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Abstract 
 

Classification of Software Components based on Clustering 
 

Swetha Reddy Konda 
 

 
This thesis demonstrates how in different phases of the software life cycle, software 
components that have similar software metrics can be grouped into homogeneous 
clusters. We use multi-variate analysis techniques to group similar software components. 
The results were applied on several real case studies from NASA and open source 
software. We obtained process and product related metrics during the requirements 
specification, product related metrics at the architectural level and code metrics from 
operational stage for several case studies. We implemented clustering analysis using 
these metrics and validated the results. This analysis makes it possible to rank the clusters 
and assign similar development and validation tasks for all the components in a cluster, 
as they have similar metrics and hence tend to behave alike. 
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Chapter 1: Introduction  

 

Clustering involves organization of collection of patterns into meaningful clusters based 

on their similarity. Software modules are grouped according to the value of their software 

metrics in clustering. We assume that the components that have similar metrics behave 

alike and hence are grouped together into clusters. It is useful to know the behavior of the 

software components and classify them as we could assign similar activities to all the 

components in a cluster and rank the clusters. We implemented clustering in different 

phases of software life cycle and classified the software components into homogeneous 

clusters. 

Software Integrity Level Assessment Process (SILAP) is the current state of 

practice at NASA that is done early in software life cycle during the requirements 

specification. SILAP uses some of the definitions from the COCOMO model to define 

complexity criteria and uses domain expert’s knowledge to assign score to several 

Product/Process metrics of the software components. We implemented clustering on the 

software components of 12 real NASA projects, using the process related metrics defined 

in SILAP.   

 Also, we implemented clustering using the design metrics obtained in the 

architecture level derived from the unified modeling language (UML) on a case study, 

CM1 from the Data Metrics Program [33]. CM1 is a software component of a data 

processing unit in an instrument, used to exploit data to probe the early universe. 

 We also clustered the components of on open source software, Indent using the 

code metrics obtained in the operational stage. Indent has 9 files totaling about 7000 lines 

of code. It is used to beautify the C code. Running it has no effect on the functionality of 

the code but makes the results aesthetically pleasing and more readable. Our results 

demonstrate that classification of software components into meaningful homogeneous 

clusters can be done in different phases of the software lifecycle. 

The rest of the thesis is organized as follows: Related work and our contributions 

are discussed in chapter 2. In addition, chapter 3 provides the background on clustering 

algorithms, classifiers that we used and explains the meaning of decision trees. In chapter 

4 we discuss ways to classify components early in software life cycle during the 
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requirements specification and present the results obtained on 12 real NASA projects 

using the metrics obtained from the current state of practice in NASA called the Software 

Integrity Level Assessment Process (SILAP). Chapter 5 presents results of classification 

of software components in the architectural level on a case study, CM1, based on the 

design metrics obtained from the Unified Modeling Language (UML). Chapter 6 

discusses the case study Indent and presents the results of classification of its 

components, based on the code metrics obtained in the operational stage. Chapter 7 

presents our conclusions and lessons learned. 
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Chapter 2: Related Work 

 

In this chapter we summarize the related work, and also discuss how we classified 

components into homogeneous clusters with clustering. Although clustering has been 

used for the classification of components [21], [8], [7], most of the previous work 

implemented it later in the software life cycle, as the details required are not available 

until later stages of design phase. Most of the previous works implemented clustering on 

large sample datasets. Very few implemented clustering on small size dataset [15]. 

 In [21], unsupervised learning clustering techniques such as k-means and Neural 

gas clustering algorithm were used to analyze the software quality in the absence of fault 

proneness labels. Clustering algorithms can group software modules according to their 

values of software metrics. Software fault measurement metrics were used for clustering. 

The software engineering assumption is that fault prone software modules will have 

similar software metrics and so will likely form clusters. Similarly, not fault-prone 

modules will likely group together. When the cluster analysis is complete, a software 

engineering expert labels it fault prone or not fault prone. Data sets from two NASA 

projects JM1 and KC2 were used as empirical case studies. JM1 has 8850 and KC2 has 

520 software modules. The software measurements and fault data were obtained at the 

program function, subroutine or method levels, so a software module is a program 

function, a subroutine or a method. Clustering was implemented on these software 

modules to analyze the software quality. 

 Most of the Clustering techniques used in the previous work worked well for 

large data sets. In our work our case studies had a small size dataset, so we did research 

on a method that works well on small size dataset. One of the previous works that used 

clustering to classify small size dataset was [15]. In [15], clustering using Wards method 

was implemented for identifying clusters in small dataset of journals based on five 

citation flows. This paper suggests that hierarchical clustering techniques, Wards 

minimum variance method or simple average method works well for small size dataset. 

Journals that were clustered together are deemed to be cohesive.. 

 Another work used clustering to cluster the software execution profiles and 

predict failures [7]. The case studies used in this paper included the Java word count 
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program, the Java directory listing program, the Java regular expression parser and 

regular expression finder, the java pretty printer and the GNU Collection Compiler 

(GCC) version 2.95.2.They found that clustering isolates the failures and observed that a 

considerable number of failures were isolated in small clusters of executions. In [8], 

Podgurski et al used GCC case study which has 330,000 lines of code, and another case 

study called Lilypond which has 48,000 lines of code and implemented clustering 

algorithms. The cluster analysis revealed that execution profiles of failures typically have 

unusual profiles. All clustering of executions in this study was done using agglomerative 

hierarchical clustering algorithm, later in the software life cycle to identify failures in 

execution profiles and classify them. 

 Clustering results presented in this thesis illustrate that it can be used for identifying 

homogeneous clusters in the software components based on the software metrics 

available, in different phases of the software life cycle. 

• We implemented clustering during the requirements specification based on the 

process/product metric values assigned by domain experts. We used these metrics 

from the current state of practice at NASA IV & V called Software Integrity 

Level Assessment Process (SILAP). SILAP considers several factors that affect 

consequence of failure and error potential of the software components. The list of 

software components in a project is graded   against a set of criteria for these 

factors and uses weights assigned by domain experts to generate a weighted score 

for consequence and error potential. We clustered the components of 12 projects 

using SILAP scores. 

• We also implemented clustering early in the software life cycle using the design 

metrics obtained at the architectural level. We used the reliability and 

maintainability based risk metrics obtained from previous works [9], [1], [2], [3] 

to implement clustering.   

 Brief description of the methodology used in the previous work [9] to obtain the 

reliability based risk metrics is presented here for the sake of completeness. In [9] 

Architecture level risk assessment was done in the early phases of software life cycle to 

obtain reliability based risk metrics such as dynamic complexity, severity and fan out. 

Unified Modeling Language (UML) [6] and commercial modeling environment Rational 
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Rose Real Time (RoseRT) [34] were used to get information and data necessary for the 

estimation of reliability based risk. For each component and connector in the software 

architecture a heuristic risk factor was obtained. The Markov model was used to obtain 

the scenario risk factors. The risk factors of use cases were obtained by averaging the 

scenarios risk factors. Then, the overall system risk factor is obtained by weighting the 

independent use cases risk factors with the probability of their execution. Furthermore, 

critical components that would require careful analysis, design and more testing effort 

were identified.  

 Brief description of the methodology used in the previous work [1] to obtain the 

maintainability based risk metrics is presented here for the sake of completeness. In [1] 

architecture level maintenance risk assessment methodology has been presented for 

assessing the maintainability based risk into the context of corrective maintenance early 

in the software life cycle. Corrective software maintenance deals with fixing defects that 

escape detection before release and that which manifest as field failures [3]. The initial 

change probabilities for corrective maintenance were obtained by normalizing the 

frequency of occurrence of each component by the total number of error reports. The 

maintainability based risk metrics such as change propagation probabilities and size of 

change were estimated by analyzing the architecture of the system under investigation 

using structural diagram or class diagram. From these artifacts the components and the 

connectors of the component based system architecture were identified. The maintenance 

impact of change in the component was estimated using the size of change metric [1]. 

This way maintainability based risk metrics of the components could be obtained early in 

the software life cycle. 

In our work we used the maintainability based risk metrics and reliability based 

risk metrics for implementing clustering on the case study CM1  [33].  

• We also implemented clustering on the components of open source software, 

Indent, based on the code metrics that are available during the operational stage. 

We clustered the nine components of Indent, using the component entropy and 

expected visit counts as their software metrics. The expected visit counts 

represent the expected number of executions of a component. The conditional 

entropy was used to define the component entropy. We found that components of 
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Indent that were the most frequently executed and that had maximum number of 

failed test cases that required a fix were clustered together.  
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Chapter 3: Background on Methods Used for Clustering  

 

In this chapter we present different clustering techniques that can be used for 

classification and description of the J48 classifiers that is used to obtain decision trees. 

Clustering groups a given collection of unlabelled patterns into meaningful clusters. 

Pattern clustering activity involves the following steps [12]. 

• Pattern Representation: It is a reference to the number of classes, the number of 

available Patterns, and the number, type, and scale of the features available to the 

clustering algorithm. The most effective subset of features to be used in clustering 

are selected from the original features. This process of identifying effective subset 

of features is called feature selection. 

• Pattern Proximity: Pattern proximity is estimated using distance function which 

is defined on pairs of patterns. For example, the most commonly used similarity 

measure is the Euclidean distance, in which points have location in space and the 

distance between points (x1,y1) and (x2,y2) is 2
21

2
21 )()(),( yyxxyxdist −+−= . 

Some alternatives are Manhattan distance 2121),( yyxxyxdist −+−= , Mahanalobis 

distance between any two samples x(i) and x(j) is ( ) ( )yxyx T −∑− −1 . 

Mahanalobis distance takes into account correlation between features and 

normalizes each feature to zero mean and unit variance [31]. 

