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ABSTRACT 

 

A Machine-Aided Seismic Signal Analysis Workflow for Subsurface Faults and Facies 

Visualization and Interpretation, South Central Anadarko Basin, Oklahoma 

 

Wade Martin 

 

 

Seismic attribute analysis enhances the understanding of subsurface geology and has 

continually gained traction in the oil and gas industry since the 1970’s. Many seismic attributes 

are available for petroleum geoscientists. This research intends to provide insight to an analytical 

attribute workflow for rock property estimation in the Anadarko basin of Oklahoma that is 

prolific in oil and gas exploration, with a particular focus on seismic texture. 3-D volumes 

processed for seismic texture facies and structure enhance geophysical investigation and 

interpretation of amplitude data. This study will contribute valuable insight to reservoir studies 

and the potential for texture attribute well calibration across exploration. Seismic responses are 

directly related only to the velocity and density of the rocks and fluids present in the subsurface. 

An analytical attribute workflow will provide insight to depositional facies, structural geology, 

and small-scale features that are otherwise unclear from reflection seismology alone. The 

Pennsylvanian sandstones, the Mississippian and Devonian carbonates, and early Mississippian 

Woodford Shale are three proven petroleum targets that can be further evaluated within the 

Mountaineer 3D seismic data set. Application of an analytical attribute workflow with an 

emphasis on seismic texture attributes provides an insight to the subsurface basin structures and 

depositional facies, which are fundamental for successful exploration for and effective 

development of conventional and unconventional energy resources in the basin. 
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1. INTRODUCTION 

1.1 Objectives and Approach 

The primary objective of this research is to investigate and compare seismic texture 

attributes to conventional attributes within a 3D seismic data set. This will be accomplished by 

exploring the relationship between amplitude data, conventional seismic attributes and seismic 

texture volumes through an analytical seismic attribute workflow. Analysis of the seismic data 

will provide insight to geologic properties related to facies and structure. An investigation of 

seismic texture will increase the understanding of this relatively new seismic attribute and its 

usefulness for subsurface reservoir characterization, prediction and structural modeling. 

This study of seismic texture coupled with an analytical attribute workflow presents a 

new visual analysis of the Anadarko basin in Oklahoma. While a texture attribute study can 

provide the opportunity for qualitative and quantitative analysis, this study relied on qualitative 

assessments of the subsurface. Facies texture volumes enhance depositional patterns and 

structure texture volumes illuminate deformation patterns that can be challenging to see in 

amplitude data alone. 

 

1.2 Data Set 

Devon Energy provided a ~75 mi2 seismic data set to West Virginia University. The 

Mountaineer 3D seismic data is found in Caddo County Oklahoma, south-central Anadarko 

basin (Figure 1). Outside of relative county information, the specific location of any data 

analyzed will be sanitized per Devon Energy’s request. In addition to the Mountaineer 3D, 

Devon Energy provided WVU a suite of wells and images of previous seismic interpretations. 

The seismic data set has a sample rate of 2ms with a total record length of 6 seconds, and the 
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inline and crossline spacing is 82.5 ft. A total of 16 wells were loaded into the Petrel project, 

along with their associated well logs. These wells are primarily located in the upper sections of 

the seismic data and contain gamma ray, sonic, caliper, resistivity, density and porosity logs.   

 

2. BACKGROUND GEOLOGY 

2.1 Tectonic History, Stratigraphy, and Structure 

The Anadarko basin of Oklahoma and Texas is the deepest basin on the North American 

Craton, and one of the deepest on Earth. The geographic location of this study is in Caddo 

County, Oklahoma, which is in the southern portion of the Anadarko basin (Figure 1).  

 
Figure 1: Map view of the Anadarko Basin and geologic features of the region. Red square highlighting 

Caddo County. Modified from Johnson (2008). 

 

The Anadarko basin is bounded to the south by the Wichita mountains, to the east by the 

Nemaha uplift, and to the west-south-west by the Amarillo uplift and the Cimarron arch (Figure 

1).  Development of this asymmetrical basin can be characterized by four major geologic 
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episodes (Figures 2 & 3) that led to the deposition of nearly 40,000 feet of sediment in the 

deepest parts of the Anadarko basin (Johnson, 1989).  

