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ABSTRACT

A New Gaussian Process Method For Modeling and Design

of Multi-Source Data in Exposure-Response Toxicology Studies

Kai Wang

One of the most fundamental steps in risk assessment is to quantify the exposure-

response relationship for the material/chemical of interest. This work develops a new statisti-

cal method, referred to as SKQ (stochastic kriging with qualitative factors), to synergistically

model exposure-response data, which often arise from multiple sources (e.g., laboratories,

animal providers, and shapes of nanomaterials) in toxicology studies. Compared to the ex-

isting methods, SKQ has several distinct features. First of all, SKQ integrates data across

multiple sources, and allows for the derivation of more accurate information from limited

data. Second, SKQ is highly flexible and able to model practically any continuous response

surfaces (e.g., dose-time-response surface). Third, SKQ is able to accommodate variance

heterogeneity across experimental conditions, and to provide valid statistical inference (i.e.,

quantify uncertainties of the model estimates). Through empirical studies, we have demon-

strated SKQ’s ability to efficiently model exposure-response surfaces by pooling information

across multiple data sources.

Based on the SKQ modeling and inference, a design of experiments (DOE) procedure

is developed to guide biological experiments for the efficient quantification of exposure-

response relationships. Built on SKQ, the DOE procedure inherits the advantages of SKQ

and is particularly tailored for experimental data arising from multiple sources, with non-

normality and variance heterogeneity, and mapping nonlinear exposure-response relation-

ships. The design procedure is built in a sequential two-stage paradigm that allows for a



learning process: In the first stage, preliminary experiments are performed to gain informa-

tion regarding the underlying exposure-response curve and variance structure; in the second

stage, the prior information obtained from the previous stage is utilized to guide the second-

stage experiments. Matlab’s global optimization function MultiStart is employed to search

for optimal designs that will lead to exposure-response models of the highest quality.

SKQ and SKQ-based DOE fit into the mosaic of efficient decision-making methods

for assessing the risk of a tremendously large variety of nanomaterials, and helps to alleviate

the sustainability concerns regarding the enormous new nanomaterials.
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Chapter 1

Introduction

Nanomaterials (NM) are finding wide applications in areas such as energy [1, 2],

environment [3–5], and biomedical engineering sectors [6, 7]. The rapid introduction of en-

gineered NM raises imperative concerns on the potential hazard/risk of NM. In comparison

to traditional materials and chemicals, it is particularly challenging to fully assess the risks

associated with all NM, mainly due to the tremendously large variety of NM. With limited

resources (time and/or money), there is an urgent need to develop efficient decision-making

methods for NM risk assessment. Primarily motivated by such a need, this dissertation

proposes a new statistical method, which is able to derive more accurate hazard-related in-

formation by synergistically modeling multi-source toxicology data. By making more efficient

use of limited data, the proposed method will help to reduce the experimental cost/time in

toxicology studies, and contribute to the use of NM in a safe and sustainable manner.

One of the most fundamental steps in assessing the risk of a nanomaterial (or any

substance) is to understand and properly characterize its exposure-response relationship

[8, 9]. A exposure-response relationship describes how the adverse bioactivity effects (the

responses) are functionally related to the condition of exposure to a substance [10]. With a

well established exposure-response profile, prediction of hazard can be made for a given level

of exposure; such a profile also allows for the estimation of exposures at responses of different

severities (e.g., the benchmark dose), which assists the risk assessor to make judgments to

protect a population from increasingly severe effects.
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To quantify exposure-response relationships, biological experiments need to be per-

formed under different exposure conditions to observe the corresponding bioactivity re-

sponses of animals. Herein, the exposure condition is typically specified through the set-

tings of two quantitative factors: the dose level of the substance of interest, and the time

factor involved. Depending on the time scope of the toxicology study, the time factor could

be exposure time for long-term studies, or post-exposure time for acute studies. Based on

the experimental data collected, statistical methods are then used to fit exposure-response

models quantifying the relationships of interest.

To efficiently characterize a substance (especially a nanomaterial) by its exposure-

response profile, two fundamental and important research issues need to be resolved: (i)

How to most efficiently design the expensive and time-consuming biological experiments for

data collection? (ii) Given the collected data, how to achieve the exposure-response model

of the highest quality by performing the statistical modeling most suitable to the data?

1.1 Challenges of the Research

It remains a challenge to achieve the exposure-response models of the highest quality given

a limited amount of data. Existing statistical models are not adequate to model typical

exposure-response data due to the following three major reasons. (i) First, the exposure-

response data for a nanomaterial often arise from multiple sources. More specifically, the

data available for modeling typically consists of a number of subsets obtained from different

sources such as laboratories [11], animal providers[12], and shapes of nanomaterials [13].

The observed response of animals depends not only on the exposure condition, but also on

these source factors. The subset of data collected from one source may well reflect a different

exposure-response profile than that from another. (ii) Second, the exposure-response rela-

tionship may well be nonlinear [14–18]. For two-dimensional dose-response curves, a range

of nonlinear regression models (e.g., power and logistic models) have been developed [19] to

model the sole-source data, as opposed to the multi-source data described above. However,
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the three-dimensional dose-time-response surface is far from being adequately investigated

at least partly because of the complex nature of the target surface. (iii) Third, typically the

available/affordable toxicology data are not only relatively scarce and highly variable, but

are also subject to variance heterogeneity [20]: The response variability changes with the

experimental setup, which is specified by the exposure condition as well as the data-source

factors. The variance heterogeneity poses significant challenges in making statistical infer-

ences via the estimated exposure-response model (i.e., quantifying the uncertainty of the

model estimates).

1.2 Research Objective

The objective of this dissertation work is two folds.

A new stochastic kriging model, which will be referred to as SKQ (stochastic kriging

with qualitative factors) in this dissertation, is developed to model exposure-response data in

toxicology studies. SKQ distinguishes from the existing modeling methods in the following

aspects. (i) SKQ leads to exposure-response models of high quality by pooling information

from multi-source data. (ii) SKQ is highly flexible and able to accurately approximate prac-

tically any continuous response surfaces [21–23]; it does not require a pre-assumed functional

form (e.g., logistic model) for response surface modeling, as traditional nonlinear regression

does [24]. (iii) SKQ is able to accommodate variance heterogeneity across exposure condi-

tions as well as different data sources, and to provide valid statistical inference.

The second objective is to develop a DOE method based on the SKQ modeling.

Because of costs, ethics, or other limitations, sample sizes are usually very restricted for

toxicology studies, and hence efficient use of available resources is crutial. In the multi-

source data context, biological experiments are naturally performed in a group sequential

(or batch-by-batch) manner: Given the data collected from Q−1 distinct sources (say, labs),

how to design the new batch of biological experiments to be carried out in the Source Q

(say, our lab)? The task of DOE is to optimize the quality of the exposure-response model

3



fitted from all the Q-source data, by determining at what exposure conditions the new batch

of experiments should be performed. The DOE optimization fundamentally relies on the

statistical modeling/ inference for the target response surface, which is provided by the

developed SKQ methodology. In this dissertation, a DOE method will be developed based

on the SKQ modeling/inference, and thus will inherit all the advantages of SKQ.

This research will lead to statistical methods for the efficient characterization of a

substance by its high-quality exposure-response profile. These methods will substantially

reduce the experimental cost and time in toxicology studies required, alleviate the rising

concerns for animal ethics [25, 26], and accelerate the progress toward quantifying the risk,

safety and health effects of environmental and occupational exposure to nanomaterials.

1.3 Contribution of the Research

SKQ, to the best of our knowledge, is the first attempt to develop a metamodel that can

accommodate both quantitative variables and qualitative variables, can have very general

variance structure, and can provide valid statistical inference. The metamodel fully use

information across different sources, and allows for estimation of exposure-response surface

for all sources at the same time.

Utilizing the ability of SKQ to pool information across different sources and accu-

rately predict response surface, our DOE is able to find the experiment conditions with

desirable property sequentially for a new source, given the data collected from other sources.

This research work provides the first DOE frame that is able to provide design procedure

for experimental data arising from multiple sources, with non-normality and variance het-

erogeneity, and mapping nonlinear exposure-response relationships.

1.4 Organization of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 gives a review of the

related literature. In Chapter 3, the SKQ (stochastic kriging with qualitative factors) model

4



is detailed and its advantages over the existing models are demonstrated through simulation

studies. Chapter 4 describes the two-stage DOE procedure, and evaluates the efficiency of

the DOE. Chapter 5 finishes this dissertation with Summary.
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Chapter 2

Problem Statement and Literature Review

In this chapter, we describe the research problem in precise terms, and review the

related literature.

2.1 Statement of the Research Problem

In exposure-response studies for a substance, biological experiments are performed in a range

of experimental conditions. An experimental condition is defined by the combination of a

number of factors, which can be divided into two categories, quantitative and qualitative

factors.

• Quantitative factors typically include but are not limited to the toxicant dosage ad-

ministered to an animal, and the post-exposure time (or the exposure duration of the

toxicant). In this paper, the vector x is used to represent the quantitative factors

considered.

• Qualitative factors mainly include various source factors such as the laboratory where

the experiments were conducted, the provider for the experimental animals, and the

shape of nanomaterials. The qualitative factors are denoted by the vector z.

The experimental condition is specified in terms of the factor vector w = (x>, z>)>.

The random response observed from an animal subject at a factor setting w can be generally

written as

Y(w) = E[Y(w)] + ε(w) = Y(w) + ε(w), (2.1)

6



where Y(w) = E[Y(w)] represents the true expected response, and ε(w) the random zero-

mean error that accounts for the variations across animal subjects.

An example of such exposure-response studies is given later in the subsection 3.5.1,

where the toxicity of TiO2 nanoparticles (NPs) is investigated. In that case, the vector

x = (x1, x2)
> includes two quantitative factors, the dosage of NPs x1 and the post-exposure

time x2. There is one qualitative factor z, which has two category levels for the shape of

TiO2 NPs: short and long nanobelts.

A setting of the qualitative factors z corresponds to a combination category, say cq,

and defines a subpopulation or a data source. The total of Q subpopulations specified by

the settings of z are denoted as {cq; q = 1, 2, . . . , Q}. In the case of TiO2 NPs, there are

Q = 2 subpopulations: c1 for short TiO2 nanobelts, and c2 for long TiO2 nanobelts. The

population is the union of all the subpopulations, and is considered as the TiO2 NPs of

both shapes in the aforementioned example. For a given subpopulation cq, the bioactivity

response obtained from an animal subject is expected to be Y(w|cq) = Y(x, cq), a continuous

function of the quantitative factors x, while subjecting to the cross-subject random error

ε(w|cq) = ε(x, cq).

The biological data collected for the toxicity study of a substance are represented as

{(wi,Yj(wi)); i = 1, 2, . . . , I; j = 1, 2, . . . , n(wi)} (2.2)

where wi denotes the ith design point (factor setting at which experiments are performed)

of a total of I distinct design points, Yj(wi) the observed response from the jth replication

at wi, and n(wi) the number of replications at wi.

Based on the sample data (2.2), the objective of statistical modeling is to quantify

the dependence of the response upon the quantitative and qualitative factors, and to provide

valid statistical inference regarding the population being investigated (e.g., the TiO2 NPs

7



of both shapes). SKQ aims at achieving this objective with high data efficiency and model

generality.

2.2 The Naive Method without Pooling

The most straightforward method is to model the continuous exposure-response relationship

for each subpopulation separately. Since biological data are typically collected for one sub-

population at a time, such separate modeling is most commonly performed (e.g., [27]) with

no effort to pool information across different subpopulations.

The biggest drawback of separate modeling is the large sample size it takes to obtain

exposure-response models of high quality: For each subpopulation, sufficient sample data

has to be collected in the feasible region of x for an accurate capture of the target response

surface.