• Clustering or grouping:  It can be done in many ways. Hierarchical or partitional 

clustering techniques can be used. Hierarchical clustering algorithms produce a 

series of nested partitions depending on the criterion for merging (agglomerative) 

or for splitting (divisive) the clusters based on their similarity. Whereas, the 

partitional algorithms attempt to cluster the set directly, in a manner that depends 

on a set of parameters. They identify the partition that optimizes a clustering 

criterion. A partitional clustering algorithm obtains a single partition of data 

instead of a clustering structure such as a dendrogram produced by hierarchical 

technique. The k-means is the most commonly used and the simplest algorithm 

employing a squared error criterion. It starts with a random initial partition and 
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keeps reassigning the patterns to clusters based on the similarity between the 

pattern and the cluster centers until a convergence criterion is met.  

• Abstraction of Data: It refers to compact description of each cluster. The 

representation should be such that it is easy to understand. The output is 

represented by graphical display, Clustering tree and Banner Plot. 

• Assessment of output:  It is done by cluster validity analysis which uses a specific 

criterion of optimality. 

 

3.1 Transformations on data 

Several transformations can be applied on the dataset before applying the dissimilarity 

measures and implementing clustering [7]. Different normalization techniques and fusion 

rules could give better results when clustered [13]. Experiments conducted indicated that 

normalization schemes such as min-max followed by a simple sum of scores fusion 

yielded better clustering results [13]. 

Some of the transformations are 

Binary metric: In this transformation, non zero values of the features are replaced by one. 

This is done in order to emphasize the coverage of the program elements rather than the 

differences in the frequency of the coverage [7]. 

Proportional metric: In this transformation each attribute is normalized. The range of 

values for each attribute is computed, and then each value is mapped to its relative 

position within the range.  

Min-Max Normalization: This normalization scheme is best for cases where the bounds 

(maximum and minimum value) of the data are known. Given a set of values {VK }, 

k=1,2,….n , the normalized score is given by [13] 

V '
K =

minmax

min

−
−KV

                                                                (3.1) 

 

The transformed scores can be combined using fusion techniques such as simple sum, 

maximum value and minimum value [13]. 

We can use statistical tools like R [32] and S plus to implement hierarchical 

clustering [18], [28]. Also, Waikato Environment for Knowledge Analysis (WEKA) [24] 
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[25], a machine learning scheme that enables preprocessing, classifying, clustering, 

attribute selection and data visualizing can be employed when we want to apply a 

learning method (classifiers) to the dataset and analyze its output to extract information 

about that data. WEKA allows us to run the EM clustering and get the j48 classifier.  

 

3.2 Hierarchical Clustering Technique  

It was found that hierarchical technique is more appropriate for small sample datasets 

than the partitional algorithms [35], [16]. Hierarchical cluster analysis has agglomerative 

methods and divisive methods that find clusters of observations within the dataset.  

The divisive method starts with all observations in one cluster and then splits (partition) 

them into smaller clusters. The agglomerative methods begins by considering each 

observation as a separate cluster and proceeds to combine until all observations belong to 

one cluster. 

The most commonly used hierarchical clustering methods are [35] 

• Single Link Method: Here, the distance between two clusters is the minimum of 

the distances between all pairs of clusters drawn from the two clusters. 

• Complete Link Method: Here, the distance between two clusters is the maximum 

of all pair wise distances between patterns in the two clusters. 

• Average linkage method: Here, the distance between two clusters is computed as 

the average distance between objects from the first cluster and objects from the 

second cluster. The averaging is performed over all pairs (x,y) of objects, where x 

is an object from the first cluster, y is an object from the second cluster. 

• Wards Method: At each step of the cluster process in this method, the two 

clusters are merged that result in the smallest increase in the with-in cluster sum 

of squares that is the sum of squared distances between each point and the 

resultant cluster centroids. It is distinct from the other methods because it uses an 

analysis of variance approach to evaluate the distances between clusters. It 

minimizes the sum of squares of any two clusters that can be formed in each step. 

 

All the above mentioned methods display the clustering results graphically  by means of a 

clustering tree or by a banner plot. Clustering tree is a tree in which objects are 
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represented by the leaves. The vertical coordinate of the place where the two branches 

join equals the dissimilarity between the corresponding clusters. The Figure 1 shows an 

example of a clustering tree. If we look for two clusters in Figure 1, then components 1, 

6, 4, 11 form one cluster and components 2, 9, 12, 10, 3, 7, 5, 8 form another cluster. 
1
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Figure 1. Example of a Clustering tree 

 

The Banner plot representation [19] has a banner that shows the successive mergers from 

the left to right. It looks like a waving flag. It can be imagined as ragged flag parts at the 

left and flagstaff at the right. The objects are listed from the top to bottom. The mergers 

which commence at the between cluster dissimilarity are represented by horizontal bars 

of correct length. The banner represents the same information as the clustering tree. A 

banner consists of stars and stripes. The stars refer to linking of the objects and stripes 

refer to those objects. A banner is always read from left to the right. Each line with stars 

starts between the clusters being merged. There are fixed scales above and below the 

banner, ranging from 0.00 (dissimilarity = 0) and 1 (highest dissimilarity is found).It 

gives a better overall insight into cluster structure and data quality. Figure 2 shows the 

Banner Plot. 
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Figure 2. Example of a Banner plot [19] 

 

The banner leads in a natural way to the coefficients describing the strength of the 

clustering structure found in the dataset (Agglomerative coefficient and Divisive 

Coefficient). The average width of the banner plot gives an idea of the quality of 

clustering that is the amount of structure that has been found by the algorithm. If the data 

has a clear cluster structure, the between cluster dissimilarities (and hence the highest 

level) will become much larger than the within cluster dissimilarities, so the black lines in 

the banner become longer. For each object j, the line containing its label is seen and its 

length is measured on a zero-one scale above or below the banner. The Agglomerative 

coefficient [18], [19] is thus the average width of (or percentage filled or fraction of 

blackness in the plot) of the banner plot. It is a dimensionless quantity between zero and 

one, which does not change when all the original dissimilarities are multiplied by a 

constant factor, which means that dissimilarities are assumed on a ratio scale. It tells us 

the strength of the clustering structure that has been obtained. But Agglomerative 

coefficient (AC) tends to become larger when n increases, so it should not be used to 

compare datasets of very different sizes. 

 The Agglomerative Coefficient (AC) is defined for a dataset as 

ntoiwhereil
n

AC 1)(
1 == ∑                                                     (3.2) 

          
Where for each object i, l(i) is the length of the line containing its label. 

 

When Agglomerative coefficient is small, close to zero, it implies that the clustering 

algorithm has not found a natural structure, that is no clusters have been found and the 

data consists of one big cluster. If the value of Agglomerative coefficient is close to one, 
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it implies that a very clear clustering structure has been found. We use the agglomerative 

coefficient value to select the clustering method that clusters the data set the best. Thus, 

when the banner is narrow we find that the agglomerative coefficient is low, indicating 

that most of the objects remain unlinked for a relatively long time and hence the dataset 

does not contain very natural clusters which would have been formed sooner. 

 

3.3 Expectation Maximization Clustering 

In addition to the hierarchical clustering techniques we also used the Expectation 

Maximization clustering on the software components for the classification. Expectation 

Maximization (EM) clustering is a mixture based algorithm [29] that models the 

distribution of instances probabilistically, so that an instance belongs to a group with a 

certain probability. EM calculates the densities instead of probabilities. The algorithm is 

similar to the K-means procedure in that a set of parameters are re-computed until a 

desired convergence value is achieved. The finite mixtures model assumes all attributes 

to be independent random variables EM can handle both numeric and nominal attributes. 

A mixture is a set of N probability distributions where each distribution represents a 

cluster. An individual instance is assigned a probability that it would have a certain set of 

attribute values given it was a member of a particular cluster. Suppose , the 

probability distributes are assumed to be normal and data instances consist of a single 

real-valued attribute. The algorithm determines the value of five parameters, specifically:  

1. The mean and standard deviation for cluster 1  

2. The mean and standard deviation for cluster 2  

3. The sampling probability  P for cluster 1 (the probability for cluster 2 is 1-P )  

The general procedure is as follows   

1. Initial values for the five parameters mentioned above are guessed. 

2. In the case of a single independent variable with mean µ  and standard deviation 

σ , the formula to compute the probability density function is:  

( )
2

2

2

)(
2

1
)(

σ
µπσ −−

=
x

e

xf                                                                                            (3.3) 
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In the two-cluster case, we will have the two probability distribution formulas 

each having differing mean and standard deviation values. The probability density 

function is used to compute the cluster probability for each instance. 

     3.  The probability scores are used to re-estimate the five parameters.  

4. Return to Step 2 

The algorithm terminates when a formula that measures cluster quality no longer shows 

significant increase. This is called as EM algorithm, for expectation maximization. The 

first step as mentioned above, calculation of the cluster probabilities (Expected class 

values) is Expectation. The second, that is calculation of distribution parameters, is 

Maximization of the likelihood of the distributions of the given data [24].  One measure 

of cluster quality is the likelihood that the data came from the dataset determined by the 

clustering. The likelihood computation is obtained by the multiplication of the sum of the 

probabilities for each of the instances. 

3.4 Decision Trees obtained using j48 classifier 

Decision trees represent a supervised approach to classification. The non terminal nodes 

represent tests on one or more attributes and terminal nodes reflect the decision 

outcomes. The WEKA classifier package has its own version of C4.5 knows as J48 

classifier [30]. J48 classifier forms rules from pruned partial decision trees built using 

C4.5’s heuristics, which is non-commercial tree building algorithm. The main goal of this 

scheme is minimization of the number of tree levels and tree nodes and hence maximizes 

data generalization. It uses a measure taken from the information theory to help with the 

attribute selection process. Hence, for any choice point in the tree, it selects the attribute 

that splits the data so as to show the largest amount of information gain. The J48 

classifier builds a C4.5 decision tree. 

