
Graduate Theses, Dissertations, and Problem Reports

2007

Classification of software components based on clustering Classification of software components based on clustering

Swetha Reddy Konda
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Konda, Swetha Reddy, "Classification of software components based on clustering" (2007). Graduate
Theses, Dissertations, and Problem Reports. 4313.
https://researchrepository.wvu.edu/etd/4313

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F4313&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/4313?utm_source=researchrepository.wvu.edu%2Fetd%2F4313&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

CLASSIFICATION OF SOFTWARE COMPONENTS BASED ON

CLUSTERING

Swetha Reddy Konda

Thesis submitted to the

College of Engineering and Mineral Resources,
West Virginia University

in partial fulfillment of the requirements
for the Degree of

Master of Science
in

Computer Science

Committee Members
Katerina Goseva Popstajanova, Ph.D., Chair

Hany Ammar, Ph.D.
James Mooney, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia

2007

Keywords: Clustering, Clustering tree, Decision Trees, Homogeneous groups

Abstract

Classification of Software Components based on Clustering

Swetha Reddy Konda

This thesis demonstrates how in different phases of the software life cycle, software
components that have similar software metrics can be grouped into homogeneous
clusters. We use multi-variate analysis techniques to group similar software components.
The results were applied on several real case studies from NASA and open source
software. We obtained process and product related metrics during the requirements
specification, product related metrics at the architectural level and code metrics from
operational stage for several case studies. We implemented clustering analysis using
these metrics and validated the results. This analysis makes it possible to rank the clusters
and assign similar development and validation tasks for all the components in a cluster,
as they have similar metrics and hence tend to behave alike.

 iii

Acknowledgement

First and foremost, I would like to thank my advisor, Dr. Katerina-Goseva Popstajanova

for her guidance and patience while helping me work on this research. She was always

there to give me valuable suggestions, without which my thesis would not have taken

proper shape. In addition, I would like to thank my committee members Dr.Hany Ammar

and Dr.Jim Mooney for their support and valuable time. Also, I would like to thank

Dr.Tim Menzies for providing assistance in implementing clustering using WEKA and

obtaining decision trees.

 My sincere gratitude is also expressed to Christina Moats and Kenneth Costello

for their guidance and assistance at the NASA IV & V facility. I would like to thank

Walid Abdelmoez for his work on reliability and maintainability based risk assessment.

Arin Zahalka and Margaret Hamill provided more assistance to me in giving me

information required to implement clustering on case study Indent.

 This work is funded in part by a grant from the NASA Office of Safety and

Mission Assurance (OSMA) Software Assurance Research Program (SARP) managed

through the NASA Independent Verification and Validation (IV & V) Facility, Fairmont,

West Virginia. I thank them for their support. Last but certainly not least, I would like to

thank my parents, friends, Swetha, Richa and Mayank and my husband Vinay for their

support.

 iv

TABLE OF CONTENTS

ABSTRACT...ii
ACKNOWLEDGEMENTS...iii
TABLE OF CONTENTS...iv
LIST OF TABLES...v
LIST OF FIGURES...vi
1. INTRODUCTION……………………………………………………………………………..1
2. RELATED WORK…………………………………………………………………………….3
3. BACKGROUND ON METHODS USED FOR CLUSTERING.……………………………..7

3.1 Transformations on data..8
3.2 Hierarchical Clustering Techniques...9
3.3 Expectation Maximization Clustering..12

 3.4 Decision trees obtained using j48 classifier...13
4. CLASSIFICATION OF SOFTWARE COMPONENTS DURING THE REQUIREMENTS

SPECIFICATION……………………………………………………………………………16
4.1 Software Integrity Level Assessment Process ..16
4.2 Implementation of agglomerative clustering on projects ..19

4.2.1 Clustering results based on weighted Consequence and Error Potential
scores...19
4.2.2 Clustering results based on direct scores...23

4.3 Implementation of Expectation Maximization Clustering and obtaining
decision trees..26

4.3.1 Clustering results based on weighted Consequence and
Error Potential scores……………………………………………………………………….27
4.3.2 Clustering results based on direct scores…………………………………………..27
4.3.3 Implementation of J48 Classifier to obtain decision trees.................................29

4.4 Proposed algorithm for ranking clusters in a project………………………..………33
4.4.1 Ranking for project X9……..35

5. CLASSIFICATION OF SOFTWARE COMPONENTS BASED ON RELIABILITY AND
MAINTAINABILITY BASED RISK AT THE ARCHITECTURAL
LEVEL………….……………………………………………………………………………37

5.1 CM1 case study ..37
5.2 Reliability based risk metrics ..37

5.2.1 CM1 case study results based on Reliability based risk....................................39
5.3 Maintainability based risk metrics………………………………………...…………44

5.3.1 CM1case study results based on Maintainability based risk.............................46
6. CLASSIFICATION OF THE SOFTWARE COMPONENTS AT THE OPERATIONAL

STAGE………….……………………………………………………………………………50
6.1 Indent case study..50
6.2 Dynamic metrics for Indent...52
6.3 Clustering results for Indent...53

7. CONCLUSION ..55
8. REFERENCES ...57

 v

LIST OF TABLES

1. FACTORS AFFECTING CONSEQUENCE…...……………………………………………17
2. FACTORS AFFECTING ERROR POTENTIAL……………………………………………18
3. CLUSTER OF COMPONENTS OF PROJECT X9 BASED ON CONSEQUENCE AND

ERROR POTENTIAL SCORES…………………………………………………………….21
4. CLUSTER OF COMPONENTS OF PROJECT X10 BASED ON CONSEQUENCE AND

ERROR POTENTIAL SCORES………………………………………………………….…22
5. CLUSTER OF COMPONENTS OF PROJECT X9 BASED ON DIRECT SCORES……..24
6. CLUSTER OF COMPONENTS OF PROJECT X10 BASED ON DIRECT SCORES……26
7. CLUSTER OF COMPONENTS OF PROJECT X9 USING EXPECTATION

MAXIMIZATION CLUSTERING BASED ON CONSEQUENCE AND ERROR
POTENTIAL SCORES………………………………………………………………………27

8. CLUSTER OF COMPONENTS OF PROJECT X10 USING EXPECTATION
MAXIMIZATION CLUSTERING BASED ON THE CONSEQUENCE AND ERROR
POTENTIAL SCORES………………………………………………………………………28

9. DECISION TREES FOR THE 12 PROJECTS……………………………………………...29
10. RANKING OF THE CLUSTERS OF PROJECT X9 BASED ON CONSEQUENCE……...35
11. RANKING OF THE CLUSTERS OF PROJECT X9 BASED ON ERROR POTENTIAL…36
12. CLUSTER OF COMPONENTS OF CM1 BASED ON RELIABILITY BASED

RISK………………………………………………………………………………………….43
13. CLUSTER OF COMPONENTS OF CM1 BASED ON MAINTAINABILITY BASED

RISK………………………………………………………………………………………….48
14. CLUSTER OF COMPONENTS FOR INDENT…………………………………………….54

 vi

LIST OF FIGURES

1. EXAMPLE OF A CLUSTERING TREE ... 10
2. EXAMPLE OF A BANNER PLOT .. 11
3. EXAMPLE OF A DECISION TREE ... 14
4. PICTORIAL REPRESENTATION OF THE FACTORS AFFECTING CONSEQUENCE 17
5. PICTORIAL REPRESENTATION OF THE FACTORS AFFECTING ERROR

POTENTIAL ... 18
6. CLUSTERING TREE OF PROJECT X9 OBTAINED USING THE CONSEQUENCE AND

ERROR POTENTIAL SCORES.. 20
7. CLUSTERING TREE OF PROJECT X10 OBTAINED USING THE CONSEQUENCE

AND ERROR POTENTIAL SCORES... 22
8. CLUSTERING TREE OF PROJECT X9 OBTAINED USING THE DIRECT SCORES........ 24
9. CLUSTERING TREE OF PROJECT X10 OBTAINED USING THE DIRECT SCORES...... 25
10. J48 DECSION TREE FOR PROJECT X9.. 29
11. J48 DECSION TREE FOR ALL THE 12 PROJECTS TOGETHER 33
12. ORDER OF IMPORTANCE FOR CONSEQUENCE AND ERROR POTENTIAL 33
13. CLUSTERING TREE OF CM1 OBTAINED FOR THE HOUSEKEEPING

SCENARIO(HK) BASED ON THE RELIABILITY BASED RISK METRICS 40
14. CLUSTERING TREE OF CM1 OBTAINED FOR THE WORST CASE VALUES BASED

ON THE RELIABILITY BASED RISK METRICS... 42
15. BANNER PLOT OF CM1 OBTAINED FOR THE WORSR CASE VALUES BASED ON

THE RELIABILITY BASED RISK METRICS ... 43
16. CLUSTERING TREE OF CM1 BASED ON MAINTAINABILITY BASED RISK

METRICS ... 47
17. BANNER PLOT OF CM1 BASED ON THE MAINTAINABILITY BASED RISK

METRICS ... 47
18. CLUSTERING TREE OF INDENT OBTAINED BASED ON THE EXPECTED VISIT

COUNTS AND THE COMPONENTS ENTROPY VALUES.. 53

 1

Chapter 1: Introduction

Clustering involves organization of collection of patterns into meaningful clusters based

on their similarity. Software modules are grouped according to the value of their software

metrics in clustering. We assume that the components that have similar metrics behave

alike and hence are grouped together into clusters. It is useful to know the behavior of the

software components and classify them as we could assign similar activities to all the

components in a cluster and rank the clusters. We implemented clustering in different

phases of software life cycle and classified the software components into homogeneous

clusters.

Software Integrity Level Assessment Process (SILAP) is the current state of

practice at NASA that is done early in software life cycle during the requirements

specification. SILAP uses some of the definitions from the COCOMO model to define

complexity criteria and uses domain expert’s knowledge to assign score to several

Product/Process metrics of the software components. We implemented clustering on the

software components of 12 real NASA projects, using the process related metrics defined

in SILAP.

 Also, we implemented clustering using the design metrics obtained in the

architecture level derived from the unified modeling language (UML) on a case study,

CM1 from the Data Metrics Program [33]. CM1 is a software component of a data

processing unit in an instrument, used to exploit data to probe the early universe.

 We also clustered the components of on open source software, Indent using the

code metrics obtained in the operational stage. Indent has 9 files totaling about 7000 lines

of code. It is used to beautify the C code. Running it has no effect on the functionality of

the code but makes the results aesthetically pleasing and more readable. Our results

demonstrate that classification of software components into meaningful homogeneous

clusters can be done in different phases of the software lifecycle.

The rest of the thesis is organized as follows: Related work and our contributions

are discussed in chapter 2. In addition, chapter 3 provides the background on clustering

algorithms, classifiers that we used and explains the meaning of decision trees. In chapter

4 we discuss ways to classify components early in software life cycle during the

 2

requirements specification and present the results obtained on 12 real NASA projects

using the metrics obtained from the current state of practice in NASA called the Software

Integrity Level Assessment Process (SILAP). Chapter 5 presents results of classification

of software components in the architectural level on a case study, CM1, based on the

design metrics obtained from the Unified Modeling Language (UML). Chapter 6

discusses the case study Indent and presents the results of classification of its

components, based on the code metrics obtained in the operational stage. Chapter 7

presents our conclusions and lessons learned.