2.3 An Information-Pooling Model: Mixed-Effects Model (MEM)

Recognizing the importance of pooling information for modeling efficiency, the mixed-effects

model has been developed and used for multi-source exposure-response data in the literature.

Interested readers can refer to Davidian et al. [28] for details. In this part, a brief review is

provided for the readers’ convenience.

2.3.1 Formulation and Assumptions for Mixed-Effects Model (MEM)

Following the notations in Section 2.1, for a subpopulation cq (q = 1, 2, . . . , Q), the response

from the jth replication (animal subject) is written as

Yj(x, cq) = g(x,αcq) + εj(x, cq); q = 1, 2, . . . , Q, (2.3)

8



In Equation (2.3), g is a regression model of a prior-assumed functional form (e.g., logistic

model), which is common to all subpopulations {cq; q = 1, 2, . . . , Q}; αcq is a u× 1 vector of

unknown parameters, the values of which are cq-dependent.

At a factor setting (x, cq), the random noise ε1(x, cq), ε2(x, cq), . . . has zero mean, and

is independent and identically distributed across replications (animal subjects). The error

variance Var[ε(x, cq)] is assumed to be response-dependent through the following common

form for any cq:

Var[ε(x, cq)] = σ2h2(g(x,αcq),γ); q = 1, 2, . . . , Q (2.4)

The variance function h describes the common pattern of variability. The scalor σ and vector

γ are unknown parameters, which take common values for any cq.

In MEM, the unknown model coefficient vector αcq is generally modeled as

αcq = d(ν,α) + bcq , (2.5)

where d is a u-dimensional vector-valued function with each component associated with

the corresponding component of αcq . The vector ν includes the factors (or covariates) for

subpopulation attributes that affect the parameter αcq for the subpopulation cq. In the

problem setting of Section 2.1, all the qualitative factors in z are candidate components

for ν. The vector α denotes the unknown fixed parameters (or fixed effects), and bcq is a

random vector representing the random effects. It is assumed that

bcq ∼ Norm(0,D) (2.6)

with D being an unknown variance-covariance matrix of compatible dimensions.

9



The simplest example form of (2.5) is

αcq = α+ bcq , (2.7)

which is commonly used.

It has been demonstrated that MEM is able to provide improved estimation/inference

for multi-source data, by pooling information across different data subsets [29]. Nevertheless,

the following shortcomings exist, which originate from the model formulation given above.

(i) A common nonlinear functional form (e.g., logistic model) has to be assumed adequate for

describing the exposure-response surface of all subpopulations. Such a common form may

be difficult to obtain, especially when x is high-dimensional. (ii) MEM assumes a common

variance model for all the subpopulations. That is, for each subpopulation, the same variance

model as in (2.4) is used to describe the dependence of variance upon the response. (iii)

As given in (2.6), one of the fundamental assumptions made in MEM is: The unknown

coefficient vector αcq for a subpopulation follows a multivariate normal distribution, which

may well not hold.

2.3.2 Estimation and Inference by Mixed-Effects Model (MEM)

To estimate MEM from given data, the global two-stage (GTS) method proposed by Steimer

et al. [28–30] can be used. The fitted MEM models are denoted as follows: {g(x, α̂cq); q =

1, 2, . . . , Q}, the fitted response surface models; {σ̂h(g(x, α̂cq), γ̂); q = 1, 2, . . . , Q}, the esti-

mated variance model; and D̂, the estimated covariance matrix of α̂cq .

For an arbitrary setting w0 = (x0, cq), the expected response is estimated as

Ŷ(x0, cq) = g(x0, α̂cq).

10



The variance of Ŷ(x0, cq) is estimated as:

V̂ar[Ŷ(x0, cq)] = (gα(x0, α̂cq))
>D̂gα(x0, α̂cq),

where gα(x0, α̂cq) is the u× 1 first derivative vector of function g w.r.t. αcq .

The (1− α)100% confidence interval for Ŷ(x0, cq) is

Ŷ(x0, cq)± t1−α/2,v ×
√

V̂ar[Ŷ(x0, cq)] (2.8)

where t denotes Student’s t distribution with degree of freedom v. Following the context of

BMD estimation in Subsection 3.4, we consider the cases where there is only one quantita-

tive factor x, denoting the dose level. Using the fitted MEM, the BMD associated with a

subpopulation cq is estimated as follows for a given BMR:

B̂MD(cq) = g−1(BMR, α̂cq). (2.9)

For MEM, the analytic form of the inverse function g−1 can be easily obtained.

The variance of B̂MD(cq) is estimated as:

V̂ar[B̂MD(cq)] = (g−1α )>D̂g−1α (2.10)

where g−1α is the u × 1 first derivative vector of the inverse function g−1 w.r.t. αcq . The

one-sided 100(1− α) confidence interval for B̂MD(cq) is given as:

[B̂MD(cq)− t1−α,v
√

V̂ar[B̂MD(cq)],∞) (2.11)

where t is student’s t distribution with the degree of freedom v.
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2.4 Design of Experiments for Learning/Inferences of Gaussian Processes

We briefly review the design of experiments (DOE) methods for kriging.

There is a substantial literature on the DOE for deterministic kriging [31], [32],[33],

which can be divided into two categories: the model-free and model-based methods. The

model-free DOE includes a range of Latin Hypercube designs such as Qian [34], Sallaberry

et al. [35], and Williamson [36]. These designs are space-filling in nature, and provide a

good coverage of the feasible design space. The model-based DOE seeks to determine the

design by optimizing some estimation/prediction criteria, such as integrated mean square

error(IMSE) and maximum mean squared error (MMSE) [37, 38]. In the literature, a batch

sequential framework has also been developed [39], which is initiated with a space-filling

design and includes follow-up stages of model-based designs.

There is some research effort to investigate model-based sequential designs for stochas-

tic kriging. Ankenman et al. [23] provides a two-stage strategy that minimizes the IMSE

criterion. In the initial stage, pilot experiments are performed following some space-filling

design; and in a follow-up stage, the augmented design is determined by minimizing the

IMSE provided by the stochastic kriging. Chen et al. [40] developed a sequential DOE

procedure, which is adaptive to a variety of design criteria. The difficulty of designing ex-

periments for stochastic kriging lies in determining the design-point locations as well as the

the number of replications assigned to each point.
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Chapter 3

Stochastic Kriging With Qualitative Factors (SKQ)

In this part, the SKQ metamodeling and inference methods are detailed. As an

extension from the standard stochastic kriging (SK), which considers quantitative factors

only, SKQ models the variability arising from quantitative as well as qualitative factors. For

readers’ convenience, a review of SK is given in the Appendix 6.1.

Compared to existing kriging-based methods [23, 41, 42], SKQ is the first one that

models all the following stochastic elements: the extrinsic variability caused by both quan-

titative and qualitative factors, and the intrinsic variability across random replications, as

will become clearer in the remainder of this section.

SKQ models the dependence of continuous responses upon the factors w = (x>, z>)>,

with x = (x1, x2, . . . , xd)
> ∈ Rd and z = (z1, z2, . . . , zL)> including L qualitative factors.

Each qualitative factor z` has a number of category levels.

The response at setting w for the jth replication (animal subject) is modeled by SKQ

as

Yj(w) = Y(w) + εj(w) = f(w)>β + M(w) + εj(w), (3.1)

The expectation Y(w) is decomposed into the sum of two parts: f(w)>β and M(w). Here,

f(w) is a vector of known functions of w, and β is a vector of unknown parameters of

compatible dimension. Since it has been widely accepted that f(w)>β = β0 (that is, just

a constant term) suffices for most applications [23], this work adopts f(w)>β = β0 unless

stated otherwise. The term M(w) represents a mean-zero stationary Gaussian process, which

intends to capture the extrinsic variability, i.e., the variability due to the factors w.
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The randomness of ε(w) is referred to as intrinsic variability. The random noise

ε1(w), ε2(w), . . . at a factor setting w is assumed to have mean zero, and be independent

and identically distributed (i.i.d.) across replications. The error variance Var[ε(w)] is allowed

to be dependent on w.

Given the sample data (2.2), the sample average of the responses at wi across the

n(wi) replications follows as:

Ȳ(wi) =
1

n(wi)

n(wi)∑
j=1

Yj(wi) = β0 + M(wi) +
1

n(wi)

n(wi)∑
j=1

εj(wi);

Denote

Ȳ =
(
Ȳ(w1), Ȳ(w2), . . . , Ȳ(wI)

)>
(3.2)

as the I × 1 vector of sample average responses at the I distinct design points.

Similarly, the vector of sample average errors is denoted as

ε = (ε̄(w1), ε̄(w2), . . . , ε̄(wI))
> , (3.3)

with ε̄(wi) = n(wi)
−1∑n(wi)

j=1 εj(wi), i = 1, 2, . . . , I.

3.1 Extrinsic Variance Structure

The modeling of the extrinsic variability is performed following the framework proposed by

Qian et al. [41]. For the factor settings w = (x, z) and w′ = (x′, z′), the covariance of the

stationary Gaussian process M(·) takes the form

Cov[M(w),M(w′)] = δ2 · Corr[M(w),M(w′)] = δ2 ·
[

L∏
`=1

τ
(`)

z`,z
′
`

]
·K(x,x′), (3.4)
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with δ2 being the variance of the Gaussian process. The correlation Corr[M(w),M(w′)] is

decomposed as the product of two parts:
∏L

`=1 τ
(`)

z`,z
′
`

and K(x,x′). To enable the estimation

of a SKQ model, specific functional forms need to be assumed for both parts.

In (3.4), K(x,x′) represents the correlation across the quantitative settings for a

given combination category of the quantitative factors x, and models the variability due to

quantitative factors. Hence, K(x,x′) plays the same role in SKQ as in SK, and the discus-

sions regarding K(x,x′) in the Appendix 6.1 can be inherited here: For specific functional

structures of K(x,x′), a range of choices are available in the literature (e.g., Santner et el.

[43]; Qian et al. [41]), and one of the most popular correlation functions in practice is the

exponential correlation function

K(x,x′) = exp

{
d∑

h=1

−θh|xh − x′h|p
}
. (3.5)

In (3.5), θ = (θ1, θ2, . . . , θd) is a vector of unknown parameters. It is required that θh >

0 (h = 1, 2, . . . , d), and θ determines the roughness of the response surface for a given

combination category of z. The parameter p ∈ (0, 2] also needs to be estimated unless p is

pre-specified as 2, which corresponds to the widely used quadratic correlation function [44].

The term
∏L

`=1 τ
(`)

z`,z
′
`

in (3.4) is devoted to the correlations across different levels of

qualitative factors. As noted in Qian et al.[41], τ
(`)

z`,z
′
`

measures the correlation (similarity) at

any two settings w and w′ that differ only on the values of the `th qualitative factor. For

τ
(`)

z`,z
′
`
, a range of functional forms have been proposed in Qian et al. [41] and Zhou et al. [45].

Below, two specific correlation functions are given as examples.

• Isotropic (or exchangeable) correlation functions (EC):

τ
(`)

z`,z
′
`

= exp{−φ(`)I(z` 6= z′`)}; ` = 1, 2, . . . , L (3.6)
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In (3.6), Φ = {φ(`); ` = 1, 2, . . . , L} represents the set of unknown parameters to be

estimated; and I[A] is an indicator function that takes 1 if event A is true and 0

otherwise. Clearly, EC assumes that all the category levels of the `th qualitative factor

are of isotropic nature; that is, for a given `, τ
(`)

z`,z
′
`

is a constant as long as z` 6= z′`.

• Multiplicative correlation functions (MC):

τ
(`)

z`,z
′
`

= exp
{
− (φ(`)

z`
+ φ

(`)

z′`
)I(z` 6= z′`)

}
(3.7)

The unknown parameter set Φ includes the following components:

φ(`)
c`

; ` = 1, 2, . . . , L;

c` denotes any one of all the possible category levels for the `th qualitative factor.

