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Abstract 

 
 

Characterization of CYP2D Protein from Human Brain Cerebellum 
 
  

Deepak Bhatia 

 

To date, knowledge in characterization of CYP proteins has been limited to 
immunoblotting, RT-PCR, immunohistochemistry and so forth; therefore, it is the 
intention of this study to investigate: 

 

1)  What kind of CYP2D protein is present in brain with modern proteomic 
tools;  

 2)  Whether, CYP2D6 in brain is same as the liver CYP2D6; and  

 3) If CYP2D7 is present, can CYP2D6 polymorphism be found in the brain?   

 

 To answer these questions, this study used a one-step method of isolation of 
protein by immunoprecipitation followed by its identification using 2D-blots, nanospray 
LCMS, immunoblots and immunohistochemistry.  Probing of immunoprecipitated 
proteins with polyclonal CYP2D6 antibody revealed two major CYP2D6 
immunoreactive bands.  Similar banding pattern resulted from matched human liver 
microsomes suggesting there are more than one CYP2D isoform(s) exist in these tissues. 
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Introduction 

 

 The CYP2D protein in the human brain is expressed as CYP2D6 in liver and is 

known to metabolize variety of drugs such as psychoactive, antihypertensives, and 

environmental toxins1-3. 

Metabolism refers to the manner in which the body detoxifies drugs, breaking 

some down in the liver so they can more easily circulate or be excreted.  Every person 

has a unique rate of metabolism, and a variety of factors such as body weight, absorption, 

distribution of the drug, and rate of excretion may serve to influence drug levels in the 

blood.  The CYP2D6 protein is also known to be highly polymorphic in nature; however, 

about 5-10% Caucasians are poor metabolizers of drugs that are metabolized by CYP2D6 

because of the numerous polymorphs found in this gene4,5. 

 Problem Statement.  The significance of the CYP2D6 protein is that it is 

associated to variety of disease states such as Parkinson's disease, personality syndrome, 

lung cancer, skin cancer, systemic lupus erythematosus, Balkon nephropathy and 

ankolysing spondilitis 6-11.  To the extent that such enzymes can be fine-tuned to meet the 

unique needs of each individual will likely be the extent to which such treatments will be 

efficacious.   

 Hypothesis.  It is hypothesized that the expression of CYP2D6 protein in specific 

regions of brain will locally affect the metabolism of many exogenous and endogenous 

substrates.   
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 Rationale.  It is possible that this enzyme can undergo splice mechanism to form 

many other proteins or closely related protein such as CYP2D7; for instance, CYP2D7 

was recently found to undergo splicing and form an active protein that can metabolize 

codeine to morphine in the brain which was earlier known only to be metabolized by 

CYP2D6 12.  Likewise, CYP1A1 and CYP1A2 (though not CYP2D) proteins have shown 

similar function to CYP2D, as they are also drug-metabolizing enzymes.  The 1A1/2 has 

been shown to have targeting sequence to mitochondria as well as endoplasmic 

reticulum.  The mitochondrial CYP1A1/2 is different from liver CYP1A1/2 since 

mitochondrial CYP1A1/2 is 30 amino acids shorter than liver 1A1/2.  This 30 amino acid 

sequence had brought great change in the substrate specificity of CYP1A1/2 in the brain 

in a sense; it is similar to CYP3A4 drugs now 13.  According to sequence analysis of 

CYP2D protein, it is recognized that the CYP2D6 protein also has series of positively 

charged residues in its sequence that can act as mitochondrial target.   

 To date, knowledge in characterization of CYP proteins have been limited to 

immunoblotting, RT-PCR, immunohistochemistry and so forth.  However, 

toxicogenomics is a new scientific field in which researchers’ study how the genome 

responds to environmental stressors or toxicants14.  This new field combines studies of 

genetics, genomic-scale mRNA expression (transcriptomics), cell and tissue wide protein 

expression (proteomics), metabolite profiling (metabonomics), and bioinformatics with 

conventional toxicology in an attempt to better understand the role of gene-environment 

interactions in disease processes. New molecular technologies such as DNA microarray 

analysis and protein chips can now measure the expression of hundreds to thousands of 

genes and proteins simultaneously, thereby providing researchers with the potential to 
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accelerate discovery of toxicant pathways and specific chemical and drug targets.  “The 

power and potential of these new toxicogenomics methods are capable of revolutionizing 

the field of toxicology”15.  

It is the intention of this study, therefore, to investigate: 

1. What kind of CYP2D protein is present in brain with modern proteomic   

tools;  

2. Whether, CYP2D6 in brain is same as the liver CYP2D6; and  

3. If CYP2D7 is present, can CYP2D6 polymorphism be found in the brain?   

 To answer these questions, this investigation used a one-step method of isolation 

of protein by immunoprecipitation followed by its identification using 2D-blots, 

nanospray LCMS, immunoblots and immunohistochemistry. 
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Literature Review 

 

This literature review will examine the current scholarly work in the field of drug 

metabolism that will help to understand the putative role played by CYP proteins in the 

metabolism of endogenous and exogenous substrates, and how this information will be 

relevant to clinical pharmacokinetics. 

Background and Significance:  According to Damaris Christensen (2002), the differences 

in the way different people respond to drugs are in large part genetically determined.  

That diversity provides the basis for one of the most touted potential benefits of genetic 

knowledge: By teasing out the connections between a person's genes and his or her drug 

responses, it may be possible to customize medicine. The science behind this 

personalized medicine is called pharmacogenetics.  “As you look at developing new 

therapies, new interventions, and even at the role of nutrition in health, being able to 

segment populations to see who is benefiting or who is at risk is very important," says 

Steven Lehrer, head of DNA Sciences in Fremont, Calif. "Who you are when you're 

being treated is the last thing we think of, but it should be the first thing"16. 

These researchers report that genes play an important role in drug response 

because they control how each person's body breaks down, or metabolizes, medicines.  In 

addition, a number of drugs tend to target specific receptors, which are gene-specified 

proteins that sit on the surfaces of cells.  These receptors are unique markers that allow 

substances, including drugs, to bind to cells and in some instances to penetrate them; 

furthermore, individual variations in genes affecting metabolism or cell-surface binding 

can influence responses to drugs16. 
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In 2001, a study published in the Journal of the American Medical Association 

(JAMA) investigated whether various drugs are metabolized by one or more enzymes 

that have genetic variants that result in unusually slow breakdown.  This study found that 

almost 60 percent of the drugs most commonly cited as triggering adverse reactions fit 

that description.  By contrast, such enzymes only break down 22 percent of drugs within 

a random sample of those sold in the United States according to Kathryn A. Phillips of 

the University of California, San Francisco.  Phillips said that, “These results suggest that 

genetic variability in drug-metabolizing enzymes is likely to be an important contributor 

to the incidence of adverse drug reactions”16.  Individuals who metabolize drugs slowly 

may suffer problems for two fundamental reasons: 

 1) In some cases, the drug will only become active only after it is 

metabolized.  In the event this happens more slowly than usual, or not at all, the patient 

may experience no benefit.   

