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ABSTRACT 

Analgesic and Anti-Inflammatory Effects of Monoacylglycerol Lipase Inhibition in Mice 

Subjected to Collagen-Induced Arthritis 

Sara R. Nass 

Rheumatoid arthritis (RA) is the most prevalent chronic inflammatory joint disease, affecting 

approximately 1% of the world population. This autoimmune disease is characterized by pain, 

stiffness, swelling, and breakdown of cartilage in synovial joints. Current RA analgesic 

treatments (i.e., pain reducing drugs) are ineffective or induce negative side effects, and so there 

are many concerted efforts to discover new RA treatments. Cannabinoids have analgesic and 

anti-inflammatory properties; however, the challenge remains to harness the medical potential of 

cannabinoids without inducing negative psychoactive effects (e.g., cognitive deficits, emotional 

disruption, and abuse potential). An alternative approach focuses on the endogenously produced 

cannabinoids (endocannabinoids). The endocannabinoids 2-arachidonoyl glycerol (2-AG) and 

anandamide are catabolized by the enzymes monoacylglycerol lipase (MAGL) and fatty acid 

amide hydrolase (FAAH), respectively. Pharmacological inhibition of MAGL or FAAH increases 

brain levels of the respective endocannabinoids, 2-AG or anandamide, and significantly 

decreases inflammatory pain. The present study tested the hypothesis that MAGL inhibition 

decreases hyperalgesia, locomotor suppression, and allodynia caused by collagen-induced 

arthritis (CIA), a well-established animal model of inflammatory arthritis. Separate groups of 

mice subjected to CIA were administered acute or chronic doses of the selective MAGL inhibitor 

JZL184 and tested for (1) thermal hyperalgesia in the hotplate and tail immersion tests, (2) 

mechanical allodynia, and (3) suppressed locomotor activity. Thermal hyperalgesia was 

significantly attenuated by acute JZL184 (8 or 40 mg/kg) in the hot plate test, but not the tail 

immersion test. The lack of JZL184 attenuation of hyperalgesia in the tail immersion test may 

indicate a JZL184 supraspinal mechanism of action. Although the present study was hampered 

by ongoing model development, these results suggest that MAGL inhibition may be a promising 

strategy for the treatment of pain caused by inflammatory arthritis. 
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Background 

Rheumatoid Arthritis 

 The term "arthritis" encompasses over 100 different medical conditions (CDC, 2012) and 

can be broadly divided into two different categories: musculoskeletal and inflammatory arthritis. 

Rheumatoid arthritis (RA) is the most common type of inflammatory arthritis, affecting about 

1% of the population worldwide (Firestein, 2003). RA is a systemic inflammatory disease 

categorized by swelling and erosion of multiple synovial joints (i.e., knees, elbows, wrists, hips, 

and fingers) (CDC, 2012). Other symptoms of RA, caused by systemic inflammation, include 

anemia, fatigue, generalized bone loss, artherosclerosis, and lung tissue damage (Moreland, & 

Curtis, 2008). Although the etiology of RA is not well understood, it is considered an 

autoimmune disease, in that the host's immune system attacks healthy tissues, causing localized 

inflammation and tissue damage (Boissier et al., 2012). During the autoimmune process, there is 

a release of proinflammatory mediators (i.e., cytokines and chemokines) that increase 

nociception (i.e., pain) by either directly activating nociceptors or producing a sensitization of 

the somatosensory nervous system that leads to an increase in inflammation and pain (Scholz & 

Woolf, 2002). 

 In addition to being the primary negative symptom among RA patients, increased 

nociception contributes directly to chronic disability by limiting mobility. Perhaps surprisingly, 

RA patients report chronic pain, rather than joint damage, as the primary reason for their limited 

mobility and decreased quality of life (Lee, 2013). Chronic pain also causes psychological and 

physiological distress, which can negatively affect disease outcome. For example, during the 

early stages of the disease, patients who rate overall pain as "high" report increased levels of 

disability one year later, as compared with patients who rate their pain as relatively lower (Walsh 
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& McWilliams, 2012). Chronic pain can also cause patients to forgo physical activities that may 

otherwise be beneficial to their physical and emotional health. The pain, as well as fatigue 

induced by sleep disturbance, can then lead to decreased productivity (Walsh & McWilliams, 

2012). Mood disturbance can also affect chronic pain patients. Pain causes depression, and then 

the altered affect makes it increasingly difficult to cope with the pain, thus causing a vicious 

cycle. In other words, in addition to the pain itself, decreased physical activity and increased 

mood and sleep disturbance also lead to an immeasurable decrease in the quality of life of 

patients suffering from RA. What is perhaps easier to quantify is the cost of RA to the US 

healthcare system, which is staggering with $545 million spent in 2009 alone, on hospital visits 

directly related to this disease (CDC, 2012). 

 The main cause of widespread pain in RA patients is chronic inflammation of the 

synovium, which is the smooth lining of the joint. In the acute inflammatory phase, 

inflammatory mediators elicit local inflammation by activating neutrophils, which are a type of 

short-lived white blood cells that play a major role in the innate immune response. When 

inflammation becomes chronic, as with RA, the neutrophils are replaced by macrophages and T-

cells at the site of inflammation (Medzhitov, 2008). Macrophages (literally "big eater" cells) are 

relatively long-lived white blood cells that ingest foreign bodies and produce proinflammatory 

cytokines (e.g., tumor necrosis factor (TNF), interleukin-1 (IL-1), gamma interferon (IFNγ) and 

interkeukin-6 (IL-6)) and chemokines. Proinflammatory cytokines function to modulate the 

inflammatory response, and chemokines recruit other inflammatory cells to the site. In addition 

to increasing localized inflammation to attack the joint tissue, these signaling molecules help to 

orchestrate differentiation and maturation of B-cells, which produce antibodies against the target 

tissue, thus further exacerbating the inflammatory immune response (Scrivo, Franco, Spadaro, & 
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Valesini, 2007). The abundance of T-cells, macrophages, and pro-inflammatory cytokines (TNF, 

IL-1, and IL-6) found in the synovial fluid of RA patients supports this cell-mediated 

autoimmune process as a mechanism for chronic inflammation in RA (Boissier et al., 2012). 

Current Rheumatoid Arthritis Treatments 

 To date, the main foci of treating RA have been to (1) reduce the proinflammatory 

immune response, and (2) reduce RA associated pain. Disease-modifying antirheumatic drugs 

(DMARDs) and glucocorticoids (steroids) are popular treatments. Despite the effectiveness of 

these medications in suppressing the disease progression, they also evoke harmful side effects 

and are often ineffective in reducing pain. For example, when introduced later in the disease 

progression, DMARDs are generally ineffective as analgesics. Even when introduced early, 

many patients report the presence of moderate pain regardless of DMARD treatment (Lee, 

2013). Similarly, steroids such as glucocorticoids are effective analgesics when administered in 

the short-term, but this analgesia quickly abates as the patient builds tolerance to the steroids 

(Lee, 2013). Perhaps more alarming is that chronic glucocorticoid treatment can induce 

insensitivity to one's own steroid hormones (Dinsen, 2013), which can lead to many side effects, 

including dysregulated immune function on a broad scale. In severe cases where DMARDs or 

glucocorticoids are ineffective in slowing the progression of the disease, biologic therapies that 

suppress specific cytokine responses (i.e., TNF, IL-1, & IL-6) are often used (Al-Shakarchi, 

Gullick, & Scott, 2013). However, as with steroid treatments, cytokines mediate many different 

cell types and functions, and so these drugs are somewhat non-selective and can cause negative 

side effects along with decreased analgesic efficacy over time (Barton, 2008). Furthermore, any 

immunosuppressive treatment has the potential to leave the patient with an increased 

vulnerability to infection.  
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 Due to the side effects detailed above, nonsteroidal anti-inflammatory drugs (NSAIDS) 

have become increasingly popular for attenuating inflammatory pain, with comparatively fewer 

side effects than the alternatives listed above (Lee, 2013). Nevertheless, NSAIDs are not without 

risk. Chronic NSAID use can cause gastrointestinal bleeding, renal impairment, and increased 

risk of cardiovascular events, all of which are potentially life threatening (Walsh & McWilliams, 

2012). The increased cardiovascular risk of NSAIDs may be especially problematic for patients 

with RA, who already have an increased cardiovascular risk, as compared with the general 

population (Walsh & McWilliams, 2012).  

The Endocannabinoid System 

 Due to the adverse impact that chronic pain has on patients’ lives, many choose self-

medication with drugs of abuse, most commonly with Cannabis sativa. Cannabis has been used 

to treat a variety of ailments, including pain, for thousands of years (Mechoulam & Parker, 

2013). Cannabis and similar compounds (cannabinoids) have anti-inflammatory properties and 

also elicit antinociceptive effects by inhibiting neuronal transmission in pain pathways. 

