
Graduate Theses, Dissertations, and Problem Reports 

2012 

Family Relationship Analysis In Photos Family Relationship Analysis In Photos 

Xiaolong Wang 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Wang, Xiaolong, "Family Relationship Analysis In Photos" (2012). Graduate Theses, Dissertations, and 
Problem Reports. 4936. 
https://researchrepository.wvu.edu/etd/4936 

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F4936&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/4936?utm_source=researchrepository.wvu.edu%2Fetd%2F4936&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


Family Relationship Analysis In Photos

Xiaolong Wang

Thesis submitted to the

Benjamin M.Statler College of Engineering and Mineral Resources

at West Virginia University

in partial ful�llment of the requirements

for the degree of

Master of Science

in

Electrical Engineering

Guodong Guo, Ph.D., Chair

Arun A. Ross, Ph.D.

Xin Li, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia

2012

Keywords: Family relationship analysis, familial traits, kinship, generation

recognition, family photos, non-family photos, discriminative approach, facial

features, unconstrained images, support vector machine (SVM).

Copyright 2012 Xiaolong Wang



ABSTRACT

Family Relationship Analysis In Photos

Xiaolong Wang

Family relationship analysis has many potential applications, ranging from homeland

security through to image search and social activity analysis. In our work, we present �ve

computational problems for family relationship analysis in face photos. Studying these

challenging problems is important and useful for semantic image understanding and so-

cial context extraction. In our study, the familial traits are learned from pairs of salient

local facial parts using discriminative approaches. It is motivated by human perception

studies on kinship recognition and the existence of familial traits through genetic inher-

itance. Second, kinship veri�cation is performed on a pair of faces by integrating the

familial traits based on con�dence measures. Then, the generation recognition and spe-

ci�c family relationship recognition are explored. Finally, the separation of family and

non-family group photos is studied based on a decision that combines multiple pair-wise

kinship detections. An image database consisting of both family and non-family group

photos is collected, and labeled at di�erent levels of details. Experiments are performed

on the database for all �ve tasks, based on di�erent representations of the facial parts.

Preliminary results show that the proposed problems can be addressed with a reasonably

good performance. Our encouraging results may inspire more e�ort from the computer

vision and image processing research community.
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Chapter 1

Introduction

Image understanding is an active research topic in computer vision and image processing.

The long-term goal of image understanding is to enable a computer to automatically

extract semantic information and obtain knowledge from single image or image sequences.

Although various techniques have been developed for digital image processing, it is still

a great challenge to use machines to extract semantic meanings and gain knowledge from

images, comparing with the human-level image understanding.

Given an arbitrary realistic photo, it's easy for the people to tell the story presented

in the photo. For example, if we look at the photo shown in Fig 1.0.1, it's easy for the

people to get the information as follows:

(1) There are four persons in the photo.

(2) They are in a family relationship.

(3) The relationships in the photo include an infant, his/her mother, his/her grand-

mother, and his/her great-grandmother.

Figure 1.0.1: A family photo consists of an infant and his mother, grandmother, and
great-grandmother, from source http://en.wikipedia.org/wiki/Family.

1



CHAPTER 1. INTRODUCTION 2

Is it possible for the computer to �nd all the information automatically? As far

as we know, this is still a hard topic. In the �rst step, even face detection is not an

easy job. It is even a harder job to estimate all the existing family relationships in a

given photo. In this work, we mainly focus on the family relationship analysis for a

given image in a higher level, and try to combine the estimation of kinship veri�cation

and family relationships together. We propose �ve computational problems related with

family relationship analysis in face photos through �ve levels.

In Chapter 1, we reviewed the traditional family analysis problem and talked about

several approaches in its subtopic � kinship veri�cation approaches and proposed a new

approach for kinship veri�cation and investigated this problem in a comprehensive way.

In Chapter 2, we proposed �ve computational problems associated with family rela-

tionship analysis, and presented our method in details to deal with these problems.

Di�erent feature descriptors for facial part encoding are discussed in Chapter 3.

After we represented each human image by some feature descriptor, we presented

several feature descriptors in Chapter 3.

In Chapter 5, experiments and some discussion of family relationship analysis based

on facial parts are presented.

1.1 Overview of Family Relationship Analysis

Family relationship is an important component of society. We can divide human beings

into two general groups: kinship relationship and non-kinship relationship. Two people

with kinship relationship present di�erent appearance from non-kinship group.

We know humans are capable of recognizing family members since they are still very

young. The study in human perception of kinship has been an active area of research in

human perception, psychology and evolutionary studies [19, 8, 5, 4, 20]. From these stud-

ies, it shows that there exist kinship detection mechanisms in humans [20]. Psychologists

believe that the resemblance between human faces is a good cue in recognizing the genetic

relationship between parents and children and between siblings [8, 19]. Another �nding is

that the kinship perception in human is di�erent from facial identity recognition. Martello

and Maloney [4] reported experiments that aimed to determine what regions of the face

contain the cues that signal kinship. They found that
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(1) The upper half of the face contains more information about kinship than the lower

half.

(2) The eye region contains only slightly more information about kinship than the

upper half of the face outside of the eye region.

In parallel, there are some computational approaches to kinship veri�cation. Fang et

al. [10] proposed to extract some appearance features such as eyes and skin color and

geometric features such as distances between facial parts for kinship veri�cation on a pair

of face images. Ghahramani et al. [13] used facial patches to extract family member

resemblance. Wang et al. [30] used social context to infer familial relationships. Xia et

al. [31] proposed to use young parents as an intermediate distribution to relate children

and their old parents for kinship veri�cation. Xia et al. [32] combine with the attribute

information with the feature to do the kinship veri�cation. Guo and Wang [17] developed

a classi�cation scheme based on Bayesian decision for kinship veri�cation.

In summary, kinship recognition has become an active research topic in both human

perception and computational recognition. However, only detecting kinship is not su�-

cient for family relationship analysis. To broader the study towards family relationship

analysis in face photos, we will present several related problems and propose corresponding

approaches to solve each problem.

In this work, family relationship analysis is studied in face photos through �ve com-

putational problems at di�erent levels of details.

These include:

(1) Familial trait identi�cation.

(2) Kinship veri�cation.

(3) Generation recognition.

(4) Speci�c family relationship recognition.

(5) Family and non-family photo discrimination.

The �rst four problems focus on a pair of face images, while the last problem is about

a photo in which multiple faces appear. These problems are related to each other, but

most of them can be studied independently. A systematic study of these problems is likely

to advance the �eld of semantic image understanding and social context extraction.

I think through our work of studying a series of problems for family relationship

analysis in face photos could inspire new research interests from the research community;

We have developed appropriate methods to deal with each of the proposed problems;
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We collect a database of family relationships and use it to perform an evaluation of our

approaches.

1.2 Motivation

It's known that human inherit traits from their ancestors determined by the genetic

inheritance. Parents pass down their inherited traits to their children. So in most cases

they share the similar traits in their face. One of the good capabilities of humans is

to recognize family members in a random photo. We could always hear the following

phases like � there is a son and a father or a daughter and a mother in the photo,

and the boy in the photo has his father's eyes or the girl has her `mother's mouth.�

Motivated by this situation, we consider the following question: Is it possible to develop a

comprehensive system to verify kinship relationship and estimate the family relationship

towards the people appearing in a given photo? If this idea works, our computational

kinship measurement might have a big in�uence in real practice, such as �nding lost

children, child adoptions, tra�cking/smuggling of children, and family photo and non-

family photo classi�cation. There are a lot of potential signi�cances.

In our work, kinship is de�ned as a relationship between the family members with

the blood relation, such as the relation between father and his son, daughter, sisters and

brothers, grandmother and her grandchildren, grandfather and his grandchildren. Also

the human presents many degrees of freedom (as illustrated by the joints in Fig. 2.1.1)

to change its shape and perform di�erent actions (e.g., in various two family members

who have biological relation and blood connection. The relations of biological include

parent-children, brothers and sisters, and grandparent-children. So adopted children is

not included in biological kinship with their parents. Other relations such as grandmother-

grandfather, cousin and husband-wife are not a biological kinship.