 2) In other situations, where a drug is not metabolized as rapidly as expected, 

the effective doses may be required to be much higher than intended16. 

 One of the first widely used applications of pharmacogenetics is within the arena 

of cancer treatment. In part, this is because most cancer drugs are relatively toxic, so 

physicians have much incentive to reduce side effects.  Consider the drugs thioguanine 

and mercaptopurine, which are prescribed for acute leukemia, as well as to prevent 

rejection of organ transplants. An enzyme called thiopurine methyltransferase, or TPMT, 

normally inactivates the drugs. About 1 in 300 people does not have an effective version 

of this enzyme, and about 1 in 10 has one, rather than two, functioning copies of the 

gene, according to William Evans of St. Jude's Children's Research Hospital in Memphis.  
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These segments of the population continue to be at high risk of side effects.  

Today, U.S. oncologists routinely test patients for TPMT activity before prescribing these 

drugs.  In these cases, the clinicians give patients with ineffective TPMT only low doses 

of the drugs.  “It's the first pharmacogenetic test to make it all the way into the real world, 

into the clinic”16. 

Other metabolizing agents that are being carefully examined are a large family of 

enzymes called cytochrome P450s.  These enzymes were once believed to be mainly a 

hepatic drug detoxication system, but is now understood that these P450s are included in 

a myriad of enzymatic reactions implicated in important life processes. 

Advances in molecular biology and genomics facilitated the biochemical 

characterization of individual P450 enzymes, which in turn revealed many surprises 

about these enzyme systems in the body.  

First, the cytochromes P450 act on many endogenous substrates, introducing 

oxidative, peroxidative, and reductive changes into small molecules of widely different 

chemical structures17,18. Substrates identified to date include saturated and unsaturated 

fatty acids, eicosanoids, sterols and steroids, bile acids, vitamin D3 derivatives, retinoids, 

and uroporphyrinogens 19-21.  

Second, many cytochrome P450 enzymes can metabolize various exogenous 

compounds including drugs, environmental chemicals and pollutants, and natural plant 

products22-24 . 

Third, metabolism of foreign chemicals frequently results in successful 

detoxication of the irritant; however, the actions of P450 enzymes can also generate toxic 
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metabolites that contribute to increased risks of cancer, birth defects, and other toxic 

effects 25,26.  

Fourth, expression of many P450 enzymes is often induced by accumulation of a 

substrate, For example, hepatic concentrations. The case of CYP-mediated APAP 

metabolism is rather different, however, in that this pathway generates the highly toxic 

quinone imine, NAPQI 27.  

In addition to the two-electron oxidation catalyzed by the CYP pathway, it has 

also been reported that various peroxidases are capable of generating the one-electron 

oxidation product, the benzosemiquinone radical NAPSQI 28,29.  

At least two possible products of CYP-mediated APAP oxygenation are known, 

NAPQI and 3-OH-APAP, the latter compound being considered non-toxic. At least three 

CYP isozymes have been shown to metabolize APAP, namely 2E1, 2A6, and 1A2. It is 

not known whether the oxidation of APAP carried out by CYP generates a transient 

radical species, or if a concerted two-electron oxidation occurs. Interestingly, 2E1 and 

2A6 differ significantly in the ratio of NAPQI to 3-OH-APAP 30. 

Although cytochromes are most frequently studied in relation to their role in the 

metabolism of xenobiotics, their involvement in endogenous metabolism, particularly 

that of steroids (fig. 1), is also very important; in fact, this function in the organism was 

probably the primary one 31. It has been assumed that, in prehistoric organisms, 

cytochrome P450 was responsible for hydroxylation of organic substrates subsequently 

used as sources of energy. This function has been preserved up till now in some 

microorganisms and attempts have been made to develop microbes capable of degrading 

industrial contaminants of the environment that is otherwise difficult to break down32.  
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Figure 1 Cytochrome P450 mediated biosynthetic and degradation pathways of adrenal steroid 
hormones.  Adapted from 33. 
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In plant also the production of many significant secondary metabolites, such as 

lignin, terpenoids, steroids, essential oils or opioid precursors, is based on cytochrome 

functions34.  

The CYP isoforms whose primary functions are to metabolize xenobiotics 

(families CYP 1, CYP 2 and CYP 3) are also known to be involved in endogenous 

metabolic processes in substrates such as melatonin and estradiol (CYP1A), testosterone 

(CYP3A), catecholamines (CYP2D), progesterone (CYP2C, CYP3A) and arachidonic 

acid (CYP2E) 34. 

According to Miksys and Tyndale, the extrahepatic cytochrome P450 enzymes in 

the brain may also play a role in the activation or inactivation of centrally acting drugs, in 

the metabolism of endogenous compounds, and in the production of potentially harmful 

metabolites and/or oxygen stress21.  Miksys and Tyndale report that, “CYPs are 

distributed unevenly among brain regions, and are found in neurons, glial cells, and at the 

blood-brain interface (table 1).  They have been observed in mitochondrial membranes; 

in neuronal processes, and in the plasma membrane, as well as in endoplasmic 

reticulum”. The highly localized nature of CYPs in brain strongly suggests a role of 

cerebral CYPs in local drug metabolism21. This contention is further supported by 

enzymatic assays performed in-vitro by brain microsomes using same probe substrates 

used to assess specific hepatic CYP activity. Therefore, modulation of brain CYPs could 

constitute a local regulatory mechanism of enzyme activity, thus influencing drug 

response; for tissues exhibiting low regenerative capacity, such as brain, such modulation 

would probably be of major toxicological significance19.  
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Table 1 Regional brain distribution and forms detected for cytochrome P450 in different species.  
Adapted from reference19. 

 

 

 

Another interesting issue is to elucidate how this local modulation would take 

place. There are several indications suggesting that endogenous modulation of the CYPs 

present in brain is likely to occur.  For example, in 2003, A. M. Yu and his colleagues at 

the Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, 

Bethesda, reported that screening for endogenous substrates revealed that CYP2D6 is a 5-

methoxyindolethylamine O-demethylase.  The objective of the investigation by Yu et al. 

was to screen for potential endogenous substrates for CYP2D6.  By employing 

recombinant CYP2D6, together with hepatic microsomes from CYP2D6-transgenic mice, 

human liver microsomes, and a specific anti-CYP2D6 monoclonal antibody, it was 

determined that CYP2D6 did not significantly metabolize the endogenous 

phenylethylamines 2-phenylethylamine, octopamine, synephrine, 3-methoxy-p-tyramine, 