For a given `, MC allows the correlation τ
(`)

z`,z
′
`

to be dependent on the category levels

involved (i.e., z` and z′`).

Given the data {(wi,Yj(wi)); i = 1, 2, . . . , I; j = 1, 2, . . . , n(wi)} collected at I dis-

tinct design points, the I × I variance-covariance matrix ΣM is constructed as

ΣM = δ2R(θ,Φ) = δ2



1 Corr[M(w1),M(w2)] . . . Corr[M(w1),M(wI)]

Corr[M(w2),M(w1)] 1 . . . Corr[M(w2),M(wI)]

...
...

. . .
...

Corr[M(wI),M(w1)] Corr[M(wI),M(w2)] . . . 1


.

(3.8)

In (3.8), R(θ,Φ) denotes the correlation matrix; each component of the matrix represents

a correlation, which can be decomposed into two parts as explained above and which is a
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function of θ and Φ. For an arbitrary setting w0, the I × 1 vector ΣM(w0, ·) is defined as

ΣM(w0, ·) = δ2v(w0,θ,Φ) = δ2



Corr[M(w0),M(w1)]

Corr[M(w0),M(w2)]

...

Corr[M(w0),M(wI)]


, (3.9)

where v(w0,θ,Φ) denotes the correlation vector with each component being a correlation

function dependent on w0, and the unknown parameters θ and Φ.

3.2 Intrinsic Variance Structure

The intrinsic variance of the random response at w is denoted as Var[ε(w)], which is depen-

dent on the setting w. Let Σε be the I × I variance-covariance matrix of vector ε, which

is defined in (3.3). Under the i.i.d. assumption for random errors, Σε is a I × I diagonal

matrix

Σε = diag{Var[ε(w1)]/n(w1),Var[ε(w2)]/n(w2), . . . ,Var[ε(wI)]/n(wI)}. (3.10)

3.3 Estimation and Inference by SKQ (Stochastic Kriging with Qualitative Fac-

tors)

The SKQ-based estimation and inference requires the following assumption, which parallels

Assumption 2 stipulated for SK (see the Appendix 6.1).

Assumption 1 The random field M is a stationary Gaussian random field; and

ε1(w), ε2(w), . . . are i.i.d. N(0,Var[ε(w)]), independent of εj(w
′) for all j and w 6= w′,

and independent of M.

Given a data set {(wi,Yj(wi)); i = 1, 2, . . . , I; j = 1, 2, . . . , n(wi)} and under Assumption

1, Ȳ =
(
Ȳ(w1), Ȳ(w2), . . . , Ȳ(wI)

)>
as defined in (3.2) follows a multivariate normal dis-
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tribution with constant mean vector β0 × 1I , where 1I is a (I × 1) vector of ones, and

variance-covariance matrix

Σ(δ2,θ,Φ) = ΣM + Σε = δ2R(θ,Φ) + Σε. (3.11)

Recall that ΣM and Σε are defined in (3.8) and (3.10) respectively. Thus, the log-likelihood

function of Ȳ in terms of the unknown parameters (β0, δ
2,θ,Φ) can be written as

lnL(β0, δ
2,θ,Φ) = − ln[(2π)I/2]−1

2
ln[|δ2R(θ,Φ)+Σε|]−

1

2
(Ȳ−β01I)>[δ2R(θ,Φ)+Σε]

−1(Ȳ−β01I).

(3.12)

The procedure to obtain the parameter estimates for (β0, δ
2,θ,Φ) that maximize (3.12) is

given as follows.

1. Obtain the estimated Σε:

Σ̂ε = diag{V̂ar[ε(w1)]/n(w1), V̂ar[ε(w2)]/n(w2), . . . , V̂ar[ε(wI)]/n(wI)} (3.13)

where

V̂ar[ε(wi)] =
1

n(wi)− 1

n(wi)∑
j=1

(
Yj(wi)− Ȳ(wi)

)2
, i = 1, 2, . . . , I . (3.14)

2. Replace Σε by Σ̂ε, and maximize the log-likelihood function (3.12) with respect to (w.r.t.)

(β0, δ
2,θ,Φ). Specifically, two steps can be taken to solve the maximum likelihood

problem. (i) Given δ2, θ and Φ, the maximum likelihood estimate (MLE) of β0 is

β̂0(δ
2,θ,Φ) = (1>I [δ2R(θ,Φ) + Σ̂ε]

−11I)
−11>I [δ2R(θ,Φ) + Σ̂ε]

−1Ȳ .

18



(ii) Substituting β̂0(δ
2,θ,Φ) into (3.12), the problem reduces to maximizing

lnL(δ2,θ,Φ) =− ln[(2π)I/2]− 1

2
ln[|δ2R(θ,Φ) + Σ̂ε|] (3.15)

− 1

2
(Ȳ − β̂0(δ2,θ,Φ)1I)

>[δ2R(θ,Φ) + Σ̂ε]
−1(Ȳ − β̂0(δ2,θ,Φ)1I),

w.r.t. (δ2,θ,Φ), which can be solved by a nonlinear optimization algorithm such as

the Matlab fmincon function.

3. For an arbitrary setting w0, estimate the expected response Y(w0) by

Ŷ(w0) = β̂0 + v(w0, θ̂, Φ̂)>[δ̂2R(θ̂, Φ̂) + Σ̂ε]
−1(Ȳ − β̂01I), (3.16)

where (β̂0, δ̂
2, θ̂, Φ̂) are the maximum likelihood estimates obtained from the previ-

ous step. Recall that v(w0, θ̂, Φ̂) is defined in (3.9). Following the proof scheme of

Ankenman et al. [23], it can be shown that (3.16) is the unbiased estimator for Y(w0).

The mean squared error (MSE) is obtained as:

M̂SE[Ŷ(w0)] = δ̂2−δ̂4v(w0, θ̂, Φ̂)>[δ̂2R(θ̂, Φ̂)+Σ̂ε]
−1v(w0, θ̂, Φ̂)+η2(1>I [δ̂2R(θ̂, Φ̂)+Σ̂ε]

−11I)
−1,

(3.17)

where η = 1− 1>I [δ̂2R(θ̂, Φ̂) + Σ̂ε]
−1v(x0, θ̂, Φ̂)δ̂2.

The two-sided 100(1-α)% confidence interval for Y(w0) can be constructed as:

Ŷ(w0)± z1−α/2
√

M̂SE[Ŷ(w0)] (3.18)

where z1−α/2 is the 100(1− α/2)th percentile of standard normal distribution.
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3.4 Inverse Estimation and Inference

In this part, we consider the SKQ-based inverse estimation/inference for a special stream

of cases, which are of particular interest in toxicology studies. For such cases, attention

is focused on modeling two-dimensional dose-response data, and the subsequent derivation

of the BMD (benchmark dose) for the substance of interest. The BMD is the dose that

corresponds to a specified level of adverse response called the benchmark response (BMR),

and plays an important role in setting safety standard.

Following the notation adopted earlier, multi-source dose-response data are collected

at factor setting w = (x, z), which includes one quantitative factor x representing the dose

level, and a number of qualitative factors z with all the possible combination categories

being {cq; q = 1, 2 . . . , Q}. The expected dose-response curve is denoted as Y(x, cq) for a

subpopulation specified by cq.

The BMR can be defined as a relative change in the mean response from the control

mean, or as an absolute level [19, 46]. Either definition can be selected based on the knowl-

edge available regarding the substance’s adverse effects, and the BMR defined in one way

can be easily converted to that defined in the other. For illustration, we let the BMR be a

pre-selected absolute response in this work, and the BMD for a subpopulation cq is written

as

BMD(cq) = Y−1(BMR, cq). (3.19)

Here, we abuse the notation a little and use Y−1 to represent the functional dependence of

BMD(cq) upon BMR, assuming that the inverse mapping exists.

The collection of dose-response curves {Y(x, cq); q = 1, 2, . . . , Q} are modeled by

SKQ. To perform the inverse calculation as given in (3.19), numerical interpolation needs

to be employed based on the fitted SKQ model. In this work, the cubic spline interpolation

recommended by Hastie et al. [47] is used to perform the inverse computation for BMD

estimation.
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Denote B̂MD(cq) as the estimated BMD from the SKQ model for the subpopula-

tion cq. The uncertainty of B̂MD(cq), represented by Var[B̂MD(cq)], directly relates to

the safety standard of the substance being investigated. To estimate Var[B̂MD(cq)], nu-

merical methods have to be employed again, because explicit formula is not available.

The bootstrap resampling method developed by Kirk et al. [48] is adapted to quantify

the uncertainty of {B̂MD(cq); q = 1, 2, . . . , Q} based on the SKQ modeling of given data

{(wi,Yj(wi)); i = 1, 2, . . . , I; j = 1, 2, . . . , n(wi)}. The adapted bootstrapping algorithm is

described as follows.

Bootstrap Resampling Algorithm

Input: (a) The I design points {w1,w2, . . . ,wI}, at which real data have been col-

lected; (b) The sample variance V̂ar[ε(wi)]; i = 1, 2, . . . , I obained as in (3.14)

from the real sample data; (c) the fitted SKQ model Ŷ(w) and M̂SE[Ŷ(w)] as
given in (3.16) and (3.17), both obtained from the real data; (d) The bootstrap
sample size B.

Do for b = 1, 2, . . . , B

(i) Do for i = 1, 2, . . . , I

• Set w∗i,b = wi

• Do for j = 1, 2, . . . , n(wi)

– Randomly sample e∗i,j,b from the normal distribution

N(0,MSE(Ŷ(w∗i,b)) + V̂ar[ε(w∗i,b)])

– Set Y∗j (w∗i,b) = Ŷ(w∗i,b) + e∗i,j,b

(ii) Based on the bootstrap data

{(w∗i,b,Y∗j (w∗i,b)); i = 1, 2, . . . , I; j = 1, 2, . . . , n(w∗i,b)},

build the SKQ model and denote the resulting model as Ŷ∗b (w)

Output B SKQ models {Ŷ∗b (w); b = 1, 2, . . . , B}, respectively fitted from the B
bootstrap sample data sets

Figure 3.1: The bootstrap resampling algorithm for uncertainty quantification of BMD esti-
mates.
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Empirical studies suggest that B = 999 typically suffices as a bootstrap sample

size for the construction of confidence intervals (CIs). With the B fitted SKQ metamodels

{Ŷ∗b (w); b = 1, 2, . . . , B}, B BMD estimates can be obtained for a specified BMR and a given

subpopulation cq:

{B̂MD
∗
b(cq); b = 1, 2, . . . , B} (3.20)

Based on the bootstrap estimates given in (3.20), the nonparametric method suggested by

Davison and Hinkley [49] can be easily employed to estimate the 100αth (α ∈ (0, 1)) percentile

of B̂MD(cq). In this context, the percentile estimate is referred to as BMDL, which serves

as the lower bound of the one-sided 100α% CI for the BMD. For the subpopulation cq, the

resulting one-sided CI of B̂MD(cq) can be written as [B̂MDL(cq),∞).

3.5 Simulation Studies

Empirical case studies were designed and performed to demonstrate SKQ’s advantages to

model multi-source exposure-response data over the existing approach, SK (Appendix 6.1)

and MEM (Section 2.3) method.

Case 1: A multi-source dose-time-response case is developed to show SKQ’s modeling ef-

ficiency by pooling information across multiple data sources. The SKQ results are

compared to those provided by SK, which models each source of data separately with-

out information pooling.

Case 2: A multi-source dose-response case is developed to show that compared to MEM

(the existing information-pooling method), SKQ is a more general method which is

free of the restrictive assumptions stipulated by MEM.