The general approach for a decision tree algorithm is as follows 

      1. The attribute that best differentiate the output is chosen. 

2. A separate tree branch is created for each chosen value. 
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3. The instances are divided into subgroups so as to reflect the attribute values of the 

chosen node 

4. We terminate the attribute selection process for each subgroup if 

      (i) All members for a subgroup have the same value for the output attribute, 

terminate the attribute selection process for the current path and label the branch 

on the current path with the specified value. 

     (ii)The sub-group has a single node or no further distinguishing attributes can be 

determined. Branch is labeled with output value seen by the majority of the 

remaining instances. 

5. The above process in repeated for each sub group created in (3) that has not been 

labeled as terminal. 

 

The above algorithm is applied to a training data. If the test data set is available, the 

created decision tree is tested. If the test data is not available, the j48 does a cross 

validation using the training data. If x is the number of folds for cross-validation, then 

x

x )1( −
 of the training data is used to construct the model and 

x

1
 of the training data is 

used to test the model. This process is then repeated times so that all the training data is 

used exactly once in the test data. The x different error estimates are then averaged to 

yield an overall error estimate [30]. While extensive tests on numerous datasets have 

shown that ten-fold cross-validation is one of the best numbers for getting the most 

accurate error estimate, other values can be used. Figure 3 shows an example of a 

decision tree. 

  

US3 <= 2 

|   AS2 <= 3: class1 (16.0) 

|   AS2 > 3: class0 (11.0) 

US3 > 2: class2 (6.0) 

Figure 3. Example of a decision tree 
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Each line represents a node in the decision tree. The next line that starts with “ | “ 

represents the child node of the first line. In general a node with one or more “ | “ 

characters before the rule is a child node of the node that the right-most line of ' | ' 

characters terminates at, if it is followed up the page. The next part of the line declares 

the rule. If the expression is true for a given instance it is classified if the rule is followed 

by a semi colon and a class designation (that designation becomes the classification of the 

rule) or, if it isn't followed by a semicolon, we continue to the next node in the tree (the 

first child node of the node we just evaluated the instance on). If the expression is instead 

false, we continue to the ``sister'' node of the node we just evaluated; that is, the node that 

has the same number of '|' characters before it and the same parent node. The 

classifications are sometimes followed by two numbers in the brackets. The first number 

tells how many instances in the training set are correctly classified by this node. The 

second number, if it exists (if not, it is taken to be 0.0), represents the number of 

instances incorrectly classified by the node. 
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Chapter 4: Classification of Software Components during the 

Requirements Specification 

 

We implemented clustering on the software components of 12 real NASA projects using 

the metrics obtained early in the software life cycle during the requirements specification 

from the Software Integrity Level Assessment Process (SILAP), the current state of 

practice in NASA IV & V. 

 

4.1 Software Integrity Level Assessment Process (SILAP) 

Software Integrity Level Assessment Process (SILAP) [33], the current state of practice 

at NASA IV & V is implemented very early in the Software Life Cycle, even before the 

requirements specification based on several Process/Product metrics and Domain Experts 

Knowledge. SILAP considers three factors that affect consequence and thirteen factors 

that affect the error potential of the software components. Some of the Complexity 

definitions in COCOMO are used in SILAP to define the evaluation criteria 

“Complexity” early in software life cycle. The list of software components in a project is 

graded against a set of criteria for different factors related to Consequence and Error 

Potential. This results in a score for Consequence and Error Potential. The scores are 

assigned values in a range of 1 to 5. Score 1 is considered a really good score (low 

Consequence and low Error Potential). Score 5 is considered a bad score (high 

Consequence and high Error Potential). Using the weights assigned by domain experts to 

these factors a weighted average of these scores is calculated to generate a score for 

consequence and Error Potential. These scores are then individually used to select tasks. 

If the software is a human rated flight, final score for the consequence is obtained taking 

the human safety into account. An algorithm was used to determine the set of tasks based 

on the Consequence and the Error Potential scores. SILAP assigns weights to different 

factors in order to generate a weighted score for consequence and Error Potential. We use 

clustering and study the behavior of the components based on the SILAP scores. 

SILAP considers the factor categories and weights shown in Table 1 and Figure 4 for 

obtaining a weighted score for Consequence. 
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Table 1. Factors affecting Consequence (CO1) 

Factor Category Weights 

Human Safety(HS2) 0 

Asset Safety(AS2) 0.35 

Performance(PF2) 0.65 

        

 

 

Figure 4. Pictorial representation of the factors affecting Consequence 

 

Figure 4 shows a pictorial representation of the factor categories that affect Consequence. 

Score for consequence (CO1) is obtained by the weighted average of the Human safety 

(HS2), Asset Safety (AS2) and Performance (PF2) scores. 

SILAP considers the factor categories and weights shown in Table 2 and Figure 5 for 

calculating weighted score for Error Potential. 

 

 

 

 

 

 

 

 

 

 

 

  

       CO1 

       HS2 AS2 PF2 
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  Table 2. Factors affecting Error Potential (EP1) 

Factor Category Weights 
Development(DV2) 0.579 

Experience(EX3) 0.828 
Development Organization(DO3) 0.172 

Process(PR2) 0.249 
Use of Standards(US3) 0.0955 

Use of CM(UC3) 0.0962 
CMM Level(CL3) 0.0764 

Use Of Formal Reviews(FR3) 0.1119 
Use of Defect Tracking System(DT3) 0.0873 

Use of Risk Management System(RM3) 0.0647 
Re Use Approach(RA3) 0.226 
Artifact Maturity(AM3) 0.242 

Software Characteristic(SC2) 0.172 
Complexity(CX3) 0.547 

Degree Of Innovation(DI3) 0.351 
Size Of System(SS3) 0.102 

 

 

 

 

 

 

 

 

Figure 5. Pictorial representation of the factors affecting Error Potential 

  

There are two types of scores that are considered in the Error Potential calculations.  

• Direct scores: These are the scores that entered by the analysts and have a score 

from one to five (EX3, DO3, US3, UC3, CL3, FR3, DT3, RM3, RA3, AM3, 

CX3, DI3, SS3). 

• Composite Scores: These are the scores that are computed based on the weighted 

average of the direct scores (Development (DV2), Process (PR2), Software 

Characteristic (SC2)). 

 

EP1 

DV2 PR2 SC2 

EX3 DO3 US3 UC3 CL3 FR3 DT3 RM3 RA3 AM3 cx3 DI3 SS3 
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The score for Error Potential (EP1) is obtained by the weighted average of the composite 

scores. 

 We used the sanitized names for the 12 projects as X1, X2, .., X12. Software 

components of these projects were assigned direct scores ranging from 1 to 5 by the 

domain experts and the composite scores were obtained as a weighted sum of the direct 

scores. We implemented clustering for all the components of  the projects based on these 

SILAP scores. Since the Consequence and Error Potential scores are obtained as a 

weighted sum of the direct scores, we implement clustering at two levels of granularity 

on the components of the projects.  

The two levels of Granularity at which we implement clustering are  

• At a higher level we implemented clustering on the components of each project 

using the weighted average scores of Consequence (CO1) and Error Potential 

(EP1) scores. 

• At a lower level we implemented clustering on the components of the project 

using the direct score attributes which were assigned by the analysts that is the 

factors in the leaves of the tree representation in Figure 4 and Figure 5.  

 

4.2 Implementation of Agglomerative clustering on projects  

 

We implemented clustering on the SILAP scores of the 12 projects X1, X2, …, X12. Due 

to space limitation we present the results obtained for two projects X9 and X10 here. 

 

4.2.1 Clustering results based on weighted Consequence and Error Potential scores 

 

Project X9 

We implemented clustering using the hierarchical Wards method for each project with 

the weighted consequence and error potential scores. The clustering tree that we obtained 

for project X9 is as shown in Figure 6. 
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Figure 6. Clustering tree of project X9 obtained using the Consequence and Error 

Potential scores (Agglomerative Coefficient: 0.979) 

 

In hierarchical clustering we can decide the number of clusters, by analyzing the output. 

From Figure 6 it is evident that the 19 components of project X9 form 4 distinct clusters, 

A, B ,C and D. The Agglomerative coefficient value obtained was 0.979, which indicates 

a good quality of clustering. 

Table 3 shows the four distinct clusters, the components in each cluster and their 

CO1 and EP1 values. 

 

 

 

 

 

 

 

 

 

Cluster C Cluster A 
Cluster D Cluster B 
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Table 3. Clusters of the components of project X9 based on Consequence and Error 

Potential scores 

Cluster and components Consequence Error Potential 

Cluster Components CO1 EP1 

A 

1 
13 
15 
6 
8 
11 
16 

2.30 
2.30 
2.30 
2.30 
2.30 
2.30 
2.30 

2.49 
2.58 
2.58 
2.68 
2.68 
2.68 
2.68 

B 
5 
10 
14 

1.65 
1.00 
1.00 

2.58 
2.58 
2.49 

C 

2 
18 
19 
3 
9 

3.60 
3.60 
3.70 
3.35 
3.35 

2.58 
2.58 
2.68 
2.77 
2.77 

D 

4 
12 
17 
7 

4.35 
4.65 
4.65 
5.00 

2.68 
2.68 
2.49 
2.68 

 

From the Table 3, it is evident that the components that have similar characteristics are in 

one cluster. For instance, components in cluster A have moderate consequence and 

moderate error potential scores, while components of cluster B have low consequence 

and moderate error potential scores, components of cluster C have relatively high 

consequence and moderate error potential scores and components of cluster D have very 

high consequence and moderate error potential scores. Here, in this project as the error 

potential scores are close to each other clustering were being guided by consequence 

scores.  