4-methoxy-m-tyramine, metanephrine, and normetanephrine, nor the indolethylamines 

tryptamine, serotonin, 6-methoxytryptamine, and melatonin, nor the beta-carbolines 
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harman, norharman and tryptoline in the population investigated in this study; however, 

the indolethylamines 5-methoxy-N,N-dimethyltryptamine (5-MDMT) and pinoline (6-

methoxy-1,2,3,4-tetrahydro-beta-carboline) did show relatively high affinity for CYP2D6 

in a spectral binding assay (K(s) 28 +/- 5, and 0.5 +/- 0.3 microm (mean +/- SEM), 

respectively) and were O-demethylated only by CYP2D6 in a panel of 15 recombinant 

common human P450s. Pinoline and 5-MDMT O-demethylase activities were 35- and 

11-fold greater in liver microsomes from CYP2D6-humanized mice, respectively, than 

those in liver microsomes from control mice.  Furthermore, the increased activities were 

completely inhibited by an anti-CYP2D6 monoclonal antibody.  Kinetic analysis with 

recombinant CYP2D6 resulted in K(m) and k(cat) values for 5-MDMT and pinoline O-

demethylations of 12 +/- 1 microm and 65 +/- 1 min(-1) and 1.8 +/- 0.3 microm and 26 

+/- 1 min(-1), respectively.  Yu et al. note that these two substrates can therefore be 

added to 5-methoxytryptamine, which they recently reported to be an endogenous 

CYP2D6 substrate35. “CYP2D6 is therefore a relatively highly specific, high-affinity, 

high-capacity 5-methoxyindolethylamine O-demethylase.  Polymorphic cytochrome 

CYP2D6 may therefore exert an influence on mood and behavior by the O-demethylation 

of these 5-methoxyindolethylamines found in the brain and pineal gland”.  In addition, 

these processes may have an effect on mental and neurological health.  These findings 

may provide new avenues of investigation for the determination of CYP2D6 phenotype 

36. 

These broad spectrums of P450 reactions are due to multiple P-450 isozymes with 

differing but overlapping substrate specificities. Some of the xenobiotics that require 

cytochrome P450 for their metabolism are able to induce expression of this cytochrome 
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and thus increase its amount in the organism. The most important inducers of human 

CYP 1A, which is considered most relevant to pollution of the aquatic environment, 

include PAHs, nitrated polyaromatic hydrocarbons (NPAHs), PCBs, dioxins (TCDD) and 

some pesticides 37,38.  

The members of the CYP1A subfamily are responsible for metabolic activation of 

the majority of known promutagens and carcinogens that, in a long term, may be 

involved in carcinogenesis, reproductive disorders, etc.39. 

The induction of CYP1A is mediated by the Ah receptor (AhR), a xenobiotic-

binding protein present in the cytosol. The receptor-contaminant complex linked to a 

nuclear translocator is transported to the nucleus, where its linkage to DNA results in 

expression of the gene coding for this cytochrome 40,41. Generally, the toxicity of a 

pollutant is related to the degree of its affinity to AhR. Pollutants with a high binding 

ability for AhR also have a high capacity to induce CYP1A, which has adverse 

consequences, as described by Billiard et al. 40. 

Human CYP2D6 catalyzes the hydroxylation of debrisoquine and a variety of 

commonly used pharmaceuticals such as dextromethorphan42,43. The expression of 

CYP2D6 in human populations is polymorphic. Polymorphism in debrisoquine/sparteine 

oxidation is arguably the most highly studied pharmacogenetic trait44. The DNA 

sequence encoding the enzyme has been localized to the 4.3-kb, nine-exon cytochrome 

P450 2D6 (CYP2D6) gene found at chromosome 22q13.145. To date more than 48 

mutations and 53 alleles of CYP2D6 have been characterized in European populations4. 

The poor metabolizer (PM) phenotype follows an autosomal recessive pattern of 

inheritance. An allele duplication consisting of multiple functional copies of CYP2D6 
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confers the ultrarapid metabolizer (URM) phenotype. Individuals who demonstrate 

normal levels of CYP2D6 activity are referred to as extensive metabolizers. Intermediate 

metabolizers (IMs) typically produce lower than normal levels of functional enzyme46,47. 

The liver enzyme cytochrome P450 CYP2D6 (debrisoquine 4-hydroxylase) 

metabolizes numerous drugs, including many antidepressants, neuroleptics, 

antiarrhythmics, and antihypertensive agents48. Variability in the gene that encodes this 

enzyme is an important factor underlying variable drug treatment response. Huchinson et 

al reported the metabolism of hydromorphone from liver microsomes of six CYP2D6 

extensive metabolizers (EM) and one CYP2D6 poor metabolizer (PM). They showed 

hydromorphone formation in liver microsomes from CYP2D6 EMs was dependent on a 

high affinity enzyme (Km = 26 µM) contributing 95%, and to a lesser degree a low 

affinity enzyme (Km = 3.4 mM). In contrast, only a low affinity enzyme (Km = 8.5 mM) 

formed this metabolite in the liver from the CYP2D6 PM, with significantly decreased 

hydromorphone formation compared with the livers from the EMs. Norhydrocodone was 

formed by a single low affinity enzyme (Km = 5.1 mM) in livers from both CYP2D6 EM 

and PM. Recombinant CYP2D6 and CYP3A4 formed only hydromorphone and only 

norhydrocodone, respectively. Hydromorphone formation was inhibited by quinidine (a 

selective inhibitor of CYP2D6 activity), and monoclonal antibodies specific to CYP2D6. 

Troleandomycin, ketoconazole (both CYP3A4 inhibitors) and monoclonal antibodies 

specific for CYP3A4 inhibited norhydrocodone formation. Extrapolation of in vitro to in 

vivo data resulted in a predicted total hepatic clearance of 227 ml h-1 kg-1 and 124 mlh-

1 kg-1 for CYP2D6 EM and PM, respectively49. 
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Nakamura et al in another study compared bufuralol 1'-hydroxylase activity 

among liver microsomes prepared from individuals whose CYP2D6 genotypes had been 

determined, they recognized that the activity tends to decrease depending on the number 

of the CYP2D6*10 allele. Pre-incubation of liver microsomes from individuals 

homozygous for the CYP2D6*10 allele resulted in a decrease in the enzyme activity 

more rapidly than those from individuals homozygous for the CYP2D6*1, suggesting 

that not only the catalytic activity but also the thermal stability of the enzyme appeared to 

be affected by the genetic polymorphism. To confirm this hypothesis, Nakamura and his 

colleagues compared the kinetic parameters of CYP2D6.1 and CYP2D6.10 for bufuralol 

1'-hydroxylation and dextromethorphan O-demethylation using microsomes prepared 

from yeast transformed with plasmids carrying CYP2D6 cDNAs (*1A and *10B). 

Kinetic studies of these CYP2D6 forms indicated clear differences in the metabolic 

activities between the wild (CYP2D6.1) and the mutant enzymes (CYP2D6.10).  