1.3 Major Challenges

Through the work of family relationship analysis, one of the most important parts is

kinship veri�cation. It is di�erent from face identi�cation or face veri�cation. In face

recognition, the problem is to recognize the same individual by matching the probe face
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image with gallery images. The measure is about the �facial identity.� In kinship veri�ca-

tion, the similar features are extracted from similar traits of di�erent persons. Analyzing

these challenges will help understand the problem deeply and provide a general guide to

develop a computational system. The problem of kinship veri�cation has its own spe-

cialty and should not be treated as the traditional face recognition problem. Three major

challenges in kinship veri�cation are present as follows:

A. Identify the similarities across sex and age. People belonging to the same

veri�cation relationship at di�erent ages (e.g., grandfather-grandson), di�erent sex (e.g.,

brother-sister), or combined them together (e.g., grandfather-granddaughter) could share

the same family traits. We know in the work of face recognition, the e�ect brought by

the aging or growth makes it a tough work. Here, the challenge still exists, which makes

the facial similar traits among di�erent family members di�cult to match. Compared

with the work of face recognition, sex di�erence also gives some di�culty in measuring

the similarity of facial traits.

B. Facial traits are not totally the same. They are individual. Though the

family members share the facial traits, the facial similarities are individual and specialized.

Let's take son - father relationship as example. It's possible that the sons inherit traits

from their parents individually. As shown in �gure 1.3.1., one daughter has one nose

like his father, while another daughter has a nose more similar to her mother. This

characteristic could prove that the familial traits are personalized.

Figure 1.3.1: Familial features shared by parents and two daughters: One daughter has a
similar nose to father (marked by black rectangles while another daughter's nose is similar
to mom(red rectangles))
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C. Similarities in Kinship Measures are Dynamic. As described above, familial

traits are individual. As a result, the kinship should be measured with a dynamic com-

bination of familial traits. Under some sense, the shared traits between mother and sons

can be arbitrary. In other words, salient facial features, e.g., mouth, eyes, nose, etc can

be shared in an arbitrary manner for a kinship measure.

In sum, kinship veri�cation in family relationship analysis has many advantages. Fa-

milial traits are the building basis for kinship measure. Our work is di�erent from recent

approaches, e.g [10]. They processed kinship more like a face veri�cation problem.

1.4 Facial Parts Based Approach

Based on the analysis above, we know people could recognize the kinship mainly based

on the facial part , e.g., mouth, nose and eyes. So we want to represent the face using

robust and meaningful features. But there is still not a conclusion about which kind of

feature is good to characterize the facial parts to represent family relation. We try to

use both the shape and appearance to represent the facial part. Commonly used feature

descriptors are utilized, including SIFT, Daisy, LBP, HOG, and edges. So we can perform

a comprehensive evaluation of various schemes in our problems. We use edge to charac-

terize gradient and shape information. Canny edge descriptor is used. In recent years,

SIFT is widely used in computer vision for its robust to the appearance with scale and

rotation invariance. In our work, we use dense sampling to extract feature within each

facial part. Daisy is another feature descriptor. Compared with SIFT, Daisy descriptor

implementation is faster and more e�cient. We also use LBP and HOG operators. These

two features characterize the texture and shape information respectively. We divide the

whole image into �xed dense grids, and use dense sampling scheme as using SIFT. To-

wards the facial part representation using di�erent feature descriptors, family relationship

analysis is conducted.



Chapter 2

Family Relationship Analysis

In this Chapter, we will talk about our �ve computational problems within the range of

family relationship analysis in �ve sections.

2.1 Familial Trait Identi�cation

Ancestors pass down their familial traits to their o�spring. Family members look alike

because they share familial traits in common. We de�ne �familial trait� as a characteristic

shared by di�erent members of a family, such as eyes, mouth, nose, etc. The �gure below

shows one example including a mother and her daughter sharing one similar familial trait

(as illustrated in Fig. 2.1.1).

Familial trait is one good cue to analyze the kinship relationship in a given photo. And

it could be used to describe the similarity among family members. Our computational

scheme derived from the familial traits obtained from a pair of family members' face

images.

As we analyze above, age progression takes a main e�ect in young face. So identifying

the familial trait between a parent and a child should consider the signi�cant facial changes

caused by aging. For example, a mother's nose is bigger than her daughter's, though their

nose shapes are very similar. During the phase of face matching, the alignment of face is

usually based on the two eyes. Under common sense, it's not su�cient to deal with the

aging variation. Another progression is occlusion, such as in the realistic photos, some

faces are occluded with each other. To deal with these problems, we proposed to use

7
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Figure 2.1.1: An illustration of the many degrees of freedom for articulation in a human
body.

Modi�ed Hausdor� distance which is similar to Hausdor� distance. This algorithm is

helpful for �nding the corresponding matching points between two faces. It could reduce

the in�uence of non ideal alignment.

Given the patch, we densely sample the feature, eg., SIFT [21]or other features at

each densed point. The features sampled at one point (denoted as A) will be matched

to another point sampled at other locations from the corresponding part from other face

(denoted as B). From all the calculated distance from each sampled point in face A to

all the sampled points in face B, we choose the pair with minimal distance calculated by

2.1.1. For example A = {ã1, · · · , ãn} and B = {b̃1, · · · , b̃m} denote two sets of features.

Then the Hausdor� distance [9] is de�ned as

H(A,B) = max(h((A,B), h(B,A)), (2.1.1)

where

h(A,B) = max−→a ∈A
min−→
b ∈B
‖ −→a −

−→
b ‖, (2.1.2)

In our work, the modi�ed Hausdor� distance (MHD)[9] is de�ned as
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h(A,B) =
1

A
max
−→a ∈A

min−→
b ∈B
‖ −→a −

−→
b ‖, (2.1.3)

Using the averaging algorithm could diminish the in�uence brought by the outlier. We

use MHD as the measure criteria of similarity between two facial parts. Each set contains

features sampled at the �nite sample of points. This measure algorithm could characterize

the shape similarity of a facial part, e.g., the nose, for a pair of faces containing di�erent

variations, including pose variation, facial expressions and aging.

It's known that the original (modi�ed) Hausdor� distance measure[9] deals with edge

pixels. Here we adapt it to various features for facial part similarity. In order to deal with

the aging e�ect and potential occlusions and other variations. The MHD-based measure

is the basic method for our similarity measure in identifying familial traits.

Learning-based discriminative method is used to identify familial traits. Based on the

manually labeled familial traits and non-familial traits, the discriminative method such

as the support vector machine (SVM) can be used to learn the classi�cation function.

The distance H(A,B) in Equ.2.1.1 is a scalar value. To get a better result using

feature vectors, several di�erent norms are used , such as 1-norm, 2-norm and p-norm

respectively, with p = 1.5 . Thus, three dimension vectors are used to measure the

similarity and dissimilarity between a pair of facial parts. SVM is trained for classi�cation.

This approach is called �Discriminative 1�.

We also use another way to construct a �vectored� distance measure. In the �rst step,

we use the Euclidean distance to �nd the most similar feature point from set B to all the

feature point in setA, i.e.,~b0 =min ‖ ~a−~b ‖
~b∈B

, where ~b0 is the vector in set B that is close

to ~a. Then the component-wise vector di�erence is computed as −→a ∗ = |−→a −
−→
b0 |c, where

|.|c is the component-wise absolute value. Then a vector −→a ∗ is derived from the feature

vector ~a and ~b. Their dimensions are the same. Equ. 2.1.3 is changed to a vectorized

Hausdor� distance (VHD), de�ned by

~hvec(A,B) =
1

A

∑−→a ∗
−→a ∈A

, (2.1.4)

The above equation is a vector average (i.e., a component-wise average of a vector)

over all points in set A with their minimum distances to set B. To make it symmetric,
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both A to B and B to A are computed, and then Equ. 2.1.1 is changed to

−→
H (A,B) = max−c

∑−→a ∗, (2.1.5)

where max_c means component - wise max operation, the output is not a scalar value.