 

Project X10 

The clustering tree obtained for project X10 using the weighted score of CO1 and EP1 is 

shown in Figure 7. From Figure 7, we see that there are 3 distinct clusters. The 

agglomerative coefficient value obtained was 0.904, which indicates a good quality of 

clustering. 
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Table 4 shows the clusters of project X10, its components and CO1 and EP1 values of 

project X10. 

 

 

 

Figure 7. Clustering tree of project X10 obtained using the Consequence and Error 

Potential scores (Agglomerative coefficient – 0.904). 

 

Table 4. Clusters of components of project X10 based on Consequence and Error Potential 

scores 

Clusters and components Consequence Error Potential 

Cluster Components CO1 EP1 

A 

1 
3 
7 
8 
9 
13 

2.3 
2.0 
2.35 
2.30 
2.30 
1.65 

1.74 
1.75 
1.74 
2.64 
1.93 
2.64 

B 

2 
10 
4 
11 

1.65 
1.65 
1.00 
1.00 

1.74 
1.55 
1.74 
1.74 

C 
5 
6 
12 

3.0 
3.6 
4.3 

1.74 
1.55 
1.93 

Cluster B 
Cluster A 

Cluster C 
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From Table 4, it is evident that the components that have similar characteristics are 

clustered together. Cluster A has moderate consequence and error potential values. 

Cluster B has   relatively low consequence and moderate error potential. Cluster C has 

relatively high consequence and moderate error potential. 

Similarly we implemented clustering on the other 11 projects based of the CO1 

and EP1 scores and used the Agglomerative Coefficient values for their validation. 

 

4.2.2   Clustering results based on direct scores  

We implemented clustering using the Hierarchical Wards clustering method on the 12 

projects with the 3 direct scores  HS2 , AS2 and PF2 that affect Consequence and the 13 

direct scores  EX3, DO3, US3, UC3, CL3, FR3, DT3, RM3, RA3, AM3, CX3, DI3, SS3 

that affect the Error Potential of the components for each project.  

 

Project X9 

The clustering tree obtained after implementing clustering on the X9 project is as shown 

in Figure 8. As seen in the Figure 8, clustering tree there are 3 distinct clusters. The 

Agglomerative coefficient value obtained was 0.938, which indicates a good quality of 

clustering. Table 5 shows the clusters, components in each cluster and their direct score 

values 
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Figure 8. Clustering tree of project X9 obtained using the direct scores  

(Agglomerative Coefficient -0.938) 

 

Table 5. Clusters of components of project X9 based on the direct scores 

Cluster and components Consequence Error potential 

Cluster Components HS2 AS2 PF2 EX3 DO3 US3 UC3 CL3 FR3 DT3 RM3 RA3 AM3 CX3 DI3 SS3 

A 

1 
10 
14 
5 
13 
15 
6 
8 
11 
16 

2 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

3 
1 
1 
2 
3 
3 
3 
3 
3 
3 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
2 
1 
2 
2 
2 
3 
3 
3 
3 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

4 
4 
4 
4 
4 
4 
4 
4 
4 
4 

B 
2 
18 
12 

0 
0 
0 

1 
1 
4 

5 
5 
5 

3 
3 
3 

2 
2 
2 

3 
3 
3 

1 
1 
1 

3 
3 
3 

2 
2 
2 

2 
2 
2 

2 
2 
2 

5 
5 
5 

1 
1 
1 

2 
2 
3 

1 
1 
1 

4 
4 
4 

C 

3 
9 
4 
19 
7 
17 

5 
4 
5 
5 
5 
5 

4 
4 
5 
5 
5 
4 

3 
3 
4 
3 
5 
5 

3 
3 
3 
3 
3 
3 

2 
2 
2 
2 
2 
2 

3 
3 
3 
3 
3 
3 

1 
1 
1 
1 
1 
1 

3 
3 
3 
3 
3 
3 

2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 

5 
5 
5 
5 
5 
5 

1 
1 
1 
1 
1 
1 

4 
4 
3 
3 
3 
1 

1 
1 
1 
1 
1 
1 

4 
4 
4 
4 
4 
4 

 

 
  

Cluster A 

Cluster C 
Cluster B 
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Comparing Table 3 and Table 5, we observe that components of project X9 were grouped 

in a different way. When clustering was based on weighted average scores CO1 and EP1 

than they were clustered in a different when compared to based on the direct score 

attributes. This difference in clustering could be due to loss of information because of 

weighting as the scores for CO1 and EP1 are the weighted average scores. 

 

Project X10  

The clustering tree obtained after implementing clustering on project X10 is shown in 

Figure 9. As seen clustering tree has three distinct clusters, A, B, C. The Agglomerative 

Coefficient value 0.704 indicates a good quality of clustering. Table 6 shows the clusters, 

components in each cluster and the direct scores for project X10. 

 

Figure 9. Clustering tree of project X10 obtained after using the direct scores 

(Agglomerative coefficient – 0.704) 

 

 

 

. 

Cluster A 

Cluster B Cluster C 
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Table 6. Clusters of components of project X10 based on the direct scores 

Cluster and components Consequence Error Potential 
Cluster Components HS2 AS2 PF2 EX3 DO3 US3 UC3 CL3 FR3 DT3 RM3 RA3 AM3 CX3 DI3 SS3 

A 

1 
2 
4 
11 
10 
6 

0 
0 
0 
0 
0 
0 

1 
1 
1 
1 
1 
1 

3 
2 
1 
1 
2 
5 

1 
1 
1 
1 
1 
1 

4 
4 
4 
4 
4 
4 

1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 

3 
3 
3 
3 
3 
3 

1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 

2 
2 
2 
2 
2 
2 

3 
3 
3 
3 
3 
3 

3 
3 
3 
3 
1 
1 

1 
1 
1 
1 
1 
1 

3 
3 
3 
3 
3 
3 

B 
8 
13 

0 
0 

1 
1 

3 
2 

3 
3 

4 
4 

1 
1 

1 
1 

3 
3 

1 
1 

2 
2 

1 
1 

1 
1 

3 
3 

3 
3 

1 
1 

2 
2 

C 

3 
9 
5 
7 
12 

0 
0 
0 
0 

2 
1 
3 
3 

2 
3 
3 
5 

1 
1 
1 
1 

4 
4 
4 
4 

1 
1 
1 
1 

1 
1 
1 
1 

3 
3 
3 
3 

1 
1 
1 
1 

1 
1 
1 
1 

1 
1 
1 
1 

2 
2 
2 
2 

2 
3 
3 
3 

4 
5 
3 
5 

1 
1 
1 
1 

2 
3 
3 
3 

 

Comparing Table 4 with Table 6 we find that components of project X10 were grouped 

in a different way. This difference in the clustering could be due to the loss of 

information due to weighting as the scores for CO1 and EP1 are the weighted average 

scores. 

Similarly we implemented clustering on all the other 11 projects using the direct 

scores as attributes. For all the projects, when the clustering tree for the components of 

each project obtained with the weighted average scores CO1 and EP1 and the clustering 

tree obtained with the direct scores was compared, they were different. Hence we could 

infer that weighting causes loss of information and the behavior of the components could 

be understood better using the direct scores, as there would be no loss of information. We 

need domain expert’s knowledge to further validate our results. 

 

4.3 Implementation of Expected Maximization Clustering and obtaining decision 

trees 

In addition to the hierarchical clustering technique we also implemented EM clustering 

on the 12 projects, using the weighted average and the direct SILAP scores. 
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4.3.1 Clustering results based on weighted Consequence and Error Potential scores 

We implemented EM clustering on the 12 projects with the CO1 and EP1 scores. EM 

clustered the components of the project X9 as shown in Table 7. 

Table 7. Cluster of components of project X9 using Expected Maximization 

Clustering based on the Consequence and Error Potential scores. 

Cluster Components 

A (class0) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

 

As seen from Table 7, all the 19 components of project X9 were classified as a single 

class (class0), which implies that all the components behave similarly, when clustered 

based on CO1 and EP1 scores.  

Similarly we ran the WEKA tool on all the other 11 projects using the weighted 

average scores CO1 and EP1 and obtained the clusters. All the results obtained were 

different from the results obtained in hierarchical clustering. 

 

4.3.2 Clustering results based on direct score attributes  

We implemented EM clustering on the components of the project using the direct score 

attributes, that is HS2, AS2, PF2, EX3, DO3, US3, UC3, CL3, FR3, DT3, RM3, RA3, 

AM3, CX3, DI3, SS3. The clusters that we obtained after we ran the WEKA tool on the 

X9 project is shown in Table 8. 
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Table 8. Cluster of components of project X9 using Expected Maximization Clustering 

based on the direct scores. 

Cluster Components 

A (class0) 

1 
2 
5 
6 
8 
10 
11 
12 
13 
14 
15 
16 
18 

B  (class1) 

3 
4 
7 
9 
17 
19 

 

As seen from Table 8,  when we implemented the EM cluster using the direct scores  

HS2, AS2, PF2, EX3, DO3, US3, UC3, CL3, FR3, DT3, RM3, RA3, AM3, CX3, DI3, 

SS3 of the components for the project X9, components were classified into two clusters 

(class0 and class1). We see that components 1,2,5,6,8,10,11,12,13,14,15,16,18 are 

clustered as one cluster (class0) and components 3,4,7,9,17,19 are clustered as another 

cluster (Class1) as shown in Table 8. 

Similarly we implemented EM Clustering on the other 11 projects using the direct 

score factors and obtained the clusters. They clustered the components in a different way 

when compared to the clusters obtained using the weighted score factors (CO1 and EP1). 

All the results obtained using EM Clustering were different from the results obtaimed 

using hierarchical clustering. 
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4.3.3 Implementation of J48 classifier to obtain decision trees  

We ran the J48 classifier using WEKA and obtained the J48 pruned decision tree for the 

components of all the 12 projects that were clustered (EM cluster) using the direct score. 