Furthermore, bufuralol 1'-hydroxylase activity in microsomes of yeast expressing 

CYP2D6.10 was rapidly decreased by heat treatment, supporting the idea that the thermal 

stability of the enzyme was reduced by amino acid replacement from Pro (CYP2D6.1) to 

Ser (CYP2D6.10). These data strongly suggest that the thermal instability together with 

the reduced intrinsic clearance of CYP2D6.10 is one of the causes responsible for the 

known fact that Orientals show lower metabolic activities than Caucasians for drugs 

metabolized mainly by CYP2D6, because of a high frequency of CYP2D6*10 in 

Orientals 50.  

Defects in the CYP2D6 gene have been associated with a number of CNS 

diseases such as Parkinson's disease (PD), Alzheimer's disease, neuroleptic-induced 
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disorders such as tardive dyskinesia and certain types of CNS cancer51, although not all 

studies agree. 

Furthermore, genetic analyses has revealed the association of the CYP2D6 B 

mutation with PD52,53. The B mutation of the CYP2D6 gene is a G to A transition at the 

intron 3 - exon 4 junctions, which shifts the position of the 3' splice site, leading to a 

frameshift45.  

Using a sample of CYP2D6 duplication-negative ultrarapid metabolizer subjects 

and selected control subjects with extensive metabolism, Lovlie and his co-workers 

examined parts of the CYP2D7 pseudogene, and the promoter region and 5'-coding 

sequence of CYP2D6 for polymorphisms possibly associated with the ultrarapid 

metabolizer phenotype. In an initial screening of 17 subjects (13 ultrarapid metabolizers 

and four extensive metabolizers), they identified three DNA variants in the 5'-end of the 

CYP2D7 pseudogene and 29 variants in the 5'-end of the CYP2D6 gene. Five variants 

were selected thereof for examination in a larger sample of subjects having the ultrarapid 

metabolizer (n = 27) or extensive metabolizer phenotype (n = 77). Subsequent statistical 

analyses of allele, genotype and estimated haplotype distributions showed that the 31A 

allele of the 31G > A (Val (II) Met) polymorphism was significantly more frequent in 

ultrarapid metabolizer subjects than in extensive metabolizer subjects (P = 0.04). Also, 

estimation of haplotype frequencies suggested that one of the haplotypes with the 31A 

variant was significantly more frequent among the ultrarapid metabolizers compared with 

the extensive metabolizers (P = 0.03). The average metabolic ratio was significantly 

lower in subjects possessing the 31A allele compared with subjects homozygous for the 

31G allele (P = 0.02)54.  
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Huang et al. on the other hand reported variability in CYP2D mRNA from human 

breast tissue.  Using gene-specific oligonucleotide probes, they were able to trace full 

length mRNA and six distinct variants that expressed from CYP2D7P pseudogene rather 

than CYP2D6.  The full length mRNA was expressed in minor form whereas two 

variants b’ and c were dominant55.  Woo et al examined a similar pattern of splice 

variation from human brain. Out of 94 samples tested, they found that the majority of 

expressed transcript corresponded to the shortened clone as found by Huang et al from 

breast tissue56.  More interestingly, Pai and co-workers reported a functional splice 

variant of CYP2D7 from brain tissue that can metabolize codeine to morphine more 

efficiently than CYP2D6.  This brain variant contains a partial inclusion of intron 6 (57 

bp) in the transcribed mRNA sequence of CYP2D7 mRNA12. 

Various methods including catalytic, pharmacological, immunological, and 

molecular criteria have been used to identify cytochrome CYP2D in mammalian 

brain .1,57,58  Niznik and co-workers made the initial observation of CYP2D in dog brain 

during screening of central and peripheral tissues with tritiated GBR-12935, which labels 

the dopamine transporter protein and the so-called piperazine acceptor site or mazindol-

insensitive site in brain tissue57. High concentrations of the piperazine acceptor site were 

found in liver microsomes. The similarity between amphetamine derivatives that 

inhibited both GBR-12935 striatal binding and hepatic CYP2D6 activity prompted 

further studies that demonstrated correlations between the inhibitor profile at the 

piperazine acceptor site purified from dog striata and the inhibition constant (Ki) for 

human hepatic CYP2D6 (r = 0.85). 
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Subsequent studies by Tyndale (1991) focused on the catalytic activity of CYP2D 

in canine striata. One of the classic CYP2D6 substrates, sparteine, was used as the marker 

for CYP2D activity in dog striata. High (r > 0.95) correlations were observed between 

inhibition of sparteine oxidation (Ki values) in canine striata and in human hepatic 

microsomes, and in human CYP2D6 expressed in HepG2 cells (r = 0.93). (-)-Cocaine 

was found to have particularly high inhibitory potency (Ki= 74 nanomolars (nM) for 

canine striatal CYP2D), and a high degree of overlap was found between compounds 

binding to the dopamine transporter and striatal CYP2D. The distribution of CYP2D in 

dissected regions of human brain demonstrated a forty fold range in activity, with the 

highest level being found in supraorbital cortex and parietal cortex, and the lowest in the 

cerebellum58.  
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Methods 

 

Human Tissue Samples. Samples of normal human tissues including liver, 

cerebellum and cortex were collected from West Virginia University tissue bank, 

Department of Pathology (School of medicine; Morgantown, WV). The tissues obtained 

from tissue bank were obtained as frozen tissues that were either used directly or 

paraffinized before use depending upon the study.  

Preparation of Brain Microsomes and Mitochondrial Fraction. Brain microsomes 

and mitochondrial fraction was prepared as suggested elsewhere59,60. Briefly, 4g of the 

brain were homogenized in 9 volumes of 0.1M Tris containing, 0.1mM dithiothreitol, 

0.1mM phenylmethylsulfonylfluoride, 0.2mM EDTA, 1.15% potassium chloride and 

10% glycerol at pH 7.4 (Buffer A). The homogenates were centrifuged at 17000 x g for 

30 min. The crude mitochondrial fraction obtained was reconstituted in 15% percoll 

(10mls/g of tissue). The discontinuous density gradient was prepared by layering 

resuspended pellet onto preformed layers of percoll consisting of 23% and 40% percoll 

(3.5ml each 15, 23 and 40% percoll in centrifuge tube). The centrifuge tubes were spun at 

30,000 x g for 10 min that formed three major bands. The material banding between 

lower two percoll layers was carefully aspirated and diluted 1:4 in buffer A and 

centrifuged again for 10 min at 15,000 x g. The pellet formed was reconstituted in small 

volume of buffer A and stored in -80°C for further investigation. The supernatant 

obtained previously at 17,000 x g was collected to which was added 8mM solid calcium 
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chloride and spun at 30,000 x g for 1h. The microsomal pellets formed were suspended in 

3mL of buffer A and a reduced CO spectrum was recorded. 

Preparation of Liver Microsomes. Four grams wet weight of human liver tissue 

was homogenized in four volumes of homogenization buffer (0.15M KCl, 0.25M 

potassium phosphate buffer at pH7.4) that was supplemented with fresh PMSF (1:1000). 