Cannabinoid induced analgesia (i.e., pain reduction) has been reported in a variety of clinical and 

preclinical pain models (Guidon & Hohmann, 2009). In addition to chronic pain, Cannabis also 

has analgesic and immunomodulatory effects in a variety of diseases such as multiple sclerosis, 

AIDS, and amyotrophic lateral sclerosis (Kogan & Mechoulam, 2007). In the 1960s, the main 

psychoactive component of Cannabis, Δ
9
-tetrahydrocannabinol (THC), was isolated and 

synthesized (Gaoni & Mechoulam, 1964). However, the undesirable psychomimetic side effects, 

including deficits in attention and cognitive function, coupled with the abuse potential of THC 

and other exogenous cannabinoids decrease enthusiasm to use these drugs as therapeutic 

analgesics (Crowe, Nass, Gabella, & Kinsey, 2014). Instead, a rapidly growing body of research 
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indicates that the endogenous cannabinoid (i.e., "endocannabinoid") system may offer promising 

new targets for pain treatment.  

 There are two endocannabinoid (eCB) receptors that have been identified and cloned: 

cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2). The CB1 receptor is expressed 

throughout the body and mediates most of the psychoactive effects of cannabinoid agonists, 

including hypothermia, catalepsy, and cognitive deficits (Crowe et al., 2014; Nass et al., 2015; 

Herkenham, Lynn, Johnson, Melvin, de Costa, & Rice, 1991). The CB1 receptor is also expressed 

in central nervous system (CNS) areas associated with pain (i.e. the amygdala, periaqueductal 

gray, and dorsal horn of the spinal cord), indicating that the eCB system is located in appropriate 

areas to modulate pain (Schlosburg, et al., 2009). On the other hand CB2 is expressed mainly in 

immune tissues, but can also be found in the CNS on microglia (the macrophages of the CNS) 

and in low levels in the brainstem (Mechoulam & Parker, 2013). Within the immune system, 

CB2 is expressed on a variety of cells (i.e. B cells, natural killer cells, monocytes, neutrophils, 

and other lymphocytes) with different levels of expression depending on the activation state of 

the cell and the type stimulation (Rom & Persidsky, 2013). There are two major 

endocannabinoids: N-arachidonoylethanolamine (AEA; anadamide) and 2-arachidonoylglycerol 

(2-AG), that activate and bind to both CB1 and CB2 (Mechoulam & Parker, 2013).  

 Unlike other neurotransmitters, which are stored in vesicles, endocannabinoids are 

synthesized de novo and then rapidly metabolized by enzymes, thus resulting in a short span of 

activity. Anandamide is primarily regulated by fatty acid amide hydrolase (FAAH) and 2-AG is 

predominately regulated by monoacylglycerol lipase (MAGL; Figure 1) (Mechoulam & Parker, 

2013). Due to its rapid metabolism MAGL, it is impractical to exogenously administer 2-AG as 



Analgesic Effects in Collagen-Induced Arthritis   9 
 

therapeutic treatment. However, pharmacological inhibition or genetic deletion of MAGL 

increases the endogenous levels of 2-AG and results in analgesia (Long et al., 2009).  

 FAAH and MAGL inhibition attenuates analgesia in animal models of acute 

inflammatory pain. Administration of the FAAH inhibitor URB597 attenuates hyperalgesia in 

the complete Freund’s adjuvant (CFA) model of acute inflammatory pain (Schlosburg et al., 

2009). CFA is an emulsion of paraffin oil containing a surfactant and heat killed Mycobacterium 

tuberculosis that induces an inflammatory response, without the development of tuberculosis 

(Billiau & Matthys, 2001). URB597 also attenuates hyperalgesia and edema caused by 

intraplantar injection (into the ventral footpad) of the bacterial endotoxin lipopolysacharride 

(Naidu, Kinsey, Guo, Cravatt, Lichtman, 2010). Similarly, intraplantar injection of the seaweed 

extract carrageenan elicits localized edema and thermal and tactile hyperalgesia in mouse paws 

that is attenuated by URB597 administration (Schlosburg et al., 2009). The carrageenan 

inflammatory model has also been used very recently to evaluate the analgesic and anti-

inflammatory effects of MAGL inhibition. Carrageenan is a seaweed extract and common food 

additive that, when injected, causes localized pain and inflammation. The MAGL inhibitor 

JZL184 attenuates carrageenan-induced acute paw edema inflammatory pain (Ghosh et al., 

2013). Thus, there is evidence to support the idea that MAGL inhibition may also reduce 

inflammatory pain in a chronic model such as inflammatory arthritis. 

Inflammatory Arthritis Model 

 Animal models of rheumatoid arthritis are used to increase the understanding of the 

pathogenesis of the disease and evaluate potential therapeutic treatments. The best characterized 

mouse model of rheumatoid arthritis is collagen-induced arthritis (CIA). In the CIA paradigm, 
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mice are injected with an emulsion of type II bovine collagen mixed with an equal part of 

complete Freund’s adjuvant (Brand, Latham, & Rosloniec, 2007; Kinsey, Naidu, Cravatt, 

Dudley, & Lichtman, 2011a). Four to eight weeks after the initial immunization, mice show 

clinical signs of arthritis (e.g., paw swelling, redness) as well as cartilage destruction, 

ossification, pronounced synovitis, and periarticular inflammation (Brand et al., 2007; Inglis, 

Simelyte, McCann, Criado, & Williams, 2008). During the progression of arthritis, T-cell, pro-

inflammatory cytokines, and anti-collagen antibody responses increase (Brand et al., 2007; Inglis 

et al., 2008). Although the progression of CIA is more rapid than in the human disease (Bendele, 

2001), both mice and RA patients have the extensive pannus (i.e., irregular tissue formation) 

associated with cartilage destruction and increased t-cell and pro-inflammatory cytokine 

response in their synovial joints. Due to the aforementioned similarities between RA and CIA the 

model has several advantages over other animal models of inflammatory arthritis. For example, 

the collagen-antibody-induced arthritis (CAIA) model is induced by transferring anti-collagen 

antibody and administering the gram-negative bacteria marker lipopolysaccharide (LPS) to mice 

(Khachigian, 2006). Unlike RA and CIA the CAIA model progresses on a rapid time course and 

does not involve T-cells in the pathogenesis (Khachigian, 2006; Asquith, Miller, McInnes, & 

Liew, 2009). T-cells are one of the main immune cells that are activated in RA (Boissier et al., 

2012). The TNF-α transgenic mouse model of arthritis is induced by an overexpression of human 

TNF-α. It has a similar pathogenesis to RA and CIA, but unlike RA and CIA the TNF-α model 

does not produce rheumatoid factor or involve T-cells (Bevaart, 2010). Rheumatoid factor is an 

antibody that develops against self-tissue and can be found in the serum and joint fluid of RA 

patients (Boissier et al., 2012). 
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 Despite the well-known anti-inflammatory and analgesic properties of cannabinoids, a 

paucity of research focuses on the effects of cannabinoids in CIA. Administration of exogenous 

cannabinoids attenuates clinical signs of arthritis and joint damage, while having an 

immunosuppressant effect in CIA (Malfait et al., 2000; Sumariwalla et al., 2004). The anti-

inflammatory and analgesic effects of anandamide have also been evaluated through FAAH 

inhibition in CIA. Administration of the FAAH inhibitor URB597 or genetic deletion of FAAH 

attenuates thermal hyperalgesia (sensitivity to noxious heat) in the hot plate and tail immersion 

tests in mice subjected to CIA. Furthermore, chronic FAAH inhibition reduces CIA-induced paw 

swelling and joint destruction (Kinsey et al., 2011a). Taken together, these studies indicate that 

cannabinoids and endocannabinoids attenuate CIA-induced pain and inflammation. However, the 

possible role of 2-AG is unknown.  

 2-AG is much more prevalent than anandamide in the CNS, and MAGL inhibition is 

relatively more potent than FAAH inhibition in models of neuropathic pain and gastric 

inflammation (Kinsey et al., 2009; Kinsey et al., 2011b). However, there are no reported data on 

the effects of MAGL inhibition on inflammatory arthritis. This is likely due to a historic lack of 

selective MAGL inhibitors or MAGL knockout (i.e., genetic deletion) mice. However, with the 

recent synthesis of highly selective MAGL inhibitors, it is now possible to investigate the 

efficacy of MAGL inhibition on inflammatory arthritis.  

 In the present studies, we investigated the analgesic and anti-locomotor suppressed 

behavioral effects of MAGL inhibition in the collagen-induced arthritis mouse model of 

inflammatory arthritis. First, we tested the hypothesis that acute treatment with the MAGL 

inhibitor JZL184 would reduce CIA-induced pain and locomotor suppression. To this end, we 

tested a range of doses of JZL184. In addition we tested the FAAH inhibitor PF-3845 and the 
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glucocorticoid dexamethasone as positive controls. FAAH inhibition attenuates CIA-induced 

thermal hyperalgesia (Kinsey et al., 2011a) and dexamethasone attenuates LPS-induced thermal 

hyperalgesia (Naidu et al., 2010). Second, we tested the hypothesis that the observed analgesic 

effects of JZL184 are mediated by the CB1 receptor. We pretreated mice that had been 

administered JZL184 with selective CB1 and CB2 receptor antagonists and then tested the mice 

for hyperalgesia, allodynia, and locomotor suppression. Third, we tested the hypothesis that 

chronic treatment with JZL184 or PF-3845 would reduce CIA-induced inflammation, 

hyperalgesia, and allodynia. We quantified the anti-inflammatory effects of MAGL and FAAH 

inhibition by measuring paw swelling and performing clinical scoring of arthritic changes, and 

then conducted behavioral assays. 