The J48 decision tree tells us which attribute causes the components to behave and hence 

cluster differently. We obtained   J48 pruned decision tree when we ran the WEKA tool 

using J48 classifier for all the projects. The J48 decision tree obtained for project X9 is as 

shown in Figure 10. 

 

HS2 <= 2: class0 (13.0) 

HS2 > 2: class1 (6.0) 

Figure 10. J48 decision tree for project X9 

 

This implies that the factor HS2 is the factor that has the highest information gain and 

decides the cluster. If the HS2 score is less than or equal to 2 then it’s classified as a 

cluster, class0, otherwise it’s classified as another cluster (class1). There are 13 instances 

correctly classified as class0 and 6 instances correctly classified as class1. 

Similarly we ran the j48 classifier to obtain the decision trees for all the other 11 

projects based on the clusters that were obtained when they were clustered using direct 

score factors (EM Clustering). Table 9 shows the decision trees that were obtained for all 

the 12 projects. 

 

Table 9. Decision trees  for the 12 projects1 

Project 10 Fold Cross Validation Decision Trees 

X1 
Correctly Classified Instances      43           97.7273 % 

Incorrectly Classified Instances     1           2.2727 % 

EX3 <= 2 

|   PF2 <= 2: class3 (8.0) 

|   PF2 > 2: class1 (17.0) 

EX3 > 2: class2 (19.0/1.0) 

X2 Correctly Classified Instances          42        100      % DO3 <= 4: class0 (15.0) 

                                                 
1 Considering only the components of the project that have values for all the factors affecting 

consequence and error potential. 
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Incorrectly Classified Instances         0            0      % DO3 > 4 

|   UC3 <= 1: class1 (15.0) 

|   UC3 > 1: class2 (12.0) 

X3 
Correctly Classified Instances         20     83.3333 % 

Incorrectly Classified Instances       4       6.6667 % 

DO3 <= 4 

|   DI3 <= 2: class2 (19.0) 

|   DI3 > 2: class1 (2.0) 

DO3 > 4: class0 (3.0) 

X4 
Correctly Classified Instances           9        81.8182 % 

Incorrectly Classified Instances       2         18.1818 % 

EX3 <= 2: class1 (3.0/1.0) 

EX3 > 2: class0 (8.0) 

X5 
Correctly Classified Instances         11        73.3333 % 

Incorrectly Classified Instances         4       26.6667 % 

US3 <= 2 

|   EX3 <= 1: class3 (2.0) 

|   EX3 > 1 

|   |  PF2 <= 3: class1 (7.0) 

|   |   PF2 > 3: class2 (4.0) 

US3 > 2: class0 (2.0) 

X6 
Correctly Classified Instances     25              100      % 

Incorrectly Classified Instances      0                0      % 

DO3 <= 1: class1 (15.0) 

DO3 > 1: class2 (10.0) 

X7 
Correctly Classified Instances         137      99.2754 % 

Incorrectly Classified Instances         1         0.7246 % 

DO3 <= 2 

|   HS2 <= 1: class2 (77.0) 

|   HS2 > 1 

|   |   EX3 <= 1: class1 (10.0) 

|   |   EX3 > 1: class0 (6.0) 

DO3 > 2: class1 (45.0/1.0) 

X8 
Correctly Classified Instances          24       92.3077 % 

Incorrectly Classified Instances         2        7.6923 % 

SS3  <= 1 

|   US3 <= 1: class5 (3.0) 

|   US3 > 1: class4 (7.0) 

SS3  > 1 

|   EX3 <= 2: class1 (5.0) 

|   EX3 > 2: class2 (11.0/1.0) 

X9 
Correctly Classified Instances          17       89.4737 % 

Incorrectly Classified Instances         2       10.5263 % 

HS2 <= 2: class0 (13.0) 

HS2 > 2: class1 (6.0) 

X10 
Correctly Classified Instances          10       76.9231 % 

Incorrectly Classified Instances         3       23.0769 % 

EX3 <= 1 

|   AS2 <= 1: class0 (7.0) 
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|   AS2 > 1: class1 (4.0/1.0) 

EX3 > 1: class2 (2.0) 

X11 
Correctly Classified Instances          33       100      % 

Incorrectly Classified Instances         0          0      % 

US3 <= 2 

|   AS2 <= 3: class1 (16.0) 

|   AS2 > 3: class0 (11.0) 

US3 > 2: class2 (6.0) 

X12 
Correctly Classified Instances      37          86.0465 % 

Incorrectly Classified Instances    6           13.9535 % 

UC3 <= 1 

|   EX3 <= 1 

|   |   DO3 <= 3: class3 (7.0) 

|   |   DO3 > 3: class4 (2.0) 

|   EX3 > 1: class5 (29.0/3.0) 

UC3 > 1: class0 (5.0) 

 

From Table 9, it is evident that each project is different and different attributes have 

highest information gain for each project. 

 

J48 Decision tree obtained for all the twelve projects  

We implemented the EM clustering on all  twelve projects together using the direct score 

factors and then we ran the j48 classifier using WEKA tool to obtain the decision tree. 

The decision tree obtained for all the twelve projects together is as shown in Figure 11. 

 

DT3 <= 1 

|   RM3 <= 2: class1 (14.0) 

|   RM3 > 2 

|   |   EX3 <= 3 

|   |   |   HS2 <= 1: class6 (68.0) 

|   |   |   HS2 > 1: class2 (24.0/1.0) 

|   |   EX3 > 3: class7 (45.0) 

DT3 > 1 

|   US3 <= 3 

|   |   CL3 <= 3 

|   |   |   AS2 <= 4 

|   |   |   |   AM3 <= 1 
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|   |   |   |   |   RM3 <= 1 

|   |   |   |   |   |   UC3 <= 1: class1 (11.0) 

|   |   |   |   |   |   UC3 > 1 

|   |   |   |   |   |   |   US3 <= 2 

|   |   |   |   |   |   |   |   DO3 <= 3: class0 (2.0/1.0) 

|   |   |   |   |   |   |   |   DO3 > 3: class4 (8.0) 

|   |   |   |   |   |   |   US3 > 2 

|   |   |   |   |   |   |   |   HS2 <= 1 

|   |   |   |   |   |   |   |   |   CX3 <= 3: class0 (13.0/1.0) 

|   |   |   |   |   |   |   |   |   CX3 > 3: class3 (3.0/1.0) 

|   |   |   |   |   |   |   |   HS2 > 1: class3 (2.0) 

|   |   |   |   |   RM3 > 1 

|   |   |   |   |   |   HS2 <= 0: class0 (89.0/3.0) 

|   |   |   |   |   |   HS2 > 0 

|   |   |   |   |   |   |   AS2 <= 2 

|   |   |   |   |   |   |   |   DI3 <= 1: class0 (6.0/1.0) 

|   |   |   |   |   |   |   |   DI3 > 1: class5 (2.0) 

|   |   |   |   |   |   |   AS2 > 2: class3 (3.0) 

|   |   |   |   AM3 > 1 

|   |   |   |   |   FR3 <= 1: class1 (2.0) 

|   |   |   |   |   FR3 > 1 

|   |   |   |   |   |   AM3 <= 2 

|   |   |   |   |   |   |   PF2 <= 1: class5 (2.0) 

|   |   |   |   |   |   |   PF2 > 1: class3 (10.0/1.0) 

|   |   |   |   |   |   AM3 > 2: class5 (6.0) 

|   |   |   AS2 > 4: class3 (19.0) 

|   |   CL3 > 3 

|   |   |   UC3 <= 1 

|   |   |   |   RA3 <= 3: class5 (3.0/1.0) 

|   |   |   |   RA3 > 3: class1 (28.0/1.0) 

|   |   |   UC3 > 1 

|   |   |   |   FR3 <= 1|   |   |   |   |   DO3 <= 4: class4 (21.0) 

|   |   |   |   |   DO3 > 4: class5 (3.0) 

|   |   |   |   FR3 > 1: class5 (30.0) 
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|   US3 > 3: class8 (19.0) 

 

Figure 11. J48 decision tree for all the twelve projects together 

 

Observing the decision trees obtained in Table 9 and Figure 11, we find that different 

attributes have highest information gain in different projects. Another observation from 

Figure 11 is that, the attribute Use of Defect Tracking System (DT3) has highest 

information gain for all the twelve projects together. This way implementing Clustering 

and running the classifiers could contribute to the classification of the software 

components and revealing the attribute that has the highest information gain in the 

decision trees very early in the software life cycle.  

 

4.4 Proposed Algorithm for ranking clusters in a Project  

 

We propose a way to rank the clusters based on Consequence and  Error Potential. We 

ordered the direct scores that affect consequence and error potential based on the weights 

assigned by domain experts as shown in Figure 12. 

 

Consequence                       Error Potential  

HS2 (0.0)    EX3   (0.828) 

PF2 (0.65)    CX3   (0.547) 

AS2 (0.35)    DI3    (0.351) 

     AM3  (0.242) 

     RA3   (0.226) 

     DO3   (0.172) 

     FR3   (0.1119) 

     SS3    (0.102) 

     UC3  (0.0962) 

     US3   (0.0955) 

     DT3   (0.0873) 

     CL3   (0.0764) 

     RM3  (0.0647) 

Figure 12 Order of importance for Consequence and Error Potential 
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Algorithm for Ranking n clusters based on Consequence 

 

Let Coi  represent the factors that affect consequence. 

1. Select the  Coi  that has the highest order of importance. 

2. Let Comax ji−  be the maximum value of selected Coi for cluster j. 

3. Sort the clusters based on their Comaxji−  values for the selected Coi in descending order 

and store in array sort[]. 

4. If (Comax mi−  of sort[k]) > (Comax hi− of sort[k+1]) 

Then rank cluster m higher rank 

Repeat step 4 for next value of k in sort[] having the same Coi  checked.  