 
Figure 2: Generalized north-south structural cross section through the Anadarko basin, location 

shown in map (Johnson, 1989). 

  

 
Figure 1: Generalized cross section showing major units and faults from Johnson (2008). Ages 

are marked by letters. Important: Ci, Cambrian igneous and metamorphic rocks; OC, Ordovician 

and Cambrian sedimentary rocks; MDS, Miss., Devonian & Silurian; IP, Pennsylvanian; P, 

Permian. 
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During late Precambrian, rifting began and created the oldest igneous rocks known in 

Oklahoma (Johnson, 2008). These rocks include Cambrian intrusions, composed of gabbro and 

basalt from 535±30 Ma, and granites and rhyolites, from 525±25 Ma (Feinstein, 1981). These 

igneous rocks formed along a west-northwest trend through southern Oklahoma and into the 

panhandle of Texas, and acted as the basement in conjunction with the Precambrian igneous 

rocks (Figures 2 & 3). This magmatic package marks the last time there was igneous activity in 

Oklahoma and cooling of intruded magma and extruded lava controlled basin subsidence. 

After the closure of the rift arm, late Cambrian through Mississippian sediments were 

deposited. These sediments form the southern Oklahoma aulacogen into the southern Oklahoma 

trough. During the late Cambrian to Ordovician, southern Oklahoma was dominated by 

intermittent shallow and deep seas depositing sandstone, limestone, and shale. These lithologies 

combine to a total of 9,500 ft in the deeper parts of the trough (Johnson, 2008). The 9,500 ft of 

sediment thins northward from the southern Oklahoma trough to less than 1,500 ft thick on the 

Anadarko Shelf (Figure 3). Carbonate deposits were overlain by late Devonian shale, totaling 

roughly 1,000 ft of sediment during the Silurian and Devonian periods. 

The latest Mississippian through Pennsylvanian were tectonically active periods and an 

unconformity marks the base of the section. The sediments deposited are predominately marine 

shale; however, beds of limestone, conglomerate, shale, and sandstone are found throughout. 

This section thins northward from 15,000 ft in the southern Oklahoma trough to the 2,000 ft 

(Figure 3) on the Anadarko Shelf (Johnson, 2008). Orogenies and uplifts, specifically the 

Wichita mountains, occurred throughout deposition of Pennsylvanian sediments, and largely 

controlled the facies distribution and axes of sedimentation (Figure 4).   
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Figure 4: Generalized Pennsylvanian rock deposits shown on left from youngest to oldest (A through C). 

Permian deposits shown on the right from youngest to oldest (D through G). During the Wichita Orogeny 

(A-B) there was ~15,000feet of uplift. Modifiend from Johnson (2008). 

 

A 

B 

C 

D 

E 

F 

G 
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The Anadarko basin has been in an epeirogenic episode since the Permian, and the 

majority of Cenozoic and Mesozoic sediments have been eroded (Johnson, 1989). The entire 

Permian sequence totals 6,000 ft in thickness in the deep Anadarko basin and 1,000 ft on the 

shelf. This sequence is comprised of alluvial sediments, shallow marine sediments, and 

evaporites that were deposited in the early to middle Permian. By the late Permian, the Anadarko 

basin was dominated by red sandstone, shale, and salt (Johnson, 2008). 

Four major geologic episodes in Oklahoma are represented by roughly 40,000 feet in the 

deepest portions of the Anadarko basin (Figure 5). These sediments, buried and lithified during 

the Mississippian, Devonian, Silurian and Pennsylvanian, provide opportunities for oil and gas 

exploration and exploitation. 

 
Figure 5: South to North generalized cross sections showing stages of tectonic activity that affected the 

Anadarko basin. A and B represent the formation of the southern Oklahoma Aulacogen, while C and D 

represent the sedimentation seen in the Anadarko basin. Modified from Higley (2014). 