The empirical studies are based on simulation experiments, i.e., sampling through

computer experiments whose outputs mimic real lab experiment data. Simulation, rather

than real lab experiments, is employed for the following reasons. First, only in a simulation-

based study, the true response surfaces (i.e., the simulation models) are available to evaluate
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the approximation delivered by methods proposed. Second, the performance of a modeling

approach can be evaluated in a rigorous statistical manner by applying it to a large number

of randomly-sampled data sets, which is impossible to achieve in real lab experiments. These

advantages of simulation studies will become clear later.

3.5.1 Case 1: Modeling Multi-Source Dose-Time-Response Data

This case is constructed based on the dose-time-response study of TiO2 nanoparticles (NPs)

performed by Porter et al. [50]. There are two quantitative factors x = (x1, x2), with

x1 ∈ [0, 15] µg representing the TiO2 dosage, and x2 ∈ [1, 112] days representing the post-

exposure time. There is one qualitative factor for the shape of NPs, which is denoted as

z. The variable z has two category levels {c1, c2}: c1 denotes short TiO2 nanobelts and c2

long TiO2 nanobelts. Each category corresponds to a different subpopulation/data source.

The vector of all the factors is denoted as w = (x, z). The response of interest is BAL

(bronchoalveolar lavage) PMNs measured in the units of 103/mouse.

Simulation Model

The simulation model, which is used to generate simulation data that mimic real experimen-

tal data, is described as follows. The true expected responses for the two subpopulations

(short and long nanobelts) are represented as {Y(x, c1),Y(x, c2)}, with specific expressions

given by Model (6.16-6.17) in the Appendix 6.2. Both Models (6.16) and (6.17) take the form

of a single-hidden layer feedforward neural network, and are estimated from real biological

data [51]. The true dose-time-response surfaces are plotted in Figure 3.2.

The true variance models used in the simulation are given as:

Var[ε(x, c1)] =
(
0.2Y(x, c1)

0.7
)2

(3.21)

Var[ε(x, c2)] =
(
0.3 exp (Y(x, c2)× 0.005)

)2
(3.22)
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(a) c1: Short TiO2 nanobelts
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(b) c2: Long TiO2 nanobelts

Figure 3.2: The true exposure-response surfaces for Case 1.

For a subpopulation cq (q = 1, 2) and at an exposure level x0, a random response y0

is simulated as

y0 = Y(x0, cq) +
√

Var[ε(x0, cq)] · ε; q = 1, 2, (3.23)

where ε is a random error generated by a standard normal random generator [52].

Case 1 is designed to compare the modeling efficiency of SKQ and SK. MEM has not

been applied to this case for the following two reasons. First, MEM relies on a common

nonlinear functional form adequate to model the underlying dose-time-response surface for

each subpopulation (data source) cq, which is very difficult, if not impossible, to identify

for the three-dimensional complex surfaces (Figure 3.2) in this case. Second, the variance

structures of (3.21-3.22) are different across the two categories, which violates the assumption

of common variance structure required by MEM. For details regarding the related MEM

assumptions, please refer to Section 2.3.
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Sampling via Simulation

Two types of data sets are obtained via simulation: an estimation data set (EDS) for model

estimation/inference, and an validation data set (VDS) which is used to evaluate the quality

of the model estimated from an EDS.

For Case 1, an EDS includes a total of 32 distinct design points: 16 points for subpopu-

lation c1 (short nanobelts) depicted as stars in Figure 3.3(a), and 16 points for subpopulation

c2 (long nanobelts) depicted as stars in Figure 3.3(b). At each design point, Model (4.13)

is used to generate 8 i.i.d. random responses; that is, 8 replications are assigned to each

distinct design point.

The VDS includes a dense grid of 16, 912 check points, which are depicted as dots in

Figure 3.3. The collection of all the check points is denoted as C, with C = Cc1
⋃ Cc2 ; Cc1

denotes the collection of dots in Figure 3.3(a), and Cc2 the collection of dots in Figure 3.3(b).

Further, Ccq (q = 1, 2) is divided into a number of subsets: Ccq = Ccq ,1
⋃ Ccq ,2⋃ · · ·⋃ Ccq ,15,

where Ccq ,k represents the collection of check points within the subregion specified by the

dose range [k − 1, k); the subregions are shown in Figure 3.3(a) and (b) by the alternating

white and gray rectangles. At each check point, the true expected response Y(·) is available

(Figure 3.2) to evaluate the models fitted from the EDS.

Applying the Modeling Methods

On an EDS generated following the design as given in Figure 3.3, both SK and SKQ were

applied to model the target response surfaces.

SK has no information-pooling ability, and fits a separate SK model for each subpopu-

lation solely based on the corresponding subset of data. When applying SK, the exponential

correlation function (3.5) is adopted to capture the extrinsic variability for both subpopu-

lations. Two separate SK models are fitted for the short-nanobelt and long-nanobelt data

subsets, respectively. At an arbitrary setting w = (x, cq), Formula (6.13) and (6.14) were
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Figure 3.3: Deign points in the EDS (estimation data set) and check points in the VDS
(validation data set)

used, based on the fitted SK model associated with cq, to obtain respectively the point

estimate and CI of the expected response Y(w).

To apply SKQ, the correlation functions for the extrinsic variability (3.4) are specified

as follows: the exponential correlation function (3.5) is adopted for K(x,x′), and the EC

(isotropic) correlation function (3.6) is used for τ
(`)

z`,z
′
`
. Fitted from an EDS consisting of two

sources of data subsets, the resulting SKQ model can be used for estimation and inference.

At an arbitrary factor setting w = (x, cq), Formula (3.16) provides the point estimate for

Y(w); and (3.18) gives the CI for Y(w).

The Pooling Effects of SKQ

SKQ’s strength lies in its ability to pool information across multiple subpopulations/data

sources. The estimation quality w.r.t a subpopulation can be substantially improved over

SK because SKQ allows for the borrowing information (or data) from all the other subpop-

ulations. To demonstrate SKQ’s estimation efficiency, herein we compare the performance

of SK and SKQ in terms of predicting w.r.t Y(·).
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The estimated root mean squared error (ERMSE) defined in (3.24) is adopted as the

performance measure. Recall that Ccq ,k is the collection of the checkpoints for subpopulation

cq included in the rectangle specified by dose range [k − 1, k) as shown in Figure 3.3. We

define

ERMSE(Ccq ,k) =

√√√√ 1

#[Ccq ,k]
∑

w∈Ccq,k

(
Ŷ(w)− Y(w)

)2
; q = 1, 2; k = 1, 2, . . . , 15, (3.24)

where #[Ccq ,k] represents the total number of check points in the set Ccq ,k. Clearly, (3.24)

measures the average deviation of Ŷ(·) from the true value Y(·) at the check points in Ccq ,k.

Applying a modeling method (SK or SKQ) to one EDS, denoted as EDS(r) is consid-

ered as one macro-replication, and leads to a set of performance statistics

{ERMSE(r)(Ccq ,k); q = 1, 2; k = 1, 2, . . . , 15}, r = 1, 2, . . . , R.

For empirical evaluation, a total of R = 1000 independent EDS are generated by simulation

experiments. The average ERMSE across the macro-replications are calculated as

{ERMSE(Ccq ,k) =
1

R

R∑
r=1

ERMSE(r)(Ccq ,k); q = 1, 2; k = 1, 2, . . . , 15},

, and are summarized in Table 3.1. Evidently, in each subset of check points Ccq ,k, the point

estimates given by SKQ are much more accurate than those provided by SK. For 22 out of

the 30 check-point subsets in Table 3.1, the average ERMSE given by SKQ is less than half

of that given by SK. Clearly, by synergistically modeling multi-source data, SKQ leads to

substantially improved prediction results.

3.5.2 Case 2: Modeling Multi-Source Dose-Response Data

This case is derived from the dose-response study of TiO2 nanoparticles (NPs) after 3 days

of exposure performed by Porter et al. [50]. There is one quantitative factor x representing
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Table 3.1: Comparison of the estimation results by SK and SKQ for Case 1

Subset of
checkpoints

ERMSE(Ccq ,k) Subset of
checkpoints

ERMSE(Ccq ,k)
SK SKQ SK SKQ

Cc1,1 1.6110 1.5876 Cc2,1 5.1988 2.9626
Cc1,2 2.0351 1.4277 Cc2,2 4.1851 2.5193
Cc1,3 2.4907 1.2814 Cc2,3 3.4493 2.1025
Cc1,4 2.9825 1.1738 Cc2,4 2.8623 1.6950
Cc1,5 3.4742 1.1290 Cc2,5 2.4246 1.3363
Cc1,6 3.9355 1.1518 Cc2,6 2.1431 1.0676
Cc1,7 4.3396 1.2258 Cc2,7 1.9998 0.9487
Cc1,8 4.6247 1.3294 Cc2,8 1.9694 1.0057
Cc1,9 4.7185 1.4512 Cc2,9 2.0524 1.1582
Cc1,10 4.5792 1.5929 Cc2,10 2.2103 1.3311
Cc1,11 4.2379 1.7578 Cc2,11 2.3942 1.4815
Cc1,12 3.8478 1.9497 Cc2,12 2.5792 1.5902
Cc1,13 3.7447 2.1753 Cc2,13 2.7650 1.6665
Cc1,14 4.3577 2.4427 Cc2,14 2.9780 1.7489
Cc1,15 5.8143 2.7547 Cc2,15 3.2707 1.9007

the dose level, and x ∈ [0, 20] µg. The one qualitative factor is denoted as z with three

categories {c1, c2, c3}. Each category is used to represent a different batch of animals. The

vector of factors is written as w = (x, z). The response of interest is BAL (bronchoalveolar

lavage) PMNs measured in the units of 103/mouse.

Simulation Model

Simulation data that mimic the real-experiment data are generated according to the following

true dose-response model

Y(x, c1) = 20 exp(x/11)

Y(x, c2) = 19.5 exp(x/10.5)

Y(x, c3) = 26 exp(x/13.2),

(3.25)

and the variance model

Var[ε(x, cq)] = 0.22Y(x, cq)
2×0.6; q = 1, 2, 3. (3.26)
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For a certain category cq and at a dose level x0, a random response y0 is simulated

as:

y0 = Y(x0, cq) + 0.2Y(x0, cq)
0.6 · ε; q = 1, 2, 3, (3.27)

where ε denotes a random error generated by a standard normal random generator. [52].

Case 2 is used to compare SKQ and MEM, and is designed in such a way that the

two basic assumptions required by MEM are met: (i) A nonlinear functional form can be

easily identified and employed to model the target dose-response curves; (ii) There is a

common variance structure (3.26) across different data sources. The third assumption made

by MEM is the multivariate normality of the model coefficient vector (Section 2.3). According

to (3.25), the three true coefficient vectors in this case are: (20, 11)>, (19.5, 10.5)> and

(26, 13.2)>, based on which it is hardly possible to judge whether the normality assumption

holds or not; this is quite typical of multi-source data.

Simulation-Based Sampling

As in Case 1, both EDS and VDS are generated in this study for model estimation and

evaluation respectively. To generate an EDS, the design as shown in Table 3.2 is used: 8

replications are carried out at 5 evenly-spaced dose levels for each of the three categories.

An example EDS is given in Table 6.1 (the Appendix 6.3).

Table 3.2: Design points in the EDS (estimation data set) for Case 2.

x: dose 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
cq: subpopulation c1 c2 c3

Applying the Modeling Methods

The two alternative information-pooling methods, MEM and SKQ, were applied respectively

to the EDS given in Table 6.1.
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To perform MEM, the common nonlinear functional form of the dose-response curve

for each of the three subpopulations is assumed to be

Y(x, cq) = αcq,1 exp(x/αcq,2); q = 1, 2, 3, (3.28)

with αcq = (αcq,1 , αcq,2) being the unknown parameters for subpopulation cq (q = 1, 2, 3).