             Else   

{ 

- Check the sequence of next values in sort[] till the Comax ji−  values of       

index where sort[index] !=sort[k] for same  Coi  

   Repeat 

       { 

If (! all  Coi ’s are checked for the sequence of sort[k] to 

sort[index-1]) 

           { 

- Select the next Coiaccording to the order of 

importance for these sequence of clusters in 

sort[k] to sort[index-1] 

 

- Resort sort[] only for these values from sort[k] 

to sort[index-1] in descending order based on 

the Comaxi  values of selected  Coiof these 

clusters. 

 

- Repeat step 4 for these sequence of clusters 

from sort[k] to sort[index-1] 

} 
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 Else 

   { 

Sequence of clusters from sort[k] to sort[index-

1] are ranked the    same. 

} 

} Until all clusters in sort[k] to sort[index-1] are assigned a rank 

                            } 

 

Ranking based on Error Potential: is done similarly, except that we consider the 

ordering of the direct scores that affect error potential 

 

4.4.1 Ranking for Project X9 

Ranking of clusters of project X9 based on Consequence  

As shown in Table 10, the maximum HS2 score of cluster B is higher than the maximum 

HS2 score of cluster A (5>2), cluster B is ranked higher than cluster A based on 

consequence.  

 

Table 10 Ranking of the Clusters of project X9 based on Consequence 

Cluster Components Maximum HS2 Rank 

A 

1 
2 
5 
6 
8 
10 
11 
12 
13 
14 
15 
16 
18 

2.0 II 

B 

3 
4 
7 
9 
17 
19 

5.0 I 
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Ranking of clusters of project X9 based on their Error Potential  

As seen in the Table 11 

 Maximum EX3 value of cluster A = maximum EX3 value of cluster B  

Maximum CX3 value of cluster B > maximum CX3 value of cluster A  

Hence, Cluster B is ranked higher based on error potential 

 

Table 11   Ranking of clusters of project X9 based on error potential 

Cluster Components EX3 CX3 Rank 

A (class0) 

1 
2 
5 
6 
8 
10 
11 
12 
13 
14 
15 
16 
18 

3.0 3.0 II 

B  (class1) 

3 
4 
7 
9 
17 
19 

3.0 4.0 I 

 

Similarly, we ranked the clusters for all the other projects. This way we could rank the 

clusters of components very early in the software life cycle with clustering. 

 

 

 

 

 

 

 



 37 

Chapter 5: Classification of Software Components Based on Reliability 

and Maintainability Based Risk in the Architectural Level 

 

We implemented clustering using metrics obtained early in the software life cycle, when 

the requirement specifications and design details are available. In this chapter, we present 

the clustering results obtained on the CM1 case study using the reliability based risk 

metrics such as Complexity, Severity and Fan-Out [9]  and the maintainability based risk 

metrics such as Change Probabilities, Normalized Maintenance Impact Fan-Out and 

Normalized maintenance Impact Fan-In  [1], [2], [3] . 

 

5.1 CM1 Case Study  

CM1 is a software component of a data processing unit used in an instrument which 

exploits data, to probe the early universe. This case study is from the Data Metrics 

Program [33]. CM1 has 12 components and 9 scenarios [4]. Reliability based risk metrics 

and Maintainability based metrics were obtained for CM1 using methodology presented 

in [1], [4], [9] early in the software life cycle. We implemented clustering on this case 

study using these metrics and studied the behavior of the components of CM1 early in the 

software life cycle. 

  

5.2 Reliability-based Risk Metrics 

Reliability based risk is defined as an unexpected result originated from a wrong system 

behavior, which is out of the feasible space defined from the functional requirements. In 

this case the source of failure is a violation of some functional requirement. It takes into 

account that the probability that a software product will fail in the operational 

environment and the adversity of the failure. In [4], [9] a methodology for assessing 

reliability based risk in early phases of a software cycle was developed.  

 Description of the methodology used in the previous works [4], [9] and the 

definitions of the reliability based metrics has been explained for the sake of 

completeness. Information necessary for estimation of reliability based risk was obtained 

using unified modeling language (UML) [6] and the commercial modeling environment 

Rational Rose RT (RoseRT) [34]. From the UML diagrams for each component and 
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connector in the software architecture a heuristic risk factor was obtained. Scenario risk 

factors were computed using Markov model. Risk factors for usecases were obtained by 

averaging the scenarios risk factors. In order to obtain the overall system risk factor the 

independent use cases risk factors were weighted with the probability of their execution. 

Reliability based risk metrics such as Dynamic Complexity, Severity and Fan-Out were 

obtained using as dynamic specification metrics from UML 

 

• Dynamic Complexity  

As there is a correlation between the number of faults found in a software 

component and its complexity, in [4] the dynamic complexity of state charts was 

obtained as a dynamic metric for components. Dynamic coupling between 

components was computed as a dynamic metric related to fault proneness 

for connectors. Component’s Dynamic Complexity was obtained based on the 

UML state charts that are available during the early stages of software life cycle 

[4]. A number of states and transition between these states in the state chart of 

each component i describes the dynamic behavior of the component. 

 

Dynamic Complexity is defined as follows [4] 

• For a scenario Sx , a subset of all states of component i are visited in the scenario 

and a subset of all the transitions are traversed. If C x
i  denotes the subset of states 

for a component i visited in the scenario Sx  and with Tx
i  as the subset of 

transitions traversed in the state chart of component i in that scenario. The subset 

of states Cx
i  and the corresponding transitions Tx

i  were mapped into a control 

graph.  cx
i  = x

iC  and txi  = x
iT  denotes the number of nodes in that graph 

(cardinality of Cx
i ) and number of edges in that graph (cardinality of T x

i ) 

respectively. Dynamic Complexity docx
i  of component i in scenario Sx  is defined 

as [4]   

docx
i =t x

i - c x
i + 2.                                                                                          (5.1) 
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 Normalizing the Dynamic Complexity docx
i  with respect to the sum of     

complexities for all active components gives Normalized Dynamic Complexity 

DOCx
i  of a component i in a scenario Sx  [4]. Using this definition, Dynamic 

Complexity metrics were obtained for the components of CM1 [4]. 

• Severity metric: Severity metric measures the severity of the consequences of 

potential failures [4]. To get this metric value domain experts play a major role. 

Based on hazard analysis [23] [4], the severity classes were identified as follows: 

Catastrophic: A failure that could cause death or total system loss 

Critical: A failure that could cause severe injury, major property damage, major 

system damage, or major loss of production. 

Marginal: A failure that could cause minor injury, minor property damage, minor 

system damage, or delay or minor loss of production. 

Minor: A failure that is not serious enough to cause injury, property damage, or 

system damage, but could result in unscheduled maintenance or repair. 

In [4] severity indices of 0.25, 0.50, 0.75 and 0.95 were assigned to minor, 

marginal, critical and catastrophic severity classes respectively. 

Experts make an estimate of the severity of the components and connectors based 

on their experience with other systems in the same field. The components of CM1 

were assigned a score based on their severity class [4]. 

• Fan-Out: The Fan-out metric value was obtained from the UML diagrams for 

each component [4] early in the software life cycle. 

 

We implemented clustering on the components of CM1 using the Reliability based 

metrics , Dynamic Complexity, Severity and Fan-Out scores that were assigned to the 

components of CM1 according to the definitions defined above[4]. 

 

5.2.1 CM1 Case Study Results based on Reliability-based-Risk  

We clustered the components of CM1 based on reliability based metrics per scenario and 

also fusion of all scenarios (Simple sum, Weighted Sum, Worst Case analysis) [17] [13]. 

We implemented hierarchical clustering methods ( Single Link, Complete Link, Average 
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Link, Wards method ) on the case study and found that Wards method had the highest 

agglomerative coefficient values than the other methods.  

• Per-Scenario Results for CM1 

We implemented hierarchical Wards method as it had the highest agglomerative 

coefficient value, using the Euclidean dissimilarity measure on each of the 9 

scenarios [4] with the reliability based metrics such as Dynamic Complexity, 

Severity and Fan-Out for all components. The results for the scenario 

HouseKeeping (HK) using Wards method are as shown in Figure 13. 

 

 

 

Figure 13. Clustering tree of CM1 obtained for the HouseKeeping (HK) scenario based on 

Reliability based risk metrics (Agglomerative Coefficient AC 0.90) 

 

As shown in Figure 13, if we look for 3 clusters then the components 1, 5, 6, 7, 11 are the 

most similar to each other forming a cluster (cluster A) , components 2, 8 ,9, 12 form the 

second (Cluster B) and components 3, 10 and 4 form the third cluster(Cluster C) for the 

scenario HouseKeeping(HK) [4]. The AC value was the highest when clustering was 

implemented using the hierarchical clustering Wards method for all the 9 scenarios. This 

Cluster B 

Cluster C 

 

 

 

Cluster A 
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indicates that the quality of clustering structure found using the Wards method was better 

than any other method for our dataset. For the HouseKeeping(HK) scenario explained 

above the Agglomerative coefficient(AC) value was 0.90 with the Wards method. 

 Similarly, Clustering was implemented for the other 8 scenarios of CM1. Wards 

method performed well for all the scenarios. Much inference could not been drawn about 

the behavior of the components, as Clustering tree obtained for each scenario was 

different., indicating that the components behaved differently in different scenarios.  

 We then experimented ways to combine the reliability based metrics of 

components across all the nine scenarios and implement clustering in order to get better 

interpretation of results. 

• Fusion of Reliability based risk metrics across all scenarios  

We implemented clustering on the CM1 components using techniques like the simple 

sum scores fusion, weighted sum scores fusion and worst case value (Maximum value) 

[17] [13] across all the scenarios. 