 

2.2 Petroleum System 

The Anadarko basin has large potential for hydrocarbon exploration and exploitation due 

to the size, depth and geologic history of the basin. This basin contains more than 150 fields and 

is highly productive for oil and natural gas (Lee, 2002). With fifteen known source rocks 

containing both gas and oil, it is important to characterize and understand the petroleum systems. 
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The subsurface geology of the Anadarko basin has been extensively researched by academia and 

private companies. This project will rely on proven petroleum systems from Cambrian to 

Permian strata (Figure 6). The major horizontal drilling targets are found in the Devonian, 

Mississippian and Pennsylvanian strata, and especially the late Devonian to earliest 

Mississippian Woodford Shale.  

 
Figure 2: Generalized stratigraphic column of the Anadarko basin with source rocks in red (Higley, 

2014).  
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3. SEISMIC ATTRIBUTES 

3.1 Seismic Attributes 

A seismic attribute is a measurement derived from seismic data. A useful seismic 

attribute is directly related to a geologic feature and helps define reservoir properties of interest 

(Chopra, 2008). Seismic attributes aid in interpretation and analysis for determining many of the 

important factors needed to optimally produce oil and natural gas. A seismic amplitude texture 

refers to a characteristic pattern defined by the magnitude and variation of neighboring amplitude 

samples at a given location in an image space (Gao, 2011).  

 

3.2 Attribute Background 

Using amplitude volumes for seismic interpretation has been standard industry practice 

for many years. Amplitude provides the interpreter with general structure and stratigraphy data 

by showing changes in impedance in three dimensions.  

Variance is a geometrical attribute that compares neighboring waveforms or traces. This 

is the opposite of the well-known coherency attribute. Variance measures lateral variations 

between neighboring seismic traces by representing the trace-to-trace variability of a particular 

sample interval (Chopra and Marfurt, 2007). A variance volume provides a medium to delineate 

edges of strata and faults by visualizing differences in traces. Low variance is the result of little 

change from trace to trace while high variance is produced by variations within the stratigraphy.  

 The curvature attribute is geometric and is a measure of deformation along a plane. 

Curvature measures a seismic horizon for deformations by fitting mathematical quadratic 

surfaces to a selected seismic horizon (Chopra and Marfurt, 2007). The curvature attribute 

characterizes the reflector shape independently from bulk rotations and translations of seismic 
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reflections (Chopra, 2007).  Curvature enhances the understanding of the structural geology and 

geometry by delineating folds and flexures. Additionally, curvature has the potential to highlight 

fracture networks associated with flexures (Hart et al., 2002).  

 The structure texture attribute enhances low-frequency waveform character resolution 

and visibility through a waveform model regression (WMR) algorithm with constant phase 

(Figure 7) that produces high-frequency reflection events (Gao, 2018). The structure texture 

attribute greatly enhances and illuminates the number of horizons to interpret structural 

relationships. On the contrary, the seismic texture facies attribute uses a different WMR 

algorithm with an adaptive phase waveform (Figure 8) that discriminates waveform features in a 

small window. The facies attribute volume illuminates depositional variations.  

 
Figure 7: Flowchart for process of converting amplitude volume to seismic structure enhanced volume 

using waveform model regression (WMR) algorithm.  This process is carried out at each location in space 

at a defined interval size.  
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Figure 8: Schematic representation of WMR process along a seismic wiggle trace using a dynamic model 

with adaptive phase for seismic facies analysis (Gao, 2004, 2006). 

 

3.3 Attribute Comparison 

Understanding the general structure and its magnitude can be done with amplitude, 

curvature, and variance. Curvature and variance attributes are referred to as geometric because 

they enhance the visibility of geometrical characteristics in seismic data. Attributes like 

amplitude and frequency are related to mechanical properties and are referred to as physical 

attributes. Seismic texture is capable of fulfilling both roles as a physical and geometrical 

attribute depending on the algorithm used (Gao, 2001, 2004). The model texture can be updated 

through trial and error if the resulting volume does not display enhanced resolution or clarity of 

geologic features. When coupled with a standard attribute workflow, the two different types of 

texture volumes provide ample opportunity to enhance exploration through the geometric and 

physical relationships improved by seismic texture.  
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4. PREVIOUS WORK 