Statement of the Problem 

 Rheumatoid arthritis is a chronic autoimmune disease that decreases quality of life and is 

correlated with increased depression and sleep disturbances (Lee, 2013). Pain is the most salient 

symptom among patients with RA and also predicts longitudinal changes in disability over the 

disease progression (Walsh & McWilliams, 2012). Conventional treatments for inflammatory 

arthritis include immunosuppressant agents such as steroids and non-steroidal anti-inflammatory 

drugs (NSAIDs). However, these drugs have numerous negative side effects, including 

increasing patients’ susceptibility to infection.  

Current research focuses on the endocannabinoid system as a potential therapeutic target 

for inflammatory pain, because of the analgesic effects that are unaccompanied by 

psychomimetic effects (Schlosburg et al., 2009). Selective inhibitors of the two main metabolic 

enzymes of the endocannabinoid system (FAAH and MAGL) have been shown to reduce pain 

and inflammation in several animal models of inflammatory pain (Ghosh et al., 2013; Kinsey et 
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al., 2011a; Schlosburg et al., 2009). Our lab recently demonstrated that FAAH inhibition reduces 

the pain and inflammation caused by collagen-induced arthritis (Kinsey et al., 2011a). However, 

although 2-AG is expressed in the brain at approximately 200 fold higher levels than 

anandamide, there are no data on the possible analgesic and anti-inflammatory effects of MAGL 

inhibition, with regard to inflammatory arthritis. Therefore, we evaluated the possible analgesic 

and anti-inflammatory effects of MAGL inhibition in the collagen-induced arthritis mouse model 

of inflammatory arthritis. 

Methods 

Animals 

 Subjects were adult male DBA/1J mice (Jackson Laboratory, Bar Harbor, ME) that were 

9-10 weeks old at the start of the experiments. Mice were housed 3-5 per cage in a temperature 

(20-22°C) and humidity controlled environment with ad libitum access to food and water. Male 

DBA/1J mice were used because they are highly susceptible to developing CIA, as compared to 

females and other mouse strains (Bendele, 2001). In the acute studies, 18-90% of the mice 

developed arthritis and were used for testing. However, for the chronic dosing study, all mice 

were included and 98% developed arthritis. Mice were randomly assigned to treatment groups. 

All experimental protocols (14-1007) were approved by the Animal Care and Use Committee at 

West Virginia University. 
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Collagen Induced Arthritis (CIA) immunization 

In the CIA model, CFA is combined with collagen to induce a strong immune response in 

the presence of collagen. Then the “booster” re-exposure of collagen in IFA induces 

autoimmunity to self-collagen. Mice were anesthetized with isoflurane, and approximately 100 

µl of an emulsion consisting of bovine type II collagen (2 mg/ml), dissolved in 0.05 M acetic 

acid (Chondrex, Redmond, WA), in an equal volume of complete Freund’s adjuvant (CFA) (see 

Table 1) was injected intradermally approximately 1.5 cm from the base of the tail. Twenty-one 

days later, mice were given a secondary "booster" exposure to the collagen emulsion, but in an 

equal volume of incomplete Freund’s adjuvant (IFA), injected approximately 2 cm distal to the 

original injection. Freund’s adjuvants have been used since the 1940’s to facilitate the induction 

of animal models of autoimmune diseases. IFA consists of an emulsion of paraffin oil containing 

a surfactant. To become CFA, heat killed Mycobacterium tuberculosis is added to the emulsion 

to induce a strong immune response, without the development of tuberculosis (Billiau & 

Matthys, 2001). After the “booster” injection, paws were examined every few days for arthritic 

signs using a clinical scoring system as follows: 0, normal; 1, erythema and mild swelling 

confined to the ankle joint or toes; 2, erythema and mild swelling extending from the ankle to the 

midfoot or ankle joint; 3, erythema and moderate swelling extending from the ankle to the 

metacarpal/metatarsal joints; 4, erythema and severe swelling encompassing the ankle, foot, and 

digits (Kinsey et al., 2011a). The scores for the hind limbs were summed for each mouse, 

resulting in a composite arthritis score with a maximum of 8 total points. Foot thickness was also 

measured with a digital micrometer (Wixey WR100, Thermo Fisher Scientific, Inc.). The 

experimenter was blinded to treatments when scoring and measuring paws. Due to low incidence 

of arthritis in most experiments and ongoing model development, mice with a clinical score of 1 
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or higher were used in the acute dosing experiments. Mice subjected to CIA that did not develop 

paw inflammation (i.e. clinical score of 0) were classified as non-responders and were not tested 

in acute dosing experiments. In the chronic dosing experiment all mice were used because it was 

impossible to determine if the lack of arthritic symptoms was due to non-responsiveness to CIA 

or drug effects. 

Table 1. Details of CIA induction protocol, by experiment. 

 

Drugs 

 The MAGL inhibitor JZL184 and the FAAH inhibitor PF-3845 were purchased from 

Cayman Chemical (Ann Arbor, MI). The CB1 antagonist rimonabant (SR141716A) and the CB2 

antagonist SR144528 were generously provided to Dr. Kinsey by the National Institute on Drug 

Abuse (Bethesda, MD). The synthetic glucocorticoid dexamethasone (DEX) was purchased from 

Sigma (St Louis, MO). All drugs were prepared in a vehicle of ethanol, Cremophor (Sigma-

Exp. Fig. Treatment Cohort Collagen M. Tb CFA Stopcock 

1a 

 

3 Acute JZL184 (8 & 40 mg/kg) 2 2 mg/ml 2 mg/ml Light No 

1a 

 

4 Acute JZL184 (1 & 4 mg/kg) 3 & 4 2 mg/ml 4 mg/ml Light No 

1b 

 

5 Acute PF-3845 (10 mg/kg) 7 2 mg/ml 2 mg/ml Heavy Yes 

1c 

 

6 

Acute Dexamethasone (2 

mg/kg) 6 2 mg/ml 4 mg/ml Heavy Yes 

2 

 

 

7 

Acute SR1 or SR2 (3 mg/kg) 

& Acute JZL184 (40 mg/kg)  7 & 8 2 mg/ml 2 mg/ml 

Heavy 

& 

Light Yes 

3 

 

 

8 

Chronic JZL184  

(8 mg/kg) or PF-3845  

(10 mg/kg) 5 2 mg/ml 4 mg/ml Light Yes 



Analgesic Effects in Collagen-Induced Arthritis   16 
 

Aldrich, St Louis, MO), and saline in a ratio of 1:1:18 parts. All solutions were administered at 

room temperature in a volume of 10 µl/g body weight.  

Experimental Plan  

 The goal of the first experiment was to determine the analgesic and anti-locomotor 

suppression effects of acute JZL184 administration. In experiment 1a, divided into two parts, we 

tested a dose range of JZL184 (1, 4, 8, 40 mg/kg) in mice subjected to CIA. Due to JZL184’s 

potency to significantly increase brain levels of 2-AG at a low dose (4 mg/kg), a JZL184 dose 

range was administered to determine the analgesic and anti-locomotor suppression effects of 

acute JZL184 treatment (Long et al., 2009). First, mice subjected to CIA were injected with a 

moderate (8 mg/kg) or high dose (40 mg/kg) of JZL184 (Ghosh, 2013; Kinsey et al., 2011a) or 

vehicle and testing for mechanical allodynia, spontaneous locomotor activity, followed by 

thermal hyperalgesia. Second, due to the attenuation of CIA-induced hyperalgesia in the hot 

plate test with the moderate and high doses of JZL184,  low doses of JZL184 (1 & 4 mg/kg) 

(Ghosh, 2013; Kinsey et al., 2011a) or vehicle were administered to a separate cohort of mice 

subjected to CIA. Mice were then tested for allodynia, locomotor activity, and hyperalgesia. In 

experiment 1b the FAAH inhibitor PF-3845 (10 mg/kg) (Ahn et al., 2009) or vehicle was 

administered to a separate cohort of mice subjected to CIA and mice were tested for allodynia, 

locomotor activity, and hyperalgesia. In experiment 1c a separate cohort of mice subjected to 

CIA was administered the synthetic glucocorticoid agonist dexamethasone (2 mg/kg) (Naidu et 

al., 2010) or vehicle. Mice were then tested for allodynia, locomotor activity, and hyperalgesia. 

PF-3845 and dexamethasone were used as positive controls. Both acute PF-3845 (10 mg/kg) 

(Ghosh et al., 2013) and acute dexamethasone (2 mg/kg) (Naidu et al., 2010) attenuate acute 

inflammatory pain. Separate control mice, not subjected to CIA, were also tested for allodynia, 
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locomotor activity, and hyperalgesia in each experiment.  

