
Lines from DREAM® Simulations: ______ : mean vertical velocity (300x120x40); ---
--: rms of vertical velocity fluctuations (300x120x60). 
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Figure 4.3.14 – Turbulent kinetic energy comparison at x/λ = 1.25.  Symbols 
represent approximation from Rightley (1995) rms data: □;  ---- Dashed lines 
represent resolved portion of turbulent kinetic energy from DREAM simulations for 
200x80x40 grid; ____ Solid lines representing only the resolved portion of the 
turbulent kinetic energy from the DREAM® simulations for 300x120x60 grid size.  
Resolved portion is approximately 85% of experimental data, which is good for LES 
simulations. 
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a)  

b)  
 
Figure 4.3.15 – Energy spectra for the a) streamwise and b) vertical velocity 
components at x/λ = 1.25 (Rightley, 1995).   
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Figure 4.3.16 – Averaged energy spectra for the a) streamwise and b) vertical 
velocity components at x/λ = 1.25 from 300 x 120 x 60 DREAM® simulations.   
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5.0   VERTICAL BUOYANT JET 

 
5.1    Introduction 

The impingement of a vertically directed buoyant jet on a sharp density, stably 

stratified interface occurs often in nature.  When a vertically directed higher density, 

buoyant jet impinges on a lower density interface, momentum from the jet will cause the 

development of a cavity.  The magnitude of this cavity is governed by the Richardson 

number, or inverse densimetric  Froude number, which is dependent on the jet inlet and 

buoyancy differences between the fluids.  The initial development of the cavity is distinct 

and symmetric; however, over time, the effects of instabilities lead to a non-symmetric 

turbulent flow field.  The behavior of the ensuing jet, as well as an investigation into the 

characteristics of the flow field is performed in this chapter using LES and ITM methods. 

 
5.2    Vertical Buoyant Jet Impingement 

Friedman et. al. (2001) determined from experiments performed at The Johns 

Hopkins University, that for the vertical buoyant jet impingement generally, three 

regimes could be characterized using a Richardson number analysis.  The resulting 

descriptions were based on the amount of entrainment into the upper layer by the jet, 

coupled with the size of the cavity formed from the impinging jet.  A schematic of the 

experimental facility is shown in Figure 5.1.a.   

The fuel layer is contained in the upper center portion of the tank by two fuel weirs, 

and the water enters the tank through the vertical inlet pipe.  In all cases simulated, which 

are presented in Section 5.3, only diesel fuel is considered, whereas some experiments 

used SAE-oil.  As the water penetrates the fuel layer, mixing will occur if the shear forces 

are great enough compared with the buoyancy, or gravity, forces (i.e. if the densimetric 

Froude number is large or Richardson number is low). As the water becomes entrained in 

the fuel layer, the excess water is forced to the sides of the tank and exits through the 

drains located in the upper left and right compartments. If no mixing occurs, then the 

excess fuel will be forced over the fuel weir where it can return to the fuel supply. An 

impingement plate is located in the center of the tank above the inlet pipe. If the velocity 
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of the incoming water is large enough, then the jet will impinge on the plate. This will 

cause breakage of the inlet jet and the formation of fuel and water droplets, which will 

cascade back toward the fuel/water interface.  For the simulations presented in this study, 

wall effects are excluded and there are no plate effects.  However, the curved buoyant jet 

simulations presented in the next chapter do impinge at the wall, and these can be 

compared qualitatively with some experiments by Friedman et. al. (1999). 

 As this study is focusing on the performance of DREAM® using ITM LES 

methods for variable density flows, only simulations which are fully turbulent will be 

explored.  Thus, the Richardson number will be less than 2.5 for all simulations, which 

are in flow regimes two or three as indicated by Friedman et. al. (1999).  The Richardson 

number, as define by Friedman et. al. (1999) is  

2
in

inDg ρ∆
 

(5.2.1)

w U
Ri

ρ
=

Where g is the gravitational acceleration, ρ is the density, D is the inlet jet diameter, and 

U is the inlet velocity.  Thus, a distinct cavity will be formed with high density gradients 

and these “plumes” become unstable.  After impingement on the fuel interface, the water 

collapses due to turbulence and buoyancy.  Friedman et. al. (1999) describes that after the 

collision, fuel will then extend below the initial interface.  Due to the high degree of 

momentum of the jet, a fuel - water mixing region is created below the interface as the 

fuel is pushed out of the initial zones.  For higher inlet jet velocities, the dispersion after 

impact may result in cloud as it again descends due to buoyancy.  As the performance of 

DREAM® in the turbulent jet regions is the primary concern, modifications to the 

calculation domain have been made.  These modifications are further explained in the 

next section. 

 

5.3 DREAM® Simulation Details 

The water jet – fuel layer interface resulting from impingement is investigated in 

this section.  The computational domain is modeled as a three dimensional tank, with 

dimensions of 0.4m x 1.0 m x 1.0 m.  These dimensions are identical to the experimental 

test facility used by Friedman et. al. (1999) in the vertical and spanwise direction, but 
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differs in the streamwise direction because no impinging plate is included.    No plate or 

baffles are included in the geometry, and the interface is kept constant through use of 

appropriate inlet and outlet boundary conditions of the fuel and water.  This ensures that 

no wall effects are felt by the jet in the region of interest, 0.4 < y < 0.6 m, as the flow 

behavior around the baffles is of no concern in this study.  Constant pipe dimensions 

were used for all simulations, being 0.10 meters high with a radius of 0.014 meters, 

which is 0.05 meters short of the fuel layer.  A cross-plane schematic of the geometry 

used in the simulations is shown in Figure 5.1.b.  Table 5.3.1 shows the computational 

parameters used to achieve the appropriate experimental Richardson number similarity.  

A total of six different Richardson number simulations were performed, with 0.08 and 2.5 

being the range of Richardson numbers studied.  A Richardson number of 2.5 is the lower 

boundary of regime 2 as described in Friedman et. al. (1999).  

It is important to note that the goal of this chapter is to determine two capabilities of 

DREAM®; being 1) the ability of ITM methods, as implemented into DREAM®, to 

resolve the small scales and predict appropriate amounts of turbulent kinetic energy 

within the flow, and 2) test the ability of DREAM® to capture the large scale instabilities 

of the buoyant jet.  Therefore, two different grids are used in the simulations, being a 

coarse grid of 50x157x157 and a fine grid of 100 x 213 x 213, yielding 1.2 and 4.5 

million grid cells.  A time step of 0.001 seconds is used for all simulations, which was 

determined through numerical experimentation to yield an appropriate solution as 

compared to the experiments.  A constant fuel droplet size of 1.5 mm is used in the slip 

velocity relationship, as suggested by Friedman et. al. (1999).  For more information on 

the slip velocity relationship as used in DREAM®, the reader is referred to Kandil (2001).  

The bulk jet flow is in the positive x-direction and the momentum equations are adapted 

accordingly, meaning that gravity is now applied in the negative x direction.  This 

treatment is common in many CFD simulations, and is identical to a vertical buoyant jet 

with gravity in the negative y direction.  In effect, x is the vertical direction.  The results 

are identical; however, for visualization and comparative purposes, the results are 

presented in the same coordinate system. 

For the simulations in this section, some non-uniformity in the grid is used, which 

allows for enough grid resolution within the important regions of the flow, being the inlet 
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pipe and interface locations.  For the coarse grid simulations, 60 grid cells are within 1.5 

inlet pipe diameters and 22 are located near the fuel-water interface.  The fine grid 

simulations had 109 and 82 cells in the respective locations.  Although using a non-

uniform grid does introduce some error in the calculations, it is believed to be small and 

should not intrude on the overall quality of the simulations.  As cylindrical coordinates 

are not implemented into the code, great care of creating a pipe must be taken.  The 

circular pipe geometry is achieved through manually “blocking out” appropriate cells 

outside of the desired diameter, which results in a step wise circle with walls 1 cell thick.  

Details of this technique may be found in Appendix B, Section B.2. 

 
Fluid D (m) Fr Ri Uin, sims (m/sec)  

Diesel – water 0.014 0.4 2.5 0.110 

Diesel – water 0.014 0.9090 1.1 0.228 

Diesel – water 0.014 1.754 0.57 0.475 

Diesel – water 0.014 4.762 0.21 1.29 

Diesel – water 0.014 8.33 0.12 2.26 

Diesel – water 0.014 12.5 0.08 3.39  

Table 5.3.1 – Simulation parameters from buoyant jet experiments from Friedman 

et. al. (1999). 

 

5.4 Results and Discussion 
 

If URANS, Unsteady Reynolds Averaged Navier-Stokes, simulations were 

performed for this type of flow, such as those studied by Kandil (2001), an appropriate 

turbulence model capable of handling re-laminarization would be necessary.  Also, it is 

very unlikely that the URANS simulations would capture any type of jet or flow field 

instabilities.  It is these types of flows that are highly suitable for LES and ITM type 

methodologies.   
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The ability of DREAM® to accurately solve the complex problem of impingement 

of a water jet onto a fuel layer, will help to ensure that both the ITM and variable density 

implementation is accurate and appropriate for more complex turbulent, buoyant flows.  

In the experiments, as the water leaves the inlet pipe and enters the fuel layer, the 

maximum penetration depth of the jet is based on the amount of momentum present 

within the water jet exiting the pipe.  Experimental results are shown in Figure 5.2 for Ri 

= 0.08, with the corresponding coarse and fine grid density contours from the DREAM® 

simulations presented in Figures 5.3 and 5.4.  Only the fine grid and Richardson number 

equaling 0.08 are presented for brevity, as well as the fact that higher Richardson 

numbers also exhibit similar trends, but only less in magnitude.   

All simulations, even using a coarser grid, were able to accurately predict the 

maximum penetration depth based on the Richardson number as compared to 

experiments.  This is to be expected while penetration depth is governed by integral 

conservation of the mass and momentum, which is always fulfilled in the simulations.  A 

summary of the non-dimensional jet penetration depth, AR = hjet/Dp, are shown in Figure 

5.5.  

As the jet reaches its apex and loses momentum, buoyancy forces cause the water 

jet to fall, and instabilities arise.  This phenomenon is apparent for all simulations that are 

turbulent, although the amount of instability is dependent on the Richardson number.  

The onset of the instabilities takes place at about 1.2 seconds for Ri = 0.08 as shown in 

Figure 5.6, with the DREAM® simulations predicting this onset at 1.22 and 1.205 

seconds for the coarse and fine grid simulations, shown by instantaneous density contours 

in Figure 5.6b and 5.6c.   

Although the density profiles accurately predict the behavior of the experiments, 

little information on the flow field may be extracted from these.  Thus, to determine the 

robustness of the DREAM® simulations, an analysis of the flow field characteristics is 

presented.  The maximum impingement of the water jet for Ri = 0.08 is approximately 

0.05 meters into the fuel layer, which again decreases as the Richardson number is 

increased.  Two different axial locations near the interface have been chosen for analysis, 

being the center of the inlet pipe, and 2.5 radii from the center.   Data across the jet was 

also analyzed at 0.01 meters below the maximum impingement depth and are also 
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presented for Ri = 0.08.  This location was chosen to capture any fluctuations across the 

unstable jet.  It is important to note that similarity analysis of the buoyant jet is not 

applicable for these simulations, as the jet never becomes fully developed. 

One of the ways to determine the amount of turbulence present within the flow 

field is through analysis of the instantaneous vorticity contours, which have been 

normalized, shown in Figures 5.7 and 5.8, for Ri = 0.08.  In both the fine grid and coarse 

grid simulations, the largest amount of vorticity is near the interface of the mixing region.  

As the instability of the jet begins to dominate the flow, the vorticity increases near the 

interface and decreases away from the jet.  The r.m.s velocity of the jet for the fine grid 

displays a similar property seen in many similarity type flows, whereby the r.m.s velocity 

is approximately twenty-five percent of the mean velocity at the centerline, shown in 

Figure 5.9.  The r.m.s velocity decreases by approximately 300% at 0.025 meters away 

from the centerline (see Figure 5.10) on the average, and tends to zero further away from 

the centerline.  A strong anisotropy is apparent between the axial and the radial 

directions.  The difference between the r.m.s. values in the y and z directions must be due 

to taking insufficiently long time averaging.  A spatial averaging in the radial direction 

may be needed.  The asymmetry in these profiles are also the artifact of short time 

averaging without space averaging. 

For the fine grid simulations, the resolved turbulent kinetic energy at the 

centerline and 0.025 m away from the centerline, which corresponds to the edge of the 

cavity, are shown in Figures 5.11.  Again, the maximum resolved turbulent kinetic energy 

is at the centerline of the impinging jet.  For all simulations, it must be noted that the 

resolved turbulent kinetic energy from the coarse grid simulations were less in magnitude 

than the fine grid simulations by approximately five percent, which indicates that a nearly 

grid independent solution is obtained.  Figures 5.12 and 5.13 shows the energy spectrum 

at the two different locations.  Again, as with the other simulations presented in Chapter 

4, the calculated energy spectrum agrees with the theoretical inertial subrange slope from 

Kolmogorov’s theory.  This indicates that the simulations are sufficiently accurate.  Also, 

as the data is examined away from the jet, the maximum of spectra decreases by about a 

factor of ten for each 0.025 m, which indicate that the length scales decrease within the 

same region.  A similar type of trend is observed as the Richardson number is decreased. 
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The behavior of the jet from the radius of the jet outward, at a constant height, is 

briefly examined as well.  From Figures 5.17 and 5.18, the turbulent intensity and 

resolved turbulent kinetic energy clearly decrease away from the centerline.  Again, the 

asymmetry is most likely due to the short time averaging of the data. 

 Thus, in conclusion, the accuracy of the DREAM simulations shows the validity 

and capability of DREAM to simulate these types of flows.  Insight is gained through 

analysis of the turbulence quantities, and indicates that the turbulence decreases away 

form the centerline.    A similar trend is observed for all of the Richardson numbers 

simulated; however, the overall magnitude of each of the quantities does in fact decrease.  