The homogenate was centrifuged for 5 min at 5000 rpm and for 15 min at 11,500 rpm at 

4°C. The supernatant obtained above were combined and centrifuged for another 1h at 

35000 rpm at 4°C. The pellets obtained in this step was resuspended in homogenization 

buffer containing PMSF (1:1000) (initially volume used) and centrifuged again for 1h at 

35000 rpm. The pellets obtained were finally resuspended in small volume of storage 

buffer (100mM potassium phosphate buffer, 1mM EDTA, 20% glycerol, 1mM DTT and 

20µM BHT) and stored in -80°C until further use. 

Immunohistochemical Studies. The cerebellum tissue was obtained from West 

Virginia tissue bank.  The sections were frozen in OCT embedding medium (Tissue-Tek; 

Torrance, CA), cut 10-µm thick on a cryostat and placed on 3 amino 

propyltriethoxysilane -coated slides. IHC staining was performed using Ventana/ ViewTM 

DAB kit (Ventana Medical Systems Inc; Tucson, AZ) on BenchMark IHCTM System 

(Ventana Medical Systems Inc; Tucson, AZ). Briefly, the sections were air dried and then 

immersed into acetone for 10 min each.  The primary antibody specific to CYP2D6 

(1:500; MAB 2D6; Gentest, Woburn, MA) was applied and incubated for 32 min at 42ºC. 

Then sections were washed with PBS, 5 min each and incubated with universal 

biotinylated secondary antibody (Ventana/ ViewTM DAB kit). Sections were then treated 

with streptavidin-HRP for 8 min at 42ºC, washed with PBS, and incubated with DAB 
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substrate for 4 min at 42ºC. Counterstaining was carried out with hematoxylin (Sigma–

Aldrich; St Louis, MO). Controls were routinely included. 

Immunoprecipitation. 10% w/v whole cell lysate was prepared from cerebellum tissue in 

Ripa Lysis Buffer (Santa Cruz Biotechnology Inc, Santa Cruz, CA). After protein 

measurement, the cell lysate was ultra-centrifuged at 48000 x g for 30 min to separate 

soluble proteins from insoluble proteins61. The pellets were suspended again in Ripa 

Lysis buffer. To the supernatant and to reconstituted pellets   were added primary 

CYP2D6 polyclonal antibody and incubated for 1hr at 4°C.  After 1 hr, protein G -

Agarose beads (Santa Cruz Biotechnology Inc, Santa Cruz, CA) were added to the above 

suspension and incubated for additional 1hr at 4°C on a rocker platform.  The 

immunoprecipitates were collected by centrifugation at 14000x g for 30 sec at 4°C.  The 

supernatant from the soluble and the pelleted fractions were removed by aspiration and 

saved. The remaining precipitated beads were washed three times with Ripa Lysis Buffer 

followed by additional wash with PBS to remove the detergent. For controls the addition 

of primary antibody and protein G -Agarose beads were reversed.  

Pre-made tissue lysates from brain regions including hippocampus, frontal cortex 

and cerebellum (Geno-Tech Inc., St. Louis, MO) were obtained and immunoprecipitated. 

They were analyzed for CYP2D6 as stated earlier. 

SDS-PAGE and Immunoblotting. The immunocomplexes obtained above were 

resuspended in 100 µl of 5% sodium dodecyl sulfate, 20% glycerol, 10% 

mercaptoethanol, and 1.5 M Tris/HCl buffer, pH 6.8. Immunoprecipitated proteins were 

eluted from protein G-Agarose by heating at 95°C for 10 min, and 10 µl were subjected 

to sodium dodecyl sulfate polyacrylamide gel electrophoresis (7 x 8 cm; 10% separating 
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gel and 3.9% stacking gel). The gels were transferred on nitrocellulose paper at 200mA 

for 4h. Non-specific binding was prevented by blocking with 5% nonfat dry milk in 

TBST (25mM Tris (pH 7.5), 150mM NaCl) for 1h at room temperature. The antibodies 

used in this study are specific for CYP2D6 which were used in appropriate dilution 

(1:500 for MAB2D6 or polyclonal 2D6 1:9000 in 0.5% nonfat dry milk in TBST) to 

incubate the nitrocellulose for 1h and the immunocomplexes that were detected with 

1:500 anti mouse IgG. Three washing with TBST for five minutes was followed by 

NBT/BCIP detection. 

2-D Electrophoresis. For the first dimension, a 7 cm pH 3-10 linear IPG strip 

(Immobine™, Amersham Biosciences, Piscataway, NJ) was rehydrated with 125µl of 2-

D solubilizing solution (8M urea, 4% CHAPS, 1% DTT, 0.5%v/v pharmalytes pH 3-10 

and 0.002% bromophenol blue) containing about 1mg of protein.  Isoelectric focusing 

was conducted at room temperature at a maximum for 2000V for 4h using Multiphor II 

(Pharmacia, Piscataway, NJ). For the second dimension, the IPG strip was equilibrated in 

equilibrium buffer (50mM Tris (pH 6.8), 6M urea, 30% glycerol, 2% SDS and 0.002% 

bromophenol blue) for 15 min containing 10mg/ml DTT and for another 15 min in 

equilibrium buffer containing 25mg/ml iodoacetamide. The IPG strip was subsequently 

placed on top of a 10% separating gel (7 x 8 cm). Gels were run on Mini Protean II 

vertical electrophoresis system (Bio-Rad, CA) at constant voltage of 200V followed by 

electroblotting on to nitrocellulose membrane at 200mA for 4h. The membrane was 

stained with ponceau S to detect the spot at the pI range of CYP2D6. After initial 

detection the spot was destained with TBST. Immunoblotting was carried out in a similar 

way as discussed previously under immunoblotting. 
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Pre-made 2-D gels (4-20% gradient) for cerebellum and liver samples were 

transferred onto PVDF membranes and supplied to us (Geno-Tech Inc., St. Louis, MO) 

which were immunoblotted for CYP2D6 as discussed under the section of 

immunoblotting. 

In-Gel Tryptic Digest and Peptide Extraction. SDS-PAGE for immunocomplex 

was obtained as described under the section of SDS PAGE and immunoblotting. The 

molecular weight region on SDS-PAGE gel between 45 and 64 kDa was divided into 

three bands, and each band was carefully excised with scalpel. Bands were neutralized 

first with distill water and then completely destained with destaining solution (1:1 

100mM ammonium bicarbonate/methanol). Bands were further macerated to 1mm2 

pieces to increase the surface area then dried under vacuum for 5 minutes. Digestion of 

dried gel pieces were carried out using 50 µL of 2 µg/ml SDS (100 ng) trypsin covered 

with 25 mM ammonium bicarbonate solution for 12 h at 37°C. The samples were loaded 

onto ZipTip C18 (Millipore) which was previously equilibrated with 10 µl 10% ACN, 

0.1% TFA. The peptides were eluted from the gel pieces with drawing samples up and 

down for 10 times into 4µl of 2% acetic acid and 50% ACN solution 

LC-ESI-MS/MS. Nanoscale LC was performed using Thermo Finnigan LCQ deca 

XP Plus. Approximately, 2µl sample in 0.1% acetic acid was loaded onto column using 

helium pressure cell. The sample was washed for about 5min over C18 10 cm x 75 cm 

(5µm) column with 95% mobile phase A (0.1% acetic acid) and 5% mobile phase B 

(acetonitrile containing 0.1% acetic acid), at a flow rate of 300nl/min. After 5 min the 

flow of mobile phase B was increased linearly to 50% over 40 min. The column effluent 

 22



was continually detected into LCQ mass spectrometer fitted with nano-ESI source and 

spectra were recorded. 