 The goal of the second experiment was to determine the possible cannabinoid receptor 

mechanism of action through which JZL184 attenuated CIA-induced hyperalgesia. Mice were 

administered the CB1 antagonist rimonabant (3 mg/kg, i.p.), the CB2 antagonist SR144528 (3 

mg/kg, i.p.), or vehicle. Thirty minutes later, mice were injected intraperitoneally with vehicle or 

JZL184 (40 mg/kg) and then tested for allodynia, locomotor activity, and hyperalgesia. Separate 

control mice, not subjected to CIA, were also tested for allodynia, locomotor activity, and 

hyperalgesia.  

 The goal of the third experiment was to determine the anti-inflammatory and anti-

nociceptive effects of chronic JZL184 administration. Chronic PF-3845 administration was used 

as a positive control (Kinsey et al., 2011a). The day that mice received the booster injection of 

collagen (i.e., day 21), mice were administered JZL184 (8 mg/kg, s.c.), PF-3845 (10 mg/kg, s.c.), 

or vehicle once daily, for 15 consecutive days. During chronic administration mice were assessed 

daily for gross signs of inflammation using paw swelling and clinical scores as described above. 

After the final treatment with JZL184, PF-3845, or vehicle (i.e., day 36), each mouse was tested 

for locomotor activity, allodynia, and hyperalgesia, as detailed below. Separate control mice, not 

subjected to CIA, were also administered vehicle repeatedly and tested for allodynia, locomotor 

activity, and hyperalgesia. 

 

 

Figure 2. Diagram of behavioral test battery. In each experiment, mice were administered 

drug or vehicle and tested 2 h later for mechanical allodynia in the von Frey assay, a 

locomotor assay, and thermal hyperalgesia in the hot plate and tail immersion assays. In 

Experiment 2 mice were administered cannabinoid receptor antagonists or vehicle 30 min 

before JZL184.  
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Behavioral Assessments 

Behavioral testing (allodynia, locomotor activity, and hyperalgesia) began after the 

development of inflammation in at least 1 paw (approximately 7-14 days after the “booster” 

injection of collagen). Mice were randomly assigned to a drug treatment and tested by an 

experimenter who was blinded to the treatment conditions. Due to ongoing model development 

separate cohorts of mice were used for each experiment (see Table 1). In the case where multiple 

experimenters were required, interobserver reliabilities for behavioral tests were performed 

before the experiments were conducted and were correlated to > 0.98. Mice were tested on all 

behavioral assays in one day. For experiments with JZL184 and PF-3845, significant increases in 

endocannabinoid tissue levels are present 24 h after administration of either compound (Ahn et 

al., 2009; Long et al., 2009). Dexamethasone is long acting steroid with a biological half-life of 

36 – 54 h (Ozdemir, Guvenal, Cetin, Kaya, & Cetin, 2003). The test battery was performed in the 

following order, based on the level of stress each test induces in mice, to decrease the effects of 

stress on behavior: mechanical allodynia, locomotor activity, hot plate test, and tail immersion 

test (see Figure 2). Although mechanical allodynia is more stressful than locomotor activity it 

was performed first because mice were required to acclimate for at least 60 min on the von Frey 

testing apparatus (Kinsey et al., 2009). Performing mechanical allodynia first minimized the time 

between drug administration and the last behavior assay. 

On the test day, mice were brought into the testing room, weighed, and injected. After 

receiving drug, the mice were placed in ventilated polycarbonate chambers (7.5 x 9 cm) on an 

aluminum mesh table, where they were allowed to acclimate for 120 min before testing for 
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mechanical allodynia, as detailed below. Then mice were individually placed into either a clean, 

plastic test cage to test spontaneous locomotor activity or a test cage filled with bedding and 

evenly spaced marbles to test locomotor activity using the marble burying test. Mice habituated 

to the plastic test cages, but not the test cages with bedding and evenly spaced marbles (Thomas 

et al., 2009). Therefore, for experiments where mice were repeatedly tested the marble burying 

test was used to measure locomotor activity. Immediately following locomotor activity, 

hyperalgesia response latencies were assessed in the hotplate and then tail immersion tests as 

detailed below (see Figure 2). Thus, for JZL184, PF-3845, and dexamethasone, the total 

absorption time before behavioral testing was 120 min across treatments. A 120 min absorption 

time for JZL184 was used based on previous reports that the endocannabinoid 2-AG tissue levels 

peak 2 h after administration of the compound (Long et al., 2009). A 120 min absorption time for 

PF-3845 and dexamethasone was used to keep testing consistent across experiments. For the 

receptor mechanism study, mice were pretreated with the CB1 receptor antagonist rimonabant (3 

mg/kg, i.p.), the CB2 receptor antagonist SR144528 (3 mg/kg, i.p.), or vehicle 30 min before 

receiving JZL184. The effects of the CB1 and CB2 receptors are blocked by a 3 mg/kg dose of 

rimonabant and SR144528, respectively with a 30 min pretreatment time (Lichtman, Sheltona, 

Advania, Cravatt, 2004). For the chronic dosing study, a separate cohort of mice was randomly 

assigned to drug treatment and administered JZL184 (8 mg/kg, s.c.), PF-3845 (10 mg/kg, s.c.), or 

vehicle once daily for 15 consecutive days, starting 21 days after the initial immunization. Based 

on preliminary data from our lab and previous literature we chose moderate doses of JZL184 and 

PF-3845 that attenuate inflammation and pain without the development of tolerance with 

repeated administration (Kinsey et al., 2013; Schlosburg et al., 2010). Behavioral testing was 

conducted on the last day of chronic dosing (i.e., day 15). The chronic dosing timeline was 



Analgesic Effects in Collagen-Induced Arthritis   20 
 

chosen based on the analgesic and anti-inflammatory effects of chronic FAAH inhibition in mice 

subjected to CIA (Kinsey et al., 2011a). 

Mechanical allodynia test: Mechanical allodynia was tested using the “up-down” method 

(Chaplan, Bach, Pogrel, Chung, & Yaksh, 1994; Kinsey et al., 2009) with von Frey filaments 

(North Coast Medical, Morgan Hill, CA) to stimulate the plantar surface of each hind paw. Von 

Frey filaments are commonly used to test touch sensitivity in humans and other animals and are 

calibrated to bend at established weights. Each hind paw was stimulated approximately twice per 

second with each filament (0.16-6.0 g) five times starting with the 0.6-g filament. The filaments 

were tested in ascending order until the mouse clutched or lifted its paw. This was considered a 

positive response. Once the mouse responded positively to 3 out of 5 presentations of the 

filament, the filaments were presented in descending order to establish a sensory threshold. 

CIA-suppressed locomotor test: In addition to eliciting behavioral responses, pain can also 

suppress normal behaviors, such as locomotion. Thus, to complement the nociceptive tests, the 

total distance travelled and the total time spent immobile were also assessed, as described 

previously (Kinsey, O’Neal, Long, Cravatt, & Lichtman, 2011c). Approximately 45 min after the 

von Frey test, mice were placed individually into a clean, plastic test cage (30.80 cm x 40.60 cm 

x 15.88 cm), inside of a sound-attenuating chamber, and spontaneous locomotor activity was 

recorded for 20 minutes, using ANYmaze automated video tracking software (Stoelting, Wool 

Dale, IL).  

Marble Burying test. The marble burying test is a useful test of locomotor suppression in the 

chronic constriction injury mouse model of neuropathic pain (J. Wilkerson, personal 

communication, January 22, 2014). Unlike the spontaneous locomotor test detailed above, mice 
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do not habituate to the marble burying test (Thomas et al., 2009). Therefore, the marble burying 

test was used in place of spontaneous locomotor activity to measure locomotor suppression for 

all experiments in which mice were repeatedly tested. In the marble burying test, mice were 

placed individually into a plastic test cage (30.80 cm x 40.60 cm x 15.88 cm) filled to a depth of 

5 cm with SANI-CHIP Aspen bedding (Harlan Laboratories, Indianapolis, IN) with 25 clear, 

glass marbles (10mm in diameter) arranged in an evenly spaced, 5 x 5 grid-like pattern across the 

surface of the bedding. The cage was placed inside of a sound-attenuating chamber and 

locomotor activity was recorded for 20 minutes, using ANYmaze automated video tracking 

software (Stoelting, Wool Dale, IL). In experiments where locomotor activity was measured 

using the marble burying test, the amount of marbles buried was also assessed. Mice placed in 

the marble burying test apparatus engage in a repetitive digging behavior that leads to marbles 

being buried (Thomas et al., 2009). 