This clearly shows that as long as an appropriate grid resolution is maintained within the 

region of interest, the important physics of the buoyant turbulent flow field may be 

obtained.  However, a decrease in the time step will enhance the ability to predict the 

resolvable turbulence within the flow.  Therefore, this section demonstrated the ability of 

DREAM® to predict variable density, turbulent flows using LES and ITM type methods. 
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Figure 5.1.a – Experimental fuel impingement test facility used at The Johns 
Hopkins University by Friedman and Katz (1999). 
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Figure 5.1.b – Center plane view of the geometry used in the DREAM® simulations 
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Figure 5.2 - Experimental impinging jet instantaneous picture for Regime 3 showing 
initial water jet impingement onto upper fuel layer for Ri = 0.08; cavity is 
symmetric. 
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Figure 5.3 – Density contour from DREAM® simulations for Ri = 0.08 using 
50x157x157 grid size with dt = 0.001 seconds; t = 0.4 seconds after impact. 
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Figure 5.4 – Density contour from DREAM® simulations for Ri = 0.08 using 
100x213x213 grid size with dt = 0.001 seconds; t = 0.4 seconds after impact. 
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Figure 5.5 – Comparison of DREAM® simulations using 50x157x157 and 
100x213x213 grid sizes to experimental maximum penetration depth (AR) data; dt = 
0.001 seconds. 
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Figure 5.6 – (a) Experimental impinging jet experiment for Regime 3 showing onset 
of water jet instability for Ri = 0.08, t = 1.2 seconds after initial jet impingement.  
DREAM® simulations for Ri = 0.08 using (b) 50x157x157, t = 1.22 seconds after 
initial jet impingement, and (c) 100x213x213 grid size showing onset of water jet 
instability, t = 1.205 seconds after initial jet impingement. 
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Figure 5.7 – Instantaneous normalized z vorticity contours, with vectors, for Ri = 
0.08 using 50x157x157 grid size; dt = 0.001; t = 1.2 seconds after initial impact 
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Figure 5.8 - Instantaneous normalized z vorticity contours, with vectors, for Ri = 
0.08 using 100x207x207 grid size; dt = 0.001; t = 1.2 seconds after initial impact 
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Figure 5.9 – Resolved RMS for Ri = 0.08 using 100x213x213 grid size at y = 0.5; dt = 
0.001 seconds. 
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Figure 5.10 – Resolved RMS for Ri = 0.08 using 100x213x213 grid size at y = 0.525; 
dt = 0.001 seconds. 
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Figure 5.11 – Normalized resolved turbulent kinetic energy for Ri = 0.08 using 
100x213x213 grid size at y = 0.5 and y = 0.525; dt = 0.001 seconds.  Jet inlet is 
located at x/Din = 5. 
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Figure 5.12 - Energy spectrum for Ri = 0.08 using 100x213x213 grid size at y = 0.5; 
dt = 0.001 seconds. 
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Figure 5.13 - Energy spectrum for Ri = 0.08 using 100x213x213 grid size at y = 
0.525; dt = 0.001 seconds. 
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Figure 5.14 – Normal stresses for Ri = 0.08 using 100x213x213 grid size at x = 0.175 
across the jet; dt = 0.001 seconds.  Averaging time = 18.0 seconds. 
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Figure 5.15 – Normalized resolved turbulent kinetic energy for Ri = 0.08 using 
100x213x213 grid size at x = 0.175 across the jet; dt = 0.001 seconds.  Total 
averaging time = 18.0 seconds. 
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6.0   Vertical Buoyant Jet 
6.1   Introduction 

 Buoyant jets and plumes are of great interest due to their effect on mixing and 

entrainment.  Plumes “arise” when buoyancy is supplied steadily and the buoyant region 

is continuous between the source and the level of interest (Turner, 1969).  The main 

difference between a jet and plume is that a jet is momentum-driven, whereas a plume is 

buoyancy-dominated.  A forced plume is a kind of flow between a pure jet and a pure 

plume and is driven by both buoyancy and momentum.  This chapter, as with the 

previous ones, serves the purpose of validating the variable density implementation.  

Unlike the previous section, which has a negatively forced buoyant jet, this section is 

more applicable to the overall goal of this study, to investigate the behavior of a curved 

buoyant jet within an enclosure.  

 Generally, for the rest of this chapter, the term plume will mean a forced turbulent 

plume.  In most plume experiments without a chemical reaction, fluid either of higher 

temperature or of lower density is injected into the ambient, resulting in density 

inhomogeneity, which can produce different types of phenomena.  Forced jets and 

plumes are similar in many respects, such as transition from laminar to a turbulent state in 

the near-field, self-similarity in the far-field, spreading rate, etc (Zhou et. al., 2000).  This 

chapter will examine some of these characteristics as simulated using DREAM® and 

compare the DREAM® simulations to the available experimental data for two different 

plumes, with and without an axisymmetric forcing function.  In both studies, the jet is a 

confined, compounded jet. 
 
6.2   Description of Experiments 

 6.2.1   Vertical Buoyant Jet 

The behavior of a vertical jet within an enclosure is of considerable importance in 

the design of jet pumps, refueling of compensated fuel ballast tanks, the study of 

combustion, etc.  The expansion of the jet within the tank is difficult to predict using 

CFD if improper grid resolution is used, as the interface behavior may be difficult to 

capture.  Figure 5.2.1 shows a schematic representation of the enclosure with a jet of 

diameter d, issuing axially with a uniform velocity into a duct of diameter D.  In these 
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types of flows, the issuing jet is known as the primary stream.  In the experimental case 

performed by Razinsky and Brighton (1971) and Chen and Rodi (1980), the surrounding 

fluid is moving in the same direction as the primary stream and is called the secondary 

stream.  The boundary layer on the wall is neglected in the experiments and is assumed to 

be negligible, as the secondary stream effects near the wall are minimal.  The 

investigation of the curved buoyant jet within an enclosure is investigated in Chapter 7; 

however, this section validates and investigates DREAM® and the performance for 

buoyant flows.  In the vertical buoyant jet flows, the buoyancy acts to accelerate the jet, 

which quickly turns the flow from laminar to turbulent. 

 Pure plumes are difficult to experimentally investigate due to the relatively small 

flow velocities within the plume, which is why a forced plume is investigated by most 

researchers.  As with all turbulent flows, they generally start out as laminar flows, then 

transition to turbulence, which is why Anwar (1968) used a densimetric Froude number 

that was large enough to ensure that the transition to turbulence occurred near the inlet.  

This also made sure that the flow was fully turbulent in the range covered by the 

measurements.  Anwar (1968) found that the jet spread linearly and the center-line 

velocity and density varied with x as predicted by similarity analysis.  The measured 

profiles within the data acquisition area are closely Gaussian.  The experiments used by 

Anwar (1968) ensured that the flow was turbulent after x/D = 5, where x is the axial 

distance and D is the inlet diameter of the jet.  The inlet mass flux of the primary water 

jet equaled 20.37 kg/sec*m, which yields an inlet Reynolds number of 1892 for the 

primary stream.  The inlet densimetric Froude number was 2.8.  The secondary velocity 

was 50 times less than that of the primary stream, which in the experiments was the 

ambient salt water, with a density of 1032 kg/m3.  The distance between the walls in the 

spanwise and transverse direction equaled 0.3 m.  These parameters are matched in the 

DREAM® simulations, with the results and comparisons presented in section 6.4.  The 

geometry used in the experiments is shown in Figure 6.1. 
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 6.2.2   Vertical Buoyant Jet with Axisymmetric Forcing 

 
 The turbulent jet has been a subject of investigation for the last century.  

Similarity within the jet has long been known, even for stratified environments, although 

measurements of the turbulence properties is still a fundamental calibration tool.  For this 

reason, vertical forced plumes are used as a verification of DREAM® in this study.   

George and Tamanini (1977) performed experiments to measure turbulence in an 

axisymmetric, forced buoyant plume.  Their experiments were designed to ensure that the 

forced plume achieves its turbulent state within two inlet jet diameters.  Other 

investigators; however, have shown that the potential core may be extended to 5-8 inlet 

jet diameters depending on the mode of fluctuation imposed on the jet at the inlet, as 

there are several ways to achieve an earlier spatial development of turbulence.  Higher 

forcing of perturbations can also reduce the length of the laminar zone.  For this reason, 

George and Tamanini (1977) adopted a higher level of forcing in the experiments.  The 

inlet diameter used in the experiments was 0.018 m, with the internal Froude number 

equaling 1.54.  This value corresponds to a densimetric Froude number of 1.93, and a 

Reynolds number of 1273.  The average inlet velocity equaled 0.98 m/sec. 

 For these experiments, it was difficult to measure the velocity profile at the inlet, 

which is needed for any CFD simulation.  Thus, to accurately determine this parameter, 

Michalke (1984) determined that the primary inlet velocity profile for the jet was that of a 

top-hat velocity profile, given by 

( ) ( )0.5* 1 tanh 12.5 2 / /2o oU y U y D D y⎡ ⎤= − −⎡ ⎤⎣ ⎦⎣ ⎦  
(6.2.1)

where Uo = 0.98 m/sec, D is the inlet diameter, and y is the vertical location within the 

jet, all of which are from the experiments by George and Tamanini (1977).  Michalke 

(1984) states that the length of the potential core strongly depends on the disturbances 

added at the inlet.  To excite the flow, a fluctuating axial velocity at the inflow takes the 

following form (Michalke (1984)) 

' ( )sin(0.3 )ou AU y tπ=  
(6.2.2)

where A is the amplitude of the forcing, which equaled 0.2, and t is the time.  The other 

velocity components are forced with smaller amplitudes of the mean axial velocity 
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equaling 0.01Uo, which also corresponds to the secondary inlet velocity.  The geometry 

of the experiments used by George and Tamanini (1977) are shown in Figure 6.2.  These 

parameters are matched in the DREAM® simulations. 

 

6.3   Computational Details 
 
 Simulations have been carried out for the two different vertical jet setups, as 

presented in Section 6.2.  In all cases, the jet axis is aligned with the gravity vector and is 

subject to a positive buoyancy force.  The inlet density equaled 920 kg/m3 with the 

ambient density being 1000 kg/m3, respectively.  The dimensionless parameters used in 

the DREAM® simulations are set to be identical to those of the experiments.  The Froude 

and Reynolds numbers were made similar through inlet jet diameter modification, which 

is taken to be 0.02 m for comparison to the Anwar (1969) experiments, and 0.018 m for 

comparison to the George and Tamanini (1977) experiments.  All boundary conditions 

except at the inlet and outlet plumes are taken to be walls, which correspond to the 

confined vertical buoyant jet experiments.  The total non-dimensional axial length 

equaled 24 inlet diameters for comparison to the Anwar (1969) experiments, and 32 inlet 

diameters for comparison to the George and Tamanini (1977) experiments. 

 For comparison to each experiment, two different non-uniform grids were used, 

being 75 x 57 x 57 and 150 x 107 x 107.  These are shown in Figures 6.3 and 6.4 for the 

Anwar (1968) simulations; the geometry is similar to the George and Tamanini (1977) 

experiments.  A uniform grid is used in the axial direction for all simulations, with the 

non-uniformity being imposed in the spanwise and transverse directions.  The first grid 

size for the fine grid, away from y = 0 and z = 0, equaled 0.000369 meters for the Anwar 

(1969) simulations and 0.00031 meters for the George and Tamanini (1977) simulations.  

The coarse grid location equaled 0.000751 meters and 0.000669 meters for the Anwar 

(1969) and George and Tamanini (1977) simulations, respectively.  In both cases, a 

uniform expansion ratio equaling two percent was applied.  This yielded approximately 

35 and 10 grids within the inlet jet region for the fine and coarse grid simulations, 

respectively.  Since the current interpolation scheme does not fully take into account the 

nonuniformity in the mesh, this may have caused some additional errors in accuracy in 

the simulation results.  The time-steps used in simulating the Anwar (1968) and George 
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and Tamanini (1977) experiments equaled 0.00025 seconds.  These time-steps were 

utilized to keep the Courant number less than approximately 0.2.  The total real 

simulation time for the coarse and fine grids, ensuring four flow through times, equaled 

approximately sixteen hours and four days run on quad processor XEON workstations.   

 
 
6.4   Results and Conclusions 

 
 In this section, the aim is to answer a variety of questions about the ability of 

DREAM® to accurately simulate buoyant flow events, and particularly buoyant jets.  As 

mentioned in Chapter 3, DREAM® uses a variation of the projection method, 

accompanied with a Crank-Nicholson discretization scheme.  A comparison between the 

coarse and fine grid simulations are examined in this section, which will clearly show not 

only a time-step dependence, but also a grid size dependence of the results.  This section 

clearly shows that “sufficient” grid resolution, accompanied with “adequate” time-steps, 

is crucial to success of the implicit turbulence methods.  All simulations presented in this 

section have been run for approximately four flow-through times, which allows for an 

“adequate” statistical analysis of the simulation data.  Also, it is important to note that in 

the statistical analysis, a combined spatial and time averaging approach is used in the 

analysis of the turbulence quantities. 

 
Uniform Inlet Velocity 
 
 Figure 6.5 and 6.6 show the velocity magnitude contours for the coarse and fine 

grid simulations.  Clearly, the results in Figure 6.5 exhibit too much dissipation, and not 

capable of resolving the small scale eddies.  The jet boundaries are not engulfing the 

surrounding fluid to enable a suitable spreading rate of the jet.  This phenomenon 

becomes clearer in comparison of Figures 6.7 and 6.8, which show the instantaneous 

velocity vectors for the coarse and fine grid simulations.  Figure 6.7 appears laminar, 

with no vectors showing any type of mixing taking place.  This is clearly not the case, in 

Figure 6.8.  The velocity vectors appear more random and engulfing.  Comparison of 

Figures 6.7 and 6.8 alone show the necessity of adequately resolving the jet.  Again, the 

time-step was determined to ensure that the Courant number was under 0.2.  For a flow 
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field to be considered turbulent, small scale fluctuations of the mean must be evident.  

Figures 6.9 and 6.10 show the instantaneous streamwise velocity at a point within the jet, 

directly in the center of the computational domain (x/Din = 12.5; y/Din = 0.0; z/Din = 0.0), 

versus time.  The data shown in Figure 6.9 are the DREAM® simulations for the coarse 

grid simulations, and although they indicate some small fluctuations toward the end 

(which might have grown if the run was continued much longer) of the simulations, these 

results under-predict the amount of turbulence within the flow, which is clearly visible in 

Figure 6.10. 