 3

Chapter 2: Related Work

In this chapter we summarize the related work, and also discuss how we classified

components into homogeneous clusters with clustering. Although clustering has been

used for the classification of components [21], [8], [7], most of the previous work

implemented it later in the software life cycle, as the details required are not available

until later stages of design phase. Most of the previous works implemented clustering on

large sample datasets. Very few implemented clustering on small size dataset [15].

 In [21], unsupervised learning clustering techniques such as k-means and Neural

gas clustering algorithm were used to analyze the software quality in the absence of fault

proneness labels. Clustering algorithms can group software modules according to their

values of software metrics. Software fault measurement metrics were used for clustering.

The software engineering assumption is that fault prone software modules will have

similar software metrics and so will likely form clusters. Similarly, not fault-prone

modules will likely group together. When the cluster analysis is complete, a software

engineering expert labels it fault prone or not fault prone. Data sets from two NASA

projects JM1 and KC2 were used as empirical case studies. JM1 has 8850 and KC2 has

520 software modules. The software measurements and fault data were obtained at the

program function, subroutine or method levels, so a software module is a program

function, a subroutine or a method. Clustering was implemented on these software

modules to analyze the software quality.

 Most of the Clustering techniques used in the previous work worked well for

large data sets. In our work our case studies had a small size dataset, so we did research

on a method that works well on small size dataset. One of the previous works that used

clustering to classify small size dataset was [15]. In [15], clustering using Wards method

was implemented for identifying clusters in small dataset of journals based on five

citation flows. This paper suggests that hierarchical clustering techniques, Wards

minimum variance method or simple average method works well for small size dataset.

Journals that were clustered together are deemed to be cohesive..

 Another work used clustering to cluster the software execution profiles and

predict failures [7]. The case studies used in this paper included the Java word count

 4

program, the Java directory listing program, the Java regular expression parser and

regular expression finder, the java pretty printer and the GNU Collection Compiler

(GCC) version 2.95.2.They found that clustering isolates the failures and observed that a

considerable number of failures were isolated in small clusters of executions. In [8],

Podgurski et al used GCC case study which has 330,000 lines of code, and another case

study called Lilypond which has 48,000 lines of code and implemented clustering

algorithms. The cluster analysis revealed that execution profiles of failures typically have

unusual profiles. All clustering of executions in this study was done using agglomerative

hierarchical clustering algorithm, later in the software life cycle to identify failures in

execution profiles and classify them.

 Clustering results presented in this thesis illustrate that it can be used for identifying

homogeneous clusters in the software components based on the software metrics

available, in different phases of the software life cycle.

• We implemented clustering during the requirements specification based on the

process/product metric values assigned by domain experts. We used these metrics

from the current state of practice at NASA IV & V called Software Integrity

Level Assessment Process (SILAP). SILAP considers several factors that affect

consequence of failure and error potential of the software components. The list of

software components in a project is graded against a set of criteria for these

factors and uses weights assigned by domain experts to generate a weighted score

for consequence and error potential. We clustered the components of 12 projects

using SILAP scores.

• We also implemented clustering early in the software life cycle using the design

metrics obtained at the architectural level. We used the reliability and

maintainability based risk metrics obtained from previous works [9], [1], [2], [3]

to implement clustering.

 Brief description of the methodology used in the previous work [9] to obtain the

reliability based risk metrics is presented here for the sake of completeness. In [9]

Architecture level risk assessment was done in the early phases of software life cycle to

obtain reliability based risk metrics such as dynamic complexity, severity and fan out.

Unified Modeling Language (UML) [6] and commercial modeling environment Rational

 5

Rose Real Time (RoseRT) [34] were used to get information and data necessary for the

estimation of reliability based risk. For each component and connector in the software

architecture a heuristic risk factor was obtained. The Markov model was used to obtain

the scenario risk factors. The risk factors of use cases were obtained by averaging the

scenarios risk factors. Then, the overall system risk factor is obtained by weighting the

independent use cases risk factors with the probability of their execution. Furthermore,

critical components that would require careful analysis, design and more testing effort

were identified.

 Brief description of the methodology used in the previous work [1] to obtain the

maintainability based risk metrics is presented here for the sake of completeness. In [1]

architecture level maintenance risk assessment methodology has been presented for

assessing the maintainability based risk into the context of corrective maintenance early

in the software life cycle. Corrective software maintenance deals with fixing defects that

escape detection before release and that which manifest as field failures [3]. The initial

change probabilities for corrective maintenance were obtained by normalizing the

frequency of occurrence of each component by the total number of error reports. The

maintainability based risk metrics such as change propagation probabilities and size of

change were estimated by analyzing the architecture of the system under investigation

using structural diagram or class diagram. From these artifacts the components and the

connectors of the component based system architecture were identified. The maintenance

impact of change in the component was estimated using the size of change metric [1].

This way maintainability based risk metrics of the components could be obtained early in

the software life cycle.

In our work we used the maintainability based risk metrics and reliability based

risk metrics for implementing clustering on the case study CM1 [33].

• We also implemented clustering on the components of open source software,

Indent, based on the code metrics that are available during the operational stage.

We clustered the nine components of Indent, using the component entropy and

expected visit counts as their software metrics. The expected visit counts

represent the expected number of executions of a component. The conditional

entropy was used to define the component entropy. We found that components of

 6

Indent that were the most frequently executed and that had maximum number of

failed test cases that required a fix were clustered together.

 7

Chapter 3: Background on Methods Used for Clustering

In this chapter we present different clustering techniques that can be used for

classification and description of the J48 classifiers that is used to obtain decision trees.

Clustering groups a given collection of unlabelled patterns into meaningful clusters.

Pattern clustering activity involves the following steps [12].

• Pattern Representation: It is a reference to the number of classes, the number of

available Patterns, and the number, type, and scale of the features available to the

clustering algorithm. The most effective subset of features to be used in clustering

are selected from the original features. This process of identifying effective subset

of features is called feature selection.

• Pattern Proximity: Pattern proximity is estimated using distance function which

is defined on pairs of patterns. For example, the most commonly used similarity

measure is the Euclidean distance, in which points have location in space and the

distance between points (x1,y1) and (x2,y2) is 2
21

2
21)()(),(yyxxyxdist −+−= .

Some alternatives are Manhattan distance 2121),(yyxxyxdist −+−= , Mahanalobis

distance between any two samples x(i) and x(j) is () ()yxyx T −∑− −1 .

Mahanalobis distance takes into account correlation between features and

normalizes each feature to zero mean and unit variance [31].

• Clustering or grouping: It can be done in many ways. Hierarchical or partitional

clustering techniques can be used. Hierarchical clustering algorithms produce a

series of nested partitions depending on the criterion for merging (agglomerative)

or for splitting (divisive) the clusters based on their similarity. Whereas, the

partitional algorithms attempt to cluster the set directly, in a manner that depends

on a set of parameters. They identify the partition that optimizes a clustering

criterion. A partitional clustering algorithm obtains a single partition of data

instead of a clustering structure such as a dendrogram produced by hierarchical

technique. The k-means is the most commonly used and the simplest algorithm

employing a squared error criterion. It starts with a random initial partition and

 8

keeps reassigning the patterns to clusters based on the similarity between the

pattern and the cluster centers until a convergence criterion is met.

• Abstraction of Data: It refers to compact description of each cluster. The

representation should be such that it is easy to understand. The output is

represented by graphical display, Clustering tree and Banner Plot.

• Assessment of output: It is done by cluster validity analysis which uses a specific

criterion of optimality.

3.1 Transformations on data

Several transformations can be applied on the dataset before applying the dissimilarity

measures and implementing clustering [7]. Different normalization techniques and fusion

rules could give better results when clustered [13]. Experiments conducted indicated that

normalization schemes such as min-max followed by a simple sum of scores fusion

yielded better clustering results [13].

Some of the transformations are

Binary metric: In this transformation, non zero values of the features are replaced by one.

This is done in order to emphasize the coverage of the program elements rather than the

differences in the frequency of the coverage [7].

Proportional metric: In this transformation each attribute is normalized. The range of

values for each attribute is computed, and then each value is mapped to its relative

position within the range.

Min-Max Normalization: This normalization scheme is best for cases where the bounds

(maximum and minimum value) of the data are known. Given a set of values {VK },

k=1,2,….n , the normalized score is given by [13]

V '
K =

minmax

min

−
−KV

 (3.1)

The transformed scores can be combined using fusion techniques such as simple sum,

maximum value and minimum value [13].

We can use statistical tools like R [32] and S plus to implement hierarchical

clustering [18], [28]. Also, Waikato Environment for Knowledge Analysis (WEKA) [24]

 9

[25], a machine learning scheme that enables preprocessing, classifying, clustering,

attribute selection and data visualizing can be employed when we want to apply a

learning method (classifiers) to the dataset and analyze its output to extract information

about that data. WEKA allows us to run the EM clustering and get the j48 classifier.

3.2 Hierarchical Clustering Technique

It was found that hierarchical technique is more appropriate for small sample datasets

than the partitional algorithms [35], [16]. Hierarchical cluster analysis has agglomerative

methods and divisive methods that find clusters of observations within the dataset.

The divisive method starts with all observations in one cluster and then splits (partition)

them into smaller clusters. The agglomerative methods begins by considering each

observation as a separate cluster and proceeds to combine until all observations belong to

one cluster.

The most commonly used hierarchical clustering methods are [35]

• Single Link Method: Here, the distance between two clusters is the minimum of

the distances between all pairs of clusters drawn from the two clusters.

• Complete Link Method: Here, the distance between two clusters is the maximum

of all pair wise distances between patterns in the two clusters.

• Average linkage method: Here, the distance between two clusters is computed as

the average distance between objects from the first cluster and objects from the

second cluster. The averaging is performed over all pairs (x,y) of objects, where x

is an object from the first cluster, y is an object from the second cluster.

• Wards Method: At each step of the cluster process in this method, the two

clusters are merged that result in the smallest increase in the with-in cluster sum

of squares that is the sum of squared distances between each point and the

resultant cluster centroids. It is distinct from the other methods because it uses an

analysis of variance approach to evaluate the distances between clusters. It

minimizes the sum of squares of any two clusters that can be formed in each step.