4.1 Seismic Texture 

Texture analysis has been employed in seismic interpretation since the 1980’s, when it 

was used as a method of classification by picking zones of common signal character (Love and 

Simaan, 1984). Texture is an underutilized attribute compared to many attributes utilized in 

industry today and only recently have seismic texture techniques been used to enhance 3D 

volumes. Since the 2000s, seismic texture has proven useful in enhancing interpretation 

capabilities for facies discrimination when compared to amplitude data (Chopra, 2005; Gao, 

2004, 2006). Texture is very useful in extracting quantitative information through statistical 

measures. Seismic texture refers to lateral and vertical changes in amplitude and waveforms at a 

given location within a seismic volume (Gao, 2004, 2006). In 3D seismic, texture refers to a 

characteristic pattern defined by the magnitude and variation of neighboring amplitude samples 

at a given location within a small zone in 3D space (Gao, 2011). 

Historically speaking, texture is an underutilized attribute compared to many attributes 

used in industry today. Since the 2000’s seismic texture has proven useful in enhancing 

interpretation capabilities for facies discrimination when compared to amplitude data (Chopra, 

2005; Gao, 2004, 2006). In 2011, Gao investigated GLCM vs WMR methods for texture and 

showed their benefits to well calibration efforts. Multiple texture model sizes can be run through 

WMR and their results have differing geologic implications. A constant phase texture model is 

best at identifying the structural fabrics, a model with an adaptive phase is useful for visualizing 

seismic facies, and a texture model with variable amplitude, frequency, and size is instrumental 

in calibrating seismic to reservoir properties (Gao, 2011). 
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4.2 Study Area 

It should be noted in-depth reservoir studies have been conducted by Devon Energy 

geoscientists, but these were not made available for use or publication in this study.  Raw seismic 

data was processed by Devon Energy and WVU received the post-stack seismic volumes. The 

depth of the Woodford shale is estimated by the top of the underlying Hunton Limestone. Devon 

Energy also provided WVU with horizon cross-section calibrated to wells showing the Hunton, 

Chester and Oswego Limestones (Figure 9). These three horizons were then picked across the 

survey area and provide insight to the adjacent stratigraphy of these lithostratigraphic units.  

 

Figure 9: Inline from PSTM Mountaineer 3D data. View from the east with a vertical 

exaggeration of 10. Picked stratigraphic horizons Oswego, Chester and Hunton are colored and 

labeled accordingly. 
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4.3 Analog Basins 

The Arkoma basin of Oklahoma is relatively similar age to the Anadarko basin, 

containing many of the same stratigraphic units, most importantly including the Woodford Shale. 

Volumetric seismic attributes have been used to successfully map and characterize structural 

deformation (Guo et al., 2010). This study utilized coherence, curvature, and production data to 

interpret curvature anomalies and naturally fractured areas that enhanced production. 

Offshore Angola data from a Gao study in 2008 showed very promising results with 

regard to WMR facies volumes. Lateral variations could be delineated across the survey in a 

deep offshore marine environment with channel sands. The Anadarko basin contains similar 

depositional environments. 

The Appalachian front across the eastern United States provides an analog for the 

structural evolution of the Wichita mountains in Oklahoma. The foreland basin created during 

the Silurian through the Pennsylvanian in northeastern United States has a style similar to that 

seen in the Anadarko basin – though the Anadarko rotated 90⸰ counterclockwise to the 

Appalachian front. While the Wichita mountains are an extension of the Appalachian front, the 

stratigraphy varies significantly, and, most importantly, does not contain the massive Salina salt, 

which acts as a detachment for large-scale normal faulting (Gao, 2018).  

5. DATA AND METHODOLOGY 

5.1 Attribute Workflow 

Seismic attributes aid in interpretation and analysis for determining many of the 

important factors needed to optimally produce oil and natural gas. This research utilizes 

attributes that are known to be directly related to geologic features and rely on those assumptions 

to help understand and characterize subsurface geology. Initial interpretations and exploration 
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relied on amplitude, minimum and maximum curvatures, and variance. These attributes provide 

insight to the structure and facies throughout the seismic data set, and help isolate areas of 

interest for comparison to texture volumes. 