 A clear indication of the turbulence present within the flow is the vorticity.  

Again, the coarse grid simulation, Figure 6.11, of the z-component vorticity contour is 

under-resolved and it is seen that runs with this grid are incapable of capturing the flow 

field physics.  Figure 6.12 shows the finer grid simulations, and appears to be the 

minimum resolution capable of capturing the different sized eddies within the flow.  

Figures 6.13 and 6.14 show the vorticity magnitude contours, which yield a similar 

conclusion concerning the grid resolution.   

The density contours (Figures 6.15 and 6.16) show a similar phenomenon.  Figure 

6.15 shows no mixing or entrainment at the boundaries, which is necessary to adequately 

predict the jet spreading rate.  The reason is that the grid is too coarse at the boundaries, 

and consequently under-predicts the shear at those locations.  This causes the flow field 

to appear laminar.  As no entrainment function is used in the simulations, the mixing and 

spreading rate of the jet is dependent on the ability to appropriately capture the shear 

stress at the interface.  When an appropriate grid resolution is used, DREAM® does 

appear to have the ability to accurately resolve the interface and appropriately predict the 

interface physics (Figure 6.16).  Further study of this phenomena is indeed needed for 

quantification. 

Figure 6.17 shows a comparison between the DREAM® simulations and Anwar 

(1964) experimental data for the normalized half-jet velocity at x/Din = 15 and 20 for the 

finer grid simulations.  Since, the coarse grid simulations are too dissipative, they are not 

included in the analysis of the turbulence quantities.  The tendency for a buoyant jet to 

become self-similar some distance downstream means that the turbulent flow depends 

only on the initial momentum.  Similarity is visible in both the experiments and 

 



Badeau, Jr. 81

DREAM® simulations, which lends weight to the validity of the present simulations with 

the fine grid.  A similar trend is seen in analysis of the turbulence quantities as well.  

Figures 6.18 – 6.20 show the u, v, and w r.m.s velocity components as compared to the 

experimental data.  Not only do the DREAM® simulations compare reasonably well to 

the experiments by Anwar (1969), but the simulation also shows the principal of 

similarity, as expected.  The data has been time averaged over two flow-through times, as 

well as spatially averaged over eight nearest neighbor adjacent cells on the centerlines.  A 

comparison of the resolved turbulent kinetic energy from the DREAM® simulations to 

the experimental data is shown in Figure 6.21, which shows excellent agreement.  

Calculated normalized total energy spectra between the coarse and fine grid simulations 

at x/Din = 15 and 20, again clearly shows that the coarse grid doesn’t adequately predict 

the trend of the Kolmogorov spectra, and further supports the omission of presentation 

within this section (Figures 6.22 a and b).  It is important to note that all statistical 

analysis uses the techniques as explained in Section A.5, including the calculation of the 

normalized total energy spectra, and will not be explained here.  The reader is referred to 

Section A.5 for further details.   

 
Axisymmetric Forcing at the Inlet 
 
 The previous section presented results showing the ability of DREAM® using 

LES ITM type methods in the simulation of constant inlet velocity, buoyant flow 

situations.  This section presents the results from using the forcing function, Eq. 6.2.1 and 

6.2.2, as presented in Section 6.2.  As the geometries between the two different 

experiments were similar, identical grid sizes were used, with a slightly increased grid 

resolution in these simulations.  Figure 6.23 and 6.24 shows the coarse and fine grid 

resolutions used in the DREAM® simulations.  Similar conclusions to those reached in 

the previous section may be drawn with regard to using a coarse or fine grid in the 

simulations, with the coarse grid simulations again being too dissipative.  This can be 

seen for the velocity magnitudes (Figures 6.25 and 6.26), velocity vectors (6.27 and 

6.28), z-component vorticity (6.29 and 6.30), the vorticity magnitude (6.31 and 6.32) and 

the density contours (6.33 and 6.34).   
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 As in the previous sub-section, if self-similarity is achieved, same shapes should 

be maintained at different downstream locations for the same mean velocity.  Two axial 

positions (x/Din = 8 and 14) were chosen to examine the jet behavior.  Figure 6.35 shows 

the normalized velocity across the jet half width.  These results compare well with the 

experimental data by George and Tamanini (1977) and display the expected similarity 

properties.  The normalized r.m.s of the x, y, and z velocity components are shown in 

Figures 6.36, 6.37, and 6.38.  It is observed that the turbulence intensities in the y and z 

direction are smaller in the axial direction, which is expected and evident from numerous 

jet experiments.  The peak is off-axis in the profile of axial velocity fluctuations and 

some shift in the experiments is also visible, which may be due to insufficient sampling.  

The radial profiles of the turbulent density fluctuations are shown in Figure 6.39, where it 

can be seen that the centerline value of the scalar intensity is approximately 0.40.  This is 

substantially higher than the 0.20 – 0.25 velocity fluctuations in jets and is due to 

buoyancy intensifying the turbulence field.  This is clear in vertical buoyant jet 

phenomena, but is less evident in the curved buoyant jet simulations presented in Chapter 

7.0.  Self similarity is not as evident in the r.m.s density fluctuations, which is more 

difficult to achieve.  A comparison of the measured turbulent kinetic energy to the 

resolved turbulent kinetic energy is shown in figure 6.40 at the two axial locations.  

Again, the results correlate well with the observed experimental data.  The normalized 

total energy spectrum is presented in Figure 6.41, with the fine grid simulations closely 

obeying the Kolmogorov spectra.  However, it is important to note that although the slope 

of the Kolmogorov spectra is roughly observed, there appears to be no strong energy 

containing peak.  This further indicates the need for increased resolution in the 

simulations. 

 Thus, in conclusion, adequate grid resolution and time step size are required to 

produce meaningful results using LES and ITM.  Use of a coarse grid yields too much 

numerical diffusion, as does a larger time step size.  Increasing the time step size by a 

factor of four also yielded too much diffusion in the fine grid simulations.  Thus, it is 

necessary to use “sufficiently” small time step to prevent the projection method from 

filtering out too much of the lower frequency statistics, which is a characteristic of ITM 

methods. 
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Figure 6.1 – Geometry used in Anwar (1968) experiments 
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Figure 6.2 – Geometry used in the George and Tamanini (1977) experiments 
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Figure 6.3 – Coarse grid used in the DREAM® simulations for Anwar (1964) 
experiments 
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Figure 6.4 – Fine grid used in the DREAM® simulations for comparison to Anwar 
(1964) experiments 
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Figure 6.5 - Velocity magnitude contours at z = 0 for 75x57x57 grid resolution after 
four flow through times; dt = 0.00025; Re = 1892; Fr = 2.8 
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Figure 6.6 - Velocity magnitude contours at z = 0 for 150x107x107 grid resolution 
after four flow through times; dt = 0.00025; Re = 1892; Fr = 2.8  
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Figure 6.7 – Instantaneous velocity vectors at z = 0 for 75x57x57 grid resolution 
after four flow through times; dt = 0.00025; Re = 1892; Fr = 2.8  
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Figure 6.8 – Instantaneous velocity vectors at z = 0 for 150x107x107 grid resolution 
after four flow through times; dt = 0.00025; Re = 1892; Fr = 2.8  
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Figure 6.9 - Instantaneous point velocity component versus time for 75x57x57 grid 
resolution; dt = 0.00025; Re = 1892; Fr = 2.8 
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Figure 6.10 - Instantaneous point velocity component versus time for 150x107x107 
grid resolution; dt = 0.00025; Re = 1892; Fr = 2.8 
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Figure 6.11 - Z component vorticity contours at z = 0  for 75x57x57 grid resolution 
after four flow through times; dt = 0.00025; Re = 1892; Fr = 2.8 
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Figure 6.12 - Z component vorticity contours at z = 0 for 150x107x107 grid 
resolution after four flow through times; dt = 0.00025; Re = 1892; Fr = 2.8 
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Figure 6.13 - Vorticity magnitude contours at z = 0 for 75x57x57 grid resolution 
after four flow through times; dt = 0.00025; Re = 1892; Fr = 2.8 
 
 
 
 

x/Din

y/
D

in

5 10 15 20 25

-5

0

5

Vorticity Magnitude: 0 4.87453 9.74904 14.6235 19.4981 24.3726 29.2471 34.1216 38.9961 43.8706

 
Figure 6.14 - Vorticity magnitude contours at z = 0 for 150x107x107 grid resolution 
after four flow through times; dt = 0.00025; Re = 1892; Fr = 2.8 
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Figure 6.15 - Density contours at z = 0 for 75x57x57 grid resolution after four flow 
through times; dt = 0.00025; Re = 1892; Fr = 2.8 
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Figure 6.16 - Density contours at z = 0 for 150x107x107 grid resolution after four 
flow through times; dt = 0.00025; Re = 1892; Fr = 2.8 
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Figure 6.17 – Normalized axial velocity at x/Din = 15 and x/Din = 20 from DREAM® 
simulations to experiments; dt = 0.00025; Re = 1892; Fr = 2.8 
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Figure 6.18 – Comparison of Urms from DREAM® simulations to experiments at 
x/Din = 15 and x/Din = 20; dt = 0.00025; Re = 1892; Fr = 2.8 
 

Normalized Jet Width (y/x)

V
rm

s
/U

o

0.05 0.1 0.15 0.2
0

0.1

0.2

0.3
VrmS exp
Vrms(DREAM; 167x107x107; x/Din = 16)
Vrms(DREAM; 167x107x107; x/Din = 20)

 
Figure 6.19 – Comparison of Vrms from DREAM® simulations to experiments at 
x/Din = 15 and x/Din = 20; dt = 0.00025; Re = 1892; Fr = 2.8 
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Figure 6.20 – Comparison of Wrms from DREAM® simulations to experiments at 
x/Din = 15 and x/Din = 20; dt = 0.00025; Re = 1892; Fr = 2.8 
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Figure 6.21 – Comparison of turbulent kinetic energy from DREAM® simulations at 
x/Din = 15 and 20 to experiments 
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(b) 

Figure 6.22 –a) Comparison of total energy spectrum at x/Din = 15 from DREAM® 
simulations using coarse and fine grid simulations; b) Comparison of total energy 
spectrum at x/Din = 20 from DREAM® simulations using coarse and fine grid 
simulations 
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Figure 6.23 – Coarse grid used in DREAM® simulations for George and Tamanini 
(1977) experiments 
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Figure 6.24 – Coarse grid used in DREAM® simulations for George and Tamanini 
(1977) experiments 
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Figure 6.25 - Velocity magnitude contours at z = 0 for 75x57x57 grid resolution after 
four flow through times; dt = 0.00025; Re = 1273; Fr = 1.93 
 
 
 
 

x/Din

y/
D

in

5 10 15

-2

0

2

Velocity Magnitude: 0.095623 0.286653 0.477684 0.668714 0.859745 1.05077 1.24181 1.43284

 
Figure 6.26 - Velocity magnitude contours at z = 0 for 150x107x107 grid resolution 
after four flow through times; dt = 0.00025; Re = 1273; Fr = 1.93 
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Figure 6.27 – Instantaneous velocity vectors at z = 0 for 75x57x57 grid resolution 
after four flow through times; dt = 0.00025; Re = 1273; Fr = 1.93 
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Figure 6.28 – Instantaneous velocity vectors at z = 0 for 150x107x107 grid resolution 
after four flow through times; dt = 0.00025; Re = 1273; Fr = 1.93 
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Figure 6.29 - Z component vorticity contours at z = 0  for 75x57x57 grid resolution 
after four flow through times; dt = 0.00025; Re = 1273; Fr = 1.93 
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Figure 6.30 - Z component vorticity contours at z = 0 for 150x107x107 grid 
resolution after four flow through times; dt = 0.00025; Re = 1273; Fr = 1.93 
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Figure 6.31 - Vorticity magnitude contours at z = 0 for 75x57x57 grid resolution 
after four flow through times; dt = 0.00025; Re = 1273; Fr = 1.93 
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Figure 6.32 - Vorticity magnitude contours at z = 0 for 150x107x107 grid resolution 
after four flow through times; dt = 0.00025; Re = 1273; Fr = 1.93 
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Figure 6.33 - Density contours at z = 0 for 75x57x57 grid resolution after four flow 
through times; dt = 0.00025; Re = 1273; Fr = 1.93 
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Figure 6.34 - Density contours at z = 0 for 150x107x107 grid resolution after four 
flow through times; dt = 0.00025; Re = 1273; Fr = 1.93 
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Figure 6.35 – Normalized axial velocity across the jet at x/Din = 8 and x/Din = 14 
from DREAM® simulations as compared to experiments; dt = 0.00025; Re = 1273; 
Fr = 1.93 
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Figure 6.36 – Comparison of Urms from DREAM® simulations to experiments at 
x/Din = 8 and x/Din = 14; dt = 0.00025; Re = 1273; Fr = 1.93 
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Figure 6.37 – Comparison of Vrms from DREAM® simulations to experiments at 
x/Din = 8 and x/Din = 14; dt = 0.00025; Re = 1273; Fr = 1.93 
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Figure 6.38 – Comparison of Wrms from DREAM® simulations to experiments at 
x/Din = 8 and x/Din = 14; dt = 0.00025; Re = 1273; Fr = 1.93 
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Figure 6.39 – Comparison of resolved density fluctuations from DREAM® 
simulations between to experimental data at x/Din = 8 and x/Din = 14; Re = 1273; Fr 
= 1.93 
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Figure 6.40 – Comparison of resolved turbulent kinetic energy from DREAM® 
simulations between to experimental data at x/Din = 8 and x/Din = 14; Re = 1273; Fr 
= 1.93 
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Figure 6.41 – Comparison of total energy spectrum at x/Din = 14 from DREAM® 
simulations using coarse and fine grid simulations; Re = 1273; Fr = 1.93 
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7.0   CURVED BUOYANT JET 

 
7.1    Introduction 

 The problem of a sharp density interface impinged by a buoyant jet occurs in both 

natural and man-made situations.  Examples include refueling of compensated fuel ballast 

tanks on naval vessels (Badeau, (2001); Wilson (1999)), aerosol injections in confined 

spaces, and ice covered thermal buoyancy driven flows.  Again, it is important to note 

that the original reason for performing this study deals with the buoyant flow events that 

ensue during the refueling process within the compensated fuel ballast tanks.  