All the above mentioned methods display the clustering results graphically by means of a

clustering tree or by a banner plot. Clustering tree is a tree in which objects are

 10

represented by the leaves. The vertical coordinate of the place where the two branches

join equals the dissimilarity between the corresponding clusters. The Figure 1 shows an

example of a clustering tree. If we look for two clusters in Figure 1, then components 1,

6, 4, 11 form one cluster and components 2, 9, 12, 10, 3, 7, 5, 8 form another cluster.
1

2

3

4

5

6

7

8

9

10

11

12

0.
0

0.
5

1.
0

1.
5

H
ei

gh
t

Figure 1. Example of a Clustering tree

The Banner plot representation [19] has a banner that shows the successive mergers from

the left to right. It looks like a waving flag. It can be imagined as ragged flag parts at the

left and flagstaff at the right. The objects are listed from the top to bottom. The mergers

which commence at the between cluster dissimilarity are represented by horizontal bars

of correct length. The banner represents the same information as the clustering tree. A

banner consists of stars and stripes. The stars refer to linking of the objects and stripes

refer to those objects. A banner is always read from left to the right. Each line with stars

starts between the clusters being merged. There are fixed scales above and below the

banner, ranging from 0.00 (dissimilarity = 0) and 1 (highest dissimilarity is found).It

gives a better overall insight into cluster structure and data quality. Figure 2 shows the

Banner Plot.

 11

Figure 2. Example of a Banner plot [19]

The banner leads in a natural way to the coefficients describing the strength of the

clustering structure found in the dataset (Agglomerative coefficient and Divisive

Coefficient). The average width of the banner plot gives an idea of the quality of

clustering that is the amount of structure that has been found by the algorithm. If the data

has a clear cluster structure, the between cluster dissimilarities (and hence the highest

level) will become much larger than the within cluster dissimilarities, so the black lines in

the banner become longer. For each object j, the line containing its label is seen and its

length is measured on a zero-one scale above or below the banner. The Agglomerative

coefficient [18], [19] is thus the average width of (or percentage filled or fraction of

blackness in the plot) of the banner plot. It is a dimensionless quantity between zero and

one, which does not change when all the original dissimilarities are multiplied by a

constant factor, which means that dissimilarities are assumed on a ratio scale. It tells us

the strength of the clustering structure that has been obtained. But Agglomerative

coefficient (AC) tends to become larger when n increases, so it should not be used to

compare datasets of very different sizes.

 The Agglomerative Coefficient (AC) is defined for a dataset as

ntoiwhereil
n

AC 1)(
1 == ∑ (3.2)

Where for each object i, l(i) is the length of the line containing its label.

When Agglomerative coefficient is small, close to zero, it implies that the clustering

algorithm has not found a natural structure, that is no clusters have been found and the

data consists of one big cluster. If the value of Agglomerative coefficient is close to one,

 12

it implies that a very clear clustering structure has been found. We use the agglomerative

coefficient value to select the clustering method that clusters the data set the best. Thus,

when the banner is narrow we find that the agglomerative coefficient is low, indicating

that most of the objects remain unlinked for a relatively long time and hence the dataset

does not contain very natural clusters which would have been formed sooner.

3.3 Expectation Maximization Clustering

In addition to the hierarchical clustering techniques we also used the Expectation

Maximization clustering on the software components for the classification. Expectation

Maximization (EM) clustering is a mixture based algorithm [29] that models the

distribution of instances probabilistically, so that an instance belongs to a group with a

certain probability. EM calculates the densities instead of probabilities. The algorithm is

similar to the K-means procedure in that a set of parameters are re-computed until a

desired convergence value is achieved. The finite mixtures model assumes all attributes

to be independent random variables EM can handle both numeric and nominal attributes.

A mixture is a set of N probability distributions where each distribution represents a

cluster. An individual instance is assigned a probability that it would have a certain set of

attribute values given it was a member of a particular cluster. Suppose , the

probability distributes are assumed to be normal and data instances consist of a single

real-valued attribute. The algorithm determines the value of five parameters, specifically:

1. The mean and standard deviation for cluster 1

2. The mean and standard deviation for cluster 2

3. The sampling probability P for cluster 1 (the probability for cluster 2 is 1-P)

The general procedure is as follows

1. Initial values for the five parameters mentioned above are guessed.

2. In the case of a single independent variable with mean µ and standard deviation

σ , the formula to compute the probability density function is:

()
2

2

2

)(
2

1
)(

σ
µπσ −−

=
x

e

xf (3.3)

 13

In the two-cluster case, we will have the two probability distribution formulas

each having differing mean and standard deviation values. The probability density

function is used to compute the cluster probability for each instance.

 3. The probability scores are used to re-estimate the five parameters.

4. Return to Step 2

The algorithm terminates when a formula that measures cluster quality no longer shows

significant increase. This is called as EM algorithm, for expectation maximization. The

first step as mentioned above, calculation of the cluster probabilities (Expected class

values) is Expectation. The second, that is calculation of distribution parameters, is

Maximization of the likelihood of the distributions of the given data [24]. One measure

of cluster quality is the likelihood that the data came from the dataset determined by the

clustering. The likelihood computation is obtained by the multiplication of the sum of the

probabilities for each of the instances.

3.4 Decision Trees obtained using j48 classifier

Decision trees represent a supervised approach to classification. The non terminal nodes

represent tests on one or more attributes and terminal nodes reflect the decision

outcomes. The WEKA classifier package has its own version of C4.5 knows as J48

classifier [30]. J48 classifier forms rules from pruned partial decision trees built using

C4.5’s heuristics, which is non-commercial tree building algorithm. The main goal of this

scheme is minimization of the number of tree levels and tree nodes and hence maximizes

data generalization. It uses a measure taken from the information theory to help with the

attribute selection process. Hence, for any choice point in the tree, it selects the attribute

that splits the data so as to show the largest amount of information gain. The J48

classifier builds a C4.5 decision tree.

The general approach for a decision tree algorithm is as follows

 1. The attribute that best differentiate the output is chosen.

2. A separate tree branch is created for each chosen value.

 14

3. The instances are divided into subgroups so as to reflect the attribute values of the

chosen node

4. We terminate the attribute selection process for each subgroup if

 (i) All members for a subgroup have the same value for the output attribute,

terminate the attribute selection process for the current path and label the branch

on the current path with the specified value.

 (ii)The sub-group has a single node or no further distinguishing attributes can be

determined. Branch is labeled with output value seen by the majority of the

remaining instances.

5. The above process in repeated for each sub group created in (3) that has not been

labeled as terminal.

The above algorithm is applied to a training data. If the test data set is available, the

created decision tree is tested. If the test data is not available, the j48 does a cross

validation using the training data. If x is the number of folds for cross-validation, then

x

x)1(−
 of the training data is used to construct the model and

x

1
 of the training data is

used to test the model. This process is then repeated times so that all the training data is

used exactly once in the test data. The x different error estimates are then averaged to

yield an overall error estimate [30]. While extensive tests on numerous datasets have

shown that ten-fold cross-validation is one of the best numbers for getting the most

accurate error estimate, other values can be used. Figure 3 shows an example of a

decision tree.

US3 <= 2

| AS2 <= 3: class1 (16.0)

| AS2 > 3: class0 (11.0)

US3 > 2: class2 (6.0)

Figure 3. Example of a decision tree

 15

Each line represents a node in the decision tree. The next line that starts with “ | “

represents the child node of the first line. In general a node with one or more “ | “

characters before the rule is a child node of the node that the right-most line of ' | '

characters terminates at, if it is followed up the page. The next part of the line declares

the rule. If the expression is true for a given instance it is classified if the rule is followed

by a semi colon and a class designation (that designation becomes the classification of the

rule) or, if it isn't followed by a semicolon, we continue to the next node in the tree (the

first child node of the node we just evaluated the instance on). If the expression is instead

false, we continue to the ``sister'' node of the node we just evaluated; that is, the node that

has the same number of '|' characters before it and the same parent node. The

classifications are sometimes followed by two numbers in the brackets. The first number

tells how many instances in the training set are correctly classified by this node. The

second number, if it exists (if not, it is taken to be 0.0), represents the number of

instances incorrectly classified by the node.

 16

Chapter 4: Classification of Software Components during the

Requirements Specification

We implemented clustering on the software components of 12 real NASA projects using

the metrics obtained early in the software life cycle during the requirements specification

from the Software Integrity Level Assessment Process (SILAP), the current state of

practice in NASA IV & V.

4.1 Software Integrity Level Assessment Process (SILAP)

Software Integrity Level Assessment Process (SILAP) [33], the current state of practice

at NASA IV & V is implemented very early in the Software Life Cycle, even before the

requirements specification based on several Process/Product metrics and Domain Experts

Knowledge. SILAP considers three factors that affect consequence and thirteen factors

that affect the error potential of the software components. Some of the Complexity

definitions in COCOMO are used in SILAP to define the evaluation criteria

“Complexity” early in software life cycle. The list of software components in a project is

graded against a set of criteria for different factors related to Consequence and Error

Potential. This results in a score for Consequence and Error Potential. The scores are

assigned values in a range of 1 to 5. Score 1 is considered a really good score (low

Consequence and low Error Potential). Score 5 is considered a bad score (high

Consequence and high Error Potential). Using the weights assigned by domain experts to

these factors a weighted average of these scores is calculated to generate a score for

consequence and Error Potential. These scores are then individually used to select tasks.

If the software is a human rated flight, final score for the consequence is obtained taking

the human safety into account. An algorithm was used to determine the set of tasks based

on the Consequence and the Error Potential scores. SILAP assigns weights to different

factors in order to generate a weighted score for consequence and Error Potential. We use

clustering and study the behavior of the components based on the SILAP scores.

SILAP considers the factor categories and weights shown in Table 1 and Figure 4 for

obtaining a weighted score for Consequence.

 17

Table 1. Factors affecting Consequence (CO1)

Factor Category Weights

Human Safety(HS2) 0

Asset Safety(AS2) 0.35

Performance(PF2) 0.65

Figure 4. Pictorial representation of the factors affecting Consequence

Figure 4 shows a pictorial representation of the factor categories that affect Consequence.

Score for consequence (CO1) is obtained by the weighted average of the Human safety

(HS2), Asset Safety (AS2) and Performance (PF2) scores.

SILAP considers the factor categories and weights shown in Table 2 and Figure 5 for

calculating weighted score for Error Potential.

 CO1

 HS2 AS2 PF2

 18

 Table 2. Factors affecting Error Potential (EP1)

Factor Category Weights
Development(DV2) 0.579

Experience(EX3) 0.828
Development Organization(DO3) 0.172

Process(PR2) 0.249
Use of Standards(US3) 0.0955

Use of CM(UC3) 0.0962
CMM Level(CL3) 0.0764

Use Of Formal Reviews(FR3) 0.1119
Use of Defect Tracking System(DT3) 0.0873

Use of Risk Management System(RM3) 0.0647
Re Use Approach(RA3) 0.226
Artifact Maturity(AM3) 0.242

Software Characteristic(SC2) 0.172
Complexity(CX3) 0.547

Degree Of Innovation(DI3) 0.351
Size Of System(SS3) 0.102

Figure 5. Pictorial representation of the factors affecting Error Potential

There are two types of scores that are considered in the Error Potential calculations.

• Direct scores: These are the scores that entered by the analysts and have a score

from one to five (EX3, DO3, US3, UC3, CL3, FR3, DT3, RM3, RA3, AM3,

CX3, DI3, SS3).