5.2 Synthetic Seismic Modeling 

A suite of wells provided by Devon Energy allows for the forward modeling of a 

synthetic seismogram. A synthetic seismogram is generated by convolving the reflectivity, 

calculated from acoustic and density logs, with a wavelet similar to the input seismic data. The 

synthetic seismogram is not guaranteed to match with the original seismic data because of data 

collection differences, and particularly results in differences in the absence of check shots and a 

partial sonic log (Ewing, 2001). The well data lacked check shots and had an incomplete sonic 

log, but a time-depth relationship was still created in order to successfully create a synthetic 

seismogram (Figure 10). An accurate well-tie could be established in this data set with the 

combination of a correct vertical shift, well tops and known shallow seismic horizons for future 

work.  
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Figure 10: A synthetic seismogram created with a Ricker wavelet overlaid on PSTM amplitude 

data. 

 

5.3 Waveform Texture Analysis Methodology 

 WMR-based texture attributes were used to produce facies and structure volumes to 

investigate geologic implications within the Mountaineer 3D. Using a post-stack seismic volume, 

Gao’s waveform method creates a tool for seismic visualization that is more useful than 

amplitude or coherency volumes. While coherency highlights discontinuities alone, texture 

highlights discontinuities as well as how adjacent traces differ (Gao, 2011).  

 Waveform texture attributes are computed by using each original amplitude trace 

waveform and lateral location within the Mountaineer 3D. A model waveform is computed from 

each original trace and is compared to adjacent traces through a linear least-squares regression 
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(Figure 11). Following the regression a correlation coefficient is calculated and results in the new 

attribute value. This process is computed throughout the Mountaineer 3D volume and is outlined 

previously in Figure 7. While there is some variation between waveform texture attributes, the 

basic steps stay the same. Waveform texture attributes are the product of comparing an input data 

to a model data then analyzing the regression between the two. As a result, the final output 

provides a relationship between the original post-stack seismic and the model waveform. 

 
Figure 11: Schematic representation of WMR using model waveforms and to real data traces. 

Each pair of samples (connected by dotted lines) are used in linear least squared regression and 

the slope of the line of best fit is the output used for texture attributes (Geiger, 2016). 

 

5.4 Structure Volume 

 Multiple structure volumes were created using varying frequency and window sizes 

through WMR in order to better visualize structure. This research utilizes two structure volumes 

using 7 and 15 sample window sizes and 71Hz and 33Hz frequencies, respectively. Figures 12, 

13 and 14 show the differences in varying frequency and window size compared to PSTM 

amplitude data.  
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Figure 12: Inline from PSTM data view from the east with a vertical exaggeration of 10. Picked 

stratigraphic horizons are colored and known units are labeled. 

 

 

 
Figure 13: Inline from seismic structure data volume with a frequency filter of 15. View is from the east 

with a vertical exaggeration of 10. Picked stratigraphic horizons are colored and known units are labeled. 
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Figure 14: Inline from seismic structure data volume with a frequency filter of 7. View is from the east 

with a vertical exaggeration of 10. Picked stratigraphic horizons are colored and known units are labeled. 

 

The visual result is seen immediately when comparing a structure volume to the original input 

amplitude data. In conventional amplitude data, reflection events and their discontinuities are 

limited in many cases because of weak reflection energy, low dominant frequency and poor 

signal-to-noise ratio (Gao, 2011). The two structure volumes allow for greater detection of 

structural deformation when interpreting on in-lines, cross-lines and time-slices within a seismic 

volume. Seismic structure volumes rely on a constant phase wavelet to enhance the structural 

geometry. High-angle faulting, semi-parallel to strike, is apparent beneath the Oswego. These are 

generally normal faults, stepping down into the deeper part of the basin from the northeast to 

southwest, and can be seen on in-lines and cross-lines. Additionally, oblique faults in the deeper 

section can be seen on time-slices and surfaces. 
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5.5 Facies Volume 

 3D seismic facies analysis through WMR isolates distinct seismic features in 3D space, 

and utilizes a variable phase to differentiate waveform characters (Gao, 2011). An instantaneous 

phase model restrains structural interference and highlights facies changes. This difference 

allows isolation of more complex facies that are not clearly visible within amplitude data alone.  