Impingement behavior also encompasses the impacting of buoyant jets onto solid 

surfaces, which still has received little attention, as most studies investigate the resulting 

flows after impaction.  The behavior of a jet injected horizontally into a stagnant liquid of 

different density results in a path curvature, which is dependent on the momentum and 

buoyancy of the jet.  Initially, the immiscible liquid impingement results in the 

development of a horizontal cavity, which travels based on buoyancy and momentum 

forces.  As the flow phenomenon occurs within an enclosure, the behavior near the wall 

also effect the turbulence within the chamber, as well as the long term behavior of the jet.  

A variety of dimensionless parameters may be used to describe the ensuing flow field; 

however, a densimetric Froude number or Reynolds number based on the inlet properties 

are utilized for this study. Experiments have been performed in conjunction with the 

computational studies to help in the quantitative analysis of the DREAM® simulations.  

This chapter examines critical components of the curved buoyant jet and the long term 

flow field characteristics utilizing LES and ITM methods.  The impingement of the 

curved buoyant jet onto the solid wall also is investigated. 

 

7.2    Experiments 

 The experiments presented in this section were explicitly performed by the author 

of this study to determine the centerline path and jet width of the curved buoyant jet as a 

method of validation of the CFD simulations from DREAM®.  Although other 

simulations are similar in manner to the ones explained in this section, the available 
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experimental data specifically dealing with only a curved buoyant jet flowing into a 

stagnant fluid were lacking.  The experiments were conducted by the author over a one-

month time period, which does not included building and design of the experiment.  The 

experimental setup, shown in Figure 7.1, consists of a water jet, injected horizontally at 

three different flow rates, into a stagnant corn oil.  Tap water at city pressure and density 

of 999.91 kg/m3 was utilized for the experiment, with generic corn oil, at a density of 920 

kg/m3.  As the numerical simulations will have corn oil injected into water, densimetric 

Froude number similarity will be used to determine the appropriate water inlet velocities.  

The key parameters used in the experiments are summarized in Table 7.2.1.  The exit 

densimetric Froude number based on the diameter of the inlet pipe was used to determine 

all densimetric Froude numbers.    

 The inner dimensions of the tank used in the experiments were 0.6 x 0.4 x 0.2 m, 

with the inlet hole consisting of a square of sides 0.02 meters in length, located in the 

center of the inlet plane.  The chamber is constructed of half-inch LEXAN©, with the 

inner edges bonded using acetone weld.  A thin right angle strip of LEXAN© is placed on 

the outside edges to help in the prevention of leaking.  The outlet is offset 0.16 meters 

from center, which prevents symmetry instabilities that often result when symmetric 

geometries are used.  Another outlet is available for simulations; however, for the current 

research, it is only used as a water drain during the refilling process and is closed during 

all experiments.  Shutoff valves are at all inlets and exits, as well as a plug being used for 

the refilling location of the oil.  For all experiments, water fills the tank to the one-quarter 

capacity, with a collection tank being used for the exiting oil.  The inlet water velocity is 

controlled using a Cole-Parmer© flow meter, which was calibrated through water filling 

experiments to determine the appropriate velocities at the inlet.   

 The goal of the experiments is to help in the validation of the DREAM® 

simulations.  The properties of the curved buoyant are investigated.  These results are 

compared to the DREAM® simulations in section 7.4.  To acquire the data, two digital 

video cameras are placed at the center bottom and left center locations, being at ninety 

degree angles to the view planes.  These locations are chosen to make the jet analysis 

easier.  Also, background lighting from a standard flow lamp is utilized to help ensure 
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that enough light is provided for the camera.  The movies are imported into Adobe 

Premier©, a movie rendering software package, which allows for instantaneous pictures 

to be extracted from the movies and converted to an appropriate format suitable for 

MATLAB© analysis, i.e. TIFF, JPEG, etc.  

 To determine the jet width and centerline locations, a MATLAB© function called 

“edge (sobel)” was used, which allows the edges to be identified based on a given 

threshold, with an uncertainty of 0.2 % due to pixel limitations.  Unfortunately, because 

the curved jet is in the center of the tank to avoid wall effects and the cameras are outside 

of the enclosure, other flow field characteristics are difficult to analyze and are not 

presented in this study.  The threshold was determined through trial and error and is 

varied to determine the jet width and centerline locations. The Sobel method finds edges 

using the Sobel approximation to the derivative. For details on the Sobel method, the 

reader is referred to Matlabs documentation on image processing, which may be found in 

MatlabV7 (2002).  The Sobel method returns edges at those points where the gradient of I 

is maximum based on the defined threshold.  An example of the coding used for this 

function is given by 

jet = edge(I,'sobel',thresh) 

jet_center = edge(I,'sobel',thresh,direction) 

where the direction is an array keeping track of the x and y locations for the jet centerline 

tracking.  This data is then exported to a data file for graphing.  Results are presented in 

Section 7.4 for comparison to the DREAM® simulations.  A total of 16 experiments were 

performed for each densimetric Froude number, and the results were averaged over all 

the runs to obtain the jet trajectory.  It is important to note that the two lower Froude 

number experiments performed for this study have similar dimensionless quantity 

magnitudes as compared to the experiments pertaining to the compensated fuel ballast 

tank experiments (Wilson, 1999).  The maximum variations in the experiments between 

each of the runs for each Froude number are also compared to the simulation results 

presented in Section 7.4. 
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Fluid D (m) Fr 1/Fr Rejet Uin (m/sec)  tfill 1⁄4 (sec) 

water-oil 0.02 1.91 0.52 4890 0.24 120 

water-oil 0.02 3.83 0.26 9902 0.48 60 

water-oil 0.02 7.66 0.13 19804 0.96  30 

Table 7.2.1 – Key parameters for buoyant jet experiments 

 

7.3    Computational Details 

 The simulations of the curved buoyant jet, resulting from the injection of oil at a 

constant velocity into a stagnant water tank, are the primary focus of this study.  The 

simulations are identical, in dimensions, to the experimental apparatus as described in 

section 7.2.  densimetric Froude number similarity is maintained for all simulations. 

 For this study, three different grid resolutions were utilized, being 120x60x40, 

180x120x60, and 240x160x80 in the x, y, and z directions, respectively.  This yielded a 

total number of 0.288, 1.296, and 3.072 million grid cells, respectively.  The coarsest grid 

is only used in the Richardson extrapolation analysis to determine approximate grid 

independence of the simulations, and other coarse grid results are not presented in this 

work.  For all simulations, a constant averaged fuel droplet size of 0.5 mm was specified 

for the calculation of the slip velocity.  A time step of dt=0.001 was used for all 

simulations.  A uniform grid was utilized for all simulations, with the grid sizes being 

approximately 300, 150 and 50 times the approximate viscous length scale.  The coarsest 

grid is only used to test for an independent solution, and is not used in any other analysis. 

 The experiments use an inlet water jet for convenience, impinging onto a stagnant 

fuel layer, which causes a curved jet in the downward direction.  To attain densimetric 

Froude number similarity, the inlet velocities are modified to ensure that the densimetric 

Froude numbers are equal in all cases studied.  However, Reynolds number similarity is 

not maintained between the experiments and simulations.  Thus, for the DREAM® 

simulations, the velocities used are given below in Table 7.3.1, along with the theoretical 

tank filling times.  However experiments only last one-quarter of the theoretical tank 
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filling time to conserve resources.  For comparative purposes, a dimensionless time, t*, is 

utilized for characterization of the instantaneous profiles, which equals the instantaneous 

computational time divided by the total filling time. 

Fluid D (m) Fr 1/Fr Rejet Uin (m/sec)  tfill (sec) 

water-oil 0.02 1.91 0.52 5000 0.25 480 

water-oil 0.02 3.83 0.26 10000 0.5 240 

water-oil 0.02 7.66 0.13 20000 1.0 120 

Table 7.3.1 – Key parameters for buoyant jet simulations 

At the wall boundaries a no-slip velocity condition was applied.  No wall functions are 

used in the simulations.  In both experiments and the simulations, the inlet is a square, 

and analysis of the dimensionless parameters uses a hydraulic diameter.  Since one of the 

key parameters in determining similarity is the location whereby the square jet resembles 

a circular jet, the inlet shape is of little importance for this analysis. 

 
7.4.    Results and Conclusions 

 This section shows the results from both the DREAM® simulations and the 

experiments.  The curved buoyant jet properties are analyzed in Section 7.4.1.  The 

similarity properties across the jet are examined, and compared to the available 

experimental data for non-buoyant jets.  Other flow field properties within the jet region 

are also examined, such as the mean axial velocity across the jet, and the turbulent kinetic 

energy present within the jet.  The jet centerline path for different densimetric Froude 

numbers is examined, as well as differences between the simulations and experiments for 

the highest Froude number case.  In Section 7.4.2, the effects of the curved buoyant jet on 

the global flow field is studied to determine the flow field properties within the enclosure.  

The jet impingent on the solid wall, and the effects on the turbulence generation are also 

presented. 
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7.4.1    Curved Buoyant Jet Properties 
 

The most commonly studied turbulent free shear flows are jets.  As implied, free 

jet implies that no walls effects are introduced, and the turbulence within the flow arises 

solely from the velocity fluctuations produced under the action of mean flow gradients.  

The flow is governed mostly by the Reynolds number based on the inlet velocity and 

inlet pipe diameter.  For flows with a jet injected into an ambient, identical liquid at rest, 

usually a flat topped velocity profile is produced at the inlet.  The flow is statistically 

stationary and axisymmetric (Pope, 2000).  For these types of flows, buoyancy forces 

have no effect on the interactions between the two fluids, which is not the case for the 

simulations presented in this study; however, both types of flows exhibit similar 

characteristics within the jet region itself.  This section serves to compare similar 

properties between non-buoyant and buoyant jets injected into a stationary ambient fluid. 

The tendency for a buoyant jet to become self-similar means that the turbulent 

flow depends only on the buoyancy and weight deficit and that the overall properties 

obey the same rules over a wide range of scales (Zhou et. al. (2001)).  Therefore, in the 

comparison to the available experimental data, the locations used in the analysis of the 

DREAM® simulations are based on this observation.    

For non-buoyant jets, the mean velocity development is in the axial direction, 

with the initial development region being between 0 < x/D < 15, where x is the axial 

direction, which says that the profile changes from being approximately square to the 

normal circular shape within that period of time (Pope, 2000).  For curved buoyant jets in 

enclosures, the developmental region is not as clearly defined, as buoyancy forces tend to 

hinder or enhance the development of turbulences within the flow.  Therefore, for the 

curved buoyant jet analysis, instead of using x/D, the coordinate direction of the jet 

development region, which in these simulations is approximately the vertical direction, is 

used.  Thus, the development region is taken to be between 0 < y/D < 15.  The 

simulations presented in this work do in fact have certain wall effects present; however 

this fact doesn’t prevent a comparison between the two cases.  The reasons for this are 

that the jet will display similar properties as long as it is dominated mainly by the 

momentum flux.  Also, the walls are sufficiently far from the inlet region to effect the 

development of the momentum driven part of the jet.  It should be noted that only the 
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inlet velocity of 0.25 m/sec results are shown; however, the other inlet velocity flows 

exhibit similar self-similarity regions; however, because these locations are too close to 

the wall, the statistics begin to show wall effects.  

In the buoyancy driven flows, the jet curves due to the density differences 

between the jet and the ambient fluid, thus for comparative purposes, the measurements 

must be normal to the jet itself.  Pope (2000) defines the jets half-width r1/2 to be the 

location where the jets velocity reaches exactly one-half of the centerline velocity.  This 

definition is also used in the curved buoyant jet analysis.  

Pope (2000) states that in non-buoyant jet flows, the jet decays and spreads with 

increasing axial distance, respectively.  However, as the non-buoyant jet decays and 

spreads, the mean velocity profile changes, but the shape of the profile doesn’t, and after 

y/D = 20, with proper scaling, they collapse onto a single curve, indicating that the mean 

velocity profile is self-similar.  Buoyant jets should display this property as well when the 

jet is predominantly momentum driven.  The locations where the DREAM® simulations 

are examined are shown in Figure 7.2.  These two locations have become predominantly 

buoyancy driven, and up to a certain time, wall effects are minimal on the behavior of the 

jet.   

In the comparison between the non-buoyant and buoyant jet flows, the similarity 

variable is taken to be the jet distance divided by the half-width of the jet.  The mean 

velocity profiles for the two buoyant jet locations, as compared to the Pope (2000) 

experimental data shows very good agreement in the self-similar regimes of the jet.  This 

is evident in Figure 7.3.   

Other important quantities must be determined to get a more accurate picture of 

the curved buoyant jet behavior within the similarity region.  Pope (2000) shows that the 

Reynolds stresses become self-similar in the jet region.  Hussein et. al. (1994) observed 

that on the centerline, the root mean square velocity is approximately one quarter of the 

mean in magnitude, and toward the edge of the jet, the ratio of the root mean square 

velocity fluctuations to the local mean velocity increases.  A comparison between the 

available experimental data by Hussein et. al. (1994) to the DREAM® simulations within 

the similarity region is shown in Figure 7.4 as compared to the Hussein et. al. (1994) 

experiments.  The DREAM® simulations appear to slightly under predict the magnitude 
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of the stresses within the jet.  The reason is most likely due to some influence of the wall 

on the jet, as well as the ever present implicit dissipation.  Note that only the resolved 

stresses are depicted in Figure 7.3.   

What is difficult to analyze and understand is the consequences of the turbulent 

kinetic energy within the jet, and the mechanisms that generate and dissipate turbulent 

kinetic energy.  As no turbulent profile is specified at the inlet, all of the turbulence must 

come from the jet interactions with the surrounding fluid, i.e. initial jet inflow into 

stagnant environment and shear at the jet edge.  The basic definitions of the Kolmogorov 

length and time scales allow some insight to be gained into both non-buoyant and curved 

buoyant jet flows.  It is clear that the Reynolds number based on the Kolmogorov length 

scale is unity, indicating that the motions on these scales are viscosity driven.  Therefore, 

the smallest motions decrease in size and timescale as the Reynolds number, or 

densimetric Froude number, increases.  This indicates a fundamental difference in the 

energy budget between the non-buoyant and buoyancy driven jets, being that buoyancy 

tends to hinder turbulence (Pope, 2000), but in our case, buoyancy in fact enhances 

turbulence within the enclosure.   