ESI was performed under the following conditions: positive ionization mode; 

spray voltage, 1.6kV; capillary voltage of 160°C; 35% MS/MS collision energy in ion 

trap and no sheath or auxiliary gas was used.  Data was collected in a full scan mode and 

data dependent MS/MS mode. Three microscans were performed, with maximum ion 

injection time of 200ms. In full scan mode the ions were collected in m/z range of 400 to 

2000. 

Protein Identification. An MS/MS spectrum was searched using Sequest Browser 

software against a human database containing P450 proteins62. The Sequest finds the 

peptide sequence in database that best explains the fragment ion present in the spectrum. 

Candidate sequence is found in the database on the basis of intact peptide masses, and 

complete or partial spectra expected to result from the fragmentation pattern of peptide 

are generated and compared to experimental spectrum. The final score assigned to each 

candidate-fragmented peptide is called Xcorr, a measure of theoretical spectrum 

correlation to experimental spectrum. Minimum two peptides with high Xcorr values of ≥ 

2.5 are considered significant for the identification of protein. 
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Results 

 

  Microsomal and mitochondrial P450: We investigated the expression of CYP2D 

protein from human cerebellum microsomes and mitochondrial fractions.  The 

microsomes were prepared by calcium aggregation method59. Microsomes from liver 

were prepared according to the method of Anderson et al and were used as positive 

control63. The mitochondrial fractions were prepared along with microsomes by percoll 

discontinuous density gradient method60. The P450 peak measured by reduced carbon 

monoxide binding spectroscopy suggested low levels of P450 in cerebellum tissue 

compared to liver tissue (fig. 2 and 4). The microsomes prepared from cerebellum tissues 

contained further two fold less P450s compared to mitochondrial fraction (fig 2 and 3). 

The microsomal and mitochondrial fraction was then analyzed for CYP2D protein 

by SDS-PAGE using specific CYP2D6 monoclonal antibodies as well as polyclonal 

antibodies. Our data was negative for the presence of CYP2D protein in mitochondria. 

The cerebellum microsomes when probed with CYP2D6 specific antibodies showed 

characteristic protein band. 

Immunohistochemistry: We also investigated the presence of CYP2D protein in 

cerebellum tissues by immunohistochemistry. Immunohistochemistry was performed on 

both frozen as well as paraffin embedded tissues. The immunohistochemical localization 

of P4502D in human brain cerebellum depicted immunoreactive protein in the purkinje 

cells and in the granule cells in the cytoplasmic region (figure 5 A).   The controls were 

also routinely included which did not show any immunostaining in the cerebellum (figure 

5 B).  
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Immunoprecipitation and immunoblotting: We isolated CYP2D6 protein by 

immunoprecipitation method from cerebellum tissue using the specific antibody to 

CYP2D6. The antigen-antibody complex formed was then precipitated from solution by 

addition of an insoluble form of an antibody binding protein such as Protein G or second 

antibody. The precipitate formed was subjected to SDS/PAGE under denaturing 

conditions followed by western blot using CYP2D6 specific monoclonal antibody. Figure 

6(A and B) shows CYP2D6 band at 50 kDa when cerebellum was immunoprecipitated 

with MAB 512-1-864. No staining was observed when addition of Protein G- Agarose and 

CYP2D6 antibody was reversed for immunoprecipitation (lane 2, 3, 4). Immunoreactive 

proteins were also detected on three different brain regions namely, cerebellum, frontal 

cortex and hippocampus (Geno-Tech Inc., St. Louis, MO) with CYP2D6 specific 

antibody (fig. 6C).  When CYP2D6 polyclonal antibodies were used, resulted in two 

immunoreactive bands on immunoprecipitation from brain cerebellum region (figure 6A). 

Similar pattern was also observed in matched liver, which was used as a control (figure 

6D).  

 Furthermore, 2D- blot analysis for CYP2D protein from liver tissue (Geno-Tech 

Inc., St. Louis, MO), resulted in two spots about the pI range of 6-7, which suggests two 

CYP2D isoforms of CYP2D6 (figure 7B) existed in the liver tissue. The 2-D blots 

prepared from cerebellum tissue only detected one spot at the pI of 6.7 (figure 7A). This 

single spot confirmed the presence of CYP2D6 protein in the brain, the other spot 

corresponding to CYP2D isoform could not be ascertained due to background.  
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LC-MS/MS: Immunoblotting data from human brain cerebellum suggests two 

CYP2D isoforms. To further differentiate these P450 isoforms, mass spectrometric 

method was used. Our data generated by LC-MS/MS gave us three major peaks, which 

do not explain the P450 present in the brain. These three peaks represent the amount of 

alpha-tubulin protein only which large backgrounds (fig 8A and B).  
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Figure 2 The reduced carbon monoxide spectra of human cerebellum microsomes prepared by 
calcium aggregation method 59.  The specific P450 content was estimated to be 0.3 pmoles/mg of 
tissue. 

 
 

 
 

Figure 3 Dithionite reduced CO spectra obtained from mitochondrial fraction of cerebellum.   The 
specific P450 content estimated was 0.65 pmoles/mg of tissue. 

 
 

  
 

Figure 4 The CO difference spectroscopy from human liver microsomes.  The estimated P450 content 
measured was 1nmoles/mg of tissue. 

 27



 

A 

 
 
 
 

B 

 
 
 

Figure 5 Immunohistochemical localization of CYP2D in human brain cerebellum.  (A) Depicts the 
localization of CYP2D in granule cells and Purkinje fibers.  (B) Depicts the control section with no 
staining in the plasma membrane. 
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Figure 6.  (A) Depicts the immunoprecipitation from human brain cerebellum lysate using polyclonal 
antibody to CYP2D6.  Lanes 2,3,4 are lysate, supernatant and pellets prepared from the tissue 
respectively in, which the addition of antibodies was reversed.  Lane 5 is a pellet fraction, which is 
immunoprecipitated with protein G-Agarose beads.  Lanes 6 and 7 are the supernatant respectively 
treated similarly as lane 5.  Lane 8 is the positive control containing recombinant CYP2D6 histidine 
tagged.  (B) Lane 1 depicts the immunoblot analysis of immunoprecipitated CYP2D from the pellets.  
(C) Immunoprecipitation was carried out from pre-made lysates for cerebellum, hippocampus and 
cortex using monoclonal CYP2D6 antibodies.  (D) Immunoblot analysis using polyclonal CYP2D6 
antibodies from human liver microsomes depicts two immunoreactive bands. 
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Figure 7  2-D western blots. (A)  2-D blot of human brain cerebellum when probed with monoclonal 
CYP2D6.  The single spot was observed at the pI of 6.7 and a molecular weight region of 45-64 kD. 
(B) Pre-made 2-D western blot of human liver (Geno-Tech Inc.) showing two spots at the pI of 6.7 
and molecular weight region of 45-64 kD when probed with polyclonal CYP2D6 antibodies. 
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Figure 8 Nano spray LC-MS/MS performed on immunoprecipitated protein. (A) depicts the three 
most abundant peaks found on chromatography and (B) represents their molecular weights.  The 
molecular weights corresponded to the sequence of alpha-tubulins. 
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Discussion 