Nociceptive tests. Mice were tested for thermal hyperalgesia using the hot plate and tail 

immersion tests approximately 1 h after testing locomotor suppression. Individual mice were 

placed in a ventilated polycarbonate chamber on a hot plate that was heated to 52 ̊ C (Kinsey et 

al., 2011a; Naidu et al., 2010). The latency for each mouse to lick or shake a hind paw, to flare 

its toes, or to jump out of the apparatus, was scored as the dependent variable. Based on 

preliminary data from our lab and previous literature a 30 s cutoff time was used to avoid the 

possibility of tissue damage (Kinsey et al., 2011a). Immediately after the hot plate test, 

individual mice were placed head first into a small bag assembled from absorbent under pads, 

leaving the tail exposed (Kinsey et al., 2011a). The mouse was gently held while the distal 1 cm 

of the tail was quickly dipped into a water bath heated to 52 ̊ C. The latency for the mouse to 

withdraw its tail was scored as the dependent variable. Because water transfers heat quicker than 



Analgesic Effects in Collagen-Induced Arthritis   22 
 

a solid surface, a shorter cutoff time of 10 s based on previous literature was used to avoid the 

possibility of tissue damage (Kinsey et al., 2011a).   
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Statistical Analyses 

 All data were analyzed by ANOVA, followed by Bonferroni post hoc, with the exception 

of the dose response data, for which Dunnett's post hoc was used instead (all doses compared 

with vehicle or non-CIA control group). For the first experiment, a one-way ANOVA of acute 

drug condition was calculated. For the second experiment, a one-way ANOVA of drug doses 

(MAGL inhibitor and CB receptor antagonist) was conducted. The third experiment was 

analyzed using a one-way ANOVA of drug doses. Differences were considered statistically 

significant if p < 0.05. 

Results 

Experiment 1a: Acute MAGL inhibitor JZL184 attenuates CIA-induced thermal 

hyperalgesia and did not affect CIA-suppressed locomotor activity at high and moderate 

doses 

Based on preliminary data from our lab and previous literature we first tested a moderate 

and high dose of JZL184 that we expected would attenuate hyperalgesia (Ghosh et al., 2013; 

Kinsey et al., 2011a). Mice were subjected to CIA (see Table 1). Eighteen percent of mice 

subjected to CIA developed significantly higher clinical scores than non-CIA controls [F (1, 38) 

= 128.6; p < .0001; Figure 3A]. Although it is expect that some mice would not respond to the 

CIA treatment, the incidence in this cohort was low, based on previous literature (Brand et al., 

2007). On test day, mice were injected with the MAGL inhibitor JZL184 (8 & 40 mg/kg, i.p.) or 

vehicle. Behavioral assays were performed 2 h after JZL184 administration, to coincide with 

peak tissue levels of 2-AG (Long et al., 2009). Acute JZL184 attenuated CIA-induced thermal 

hyperalgesia in the hot plate test [F (3, 58) = 9.3; p < .0001; Figure 3B]. Post hoc comparisons 
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revealed that JZL184 significantly reduced hyperalgesia in the hot plate test at both the 8 mg/kg 

(p < .05) and 40 mg/kg (p < .01) doses. In the tail immersion test, there was a main effect of drug 

treatment on thermal hyperalgesia [F (3, 58) = 3.04; p < .05; Figure 3C]. However, post-hoc 

comparisons revealed that CIA did not significantly increase tail withdrawal times, compared to 

controls (p = .06). Therefore, it is not surprising that acute JZL184 did not affect thermal 

hyperalgesia in the tail immersion test at either the 8 mg/kg (p = .99) or 40 mg/kg (p = 1) dose.  

For the von Frey test, there was a main effect of drug treatment on mechanical allodynia 

[F (3, 120) = 2.95; p < .05; Figure 3D] when both paws were analyzed together. However, post-

hoc comparisons revealed that CIA did not significantly increase mechanical allodynia (p = .09) 

compared to controls. Due to the lack of CIA effect, acute JZL184 did not restore mechanical 

allodynia in CIA mice at the 8 mg/kg (p = 1) or 40 mg/kg (p = .91) dose. When analyzed 

separately, there was no significant difference in mechanical allodynia in the left paws [F (3, 

120) = 2.23; p = .09] or right paws [F (3, 120) = 1.53; p = .22].  

CIA significantly suppressed locomotor activity [F (3, 1236) = 141.3; p < .0001; Figure 

3E]. However, post-hoc comparisons revealed no significant attenuation of locomotor 

suppression by acute JZL184 at the 8 mg/kg dose (p = .96) or the 40 mg/kg dose (p = .22). 

Due to the attenuation of CIA-induced hyperalgesia by a high and moderate dose of acute 

JZL184 (8 & 40 mg/kg) we next tested lower (1 & 4 mg/kg) doses of JZL184 to establish a dose 

response. However, the data was not combined into a single analysis because of difference in 

methodology (e.g. differences in CIA induction and locomotor assay performed). A low dose (4 

mg/kg) of JZL184 attenuates allodynia in an acute inflammatory pain model (Ghosh et al., 

2013), but does not reduce marble burying (Kinsey, O'Neal, Long, Cravatt, & Lichtman, 2011c). 

Therefore, JZL184 (1 mg/kg) was also used as a subthreshold dose to establish the dose response 
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(Ghosh et al., 2013; Kinsey et al., 2011c). Due to the low incidence of arthritis in the previous 

experiment, a separate cohort of mice was subjected to CIA (see Table 1). Thirty-eight percent 

of the mice subjected to CIA developed significantly higher clinical scores than non-CIA 

controls [F (2, 57) = 38.4; p < .0001; Figure 4A]. Although the incidence of arthritis was higher 

than the previous experiment, the incidence in this cohort was lower than expected, based on the 

literature (Brand et al., 2007). On test day, mice were injected with the MAGL inhibitor JZL184 

(1, 4 mg/kg), or vehicle. Two h later behavioral assays were performed. CIA did not induce 

thermal hyperalgesia [F (3, 74) = 1.79; p = .16; Figure 4B] in the hot plate test. Therefore, acute 

JZL184 had no effect. CIA did induce hyperalgesia in the tail immersion test [F (3, 74) = 5.11; p 

< .01; Figure 4C]. However, post-hoc comparisons revealed no significant attenuation of 

hyperalgesia of acute JZL184 at the 1 mg/kg or the 4 mg/kg dose.   

CIA induced mechanical allodynia when both paws were analyzed together [F (3, 88) = 

10.46; p < .0001; Figure 4D], but post-hoc comparisons revealed there was no significant 

decrease of allodynia by acute JZL184 at the 1 mg/kg or 4 mg/kg dose. When paws were 

analyzed separately, there was a significant difference in mechanical allodynia in the right paws 

[F (3, 40) = 7.11; p < .01], and the left paws [F (3, 40) = 4.36; p < .05]. Post-hoc comparisons 

revealed there was no significant decrease of allodynia in CIA mice in the right paw or the left 

paw at either the 1 mg/kg or 4 mg/kg dose.   

CIA reduced marbles buried [F (3, 62) = 8.193; p < .001; Figure 4E], but post-hoc 

comparisons revealed no significant restoration of marbles buried at the 1 mg/kg or 4 mg/kg dose 

of acute JZL184. CIA did not suppress locomotor activity in the marble burying test [F (3, 62) 

=.745; p =.53; Figure 4F]. Due to the lack of CIA effect, post-hoc comparisons revealed no 

significant attenuation of locomotor suppression by acute JZL184.  
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Experiment 1b: Acute FAAH inhibitor PF-3845 does not affect CIA-induced thermal 

hyperalgesia or CIA-suppressed locomotor activity 

In the next experiment, we tested the FAAH inhibitor PF-3845 to compare to JZL184 as a 

positive control. FAAH inhibition was expected to attenuate CIA-induced hyperalgesia based on 

previous literature (Kinsey et al., 2011a). We chose the dose of PF-3845 administered in the 

present study based on the attenuation of allodynia by acute PF-3845 (10 mg/kg) administration 

in the mouse carrageenan model of acute inflammatory pain (Ghosh et al., 2013). A separate 

cohort of mice was subjected to CIA because of the low incidence of arthritis in the acute 

JZL184 experiments (see Table 1). Ninety percent of the mice developed significantly higher 

clinical scores than non-CIA controls [F (2, 47) = 22.96; p < .0001; Figure 5A], as expected. On 

test day, mice were injected with the FAAH inhibitor PF-3845, or vehicle. To keep methods 

consistent as possible despite model development behavioral assays were performed 2 h later. 

CIA did not induce thermal hyperalgesia in the hot plate [F (2, 29) = .66; p = .52; Figure 5B] 

and tail immersion tests [F (2, 29) =.52; p = .60; Figure 5C]. Therefore, acute PF-3845 had no 

effect in the hot plate or tail immersion tests.  

CIA induced mechanical allodynia when both paws were analyzed together [F (2, 61) = 

5.32; p < .01; Figure 5D] but, post-hoc comparisons revealed that acute PF-3845 did not 

significantly decrease allodynia. When analyzed separately, there was not a significant difference 

in mechanical allodynia in the right paws [F (2, 29) = 2.07; p = .14] or the left paws [F (2, 29) = 

3.06; p = .06].  

CIA did not reduce marbles buried [F (2, 24) = 3.15; p = .06; Figure 5E]. PF-3845 had 

no effect on the number of marbles buried. However, there was a main effect of drug treatment 

on locomotor activity in the marble burying test [F (2, 29) = 5.99; p < .01; Figure 5F], but post-
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hoc comparisons revealed no CIA-suppressed locomotor activity. PF-3845 had no effect on 

locomotor activity. 