It is a vector. The distance vector
−→
H is calculated from a number of training example

pairs to train a SVM for identifying familial trait . We call this approach �Discriminative

2�, in comparison with the approach �Discriminative 1�.

Compared with these discriminative approaches, a generative approach was proposed

in [17], based on Bayes decision. It learns a probabilistic distribution for each familial

trait and does classi�cation based on the Bayes rule [17]. The discriminative approaches

learn the decision boundary and can utilize vectorized distance measures, e.g., Equ.2.1.4.

From the experiments below, we �nd that the discriminative approach, especially our dis-

criminative 2, is better than the generative approach in terms of the recognition accuracy

for familial trait identi�cation (see experiments).

The signi�cance of recognizing familial traits has two purposes:

(1) Familial traits are used to recognize a kinship for a pair of face images.

(2) From the Familial traits, we can interpret more details about the reason why a

kinship is detected in a pair of face images.

Meanwhile, there are some researchers trying to investigate the familial traits between

twins [33, 34]. Some of them also analyzed the performance of face recognition between

twins [35]. Actually, twins belong to the same family, but their familial traits are more

similar than other family members. I think the research conducted in familial traits is

very useful.

2.2 Kinship veri�cation

From the analysis above, we can identify the familial traits from a set of face pairs. Based

on the detected familial traits, a comprehensive scheme to verify kinship is proposed.



CHAPTER 2. FAMILY RELATIONSHIP ANALYSIS 11

The familial traits are learned separately. To identify kinship relationship between

two faces, a comprehensive decision criteria is necessary to learn. We propose a �soft�

decision on familial traits (rather than a hard classi�cation), and use con�dence value

measures to combine familial traits to determine a kinship. Assuming we use l facial

parts as potential familial traits. For each part j, with j = 1, 2, 3 · · · , l, we approximate

the con�dence value by

sj =

p∑
i=1

aiyiK(xi, x
j) + b (2.2.1)

This equation is based on kernel SVM classi�er for xj, which is the feature vector for

j-th facial part computed from a pair of faces, i.e., by Equ.2.1.5, K(·, ·) is the radial basis
function (RBF) kernel, while x′is are the support vectors, ai is the corresponding weight,

and yi is the label. These two factors are learned by SVM classi�er [28]. In a regular

SVM classi�er - a sign function, sign(·), is used to get a �simple� classi�cation result (0 or

1). In our work, SVM classi�er is used to derive con�dence values, then combine several

potential familial traits to form a kinship decision. The con�dence values of all familial

parts can be sorted in a descending order. Without any loss of generality, let us assume

s1 > s2 · · · > sl.

In a general family, the members do not have all their corresponding facial parts alike.

So to identify kinship relation, we need to �nd p similar facial parts from all the l facial

parts based on the ranking of con�dence value from all the members in a given photo. In

our study, we choose three traits with the top con�dence values to make the decision about

a kinship relation. We propose the following rule to determine the kinship as follows:

Kinship, if s1 > δ1,

and (s1 + s2) > δ2

and (s1 + s2 + s3) > δ3

No Kinship otherwise

(2.2.2)

The parameters− δi , i = 1, · · · , 3 are small positive constants to adjust the con�dence

measures for di�erent trait combinations. The rationale for this decision rule includes:
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(1) Compared with the faces without any kinship, a pair of faces with a kinship should

have more �familial traits�.

(2) There are some variations in the degrees of similarity for di�erent facial parts even

though there is a kinship.

For the most similar facial part, the corresponding con�dence value s1 needs to exceed

δ1. This means that a �high con�dence� value should be found for a pair of facial parts

if there is a kinship. The similarity of the top two traits, s1 + s2 also needs to be greater

than δ2, where δ2 < δ1. Note that the �rst condition s1 is necessary in the addition

of s1 + s2. The reason is that there are many possible variations in the procedure of

image matching. s2 could be slightly below zero. From the value range of s1, we could

see the extent of con�dence value, such as if s1 is much larger, i.e., a very higher degree

of con�dence. Which means the facial part corresponding to s1 is much similar, using

the sum, the �rst value s1 could �rise� the con�dence for the second most similar part,

based on the summation. Similarly, the third most similar part is also considered in our

problem. It is in conjunction with the �rst two in making a decision kinship. The three

thresholds satisfy the following constraint: δ1 > δ2 > δ3.

2.3 Generation Recognition

When we talk about the structure of each human family, we usually talk about the

generations. Generation recognition is useful for social structure analysis and semantic

image understanding. When two people get married and give birth to a baby, then a new

generation is formed. So generation recognition is a signi�cant research in addition to

the kinship veri�cation results. We could get more useful detail information in the family

relationship analysis. That means we can determine the recognized kinship is within

which generation. Are they within the same generation or between di�erent generations?

We can't get the speci�c information just from the kinship veri�cation result. Under the

fact that facial similarity reduction along with the increase of generation gap, also the

di�culty in collecting data, in our work, we consider three generations. We can classify

kinship into one of the three relationships as below:

(1) Sibling, i.e., within the same generation.

(2) Parent-child, i.e., two consecutive generations.
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(3) Grandparent-grandchild, i.e., across two generations.

As far as we know, less work has been well conducted in the problem of generation

recognition. For di�erent generations, the age gaps are di�erent. So our study is focusing

on developing a model based on the �age gap� of a pair of faces for computational genera-

tion recognition. We refer the statistical work on humans and families in order to develop

a knowledge-based mathematical model for generation analysis. Based on the work [23]

and [22], we got the mean age of mothers when they have their �rst child birth in several

countries. The statistical data for the French is shown in Fig.2.3. From this statistical

data, we �nd that the age gap between the mother and her children can be modeled

by a Gaussian distribution. Here we want to build a model to model the kinship with

one generation di�erence, i.e., parent-child. Based on a detailed analysis of the statistical

data in work [22] and [23], we derive a Gaussian distribution for modeling the parent-child

relationship, N1(µ1, σ1), where µ1 = 28 is the mean age gap between parent and children,

and σ1 = 4.67 is the standard deviation, manually computed from the statistical data.

Figure 2.3.1: Mean age of mothers at the �rst childbirth (France). Source: [21]
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From the statistical work conducted in this �eld, we found that approximately 72%

of Americans have their �rst grandchild when their ages are over 50 [29] [7]. The average

age is between 49 and 53 years. Based on this knowledge, we use another Gaussian

distribution to model the age gap for the grandparent-grandchild relationship, N2(µ2, σ2),

u2 = 52 represents the mean age gap between the grandparent and grandchild, and

σ2 = 3.0 is the standard deviation. Within the same generation, i.e., sibling, the age gap

can also be modeled by a Gaussian distribution, N0(µ0, δ0). We set u2 = 5.6 as the mean

age gap between a pair of siblings, and σ2 = 3.0 as the standard deviation.

So the problem of generation recognition can be performed by measuring the age gap

between a pair of faces that have a kinship, and put the age gap value into three Gaussian

distributions. A pair of faces with a detected kinship will be classi�ed into one of the

three generation-based relationships. The result is based on the closeness to each of the

three Gaussian distributions.

Now how to obtain the age gap between two faces is a key problem to solve the

generation classi�cation. In our work, in the �rst step, we estimate the age of each face

and then calculate the age di�erence. D = |age1 − age2|, age1and age2 are the estimated

ages of two faces, respectively.

The problem of age estimation itself is very challenging. We have developed a tech-

nique for age estimation using the biologically-inspired features (BIF) [16]. The idea of

BIF is motivated by hierarchical visual cortex models, and is invariant to small changes

in faces. Here we adapted the method proposed in [16] to a cross-database age estimation

(see experiments for details).