Due to the different mechanisms that govern the energy budget over the jet, i.e. 

dissipation, production, convection, and transport, a comparison of the scales present 

within the flow of non-buoyant and buoyant jets may be misleading.   Throughout the 

non-buoyant jet flow, dissipation is the dominant term in the energy balance equation and 

the production goes to zero near the jet edge.  Pope (2000) states that it takes a long time 

to dissipate an amount of energy k, which is similar in time to produce k for non-buoyant 

jet flows.  These time scales are approximately equal to the time it takes a particle 

released from the centerline of the inlet to travel from the origin to a certain point 

downstream of the inlet.  Thus, the turbulence is found to be long lived within the jet 

center line region and as the flow becomes less turbulent within the jet, the smallest local 

scales become larger in size.  Therefore, the resolvable scales are much greater than the 

Kolmogorov length scales and less important in the governing of the non-buoyant jet.  

However, for curved buoyancy driven flows, this effect is in fact magnified, as buoyancy 

forces in stably stratified environment hinder the development of turbulences toward the 

stably stratified side of the jet.  However, in the non-stably stratified side of the jet, 
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buoyancy acts to accelerate the flow, and enhances the turbulence within that region.  

Therefore, the smallest scales within the curved buoyant jet should be less important in 

the overall determination of the flow.  This fact is supported by work performed by Zhou 

et. al. (2001), where a vertical buoyant jet was investigated using a Smagorinsky sub-grid 

scale model.  In analysis of the Reynolds stresses, it was clear that the subgrid-scale 

stress contributed less to the total shear energy, indicating that the flow field is nearly 

fully resolved (Zhou et. al. (2001)).  Thus, similar behavior may be deduced for the 

DREAM® simulations, and an explicit sub-grid scale model may not be necessary for the 

analysis of curved buoyant jet flows.  

The turbulent kinetic energy within the curved buoyant jet from the DREAM® 

simulations are presented in Figure 7.5.  The turbulence is maximum near the jet 

centerline, and appears to decay outward.  It is important to re-iterate that the wall effects 

have not been included in the analysis.   However, it must be noted that across the mixing 

layer, the turbulence increases slightly and then decreases, which is because of the shear 

stress within the mixed layer.  This shear is increases with increasing densimetric Froude 

number.  Also, the axial component of the energy spectra is shown in Figure 7.6a, with 

the density fluctuations energy spectra within the similarity jet region shown in Figure 

7.6b.  Figure 7.6a exhibits the appropriate characteristics of the high-frequency inertial 

subrange, which again indicates an appropriate rate of energy transfer from the largest to 

the smallest resolved eddies.  Again, the smallest resolvable eddies may be decreased in 

size with increasing grid resolution and decreasing time step.  Figure 7.6b shows a similar 

trend in the inertial subrange, which is followed by a region that exhibits a decay of -3 

power law.  This is a special feature of some buoyant jet flows, whereby representing the 

inertial-diffusive subrange as suggested by List (1982).  Because of this, it may be stated 

that buoyancy has a strong effect on the turbulence spectrum within the enclosure; being 

independent of whether or not turbulence generation is hindered or enforced.  The jump 

between the -5/3 and -3 subrange may in fact be a result from the impact and energy 

feeding of impingement of the jet onto the wall.  However, more study into this type of 

phenomena needs to be done.  The energy spectrum observations from the velocity and 

density fluctuations further supports the use of an implicit turbulence model for curved 
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buoyant jet simulations, as well as the accuracy of the simulations.  These results are only 

valid up until the filling and the wall effects begin to effect the characteristics of the jet.  

 Figures 7.7 – 7.9 show density field comparisons between the experiments and the 

DREAM® simulations for the curved buoyant jet.  In Figure 7.10 the centerline paths for 

the experiments and the fine grid simulations from DREAM® are presented.  The 

densimetric Froude number dependence on the centerline trajectory is clearly visible.  

The fine grid simulations are able to accurately predict the centerline trajectories for all 

densimetric Froude numbers, which lends weight to the accuracy of the simulations.  The 

error bars indicate maximum deviations from the mean centerline profile for the 

experiments, and the simulations fall within the error bars.  One of the difficulties in 

comparing CFD simulations to experiments comes in the determination of the mixed 

layer thickness, especially for immiscible liquid-liquid flows.  For the experiments, a 

three-dimensional picture is used, and since the data is taken from outside of the 

enclosure, it is difficult to compare to the centerline predictions from a two-dimensional 

planar view.  Comparison of the DREAM® simulations, with the inclusion of the mixing 

layer assuming real mixing and not numerical diffusion, show that the results correlate 

well with the experimental data, although for the highest densimetric Froude number 

simulations, some deviations appear.  Clearly, the amount of mixing predicted by the 

simulations is less than that collected through the experiments.  This is most likely due to 

the time step used in the simulations.  Since the projection method is used in all of the 

simulations, too large of a time step causes an increased amount of dissipation predicted 

and filters out too much of the small scale turbulence, which causes the shear at the edge 

of the oil/water layer.  Thus, decreasing the time step will only enhance the codes ability 

to predict the features of the curved buoyant jet at high Reynolds numbers.  Another 

difficulty in the simulations is that to accurately model a high Reynolds number and 

Froude number jet, some entrainment mechanism needs to be incorporated into the 

simulations to allow for an appropriate amount of shear and mixing to take place at the 

interface.  The results of the high Froude number simulations clearly support this 

hypothesis, as the mixing and shear around the jet/ambient interface does not 

appropriately resolve the nature of the jet.  However, this is not as important for the lower 

Reynolds number and Froude number simulations, whereby the mixed layer thickness is 
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more accurately captured.  Thus, for any entrainment mechanism to be accurately 

modeled, both Reynolds and Froude number dependence is needed, as well as accounting 

for the stably stratified interface.   

However, much deeper insight may be gained from analyzing the DREAM® 

simulations for the jet behavior.  With respect to the inner density boundary of pure fluid, 

it is clear that as the densimetric Froude number increases, the spreading of the jet inner 

boundary decreases, especially after the development region.  This indicates that 

Reynolds number effects may be less subtle than what was initially thought.  Clearly, the 

closer the density difference, the smaller in size the inner boundary is, as a larger density 

difference causes a widening of the inner jet widths.  On the other hand, spreading of the 

outer boundary, where shear and mixing dominate the flow, increases with increasing 

densimetric Froude and Reynolds numbers.  Thus, it may be concluded that the buoyancy 

effects in the outer boundary will dissipate, with momentum and shear forces governing 

the development with increasing densimetric Froude and Reynolds numbers.  This fact 

only supports the conclusion for a need of some entrainment mechanism to model the 

physics at the boundary.  Simulations show that the buoyancy effects on the inner jet 

region dominate as the densimetric Froude and Reynolds numbers are decreased. 

Thus, in conclusion, in evaluation of curved buoyant jets, the momentum driven 

region exhibits similarity, which is identical in behavior to non-buoyant jet flows.  The 

turbulent kinetic energy is maximum near the jet centerline within this inner region for 

both buoyant and non-buoyant flows.  The buoyancy forces present within the flow both 

hinders and enhances the turbulent kinetic energy, which reduces the effects of the small 

scale structures away from the centerline toward a stably stratified interface, but enhances 

the turbulence near the non-stably stratified locations.  This in turn indicates that for 

small Reynolds and densimetric Froude numbers, the inner jet region is larger when 

compared to simulations at higher dimensionless parameters.  The opposite behavior is 

expected for the outer jet region. 

 
7.4.2    Global Effects of the Buoyant Jet 

Buoyancy effects arise in a group of problems that include atmospheric and 

oceanic boundary layers, refueling processes and discharge.  Apart from generating 
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turbulence anisotropy, buoyancy gives rise to changes of turbulence structure and 

intensity in much the same way as streamline curvature does, allowing either 

enhancement or suppression of turbulence.  Unfortunately, the behavior of buoyancy 

driven jets impinging on density interfaces or wall is not a well understood phenomenon.  

For the flows described in this study, the fuel is injected at the center of the domain, 

which means that as the fuel enters the domain, buoyancy forces cause the jet to become 

curved and rise upwards.  Thus, as the density increases in the direction of gravity, which 

is downward in the vertical direction, is stably stratified, and thus the turbulent energy is 

suppressed.  The reason is that in general, for the turbulent energy to be generated, the 

shear production must exceed that of the buoyancy suppression to survive, and also, 

stabilization alters the Reynolds shear stress (Durbin and Reif (2001)).   

 The buoyant forces cause variations in the density field due to the differences in 

the scalar field concentration, giving rise to a fluctuating body force in the vertical 

momentum direction, effecting both the mean flow field and the turbulence present 

within the enclosure.  In general, experiments have found that turbulence can’t be 

sustained under the stabilizing effect if the local densimetric Froude number is less than 

0.5.  This local densimetric Froude number is an inner Froude number, where density 

differences are not included.  This fact explains some of the behavior that is viewed in the 

analysis of the jet behavior, as well as in the effects on the overall domain after wall 

impingement. 

 Figures 7.10 – 7.12 show instantaneous velocity magnitude contours for the three 

different densimetric Froude numbers for the fine grid simulations.  Clearly, after the 

impaction of the jet onto the upper boundary, the energy loss and transfer of the curved 

buoyant jet results in a production of turbulence, which is transferred to the flow field, 

resulting in smaller vortical structures.  Figures 7.13 – 7.15 show the instantaneous 

contour plots of the normalized vorticity magnitude after impaction.  There is clearly 

more structures within the flow field after jet impaction, indicating the generation of 

turbulence throughout the effected regions.  This type of phenomenon increases with 

densimetric Froude number and is less visible for under-resolved flow fields, such as the 

coarser grid simulations, which utilize a 180x120x60 grid size.  The instantaneous 

velocity vectors are shown in Figures 7.16 – 7.21, with Figures 7.16, 18, and 20 being 
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colored by their span wise velocity component, which are shown at dimensionless times 

after jet impaction.  These figures clearly show not only the planar direction of the flows, 

but also the three-dimensional turbulence effects throughout the flow field.  Figures 7.17, 

19, and 21 are at dimensionless times just after the curved buoyant jet impact with the top 

boundary, which produces large vortices within the chamber. The instantaneous density 

contours for the three densimetric Froude numbers are shown in Figures 7.22 – 7.24, 

again showing the turbulent nature of the flow field. 

 To further examine the results of the curved buoyant jet after impaction on the 

global flow field within the enclosure, the averaged turbulent flow characteristics are 

examined for the coarse and fine grid simulations.  However, only the Fr = 7.66 data is 

presented.  It is noted in advance that a similar trend is observed for the other densimetric 

Froude number simulations. 

 Figures 7.25 a, b, and c show the average velocity axial, vertical, and spanwise 

profiles at x = 0.15 m and 0.3 m, downstream of the jet inlet.  It is interesting to note that 

the curved jet path is clearly visible in Figure 7.25a, as the maximum velocity 

components are at the jet crossing locations.  Small differences are present between the 

two grid simulations; however, the fine grid resolution clearly predicts the velocity 

profiles more accurately outside of the jet.  One of the difficulties in performing LES 

simulations, especially with ITM methods, is the ability to achieve grid independent 

results.  Analysis of the mean streamwise components in Figure 7.25 indicates that this is 

not achieved with the finest grid resolution.  To test this, the 120x80x40 simulations were 

utilized, which gives axial velocity data for three different grids.  Richardson 

extrapolation is performed extrapolate for a grid independent solution.  Figure 7.26 shows 

these results, with error bars being plotted on the extrapolated solution.  The error bars, 

for the most part, are within 5% of the fine grid solution, which allows for the conclusion 

of an approximate grid independent solution for the fine grid simulations.  However, it 

must be noted that with an increase in the grid resolution, the ability to resolved the fine 

scales within the flow field increases.  Thus, to achieve the extrapolated solution, the grid 

size increase may be double of the current fine grid results.  The axial behavior of the 

flow after jet impaction is examined, at y = 0.2 m and y = 0.4 m, or in the jet center.  The 
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mean velocity profiles are shown in Figure 7.27 a, b, and c for the axial, vertical and 

spanwise components.  

 The mean velocity r.m.s. quantities are examined at the two axial and vertical 

locations within the enclosure for the two different grids in Figures 7.28 (a,b, and c) and 

7.29 (a,b, and c).  Again, the curved jet crossing is clearly visible, as well as the fact that 

after impaction, the velocity fluctuations increase in magnitude, which lends weight to 

the conclusion that there is a generation of smaller vortices throughout the flow.  The 

square of the turbulence intensities, as shown in Figures 7.30 (a,b, and c) and 7.31 (a,b 

and c) show similar behavior, with the mean axial components being the largest for all 

simulations.  This indicates that even at impaction, the jet still maintains considerable 

amounts of its initial momentum. 

 For comparative purposes, the resolved turbulent kinetic energies within the 

enclosure are examined for the two grid simulations, as well as for Fr = 7.65 and 1.9, at 

the four locations in Figures 7.32 – 7.35.  The influence of the jet impaction is clearly 

visible, with the kinetic energies going to zero below the jet inlet height.  Generally, the 

impact location has a large influence on the amount of kinetic energy within the 

enclosure, as closer to the impact region results in higher amounts of turbulence.   

 The total energy spectra are examined in Figures 7.36 – 7.39.  Again, as with the 

analysis within the similarity region, the higher frequency inertial subrange behavior is 

captured, with some of the lower frequency energy being capture.  This indicates that 

again, the largest vortical structures are at or near the jet/jet interface regions and an 

appropriate amount of energy is cascaded to the smaller vortical structures at an 

appropriate rate, particularly after jet impaction.  However, with the other simulations 

presented in this work, the amount of dissipation seen in the simulations may be 

decreases through decreasing of the time step used in the simulations.   