• Composite Scores: These are the scores that are computed based on the weighted

average of the direct scores (Development (DV2), Process (PR2), Software

Characteristic (SC2)).

EP1

DV2 PR2 SC2

EX3 DO3 US3 UC3 CL3 FR3 DT3 RM3 RA3 AM3 cx3 DI3 SS3

 19

The score for Error Potential (EP1) is obtained by the weighted average of the composite

scores.

 We used the sanitized names for the 12 projects as X1, X2, .., X12. Software

components of these projects were assigned direct scores ranging from 1 to 5 by the

domain experts and the composite scores were obtained as a weighted sum of the direct

scores. We implemented clustering for all the components of the projects based on these

SILAP scores. Since the Consequence and Error Potential scores are obtained as a

weighted sum of the direct scores, we implement clustering at two levels of granularity

on the components of the projects.

The two levels of Granularity at which we implement clustering are

• At a higher level we implemented clustering on the components of each project

using the weighted average scores of Consequence (CO1) and Error Potential

(EP1) scores.

• At a lower level we implemented clustering on the components of the project

using the direct score attributes which were assigned by the analysts that is the

factors in the leaves of the tree representation in Figure 4 and Figure 5.

4.2 Implementation of Agglomerative clustering on projects

We implemented clustering on the SILAP scores of the 12 projects X1, X2, …, X12. Due

to space limitation we present the results obtained for two projects X9 and X10 here.

4.2.1 Clustering results based on weighted Consequence and Error Potential scores

Project X9

We implemented clustering using the hierarchical Wards method for each project with

the weighted consequence and error potential scores. The clustering tree that we obtained

for project X9 is as shown in Figure 6.

 20

Figure 6. Clustering tree of project X9 obtained using the Consequence and Error

Potential scores (Agglomerative Coefficient: 0.979)

In hierarchical clustering we can decide the number of clusters, by analyzing the output.

From Figure 6 it is evident that the 19 components of project X9 form 4 distinct clusters,

A, B ,C and D. The Agglomerative coefficient value obtained was 0.979, which indicates

a good quality of clustering.

Table 3 shows the four distinct clusters, the components in each cluster and their

CO1 and EP1 values.

Cluster C Cluster A
Cluster D Cluster B

 21

Table 3. Clusters of the components of project X9 based on Consequence and Error

Potential scores

Cluster and components Consequence Error Potential

Cluster Components CO1 EP1

A

1
13
15
6
8
11
16

2.30
2.30
2.30
2.30
2.30
2.30
2.30

2.49
2.58
2.58
2.68
2.68
2.68
2.68

B
5
10
14

1.65
1.00
1.00

2.58
2.58
2.49

C

2
18
19
3
9

3.60
3.60
3.70
3.35
3.35

2.58
2.58
2.68
2.77
2.77

D

4
12
17
7

4.35
4.65
4.65
5.00

2.68
2.68
2.49
2.68

From the Table 3, it is evident that the components that have similar characteristics are in

one cluster. For instance, components in cluster A have moderate consequence and

moderate error potential scores, while components of cluster B have low consequence

and moderate error potential scores, components of cluster C have relatively high

consequence and moderate error potential scores and components of cluster D have very

high consequence and moderate error potential scores. Here, in this project as the error

potential scores are close to each other clustering were being guided by consequence

scores.

Project X10

The clustering tree obtained for project X10 using the weighted score of CO1 and EP1 is

shown in Figure 7. From Figure 7, we see that there are 3 distinct clusters. The

agglomerative coefficient value obtained was 0.904, which indicates a good quality of

clustering.

 22

Table 4 shows the clusters of project X10, its components and CO1 and EP1 values of

project X10.

Figure 7. Clustering tree of project X10 obtained using the Consequence and Error

Potential scores (Agglomerative coefficient – 0.904).

Table 4. Clusters of components of project X10 based on Consequence and Error Potential

scores

Clusters and components Consequence Error Potential

Cluster Components CO1 EP1

A

1
3
7
8
9
13

2.3
2.0
2.35
2.30
2.30
1.65

1.74
1.75
1.74
2.64
1.93
2.64

B

2
10
4
11

1.65
1.65
1.00
1.00

1.74
1.55
1.74
1.74

C
5
6
12

3.0
3.6
4.3

1.74
1.55
1.93

Cluster B
Cluster A

Cluster C

 23

From Table 4, it is evident that the components that have similar characteristics are

clustered together. Cluster A has moderate consequence and error potential values.

Cluster B has relatively low consequence and moderate error potential. Cluster C has

relatively high consequence and moderate error potential.

Similarly we implemented clustering on the other 11 projects based of the CO1

and EP1 scores and used the Agglomerative Coefficient values for their validation.

4.2.2 Clustering results based on direct scores

We implemented clustering using the Hierarchical Wards clustering method on the 12

projects with the 3 direct scores HS2 , AS2 and PF2 that affect Consequence and the 13

direct scores EX3, DO3, US3, UC3, CL3, FR3, DT3, RM3, RA3, AM3, CX3, DI3, SS3

that affect the Error Potential of the components for each project.

Project X9

The clustering tree obtained after implementing clustering on the X9 project is as shown

in Figure 8. As seen in the Figure 8, clustering tree there are 3 distinct clusters. The

Agglomerative coefficient value obtained was 0.938, which indicates a good quality of

clustering. Table 5 shows the clusters, components in each cluster and their direct score

values

 24

1

2

3 45

6

7

8

910

11

12

13

14

15 16

17

18

19

0
5

10
15

H
ei

gh
t

Figure 8. Clustering tree of project X9 obtained using the direct scores

(Agglomerative Coefficient -0.938)

Table 5. Clusters of components of project X9 based on the direct scores

Cluster and components Consequence Error potential

Cluster Components HS2 AS2 PF2 EX3 DO3 US3 UC3 CL3 FR3 DT3 RM3 RA3 AM3 CX3 DI3 SS3

A

1
10
14
5
13
15
6
8
11
16

2
0
0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1
1
1

3
1
1
2
3
3
3
3
3
3

3
3
3
3
3
3
3
3
3
3

2
2
2
2
2
2
2
2
2
2

3
3
3
3
3
3
3
3
3
3

1
1
1
1
1
1
1
1
1
1

3
3
3
3
3
3
3
3
3
3

2
2
2
2
2
2
2
2
2
2

2
2
2
2
2
2
2
2
2
2

2
2
2
2
2
2
2
2
2
2

5
5
5
5
5
5
5
5
5
5

1
1
1
1
1
1
1
1
1
1

1
2
1
2
2
2
3
3
3
3

1
1
1
1
1
1
1
1
1
1

4
4
4
4
4
4
4
4
4
4

B
2
18
12

0
0
0

1
1
4

5
5
5

3
3
3

2
2
2

3
3
3

1
1
1

3
3
3

2
2
2

2
2
2

2
2
2

5
5
5

1
1
1

2
2
3

1
1
1

4
4
4

C

3
9
4
19
7
17

5
4
5
5
5
5

4
4
5
5
5
4

3
3
4
3
5
5

3
3
3
3
3
3

2
2
2
2
2
2

3
3
3
3
3
3

1
1
1
1
1
1

3
3
3
3
3
3

2
2
2
2
2
2

2
2
2
2
2
2

2
2
2
2
2
2

5
5
5
5
5
5

1
1
1
1
1
1

4
4
3
3
3
1

1
1
1
1
1
1

4
4
4
4
4
4

Cluster A

Cluster C
Cluster B

 25

Comparing Table 3 and Table 5, we observe that components of project X9 were grouped

in a different way. When clustering was based on weighted average scores CO1 and EP1

than they were clustered in a different when compared to based on the direct score

attributes. This difference in clustering could be due to loss of information because of

weighting as the scores for CO1 and EP1 are the weighted average scores.

Project X10

The clustering tree obtained after implementing clustering on project X10 is shown in

Figure 9. As seen clustering tree has three distinct clusters, A, B, C. The Agglomerative

Coefficient value 0.704 indicates a good quality of clustering. Table 6 shows the clusters,

components in each cluster and the direct scores for project X10.

Figure 9. Clustering tree of project X10 obtained after using the direct scores

(Agglomerative coefficient – 0.704)

.

Cluster A

Cluster B Cluster C

 26

Table 6. Clusters of components of project X10 based on the direct scores

Cluster and components Consequence Error Potential
Cluster Components HS2 AS2 PF2 EX3 DO3 US3 UC3 CL3 FR3 DT3 RM3 RA3 AM3 CX3 DI3 SS3

A

1
2
4
11
10
6

0
0
0
0
0
0

1
1
1
1
1
1

3
2
1
1
2
5

1
1
1
1
1
1

4
4
4
4
4
4

1
1
1
1
1
1

1
1
1
1
1
1

3
3
3
3
3
3

1
1
1
1
1
1

1
1
1
1
1
1

1
1
1
1
1
1

2
2
2
2
2
2

3
3
3
3
3
3

3
3
3
3
1
1

1
1
1
1
1
1

3
3
3
3
3
3

B
8
13

0
0

1
1

3
2

3
3

4
4

1
1

1
1

3
3

1
1

2
2

1
1

1
1

3
3

3
3

1
1

2
2

C

3
9
5
7
12

0
0
0
0

2
1
3
3

2
3
3
5

1
1
1
1

4
4
4
4

1
1
1
1

1
1
1
1

3
3
3
3

1
1
1
1

1
1
1
1

1
1
1
1

2
2
2
2

2
3
3
3

4
5
3
5

1
1
1
1

2
3
3
3

Comparing Table 4 with Table 6 we find that components of project X10 were grouped

in a different way. This difference in the clustering could be due to the loss of

information due to weighting as the scores for CO1 and EP1 are the weighted average

scores.

Similarly we implemented clustering on all the other 11 projects using the direct

scores as attributes. For all the projects, when the clustering tree for the components of

each project obtained with the weighted average scores CO1 and EP1 and the clustering

tree obtained with the direct scores was compared, they were different. Hence we could

infer that weighting causes loss of information and the behavior of the components could

be understood better using the direct scores, as there would be no loss of information. We

need domain expert’s knowledge to further validate our results.

4.3 Implementation of Expected Maximization Clustering and obtaining decision

trees

In addition to the hierarchical clustering technique we also implemented EM clustering

on the 12 projects, using the weighted average and the direct SILAP scores.

 27

4.3.1 Clustering results based on weighted Consequence and Error Potential scores

We implemented EM clustering on the 12 projects with the CO1 and EP1 scores. EM

clustered the components of the project X9 as shown in Table 7.

Table 7. Cluster of components of project X9 using Expected Maximization

Clustering based on the Consequence and Error Potential scores.

Cluster Components

A (class0)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

As seen from Table 7, all the 19 components of project X9 were classified as a single

class (class0), which implies that all the components behave similarly, when clustered

based on CO1 and EP1 scores.

Similarly we ran the WEKA tool on all the other 11 projects using the weighted

average scores CO1 and EP1 and obtained the clusters. All the results obtained were

different from the results obtained in hierarchical clustering.