2.4 Speci�c Family Relationship Recognition

From our work above, we can tell which generation that the given face pair belongs to

the same generation or across generation. As far as we know, there are many speci�c

family relationships, e.g., mother-son. This problem could not be solved from the gener-

ation recognition only. In order to achieve the speci�c family relationship recognition, we

propose a method further. In real society, there are eleven speci�c family relationships

in total, including father-son, father-daughter, mother-son, mother-daughter, brother-

brother, sister-sister, brother-sister, grandfather-grandson, grandfather-granddaughter,

grandmother-grandson, and grandmother-granddaughter. The relations among kinship,
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generation recognition, and speci�c family relationship recognition analysis are shown in

2.4. From the common knowledge (obtained from source http://en.wikipedia.org/wiki/Family).,

we can �nd the genetic kinship degrees of the family relationships are di�erent according

to the generation. For instance, the father-son kinship has 50% genetic similarity.

Figure 2.4.1: A kinship can have di�erent levels of relationships in a family structure. The
relationships in the middle is determined by the generations, which can be further divided
into speci�c family relationships, as shown in the right column. The genetic kinship degree
of relationship is marked with red numbers by percentage (%). These relationships can
be analyzed in faces.

Except for the relations listed in our �gure, other relations might be recognized as

well, for example, uncle-nephew, aunt-nephew, uncle-niece, and aunt-niece. In our cur-

rent work, we do not consider them here for two reasons. Firstly, such kinds of photos are

not very easy to collect, such photos are much less than those from direct family members.

Secondly, the work of labeling these kinds of relations is di�cult. In our computational ap-

proach, without biological relationship, we could not recognize a family relationship, such

as husband-wife and grandfather-grandmother, and parents with their adopted children.

Our framework of recognizing the speci�c family relationships is illustrated in Fig.2.4.2.

Given a pair of faces with a kinship, we perform gender and age group classi�cation.

Based on our experiment result, we found that this group classi�cation will improve both

age estimation and gender classi�cation performance [15]. Then within each gender and
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Figure 2.4.2: Proposed framework for generation recognition and speci�c family relation-
ship recognition.

age group, we conduct age estimation and gender recognition separately. The estimated

ages of the pair of faces will be used to estimate the generation level. In the last step,

we combine the generation recognition and gender classi�cation results to recognize the

speci�c family relationship from a pair of faces.

The rules of classi�cation for speci�c family relationship determination are described

here:

(1) Within the same generation:

If the given two faces are both males, their relationship will be termed as brother-

brother; if both faces are estimated as females, the relationship will be sister-sister, if the

two faces have di�erent genders, the relationship will be brother-sister;

(2) Across one generation:

The two faces are within the same gender:

• The genders are males. The relationship will be classi�ed as father-son;
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• Both faces are females. It will be termed as mother-daughter;

The two faces' genders are di�erent:

• The older face is male, while the younger is female, the relation will be father-

daughter;

• The older face is female, while the younger is male, it is mother-son;

(3) Across two generation:

Four relationships are needed to be considered, including grandfather-granddaughter,

grandmother-granddaughter, grandfather-grandson, and grandmother-grandson. The rules

used are similar to (2).

In the work of gender classi�cation, we propose to use the biologically inspired features

(BIF) to encode the face images, then use SVM [28] for classi�cation. In the work [14], we

have found that the BIF encoding performs better than the local binary pattern (LBP)

and histogram of oriented gradient (HOG) in gender classi�cation. The method adapted

in work [14] is used in gender classi�cation to recognize our speci�c family relationship .

2.5 Family and Non-Family Photo Discrimination

In our previous work, the recognition problem is only performed on two compared faces.

Those problems are related but di�erent from another problem: family and non-family

photo discrimination. This problem is to classify a given photo including many persons

into one of two classes, i.e., family or non-family. It's known that a family photo is a photo

that contains several persons belonging to the same family, whereas a non-family photo

contains several individuals that have no familial relationships. In real world, a family

photo usually has more than two family members. To best illustrate this problem, we use

two example photos, they are shown in Fig.(2.5.1). In this example, we can see there are

several faces in each photo, but the two photos have quite di�erent social contexts. The

�rst one (upper one) is a family photo, while the below one is a non-family photo. It's

known that humans can judge this result without much di�culty. Our question is: how

to make a computer to solve this problem more e�ectively.
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Figure 2.5.1: A family photo (upper) and a non-family photo (below). Both images
contain multiple people but with di�erent relationships (or social contexts).

As far as we know, the problem of classifying family and non-family photo has not been

fully addressed before. Here we want to show that based on the kinship analysis of pair-

wised faces and a combinational analysis of all faces in a photo, a computational method

could be developed to perform this classi�cation task. It will help photo categorization

and organization, social context extraction and social media understanding.

In the next step, let us discuss our computational method. That is, we know given t

faces in a group photo f , there are t(t−1)
2

pairs of faces in f . The kinship determination

of each pair can use the method described in Section 2.2. So now our problem is how to
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use t(t−1)
2

kinships pairs to determine whether f is a family photo or not ?

Based on our kinship de�nition, some face pairs in a family photo have no kinship,

such as husband and wife. However, if there are three people in a photo (e.g., a couple

and their child). This photo can be classi�ed to a family photo based on our kinship

de�nition. The child may share familial traits with his or her parents. So there will be

two pairs out of three with the kinship. As a result, we can �nd that the majority rule is

good at determining a family photo.

Based on the above analysis, we propose a decision rule to separate family photos from

arbitrary group photos.

Given a photo f with t faces, t ≥ 2, a decision to classify it into a family photo,

denoted as Fa , or a non-family photo, denoted as NFa, we use the following criteria to

deal with this problem.
f ∈ Fa, if #kinPairs > k · C2

t , t > 2; or

if#kinPairs > 1, t = 2;

f ∈ NFa, Otherwise

(2.5.1)

In the equation above, #kinPairs denotes the number of pairs of faces with kinships,

C2
t =

(
t

2

)
= t!

2!(t−2)! , we set k = 1/3 in our experiments.
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Feature Descriptors

After obtaining the normalized body parts, we need to extract some information from the

normalized images to represent those images. In computer vision, the concept of feature

is used to denote the piece of information which is useful for solving certain problems.

Feature descriptors provide a method for comparing images or image regions. They are

used in many di�erent applications, such as object recognition, image alignment, 3D

reconstruction, Motion tracking, etc. The most frequently used image feature descriptors

are histograms of oriented gradients (HOG), scale invariant feature transform (SIFT),

shape descriptors and color descriptors.

Since there is no previous work that has studied the articulated body or body parts

based gender recognition, it is unknown about what kinds of features are useful and dis-

criminative. To discover this in our study, we present some features that might be useful,

compare the performance of these representations, and then �nd what representations are

good for gender recognition in articulated body images.

In this section, we will have a brief review of the histogram of oriented gradient

(HOG) [6], local binary patterns (LBP) [1], scale-invariant feature transform (SIFT) [21],

and RGB colors features (where the histogram with 32 bins is computed for each color

channel and concatenated). These features will be extracted from the normalized images

to represent the body parts. These features were originally proposed for other computer

vision problems. We will evaluate whether they are useful for our problem in section 5.

20
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3.1 Histogram of Oriented Gradients (HOG)

Navneet Dalal and Bill Triggs proposed Histogram of Oriented Gradient descriptors in

their June 2005 paper [6], in their work, this feature vector had been proved to be an

e�ective algorithm in detecting the pedestrian in static images. This feature makes use of

the distribution of local intensity gradients or edge direction to characterize the local ob-

ject appearance and shape , without precise knowledge of the corresponding gradients or

edge positions. So this character is very important in the problem of pedestrian descrip-

tors, because the images associated with the pedestrian detection problem are always not

clear and less detail included. Dalal and Bill Triggs also expanded their tests in human

detection in �lm and video, this feature also could be applied to the common animals and

vehicles in static imagery.