 

Experiment 1c: Acute dexamethasone does not affect CIA-induced thermal hyperalgesia or 

CIA-suppressed locomotor activity 

Due to the inconsistencies in the behavioral effects with the administration of acute PF-

3845 we next tested the steroid dexamethasone as an alternative positive control. Acute 

dexamethasone (2 mg/kg) attenuates hyperalgesia in the mouse LPS model of acute 

inflammatory pain (Naidu et al., 2010). A separate cohort of mice was subjected to CIA, because 

of the inconsistencies in behavioral effects between CIA and control mice in the previous 

experiments (see Table 1). Seventy-seven percent of the mice developed significantly higher 

clinical scores than non-CIA controls [F (2, 26) = 17.4; p < .0001; Figure 6A]. On test day, mice 

were injected with the glucocorticoid dexamethasone (2 mg/kg), or vehicle. Behavioral assays 

were performed 2 h later. CIA did not induce thermal hyperalgesia in the hot plate [F (2, 21) = 

.72; p = .50; Figure 6B] and tail immersion tests [F (2, 21) = 1.43; p = .26; Figure 6C]. Acute 

dexamethasone had no effect in either test. 

CIA did not induced mechanical allodynia when both paws were analyzed together [F (2, 

45) = .31; p = .73; Figure 6D]. Due to the lack of CIA effect, acute dexamethasone did not 

reverse mechanical allodynia. This lack of significant difference in mechanical allodynia was 

maintained when paws were analyzed separately in the right paws [F (2, 21) = .15; p = .86] or 

the left paws [F (2, 21) = .15; p = .86].  

CIA reduced marbles buried [F (2, 21) = 4.67; p < .05; Figure 6E], but post-hoc 

comparisons revealed no significant effect of dexamethasone. CIA mice did not display 
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locomotor suppression in the marble burying test [F (2, 21) =.427; p = .66; Figure 6F]. Acute 

dexamethasone had no effect on locomotor activity in the marble burying test.  

 

Experiment 2: Receptor mechanism of action of MAGL inhibition by JZL184 attenuation 

of CIA-induced hyperalgesia is unclear 

In the next experiment, we tested the cannabinoid receptor mechanism of action of the 

high dose of JZL184 (40 mg/kg) in attenuating CIA-induced hyperalgesia, per the results of the 

first experiment. Again, due to inconsistencies in the CIA effects compared to controls in the 

previous experiments, a separate cohort of mice was subjected to CIA (see Table 1). Sixty-six 

percent of the mice subjected to CIA developed significantly higher clinical scores than non-CIA 

controls [F (2, 87) = 73.01; p < .0001; Figure 7A]. In order to assess the receptor mechanism of 

action underlying the antihyperalgesic effects of acute JZL184 (40 mg/kg), mice were pretreated 

with the selective CB1 antagonist rimonabant (3 mg/kg), the selective CB2 antagonist SR144528 

(3 mg/kg), or vehicle 30 min before receiving JZL184. The dosing and pre-treatment times of the 

cannabinoid receptor agonists was chosen based on previous literature (Lichtman et al., 2004). 

CIA did not induce thermal hyperalgesia in the hot plate test [F (4, 55) = .31; p = .87; Figure 

7B]. Due to the lack of CIA effect, neither JZL184 nor the antagonists had any effect in the hot 

plate test. There was a main effect of drug treatment in the tail immersion test [F (4, 55) = 3.98; p 

< .05; Figure 7C], but post-hoc comparison revealed that CIA did not induce thermal 

hyperalgesia in the tail immersion test. However, in the tail immersion test JZL184 increased tail 

withdrawal latency in CIA mice. The increase by JZL184 was not reversed by rimonabant or 

SR144528.  

CIA induced mechanical allodynia [F (4, 55) = 14.65; p < .0001; Figure 7D] when both 

paws were analyzed together. Post-hoc comparisons revealed that JZL184 (40 mg/kg) did not 
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restore allodynia. When analyzed separately, there was a significant difference in mechanical 

allodynia in the right paws [F (4, 55) = 7.54; p < .0001], but not the left paws [F (4, 55) = 2.14; p 

= .09].  

CIA reduced marbles buried [F (4, 55) = 18.77; p < .0001; Figure 7E]. However, post-

hoc comparisons revealed an additional decrease in marbles buried caused by acute JZL184 (40 

mg/kg) that was not blocked by rimonabant or SR144528. This decrease in marble burying was 

in line with published effects of this high dose of JZL184 in marble burying (Kinsey et al., 

2011c). There was a main effect of drug treatment in locomotor activity in the marble burying 

test [F (4, 55) = 7.820; p < .0001; Figure 7F], that was driven by JZL184 (40 mg/kg) and was 

not reversed by rimonabant or SR144528.  

 

Experiment 3: Chronic MAGL or FAAH inhibition does not affect CIA-induced 

hyperalgesia or inflammation 

We next tested the effects of chronic MAGL and FAAH inhibition. Chronic MAGL and 

FAAH inhibition attenuates inflammation (Kinsey et al.,2011a; Kinsey et al.,2011b). Therefore, 

we hypothesized that attenuating inflammation would improve behavioral outcomes in CIA 

mice. A separate cohort of mice was subjected to CIA (see Table 1). Ninety-eight of mice 

subjected to CIA developed significantly higher clinical scores than non-CIA controls [F (3, 43) 

= 5.596; p = .0025; Figure 8A]. However, post-hoc comparisons revealed no significant 

difference in clinical scores with drug treatment. Mice were administered the MAGL inhibitor 

JZL184 (8 mg/kg, s.c.), the FAAH inhibitor PF-3845 (10 mg/kg, s.c.), or vehicle once daily for 

15 consecutive days. Drug administration started on “booster” collagen exposure day (21 days 

after the initial immunization; Kinsey et al., 2011a). Repeated administration of moderate doses 
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of JZL184 (8 mg/kg) (Kinsey et al., 2013) or PF-3845 (10 mg/kg) (Schlosburg et al., 2010) 

maintains anti-allodynic effects in a mouse model of neuropathic pain for 5 and 6 days, 

respectively. On day 15, mice were injected again, and behavioral assays were performed 2 h 

later.  

CIA did not induce thermal hyperalgesia in the hot plate [F (3, 44) = .18; p = .91; Figure 

8B] or tail immersion test [F (3, 44) = .28; p = .84; Figure 8C]. Neither chronic PF-3845 nor 

JZL184 had any effect on hyperalgesia.  

CIA mice did not display mechanical allodynia, compared to control mice [F (3, 44) = 

2.569; p = .06; Figure 8D] when both paws were analyzed together. When analyzed separately, 

there was a main effect of drug treatment on mechanical allodynia in the left paws [F (3, 44) = 

3.232; p <.03], but not the right paws [F (3, 44) = .552; p <.65] of mice. However, post-hoc 

comparisons revealed that CIA did not induce mechanical allodynia in the left paw. PF-3845 and 

JZL184 had no effect on allodynia.  

There was a main effect of suppressed locomotor activity in the spontaneous locomotor 

activity test [F (3, 44) = 4.32; p < .01; Figure 8E]. Surprisingly, post-hoc comparisons revealed 

chronic JZL184 suppressed locomotor activity in CIA mice, compared to vehicle treated control 

mice.  

Discussion 

 

 The goal of this study was to test the hypothesis that inhibition of MAGL would decrease 

hyperalgesia and locomotor suppression in mice subjected to collagen induced arthritis (CIA). 

Acute administration of the selective MAGL inhibitor JZL184 (8 & 40 mg/kg) attenuated CIA-

induced thermal hyperalgesia in the hot plate test, but not the tail immersion test. JZL184 (8 & 

40 mg/kg) did not reverse CIA-induced locomotor suppression or affect mechanical allodynia. 



Analgesic Effects in Collagen-Induced Arthritis   31 
 

Conversely, acute administration of the selective FAAH inhibitor PF-3845, the selective MAGL 

inhibitor JZL184 (1& 4 mg/kg), or the glucocorticoid dexamethasone did not significantly affect 

any of our outcome measures. 

 The second objective of this study was to determine cannabinoid receptor involvement in 

the attenuation of CIA-induced hyperalgesia by acute JZL184 administration. There was 

insufficient CIA induction of hyperalgesia or locomotor suppression to determine cannabinoid 

receptor involvement in acute JZL184 attenuation of CIA-induced hyperalgesia. In the tail 

immersion test, acute JZL184 administration increased the latency to respond in the CIA-treated 

mice, but neither the CB1 receptor antagonist rimonabant nor the CB2 receptor antagonist 

SR144528 reversed the effect of JZL184. CIA induced mechanical allodynia that was not 

restored by acute JZL184. Similarly, CIA reduced the number of marbles buried, and this 

reduction was unaffected by acute JZL184.  