 Therefore, the application of LES and ITM methods to variable density, curved 

buoyant jet flows shows that there is a generation of turbulence within the flow after 

impact onto the solid wall, a fact seen even with the amount of dissipation predicted in 

the simulations with a large time step.  The effects of buoyancy both enhance and damp 

the turbulence presented in the flow, which is dependent on the stratification of the 

liquid-liquid interface.  The location of this impact clearly affects the turbulent flow field 
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quantities.  Resolution of the flow field allows for the prediction of the turbulence, with 

the high frequency inertial subrange being resolved to an acceptable level.  As with all 

ITM methods, the simulations within this section also show the difficulty in predicting 

the low frequency turbulence.  These facts lend weight to the conclusion that DREAM® 

is capable of solving for curved buoyant jet flows, and appropriately predicting those 

quantities with a high degree of success using appropriate grid resolution.  Decreasing of 

the time step in the simulation will reduce the amount of dissipation seen in the Quasi-

second order upwind scheme utilized in the scalar solver, as well as the velocity 

components, which utilize a power-law scheme in the predictor-corrector method utilized 

in DREAM®.  This was evident in Chapter 6.0; however, resource limitation forced the 

use of the parameters as described in this section.   

It is also useful to compare the behavior of the vertical buoyant jet to the curved 

buoyant jet simulations with comparable dimensionless parameters and inlet velocity 

distribution.  Unfortunately, as indicated in Chapter 6, timestep and grid resolution are 

crucial, and because of the lack of computational resources, similar time-steps and 

resolutions are not available for the curved buoyant jet domain.  However, some useful 

information may still be gained from a comparison.  As shown in Chapter 7, the turbulent 

kinetic energy within the curved buoyant jet region, Uin = 0.25 m/sec and a densimetric 

Froude number equaling 1.91 before wall impact, is difficult to quantify based on the 

experiment.  However, utilizing the vertical buoyant jet simulations, Uin = 0.25 m/sec and 

a densimetric Froude number equaling 2.8, in Chapter 6, a rough comparison may be 

made.  Figure 8.1 shows a comparison between the curved buoyant jet and vertical 

buoyant jet simulations from DREAM.  Clearly, the resolved turbulent kinetic energy of 

the curved buoyant jet is larger near the jet center, and this may indicate that the 

acceleration of the jet due to density stratification is not the leading cause of the increased 

amount of turbulence, as this is present within the vertical buoyant jet as well.  Thus, 

although great care was taken to ensure that wall effects were not included in the 

analysis, both the impact of the jet on the upper boundary and the near wall behavior of 

the jet after it enters the tank indicates that wall effects within the curved buoyant jet 

domain can’t be easily eliminated.  Figure 8.1 confirms the expectation that under similar 

conditions, the curved buoyant jet seems to be more unstable. 
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Figure 7.1 – Experimental setup used in the validation of DREAM® code 
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Figure 7.2 - Locations where jet data was obtained for similarity analysis 
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Figure 7.3 - Mean velocity profile within jet region at y/Din = 15.0 and 20.0 within 
the similarity regions of jet compared to experimental data of Hussein et. al. (1994) 
(from Pope, 2000). Uo is the inlet velocity. 
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Figure 7.4 - Turbulence intensity squared from DREAM® simulations within jet 
region at x/Din = 20 for 240x160x80 grid compared to experimental data from 
Hussein et. al. (1994). 
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Figure 7.5 – Normalized resolved turbulent kinetic energy in half jet within the self-
similar region of y/Din = 20 for 240x160x80 grid; dt = 0.001 compared to 
experimental data from Hussein et. al. (1994). 
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(b) 

Figure 7.6 – Energy spectra for (a) the streamwise component and (b) density 
fluctuations in half jet within the similitude region of y/Din = 20 for 240x160x80 
grid; dt = 0.001 sec. 
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(b) 

Figure 7.7 – (a) Experimental picture of inverted curved buoyant jet for Uinlet = 0.25 
m/sec; t = 18.0 seconds, (b) DREAM® density contour for 240x160x80 grid for Uinlet 
= 0.25 m/sec.; dt = 0.001; t = 18.0 seconds; Fr = 1.91. 
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Figure 7.8 – a) Experimental picture of curved buoyant jet for Uinlet = 1.0 m/sec 
(inverted for comparative purposes). b) DREAM® density centerline contour for 
240x160x80 grid for Uinlet = 1.0 m/sec.; dt = 0.001; t = 5.0 seconds; Fr = 7.97. 
 

 



Badeau, Jr. 126

 
 
 
 
 
 
 
 

 
 
 

x/Din

y/
D

in

5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

Fr = 1.91 (Experiments)
Fr = 3.83 (Experiments)
Fr = 7.65 (Experiments)
Fr = 1.91 (DREAM sims; 2
Fr = 3.83 (DREAM sims; 2
Fr = 7.65 (DREAM sims; 2

40x160x80)
40x160x80)
40x160x80)

 
Figure 7.9 – Comparison of densimetric Froude number dependence for curved 
buoyant jet centerline path between experiments and DREAM® simulations for 
240x160x80 grids; dt = 0.001 sec.  Error bars represent maximum variations 
between the sixteen different experiments. 
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Figure 7.10 - Typical instantaneous velocity magnitude contours for 240x160x80 
grid; dt = 0.001; Uinlet = 0.25 m/sec; t* = 0.1875; Fr = 1.91 
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Figure 7.11 - Typical instantaneous axial velocity contours for 240x160x80 grid; dt = 
0.001; Uinlet = 0.5 m/sec; t* = 0.25; Fr = 3.83 

 



Badeau, Jr. 128

x

y

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

1.02157
0.9486
0.875631
0.802661
0.729692
0.656723
0.583754
0.510784
0.437815
0.364846
0.291877
0.218908
0.145938
0.0729692
0

 
Figure 7.12 - Typical instantaneous velocity magnitude contours for 240x160x80 
grid; dt = 0.001; Uinlet = 1.0 m/sec; t* = 0.15; Fr = 7.65 
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Figure 7.13 - Typical instantaneous vorticity magnitude contours for 240x160x80 
grid; dt = 0.001; Uinlet = 0.25 m/sec; t* = 0.1875; Fr = 1.91 
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Figure 7.14 - Typical instantaneous vorticity magnitude contours for 240x160x80 
grid; dt = 0.001; Uinlet = 0.5 m/sec; t* = 0.25; Fr = 3.83 
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Figure 7.15 - Typical instantaneous vorticity magnitude contours for 240x160x80 
grid; dt = 0.001; Uinlet = 1.0 m/sec; t* = 0.15; Fr = 7.65 
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Figure 7.16 - Typical instantaneous velocity vectors (colored by span wise velocity 
component) for 240x160x80 grid; dt = 0.001; Uinlet = 0.25 m/sec; t* = 0.2975; Fr = 
1.91 
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Figure 7.17 - Typical instantaneous velocity vectors for 240x160x80 grid; dt = 0.001; 
Uinlet = 0.25 m/sec; t* = 0.0982; Fr = 1.91 
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Figure 7.18 - Typical instantaneous velocity vectors (colored by span wise velocity 
component) for 240x160x80 grid; dt = 0.001; Uinlet = 0.5 m/sec; t* = 0.3875; Fr = 3.83 
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Figure 7.19 - Typical instantaneous velocity vectors for 240x160x80 grid; dt = 0.001; 
Uinlet = 0.5 m/sec; t* = 0.1075; Fr = 3.83 
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Figure 7.20 - Typical instantaneous velocity vectors (colored by span wise velocity 
component) for 240x160x80 grid; dt = 0.001; Uinlet = 1.0 m/sec; t* = 0.15; Fr = 7.65 
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Figure 7.21 - Typical instantaneous velocity vectors for 240x160x80 grid; dt = 0.001; 
Uinlet = 1.0 m/sec; t* = 0.085; Fr = 7.65 
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Figure 7.22 - Typical instantaneous density contours for 240x160x80 grid; dt = 
0.001; Uinlet = 0.25 m/sec; t* = 0.1085; Fr = 1.91 
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Figure 7.23 - Typical instantaneous density contours for 240x160x80 grid; dt = 
0.001; Uinlet = 0.5 m/sec; t* = 0.275; Fr = 3.63 
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Figure 7.24 - Typical instantaneous density contours for 240x160x80 grid; dt = 
0.001; Uinlet = 1.0 m/sec; t* = 0.263 seconds; Fr = 7.65 
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(c) 

Figure 7.25 - Average velocity profiles from DREAM® simulations at x = 0.15 m and 
0.30 m using 180x120x60 and 240x160x80 for a) axial velocity component, b) vertical 
velocity component, and c) spanwise velocity component; dt = 0.001; Uinlet = 1.0 
m/sec; Fr = 7.65 
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Figure 7.26 - Richardson extrapolation for average axial velocity profiles at x = 0.30 
m for 120x80x40, 180x120x60 and 240x160x80 grids; dt = 0.001; Uinlet = 1.0 m/sec; 
Fr = 7.65 
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(c) 

Figure 7.27 - Average velocity profiles from DREAM® simulations at y = 0.2 m and 
0.4 m using 180x120x60 and 240x160x80 for a) axial velocity component, b) vertical 
velocity component, and c) spanwise velocity component; dt = 0.001; Uinlet = 1.0 
m/sec; Fr = 7.65 
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(c) 

Figure 7.28 – Mean RMS velocity profiles from DREAM® simulations at x = 0.15 m 
and 0.30 m using 180x120x60 and 240x160x80 for a) axial velocity component, b) 
vertical velocity component, and c) spanwise velocity component; dt = 0.001; Uinlet = 
1.0 m/sec; Fr = 7.65 
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(c) 

Figure 7.29 - Mean RMS velocity profiles from DREAM® simulations at y = 0.2 m 
and 0.40 m using 180x120x60 and 240x160x80 for a) axial velocity component, b) 
vertical velocity component, and c) spanwise velocity component; dt = 0.001; Uinlet = 
1.0 m/sec; Fr = 7.65 
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(c) 

Figure 7.30 – Square of the turbulence intensity from DREAM® simulations at x = 
0.15 m and 0.30 m using 180x120x60 and 240x160x80 for a) axial velocity 
component, b) vertical velocity component, and c) spanwise velocity component; dt 
= 0.001; Uinlet = 1.0 m/sec; Fr = 7.65 
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(c) 

Figure 7.31 – Square of the turbulence intensity from DREAM® simulations at y = 
0.2 m and 0.40 m using 180x120x60 and 240x160x80 for a) axial velocity component, 
b) vertical velocity component, and c) spanwise velocity component; dt = 0.001; Uinlet 
= 1.0 m/sec; Fr = 7.65 
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Figure 7.32 - Resolved turbulent kinetic energy at x = 0.15 m for 180x120x60 and 
240x160x80 grids; dt = 0.001; Uinlet = 0.25 and 1.0 m/sec; Fr = 1.91 and 7.65 
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Figure 7.33 - Resolved turbulent kinetic energy at x = 0.30 m for 180x120x60 and 
240x160x80 grids; dt = 0.001; Uinlet = 0.25 and 1.0 m/sec; Fr = 1.91 and 7.65 
 

 



Badeau, Jr. 143

x (m)

R
es

ol
ve

d
Tu

rb
ul

en
tK

in
et

ic
E

ne
rg

y
(m

2 /s
ec

2 )

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
kres (180x120x60; y = 0.2 m; Uin = 0.2
kres (240x160x80; y = 0.2 m; Uin = 0.2
kres (180x120x60; y = 0.2 m; Uin = 1.0
kres (240x160x80; y = 0.2 m; Uin = 1.0

5 m/sec)
5 m/sec)
m/sec)
m/sec)

 
Figure 7.34 - Resolved turbulent kinetic energy at y = 0.20 m for 180x120x60 and 
240x160x80 grids; dt = 0.001; Uinlet = 0.25 and 1.0 m/sec; Fr = 1.91 and 7.65. 
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Figure 7.35 - Resolved turbulent kinetic energy at y = 0.40 m for 180x120x60 and 
240x160x80 grids; dt = 0.001; Uinlet = 0.25 and 1.0 m/sec; Fr = 1.91 and 7.65 
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Figure 7.36 - Total averaged energy spectrum at x = 0.15 m for 180x120x60 and 
240x160x80 grids; dt = 0.001; Uinlet = 1.0 m/sec; Fr = 7.65 
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Figure 7.37 - Total averaged energy spectrum at x = 0.30 m for 180x120x60 and 
240x160x80 grids; dt = 0.001; Uinlet = 1.0 m/sec; Fr = 7.65 

 



Badeau, Jr. 145

 

Wavenumber k (cm-1)

To
ta

lE
ne

rg
y

(c
m

2 /s
ec

)

10-2 10-1 100 101

101

102

103

104

Total Energy (180x120x60; y = 0.2 m)
Total Energy (240x160x80; y = 0.2 m)

 
Figure 7.38 - Total averaged energy spectrum at y = 0.20 m for 180x120x60 and 
240x160x80 grids; dt = 0.001; Uinlet = 1.0 m/sec; Fr = 7.65 
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Figure 7.39 - Total averaged energy spectrum at y = 0.40 m for 180x120x60 and 
240x160x80 grids; dt = 0.001; Uinlet = 1.0 m/sec; Fr = 7.65 
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Figure 7.40 – Comparison of the resolved turbulent kinetic energy from the curved 

buoayant jet (Uin = 0.25 m/sec; Fr = 1.91) and vertical buoyant jet (Uin = 0.25 m/sec; 

Fr = 2.8) DREAM® simulations. 
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8.0    CONCLUSIONS AND RECOMMENDATIONS 

 
8.1  Conclusions 
 

As computer resources continue to develop, computational and numerical solution of 

complex turbulent flows becomes more feasible.  In this journey, new numerical models 

will be developed, which will accurately solve complex flow phenomena within 

acceptable turn-around time.  Although large eddy simulations (LES) have been around 

for many years, the ability to apply these methods to high-Reynolds number, complex 

geometries has been difficult at times because of the high demand on the computational 

resources.  Application of a high degree of resolution, as well as subgrid-scale modeling 

further exacerbates the demands.  To ensure the quality of the LES, efficient and accurate 

numerical methods must be applied.  Recently new way of presentation of ITM methods 

has come around, whereby no subgrid-scale model is used and only the grid resolution, in 

cooperation with monotonic schemes or finite volumes, has been used to resolve the flow 

field.  This type of large eddy simulation is known as implicit turbulence modeling 

(ITM), and has been utilized within this study. 