In practice, the steps extracting the HOG descriptors from the image can be described

as follows:

(1) Divide the whole image into small patches, there are overlap between these patches.

We call the divided these small patches as cells. There are two types of cells: rectangular

R-HOG blocks and circular C-HOG blocks.

R-HOG blocks: The grids are square, represented by three parameters: cells' number

per block, pixels' number per cell, and the number of channels per cell histogram. In the

author's work, the optimal parameters were found to be 3× 3 cells blocks of 6× 6 pixels

with 9 histogram channels. Applying the Gaussian spatial window within each patch

before calculating histogram votes is used to weight pixels around the edge of the patch.

The R-HOG patches seem to be similar to the scale invariant feature transform. They

compute R-HOG blocks in dense grids at some single scale.

C-HOG blocks: Four parameters are involved in these C-HOG blocks � the number of

angular and radial bins, the central bin's radius, and the expanding factor for the radius

of additional radial bins. In their work, Dalal and Triggs found that expansion factor of

2 provided the best performance in their experiments.

(2) Within each cell, obtain a histogram of gradient directions or edge orientations

for the pixels, and combine the values from all patches into one vector to represent the

image.
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(3) In order to deal with the changes in illumination or noise, a normalization scheme

has been applied in the patches of images. And use the energies to normalize all the cells

in the image. There are several normalized schemes to deal with this problem.

L2-norm:

f =
v√

‖v‖22 + e2
(3.1.1)

L2-hys: L2-norm followed by limiting the maximum value of v to 0.2 and

renormalized.

L1-norm:

f =
v√

‖v‖1 + e
(3.1.2)

L1-sqrt:

f =

√
v√

‖v‖1 + e
(3.1.3)

Figure 3.1.1: General process of getting HOG descriptor

In the process of calculating the gradient of the image intensity function, 1-D cen-

tered, discrete �lter is applied in the horizontal and vertical direction. The author used
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[−1, 0, 1] �lter kernel in the corresponding horizontal direction, and [−1, 0, 1]T in the

vertical direction. Other �lters also could be applied, such as 3× 3 Sobel operator. Dalal

and Triggs also tried to smooth the image using Gaussian function before applying the

discrete �lter. This method achieved a better result.

3.2 Local Binary Patterns (LBP)

T. Ojala et al.[1] proposed Local Binary Patterns (LBP) to deal with texture classi�cation

in 1994, compared with traditional algorithms which quantify the texture measures by

single values (means, variances etc.). This work focused on the distributions of feature

values. Generally speaking, LBP is calculated using the di�erence information between

the central pixel value with the its surrounding pixel values, then encoded the result as a

binary number.

There are several steps to extract the LBP feature vector. These could be described

as follows:

1. Divide the given image into several patches. There are always overlapping between

adjacent patches.

2. For one pixel within each patch, after setting the radius of circle, compare its inten-

sity value with its surrounding. Compared with SIFT which uses 3D histograms, in

this histogram, two dimensions are used to represent the image spatial dimensions

and one additional ding neighbors. That is, if the intensity value of the central

location is larger than its neighbor's pixel value, then set the value to 1, else assign

it to 0.

3. Then for each local patch, its texture is represented by eight elements, each of

which has 0 or 1, obtained from the neighborhood surrounding the central pixel.

The author calculate the histogram within each patch. Then the author count the

occurring times of each �number� in the range of whole image,

4. Normalize the histogram. Then concatenate the histograms of all patches to the

feature vector of the given image.
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Figure 3.2.1: Illustration chart of extrcting LBP descriptor

Because LBP is very e�cient in face photo analysis. This feature descriptor has become

a very popular approach in the �eld of computer vision.

3.3 Scale Invariant Feature Transform (SIFT)

In 2004, D. G. Lowe advocated Scale Invariant Feature Transform (SIFT) [21]to deal with

the problem of matching between di�erent views of an object or scene. SIFT has been

widely used in many topics for its good characteristics. It is invariant to di�erent image

scales and rotation, robust matching across the substantial range of a�ne distortion, noise

illumination variations and changing in 3D viewpoint. D.G.Lowe also used SIFT feature

in the object recognition work. This feature had been proved to be very e�ective for

object identi�cation among clutter and occlusion.

The algorithm for extracting the SIFT descriptors could be summarized in four steps

generally:

1. Scale-space extrema detection.

The author's work (Lowe, 1999) used scale-space extreme in di�erence-of-Gaussian
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function convolved with the image.

D(x,σ) = [G(x, kσ)−G(x,σ)] ∗ I(x)
= L(x, y, kσ)− L(x, y, σ)

(3.3.1)

Where D(x,σ) is the Gaussian function, I(x) is the intensity function of the image.

x is the location of the pixel, σ is the scale, k is the varying scale factor. This equation

deals with the smoothed images keeping the images' key characteristic. Local maximum

or minimum value in the D(x,σ) is, the value is maximum or minimum is determined by

comparing its value with its surrounding eight pixel values.

2. Keypoint localization.

After locating the key point candidates, the author further use a detailed �tting to

remove those points that have low contrast (easily a�ected by the noise) or the points that

are located along the edge. This step is to �nd the stable key points. Then the author

referred to the work proposed by Brown and Lowe [35], they used a scheme for �tting a

3D quadratic function. This function interpolated the location maximum in local sample

points. In their work, the Taylor expansion (up to the quadratic terms) of D(x,σ) is

expressed as

T (x) = D +
∂DT

∂x
t+

1

2
tT

∂2DT

∂x2 x (3.3.2)

Where D and its derivatives are calculated at the sample point, and x = (x, y, σ)T is

the o�set from x. Then compared with SIFT which uses 3D histograms, in this histogram,

two dimensions are used to represent the image spatial dimensions and one additional

taking the derivative of this function and set to zero, giving

x̃ = −∂
2D−1

∂x2

∂DT

∂x
. (3.3.3)

If x̃ is larger than some threshold (e.g., 0.5), it implies that the extreme's location is

closer to some other neighboring sample point, this point could be used to calculate ∂D
∂t

and ∂2D
∂t2

. Under this situation, the sample point is changed and its new neighbor will be

used to perform the interpolation and get the new interpolation for the keypoint.
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3.Eliminating edge responses

After rejecting the keypoints with low contrast, this step is used to eliminate the false

keypoints that locate along the edge, because the di�erence of Gaussian function have a

strong response along the edges, even some edges are not stable and sensitive to the noise.

The principal curvature along the edge of those poorly de�ned peak is bigger than the

value in the perpendicular direction.

To eliminate these false keypoints, we compute the principal curvature from the 2× 2

Hessian matrix, H, computed at each location and scale of the keypoint:

H =

[
Dxx Dxy

Dxy Dyy

]
(3.3.4)

Where D represents the principal curvature.

Then the largest magnitude α and second magnitude value β are calculated. Get the

trace and product from the determinant:

Tr(H) = Dxx +Dyy = α + β

Det(H) = DxxDyy − (Dxy)
2 = αβ

(3.3.5)

The ratio r between these two values could identify if the keypoint is true or false.

r =
Tr(H)2

Det(H)
=

(α + β)

aβ
(3.3.6)

Let k represents the ratio between α and β, where k = α
β
, then

r =
Tr(H)2

Det(H)
=

(k + 1)2

k
(3.3.7)

In the author's paper, k = 10, so if r is bigger than the threshold, the we will eliminate

it, or else keep it.

4. Orientation assignment.

When determining the orientation of the keypoint, the histogram of orientation is

computed from the gradient orientations of neighbors around the detected keypoint. Then

the author tried to get the highest peak in the histogram and any other local biggest value

that is within 80% of the highest peak is used to create the keypoint in that orientation.
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5. Get the feature vector of each local image.

Firstly, the author calculated the gradient magnitude and orientation at each sampling

image point around the keypoint location. Then use a Gaussian window to weight them,

and accumulate the samples into orientation hitograms summarizing the contents over

4× 4 subregions.