 

Cytochrome P450s are thought as liver enzymes associated with the endoplasmic 

reticulum. P450s therefore are accepted as the primary detoxification pathway for 

xenobiotics18. Typically there is a vast body of literature on P450s; still the information 

pertaining to human CYPs remains incomplete. For example, only CYP2D6 has been 

mapped throughout human brain65. This could be attributed to ethical issues with respect 

to human subjects. Therefore, most studies concerning distribution of P450s have been 

carried out only in animal models. The first P450 that was isolated and characterized was 

P450d from rat, which showed similar substrate specificity as human CYP1A2. This form 

was also shown to be induced by polyaromatic hydrocarbons and polychlorinated 

biphenyls 66. Unfortunately, the rat is not a good model of human metabolism, which is 

dependent on two of the most important human P450 enzymes, CYP3A4 and CYP2D6. 

For example, the rat ortholog CYP3A1 is not induced by the typical CYP3A inducer 

rifampicin 67. Moreover the CYP2D1 enzyme of rat; an orthologous of human CYP2D6, 

shows significant differences in mechanism of inhibition as illustrated by a lack of 

inhibition by quinidine 68. Dexmethorphan, a marker substrate of CYP2D6, has been 

shown to be metabolized by CYP2D2 of rat and not CYP2D1 69.  

Rabbit CYP enzymes were the first mammalian P450s that were crystallized 70. 

Though rabbit CYP P450 isoforms have close substrate specificity for human CYP2E1 

and CYP1A2, they lacked a good partner for human CYP2D6 71. Many other animal 

models including beagle dogs, monkeys (Maccacus rhesus, Cynomologus, and 

Marmoset), and minipig have been used, but all animals differ in between one or the 
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other human CYP counterparts 72,73. In addition to these animal models, human CYPs 

have been characterized from different human tissues. Besides liver, CYP2D6 mRNA 

or/and protein has been demonstrated in lung, blood, skin, and brain 11,65,74.  

Though human models would be ideal for most metabolism studies, many ethical 

issues prevent them. Moreover, studies from autopsies tissues though relate closely to the 

living human model, there is always scarcity and difficulty in acquiring these tissues. 

Also, post-mortem delays may have their own affect on the enzymatic activity. 

Therefore, recently Corchero et al described use of humanized mouse model. Here, 

FVB/N mouse stains were used to generate CYP2D6 transgenic animals75. Though these 

models were adequate to study CYP2D6 associated pharmacokinetics from liver, these 

model failed to express CYP2D6 protein in brain. One of the studies conducted in our lab 

suggested no significant protection from MPTP induced dopaminergic neurons atrophy 

(unpublished observation). Therefore, the best model that can be studied for CYP2D6 in 

entirety is from human autopsies samples.  

Stobel’s lab and many others have reported brain specific CYP2D6 to metabolize 

CYP2D6 specific drugs in vitro23,24,76. Such extra-hepatic metabolism of psychoactive 

drugs and regional specific distribution of CYP2D6 that possess the catalytic activity has 

generated immense interest in the possible contribution of this class of enzymes in 

neurophysiology. Furthermore, it is also possible that this enzyme can undergo splice 

mechanism to form many other proteins or closely related protein such as CYP2D7; for 

instance, CYP2D7 was recently found to undergo splicing and form an active protein that 

can metabolize codeine to morphine in the brain which was earlier known only to be 

metabolized by CYP2D612.  Likewise, CYP1A1 and CYP1A2 (though not CYP2D) 
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proteins have shown similar function to CYP2D, as they are also drug-metabolizing 

enzymes.  The 1A1/2 has been shown to have targeting sequence to mitochondria as well 

as endoplasmic reticulum.  The mitochondrial CYP1A1/2 is different from liver 

CYP1A1/2 since mitochondrial CYP1A1/2 is 30 amino acids shorter than liver 1A1/2.  

This 30 amino acid sequence had brought great change in the substrate specificity of 

CYP1A1/2 in the brain in a sense; it is similar to CYP3A4 drugs now13.  According to 

sequence analysis of CYP2D protein, we found that the CYP2D6 protein also has series 

of positively charged residues in its sequence that can act as mitochondrial target.  

Therefore, we investigated the expression of CYP2D protein from the mitochondrial 

fraction prepared from human brain cerebellum. Mitochondrial fractions were prepared 

by percoll discontinuous density gradient according to Sims 60 and were studied for 

mitochondrial P450 CYP2D protein by probing it with CYP2D6 specific monoclonal as 

well as polyclonal antibodies. Our data does not suggest the presence of CYP2D protein 

in mitochondrial fraction (fig. 3 and data not shown), but it has to be appreciated here that 

this is possible. Most of the studies carried out for analysis of P450 in brain have been 

done using specific inducers of P450. Since CYP2D6 does not have any specific inducer, 

the complexity of isolation of small amount of protein from brain remained difficult. 

Moreover, localization of P450 in the inner membrane of mitochondrial membrane may 

cause difficulties for immunoglobulins to interact with the proteins. It has been suggested 

that freeze thawing the mitochondria couple of times may facilitate the antigen-antibody 

interaction77.  

To make sure the acquired tissue had enough CYP2D6 protein expression, we 

also investigated the presence of CYP2D protein in cerebellum tissues by 
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immunohistochemistry. Immunohistochemistry was performed on both frozen as well as 

paraffin embedded tissues. The immunohistochemical localization of P4502D in human 

brain cerebellum depicted immunoreactive protein in the purkinje cells and in the granule 

cells in the cytoplasmic region (fig 5). Interestingly, the frozen tissue gave better 

demonstration of protein localization compared to paraffin embedded slides. This could 

be because the frozen sections allow excellent antigen preservation compared to paraffin 

embedded tissues where antigen gets cross-linked to fixative reagents.  