The solution methodologies for the three-dimensional, unsteady, variable density, 

incompressible Navier-Stokes equations have been verified by applying them to four 

benchmarks: flow past a square cylinder, shear layer, impingement of a water jet onto a 

stably stratified fuel/water environment, and a vertical buoyant jet.  Through comparison 

of the simulations from the DREAM® code for a variety of different grid sizes with the 

available experimental data, it has been shown that the solution methodology as 

implemented into DREAM® is capable of yielding reasonable results.  Unfortunately, the 

efficiency of DREAM® is limited by the time step size and grid resolution.  A 

comparison of the ITM methods to Smagorinsky type subgrid-scale (SGS) models shows 

that in some simulations, with an appropriate flow field resolution, ITM methods 

outperform SGS models in the capturing of the physics of the flow field.  However, for 

under-resolved simulations, SGS models outperform LES ITM methods and may be more 

efficient if the time-step size and grid resolutions can be reduced using the SGS model. 
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LES and ITM methods of turbulent flows are still in their infancy, as many scientists 

maintain the desire to use explicit subgrid-scale models.  The use of ITM methods still 

requires a high degree of grid resolution to capture the physics of the flow field.  For the 

simulations presented in this study, application of LES and ITM methods to the study of 

curved buoyant jets of oil in water within an enclosure has been performed, oil is injected 

at a specified flow rate into a water filled tank, initially taken to be stagnant.  Grid 

resolution and time-step size has been investigated, and found to be highly important in 

ITM methods.  Although the results appear to be too diffusive, much information from 

the simulations may still be determined.  Buoyant forces cause the oil to rise as it flows 

downstream; the penetration distance is proportional to the initial momentum of the jet.  

The impingement of the oil onto the water results in a development of a plume, which 

later impinges on the vertical wall.  Results show that even though the density 

stratification tends to damp the amount of turbulence present within the jet near the stably 

stratified interface, the ITM method as implemented into DREAM®, seems capable of 

predicting a reasonable amount of turbulence.  The resulting contours appear to be too 

dissipative, but they are statistically relevant and do predict some turbulence within the 

jet.  The impingement of the jet on the walls results in a generation of turbulence within 

the enclosure.  Analysis of the curved buoyant jet also shows that at an appropriate 

downstream location, similarity is achieved.  Comparison between the curved buoyant jet 

simulations to the available experimental data shows good agreement for the centerline 

path of the jet based on the densimetric Froude number.  Unfortunately, due to inadequate 

grid resolution, the jet spreading is under-predicted and the corresponding Reynolds 

stresses were not resolved at the liquid-liquid interface.  It may be concluded that near the 

jet centerline, the turbulence quantities are resolved with some degree of accuracy, 

indicating that if a coarse grid is used for the simulations, as with those presented in this 

study, some empirical entrainment function may be necessary.  A finer grid resolution 

run is currently under way.  The preliminary results of this run will be published in a 

forth coming symposium paper. 

The physics of the curved buoyant jet exhibits behavior much like the non-

buoyant and buoyant vertical jets by displaying similarity for some of the cases studied.  

Comparison to available experimental data correlates well with the simulations.  
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Investigation of the turbulent characteristics, i.e. turbulence intensity and resolved 

turbulent kinetic energy flow field, may be deemed similar at best through this 

observation.  Thus, it may be concluded that the application of these methods to 

immiscible fluids shows a new dimension to ITM and allows prediction of the turbulent 

flow field without the need for an explicit SGS model, albeit at a somewhat increased 

cost.   

 

8.2    Recommendations 
 

Accuracy and efficiency are the primary issues in large eddy simulations of high 

Reynolds number flows.  In the past, most would suggest extension of the code to a 

higher order numerical scheme, such as fourth order, etc., since DREAM® is second 

order accurate in space and time.  However, as ITM methods have been shown to 

accurately resolve flows with first order schemes, it is the grid resolution that needs to be 

investigated in conjunction with the possible use of higher-order schemes.  It must be 

noted for future reference that doing so may make it difficult to ensure monotonicity and 

positivity, so this is where the future lies.   

 All of the simulations presented in this work were performed on a single, dual, or 

quad processor; however, no parallelization of the code was performed.  The highest flow 

field resolution simulations ran for about one month to produce some meaningful results. 

The simulations used a grid resolution of approximately 50 to 100 times the Kolmogorov 

length scale.  To truly investigate the behavior of ITM methods on variable density flows, 

it would be appropriate to try to reduce that resolution to 20 – 40 times the Kolmogorov 

length scale.  Thus, parallel computation with a domain decomposition technique is 

desirable.  Also, as a non-uniform grid was used in the vertical buoyant jet simulations 

and accurate results were obtained, it would seem reasonable to determine an appropriate 

non-uniform grid applicable to the curved buoyant jet flow.  Investigation into how to 

relax the small time step requirement is also recommended.   

 Investigation of different types of interface tracking numerical schemes would 

also benefit future research.  The scheme applied in this study utilizes only the grid 
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resolution to track the liquid-liquid interface.  A more appropriate method may be to use 

a conservative interface-reconstruction scheme, where the high resolution of the flow 

field would ensure capturing of more of the interface phenomena.  Many different 

techniques are available; however, to use in conjunction with ITM methods, it is 

important to maintain the positivity and monotonicity of the scheme. 

 It may also be useful to implement the Droplet Formation Model, as described in 

Kandil (2001).  A constant droplet size was utilized in the slip-velocity relationship, and 

previous studies have shown this was not adequate.  The Droplet Formation Model would 

enhance the results shown in this study.  Accounting for the surface tension near the 

water-fuel interface would clearly allow for this phenomenon to be better solved for 

higher densimetric Froude number flows.  Implementation of an entrainment model 

would also allow the use of a coarser grid resolution in solving for the curved buoyant jet 

flows. 
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APPENDIX A – VERIFICATION OF SCALAR SOLVER  

 
A.1    Introduction 

This section, although not explicitly part of the overall goal of this study, is 

important because it introduces and verifies the Quasi-Second Order Upwinding (QSOU) 

scheme implemented into DREAM® and used for the determination of the variable 

density flows.  Thus, although intended to be brief in nature, a literature review of the 

scheme is presented, as well as an alternative method to solving for the density interface 

in multiphase flows.  This section will end with a small study showing that after a 

variable density scheme is implemented, that it satisfies the conservation of mass.    

 
A.2    Literature Review of QSOU 
 

The difficulty in Computational Fluid Dynamics arises when trying to accurately 

solve for the convection of some scalar quantity, i.e. concentration, volume fraction, etc., 

as the accuracy is highly coupled with the numerical scheme.  For accuracy, a second 

order scheme is generally required, as this order tends to limit the amount of numerical 

diffusion present in the calculations.  One should never achieve negative scalar values, 

i.e. negative quantities of fuel in water, and proper steps need to be taken to ensure this.  

First order schemes, and certain hybrid schemes, are mostly used to prevent “wiggles” 

introduced through using central differencing schemes when the local cell Peclet number 

is larger than a certain value.  However, these schemes do in fact introduce dissipation of 

the numerical code, which may in fact exceed physical limits.  A drawback to using a 

second order scheme arises in the computational cost, as first order schemes run faster.  

This section focuses on the second order numerical scheme used in DREAM® to solve 

the generic scalar transport equation, which is the quasi-second order upwinding scheme, 

with a short literature review of TVD, total variation diminishing, schemes at the end of 

this section.  These two numerical schemes are reviewed simply because as mentioned 

previously, application of some second order schemes leads to wiggles; however, the 

Quasi-second order scheme, as well as the TVD scheme, exhibit a strong monotone 
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property, which eliminates these wiggles from the solution, eliminating the need to using 

a larger number of grid nodes to refine and eliminate the wiggles (Yi and Baldacchino, 

1995). 

The quasi-second order upwind scheme, QSOU, is a numerical method used to solve 

the convection of a quantity based on the local flow direction, which then utilizes either a 

forward or backward differencing scheme to discretize the convection terms in the 

Navier-Stokes equation.  Generally speaking, the QSOU scheme utilizes the minimum 

gradient at three cell locations, then adds this term to the convection based on the flow 

direction.  It is important to note that negative scalar values must be eliminated and 

prevented by ensuring that cells can’t flux more scalar than they have, and it can’t accept 

more scalar than it has space for.  This is one problem with the second order scheme used 

in Flow3D, as the cell may accept more scalar that is has room for, leading to negative 

values; however, a limiting routine does in fact solve this discrepancy.  The general 

formulation to solve the scalar transport equation in DREAM® is given below: 

The general, three-dimensional scalar transport equation is given as 

 

( ) ( )j
j j j

u
t x x x
ρφ φρ φ

⎛ ⎞∂ ∂ ∂ ∂
+ = Γ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 
(A.2.1)

 

where Γ represents the diffusion, and it is zero in only pure convection cases, which are 

not studied in this dissertation, but is used to verify this method in Section A.4.  

However, as QSOU is only applied to the convection terms, the diffusion component of 

Eq. (A.2.1) may be dropped for derivation purposes only, thus the discretization of the 

convection term in three dimensions is developed through integration of Eq. (A.2.1), 

which gives 
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(A.2.2)
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where the superscript represents the old time level and the subscript P represents cell 

centers.  Thus, when applying this type of formulation to the east cell, the gradient at the 

east cell face is given as 

 

( )min , P WE P
E P

e e e

sign
x x x

φ φφ φφ φ φ
⎛ ⎞−−∂⎛ ⎞ = − ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∆ ∆⎝ ⎠ ⎝ ⎠

 
(A.2.3)

 

which may be applied in all directions.  Then, Eq. (A.2.3) is added or subtracted to the 

east cell face, yielding 
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The discretized equation becomes 

 

P P E E W W N N S S T T B Ba a a a a a aφ φ φ φ φ φ φ= + + + + +  (A.2.5)

 

Substitution of Eqs. (A.2.3) and (A.2.4) into Eq. (A.2.5) yields 
 

nb nb
P

P

a
a
φ

φ = ∑  
(A.2.6)

where nb denotes neighboring cells (Cehreli, (2003) and Amsden et. al. (1989)).  It is 

important to note that there are a variety of ways to solve these equations, and three 

solvers are available in DREAM®, being the Stone Implicit three dimensional solver, an 

incomplete conjugate gradient solver, and a conjugate gradient stabilized solver.   

 The conclusion of this section deals with another family of upwinding second-

order accurate schemes being TVD (total variation diminishing) schemes.  As with 

QSOU schemes, TVD schemes are strongly monotonic as no spurious oscillations are 
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generated.  The notion of TVD schemes was first introduced by Harten (1983) and there 

are many variations of the schemes.  Some of these methods can also be viewed as three-

point central differencing schemes with a “smart” numerical diffusion mechanism.  The 

term “smart” means that there is an automatic feedback mechanism to control the amount 

of numerical dissipation for nonlinear problems.  In general, TVD schemes can be 

divided into two categories, being upwind or symmetric TVD schemes.  A way of 

distinguishing an upwind from a symmetric TVD scheme is that the numerical dissipation 

term corresponding to an upwind TVD scheme is upwind weighted as opposed to the 

numerical dissipation term corresponding to a symmetric TVD scheme that is cell 

centered (Yee and Harten, 1987). 

 Harten’s TVD scheme is derived by starting with a first-order TVD scheme and 

applying it to a modified flux, which is chosen so that the scheme is second order at 

regions of smoothness and first order at points of extrema.  Although the scheme is an 

upwind scheme, it is written in a symmetric form, i.e. central difference plus an 

appropriate numerical dissipation term.  For numerical derivation of a variety of TVD 

schemes, the reader is referred to Yee et. al. (1985) and Yee et. al. (1986).  This 

formulation of a generic scalar solver is not used currently in DREAM®; however, it may 

be an option to include a TVD scheme in the future. 
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A.3    Verification of QSOU 

 

Validation of QSOU as implemented into DREAM® is performed through 

comparison of simulations performed by Hu (2002); where a fairly general Fortran 

program using finite volume method was written to simulate a time dependent 3D scalar 

transport subject to an arbitrary fixed flow field. The transport phenomenon is governed 

by both convection and diffusion, and no extra sources are involved.  The DREAM® code 

was modified to match the code by Hu (2002) exactly, including all boundary conditions.  

A thin square plate of dimensions 20 cm x 20 cm was used as the computational domain, 

which enables an assumption of zero velocity in z-direction for Hu’s (2002) simulations, 

i.e., if the domain is divided in different layers along z-direction, nothing changes in that 

direction.  The DREAM® simulations are on the x-z plane; however, there should be no 

difference in the results.  At boundaries of each x-y plane φ is set to be zero for Hu 

(2002), whereasφ  is set to be zero at the boundaries of the x-z planes in DREAM® ; At 

top and bottom boundaries zero derivatives are defined.  

 

With a square domain being used, the imposed flow field can be arbitrary. For 

example, it can be an uniform flow in a horizontal, vertical or diagonal direction, or a 

rotational flow field with constant angular velocity (vortex flow). This section initially 

compares results from DREAM® and Hu (2002) for a horizontal, vertical, diagonal, and 

then finally a rotational flow field.  Fully explicit schemes are used in the simulations, 

and the diffusion is set to be zero, meaning only numerical diffusion is present.  This is 

the only way a comparison between the two codes could be made.  The mesh size used in 

both simulations was 40x40 in the x and y directions, respectively, and the scalar was 

initialized to have a value of 1.0.   The domain used by Hu (2002) went from –10 to 10 in 

both directions, where as those used by DREAM® used a 0 to 20 domain.  Again, the grid 

ratios and sizes were identical.  Also, as an additional test of the dimensionality of 

DREAM®, the flow field is on the x-z plane 

 

 For the flows used in the verification of QSOU as implemented in DREAM®, 

have been verified by Hu (2002) in a comparison to the analytical solution, when 
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available as there is no analytical solution available for the rotational flow field.  

Therefore, the reader is referred to Hu (2002) for further details on the verification of the 

flow fields and only the scalar results are compared to the DREAM® simulations.  This 

section has the sole purpose of determining the QSOU numerical scheme has been 

implemented correctly into DREAM®.  The reader is referred to Section 2.6 for a 

derivation of the quasi-second order upwinding scalar transport scheme. 
 