6. Formalizing the descriptor representation

Through the processing above, each key point descriptor has been computed as a set

of orientation histograms over 4 × 4 subregions. 0 to 2π are divided into 8 parts and

used to form the orientation histograms . Each chosen window is divided into 4× 4 sub-

patches. Within each patch, gradient direction in 8 orientations is computed. So for each

keypoint, SIFT feature is representated by concatenating the gradient histogram of 4× 4

sub-regions. The length of SIFT feature vector is 4×4×8 = 128. Then the feature vector

will be normalized to enhance its stability to changes in illumination.

In our work, we extract SIFT feature on a densely sampled gird of locations under

the �xed scale and orientation, so that means that step 1 to step 3 to extract the SIFT

descriptors have been skipped.

3.4 DAISY feature descriptor

Engin Tola .etc proposed Daisy feature descriptor to compute dense depth ad occlusion

maps from wide-baseline image pairs, and this feature descriptor achieves very good result

. In the author's work, Daisy feature descriptor proved to be very e�ective against the

photometric and geometric transformation.

Compared with SIFT which uses 3D histograms, in this histogram, two dimensions

are used to represent the image spatial dimensions and one additional dimension is used

to represent the image gradient direction. These dimensions are calculated over local

regions, so all the pixels in the local all contribute to the histogram, the con�dence that

they contribute to �nal result is determined by the pixel's location in the local region, by

the orientation and the norm of the image gradient at its location. That means each bin

is comprised by the weight (the weight is inversely to the distance to the key point ). As
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a result, each bin is comprised of the weighted sum of the norms of the image gradients

around the key point, the weight is roughly determined by the distance to the bin center.

To extract DAISY feature descriptors, the author use the convolutions of the gradients

with the Gaussian �lters in speci�c direction to replace the weighted sums of gradient

norm.

The major steps of extracting DAISY Descriptor can be summarized as follows:

(1) Calculate the orientation maps.

Given an input image, compute H orientation maps, Gi, where i = [1, H]., each

orientation map corresponds to one quantized direction.

(2) Obtain convolved orientation maps.

Each orientation map is convolved with Gaussian kernel.

G
∑
o = G∑ ⊗ (

aI
ao

)+ (3.4.1)

where G∑ is a Gaussian kernel, and there are several di�erent Gaussian kernels di�ered

by
∑

values.
∑

values are used to control the size of the map region.

To fasten the computational speed, the author used consecutive convolution with small

Gaussian kernels to replace the convolution with a large Gaussian kernel.

G
∑

0
o = G∑

0
⊗ (

aI
ao

)+ = G∑ ∗G∑
1
∗ (aI

ao
)+ = G∑ ∗G∑

1
o (3.4.2)

where
∑

=
√∑2

2−
∑2

1. (
∑

2 >
∑

1)

So each vector in DAISY feature descriptor is consist of the values from the convolution

orientation maps located on the concentric circles centered in the selected pixel. The series

of the Gaussians just like a �ower, that's where the feature descriptor name coming from.
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Supervised Machine Learning

Supervised machine learning is one learning algorithm for recognition. The task of Su-

pervised machine learning is used to predict the unknown sample's label based on the

training samples. It's the key characteristics that mainly focuse on the process of learning

the classi�cation model. Each training sample is labeled with its class (the label de�ni-

tion of the training sample is based on the speci�c problem, such as when do the gender

classi�cation. The label information is consisted of �male� and �female�). Each training

sample is also representated by a feature vector extracted from the original image. The

task of this algorithm is to predict a classi�cation function that could give the right label

of the testing sample.

The generalized procedure of supervised machine learning is shown in Fig 4.0.1.

There are many di�erent kernels in support vector machine (SVM) recent years. In

our work, RBF kernel is used in our work to do kinship veri�cation and family relationship

analysis. In the next section, we will introduce the general scheme of SVM.

4.1 Support Vector Machine

A support vector machine (SVM) is �rst introduced by Cortes and Vapnik, this classi�-

cation method has been widely used in data analysis and pattern recognition. Recently,

SVM has been widely used as a classi�cation tool in the �eld of computer vision, and gets

so much popularity.

The general scheme is analyzed as follows:

29
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Figure 4.0.1: General procedure illustration of Supervised Machine Learning

Given n input data, say xi ∈ RN , x is (n × M) matrix, n is the number, M is

the feature dimension, and corresponding binary prediction yi ∈ {−1, 1}, to maximize

the margin between hyper-plane in a higher dimensional space, the requirement of the

support vector machine is as follows:xi · w + b ≥ 1, if yi = 1

xi · w + b ≤ −1, if yi = −1
(4.1.1)

1

Figure 4.1.1: Linearly separable

1Reference from Andrew Moore
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To �nd the maximum-margin hyper-plane, we should �nd the appropriate w and b

that minimize ( P (w, b) = wTw/2 ) .

We can simplify the above equation to the following format:

yi[w
Txi + b] ≥ 1 (4.1.2)

Figure 4.1.2: Complicated dataset distribution

Based on this idea, we can solve many problems such as in 4.1.1. But meanwhile under

some situation, the training samples with opposite labels mixed with each other, there

is not a hyperplane to separate them 4.1.2, so we need to �nd a optimized hyperplane

dealing with this problem:

We need to minimize

P (w, b, ξ) = wTw/2 + C
n∑
i=1

ξi (4.1.3)

s. t.

yi[w
Txi + b] ≥ 1− ξi

where ξi ≥ 0 ,
∑n

i=1 ξi is the total number of training errors, it determines the limit of

errors. C is a parameter balancing the class distance and errors.
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Figure 4.1.3: Seperable result got by Nonlinear

There are two major classi�cation structures. One is linear model and another is

non-linear model. Linear model is simple. It could deal with many problems. But the

distribution of some data with di�erent classes is not easy to classify using linear model.

Under this situation, kernels models are proposed to deal with these problems. Kernel

functions have been widely used to prove no-linear structure work very well. Kernels are

introduced to project original data to a higher dimensional space, so that the projected

data are linear separable in the projected space, as illustrated in 4.1.3 . There are several

commonly used as follows:

(1) Linear Kernel:

K(x, z) = xT z + c (4.1.4)

;

(1) Gaussian Radial basis function (RBF):

K(x, z) = e−||x−z||
2/2σ2

(4.1.5)

(2) Polynomial Kernel:

K(x, z) = (c1x
T z + c2)

p (4.1.6)

;

(3) Chi-Square Kernel:
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K(x, z) = 1−
n∑
i=1

2(xi − zi)2

(xi + zi)
(4.1.7)

.

The �nal classi�cation rule is very similar with the linear model described as follows:

ŷt = b+
∑
s∈S

wsK(xt, xs) (4.1.8)

where b is the constant value, ws is the weight vector, S is the set of support vectors,

xt is the testing feature descriptor, xs is one of the support vector in the training set. ŷt

is the predicted classi�cation result of the testing sample xt.

In this work, we have tried di�erent kernels in our experiments and realized that the

RBF kernel gave the best result in our problem.
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Experiments and Discussion

5.1 Datasets Description

We applied our family relationship analysis on our collected data sets. The database

is collected from Flickr and Google Images using keywords liking �family� and �groups.�

The photos downloaded by us are just those that are allowed by the owners. The dataset

collected by us includes about 1,000 photos from the initial response, and then we �ltered

the photos manually to select appropriate images for evaluating our methods.

In the work of kinship veri�cation, the individuals with non-biological relatedness are

not considered. Note that adopted children do not have a kinship with their parents.

So in our study, we don't consider the relationship of husband-wife and grandmother-

grandfather.

To label the kinship relation of our photo correctly, �ve people are involved in our

work to �lter the initial collection of images. The �ltering criterion in our work includes:

(1) Each labeled family photo contains face pairs that have evident kinship relation-

ship;

(2) Each labeled non-family group photo doesn't contain any kinship among all faces

within the same photo;

(3) If one is not 100% sure to label an image as family or non-family, just discard the

image.