4.3.2 Clustering results based on direct score attributes

We implemented EM clustering on the components of the project using the direct score

attributes, that is HS2, AS2, PF2, EX3, DO3, US3, UC3, CL3, FR3, DT3, RM3, RA3,

AM3, CX3, DI3, SS3. The clusters that we obtained after we ran the WEKA tool on the

X9 project is shown in Table 8.

 28

Table 8. Cluster of components of project X9 using Expected Maximization Clustering

based on the direct scores.

Cluster Components

A (class0)

1
2
5
6
8
10
11
12
13
14
15
16
18

B (class1)

3
4
7
9
17
19

As seen from Table 8, when we implemented the EM cluster using the direct scores

HS2, AS2, PF2, EX3, DO3, US3, UC3, CL3, FR3, DT3, RM3, RA3, AM3, CX3, DI3,

SS3 of the components for the project X9, components were classified into two clusters

(class0 and class1). We see that components 1,2,5,6,8,10,11,12,13,14,15,16,18 are

clustered as one cluster (class0) and components 3,4,7,9,17,19 are clustered as another

cluster (Class1) as shown in Table 8.

Similarly we implemented EM Clustering on the other 11 projects using the direct

score factors and obtained the clusters. They clustered the components in a different way

when compared to the clusters obtained using the weighted score factors (CO1 and EP1).

All the results obtained using EM Clustering were different from the results obtaimed

using hierarchical clustering.

 29

4.3.3 Implementation of J48 classifier to obtain decision trees

We ran the J48 classifier using WEKA and obtained the J48 pruned decision tree for the

components of all the 12 projects that were clustered (EM cluster) using the direct score.

The J48 decision tree tells us which attribute causes the components to behave and hence

cluster differently. We obtained J48 pruned decision tree when we ran the WEKA tool

using J48 classifier for all the projects. The J48 decision tree obtained for project X9 is as

shown in Figure 10.

HS2 <= 2: class0 (13.0)

HS2 > 2: class1 (6.0)

Figure 10. J48 decision tree for project X9

This implies that the factor HS2 is the factor that has the highest information gain and

decides the cluster. If the HS2 score is less than or equal to 2 then it’s classified as a

cluster, class0, otherwise it’s classified as another cluster (class1). There are 13 instances

correctly classified as class0 and 6 instances correctly classified as class1.

Similarly we ran the j48 classifier to obtain the decision trees for all the other 11

projects based on the clusters that were obtained when they were clustered using direct

score factors (EM Clustering). Table 9 shows the decision trees that were obtained for all

the 12 projects.

Table 9. Decision trees for the 12 projects1

Project 10 Fold Cross Validation Decision Trees

X1
Correctly Classified Instances 43 97.7273 %

Incorrectly Classified Instances 1 2.2727 %

EX3 <= 2

| PF2 <= 2: class3 (8.0)

| PF2 > 2: class1 (17.0)

EX3 > 2: class2 (19.0/1.0)

X2 Correctly Classified Instances 42 100 % DO3 <= 4: class0 (15.0)

1 Considering only the components of the project that have values for all the factors affecting

consequence and error potential.

 30

Incorrectly Classified Instances 0 0 % DO3 > 4

| UC3 <= 1: class1 (15.0)

| UC3 > 1: class2 (12.0)

X3
Correctly Classified Instances 20 83.3333 %

Incorrectly Classified Instances 4 6.6667 %

DO3 <= 4

| DI3 <= 2: class2 (19.0)

| DI3 > 2: class1 (2.0)

DO3 > 4: class0 (3.0)

X4
Correctly Classified Instances 9 81.8182 %

Incorrectly Classified Instances 2 18.1818 %

EX3 <= 2: class1 (3.0/1.0)

EX3 > 2: class0 (8.0)

X5
Correctly Classified Instances 11 73.3333 %

Incorrectly Classified Instances 4 26.6667 %

US3 <= 2

| EX3 <= 1: class3 (2.0)

| EX3 > 1

| | PF2 <= 3: class1 (7.0)

| | PF2 > 3: class2 (4.0)

US3 > 2: class0 (2.0)

X6
Correctly Classified Instances 25 100 %

Incorrectly Classified Instances 0 0 %

DO3 <= 1: class1 (15.0)

DO3 > 1: class2 (10.0)

X7
Correctly Classified Instances 137 99.2754 %

Incorrectly Classified Instances 1 0.7246 %

DO3 <= 2

| HS2 <= 1: class2 (77.0)

| HS2 > 1

| | EX3 <= 1: class1 (10.0)

| | EX3 > 1: class0 (6.0)

DO3 > 2: class1 (45.0/1.0)

X8
Correctly Classified Instances 24 92.3077 %

Incorrectly Classified Instances 2 7.6923 %

SS3 <= 1

| US3 <= 1: class5 (3.0)

| US3 > 1: class4 (7.0)

SS3 > 1

| EX3 <= 2: class1 (5.0)

| EX3 > 2: class2 (11.0/1.0)

X9
Correctly Classified Instances 17 89.4737 %

Incorrectly Classified Instances 2 10.5263 %

HS2 <= 2: class0 (13.0)

HS2 > 2: class1 (6.0)

X10
Correctly Classified Instances 10 76.9231 %

Incorrectly Classified Instances 3 23.0769 %

EX3 <= 1

| AS2 <= 1: class0 (7.0)

 31

| AS2 > 1: class1 (4.0/1.0)

EX3 > 1: class2 (2.0)

X11
Correctly Classified Instances 33 100 %

Incorrectly Classified Instances 0 0 %

US3 <= 2

| AS2 <= 3: class1 (16.0)

| AS2 > 3: class0 (11.0)

US3 > 2: class2 (6.0)

X12
Correctly Classified Instances 37 86.0465 %

Incorrectly Classified Instances 6 13.9535 %

UC3 <= 1

| EX3 <= 1

| | DO3 <= 3: class3 (7.0)

| | DO3 > 3: class4 (2.0)

| EX3 > 1: class5 (29.0/3.0)

UC3 > 1: class0 (5.0)

From Table 9, it is evident that each project is different and different attributes have

highest information gain for each project.

J48 Decision tree obtained for all the twelve projects

We implemented the EM clustering on all twelve projects together using the direct score

factors and then we ran the j48 classifier using WEKA tool to obtain the decision tree.

The decision tree obtained for all the twelve projects together is as shown in Figure 11.

DT3 <= 1

| RM3 <= 2: class1 (14.0)

| RM3 > 2

| | EX3 <= 3

| | | HS2 <= 1: class6 (68.0)

| | | HS2 > 1: class2 (24.0/1.0)

| | EX3 > 3: class7 (45.0)

DT3 > 1

| US3 <= 3

| | CL3 <= 3

| | | AS2 <= 4

| | | | AM3 <= 1

 32

| | | | | RM3 <= 1

| | | | | | UC3 <= 1: class1 (11.0)

| | | | | | UC3 > 1

| | | | | | | US3 <= 2

| | | | | | | | DO3 <= 3: class0 (2.0/1.0)

| | | | | | | | DO3 > 3: class4 (8.0)

| | | | | | | US3 > 2

| | | | | | | | HS2 <= 1

| | | | | | | | | CX3 <= 3: class0 (13.0/1.0)

| | | | | | | | | CX3 > 3: class3 (3.0/1.0)

| | | | | | | | HS2 > 1: class3 (2.0)

| | | | | RM3 > 1

| | | | | | HS2 <= 0: class0 (89.0/3.0)

| | | | | | HS2 > 0

| | | | | | | AS2 <= 2

| | | | | | | | DI3 <= 1: class0 (6.0/1.0)

| | | | | | | | DI3 > 1: class5 (2.0)

| | | | | | | AS2 > 2: class3 (3.0)

| | | | AM3 > 1

| | | | | FR3 <= 1: class1 (2.0)

| | | | | FR3 > 1

| | | | | | AM3 <= 2

| | | | | | | PF2 <= 1: class5 (2.0)

| | | | | | | PF2 > 1: class3 (10.0/1.0)

| | | | | | AM3 > 2: class5 (6.0)

| | | AS2 > 4: class3 (19.0)

| | CL3 > 3

| | | UC3 <= 1

| | | | RA3 <= 3: class5 (3.0/1.0)

| | | | RA3 > 3: class1 (28.0/1.0)

| | | UC3 > 1

| | | | FR3 <= 1| | | | | DO3 <= 4: class4 (21.0)

| | | | | DO3 > 4: class5 (3.0)

| | | | FR3 > 1: class5 (30.0)

 33

| US3 > 3: class8 (19.0)

Figure 11. J48 decision tree for all the twelve projects together

Observing the decision trees obtained in Table 9 and Figure 11, we find that different

attributes have highest information gain in different projects. Another observation from

Figure 11 is that, the attribute Use of Defect Tracking System (DT3) has highest

information gain for all the twelve projects together. This way implementing Clustering

and running the classifiers could contribute to the classification of the software

components and revealing the attribute that has the highest information gain in the

decision trees very early in the software life cycle.

4.4 Proposed Algorithm for ranking clusters in a Project

We propose a way to rank the clusters based on Consequence and Error Potential. We

ordered the direct scores that affect consequence and error potential based on the weights

assigned by domain experts as shown in Figure 12.

Consequence Error Potential

HS2 (0.0) EX3 (0.828)

PF2 (0.65) CX3 (0.547)

AS2 (0.35) DI3 (0.351)

 AM3 (0.242)

 RA3 (0.226)

 DO3 (0.172)

 FR3 (0.1119)

 SS3 (0.102)

 UC3 (0.0962)

 US3 (0.0955)

 DT3 (0.0873)

 CL3 (0.0764)

 RM3 (0.0647)

Figure 12 Order of importance for Consequence and Error Potential

 34

Algorithm for Ranking n clusters based on Consequence

Let Coi represent the factors that affect consequence.

1. Select the Coi that has the highest order of importance.

2. Let Comax ji− be the maximum value of selected Coi for cluster j.

3. Sort the clusters based on their Comaxji− values for the selected Coi in descending order

and store in array sort[].

4. If (Comax mi− of sort[k]) > (Comax hi− of sort[k+1])

Then rank cluster m higher rank

Repeat step 4 for next value of k in sort[] having the same Coi checked.

 Else

{

- Check the sequence of next values in sort[] till the Comax ji− values of

index where sort[index] !=sort[k] for same Coi

 Repeat

 {

If (! all Coi ’s are checked for the sequence of sort[k] to

sort[index-1])

 {

- Select the next Coiaccording to the order of

importance for these sequence of clusters in

sort[k] to sort[index-1]

- Resort sort[] only for these values from sort[k]

to sort[index-1] in descending order based on

the Comaxi values of selected Coiof these

clusters.

- Repeat step 4 for these sequence of clusters

from sort[k] to sort[index-1]

}

 35

 Else

 {

Sequence of clusters from sort[k] to sort[index-

1] are ranked the same.