The variance model is assumed to follow

Var[ε(x, cq)] = σ2Y(x, cq)
2γ; q = 1, 2, 3, (3.29)

where σ and γ are unknown parameters common to different subpopulations. Note that

by using (3.28) and (3.29), there is no model misspecification problem for MEM and only

unknown parameters need to be estimated. This is meant to the advantage of MEM.

With the assumed forms (3.28-3.29), MEM is performed on the EDS in Table 6.1.

The fitted dose-response models are:

Ŷ(x, c1) = 20.04 exp(x/11.09)

Ŷ(x, c2) = 19.60 exp(x/10.54)

Ŷ(x, c3) = 26.24 exp(x/13.38),

(3.30)

and the fitted variance model is

V̂ar[ε(x, cq)] = 0.2142Ŷ(x, cq)
2×0.597; q = 1, 2, 3. (3.31)

With the fitted MEM, the expected response can be estimated at any dose level, and the BMD

estimate can be obtained for a given BMR; the confidence intervals can also be constructed

for these quantities of interest (see Appendix 2.3).

When applying SKQ to the same EDS (Table 6.1), the correlation (3.4) is constructed

as follows: the exponential correlation function (3.5) is used to model the correlations be-
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tween quantitative variables, and the MC correlation function (3.7) is used to model the

correlations across different levels of qualitative factors. Normalization of the original data

(Table 6.1) was also performed so that both the quantitative factors and responses range

over [0,1]. Applying the maximum likelihood estimation procedure (see the subsection 3.3)

on the normalized data leads to the fitted parameters for the SKQ model as displayed in

Table 3.3.

Table 3.3: The SKQ parameters estimated from the normalized dose-response data for Case
2.

β̂0 δ̂2 θ̂1 p̂ φ̂1 φ̂2 φ̂3

0.5426 0.1272 1.3588 1.9168 0.01 0.0144 0.022

With the fitted SKQ model, the expected response can be estimated at any dose

level (the subsection 3.3), and the inverse BMD can be obtain numerically (the subsection

3.4); the confidence intervals for these quantities can also be obtained accordingly. Note

that when utilizing the SKQ specified by Table 3.3 for the estimation/inference, a simple

conversion calculation is needed to ensure that the estimates are given on the original scale,

since those parameters are obtained from the normalized data.

Comparison of the Two Modeling Methods

The estimation/inference abilities of MEM and SKQ are compared in terms of (I) the ex-

pected responses as well as (II) the BMD values.

(I) Estimation/Inference of the expected response Y(·)

From the one EDS given in Table 6.1, both MEM and SKQ were applied as described earlier,

and the estimation results for the two methods are displayed in Figure 3.4. The circles denote

the EDS, and are plotted in both Figure 3.4(a) and (b). The dashed curves represent the

estimated expected responses, and the solid curves are the lower and upper 95% CI bands

for the true expected responses. As shown in Figure 3.4, over the dose range, the widths

of the CIs (that is, the vertical distances between the lower and upper CI bands) provided

31



by SKQ are typically narrower than those given by MEM; this is illustrated for one EDS in

Figure 3.4, which holds consistently for all 1000 macro-replications carried out in this study.

0 10 20
0

20

40

60

80

100

120

140

160

c1
0 10 20

0

20

40

60

80

100

120

140

160

c2
0 10 20

0

20

40

60

80

100

120

140

160

c3

(a) MEM fitted dose-response curves

0 10 20
0

20

40

60

80

100

120

140

160

c1
0 10 20

0

20

40

60

80

100

120

140

160

c2
0 10 20

0

20

40

60

80

100

120

140

160

c3

(b) SKQ fitted dose-response curves

Figure 3.4: Comparison of the dose-response fitting results from MEM and SKQ

As explained in Case 1, one macro-replication refers to the process of applying a

method on one randomly-generated EDS. Using a modeling method (MEM or SKQ), R =

1000 macro-replications lead to 1000 CIs of the true expected response Y(·) for any check

point specified in terms of (x, cq). Hence, the coverage probability of the CIs can be estimated

as the percentage of the 1000 CIs that include the true expectation Y(·). In our simulation

study, Y(·) is available from the simulation model (3.25) for the purpose of evaluating the

CIs. Ideally, among these 1000 CIs, the percentage of the CIs that actually contain Y(·)

should be very close to 95%, the nominal coverage level.

Table 3.4 presents the coverage probabilities of the 95% CIs given by MEM and SKQ

respectively, based on each method’s 1000 macro-replications. The first two rows of Table

3.4 specify a number of check points. The estimated coverage probabilities of the MEM CIs

are given in the row marked as “MEM”, and are all 1.000 at the check points, which is way

higher than the nominal 95%. The estimated coverage probabilities resulting from SKQ are

given in the row labeled as “SKQ”, and are much closer to the nominal percentage 95%.
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Therefore, as can be seen from Figure 3.4 and Table 3.4, SKQ is able to provide

tighter CIs (i.e., CIs that are narrower and with more on-target coverage probabilities) for

the true expected responses, while MEM overshoots the nominal coverage percentage by

providing overly conservative CIs.

Table 3.4: Comparison of MEM and SKQ in terms of the CI coverage probabilities for the
expected response Y(·).

subpopulation c1 subpopulation c2 subpopulation c3
x:dose 2.5 7.5 12.5 17.5 2.5 7.5 12.5 17.5 2.5 7.5 12.5 17.5
MEM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SKQ 0.957 0.966 0.974 0.933 0.952 0.955 0.970 0.926 0.955 0.970 0.964 0.968

(II) Estimation/Inference of the BMD

Herein, the two methods, MEM and SKQ, are compared in terms of their inverse estimates

for the BMD associated with a pre-specified BMR. For demonstration, the BMR is set as 42

103/mouse in this case.

As already explained, R = 1000 macro-replications were performed using each of the

two methods based on the 1000 data sets {EDS(r); r = 1, 2, . . . , R}. From the rth (r =

1, 2, . . . , R) macro-replication, a one-sided 95% CI was constructed for BMD(cq), q = 1, 2, 3,

following the bootstrapping resampling method (Section 3.4); the lower bound of the one-

sided CI is called BMDL. The BMDLs estimated by MEM are denoted as

{B̂MDL
(r)

MEM(cq); q = 1, 2, 3; r = 1, 2, . . . , 1000}, (3.32)

and the BMDLs obtained by SKQ are represented as

{B̂MDL
(r)

SKQ(cq); q = 1, 2, 3; r = 1, 2, . . . , 1000}, (3.33)

The true values for BMD(cq), q = 1, 2, 3, can be easily obtained for BMR= 42 based on the

simulation model (3.25), and are represented by the horizontal lines in Figure 3.5 (a), (b),
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and (c) corresponding to the three subpopulations. Figure 3.5 (a) is devoted to the subpop-

ulation c1, and the two box plots are respectively for {B̂MDL
(r)

MEM(c1); r = 1, 2, . . . , 1000}

and {B̂MDL
(r)

SKQ(c1); r = 1, 2, . . . , 1000}; Figure 3.5 (b) and (c) are plotted for the other two

subpopulations. Clearly, the BMDLs given by SKQ are much closer to the true BMD than

those provided by MEM.
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Figure 3.5: Box plots for the BMDLs resulting from the two modeling methods.

Each BMDL estimate in (3.32) and (3.33) corresponds to a one-sided 95% CI:

[BMDL,∞]. Table 3.5 compares the coverage probabilities of the CIs obtained from MEM

and SKQ. It can be seen that the coverage probabilities of SKQ is close to the nominal level

95%, whereas MEM’s estimated probabilities are all 1.000. Therefore, as shown in Figure

3.5 and Table 3.5, SKQ is able to give more informative CIs of the BMD as compared to

MEM.

Table 3.5: Comparison of MEM and SKQ in terms of the CI coverage probabilities for the
BMD.

subpopulation c1 subpopulation c2 subpopulation c3
Pre-specified BMR 42 42 42

MEM 1.000 1.000 1.000
SKQ 0.9349 0.933 0.959
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Chapter 4

Design of Multiple-Source Experiments

In this chapter, we develop a two-stage DOE procedure for multi-source exposure-

response modeling. Compared to standard once-and-for-all designs, sequential (multi-stage)

designs typically lead to (i) savings in sample size if model estimates of desired accuracy

(measured by the uncertainty/variabilty of estimates) are to be achieved, or (ii) model esti-

mates of improved accuracy given a fixed total sample size [15, 53]. Since biological studies

are typically performed with restricted sample sizes, the two-stage design procedure in this

chapter is tailored to achieve models of the highest quality with a pre-specified total sample

size. It is worth pointing out that the two-stage design can be easily adapted to a design

procedure which is driven by a desired model accuracy (such as the variance of the BMD

esitmate), which is not constrained by a pre-specified total sample size; such a procedure

may involve multiple (more than two) stages of experiments.

4.1 The Two-Stage Procedure

Given data involving Q− 1 sources, the inputs of the two-stage DOE procedure for Source

Q are given as

Input 1: <, the design region of interest of Source Q.

Input 2: N , the total sample size available for the Source Q.

Input 3: For Source Q, NI , the batch size of the experiments (i.e., the number of samples)

performed at Stage I (Section 4.1.1), which implies that the sample size is N −NI at

Stage II.
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Input 4: BMR (optional), the pre-specified benchmark response level, which is not neces-

sary unless the design criterion is chosen as Var[B̂MD(cQ)].

The outputs of the procedure include: the design of experiments for the N samples for the

Source Q; the SKQ model, which is fitted on data from all Q sources; and the estimated

uncertainty of the fitted SKQ

Suppose that some existing exposure-response data have been obtained from Q − 1

sources. The DOE task is to find the design for Source-Q experiments to optimize the model

estimation quality. Figure 4.1 provides an overview of the two-stage design for the Source

Q. In Stage I, pilot experiments with a sample size of NI are carried out following the initial

design, and an initial statistical modeling/inference is performed. The design augmentation

in Stage II is performed utilizing the information obtained in Stage I, and N −NI additional

experiments are carried out following the augmented design.

Stage I:

• Perform the initial design with NI samples (Section 4.1.1).

• Carry out the NI experiments to obtain the Stage-I data.

• Based on the Stage-I data newly-obtained for Source Q and the existing
data from Q−1 sources, perform the SKQ modeling (Section 3.3) to derive
the information regarding the target exposure-response relationships.

Stage II:

• Utilize the information derived from Stage I to guide the Stage II design;
this design augmentation determines where to perform the remaining N −
NI experiments for Source Q.

• Carry out the N −NI experiments following the augmented design.

• Perform the statistical modeling and inference by SKQ (Section 3.3), based
on all the data available at the Q sources.

Figure 4.1: Overview of the two-stage design procedure.

Both stages of the design in Figure 4.1 are restricted to Source Q only, and intends

to address the following question: Given the data collected from Q − 1 distinct sources, at

what experiment conditions of the Source Q should the total N samples be allocated?
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Two alternative sets of notations are used in this dissertation to represent a design.

One is given as:

D̃ =

 w1 w2 · · · wD

n1 n2 · · · nD

 (4.1)

with wd = (x>d , cd)
> being the experiment condition, nd the number of replications assigned

to wd, and D the total number of distinct design points in D̃. Clearly, the total sample size

given by D̃ is
∑D

d=1 nd. Alternatively, a design (4.1) can also be represented by

D =

(
w1 w2 · · · wM

)
(4.2)

with M =
∑D

d=1 nd being the number of samples. Note that the array D may well include

the same design points for multiple times which corresponds to multiple replications. In the

remainder of this dissertation, both formulas will be used to refer to a design.