After our manual �ltering, �ve people are asked to vote for each image. The image

labeled can be selected only if all �ve people give the same vote: family or non-family.

34
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The number of images selected for each category is slightly above100. To make two class

balanced, we chose exactly 100 family photos and 100 non-family group photos. In sum,

there are 810 faces in the selected database, 348 faces are included in family photos and

462 faces are contained in non-family group photos. On average, there are 3.5 faces in

each family group photo, 4.6 faces in each non-family photo.

Furthermore, �ve individuals are also asked to label facial familial traits in the selected

family photos. They were told to label the similarity with respect to important facial

parts, including left eye, right eye, nose and mouth. A familial trait is said to be true

only if all the �ve subjects have an agreement. To reduce the ambiguity and maintain

consistency, only a pair of faces in each family photo is labeled with the familial traits.

Also the kinship was labeled for all pairs of faces when all �ve individuals voted �yes� to

each family photo.

It's known that some people may have similar facial parts, such as mouth or nose, even

though they don't belong to the same family. So here we propose to use 100 non-family

group photos as the �negative� examples to prove our algorithm of kinship detection in

family photos. So similar to the work above, dissimilarity in terms of salient facial parts

in each non-family group photo is also labeled in our work. The criterion of labeling the

non-family parts is also that all �ve individuals voted the same.

In sum, there was a signi�cant amount of labeling work done on our database. The

ground truth labeling work has di�erent levels of details. The �rst level is the familial

(and non-familial) traits in faces; the second level is the kinship (or non-kinship) relation

for a pair of face images; The third level is the family photo and non-family group photos.

Furthermore, speci�c family relationships and generations were also labeled for testing

the developed methods.

5.2 Experimental Results

Our experiments are conducted on our family image dataset, which includes 100 family

photo and 100 non-family group photos separately. Because our collected image are

selected from an uncontrolled environment, we have to deal with the variations existing

in the faces, such as pose changes, illumination variations, facial expressions, and some

facial occlusions. In our work, we will evaluate our proposed algorithm on the �ve tasks:

(1) Familial trait identi�cation;
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(2) Kinship veri�cation;

(3) Generation recognition;

(4) Speci�c family relationship recognition;

(5) Family and non-family photo classi�cation.

Ten-fold cross validation is used in our work to test the accuracy of familial trait

identi�cation, kinship veri�cation, and family photo recognition. Five di�erent feature

schemes for facial part representation are evaluated, that is SIFT [21], DAISY [27], LBP

[1], HOG [6], and Edges[3]. The DAISY descriptor has been adopted in our previous

study [17] , and it is used here for comparisons.

Face detection algorithm from the OpenCV package is used in each photo. For those

faces that cannot be detected because of the signi�cant head pose variations in the uncon-

strained images, we manually labeled the locations of those faces in order to evaluate our

methods. The two eyes were detected using a procedure similar to face detection algo-

rithm. Other facial parts , nose, mouth are estimated with the prior knowledge based on

the relative positions of the eyes. As we analyzed above, the modi�ed Hausdor� distance

measure could handle the misalignment issues in the facial parts matching.

5.2.1 Familial trait identi�cation

We evaluate two discriminative classi�cation schemes and compare with the Bayes decision

scheme [17]. Meanwhile, we explore �ve di�erent representations for each facial part.

Through our comprehensive evaluation, then we could �nd which scheme is better and

which feature representation is more e�ective in learning familial traits. The basic idea

is to learn the facial part similarity and dissimilarity from two sets of labeled samples,

and perform a two-class classi�cation, as discussed in Section2.1. Considering the aging

e�ect and other facial variations, the vectorized Hausdor� distance measure in 2.1.4 was

used in all feature representations. The accuracies of familial trait recognition are shown

in Table 5.1.



CHAPTER 5. EXPERIMENTS AND DISCUSSION 37

Matching Representation
Familial Trait Identi�cation Accuracy
Left Eye Right Eye Nose Mouth

Bayes

SIFT 0.783 0.871 0.800 0.783
DAISY 0.775 0.814 0.733 0.750
HOG 0.692 0.721 0.617 0.567
LBP 0.625 0.693 0.641 0.733
Edge 0.492 0.493 0.542 0.483

Discri.1

SIFT 0.830 0.860 0.855 0.705
DAISY 0.750 0.790 0.705 0.610
HOG 0.620 0.650 0.560 0.560
LBP 0.685 0.600 0.585 0.595
Edge 0.610 0.585 0.550 0.550

Discri.2

SIFT 0.830 0.860 0.855 0.705
DAISY 0.775 0.825 0.735 0.615
HOG 0.620 0.685 0.595 0.570
LBP 0.790 0.775 0.745 0.670
Edge 0.525 0.630 0.575 0.595

Table 5.1: Familial Trait Identi�cation Accuracy.

From the result in the table, one can see that the SIFT based feature representation

performs the best among all these �ve representations. The Daisy operator is close to

the SIFT and better than LBP and HOG. Furthermore, our discriminative scheme 2 is

consistently better than the discriminative 1 scheme, and performs better compared with

the Bayes decision scheme [17] in some cases.

To summarize the result of familial trait identi�cation, we draw a bar graph and display

it in Fig.(5.2.1). It visually shows the performance of learning each familial trait with

di�erent matching schemes. It visually shows the performance of learning each familial

trait with di�erent matching schemes.
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Figure 5.2.1: Familial trait identi�cation using di�erent matching schemes on each of the
four traits, with the SIFT based representation

.

5.2.2 Kinship veri�cation

Based on the previous work, our next step is to recognize a kinship for a pair of faces,

this step will use the familial traits learned previously. As described in Section (2.1),

Equ.(2.1.3) is used to combine familial traits dynamically (by sorting) and probabilistically

(measured by con�dence values) to determine the kinship. Small positive constants are
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selected,δ1 = 0.02 , δ2 = 0.01 , and δ3 = 0.005 , to set the threshold for con�dence

measures. The setting of these values is from the analysis of the experiments. The

underlying meanings are that the facial parts of faces with a kinship look similar but

with di�erent degrees of similarity, as discussed in Section (2.2). We use ten-fold cross

validation to compute the accuracies using di�erent facial part representations. The

results are shown in Table 5.2. From the table, we �nd that SIFT based feature gives the

highest accuracy of 84.5% in kinship veri�cation.

Representation
Kinship Veri�cation Accuracy

Bayes Discriminative 1 Discriminative 2
SIFT 0.800 0.820 0.845
DAISY 0.770 0.750 0.825
HOG 0.740 0.675 0.735
LBP 0.675 0.705 0.825
Edge 0.535 0.615 0.650

Table 5.2: Kinship Veri�cation Accuracy

Based on the discriminative 2 scheme, compared with this scheme, discriminative 1

scheme achieves 82.0%, this is a little lower than discriminative 1 scheme. Both schemes

are better than 80.0% got by the Bayes decision scheme [17], work [17] uses likelihood

ratios to make the decision. The DAISY based representation achieves lower than SIFT,

but higher than the HOG and LBP, much higher than the edge based method. In sum,

our matching scheme based on discriminative 2 is the best among all the three proposed

approaches.

It's known that the representations and discriminative matching schemes have a direct

in�uence in computing the con�dence values in Equ. 2.2.1 , which also further a�ect the

kinship decision in Equ.2.2.2 . Our kinship veri�cation scheme could achieve 80% or

higher, this is an amazing result. To best represent the performance of di�erent matching

schemes and various representations, we draw the ROC curves based on our experiment

result, this is shown in Fig.(5.2.2). To compare with the previous work [10], we also

implemented the algorithm according to the illustration in this work. Then we performed

kinship veri�cation using our database. The result is not good, just could achieve59.5%

accuracy. I think it's because the database in work [10] has low-resolution images and is

not su�cient for learning the familial traits using our methods.
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Figure 5.2.2: ROC curves of three di�erent matching schemes (from left to right: Bayes,
Discriminative 1, and Discriminative 2, respectively) in kinship veri�cation, using �ve
di�erent facial part representations.