Multiple seismic facies volumes were computed with different scales. This is computationally 

achieved by instantaneously changing the phase of the model until a maximum regression 

gradient is found between the model and the data, and is repeated sample to sample (Gao, 2011). 

This research utilizes two scales of waveform windows. Variations in seismic facies are seen 

when comparing facies volumes to the amplitude volume, and are of greatest significance near 

channel deposits. A smaller scale is able to distinguish smaller features, and larger scales 

distinguish broader, large-scale features. The upper section of the Mountaineer 3D data has 

multiple channels and is visually enhanced through seismic facies volumes.  

 

6. RESULTS 

6.1 Preliminary Seismic Analysis 

 The Anadarko basin subsided throughout the Paleozoic Era as the result of cooling of 

precedent igneous activity followed by the formation of the Wichita uplift (Johnson, 1989). Post-

stack amplitude data in Figure 15 shows the general southwest dipping trend of the Anadarko 

basin seen throughout the Mountaineer 3D.  
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Figure 15: Cross-section from A-A’ shown on a surface map of the Oswego. Stratigraphic horizons are 

colored lines and faults are black lines. 

Eleven generally continuous and major stratigraphic boundaries were mapped throughout the 

data to investigate variations in deposition and structure style. The dip and structural deformation 

increase with depth within the seismic data. The most drastic change can be noted above and 

below the Oswego surface, where deeper stratigraphic units are structurally complicated and 

have much larger variations in depth compared to shallower stratigraphic units (Figure 16). This 

trend is representative of the known structural geology of the Anadarko basin. To the Southwest 
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is the Wichita mountains, the hinterland, and the Mountaineer 3D is located in the foreland, 

which explains the wedge formations seen in the bottom portion of the data. Below the Oswego 

there are four picked horizons, two of which are the Chester and Hunton limestone unit, and 

above are six unknown horizons. The upper horizons have extremely similar structure trends and 

provide the basis for the facies analysis, particularly in regards to sedimentary features. The 

lower units provide the foundation for investigation into enhanced structure deformation.  

 
Figure 16: Image A shows both inline and crossline views of texture structure data from the northeast, and 

image B shows a crossline viewed from the East and meet along the vertical blue line. Stratigraphic 

horizons are colored lines, with the Oswego, Chester and Hunton horizons are color coded to the 

respective horizon’s color. The two images provide clear insight to the structural differences from top to 

bottom. 

 

6.2 Seismic Structure Analysis 

The structure of the Anadarko basin within the Mountaineer 3D is categorically different 

above and below the Oswego horizon. Above the Oswego horizon the stratigraphy is generally 

free of structural faulting or fracturing when compared to the stratigraphy below the Oswego. 
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The upper horizons dip decreases from roughly 6.5 degrees until the beds are nearly horizontal at 

-1000ms (Figure 16). The Hunton and Chester limestone units, as well as two unknown horizons, 

have been picked beneath the Oswego and show substantial deformation. The Silurian Hunton 

limestone and Mississippian Chester limestone were heavily fractured and faulted during the 

formation of the Wichita mountains. The primary structural development of the Anadarko basin 

during this orogeny can be interpreted as an oblique compressional system, as well as influence 

from transpressional forces (Ball et al., 1991).  

Figure 17 visualizes the general structure seen across the Mountaineer 3D below the 

Oswego and shows important kinematics. The bulk of major faults impact only the deepest strata 

(Hunton and above), propagate up through horizon 2 occasionally and rarely intersect horizon 1. 

In addition, the Oswego remains unfaulted. The faults picked in red are predominately 

hinterland-vergent normal faults, where the southern strata drop in relation to the adjacent 

northern counterparts. This detachment is most likely driven by gravitational pull from the 

southwest during rapid subsidence caused by the thrusting of Wichita mountains. There are 

graben-like features found throughout and an example is shown in Figure 17, C-C’.  
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The southern flank along the Chester and Hunton horizons is bounded by a folded, 

reverse-like feature, implying external forces are at play in addition to simple gravitational pull. 