Axial Flow Field 

Letting u = 1 and v = 0, the flow field becomes a one-dimensional convection and 

two-dimensional diffusion problem.  Remember that the diffusion is only numerical 

diffusion.  After running the program for a physical time of 3s with implicitness factor 

equaling zero (fully explicit), the results of the transport of a generic scalar quantity in a 

uniform horizontal flow field are shown in Figures (A.3.1), simulations from Hu (2002) 

and (A.3.2), which shows the corresponding simulations from DREAM®.  It is evident 

from comparison of Figures (A.3.1) and (A.3.2), that the DREAM® simulations perform 

well for these types of flows.  Numerical values differ in the 10^-3 digit. 
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Figure A.3.1 – Results from Hu (2002) code for axial flow (40x40x5) after 10 
seconds; pure convection; fully explicit 
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Figure A.3.2 - Results from DREAM® (40x5x40) after 10 seconds; pure convection; 
fully explicit 

Vertical Flow Field 

As a second code testing case, we impose a vertical flow field in the 

computational domain and relocate the initial pulse from (-4,0) to (0,-4). Other conditions 

remain the same. In this test, we check whether the same results but in a different 

direction can be obtained as those from the horizontal flow situation.  Results from the 

simulations are shown in Figures (A.3.3) and (A.3.4), and again, excellent agreement is 

achieved when comparing the two simulations. 
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Figure A.3.3 – Transport of scalar for vertical flow using QSOU3D from Hu (2002) 
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Figure A.3.4 – Results from transport of scalar quantity using QSOU3D in 
DREAM®
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Diagonal Flow Field 

Next, we proceed with similar testing steps for a constant diagonal flow field in 

which u = 1 and v = 1.  Again, all other parameters are identical and the results of the 

simulations after 10 seconds are shown in Figures (A.3.5) and (A.3.6).  Comparison of 

figures (A.3.5) and (A.3.6) show similar results for the diagonal flow field. 
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Figure A.3.5 – Results from transport of scalar quantity using Hu (2002)  
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Figure A.3.6 – Results from transport of scalar quantity using QSOU3D in 
DREAM®

 

Rotating Flow Field 

 As the results shown thus far in comparison of the DREAM® simulation of a 

scalar transport quantity in an arbitrary flow field to those of Hu (2002), the DREAM® 

simulations compare very favorably to those of Hu (2002).  Thus, the focus shifts to an 

interesting transport phenomena: Transient scalar transport in an imposed rotational (or 

vortex) flow field: In the specified square computation domain, each point moves around 

the center point (0,0) with a constant angular velocity.  The tangential velocity at each 

point can be simply calculated from ωr, where r is the distance from that point to the 

center (radius). As a result, every point provides a different u velocity component and v 

component, which in a Cartesian coordinate system should be a function of x and y 

position. Overall, the scalar signal inside the domain will be carried by the convective 

flow field and experiences a rotational motion around the center point. While the signal is 

rotating, it is also subject to a purely numerical diffusion process, which weakens the 

strength of the signal and makes it finally flat.  Figures (A.3.7) and (A.3.8) show the 

results for this type of flow field, and once again, the simulation compare very favorably. 
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Figure A.3.7 – Results from transport of scalar quantity from Hu (2002) after 15 sec 
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Figure A.3.8 – Results from transport of scalar quantity from DREAM® after 15 sec 
 

Therefore, in conclusion, results from Figures (A.3.1) – (A.3.8) in a comparison with the 

simulations from Hu (2002) show that the results from implementation of QSOU into 
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DREAM® allow for accurate simulations of the transport of a generic scalar quantity into 

a known velocity field.  The results of all of the simulations from DREAM® produce very 

similar results in magnitudes and pattern of the scalar quantity and the flow field.  The 

magnitudes differ in the 10^-4 digit generally in all of the flows, and it may therefore be 

concluded that the quasi-second order method has been properly implemented into 

DREAM®.   
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A.4    Verification of Variable Density Scheme (Conservation of Mass) 
 

Introduction 

In order to ensure the accuracy of the computer simulations performed using the 

variable density equations, conservation of mass is the crucial to the success of the study.  

At times, some CFD codes have difficulties in ensuring this, as they may not preserved 

monotonicity or positivity.  As described in Section 3.0, DREAM® is formulated to 

ensure this. 

 For multiphase flows, the density is modeled using a mixture equation 

accompanied with an appropriate volume fraction equation.  The QSOU scheme is used 

to determine an appropriate volume fraction of the mixture, and these values are then 

used to determine the appropriate density field.   

 

Verification 

 In order to ensure that the numerical scheme conserves mass, the mass flow rate is 

used in the forcing of the conservation throughout the simulations.  The geometry used is 

a standard vertical square pipe, being 0.55 m x 2.0 m x 0.55 m in size.  An inlet velocity 

at the top is applied, with an outflow condition being applied at the bottom of the pipe.  

As conservation of mass is the only quantity being investigated in this study, only a 

laminar flow situation is being used.  The downward inlet velocity is set to be -0.0025 

m/s, which give a Reynolds number of approximately 200.  No-slip velocities are 

specified at the walls.  It is important to note that the initial velocity field is set equal to 

0.0 m/s, meaning that as the fuel enters the pipe through the inlet, an initial shock of very 

small magnitude.  The two fluids used in the verification are water, ρw = 1000 kg/m3, and 

fuel, ρf = 850 kg/m3.  The density field is initialized as shown in Figure A.4.1.  Using the 

specified velocity and density parameters, the theoretical tank filling time is 800 seconds.  

Simulations from DREAM® have a filling time of 803 seconds, so initially, the results 

compare qualitatively very well to theory.  The grid used in the simulations was 40 x 80 x 

40 grid cells, with a time step being 0.01 seconds. 
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 Since the initial velocity field is set equal to zero, a shock is caused throughout 

the domain as the simulations begin.  These shocks are caused from the strict 

conservative scheme that is implemented into DREAM®, as well as most control-volume, 

monotonic preserving schemes.  It is important to note that the interface does not remain 

completely level in the axial or transverse direction.  There are actually small fluctuations 

near the walls as lighter fluid pushes the heavier fluid downward causing a “rocking” 

motion between walls. However, these fluctuations are indeed small in magnitude.  This 

phenomena may be clearly seen in Figure A.4.2. 

 The most important validation of any solver with variable density capabilities is in 

the ensuring of the conservation of mass.  To check that mass is indeed conserved, the 

flow rates at the inlet and outlets are tracked.  Results up to ten seconds are shown in 

Figure A.4.3, which allows for the initial oscillations to be shown.  Clearly, because of 

the nature of the geometry and flow field conditions, the outlet mass flow rate is not 

equal to the inlet mass flow rate for the first 18 time steps.  The propagation of the inlet 

information is not instantaneous, which causes the shocks to propagate downstream, thus 

the oscillatory convergence of the outlet flow rate.  As the shocks diminish in magnitude, 

the velocity field stabilizes and conservation of mass is in fact achieved within 1.2 

seconds after the simulations began.  After this time, the error in the mass flow rate in 

and out of the system is 0.012 %.  

 Thus, in conclusion, it is clearly evident that the density formulation, in 

conjunction with the volume fraction equation, is conservative.  Therefore, it may be 

concluded that provided with proper boundary conditions for each of the respective 

geometries, the overall mass within the system will be conservative. 
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Figure A.4.1 – Initialization of density field for vertical tank filling, t = 0.0 seconds 
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Figure A.4.2 – Density perturbations during flow for vertical tank filling with 
constant inlet velocity conditions, t = 575.0 seconds 
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Figure A.4.3 – Mass flow rates at the inlet and outlet for first 10 seconds showing 
conservation of mass throughout the system 
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Appendix A.5 – Turbulence Analysis 
 
In order to determine the amount of turbulence present in all of the simulations, 

MATLAB was utilized to time average the calculated data to separate the mean and the 

fluctuating components of the instantaneous velocity data predicted from DREAM.  The 

mean velocity is defined as 
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where u’(t) is the fluctuating component of the velocity and ∆tint is the averaging window 

of the data.  A variety of window sizes were tested; however, for the data presented in 

this study, the most appropriate window size was found to be 1.5msec.  The fluctuating 

component of the velocity may be defined as  
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where u(t) is the instantaneous velocity data.  The rms of the velocity is also solved, as 

follows 
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To determine the relative turbulence intensities for the axial, vertical, and spanwise 

velocity components, the quantities are normalized relative to the axial mean flow 

velocity, Ue, giving 
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The square of the relative turbulence intensities is also used in this study.   

 The allocation of the turbulent kinetic energy to motions of different length scales 

is called the turbulent energy spectrum, which indicates details about the turbulent 

motion within flows.  This distribution of turbulent kinetic energy among motions of 

different length scales is defined as a function of the wave number, ĸ, which is inversely 
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proportional to the eddy size.  It is important to note that is some of the results presented, 

a frequency analysis is used as well.  As mentioned earlier, MATLAB is used to solve for 

the energy spectrum, and the process is briefly summarized.  The spectrum of a random 

process is mathematically related to the correlation sequence by the discrete-time Fourier 

transform given as 

∑
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−∞=

−=
m

fjfm
xxxx

semRfS /2)()( π
 

(A.5.5)

where fs is the sampling frequency and f is the physical frequency, with both being in 

units of hertz.  Rxx is the correlation sequence of the spectrum, which equals 
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Equation A.6.5 is used in the analysis of the velocity and density spectra of the data from 

the DREAM simulations. 
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APPENDIX B – INTRODUCTION TO DREAM® CODE 

The DREAM® code, as verified in this study, has been shown to be a robust and 

accurate LES code that requires no explicit SGS model.  The Implicit Turbulence Model 

method has allowed for DREAM® to perform very well for the flows presented in this 

study.  Written in Fortran, with instructions and comments within each subroutine, it is 

still worthwhile to summarize the code.  As previously noted, DREAM utilizes a 

predictor-corrector, flux limiting scheme. 

B.1    Flow Chart 
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Figure B.1 – The flow chart of DREAM® for ITM LES 

 



Badeau, Jr. 174

B.2    Inclusion of wall and baffles within domain 

 In Chapter 3, the discretization scheme utilized in DREAM® enabling the solving 

of the Navier-Stokes equations was introduced.  Equation 3.2.14 introduced the concept 

of linearization of the source term.  This is done allowing for the incorporation of a linear 

dependence of the source, rather than treating it as a constant.  Equation 3.2.14 was given 

by 

p p p cs s sφ= +  
(3.2.14) 

It is important to note that the source term is usually the cause of a diverged solution, and 

that proper linearization is the key in obtaining a converged solution. 

 As mentioned previously, DREAM® is written to use a Cartesian grid, and the 

difficulty in allowing for internal walls and baffles must be handled properly.  This is 

done through blocking off the cells within the regular grid so that the remaining grid 

forms the desired shape.  Blocking off a cell is not as easy as setting the velocities in 

those locations equal to zero because this would improperly treat the matrix that needs to 

be solved, and doesn’t handle the boundaries appropriately. 

 This operation consists of establishing known values of the relevant scalar 

variables in the inactive control volumes.  This is accomplished by using very larger or 

small source terms, or the order of 10-30 or 1030, which in tern will dominate the 

discretization equation yielding  

30
,10c p baffles φ=

 

 

(B.2.1) 
3010ps −=

where 1030 denotes a number large enough to make the other terms in the discretized 

equations negligible at that grid location.  Thus, Eq. (3.2.14) would then become 

, 0p baffle p cs s

,
c

p baffle
p

s
s

φ

φ

+ ≈

 

 

(B.2.2) 

∴ = −

Therefore, using this type of treatment of the source term, internal boundaries may be 

specified throughout the domain in Cartesian coordinates for DREAM® simulations. 
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B.3    Description of the Subroutines 
 
******************** Initialization and Setup *********************** 
 
grid.for: staggard grid generation in Cartesian coordinate system.  Domain 

size is implemented in this location with units in meters  

 

initial.for:  Sets up all initialization of velocity and scalar fields.  Also, initial  

boundary conditions are included within this location   

 

constants.for:  All constants are defined in this location, including gravitational  

and implicitness factors for the solvers. 

 

fc_cblock.for  Defines all variables and allows for variables to be passes by  

defining only this common block, instead of individual variables. 

 

fc_cparam.for  Sets the maximum grid that may be run on the computer. 

For 512 MB machine, maximum grid size is approximately 1 

million grid nodes 

 

fc_cpsolve.for Sets up the common block parameters for the SIP3D, ICCG, and 

CGSTAB solvers 

 

 

******************** DREAM® Navier-Stokes Solver ******************* 

 

Dream.for: Main program; opens and closes most files; all subroutine calls are 

made from this program; correction of the velocities and 

application of boundary conditions is within this subroutine 

 

Calc_uvel_impl.for: Calculates the u velocity component;  boundary conditions are 

applied within the code 
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Calc_vvel_impl.for: Calculates the v velocity component;  boundary conditions are 

applied within subroutine 

 

Calc_wvel_impl.for: Calculates the w velocity component;  boundary conditions are 

applied within subroutine 

 

Interpolate.for: Interpolation scheme used for fully explicit schemes;  User has 

option for central differencing, hybrid, upwinding first, third, and 

fifth order, central differencing scheme.  Only written for uniform 

grids and must be modified for non-uniform grids 

 

P_field.for: Calculates the pressure field through Poisson equation 

 

Scalar_implicit.for: Contains the QSOU3D scheme and calculates the scalar transport 

variable (i.e. vof, temperature, etc.) 

 

Properties.for: Calculates the densities and the viscosities based on the volume 

fractions 

 

Slip_vel.for: Calculates a slip-velocity using a constant droplet diameter based 

on the calculated pressure gradients 

 

Wall_functions.for: Calculates the x+, y+, z+ wall units based on the law of the wall 

functions to determine u*, v*, w* 

 

Bcond_vof.for: Sets the boundary conditions for the volume fraction calculations 

 

Rhs_phi.for: The right hand side of each variable is computed using a general 

 balance over a control volume and all field components may use 

this routine to calculate the r.h.s.   
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