The comparison illustration is shown in Fig. (5.2.3). We apply our discriminative 2

scheme to various representations. From the graph, it's easy to �nd that all representations

in our approach outperform the method proposed in [10].
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Figure 5.2.3: Bar graph display of kinship veri�cation, comparing various representations
under the proposed matching scheme discriminative 2 with the method based on [10]

Compared with our scheme, no familial trait learning has been performed in [10]. From

Table 1 in [10], we can see the top feature used in [10] include eye colors, skin colors, and

distance between facial parts, these features are not used in our database. The diversity

of races is not very discriminative, because our database mainly contains the Caucasian

people with only a small diversity of race. So we can't judge if the compared faces have

the kinship relationship from their eyes and skin colors.

5.2.3 Generation recognition

As far as we know, just one study try to study the problem of generation recognition. Here,

we have developed a knowledge-based decision rule to determine if an identi�ed kinship is
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within the same generation, across one generation, or across two generations. Generation

recognition work is essential to make the understanding of family relationship more deeply.

We use three Gaussian distributions modeling the realistic distribution of generation, the

input parameter is the age gaps, age gap is calculated based on the estimated age of each

given face. To build the model of aging estimation, we combine the MORPH [25] and

FG-NET [11]databases. Because of the character of age range in MORPH, the age range

is narrow (16 to 67 years), many samples are contained in this database. On the other

hand, compared with MORPH, the FG-NET contains less number of face samples, but its

age range is wider, an age span from 0 to 69 years old. FG-NET contains more individuals

whose ages are below 16. Biologically inspired features combined with SVM classi�ers are

learned to estimate age [16], but we conducted on a di�erent database. Then we use the

learned aging estimation function to apply in our newly collected family photos. The

result of generation recognition is shown in the �rst row of Table 5.3.

All Kinship Pairs
Kinship Pairs Recognized by
HOG LBP SIFT DAISY

Generation Recognition 0.52 0.50 0.55 0.52 0.53
Speci�c Relationship Recognition 0.41 0.38 0.40 0.42 0.44

Table 5.3: Accuracies of generation recognition and speci�c family relationship recognition
on kinship pairs.

In Table 5.3, we perform the generation recognition work in two cases. In the �rst

case, we use all pairs of faces with the known kinship (ground truth), then we test the

accuracy of generation recognition. We obtain an accuracy of 52% shown in the �rst

column. In the second case, we use the recognized kinship pairs based on the matching

scheme of discriminative 2 with four di�erent representations (edge representation is not

performed here), as shown in the last four colums. The accuracies range from 50% to

55%. The number of pairs of faces used here is usually smaller than using all the pairs,

since some kinship pairs are not identi�ed. However, the di�erences between these two

cases are not signi�cant. We can get accuracies over 50% in generation recognition in each

case. Though these accuracies are higher than a random guess (about 33%), they are not

very high. From this result, we can see the problem of age estimation is still a challenging

problem. A more developed age estimation procedure may improve the performance of

the generation recognition.
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5.2.4 Speci�c family relationship recognition

We can get the accuracies of speci�c family relationship recognition from the second

row of Table 5.3. More similar to the generation recognition, the recognition are also

performed in two cases. Firstly, all pairs of faces labeled with the kinship are used to

test the accuracy of speci�c family relationship recognition on these pairs. An accuracy

of 41% is achieved in the �rst column. Secondly, we use the recognized kinship pairs (the

same as that used for generation recognition) to perform the experiment, the �nal result

is shown in the last four columns. The accuracies range from 38% to44%. The di�erences

between these two cases are pretty well. We can get accuracies above 40% in speci�c

family relationship recognition in either case. Compared with the random guess (about

9%), the accuracies got by our scheme perform much better, but still lots of space could

be improved. Seen from the result demonstrated, we can see that the problems of age

estimation and gender classi�cation are still very challenging in the unconstrained face

images.

From the four recognition problems discussed above, more information could be ob-

tained from a pair of faces, instead of just a kinship. As shown in Fig.(5.2.4)., except the

kinship, our methods could also report the familial traits with con�dence value measures,

a sibling relation, and more speci�cally, the brother-sister relationship.

Figure 5.2.4: Given a pair of face photos (automatically aligned by the eyes), our system
can report recognition results at several levels of details.
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5.2.5 Recognizing family photos.

The experiment in this section separates the family photos from non-family group photos.

We can extend the kinship recognition based on a pair of faces to multiple faces in a family

photo. Based on the decision rule described in Equ. 2.5.1, we could discriminate family

photos from non-family group photos. This problem has not been studied in previous

research. To get a quantitative measure of the performance, we conduct ten-fold cross-

validation experiments on our database. The results are shown in 5.4, this result is based

on di�erent matching schemes and facial part representations for kinship veri�cation. In

this problem, the DAISY operator performs slightly better than the SIFT when the Bayes

decision is used for kinship recognition. But when our discriminative schemes are used,

the SIFT based representation has higher accuracies than DAISY. The highest accuracy of

86.0% is obtained by the SIFT representation under the matching scheme of discriminative

2 for kinship veri�cation. This result is quite encouraging. We show some examples of

correct and incorrect recognition results in Fig.5.2.5., the result in the �gure is based

on the SIFT representation, discriminate 2 classi�cation scheme, and pair-wise kinship

combination. We checked the incorrect recognition results Fig. 5.2.5., we found the

majority of this problem is caused by the facial variations, for example, pose, illumination,

expression, aging, and partial occlusion. Though we have taken these problems into

consideration in our work, but we have to admit that it is still very challenging to separate

family photos from other groups in the unconstrained images.

Family/Non-Family Classi�cation Accuracy
Bayes Discriminative 1 Discriminative 2

SIFT 0.770 0.810 0.860
DAISY 0.800 0.800 0.820
HOG 0.660 0.645 0.755
LBP 0.730 0.650 0.770
Edge 0.505 0.650 0.680

Table 5.4: Results of family & non-family photo recognition.
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Figure 5.2.5: Some recognition results. Top left: a family photo recognized correctly; Top
right: a non-family photo recognized correctly; Bottom left: a family photo recognized
incorrectly as non-family; Bottom right: a non-family photo recognized incorrectly as
family.
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Concluding Remarks

In our work, �ve computational problems have been presented in family relationship anal-

ysis in face photos, and have explored appropriate methods to deal with these problems.

We also have shown that the familial traits can be learned from pairs of local, salient facial

parts. Then we integrate the learned familial traits to form a decision for kinship veri�ca-

tion. We also furthered our work into generation recognition based on the modeling the

age gaps, also speci�c family relationship recognition based on the generation recognition

and gender classi�cation. By extending kinship recognition from the pair-wise to multiple

pairs, we have studied how to identify the family photos and non-family groups from the

given images.

To solve these problems, two discriminative schemes dealing with the familial trait

identi�cation, kinship veri�cation and family photo recognition are proposed to compare

with the result using a Bayes decision. Various features are proposed to represent facial

parts combined with various matching schemes. Through our comprehensive evaluation,

we have found that the SIFT descriptor performs better than DAISY, LBP, HOG and

Edges. From the analysis of our experiment result, we can see that SIFT is more powerful

in terms of scale and a�ne invariance, considering the possible variations in the uncon-

strained family and non-family database we collected. Our work is good explore in the

generation recognition and speci�c family relationship recognition based on face images.

The encouraging results based on our validation result could inspire further research on

family relationship analysis for semantic image understanding and social context analysis

from photos.

In our future research, it will be interesting to explore more familial traits to further

47
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improve the performance of our algorithm. Such as one of the interesting works might

be used to investigate the impact of familial traits on face recognition. Considering the

character of the di�erent family members share common familial traits, how to recognize

a person in the family photo will be a very interesting work in the future.
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