 The third objective of this study was to evaluate the effects of chronic administration of 

the selective MAGL inhibitor JZL184 and the selective FAAH inhibitor PF-3845 in CIA-induced 

hyperalgesia, allodynia, and locomotor suppression. There was insufficient CIA induction of 

hyperalgesia, allodynia, or locomotor suppression on the behavioral test day to determine the 

effects of chronic dosing.  

 The present study is the first to show that acute MAGL inhibition reduces thermal 

hyperalgesia in a mouse model of inflammatory arthritis. The reduction of inflammatory pain by 

acute MAGL inhibition is consistent with previous reports that the MAGL inhibitors JZL184 and 

KML29 attenuate carrageenan-induced acute inflammatory pain (Gosh et al., 2013; Ignatowska-

Jankowska et al., 2013). These studies, taken together with the present data, suggest that acute 

MAGL inhibition reduces both chronic and acute inflammatory pain.  
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 However, there are inconsistencies with the reduction in pain elicited by acute MAGL 

inhibition in the present study. One potential reason for the inconsistency in results is the 

problems experienced with CIA model itself. As detailed in Table 1, the CIA model was still 

being optimized throughout the present studies. After the initial CIA immunization, it typically 

took 4-8 weeks for the mice to develop arthritis. CIA induction normally results in 80-100% of 

mice developing arthritis in at least one paw (Brand et al., 2007). In the present study, less than 

50% of the mice developed CIA in the first few cohorts. The mice in these cohorts were used to 

test acute JZL184 (8 & 4 mg/kg) to make progress on this thesis while continuing with model 

development. Therefore, changes were made to increase the concentration of bacteria and 

heaviness of the CFA oils in each successive cohort of mice. In addition, seemingly minor 

adjustments to the methodology, such as using a stopcock to minimize the introduction of air in 

the emulsion when drawing into the syringe, turned out to be very important. This 

methodological fine tuning resulted in an arthritic incidence rate of over 90%. However, the CIA 

was more extreme, and with a more rapid onset than in previous cohorts of mice, and may have 

contributed to the lack of an anti-inflammatory effect in the chronic dosing study (thus not 

replicating previously published reports), which was run later than the acute JZL184 studies. 

Moreover, the concern now is that the CIA no longer reflects human inflammatory arthritis. 

Model development is still in progress, with the goal of finding the optimal concentration and 

consistency of CFA to induce a consistently high incidence of arthritis, and we continue to 

correspond with helpful consultants as we troubleshoot the model. After optimizing the CIA 

model, the next step will be to replicate the present studies, with the goal of obtaining more 

consistent, and potentially publishable, results. If nothing else, the inconsistency of the CIA 
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model in the present study taught me that careful planning and preparation do not necessarily 

translate into research proceeding according to plan.  

 JZL184 attenuated CIA-induced pain in some experiments but not others, and depended 

on the pain assay. On the hot plate test, acute JZL184 (8 & 40 mg/kg) attenuated hyperalgesia. 

Although these results did not repeat in the receptor mechanism experiment, acute JZL184 (40 

mg/kg) did reduce CIA-induced hyperalgesia in pilot groups of mice (please see Appendix A). 

This inconsistency is plausibly due to the use of the highly virulent CIA that was induced when 

testing receptor mechanisms. Thus, because of their highly inflamed and calcified joints, the 

mice may have had a difficult time licking or shaking their hind paws to indicate hyperalgesia. In 

support of this idea, CIA mice did not display increased hyperalgesia in any assay of the receptor 

mechanism study. In my current work, I am exploring other dependent variables that may help 

get at joint function, such as locomotor coordination in the rotarod test, as well as more localized 

pain tests, such as the acetone-induced cold allodynia test and the Hargreaves plantar stimulator 

test. 

 Similarly, although the tail immersion test is also an assay of thermal hyperalgesia, there 

was no significant effect of JZL184, and even the CIA effect was inconsistent. This lack of an 

effect could be due to the differences in the neural pathways. The hot plate test measures a 

supraspinal response; whereas the tail immersion test measures a spinal reflex (Le Bars, Gozariu, 

& Cadden, 2001). JZL184 also failed to attenuate CIA-induced mechanical allodynia in the von 

Frey test. Inflammation may not develop in all four paws of a CIA-induce mouse (Brand, 2007).  

Therefore, in the present study inflammation was not present in every hind paw even though all 

of the mice tested in the acute dosing experiments developed CIA symptoms. In the von Frey test 
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the threshold for both hind paws was measured. Therefore, inconsistent inflammation could be a 

reason why mechanical allodynia was not present across all experiments.  

 Many patients experiencing chronic pain, such as those with rheumatoid arthritis (RA) 

have problems with mobility (Laroche, Poxxo, Ornetti, Tavernier, & Maillefert, 2006). As in 

humans, CIA induced locomotor suppression in the present study. Because mice quickly 

habituate to the spontaneous locomotor activity test, the marble burying test was used to measure 

locomotor activity for the latter experiments in the present study. CIA did not reliability suppress 

locomotor activity, and so it is not surprising that JZL184 was unable to reverse this lack of 

locomotor suppression in the marble burying test. However, locomotor activity may have been 

confounded by the order of the behavioral assays. The von Frey test requires mice to acclimate 

for 60 min a wire mesh apparatus before testing (Kinsey et al., 2009). Therefore, in the present 

study the von Frey test was performed prior to locomotor activity to minimize time between drug 

administration and the last behavioral assay. It is possible that standing on the wire mesh and 

stimulation of hind paws with the von Frey filaments affected the locomotor activity of the mice. 

In the future we plan on assessing locomotor activity first to limit confounds. An alternative is to 

test motor coordination, which may grant some insights into loss of motor function as a result of 

CIA. The rotarod is a test of motor coordination where a mouse is placed on a rotating rod and 

the latency to fall off the rod is measured (Kinsey et al., 2011d). Drugs that affect motor 

coordination, such as ethanol and THC, significantly reduce the latency to fall from the rotarod. 

Since running the present studies, my lab purchased a rotarod, and I have found that CIA mice 

spend less time on the rotarod at a fixed speed (please see Appendix B).  

 The finding in the present study that the CB1 receptor antagonist rimonabant or the CB2 

receptor antagonist SR144528 did not reverse the effects of JZL184 is most likely due to 
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inconsistencies with the CIA model in the present study. Indeed, there was not a significant 

difference between the CIA and control mice used to test cannabinoid receptor mechanisms in 

hyperalgesia and locomotor activity. An alternative, albeit less plausible explain for the lack of 

JZL184 reversal is a non-cannabinoid mechanism of action. In CIA mice JZL184 did increase 

the latency of mice to withdraw their tails from the water compared to vehicle in the tail 

immersion test. However, neither the CB1 nor the CB2 receptor antagonist reversed the JZL184 

increase in latency. In addition to CB1 and CB2 receptors cannabinoids will also bind to other 

receptors such as the orphan G protein–coupled receptor GPR55, transient receptor potential 

vanilloid receptor (TRPV1), and peroxisome proliferator-activated receptors (PPAR) (Howlett, 

2002). However, JZL184 attenuates allodynia in the carrageenan model of acute inflammatory 

pain through a mechanism that requires both CB1 and CB2 receptors (Gosh, 2013), indicating that 

JZL184 modulation of inflammatory pain likely occurs through a cannabinoid receptor 

mechanism. I predict that, in my future studies, JZL184 will attenuate pain in a chronic model of 

inflammatory pain through a similar mechanism of action. 

 Based on the observation that acute MAGL inhibition with JZL184 (40 mg/kg) attenuated 

thermal hyperalgesia on the hot plate test; it was surprising that chronic JZL184 did not attenuate 

CIA-induced thermal hyperalgesia. As with the antagonist study, the inconsistencies between 

acute and chronic dosing of JZL184 in attenuating thermal hyperalgesia may be due to the use of 

the more virulent CIA. Again, the mice appeared to have difficulty licking or shaking their hind 

paws, both of which are dependent variables that we operationally defined to indicate 

hyperalgesia. In support of this idea, the CIA mice did not display increased hyperalgesia. 

Another possible contributing factor is that chronic JZL184 administration started too late to 

attenuate CIA induced hyperalgesia. In other words, the mice may have started developing 
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arthritis before they received any drug. Chronic dosing was started on day 21 after the initial 

immunization, but mice started developing swelling and paw inflammation only a few days after 

chronic JZL184 dosing started. A third possible explanation is that mice developed tolerance to 

chronic JZL184 administration. Repeated administration of high doses of JZL184 (16 & 40 

mg/kg) reduced its anti-allodynic effects after 5 days in a mouse model of neuropathic pain 

(Kinsey et al., 2013; Schlosburg et al., 2010). Although the low dose of JZL184 (8 mg/kg) used 

in the present study did not show tolerance in the previous reports, the effects of a 15 day 

treatment of JZL184 are unknown. A possible solution to the problem of JZL184 tolerance 

would be to use a lower dose of JZL184 or to genetically delete MAGL. MAGL (-/-) mice are 

not yet commercially available, although my advisor, Dr. Kinsey, has received notice from Dr. 

Benjamin Cravatt, who designed these mice, that he will make breeders available to my lab, as 

needed. 