4.1.1 Stage I: Initial Design

At Stage I, NI preliminary samples are to be performed for Source Q. Given N , the total

number of samples available for Source Q, we recommend to set NI as 1
4
N to 1

2
N . Guidelines

for specifying NI can also be found in Santner et al. [15]. Having selected a value for NI ,

the next question is how to allocate these NI samples. Following the notation in (4.1), the

initial design is represented as

D̃(I) =

 w
(I)
1 w

(I)
2 · · · w

(I)
DI

n
(I)
1 n

(I)
2 · · · n

(I)
DI

 (4.3)

where {w(I)
d = (x

(I)>
d , cQ)>; d = 1, 2, . . . , DI} and DI is the number of distinct experiment

conditions in Stage I for the Source Q.

At Stage I, a total ofNI samples are to be allocated within the feasible region of Source

Q, out of the following considerations. First, the initial design points should provide a fair
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coverage of the feasible region, and a space-filling design such as Latin hypercube designs

[54] and orthogonal Latin hypercube designs [55] could be adopted. Second, endpoints of the

design region have to be included in the design to avoid potential extrapolation [56]. Third,

we have n
(I)
d ≥ 3 for any d, to allow for the detection of variance heterogeneity. Lastly, in

the absence of any other concerns, we can simply set n
(I)
1 = n

(I)
2 = · · · = n

(I)
I . Examples of

such initial designs can be found in Sections 4.2.1 and 4.2.2.

Following the initial design, a total of NI samples are collected, and are denoted as

{(x(I)
d , cQ),Y(x

(I)
d , cQ); d = 1, 2, . . . , DI}. Based on the initial data for Source Q, and the

existing data from Q−1 sources, the SKQ model is fitted and will be used to guide the DOE

in Stage II.

4.1.2 Stage II: Design Augmentation

The task of the Stage-II design augmentation is to find out how to allocate the rest N −NI

samples in the design region of the Source Q. The stage-II design is denoted by

D̃(II) =

 w
(II)
1 w

(II)
2 · · · w

(II)
M

n n · · · n

 , (4.4)

where the same design point may appear multiple times, and n represents the number of

replications performed at a design point every time experiments are to be performed at that

point.

Hence, M = (N −NI)/n design points are to be determined by solving the optimiza-

tion problem (4.5).

min
D̃(II)

C(·)

Subject to the existence of NI Source-Q samples {(x(I)
d , cQ),Y(x

(I)
d , cQ); d = 1, 2, . . . , NI}

and the existing data from Q− 1 sources.

(4.5)
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Solving (4.5) is challenging. (i) First, there may well not be closed-form formulation for the

objective criterion C(·). The design criterion in (4.5) quantifies the quality of the fitted SKQ

model from all the data available (that is, the existing data from Q−1 sources, the initial data

for Source Q, and the data to be collected in Stage II for Source Q), and a range of criteria

can be adopted [39] such as IMSE, MMSE and entropy. For instance, in Section 4.2.2, the

criterion is set to be Var[B̂MD(cQ)], the variability of the estimated BMD rendered by the

fitted SKQ, and Var[B̂MD(cQ)] cannot be evaluated analytically. (ii) Second, determining

D̃(II) simultaneously is difficult due to the high dimension (which is M = NII/n) of the

decision variables. Hence, numerical methods are developed to evaluate the design criterion

if necessary, and heuristics could be adopted to add a portion of the M design points at a

time until all the M points have been located. In addition, global optimization algorithms,

such as the Matlab function MultiStart which allows for parallel computing, could be used

for optimization search.

Following the augmented design D̃(II), Stage-II experiments will be performed. Based

on all the available data across the Q sources, SKQ model fitting and inference will be

performed to obtain the exposure-response models, and to quantify the uncertainty of the

estimates of interest.

4.2 Simulation Studies

The proposed two-stage design procedure has been evaluated via simulation studies.

4.2.1 Case 1: Design for Multi-Source Dose-Time-Response Experiments

This case is derived based on the dose-time-response study of TiO2 nanoparticles (NPs), the

one in Subsection 3.5.1. There are two quantitative factors x = (x1, x2), with x1 ∈ [0, 15] µg

representing the TiO2 dosage, and x2 ∈ [1, 112] days representing the post-exposure time.

There is one qualitative factor for the shape of NPs, which is denoted as z. The variable z

has two category levels {c1, c2}: c1 denotes short TiO2 nanobelts and c2 long TiO2 nanobelts.
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(a) c1: Short TiO2 nanobelts
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(b) c2: Long TiO2 nanobelts

Figure 4.2: The true exposure-response surfaces for Design Case 1.

Each category corresponds to a different subpopulation/data source. The vector of all the

factors is given as w = (x, z). The response of interest is BAL (bronchoalveolar lavage)

PMNs measured in the units of 103/mouse.

Simulation Models

The simulation model, which is used to generate simulation data that mimic real experimen-

tal data, is described as follows. The true expected responses for the two subpopulations

(short and long nanobelts) are represented as {Y(x, c1),Y(x, c2)}, with specific expressions

given by Model (6.16-6.17) in Appendix 6.2. Both Models (6.16) and (6.17) take the form

of a single-hidden layer feedforward neural network, and are estimated from real biological

data [51]. The true dose-time-response surfaces are plotted in Figure 4.2.

The true variance models used in the simulation are given as:

Var[ε(x, c1)] =
(
0.02Y(x, c1)

0.4
)2

(4.6)

Var[ε(x, c2)] =
(
0.03 exp (Y(x, c2)× 0.05)

)2
(4.7)
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For a subpopulation cq (q = 1, 2) and at an exposure level x0, a random response y0

is simulated as

y0 = Y(x0, cq) +
√

Var[ε(x0, cq)] · ε; q = 1, 2, (4.8)

where ε is a random error generated by a standard normal random generator [52].

The true models (6.16-6.17) and (4.6-4.7) are blind to the two-stage design, and are

only used for two purposes in this study: (i) to generate simulation data that mimic real

biological data, and (ii) to serve as the true benchmark to evaluate the model estimates

obtained by the proposed DOE procedure.

Existing data for Q− 1 sources

The existing data obtained for short TiO2 nanobelts (Source 1) include a total of 128 samples,

which are allocated to the design points depicted as solid stars in Figure 4.3. At each of the

16 design points, there are 8 replications. The response subject to random errors is generated

by plugging the value of xi and c1 into (4.8).
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Figure 4.3: Design points and check points in the VDS (validation data set) of Short TiO2

nanobelts for Case 1
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Applying the two-stage design

The two-stage DOE procedure (Figure 4.1) is applied to obtain the DOE for long TiO2

nanobelts (Source 2). The inputs of the procedure are given as follows:

Input 1: < = [0, 15]× [1, 112], the dose and time ranges of interest of long TiO2 nanobelts.

Input 2: N = 64, the total sample size available for long TiO2 nanobelts.

Input 3: NI = 32: the sample size available to Stage I, which implies that the sample size

is NII = 32 at Stage II.

The criterion in the design optimization (4.5) is set as maxw0∈< M̂SE[Ŷ(w0)] for long TiO2

nanobelt.

Stage I. Following Section 4.1.1, a sample of NI = 32 samples was obtained in Stage

I as solid stars in Figure 4.4 (a): four distinct design points are selected over the design

region < = [0, 15] × [1, 112] with 8 replications at each point. At each design point xi

(i = 1, 2, . . . , 32), the response subject to random errors is generated by plugging the value

of xi and c2 into (4.8).

Stage II. For Stage II, n = 8, and the augmented design points obtained from the

design optimization are depicted as diamonds in Figure 4.4 (a). At each point, 8 replications

are allocated.

Comparison with the traditional design

The results presented above in Section 4.2.1 represent the outcome of applying the two-stage

design for one time. Due to the random nature of responses, re-applying the procedure will

lead to different responses of Stage I, and different fitted SKQ model; and consequently, the

augmented design in Stage II will turn out to be different; the final 64-sample data will be

different, and the final modeling/inference results will be different.

Also because of the randomness in responses, every time the same traditional design

is applied, a different set of data will be obtained, and hence different modeling/inference
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(c) Traditional 2

Figure 4.4: Design points and check points in the VDS (validation data set) of long TiO2

nanobelts of three design approaches for Case 1

results will be obtained. Two traditional designs for this case are given in Figures 4.4 (b)

and (c) respectively.

Each of the three design approaches was applied for 100 times with a given sample

size of N = 64. As a result, 100 sets of results were obtained for each approach respectively.

Since the primary goal of this study is to minimize maximum of MSE over the design region,

<, for the long TiO2 nanobelts, the two approaches are compared in terms of DEV =

maxw0∈< |Ŷ(w0)− Y(w0)|, where w0 represents a check point of the long TiO2 nanobelts.

Specifically, applying the two-stage design 100 times leads to 100 data sets; from each

data set, SKQ in Section 3.3 were performed to obtain the model. From the 100 data sets,

the 100 DEVs obtained are denoted as

{DEV
(r)
Two-stage; r = 1, 2, . . . , 100} (4.9)

In the same way, applying each traditional design (Figures 4.4 (b) and (c)) 100 times also

results in 100 data sets respectively. Performing the statistical modeling and inference on
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these data sets respectively leads to 100 DEVs, which are denoted as

{DEV
(r)
Trad1; r = 1, 2, . . . , 100} and {DEV

(r)
Trad2; r = 1, 2, . . . , 100}. (4.10)

The box plots are generated in Figure 4.5 summarize the DEVs (4.9) obtained from

our two-stage design (Figure 4.4 (a)) and the DEVs (4.10) obtained from the two traditional

designs (Figures 4.4 (b) and (c)). A box plot provides the basic information regarding the

distribution of a data set (say, the DEVs in (4.10)), with the lower hinge being the 25th

percentile, and the upper hinge being the 75th percentile of the data. For details of box

plots, please refer to McGill et al. [57].
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(b) c2: Long TiO2 nanobelts

Figure 4.5: The box plots for the DEVs resulting from the three design approaches for Case
1.

Comparing the boxplots in Figure 4.5, it is evident that the DEVs resulting from

our two-stage procedure (Figures 4.4 (a)) are smaller than that of two traditional designs

(Figures 4.4 (b) and (c)). That is, with the same sample size, the two-stage design leads

to fitted SKQ models with smaller DEVs from the true response surface for long nanobelts

(Source 2).
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For comparison of the three design approaches, a table as the one in Section 3.5 has

been generated to compare these approaches in terms of ERMSE(Ccq ,k) (Subsection 3.5.1).

It can be seen from Table 4.1 that the two-stage design excels for the long nanobelts, the

modeling quality of which is used to drive the two-stage design; and performs about the

same as the other two traditional designs in terms of short nanobelts.