}

} Until all clusters in sort[k] to sort[index-1] are assigned a rank

 }

Ranking based on Error Potential: is done similarly, except that we consider the

ordering of the direct scores that affect error potential

4.4.1 Ranking for Project X9

Ranking of clusters of project X9 based on Consequence

As shown in Table 10, the maximum HS2 score of cluster B is higher than the maximum

HS2 score of cluster A (5>2), cluster B is ranked higher than cluster A based on

consequence.

Table 10 Ranking of the Clusters of project X9 based on Consequence

Cluster Components Maximum HS2 Rank

A

1
2
5
6
8
10
11
12
13
14
15
16
18

2.0 II

B

3
4
7
9
17
19

5.0 I

 36

Ranking of clusters of project X9 based on their Error Potential

As seen in the Table 11

 Maximum EX3 value of cluster A = maximum EX3 value of cluster B

Maximum CX3 value of cluster B > maximum CX3 value of cluster A

Hence, Cluster B is ranked higher based on error potential

Table 11 Ranking of clusters of project X9 based on error potential

Cluster Components EX3 CX3 Rank

A (class0)

1
2
5
6
8
10
11
12
13
14
15
16
18

3.0 3.0 II

B (class1)

3
4
7
9
17
19

3.0 4.0 I

Similarly, we ranked the clusters for all the other projects. This way we could rank the

clusters of components very early in the software life cycle with clustering.

 37

Chapter 5: Classification of Software Components Based on Reliability

and Maintainability Based Risk in the Architectural Level

We implemented clustering using metrics obtained early in the software life cycle, when

the requirement specifications and design details are available. In this chapter, we present

the clustering results obtained on the CM1 case study using the reliability based risk

metrics such as Complexity, Severity and Fan-Out [9] and the maintainability based risk

metrics such as Change Probabilities, Normalized Maintenance Impact Fan-Out and

Normalized maintenance Impact Fan-In [1], [2], [3] .

5.1 CM1 Case Study

CM1 is a software component of a data processing unit used in an instrument which

exploits data, to probe the early universe. This case study is from the Data Metrics

Program [33]. CM1 has 12 components and 9 scenarios [4]. Reliability based risk metrics

and Maintainability based metrics were obtained for CM1 using methodology presented

in [1], [4], [9] early in the software life cycle. We implemented clustering on this case

study using these metrics and studied the behavior of the components of CM1 early in the

software life cycle.

5.2 Reliability-based Risk Metrics

Reliability based risk is defined as an unexpected result originated from a wrong system

behavior, which is out of the feasible space defined from the functional requirements. In

this case the source of failure is a violation of some functional requirement. It takes into

account that the probability that a software product will fail in the operational

environment and the adversity of the failure. In [4], [9] a methodology for assessing

reliability based risk in early phases of a software cycle was developed.

 Description of the methodology used in the previous works [4], [9] and the

definitions of the reliability based metrics has been explained for the sake of

completeness. Information necessary for estimation of reliability based risk was obtained

using unified modeling language (UML) [6] and the commercial modeling environment

Rational Rose RT (RoseRT) [34]. From the UML diagrams for each component and

 38

connector in the software architecture a heuristic risk factor was obtained. Scenario risk

factors were computed using Markov model. Risk factors for usecases were obtained by

averaging the scenarios risk factors. In order to obtain the overall system risk factor the

independent use cases risk factors were weighted with the probability of their execution.

Reliability based risk metrics such as Dynamic Complexity, Severity and Fan-Out were

obtained using as dynamic specification metrics from UML

• Dynamic Complexity

As there is a correlation between the number of faults found in a software

component and its complexity, in [4] the dynamic complexity of state charts was

obtained as a dynamic metric for components. Dynamic coupling between

components was computed as a dynamic metric related to fault proneness

for connectors. Component’s Dynamic Complexity was obtained based on the

UML state charts that are available during the early stages of software life cycle

[4]. A number of states and transition between these states in the state chart of

each component i describes the dynamic behavior of the component.

Dynamic Complexity is defined as follows [4]

• For a scenario Sx , a subset of all states of component i are visited in the scenario

and a subset of all the transitions are traversed. If C x
i denotes the subset of states

for a component i visited in the scenario Sx and with Tx
i as the subset of

transitions traversed in the state chart of component i in that scenario. The subset

of states Cx
i and the corresponding transitions Tx

i were mapped into a control

graph. cx
i = x

iC and txi = x
iT denotes the number of nodes in that graph

(cardinality of Cx
i) and number of edges in that graph (cardinality of T x

i)

respectively. Dynamic Complexity docx
i of component i in scenario Sx is defined

as [4]

docx
i =t x

i - c x
i + 2. (5.1)

 39

 Normalizing the Dynamic Complexity docx
i with respect to the sum of

complexities for all active components gives Normalized Dynamic Complexity

DOCx
i of a component i in a scenario Sx [4]. Using this definition, Dynamic

Complexity metrics were obtained for the components of CM1 [4].

• Severity metric: Severity metric measures the severity of the consequences of

potential failures [4]. To get this metric value domain experts play a major role.

Based on hazard analysis [23] [4], the severity classes were identified as follows:

Catastrophic: A failure that could cause death or total system loss

Critical: A failure that could cause severe injury, major property damage, major

system damage, or major loss of production.

Marginal: A failure that could cause minor injury, minor property damage, minor

system damage, or delay or minor loss of production.

Minor: A failure that is not serious enough to cause injury, property damage, or

system damage, but could result in unscheduled maintenance or repair.

In [4] severity indices of 0.25, 0.50, 0.75 and 0.95 were assigned to minor,

marginal, critical and catastrophic severity classes respectively.

Experts make an estimate of the severity of the components and connectors based

on their experience with other systems in the same field. The components of CM1

were assigned a score based on their severity class [4].

• Fan-Out: The Fan-out metric value was obtained from the UML diagrams for

each component [4] early in the software life cycle.

We implemented clustering on the components of CM1 using the Reliability based

metrics , Dynamic Complexity, Severity and Fan-Out scores that were assigned to the

components of CM1 according to the definitions defined above[4].

5.2.1 CM1 Case Study Results based on Reliability-based-Risk

We clustered the components of CM1 based on reliability based metrics per scenario and

also fusion of all scenarios (Simple sum, Weighted Sum, Worst Case analysis) [17] [13].

We implemented hierarchical clustering methods (Single Link, Complete Link, Average

 40

Link, Wards method) on the case study and found that Wards method had the highest

agglomerative coefficient values than the other methods.

• Per-Scenario Results for CM1

We implemented hierarchical Wards method as it had the highest agglomerative

coefficient value, using the Euclidean dissimilarity measure on each of the 9

scenarios [4] with the reliability based metrics such as Dynamic Complexity,

Severity and Fan-Out for all components. The results for the scenario

HouseKeeping (HK) using Wards method are as shown in Figure 13.

Figure 13. Clustering tree of CM1 obtained for the HouseKeeping (HK) scenario based on

Reliability based risk metrics (Agglomerative Coefficient AC 0.90)

As shown in Figure 13, if we look for 3 clusters then the components 1, 5, 6, 7, 11 are the

most similar to each other forming a cluster (cluster A) , components 2, 8 ,9, 12 form the

second (Cluster B) and components 3, 10 and 4 form the third cluster(Cluster C) for the

scenario HouseKeeping(HK) [4]. The AC value was the highest when clustering was

implemented using the hierarchical clustering Wards method for all the 9 scenarios. This

Cluster B

Cluster C

Cluster A

 41

indicates that the quality of clustering structure found using the Wards method was better

than any other method for our dataset. For the HouseKeeping(HK) scenario explained

above the Agglomerative coefficient(AC) value was 0.90 with the Wards method.

 Similarly, Clustering was implemented for the other 8 scenarios of CM1. Wards

method performed well for all the scenarios. Much inference could not been drawn about

the behavior of the components, as Clustering tree obtained for each scenario was

different., indicating that the components behaved differently in different scenarios.

 We then experimented ways to combine the reliability based metrics of

components across all the nine scenarios and implement clustering in order to get better

interpretation of results.

• Fusion of Reliability based risk metrics across all scenarios

We implemented clustering on the CM1 components using techniques like the simple

sum scores fusion, weighted sum scores fusion and worst case value (Maximum value)

[17] [13] across all the scenarios.

• We obtained clustering results using the hierarchical Wards method as it had the

highest AC value, with the simple sum scores fusion that is clustering the

components using the simple sum of the metrics across all the 9 scenarios. Also

implemented the weighted sum scores fusion, that is clustering components using

the weighted sum of metrics across all scenarios (weighted by the probability of

occurrence of each scenario) [13] [17].

For Risk, the worst case values are considered to be the most important. We looked at the

metric values in all the scenarios for each component and selected the worst case values

(i.e. Maximum value) [13]. We implemented hierarchical Wards clustering method as it

had the highest Agglomerative Coefficient value. The clustering tree obtained for

clustering using the worst case values are as shown in Figure 14. Figure 15 shows its

corresponding Banner plot. From the clustering tree in figure 14, it is evident that

components 1, 6, 4, 11 form one cluster, components 2, 9, 12, 10, 3, 7, 5 form the second

and component 8 forms the third. Agglomerative Coefficient value when Wards

clustering was implemented using the worst case values was 0.81. This indicated good

quality of clustering. From Table 12, we observe that most of the components in cluster

A, that is components 1, 6, 4, 11 have relatively low Fan-Out, relatively low Complexity

 42

and moderate severity values. Most of the components in the cluster B, that is

components 2, 9, 13, 10, 3, 7, 5 have moderate Complexity, moderate Fan-Out and

relatively high Severity values. Cluster C, that is components 8 has relatively higher

Complexity, higher Severity and higher Fan-Out values than most of the other

components. Domain experts ranked the components of CM1 based on their knowledge

and experience, starting from the most critical to least critical as 8, 3, 10, 7, 12, 9, 2, 5,

11, 6, 1, 4 [33]. The clustering results we obtained in Figure 14 were in accordance with

the ranking given by the domain experts.

Figure 14. Clustering Tree of CM1 obtained for the worst case values of Reliability Based
Risk metrics (Agglomerative coefficient 0.81)

Cluster A Cluster B

Cluster B

 43

Height

Agglomerative Coefficient = 0.81

0.0 0.20 0.40 0.60 0.80 1.00 1.44

8

5

7

3

10

12

9

2

11

4

6

1

Figure 15. Banner plot of CM1 obtained for the worst case values of Reliability based

risk metrics

Table 12. Clusters components of CM1 based on Reliability based risk

Table 12 shows the clusters A, B and C of components of CM1 corresponding to Figure

14 and Figure 15.

CLUSTER Components Complexity Severity FanOut

A

1
6
4
11

0.08
0.08
0.21
0.67

0.5
0.5
0.25
0.50

0.06
0.06
0.25
0.06

B

2
9
12
10
3
7
5

0.31
0.50
0.60
0.40
0.36
0.40
0.40

0.99
0.99
0.99
0.99
0.75
0.75
0.50

0.50
0.50
0.60
0.20
0.38
0.40
0.50

C 8 0.50 0.99 1.00

 44

5.3 Maintainability-Based Risk Metrics

According to NASA standard on software safety [27], risk is defined as a function of the

anticipated frequency of occurrence of an undesired event, the potential severity of the

resulting consequences and the uncertainties associated with the frequency and severity.