Additionally, structures oblique to strike can be found across the horizons below the Oswego 

horizon, particularly near the Chester horizon. More often than not the oblique structures are 

found en echelon and could be representative of transpressional forces causing shearing during 

parts of the Wichita orogeny (Figure 18). The Chester horizon in Figure 18A contains a swath of 

oblique fault features in the large circle to the North, and to the South a primary East-trending 

normal fault is offset by multiple oblique faults. Coherence highlights this discontinuous nature 

of these faults, while structure texture provides insight to the deformation of the strata as a 

whole. In Figure 18 C and D the higher frequency structure time-slice provides greater detail of 

potential faulting than what can be seen in the other figures. This provides the opportunity to 

expand on fault and fracture analysis near the Chester Limestone.  
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Figure 18: Four seismic interpretations of and around the Chester limestone.  (A) TWT Chester horizon 

dipping from the NE to SW 600ms. The larger northern circle highlights oblique, en echelon faulting, and 

the smaller circle highlights large-scale normal faulting with oblique faults en echelon. (B) Variance time-

slice at -2416ms overlaid by the same large circle from (A) highlighting variance in continuity of strata. 

(C) and (D) are texture structure time slices at -2416ms. Arrows point to en echelon style deformation. 

(C) is the high frequency (71Hz) volume while (D) is the low frequency (33Hz) structure volume. 
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6.3 Seismic Facies Analysis 

 In the shallower section of the post-stack seismic amplitude data set there is strong 

evidence for the presence of river channels. Features commonly found in amplitude data that 

relate to meandering rivers are found throughout, and were investigated further with additional 

attributes. While RMS amplitude and curvature provide an outline for the presence of these 

southwestern traveling rivers, seismic texture facies illuminate and distinguish more features. 

Figure 19 shows a river channel in seismic horizon 3 and surface 3.  

 
Figure 19: Horizon 3 and Surface 3, respectively, showing the presence of a river channel highlighted by 

the red circles. 

 

While the creation of the surface from the horizon smooths the visual presence of the river 

channel, the contour “V” pattern persists where the river channel is found on horizon 3. The 

quality of this surface diminishes to the South because alluviation can create a disrupted, 

discontinuous seismic response making consistent amplitudes picks challenging. The amplitude 

data shows the presence of the river channel, and can be enhanced by comparing the result to 

texture facies volumes (Figure 20).  
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Figure 20: Horizon 3 overlaid on a seismic facies timeslice from -1200ms showing a river channel 

migrate southwest. 

 

The comparison of the river channel system seen near horizon 3 is stark in seismic time-

slices. Figures 21-24 highlight the quality of texture volume attributes to distinguish river 

channel deposition as compared to amplitude alone. Horizon 3 spans roughly 100ms of vertical 

section, and these four time-slices cover the majority of this depth. Comparing amplitude to the 

facies data the apparent difference is the visibility of the river channel. The river meanders from 

the northeast to the southwest over the entire seismic horizon with multiple point bars, cut bank 

and potential splay deposits that cannot be confidently mapped and characterized in amplitude 

time-slices alone. The differences in the facies volumes should be noted in their ability to 

distinguish facies patterns near and outside of the river channels. Of particular interest is the 

presence of river channels in facies 7 than cannot be seen in the lower frequency facies 11 
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(Figures 22 & 23). Facies volumes output data directly related to the input waveform (soft data) 

and can be interpreted to distinguish varying facies during deposition (Gao, 2011).  

 

 
Figure 21: Three timeslices taken from PTSM, Facies 7 and Facies 11 data, respectively. The timeslices 

are located at -1192. River channel can be clearly seen on the Facies data set. 

 
Figure 22: Three timeslices taken from PTSM, Facies 7 and Facies 11 data, respectively. The timeslices 

are located at -1200. River channel can be clearly seen on the Facies data set. 
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Figure 23: Three timeslices taken from PTSM, Facies 7 and Facies 11 data, respectively. The timeslices 

are located at -1210.  River channel can be clearly seen on the Facies data set. 