Furthermore, with the recent report of Pai et al that showed the presence of 

functional CYP2D7 splice variant in the brain12, we carried our investigation further with 

the characterization of CYP2D protein from the human brain tissue.  In our investigation, 

we used the novel method of one step immunoprecipitation to study the characterization 

of CYP2D protein. Immunoprecipitation method was used since it involves the 

complexation of protein with its specific antibody that can be precipitated from solution 

by addition of an insoluble form of an antibody binding protein such as Protein G or 

second antibody. This method not only helps in removal of many hindering protein but 

also concentrates the low levels of protein present in the tissue78,79. The precipitate 

formed was then subjected to SDS/PAGE under denatured conditions followed by 

western blot using CYP2D6 specific monoclonal antibody. Our results showed a 

characteristic CYP2D band at 50 kDa when cerebellum was immunoprecipitated with 

MAB 512-1-8 64 (fig 6 A and B). No staining was observed when addition of Protein G- 

Agarose and CYP2D6 antibody was reversed for immunoprecipitation (fig 6A lanes 2, 3, 

and 4). Immunoreactive proteins were also detected on three different brain regions 

namely; cerebellum, frontal cortex and hippocampus (Geno-Tech Inc., St. Louis, MO), 
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which depicted expressed CYP2D6 (fig 6C).  Interestingly, when CYP2D6 polyclonal 

antibody were used, resulted in two immunoreactive bands from brain cerebellum region 

(fig 6A). With recent report that CYP2D7 produced an active form of splice variant in 

brain, we assume that these two bands correspond to CYP2D6 and CYP2D7. Similar 

pattern was also observed in matched liver, which were used as a control (figure 6D).  

 Furthermore, on premade 2D- blot for liver (Geno-Tech Inc., St. Louis, MO), we 

saw two spots about pI 6.7 region which suggests two CYP2D isoforms of CYP2D6 

(figure 7B) whereas the 2-D blots prepared from cerebellum tissue only detected one spot 

at the pI of 6.7 (figure 7A). This single spot detection though confirmed the presence of 

CYP2D6 protein in the brain, the other spot corresponding to CYP2D isoform could not 

be ascertained due to background. Also, since we are looking at the membrane bound 

proteins, it might be possible that the one of the protein did not migrate well. 

In order to characterize the CYP2D isoform(s) obtained as a result of 

immunoprecipitation of cerebellum tissues, we studied these bands on nano-spray LC-

MS/MS80,81. This is because it was hard to differentiate these corresponding bands with 

the specific antibodies due to their limited availability.  Activity assays were also 

performed with the cerebellum microsomes using MPTP as a substrate, but the results 

were below detection as the expression of P450 in brain reported is about 1% that of 

liver. Therefore, an alternative method that can best be applied to characterize the P450 

from brain homogenates was the use of mass spectrometric method as it may be able to 

analyze low levels of multiple proteins in single run. To date, the reports on analysis of 

P450 by mass spectrometry have been very few; the majority of which have relied on the 

analysis of the metabolite generated by P450-substrtae reaction. This method though 
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gives unique advantages over other conventional methods also have the limitation as the 

coverage of protein by this method is only about 40%. Our data generated by LC-MS/MS 

gave us three major peaks, which do not explain the P450 present in the brain. These 

three peaks represent the amount of alpha-tubulin protein only which large backgrounds 

(fig 8A and B). We did not detect cytochrome P450 isoforms by our LC-MS/MS 

analysis, but this does not exclude the presence of P450 from the sample. P450s might be 

present in very small amounts with the high levels of alpha – tubulin as an interfering 

protein.  
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Summary 

 

Exposure to MPTP has been reported to cause symptoms of Parkinson’s disease. 

It has been hypothesized that the expression of CYP2D6 in human brain may alleviate the 

symptoms of disease by metabolizing MPTP to non toxic metabolite PTP that may 

balance its activation by MAO-B to MPP+  in brain.  This hypothesis was further 

supported from epidemiological studies where Parkinson’s disease has been reported to 

be prevalent in CYP2D6 poor metabolizers. Furthermore, CYP2D6 has been suggested to 

undergo splicing in brain, which may affect the activity of the substrates at the site of 

action. With this background knowledge and current report that CYP2D7 can also form 

an active protein by splicing mechanism in brain, prompted us to investigate the different 

form of CYP2D proteins that can be found in the brain. Therefore, we investigated the 

protein by novel method of immunoprecipitation as the amounts of these proteins were 

expected to be found in very low concentrations. Our immunoprecipitation data supports 

that there are two possible isoforms of CYP2D protein in brain that may affect the site 

dependent metabolism of many psychoactive drugs. The immunoblot analysis from the 

human liver microsomes prepared from the same subject also depicted the unusual two 

bands which inferred that more than one CYP2D isoforms may be expressed in human 

liver. This is a very interesting finding since the splicing of CYP2D7 is only recognized 

to be found in the brain. Further support to this finding was seen in pre-made 2-D blot of 

liver, which showed two distinct spots for CYP2D when probed with CYP2D6 

polyclonal antibodies suggesting that the CYP2D isoforms may be available in other 

individuals.   With all these finding we were still unable to confer with certainty the 

sequence analysis for these proteins by nano-spray LC-MS/MS. This was because the 
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amount of protein we are looking at is present in a very low concentration in human 

brain, the detection of which is also inhibited by lipids and the most abundant interfering 

proteins such as alpha and beta tubulins.  

In future, more tedious methods have to be employed to immunoprecipitate and separate 

the proteins; as well as various denaturation buffers can be tried in order to separate the 

proteins from the membranes and their detection by LC-MS/MS. 
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Conclusion 

 

 The current study showed that the CYP2D protein have been conclusively 

identified by one-step immunoprecipitation method. This is a first report to best of our 

knowledge that has shown more than one CYP2D isoform(s) exist in the brain 

cerebellum tissue. Furthermore, our results are also consistent with the previously 

published studies describing expression profile of CYP2D protein in the human brain 

cerebellum. Clearly, there is a considerable advantage in using immunoprecipitation 

method in the characterization of P450s from complex tissues.  
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Appendix 

 

 

Brain microsome buffer 

0.1M Tris containing, 0.1mM DTT, 

0.1mM PMSF, 0.2mM EDTA, 1.15% KCl 

and 10% glycerol at pH 7.4 

Storage buffer 

100mM potassium phosphate buffer, 1mM 

EDTA, 20% glycerol, 1mM DTT and 

20µM BHT 

Liver microsome buffer 
0.15M KCl, 0.25M potassium phosphate 

buffer at pH7.4 

Sample buffer 

5% SDS, 20% glycerol, 10% 

mercaptoethanol, and 1.5 M Tris/HCl 

buffer, pH 6.8 

IP buffer 

1X TBS, 1% Nonidet P-40, 0.5% sodium 

deoxycholate, 0.004% sodium azide, 0.1% 

SDS, protease inhibitors, PMSF and 

sodium orthovandate 

2-D buffer 

8M urea, 4% CHAPS, 1% DTT, 0.5%v/v 

pharmalytes pH 3-10 with 0.002% 

bromophenol blue 

Equilibration buffer 

50mM Tris (pH 6.8), 6M urea, 30% 

glycerol, 2% SDS, 0.002% bromophenol 

blue 
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