• We obtained clustering results using the hierarchical Wards method as it had the 

highest AC value, with the simple sum scores fusion that is clustering the 

components using the simple sum of the metrics across all the 9 scenarios. Also 

implemented the weighted sum scores fusion, that is clustering components using 

the weighted sum of metrics across all scenarios (weighted by the probability of 

occurrence of each scenario) [13] [17]. 

For Risk, the worst case values are considered to be the most important. We looked at the 

metric values in all the scenarios for each component and selected the worst case values 

(i.e. Maximum value) [13]. We implemented hierarchical Wards clustering method as it 

had the highest Agglomerative Coefficient value. The clustering tree obtained for 

clustering using the worst case values are as shown in Figure 14. Figure 15 shows its 

corresponding Banner plot. From the clustering tree in figure 14, it is evident that 

components 1, 6, 4, 11 form one cluster, components 2, 9, 12, 10, 3, 7, 5 form the second 

and component 8 forms the third. Agglomerative Coefficient value when Wards 

clustering was implemented using the worst case values was 0.81. This indicated good 

quality of clustering. From Table 12, we observe that most of the components in cluster 

A, that is components 1, 6, 4, 11 have relatively low Fan-Out, relatively low Complexity 
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and moderate severity values. Most of the components in the cluster B, that is 

components 2, 9, 13, 10, 3, 7, 5 have moderate Complexity, moderate Fan-Out and 

relatively high Severity values. Cluster C, that is components 8 has relatively higher 

Complexity, higher Severity and higher Fan-Out values than most of the other 

components. Domain experts ranked the components of CM1 based on their knowledge 

and experience, starting from the most critical to least critical as 8, 3, 10, 7, 12, 9, 2, 5, 

11, 6, 1, 4 [33].  The clustering results we obtained in Figure 14 were in accordance with 

the ranking given by the domain experts. 

 

 

 

Figure 14. Clustering Tree of CM1 obtained for the worst case values of Reliability Based 
Risk metrics (Agglomerative coefficient 0.81) 

 

Cluster A Cluster B 

Cluster B 
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Height

Agglomerative Coefficient =  0.81

0.0 0.20 0.40 0.60 0.80 1.00 1.44

8
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10
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9

2

11

4

6

1

 
Figure 15. Banner plot of CM1 obtained for the worst case values of Reliability based 

risk metrics 
 

Table 12. Clusters components of CM1 based on Reliability based risk 

 

 

Table 12 shows the clusters A, B and C of components of CM1 corresponding to Figure 

14 and Figure 15. 

 

 

 

 

 

CLUSTER Components Complexity Severity FanOut 

A 

1 
6 
4 
11 

0.08 
0.08 
0.21 
0.67 

0.5 
0.5 
0.25 
0.50 

0.06 
0.06 
0.25 
0.06 

B 

2 
9 
12 
10 
3 
7 
5 

0.31 
0.50 
0.60 
0.40 
0.36 
0.40 
0.40 

0.99 
0.99 
0.99 
0.99 
0.75 
0.75 
0.50 

0.50 
0.50 
0.60 
0.20 
0.38 
0.40 
0.50 

C 8 0.50 0.99 1.00 
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5.3 Maintainability-Based Risk Metrics   

According to NASA standard on software safety [27], risk is defined as a function of the 

anticipated frequency of occurrence of an undesired event, the potential severity of the 

resulting consequences and the uncertainties associated with the frequency and severity. 

Risk assessment is an integral part of software risk management. Several types of risks 

are ushered into the system when it undergoes maintenance, like project risk, usability 

risk and maintainability risk [20].  

• Project risk basically concerns that the maintenance project cannot be completed 

within the budget or timeframe because of an unproductive maintenance process 

or deficiency of personnel and maintenance resources.  

• Usability risk focuses that the maintenance conducted on the system will trigger 

problems and failures. It takes into account the functionality, performance and 

software failure risk.  

• Maintainability based risk answers the question how complex will it be to 

maintain the system in future because of the way we handled maintenance task 

[2].Maintainability based risk is defined as the product of probability of 

performing maintenance task and the cost of performing this task. This can be 

used to identify the most risky parts of the system. More than 65% of the life 

cycle of a software project is spent in maintenance [1].In accordance with NASA-

STD-8719 standard maintainability based risk is defined as the product of the 

probability of carrying out maintenance tasks and the impact of these tasks [27].If 

the software system has good maintainability it can be easily modified to fix 

faults.  

 In [1] architecture-level maintenance risk assessment methodology has been 

presented for assessing the maintainability based risk into the context of corrective 

maintenance early in the software life cycle. We present brief details of the methodology 

used in [1] for sake of completeness. Corrective software maintenance deals with fixing 

defects that escape detection before release and that which manifest as field failures 

[3].The methodology proposed in [1] for estimating the maintainability based risk 

depended on the architectural artifacts such as system requirements, system design and 

their evolution through the life cycle of the system. In this methodology, the requirements 
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maturity was first estimated and mapped into the components stability. Then the initial 

change probabilities of the components were estimated based on the maintenance type 

and the data available. The initial change propagation probabilities and the change 

propagation probabilities between them were used to get the unconditional probability of 

change of the components of the system. To get the Impact of maintenance tasks, the size 

of change of change between the components of the system was used. Finally, the 

product of the unconditional change probability and the maintenance impact was used to 

obtain the maintainability-based component risk factor [1], [4]. 

Requirements Maturity Index:  

Requirements Maturity Index is estimated by analyzing their evolution across the releases 

of the system [1], [4]. The IEEE 982 standard suggested software maturity index to 

quantify properties of the requirements evolution [26]. In [5] Software Maturity Index 

was adapted to Requirements Maturity Index (RMI) to measure the requirements 

stability. In [1] the Use Case Maturity Index (UCMI) was adapted and function points 

were used as a size measure for the usecases. 

 

UCMI for the usecase uci  was given by  

   UCMI = 
T

CT

U

UU −
                                                                                (5.2) 

Where UT  is the function point of usecase uci  in the current release 

U C  is the function point size of the change in the usecase uci  in the next release from the 

current release due to requirements change of change scenario. 

Initial Change Probabilities: 

 In [1] the Sequence Diagrams were used to identify the set if components that 

contributed to each use case. Use case stability was then mapped to component stability 

and Initial Change Probability of system components was consequently estimated.  For 

components that were part of multiple scenarios, the maximum ICP, that is the worst case 

scenario was considered. 
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Change Probabilities:  

Change Propagation probability CP= [cp ji / ] is the conditional probability that change 

originating in one component of the architecture requires changes in other components to 

be made [4]. Initial Change Probabilities vector of the components were multiplied by the 

conditional change probabilities vector obtained from the system architecture in order to 

account for the dependency among the components of the system [1][4]. 

Size of Change: 

Size of change is defined as the ratio between the number of affected methods of the 

receiving component that was caused by the changes in the interface of the providing 

components and the total number of methods in the receiving components [1][4]. 

Impact of Maintenance task: 

The impact of maintenance task was obtained by using the size of change between pairs 

of the system components. 

 
5.3.1 CM1 Case study Results based on Maintainability-based risk 

We applied Wards clustering method as it has the highest agglomerative coefficient and 

works better than the other methods (Single Link, Complete Link, Average Link, Wards 

Method) for all the components of CM1 system taking into consideration the 

maintainability based risk using parameters such as Change Probabilities, Normalized 

maintenance Impact Fan-out, Normalized Maintenance Impact Fan-In [1], [2], [3] 

obtained for the CM1 system as a whole. Figure 16 shows the classification of 

components of CM1 based on the maintainability risk using Wards method. Figure 17 

shows the corresponding Banner Plot. Table 13 shows the clusters formed and the 

components in them. Agglomerative coefficient value obtained was 0.85, which indicates 

that the strength of the cluster is good. 
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Figure 16. Clustering tree of CM1 obtained based on Maintainability based risk metrics 
(Agglomerative coefficient – 0.85) 
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Figure 17. Banner Plot of CM1 obtained based on maintainability based risk metrics 
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Table 13. Clusters of components of CM1 based on Maintainability-based risk 
 

Cluster Components 
Change 

Probabilities 

Normalized 
Maintenance 

Impact FanOut 

Normalized 
Maintenance 
Impact FanIn 

 
A 

1 
6 
10 
3 
8 
11 
4 
12 

0.09 
0.09 
0.11 
0.11 
0.11 
0.13 
0.13 
0.17 

0.13 
0.13 
0.10 
0.12 
0.14 
0.13 
0.17 
0.19 

0.17 
0.17 
0.17 
0.17 
0.17 
0.17 
0.17 
0.17 

B 
5 
7 
9 

0.23 
0.20 
0.20 

0.32 
0.27 
0.25 

0.19 
0.17 
0.22 

C 2 0.42 0.42 0.46 

 
When Figure 14 and Figure 16 are compared, it is obvious that the components of the 

CM1 were classified in a different way based on Reliability based risk and 

Maintainability based risk. This implies that the components behave differently when we 

different attributes are considered. Hence components were clustered differently when 

clustered based on reliability and maintainability based risk metrics. 

The Table 13 shows the three distinct clusters A, B and C components which form the 

cluster and corresponding change probabilities, Normalized Maintenance Impact FanOut 

and Normalized Maintenance Impact FanIn values., One cluster is formed by components 

1, 6, 10, 3, 8, 11, 4, 12, the other is formed by 5, 7, 9 and component 2 alone forms 

another cluster when clustering is performed, based on Maintainability Risk. Components 

in cluster A, that is 1, 6, 10, 3, 8, 11, 4, 12 have relatively lower change probabilities, 

lower Normalized maintenance Impact FanOut and lower Normalized Maintenance 

Impact FanIn. Components in Cluster B, 5, 7, 9 have moderate change probabilities, 

moderate Normalized Maintenance Impact FanOut and moderate Normalized 

Maintenance Impact FanIn. Component 2 has relatively higher change probabilities, 

higher Normalized Maintenance Impact FanOut and higher Normalized Maintenance 

Impact FanIn than the other components. 