 The observation that neither acute nor chronic FAAH inhibition affected hyperalgesia in 

mice subjected to CIA was surprising, because chronic administration of the FAAH inhibitor 

URB597 or genetic deletion of FAAH attenuated CIA-induced hyperalgesia in the hot plate and 

tail immersion tests (Kinsey et al., 2011a). One possible explanation of the disparities between 

the current findings and those by Kinsey et al. (2011a) may be due to differences in CIA 

immunization (chicken vs. bovine collagen) and other unknown issues with CIA model 

development in the present study. CIA induction for chronic dosing testing in the present study 

was virulent and resulted in severe swelling across all treatment groups. It is possible that the 

CIA in the present study was too intractable to be attenuated by chronic FAAH or MAGL 

inhibition.  
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 In addition to the behavioral assays performed in the present study, it would be 

informative to examine the endocannabinoid and immune cell profile of the CIA joints. RA is 

characterized by swelling, inflammation, pain, tenderness, and destruction of the cartilage in the 

synovial joints (i.e., knees, elbows, wrists, hips, and fingers) (Scott, 2010). Similar to RA 

patients, mice subjected to CIA have increased T-cell and pro-inflammatory cytokine response in 

their synovial joints and cartilage destruction (Bendele, 2001). Genetic deletion of FAAH 

reduces inflammation and cartilage destruction in CIA knee joints (Kinsey et al., 2011). 

Furthermore, the exogenous cannabinoid cannabidiol decreases TNF-α production in CIA 

synovial cells (Malfait et al., 2000). These studies indicate that MAGL inhibition might also 

reduce CIA-induced joint inflammation and cartilage destruction. In a subset of the present 

studies, we harvested knee joints for histology, and these samples await future analysis. 

 In conclusion, the present findings indicate that acute pharmacological inhibition of 

MAGL reduces thermal hyperalgesia in mice subjected to the CIA model of inflammatory 

arthritis. These data provide the first evidence that MAGL inhibition attenuates pain in a model 

of inflammatory arthritis and indicate that inhibition of MAGL is a potential targets for the 

development of analgesic therapeutics for chronic inflammatory pain. 
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Figure 1. Schematic drawing of endocannabinoid metabolism. The endocannabinoid 2-

arachidonoylglycerol (2-AG) is metabolized by the enzyme monoacylglycerol lipase (MAGL) 

into glycerol and arachidonic acid (AA). Pharmacological inhibition of MAGL with the 

compound JZL184 indirectly increases brain levels of 2-AG by blocking its metabolism. 
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Figure 3. The MAGL inhibitor JZL184 (8 & 40 mg/kg) reduced hyperalgesia in mice subjected 

to collagen-induced arthritis (CIA). Mice were subjected to CIA, and 18% of CIA mice 

developed arthritic symptoms. Clinical scores for mice were measured (A). Mice were injected 

i.p. with JZL184 (8 & 40 mg/kg). Mice were tested for thermal hyperalgesia on the hot plate (B) 

and tail immersion (C) tests. Mechanical allodynia was tested via the von Frey test (D). 

Locomotor suppression was tested via spontaneous locomotor activity test (E). Data expressed as 

mean ± SEM (n = 14-16).  * p < 0.05 vs. vehicle CIA mice; # p < 0.05 vs. vehicle control mice. 
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Figure 4. The MAGL inhibitor JZL184 (1 & 4 mg/kg) did not affect hyperalgesia, allodynia, or 

locomotor activity in mice subjected to collagen-induced arthritis (CIA). Mice were subjected to 

CIA, and 38% of CIA mice developed arthritic symptoms. Clinical scores for mice were 

measured (A). Mice were injected i.p. with JZL184 (1 & 4 mg/kg). Mice were tested for thermal 

hyperalgesia on the hot plate (B) and tail immersion (C) tests. Mechanical allodynia was tested 

via the von Frey test (D). Marbles buried (E) and locomotor suppression (F) was tested via the 

marble burying test. Data expressed as mean ± SEM (n = 9-21).  * p < 0.05 vs. vehicle CIA 

mice; # p < 0.05 vs. vehicle control mice. 

  



Analgesic Effects in Collagen-Induced Arthritis   49 
 

 

Figure 5. The FAAH inhibitor PF-3845 did not affect hyperalgesia, allodynia, or locomotor 

activity in mice subjected to collagen-induced arthritis (CIA). Mice were subjected to CIA, and 

90% of CIA mice developed arthritic symptoms. Clinical scores for mice were measured (A). 

Mice were injected i.p. with PF-3845 (10 mg/kg). Mice were tested for thermal hyperalgesia on 

the hot plate (B) and tail immersion (C) tests. Mechanical allodynia was tested via the von Frey 

test (D). Marbles buried (E) and locomotor suppression (F) was tested via the marble burying 

test. Data expressed as mean ± SEM (n = 8-12).  * p < 0.05 vs. vehicle CIA mice; # p < 0.05 vs. 

vehicle control mice. 
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Figure 6. The glucocorticoid dexamethasone (DEX) did not affect hyperalgesia, allodynia, or 

locomotor activity in mice subjected to collagen-induced arthritis (CIA).  Mice were subjected to 

CIA, and 77% of CIA mice developed arthritic symptoms. Clinical scores for mice were 

measured (A). Mice were injected i.p. with DEX (2 mg/kg). Mice were tested for thermal 

hyperalgesia on the hot plate (B) and tail immersion (C) tests. Mechanical allodynia was tested 

via the von Frey test (D). Marbles buried (E) and locomotor suppression (F) was tested via the 

marble burying test. Data expressed as mean ± SEM (n = 8).  * p < 0.05 vs. vehicle CIA mice; # 

p < 0.05 vs. vehicle control mice. 
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Figure 7. The MAGL inhibitor JZL184 did not affect hyperalgesia, allodynia, or locomotor 

activity in mice subjected to collagen-induced arthritis (CIA). Therefore, rimonabant (3 mg/kg) 

and SR144528 (3 mg/kg) did not block JZL184 effects. Mice were subjected to CIA, and 66% of 

CIA mice developed arthritic symptoms. Clinical scores for mice were measured (A). Mice were 

injected i.p. with JZL184 (40 mg/kg). Mice were tested for thermal hyperalgesia on the hot plate 

(B) and tail immersion (C) tests. Mechanical allodynia was tested via von Frey test (D). Marbles 

buried (E) and locomotor suppression (F) was tested via the marble burying test. Data expressed 

as mean ± SEM (n = 12).  * p < 0.05 vs. vehicle CIA mice; # p < 0.05 vs. vehicle control mice. 
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Figure 8. Chronic dosing of the MAGL inhibitor JZL184 and the FAAH inhibitor PF-3845 did 

not affect hyperalgesia, allodynia, or locomotor activity in mice subjected to collagen-induced 

arthritis (CIA). Mice were subjected to CIA, and 98% of CIA mice developed arthritic 

symptoms. Clinical scores for mice were measured (A). Mice were injected s.c. with JZL184 (8 

mg/kg) or PF-3845 (10 mg/kg) for 15 days. Mice were tested for thermal hyperalgesia on the hot 

plate (B) and tail immersion (C) tests. Mechanical allodynia was tested via the von Frey test (D). 

Locomotor suppression was tested via spontaneous locomotor activity test (E). Data expressed as 

mean ± SEM (n = 8-14).  * p < 0.05 vs. vehicle CIA mice; # p < 0.05 vs. vehicle control mice. 

  



Analgesic Effects in Collagen-Induced Arthritis   53 
 

Appendix A. 

 

Figure A1. The MAGL inhibitor JZL184 reduced hyperalgesia and suppressed locomotor 

activity in mice subjected to collagen-induced arthritis (CIA). Mice were subjected to CIA, and 

55% of CIA mice developed arthritic symptoms. Approximately 100 µl of an emulsion 

consisting of type II chicken collagen, dissolved in 0.1 M acetic acid, in an equal volume of 

complete Freund’s adjuvant (CFA) was injected subcutaneously near the base of the tail. 14 days 

later, mice were given a "booster" exposure to collagen in an equal volume of incomplete 

Freund’s adjuvant (IFA), as detailed above. 1 month later, mice were given a secondary 

"booster" exposure to type II bovine collagen in an equal volume of CFA into the tail. Mice were 

injected i.p. with JZL184 (8 & 40 mg/kg). Mice were tested for thermal hyperalgesia on the hot 

plate (A) test. Locomotor suppression was tested via spontaneous locomotor activity test (B). 

Data expressed as mean ± SEM (n = 12-13).  * p < 0.05 vs. vehicle CIA mice; # p < 0.05 vs. 

vehicle baseline mice. 
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Appendix B. 

 

Figure B1. Collagen-induced arthritis (CIA) reduced motor coordination. The rotarod test was 

used to measure motor coordination. Mice were placed in individual lanes on a rod rotating at 4 

RPM. Latency to fall off the rod was measured as the dependent variable. Data expressed as 

mean ± SEM (n = 8-15).  * p < 0.05 vs. vehicle control mice. 
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