Risk assessment is an integral part of software risk management. Several types of risks

are ushered into the system when it undergoes maintenance, like project risk, usability

risk and maintainability risk [20].

• Project risk basically concerns that the maintenance project cannot be completed

within the budget or timeframe because of an unproductive maintenance process

or deficiency of personnel and maintenance resources.

• Usability risk focuses that the maintenance conducted on the system will trigger

problems and failures. It takes into account the functionality, performance and

software failure risk.

• Maintainability based risk answers the question how complex will it be to

maintain the system in future because of the way we handled maintenance task

[2].Maintainability based risk is defined as the product of probability of

performing maintenance task and the cost of performing this task. This can be

used to identify the most risky parts of the system. More than 65% of the life

cycle of a software project is spent in maintenance [1].In accordance with NASA-

STD-8719 standard maintainability based risk is defined as the product of the

probability of carrying out maintenance tasks and the impact of these tasks [27].If

the software system has good maintainability it can be easily modified to fix

faults.

 In [1] architecture-level maintenance risk assessment methodology has been

presented for assessing the maintainability based risk into the context of corrective

maintenance early in the software life cycle. We present brief details of the methodology

used in [1] for sake of completeness. Corrective software maintenance deals with fixing

defects that escape detection before release and that which manifest as field failures

[3].The methodology proposed in [1] for estimating the maintainability based risk

depended on the architectural artifacts such as system requirements, system design and

their evolution through the life cycle of the system. In this methodology, the requirements

 45

maturity was first estimated and mapped into the components stability. Then the initial

change probabilities of the components were estimated based on the maintenance type

and the data available. The initial change propagation probabilities and the change

propagation probabilities between them were used to get the unconditional probability of

change of the components of the system. To get the Impact of maintenance tasks, the size

of change of change between the components of the system was used. Finally, the

product of the unconditional change probability and the maintenance impact was used to

obtain the maintainability-based component risk factor [1], [4].

Requirements Maturity Index:

Requirements Maturity Index is estimated by analyzing their evolution across the releases

of the system [1], [4]. The IEEE 982 standard suggested software maturity index to

quantify properties of the requirements evolution [26]. In [5] Software Maturity Index

was adapted to Requirements Maturity Index (RMI) to measure the requirements

stability. In [1] the Use Case Maturity Index (UCMI) was adapted and function points

were used as a size measure for the usecases.

UCMI for the usecase uci was given by

 UCMI =
T

CT

U

UU −
 (5.2)

Where UT is the function point of usecase uci in the current release

U C is the function point size of the change in the usecase uci in the next release from the

current release due to requirements change of change scenario.

Initial Change Probabilities:

 In [1] the Sequence Diagrams were used to identify the set if components that

contributed to each use case. Use case stability was then mapped to component stability

and Initial Change Probability of system components was consequently estimated. For

components that were part of multiple scenarios, the maximum ICP, that is the worst case

scenario was considered.

 46

Change Probabilities:

Change Propagation probability CP= [cp ji /] is the conditional probability that change

originating in one component of the architecture requires changes in other components to

be made [4]. Initial Change Probabilities vector of the components were multiplied by the

conditional change probabilities vector obtained from the system architecture in order to

account for the dependency among the components of the system [1][4].

Size of Change:

Size of change is defined as the ratio between the number of affected methods of the

receiving component that was caused by the changes in the interface of the providing

components and the total number of methods in the receiving components [1][4].

Impact of Maintenance task:

The impact of maintenance task was obtained by using the size of change between pairs

of the system components.

5.3.1 CM1 Case study Results based on Maintainability-based risk

We applied Wards clustering method as it has the highest agglomerative coefficient and

works better than the other methods (Single Link, Complete Link, Average Link, Wards

Method) for all the components of CM1 system taking into consideration the

maintainability based risk using parameters such as Change Probabilities, Normalized

maintenance Impact Fan-out, Normalized Maintenance Impact Fan-In [1], [2], [3]

obtained for the CM1 system as a whole. Figure 16 shows the classification of

components of CM1 based on the maintainability risk using Wards method. Figure 17

shows the corresponding Banner Plot. Table 13 shows the clusters formed and the

components in them. Agglomerative coefficient value obtained was 0.85, which indicates

that the strength of the cluster is good.

 47

Figure 16. Clustering tree of CM1 obtained based on Maintainability based risk metrics
(Agglomerative coefficient – 0.85)

Height

Agglomerative Coefficient = 0.85

0.0 0.47

2

9

7

5

12

4

10

11

8

3

6

1

Figure 17. Banner Plot of CM1 obtained based on maintainability based risk metrics

Cluster C

Cluster A

Cluster B

 48

Table 13. Clusters of components of CM1 based on Maintainability-based risk

Cluster Components
Change

Probabilities

Normalized
Maintenance

Impact FanOut

Normalized
Maintenance
Impact FanIn

A

1
6
10
3
8
11
4
12

0.09
0.09
0.11
0.11
0.11
0.13
0.13
0.17

0.13
0.13
0.10
0.12
0.14
0.13
0.17
0.19

0.17
0.17
0.17
0.17
0.17
0.17
0.17
0.17

B
5
7
9

0.23
0.20
0.20

0.32
0.27
0.25

0.19
0.17
0.22

C 2 0.42 0.42 0.46

When Figure 14 and Figure 16 are compared, it is obvious that the components of the

CM1 were classified in a different way based on Reliability based risk and

Maintainability based risk. This implies that the components behave differently when we

different attributes are considered. Hence components were clustered differently when

clustered based on reliability and maintainability based risk metrics.

The Table 13 shows the three distinct clusters A, B and C components which form the

cluster and corresponding change probabilities, Normalized Maintenance Impact FanOut

and Normalized Maintenance Impact FanIn values., One cluster is formed by components

1, 6, 10, 3, 8, 11, 4, 12, the other is formed by 5, 7, 9 and component 2 alone forms

another cluster when clustering is performed, based on Maintainability Risk. Components

in cluster A, that is 1, 6, 10, 3, 8, 11, 4, 12 have relatively lower change probabilities,

lower Normalized maintenance Impact FanOut and lower Normalized Maintenance

Impact FanIn. Components in Cluster B, 5, 7, 9 have moderate change probabilities,

moderate Normalized Maintenance Impact FanOut and moderate Normalized

Maintenance Impact FanIn. Component 2 has relatively higher change probabilities,

higher Normalized Maintenance Impact FanOut and higher Normalized Maintenance

Impact FanIn than the other components.

Hence, its evident from the Table 13 that the component 2 is very dissimilar from

others when classified according to maintainability based risk and is the most critical

 49

component when classified based on maintainability based risk as it has higher values for

change probabilities, normalized maintenance impact fan out and normalized impact fan

in. But, according to the Table 12 component 8 is dissimilar from others. Hence, when

classifying the components in the early life cycle both reliability and maintainability

based risk should be considered.

We used Wards method to cluster as it gave the highest agglomerative coefficient

value of 0.85, compared to the other methods, indicating that the strength of cluster

obtained by Wards method is better than the others.

This way clustering could be used in the early software life cycle for the

classification of software components based on reliability based risk and maintainability

based risk.

 50

Chapter 6: Classification of Software Components at the Operational

Stage

We implemented hierarchical Wards Clustering on the Indent case study [36] [37] , using

the component level measurements, Expected Visit Counts and the Component Entropy,

that are derived in the operational stage from the raw and aggregated measures of visit

counts[10].

6.1 Indent case study

 Indent is an open source software project [36] [37], which consists of about 9 files,

totaling about 7000 lines of code, used to beautify the C code. When Indent is ran on a C

program, it has no effect on the functionality of the code, but makes the code more

readable and aesthetically pleasing. Appearance of C programs could be changed in many

ways such as

• Adding or removing white space

• Changing the indentation of blocks , declarations and parenthesis

• Stylish parameters could be altered

Indent has ten versions of source code, multiple CVS logs, many source code change logs

and a regression test suite along with a test driver and an oracle. The latest version of

Indent has about 11,000 lines of code, but the earliest version had only about 7000 lines

of code. There are two change logs with 66 entries for all the ten versions of Indent [10].

We used the component level measurements, Expected visit counts and the

Component Entropy to implement clustering on the Indent case study. A methodology to

estimate these metrics on Indent was presented in [10]. We present a brief description of

the methodology used in [10] for better understanding of the metrics used in clustering.

Profiling Software:

Information about the execution path of a program and the number of times parts of

program are executed is stored in tools called Profilers. They can store information at the

basic block level, line level, or the function level. Profilers can be sample-based tools or

event-based tools. Sample-based tools collect data periodically based on the sampling

 51

time period. Event-based tools collect data for every event that occurs. Sample based

tools have less overhead but are less accurate, as they could miss events that occur

between sample periods. Event based tools introduce more overhead but are much more

accurate as they can not miss the events between the sample periods.

 In [10] information on software executions were collected with the sample based

profiler, Gprof. It provides two types of profiles: a call graph and a flat profile [10]. A

call graph represents the control flow and the information in it, describes the call tree of

the program and it is sorted by amount of time spent in each function and its children.

The Flat profile lists all functions called, the number of times each was called and how

long each execution took. In [10] the Indent software was instrumented with the Gprof

profiler, and the information needed was extracted from the call graph as the model used

in [10] depended on the flow of control transfer. 158 test cases were run, while profiling

them, which gave 158 profiles [10].

Transition Probabilities:

The data in the call graph obtained from the Gprof profiler, representing the transition

counts from a function f to another g was studied to calculate the transition probabilities

[10]. The transition probability matrix was calculated [10] using the equation

P ij =
∑

j
ij

ij

n

n
 (6.1)

Where Pij represents the probability that component i calls component j. The probability

of component i calling component j is equal to the number of times component i calls j

(n ij) divided by the sum of the number of times component i calls any other component

(n i).

Fault Identification:

In [10] a methodology for the identification of the location of each fault has been

presented. Firstly, all the test cases were run on the earliest version of Indent, version

2.2.0. The failed test cases were re run on the remaining 9 versions of the software. Thus,

the release in which the fault was fixed was identified. Also, general time period of when

 52

the fix was made was known. Once this was known, all the changes in the changelog for

the time period the bug would have been fixed was searched and read. By looking at the

testcase, the diff files, the output and the expected output the reason for the test case

failure could be known and the description of that bug could be found in the change logs.

This method of mapping failures to fixes was successful for 30 of the 34 failed test cases

[10].

6.2 Dynamic metrics for Indent

The dynamic metrics expected visit counts and the component Entropy were used to

implement clustering on the Indent case study. The way these metrics were derived in

[10] are as follows.

Component Entropy:

An approach presented in [14] was used in [10] for the uncertainty analysis based on the

concept of entropy. The theory of entropy was used to calculate the amount of

uncertainty in a Discrete Time Markov chain (DTMC). The entropy of a component i is

defined as the conditional entropy and is given by

H i =)log(ij
j

ij pp∑− (6.2)

where, pij represents the probability that the control transfers from component i to

component j.