Hence, its evident from the Table 13 that the component 2 is very dissimilar from 

others when classified according to maintainability based risk and is the most critical 
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component when classified based on maintainability based risk as it has higher values for 

change probabilities, normalized maintenance impact fan out and normalized impact fan 

in. But, according to the Table 12 component 8 is dissimilar from others. Hence, when 

classifying the components in the early life cycle both reliability and maintainability 

based risk should be considered. 

We used Wards method to cluster as it gave the highest agglomerative coefficient 

value of 0.85, compared to the other methods, indicating that the strength of cluster 

obtained by Wards method is better than the others. 

This way clustering could be used in the early software life cycle for the 

classification of software components based on reliability based risk and maintainability 

based risk. 
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Chapter 6:  Classification of Software Components at the Operational 

Stage 

 
We implemented hierarchical Wards Clustering on the Indent case study [36] [37] , using 

the component level measurements, Expected Visit Counts and the Component Entropy, 

that are derived in the operational stage from the raw and aggregated measures of visit 

counts[10]. 

 

6.1 Indent case study 

 Indent is an open source software project [36] [37], which consists of about 9 files, 

totaling about 7000 lines of code, used to beautify the C code. When Indent is ran on a C 

program, it has no effect on the functionality of the code, but makes the code more 

readable and aesthetically pleasing. Appearance of C programs could be changed in many 

ways such as  

• Adding or removing white space 

• Changing the indentation of blocks , declarations and parenthesis 

• Stylish parameters could be altered  

Indent has ten versions of source code, multiple CVS logs, many source code change logs 

and a regression test suite along with a test driver and an oracle. The latest version of 

Indent has about 11,000 lines of code, but the earliest version had only about 7000 lines 

of code. There are two change logs with 66 entries for all the ten versions of Indent [10].  

We used the component level measurements, Expected visit counts and the 

Component Entropy to implement clustering on the Indent case study. A methodology to 

estimate these metrics on Indent was presented in [10]. We present a brief description of 

the methodology used in [10] for better understanding of the metrics used in clustering. 

 

Profiling Software: 

Information about the execution path of a program and the number of times parts of 

program are executed is stored in tools called Profilers. They can store information at the 

basic block level, line level, or the function level. Profilers can be sample-based tools or 

event-based tools. Sample-based tools collect data periodically based on the sampling 
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time period. Event-based tools collect data for every event that occurs. Sample based 

tools have less overhead but are less accurate, as they could miss events that occur 

between sample periods. Event based tools introduce more overhead but are much more 

accurate as they can not miss the events between the sample periods.  

 In [10] information on software executions were collected with the sample based 

profiler, Gprof. It provides two types of profiles: a call graph and a flat profile [10]. A 

call graph represents the control flow and the information in it, describes the call tree of 

the program and it is sorted by amount of time spent in each function and its children. 

The Flat profile lists all functions called, the number of times each was called and how 

long each execution took. In [10] the Indent software was instrumented with the Gprof 

profiler, and the information needed was extracted from the call graph as the model used 

in [10] depended on the flow of control transfer. 158 test cases were run, while profiling 

them, which gave 158 profiles [10].  

Transition Probabilities: 

The data in the call graph obtained from the Gprof profiler, representing the transition 

counts from a function f to another g was studied to calculate the transition probabilities 

[10]. The transition probability matrix was calculated [10] using the equation  

 

P ij =
∑

j
ij

ij

n

n
                                                                                                         (6.1) 

 

Where Pij  represents the probability that component i calls component j. The probability 

of component i calling component j is equal to the number of times component i calls j 

(n ij ) divided by the sum of the number of times component i calls any other component 

(n i ). 

Fault Identification: 

In [10] a methodology for the identification of the location of each fault has been 

presented.  Firstly, all the test cases were run on the earliest version of Indent, version 

2.2.0. The failed test cases were re run on the remaining 9 versions of the software. Thus, 

the release in which the fault was fixed was identified. Also, general time period of when 
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the fix was made was known. Once this was known, all the changes in the changelog for 

the time period the bug would have been fixed was searched and read. By looking at the 

testcase, the diff files, the output and the expected output the reason for the test case 

failure could be known and the description of that bug could be found in the change logs. 

This method of mapping failures to fixes was successful for 30 of the 34 failed test cases 

[10]. 

 

6.2 Dynamic metrics for Indent 

The dynamic metrics expected visit counts and the component Entropy were used to 

implement clustering on the Indent case study. The way these metrics were derived in 

[10] are as follows. 

 

Component Entropy: 

An approach presented in [14] was used in [10] for the uncertainty analysis based on the 

concept of entropy. The theory of entropy was used to calculate the amount of 

uncertainty in a Discrete Time Markov chain (DTMC). The entropy of a component i is 

defined as the conditional entropy and is given by  

 

H i = )log( ij
j

ij pp∑−                                                                                    (6.2) 

where, pij  represents the probability that the control transfers from component i to 

component j.  

The transition probabilities were used to estimate the system uncertainty, the 

expected execution rates and the uncertainty of each component [10]. The entropy of the 

component i, would be higher if it transfers the control to more components and the 

transition probabilities are equiprobable [14]. Hence, components with higher entropy are 

considered critical as they affect larger part of the system [14]. 

Expected Visit Counts: 

Expected visit counts values for the Indent that was computed in [10] was used for 

clustering. The methodology in [22] [11] was used to compute the expected visit counts 

for a component [10]. It was assumed the control of the system is transferred among 
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modules based on a Markov process [22]. There is an associated reliability with each 

module that gives the probability that the module would operate correctly when called 

and would transfer control successfully when finished.  Eventually, the system would 

either fail or complete its task successfully and enter a terminal state. The expected visit 

counts, vi  represents the expected number of visits to a state i that is the expected 

number of executions of a component i. 

 

6.3 Clustering Results for Indent  

We implemented clustering on the file level, for 9 components of the Indent using the 

derived dynamic metrics, Component Entropy and the Expected Visit Counts which are 

derived from the raw and aggregated visit counts [10]. The Figure 18 shows the 

clustering tree obtained on the 9 components of the Indent Case Study. The 

Agglomerative Coefficient value (AC) obtained was 0.923. This indicates a good quality 

of clustering. 

 

 

 

 

 

Figure 18. Clustering tree of Indent obtained using the Expected Visit Counts and the 

Component Entropy values 

 

 

Cluster A 

 

Cluster B 
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As seen in Figure 18 we find that there are two distinct clusters of components, Cluster A 

( Components 1, 2, 3, 5, 9 and 4) and Cluster B ( Components 6, 7 and 8). Table 14 

shows the Clusters, the components in each cluster and the number of failed test cases 

that required a fix in the component. Components 6, 7 and 8 are the three most frequently 

executed components and they had high number of test cases that required a fix in the 

component. Thus, the components that were the most frequently executed and that had 

maximum number of test cases that required a fix were clustered together as cluster B. 

This way, Clustering could group the components of Indent into meaningful clusters 

based on the metrics available late in the software life cycle. 

 

Table 14. Clusters of Components for the Indent 

Cluster Component numbers 
Number of  Test cases that required a Fix 

in the Component 

A 

1 
2 
3 
5 
9 
4 

0 
0 
10 
0 
1 
0 

B 
6 
7 
8 

10 
7 
2 
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Chapter 7: Conclusion  
 

In this thesis we have presented how clustering could be used for the classification of 

software components throughout the software life cycle. The basic assumption was that 

components that have similar metric values behave similarly. As clustering group’s 

components into homogeneous clusters, it would be possible to rank the clusters and 

assign similar activities to all the components in a cluster. 

  We implemented clustering on the software components of several case studies 

using metrics derived in different phases of software life cycle. We used hierarchical 

clustering methods, the Expectation Maximization clustering method and also ran the J48 

classifier to obtained decision trees for the components of twelve real NASA projects. 

We also implemented hierarchical clustering method on a case study, CM1 that is derived 

from the Data Metrics Program and another case study, Indent, open source software. 

Clustering results obtained have been presented in this thesis and several observations 

were made. 

• Clustering results obtained on the components of the twelve real NASA projects 

during the requirements specification based on the Process/Product metrics 

obtained from the Software Integrity and Level Assessment Process (SILAP) 

helped us draw several conclusions.  

o One observation was that the Wards and the EM clustering results 

obtained with the direct scores and the weighted scores (Consequence 

and Error Potential) from SILAP were different. This implies that 

there is loss of information because of weights assigned in SILAP. 

o The decision trees obtained for each project were different. Different 

attribute had highest information gain in different projects. This 

reveals that each project is different. 

• Clustering results obtained on the components of case study CM1, based on the 

reliability and maintainability based risk metrics at the architectural level helped 

us draw a few conclusions 

o  Wards method works the best for small sample datasets, as it has the 

highest agglomerative coefficient than any other hierarchical 

clustering method. 
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o Another observation was that clustering results were the best when the 

fusion of the reliability based risk metrics across all scenarios was 

done using the worst case values. This is because for risk worst case is 

considered the most important. 

o Components were clustered in accordance with the ranking based on 

criticality given by the NASA domain experts when clustered based on 

the reliability based risk metrics. 

o Clustering results obtained with the reliability based risk metrics and 

the results obtained with the maintainability based risk metrics were 

different. This difference in the grouping of the components is because 

Components behave differently when different attributes are 

considered.  

• Clustering results obtained using the code metrics obtained at the operational 

stage for an open source software, Indent, clustered the most frequently executed 

components together. 

All the results obtained, revealed that clustering helps in the classification of the software 

components into homogeneous clusters through out the software life cycle. 
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