Table 4.1: Comparison of the estimation results from three design methods for Case 1

Subset of
checkpoints

ERMSE(Ccq ,k) Subset of
checkpoints

ERMSE(Ccq ,k)
Two-stage Trad1 Trad2 Two-stage Trad1 Trad2

Cc1,1 3.5140 3.6303 3.6702 Cc2,1 1.0107 2.5880 4.2095
Cc1,2 3.1735 3.2465 3.2129 Cc2,2 0.6562 2.2948 5.1801
Cc1,3 2.8757 2.9045 2.7788 Cc2,3 0.4181 1.9398 6.0649
Cc1,4 2.5929 2.5608 2.3235 Cc2,4 0.4635 1.5435 6.9346
Cc1,5 2.3338 2.2150 1.8506 Cc2,5 0.7519 1.2260 7.7804
Cc1,6 2.0895 1.8663 1.3593 Cc2,6 1.0803 1.1551 8.5845
Cc1,7 1.8676 1.5327 0.8743 Cc2,7 1.3825 1.3577 9.3195
Cc1,8 1.6925 1.2530 0.5006 Cc2,8 1.6263 1.7050 9.9525
Cc1,9 1.5871 1.0773 0.5442 Cc2,9 1.7887 2.1068 10.4443
Cc1,10 1.5568 1.0363 0.8887 Cc2,10 1.8625 2.5569 10.7505
Cc1,11 1.5857 1.1022 1.2434 Cc2,11 1.8955 3.1089 10.8459
Cc1,12 1.6434 1.2150 1.5344 Cc2,12 1.9785 3.7922 10.7804
Cc1,13 1.7028 1.3306 1.7409 Cc2,13 2.0840 4.5050 10.6734
Cc1,14 1.7463 1.4337 1.8592 Cc2,14 2.0936 5.1003 10.5820
Cc1,15 1.7606 1.5301 1.8964 Cc2,15 2.0218 5.5590 10.4671

4.2.2 Case 2: Design of Multi-Source Dose-Response Experiments

Simulation models

In this case, the simulation models (4.11) and (4.12) are derived from the real experimental

bioassay data for therapeutic protein relaxin [58]: There is only one quantitative factor x

representing the relaxin dosage in terms of ng/ml, and x ∈ [0, 22] . The one qualitative factor

is denoted as z with two categories {c1, c2}. Each category is used to represent a different

run of doing the experiment. The vector of factors is written as w = (x, z). The response y
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is intracellular Cyclic adenosine monophosphate (cAMP) measurements by normal human

uterine endometrial cells in the presence of relaxin determined by Radioimmunoassay (RIA).

The response is measured in the units of pmoles/ml. In this study, it is of particular interest

to establish the BMD corresponding to a BMR of 40 (pmoles/ml) for the relaxin endpoint.

Simulation data are generated according to the following true four-parameter logistic

models

Y(x, c1) = 1.76 +
127.32− 1.76

1 + exp (1.43× (log (x)− 1.57))

Y(x, c2) = 1.90 +
105.56− 1.90

1 + exp (1.59× (log (x)− 1.23))

(4.11)

and the true variance models

Var[ε(x, cq)] = 0.22Y(x, cq)
2×0.4; q = 1, 2. (4.12)

For a subpopulation cq (q = 1, 2) and at an exposure level x0, a random response y0

is simulated as

y0 = Y(x0, cq) +
√

Var[ε(x0, cq)] · ε; q = 1, 2, (4.13)

where ε is a random error generated by a standard normal random generator [52].

Existing data from Q− 1 sources

The existing data for run c1 (Source 1) includes a total of 40 samples, which are allocated

following the design in Table 4.2: five evenly-spaced design points are selected over the dose

range < = [0, 22] with 8 replications at each point. At each dose level xi (i = 1, 2, . . . , 40),

the response subject to random errors is generated by plugging the value of xi and c1 into

(4.11), and the response data are given in Table 4.3.
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Table 4.2: The design of experiments of run c1 for Case 2.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.5 5.5

x11 x12 x13 x14 x15 x16 x17 x18 x19 x20
5.5 5.5 5.5 5.5 5.5 5.5 11.0 11.0 11.0 11.0

x21 x22 x23 x24 x25 x26 x27 x28 x29 x30
11.0 11.0 11.0 11.0 16.5 16.5 16.5 16.5 16.5 16.5

x31 x32 x33 x34 x35 x36 x37 x38 x39 x40
16.5 16.5 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0

Table 4.3: The simulation response data of run c1 for Case 2.

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10
1.72 2.04 1.48 1.34 1.38 1.85 1.69 1.61 69.59 70.98

y11 y12 y13 y14 y15 y16 y17 y18 y19 y20
69.94 71.13 70.29 68.65 71.48 70.92 99.22 99.41 97.76 97.09

y21 y22 y23 y24 y25 y26 y27 y28 y29 y30
98.30 99.53 97.12 98.58 112.33 106.81 109.03 110.91 108.18 112.38

y31 y32 y33 y34 y35 y36 y37 y38 y39 y40
106.41 108.38 115.66 115.05 116.05 113.60 114.88 115.92 116.02 112.54

Applying the two-stage design

The two-stage DOE procedure (Figure 4.1) is applied for the efficient collection of dose-

response data, aiming at obtaining a good BMD estimate corresponding to the target BMR=

40. The inputs of the procedure are given as follows:

Input 1: < = [0, 22], the dose range of interest of run c2 (Source 2).

Input 2: N = 40, the total sample size available for run c2.

Input 3: NI = 24: the sample size available at Stage I, which implies that the sample size

is N −NI = 16 at Stage II.

Input 4: BMR= 40: the pre-specified benchmark response.

The criterion in the design optimization (4.5) is set as Var[B̂MD(c2)] in this case.
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Stage I Following Subsection 4.1.1, in stage I, a sample of NI = 40 observations was

obtained for run c2 (Source 2) and given in Table 4.4: three evenly-spaced distinct design

points are selected over the dose range < = [0, 22] with 8 replications at each point. At

each dose level xi (i = 1, 2, . . . , 24), the response subject to random errors is generated by

plugging the value of xi and c2 into (4.11), and the response data are obtained as given in

Table 4.5.

Table 4.4: The design of experiments in Stage I of run c2 for Case 2.

x41 x42 x43 x44 x45 x46 x47 x48 x49 x50 x51 x52
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.0 11.0 11.0 11.0

x53 x54 x55 x56 x57 x58 x59 x60 x61 x62 x63 x64
11.0 11.0 11.0 11.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0

Table 4.5: The simulation response data in Stage I of run c2 for Case 2.

y41 y42 y43 y44 y45 y46 y47 y48 y49 y50 y51 y52
1.74 2.13 1.93 1.98 2.37 2.06 2.08 1.63 91.99 92.22 92.19 92.17

y53 y54 y55 y56 y57 y58 y59 y60 y61 y62 y63 y64
91.52 91.07 93.52 90.29 100.55 99.69 100.53 99.42 99.58 99.09 101.59 99.13

Stage II The augmented design was determined with the following givens: the exist-

ing data of run c1 (Source 1), Stage-I data of run c2 (Source 2), the SKQ model fitted from

the existing and Stage-I data, and the target BMR= 40.

The resulting augmented design is provided in Table 4.6.

Table 4.6: The augmented design in Stage II of run c2 for Case 2.

x1 x2 x3 x4 x5 x6 x7 x8
2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4

x9 x10 x11 x12 x13 x14 x15 x16
3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7
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Figure 4.6: The true and SKQ estimated dose-response curves for Case 2.

Following the augmented design (Table 4.6), simulation was performed to obtain the

responses, which are given in Table 4.7.

Table 4.7: The simulation response data in Stage II of run c2 for Case 2.

y1 y2 y3 y4 y5 y6 y7 y8
40.66 38.87 40.44 39.47 39.98 39.61 39.77 39.59

y9 y10 y11 y12 y13 y14 y15 y16
56.77 56.86 55.88 56.83 57.55 57.82 58.59 58.23

From all the data available for runs c1 and c2 (Sources 1 and 2), SKQ modeling

was performed (Section 3.3). In Figure 4.6, the fitted dose-responses are depicted as the

dashed curves, and the true dose-responses as the solid curves; the existing data for c1 are

represented as circles in Figure 4.6 (a), Stage-I data for c2 as circles in Figure 4.6 (b), and

Stage-II data for c2 as squares in Figure 4.6 (b).
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Comparison with the traditional design

The traditional design of run c2 for this case is given in (4.14) below.

D̃Trad =

 (0, c2)
> (5.5, c2)

> (11, c2)
> (16.5, c2)

> (22, c2)
>

8 8 8 8 8

 . (4.14)

The two-stage design and the traditional design are compared based on the results of applying

both approaches for 100 times. As a result, 100 sets of data and model fitting results were

obtained for each approach. Since the primary goal of this study is to estimate BMD for

BMR= 40, the two approaches are compared in terms of their delivered BMDL, the lower

bound of the one-sided confidence interval for the BMD.

Specifically, applying the two-stage design 100 times leads to 100 data sets; from each

data set, a one-sided 95% CI was constructed following bootstrapping resampling method

(Section 3.4). From the 100 data sets, the 100 BMDLs obtained are denoted as

{BMDL
(r)
Two-stage(cQ); r = 1, 2, . . . , 100}. (4.15)

In the same way, applying the traditional design (4.14) 100 times also results in 100 data

sets. Performing the statistical modeling and inference on these data sets respectively leads

to 100 BMDLs, which are denoted as

{BMDL
(r)
Trad(cQ); r = 1, 2, . . . , 100}. (4.16)

The true BMD can be easily calculated from the true dose-response simulation model (4.11),

and it is found out to be 2.43, which is represented by the horizontal line in Figure 4.7. In

Figure 4.7, the box plots are generated for the BMDLs (4.15) obtained from our two-stage

design (on the left) and the BMDLs (4.16) obtained from the traditional design (on the

right). Comparing the two boxes in Figure 4.7, it is evident that the BMDLs resulting from
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Figure 4.7: The box plots for the BMDLs resulting from the two design methods for Case 2.

our procedure are closer to the true BMD and vary over a narrower dose range. In other

words, with the same sample size, collecting a data set following the traditional design leads

to a BMDL that may be anywhere between the lower and upper adjacent of the right box

plot, whereas collecting a data set following the two-stage design leads to a BMDL that falls

within the much narrower and more accurate range of the left box.
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Chapter 5

Summary and Future Studies

The focus of this dissertation is on efficient modeling and design of multi-source

biological experiments.

First, a new semi-parametric statistical model, SKQ (stochastic kriging with qualitative

factors), has been developed. SKQ is the first kriging-based model that is able to take into

account the following three types of variability: the variability that stems from quantitative

factors, qualitative factors, and uncontrollable sources (random errors). Compared to the

parametric MEM (mixed effects modeling) method, the closest regression-based counterpart,

SKQ represents a more general modeling approach and is free of the various restrictive

assumptions stipulated by MEM.

Through the empirical simulation studies, the modeling efficiency of SKQ is demon-

strated to be superior to the existing methods, i.e., SK (standard stochastic kriging) and

MEM. SKQ is able to pool information across multiple data sources, to accommodate general

data features, and to provide more informative estimation/inference from given data. For

clarity and succinctness of the presentation, the two cases for this dissertation were designed

to involve a relatively small number of data sources (subpopulations). It is worth noting that

when applying SKQ to data from a large, as opposed to a small, number of sources, there

is hardly any additional theoretical or implementation hurdles. In our empirical experience,

SKQ’s modeling efficiency (thanks to its information pooling ability) is more pronounced

with more sources of data.
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Second, SKQ’s ability to provide more informative statistical inference from limited

data certainly opens up opportunities for efficient design of experiments (DOE): Given some

subsets of data already collected and likely to be from different sources, how to efficiently

design the next-stage biological experiments so that all the integrated data is most informa-

tive? DOE is directly associated with model estimation and inference, a SKQ model-based

DOE method is developed to achieve experimental efficiency. The experimental design pro-

cedure has been evaluated through two simulation cases designed to mimic real toxicity data.

It has been shown that the design resulting from our procedure is superior to the ”naive”

traditional designs.

The SKQ developed assumes stationarity of the extrinsic variability. An extension

of the SQK could be to allow the extrinsic variance to be non-stationary [59–62], and to

accommodate “global” Gaussian processes. Based on the extended global SKQ, the design

of experiments methods can be extened accordingly.

53



Chapter 6

Appendix

6.1 Review of Standard Stochastic Kriging (SK)

Standard stochastic kriging (SK), which was first introduced by Ankenman et al.[23], models

the dependence of a continuous response upon the quantitative factors x only. With no

qualitative factors involved, the response from the jth replication (animal subject) is written

in terms of x as follows

Yj(x) = Y(x) + εj(x) = f(x)>β + M(x) + εj(x), (6.1)

where Y(x) represents the true expected response at the factor setting x = (x1, x2, . . . , xd),

with x ∈ Rd.