 

  
Figure 24: Three timeslices taken from PTSM, Facies 7 and Facies 11 data, respectively. The timeslices 

are located at -1250. River channel can be clearly seen on the Facies data set. 

 

Surface attributes show additional detail and follow the horizon’s general dip instead of 

horizontally slicing through with a constant time-slice. Figures 25 and 26 are surface attributes 

extracted onto horizon 3, and illuminate the river channel in one image. Minimum and maximum 

curvature map the lateral movement and extent of the river channel, while ignoring insightful 

data outside the river banks useful in delineating different depositions. The curvature attributes 

are useful for initial interpretation, but offer little more than amplitude and are inferior to texture 
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attribute analysis. Figure 26 shows three surface attributes – facies 7, facies 11, and PSTM 

amplitude, respectively – and their ability to better distinguish lateral facies variations compared 

to curvature. The input amplitude surface is capable of showing the presence of a river channel, 

while the facies surfaces provide greater detail and variation.  

 
Figure 25: Minimum and maximum curvature of Surface 3. 

 

 
Figure 26: Three surface attributes extracted on Surface 3: Facies 7, Facies 11 and PSTM Amplitude, 

respectively.  
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7. FUTURE WORK 

Well log data can be used to determine the accuracy of estimations made within the 

facies volumes. Different responses within a facies volume should represent different rock types 

– shale, sandstone, etc. Geiger’s 2016 work showed promise in comparing gamma ray responses 

to varying facies texture, and directly relates to rock property estimation. The Pennsylvanian 

sandstone, the Mississippian and Devonian carbonate, and early Mississippian Woodford Shale 

are three proven petroleum targets that can be further evaluated within the Mountaineer 3D 

seismic data set with accurate well ties. Once able to determine where certain geologic zones are 

located, texture analysis would aid better characterization of fractures, faults and facies near the 

reservoir. 

Gao’s 2008 work in offshore Angola and 2018 work in the Appalachian basin shows 

great potential for further exploration of seismic texture analysis within the Mountaineer 3D. 

Incorporating additional well information, such as detail logs and production data, could enhance 

the understanding of structure control on the reservoir and establish greater insight to lateral 

variation within the petroleum targets of the Anadarko basin. The foundational understanding of 

structure established in this study can be used to better understand structural controls within 

conventional and unconventional reservoirs. Geomechanical properties in general, brittleness in 

particular, are controlled by fracture orientation and could be better characterized through the 

high frequency seismic texture analysis.   

8. CONCLUSIONS 

 The application of an analytical attribute workflow with an emphasis on waveform 

texture attributes provides an insight to subsurface basin structures and depositional facies, 

which are fundamental for successful exploration for and effective development of conventional 
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and unconventional energy resources in the Anadarko basin. While many seismic attributes are 

available for petroleum geoscientists, seismic texture is a developing concept and methodology 

that has been underutilized in the oil and gas industry. This research should provide motivation 

for applying seismic texture analysis in 3-D seismic volumes for subsurface structure and facies 

characterization, leading to enhanced geophysical interpretation of 3D seismic amplitude data. 

The Anadarko basin of Oklahoma is prolific in oil and gas exploration. This study has 

contributed insight to the potential for texture attribute to well calibration. The suite of well logs 

provides the opportunity to continue this research for in-depth structure and facies calibration. 

An analytical attribute workflow provided insight to depositional facies, structural geology, and 

small-scale features that are otherwise unclear from reflection seismology alone. 

Characterization of channel flow and deposits were enhanced with seismic texture facies, and 

oblique structures were visualized more clearly through seismic texture structure volumes. Gao’s 

waveform texture attributes were used to produce facies and structure volumes to investigate 

geologic implications within the Mountaineer 3D. Using a post-stack seismic volume, the 

waveform texture analysis provides a tool for seismic visualization that is more useful than 

amplitude or coherency volumes and provides interpreters with more detail for subsurface 

structure and facies characterization in the basin.  
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