The transition probabilities were used to estimate the system uncertainty, the

expected execution rates and the uncertainty of each component [10]. The entropy of the

component i, would be higher if it transfers the control to more components and the

transition probabilities are equiprobable [14]. Hence, components with higher entropy are

considered critical as they affect larger part of the system [14].

Expected Visit Counts:

Expected visit counts values for the Indent that was computed in [10] was used for

clustering. The methodology in [22] [11] was used to compute the expected visit counts

for a component [10]. It was assumed the control of the system is transferred among

 53

modules based on a Markov process [22]. There is an associated reliability with each

module that gives the probability that the module would operate correctly when called

and would transfer control successfully when finished. Eventually, the system would

either fail or complete its task successfully and enter a terminal state. The expected visit

counts, vi represents the expected number of visits to a state i that is the expected

number of executions of a component i.

6.3 Clustering Results for Indent

We implemented clustering on the file level, for 9 components of the Indent using the

derived dynamic metrics, Component Entropy and the Expected Visit Counts which are

derived from the raw and aggregated visit counts [10]. The Figure 18 shows the

clustering tree obtained on the 9 components of the Indent Case Study. The

Agglomerative Coefficient value (AC) obtained was 0.923. This indicates a good quality

of clustering.

Figure 18. Clustering tree of Indent obtained using the Expected Visit Counts and the

Component Entropy values

Cluster A

Cluster B

 54

As seen in Figure 18 we find that there are two distinct clusters of components, Cluster A

(Components 1, 2, 3, 5, 9 and 4) and Cluster B (Components 6, 7 and 8). Table 14

shows the Clusters, the components in each cluster and the number of failed test cases

that required a fix in the component. Components 6, 7 and 8 are the three most frequently

executed components and they had high number of test cases that required a fix in the

component. Thus, the components that were the most frequently executed and that had

maximum number of test cases that required a fix were clustered together as cluster B.

This way, Clustering could group the components of Indent into meaningful clusters

based on the metrics available late in the software life cycle.

Table 14. Clusters of Components for the Indent

Cluster Component numbers
Number of Test cases that required a Fix

in the Component

A

1
2
3
5
9
4

0
0
10
0
1
0

B
6
7
8

10
7
2

 55

Chapter 7: Conclusion

In this thesis we have presented how clustering could be used for the classification of

software components throughout the software life cycle. The basic assumption was that

components that have similar metric values behave similarly. As clustering group’s

components into homogeneous clusters, it would be possible to rank the clusters and

assign similar activities to all the components in a cluster.

 We implemented clustering on the software components of several case studies

using metrics derived in different phases of software life cycle. We used hierarchical

clustering methods, the Expectation Maximization clustering method and also ran the J48

classifier to obtained decision trees for the components of twelve real NASA projects.

We also implemented hierarchical clustering method on a case study, CM1 that is derived

from the Data Metrics Program and another case study, Indent, open source software.

Clustering results obtained have been presented in this thesis and several observations

were made.

• Clustering results obtained on the components of the twelve real NASA projects

during the requirements specification based on the Process/Product metrics

obtained from the Software Integrity and Level Assessment Process (SILAP)

helped us draw several conclusions.

o One observation was that the Wards and the EM clustering results

obtained with the direct scores and the weighted scores (Consequence

and Error Potential) from SILAP were different. This implies that

there is loss of information because of weights assigned in SILAP.

o The decision trees obtained for each project were different. Different

attribute had highest information gain in different projects. This

reveals that each project is different.

• Clustering results obtained on the components of case study CM1, based on the

reliability and maintainability based risk metrics at the architectural level helped

us draw a few conclusions

o Wards method works the best for small sample datasets, as it has the

highest agglomerative coefficient than any other hierarchical

clustering method.

 56

o Another observation was that clustering results were the best when the

fusion of the reliability based risk metrics across all scenarios was

done using the worst case values. This is because for risk worst case is

considered the most important.

o Components were clustered in accordance with the ranking based on

criticality given by the NASA domain experts when clustered based on

the reliability based risk metrics.

o Clustering results obtained with the reliability based risk metrics and

the results obtained with the maintainability based risk metrics were

different. This difference in the grouping of the components is because

Components behave differently when different attributes are

considered.

• Clustering results obtained using the code metrics obtained at the operational

stage for an open source software, Indent, clustered the most frequently executed

components together.

All the results obtained, revealed that clustering helps in the classification of the software

components into homogeneous clusters through out the software life cycle.

 57

Chapter 8: References

1. W.Abdelmoez, K.Goseva-Popstojanova, and H.Ammar, “Methodology for

Maintainability-Based Risk Assessment”, 2006 Annual Reliability and

Maintainability Symposium (RAMS 2006), Newport Beach, CA, January 2006.

2. W.Abdelmoez, K.Goseva-Popstojanova ,and H.Ammar, “Maintainability Based

Risk Assessment in Adaptive Maintenance Context”, 2nd International Predictor

Models in Software Engineering Workshop (PROMISE 2006), Philadelphia,

September 2006.

3. W.Abdelmoez, K.Goseva-Popstojanova, and H.Ammar, “Using Maintainability-

based Risk Assessment and Severity Analysis in Prioritizing Corrective

Maintenance Tasks”, Supplemental Proc. 17th IEEE International Symposium on

Software Reliability Engineering (ISSRE 2006), Raleigh, NC, November 2006.

4. W.Abdelmoez, “Model based Risk Assessment”, Master Thesis, West Virginia

University, 2006.

5. S.Anderson, M.Felici, “Quantitative Aspects of Requirements Evolution”. In the

Proceedings of 26th Annual International Conference on Computer Software and

Applications Conference (COMPSAC 2002), IEEE Computer Society, August

2002, pp 27-32.

6. G.Booch, I.Jacobson, and J.Rumbaugh, “The unified Modelling Language

Guide”, Addison Wesley, 1998.

7. W.Dickinson,D.Leon, and A.Podgurski, “Finding Failures by cluster analysis of

Execution Profiles”, Proc. 23rd International Conference on Software

Engineering, 2001, pp. 339 – 348.

8. W.Dickinson, D.Leon, and A.Podgurski, “Pursuing Failure: The Distribution of

Program Failures in a Profile Space”, Proc. 10th European Software Engineering

Conference and 9th ACM SIGSOFT Symposium on Foundations of Software

Engineering, 2001, pp.246-255.

9. K.Goseva-Popstojanova, A.Hassan, A.Guedem, W.Abdelmoez, D.Nassar,

H.Ammar and A. Mili, “Architectural Level Risk Analysis using UML”, IEEE

Transactions on Software Engineering, Vol.29, No.10, 2003, pp. 946-960.

 58

10. M. Hamill, “Empirical Analysis of Software Reliability”, Masters Thesis, West

Virginia University, 2006.

11. M.Hamill and K.Goseva-Popstajanova, “Architecture based Software Reliability:

Why only a Few Parameters Matter”, COMPSAC (submitted).

12. A.K. Jain, M.N. Murthy and P.J. Flynn, “Data Clustering: A Review”, ACM

Computing Surveys, Vol. 31, No. 3, 1999, pp. 264 – 323.

13. A.K.Jain, K.Nandakumar, A.Ross, “Score Normalization in Multimodal biometric

systems”, Pattern recognition, Vol.38, No.12, pp. 2270-2285, December 2005.

14. S.kamavaram and K.Goseva-Popstajanova, “Entropy as a Measure of

Uncertainity in Software Reliability”, Supplemental proc. 13’th Int’l Symp. On

Software Reliability Engineering, Nov 2002, pp. 209-210.

15. G.Punj and D.W.Stewart, “Cluster Analysis in Marketing Research: Review and

Suggestions for Applications” ,Journal of Marketing, Vol. 20, 1983, pp. 134-48.

16. G.Punj and D.W .Stewart, “Cluster Analysis in Marketing Research: Review and

Suggestions for Applications” , Journal of Marketing, Vol. 20, 1983, pp 134-48.

17. A.Ross and A.Jain, “Information Fusion in Biometrics”, Pattern Recognition

Letters, Vol. 24, Issue 13, Sep 2003, pp. 2115 – 2125.

18. P.J.Rousseeuw, “A Visual Display for Hierarchical Classification”, In E.Diday,

Y.Escoufier, L.Lebart, J.Pages, Y.Schektman, R.Tomassone. (Eds). Data Analysis

and Informatics, Vol.4, Amsterdam : New Holland ,1986, pp. 743-48.

19. P.J.Rousseeuw and L.Kaufman, “Finding Groups in Data: An Introduction to

Cluster Analysis”, New York: John Wiley & Sons, Inc, 2005.

20. S.Sherer, “Using Risk Analysis to Manage Software Maintenance”, Software

Maintenance: Research and Practice, Vol. 9, 1997, pp.345-364.

21. T. Shizhong, M. Khoshgoftaar, and N. Seliya, “Analyzing software measurement

data with clustering techniques”, IEEE Intelligent Systems,Vol.19, No 2, 2004,

pp.20-27.

22. K.Siegrist, “Reliability of System with Markov Transfer of Control”, IEEE Trans.

Reliability, Vol.14 No.7, 1988, pp.1049-1053.

23. C.Sundarajan, “Guide to Reliability Engineering, Data Analysis, Applications,

Implementations, and Management”, Van Nostrand Reinhold, 1991.

 59

24. I.H. Witten, E.Frank, “Data Mining: Practical Machine Learning tools and

Techniques”, Morgan Kaufmann, 2005.

25. I.H. Witten, E. Frank, L. Trigg, M. Hall, G. Holmes, and S.J. Cunningham,

“WEKA: Practical Machine learning tools and techniques with Java

implementations”, Morgan Kaufmann, 1999.

26. IEEE Std 982.1 – IEEE Standard Dictionary of Measures to Produce Reliable

Software.

27. NASA-STD-8719.13A, “Software Safety NASA Technical Standard”, Sep.15,

1997.

28. “S plus 6 for Windows: Guide to statistics”, Insightful, Vol. 2, July 2001.

29. http://grb.mnsu.edu/grbts/doc/manual/Expectation_Maximization_EM.html

30. http://grb.mnsu.edu/grbts/doc/manual/J48_Decision_Trees.html

31. http://www.cs.toronto.edu/~roweis/csc2515-2003/notes/lec7x.pdf

32. http://www.r-project.org/

33. Metrics Data Program, NASA IV & V Facility http://mdp.ivv.nasa.gov/.

34. Rational Rose Real-Time. http://www.rational.com/products/rosert/index.jtmpl

35. http://www2.chass.ncsu.edu/garson/PA765/cluster.htm

36. http://www.gnu.org/software/indent/indent.html

37. http://www.xs4all.nl/~carlo17/indent/

	Classification of software components based on clustering
	Recommended Citation

	CLASSIFICATION OF SOFTWARE COMPONENTS BASED ON CLUSTERING