The expectation Y(x) is decomposed into two parts: Y(x) = f(x)>β + M(x). f(x) is

a vector of known functions of x, and β is a vector of unknown parameters of compatible

dimension. Since it has been reported that f(x)>β = β0 (that is, just a constant term)

suffices for most applications [23], this work adopts f(x)>β = β0 unless stated otherwise.

The term M represents a realization of a mean-zero stationary Gaussian random field, and

can be considered as being randomly sampled from a space of functions mapping Rd → R;

the functions in this space are assumed to exhibit spatial correlation, and thus M(x) and

M(x′) will tend to be similar if x and x′ are close to each other in the space. As in Ankenman

et al. (2010)[23], the stochastic nature of M(x) is referred to as extrinsic variability.
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The random noise ε1(x), ε2(x), . . . at a factor setting x has zero mean, and is inde-

pendent and identically distributed across replications (animal subjects). The error variance

Var[ε(x)] is allowed to be dependent on x. The randomness of ε(x) is referred to as intrinsic

variability.

A data set, on which SK is to be applied, consists of n(xi) replications taken at design

point xi (i = 1, 2, . . . , I), with I representing the number of distinct design points (factor

settings) in the data. The paired data can be represented as {(xi,Yj(xi)); i = 1, 2, . . . , I; j =

1, 2, . . . , n(xi)}. The sample average of the responses at xi across the n(xi) replications is

given by:

Ȳ(xi) =
1

n(xi)

n(xi)∑
j=1

Yj(xi) = β0 + M(xi) +
1

n(xi)

n(xi)∑
j=1

εj(xi).

Denote

Ȳ =
(
Ȳ(x1), Ȳ(x2), . . . , Ȳ(xI)

)>
(6.2)

as the I × 1 vector of sample average responses at the I distinct design points.

Similarly, the vector of sample average errors is denoted as

ε = (ε̄(x1), ε̄(x2), . . . , ε̄(xI))
> , (6.3)

with ε̄(xi) = n(xi)
−1∑n(xi)

j=1 εj(xi), i = 1, 2, . . . , I.

6.1.1 The Extrinsic and Intrinsic Variance Structures

The key of SK lies in the modeling of extrinsic as well as intrinsic variability, which are

presented respectively as follows.

Denote x = (x1, x2, . . . , xd)
> and x′ = (x′1, x

′
2, . . . , x

′
d)
> as two vectors of the quan-

titative factors. For a stationary Gaussian process M(x), the covariance function can be

represented as

Cov[M(x),M(x′)] = δ2 ·K(x,x′) (6.4)
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where δ2 > 0 denotes the variance of the Gaussian process, and K(x,x′) the correlation

between M(x) and M(x′).

For the estimation of a SK model, a certain functional structure needs to be imposed

on the correlation K(x,x′). A range of choices are available in the literature (e.g., Santner

et el. 2003 [43]; Qian et al. 2008 [41]), and one of the most popular structures in practice is

the exponential correlation function

K(x,x′) = exp

{
d∑

h=1

−θh|xh − x′h|p
}
. (6.5)

In (6.5), θ = (θ1, θ2, . . . , θd) is a vector of unknown parameters. It is required that θh > 0

(h = 1, 2, . . . , d), and θ determines the roughness of the response surface. The parameter

p ∈ (0, 2] also needs to be estimated unless p is prespecified as 2, which leads to the widely-

used quadratic correlation function [44].

With a selected correlation function such as (6.5), the I×I variance-covariance matrix

ΣM is constructed as follows for a data set including I distinct design points

ΣM = δ2R(θ) = δ2



1 K(x1,x2) . . . K(x1,xI)

K(x2,x1) 1 . . . K(x2,xI)

...
...

. . .
...

K(xI ,x1) K(xI ,x2) . . . 1


. (6.6)

In (6.6), R(θ) represents the correlation matrix, with each component being a correlation

function of unknown parameters θ. For an arbitrary setting x0, the I × 1 vector ΣM(x0, ·) is

defined as

ΣM(x0, ·) = δ2v(x0,θ) = δ2



K(x0,x1)

K(x0,x2)

...

K(x0,xI)


, (6.7)
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where v(x0,θ) is a correlation vector with each component dependent on x0 and the unknown

parameter θ.

The intrinsic variance of the random response at xi (i = 1, 2, . . . , I) is denoted as

Var[ε(xi)]. Let Σε be the I × I variance-covariance matrix of vector ε, which is defined in

(6.3). Under the i.i.d assumption for random errors, Σε is a diagonal matrix

Σε = diag{Var[ε(x1)]/n(x1),Var[ε(x2)]/n(x2), . . . ,Var[ε(xI)]/n(xI)}. (6.8)

6.1.2 Estimation and Inference by Standard Stochastic Kriging

Recall that the random response can be written as

Yj(x) = β0 + M(x) + εj(x), (6.9)

As stated in Ankenman et al. (2010) [23], the SK-based modeling and inference

requires the following assumption.

Assumption 2 The random field M is a stationary Gaussian random field; and

ε1(x), ε2(x), . . . are i.i.d. N(0,Var[ε(x)]), independent of εj(x
′) for all j and x 6= x′, and

independent of M.

The assumption of M being a stationary Gaussian random field is standard for kriging

(Santner et al. 2003, [43]), and it implies that the random vector (M(x1),M(x2), . . . ,M(xI))
>

follows a multivariate normal distribution with constant marginal mean 0, variance δ2, and

correlation matrix R as in (6.6). The assumption for the random errors allows the variance

Var[ε(x)] to be dependent on x.
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For a data set {(xi,Yj(xi)); i = 1, 2, . . . , I; j = 1, 2, . . . , n(xi)}, and under Assumption

2, the log-likelihood function of the unknown parameters (β0, δ
2,θ) is

lnL(β0, δ
2,θ) = − ln[(2π)I/2]− 1

2
ln[|δ2R(θ)+Σε|]−

1

2
(Ȳ −β01I)>[δ2R(θ)+Σε]

−1(Ȳ −β01I),

(6.10)

where 1I is a (I × 1) vector of ones.

Ankenman et al. (2010) [23] summarizes the SK modeling steps as follows.

1. Obtain the estimated Σε:

Σ̂ε = diag{V̂ar[ε(x1)]/n(x1), V̂ar[ε(x2)]/n(x2), . . . , V̂ar[ε(xI)]/n(xI)} (6.11)

where

V̂ar[ε(xi)] =
1

n(xi)− 1

n(xi)∑
j=1

(
Yj(xi)− Ȳ(xi)

)2
, i = 1, 2, . . . , I . (6.12)

2. Using Σ̂ε instead of Σε, maximize the log-likelihood (6.10) over (β̂0, δ̂
2, θ̂).

3. Estimate the expected response Y(x0) by

Ŷ(x0) = β̂0 + δ̂2v(x0, θ̂)>[δ̂2R(θ̂) + Σ̂ε]
−1(Ȳ − β̂01I), (6.13)

where (β̂0, δ̂
2, θ̂) are obtained from the previous step. The mean squared error (MSE)

is estimated as

M̂SE[Ŷ(x0)] = δ̂2− δ̂4v(x0, θ̂)>[δ̂2R(θ̂) + Σ̂ε]
−1v(x0, θ̂) + η>η(1>I [δ̂2R(θ̂) + Σ̂ε]

−11I)
−1

(6.14)

where η = 1− 1>I [δ̂2R(θ̂) + Σ̂ε]
−1v(x0, θ̂)δ̂2.
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The (1− α)× 100% confidence interval for Y(x0) is

Ŷ(x0)± z(1−α)/2
√

M̂SE[Ŷ(x0)] (6.15)

where z(1−α)/2 is the upper (1− α)/2 critical value for standard normal distribution.

6.2 True Expected Exposure-Response Model for Case 1

As part of the simulation model for Case 1 (Subsection 3.5.1), the following two models (6.16-

6.17) provide the true expected response surfaces for the two subpopulations (short and long

TiO2 nanobelts) respectively. Both of the models take the form of a single-hidden layer

feedforward network (SLFN)[51, 63], and are estimated from the real dose-time-response

data in NIOSH’s in-vivo study of TiO2 nanoparticles [50].

Y(x, c1) = 67.55 +
0.14

exp (−12.85 + 0.41x1 + 0.06x2)
+

−33.23

exp (−1.39 + 0.12x1 − 0.02x2)
(6.16)

+
−0.08

exp (−8.57 + 1.22x1 − 0.2x2)
+

−76.00

exp (−0.21 + 0.06x1 − 0.01x2)

+
−3.49

exp (−0.40 + 0.20x1 − 0.04x2)
+

−76.99

exp (−0.51− 0.05x1 + 0.03x2)

+
5.15

exp (−5.52 + 0.16x1 + 0.04x2)
+

−0.03

exp (−25.89 + 2.99x1 + 0.28x2)

+
32.77

exp (−0.62 + 0.05x1 + 0.03x2)
+

1.09

exp (5.76 + 0.26x1 − 0.07x2)

Y(x, c2) = 71.74 +
−104.84

exp (−0.66 + 0.09x1 − 0.02x2)
+

−1.18

exp (7.66− 0.45x1 − 0.01x2)
(6.17)

+
0.04

exp (28.01− 3.62 + 0.24x2)
+

−4.50

exp (5.02− 0.16x1 − 0.04x2)

+
82.50

exp (0.74 + 0.04x1 − 0.03x2)
+

−27.73

exp (0.83 + 0.13x1 − 0.02x2)

+
35.84

exp (−1.18 + 0.04x1 + 0.03x2)
+

−13.58

exp (−0.85− 0.18x1 + 0.03x2)

+
−2.61

exp (0.32− 0.27x1 + 0.01x2)
+

2.59

exp (−8.86− 0.05x1 + 0.08x2)
.
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6.3 An Estimation Data Set (EDS) for Case 2

Table 6.1 shows an estimation data set (EDS) randomly generated from the simulation

models of Case 2 (Subsection 3.5.2). The first column provides the 15 distinct design points,

with each one specified in terms of (x, cq), the dosage x and subpopulation cq (q = 1, 2, 3).

At each design point, 8 replications were obtained corresponding to the 8 columns of the

responses in the table.

Table 6.1: An estimation data set (EDS) for Case 2: modeling the multi-source dose-response
data

w = (x, cq) Response
(0, c1) 19.606 19.630 19.059 19.119 19.799 19.197 21.341 21.641
(5, c1) 30.715 29.792 28.982 33.335 31.580 31.415 28.696 32.305
(10, c1) 52.016 49.630 50.397 49.462 57.212 48.896 50.396 50.329
(15, c1) 76.507 76.149 80.295 77.499 73.711 72.691 78.404 73.824
(20, c1) 121.624 121.009 120.366 120.168 126.850 118.587 117.079 127.984
(0, c2) 20.476 19.672 19.071 19.832 21.288 19.604 20.582 19.601
(5, c2) 28.907 26.911 31.777 28.914 31.867 30.150 31.717 32.173
(10, c2) 48.531 52.631 51.625 54.031 54.321 49.066 49.427 52.142
(15, c2) 81.604 82.863 79.106 80.348 84.498 87.584 82.051 78.335
(20, c2) 134.977 123.213 133.363 125.405 131.264 130.982 132.469 132.215
(0, c3) 23.819 27.994 26.262 26.843 25.228 27.381 25.827 24.452
(5, c3) 38.927 35.478 36.313 40.699 39.396 38.104 37.377 38.829
(10, c3) 57.377 54.406 54.933 55.961 62.745 52.841 58.847 53.044
(15, c3) 82.621 81.036 78.257 81.493 78.597 80.067 80.918 79.754
(20, c3) 114.988 113.588 118.589 117.208 121.077 114.184 114.511 119.074
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