WestVirginiaUniversity
THE RESEARCH REPOSITORY @ WVU

Graduate Theses, Dissertations, and Problem Reports

2007

Classification of software components based on clustering

Swetha Reddy Konda
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation

Konda, Swetha Reddy, "Classification of software components based on clustering” (2007). Graduate
Theses, Dissertations, and Problem Reports. 4313.
https://researchrepository.wvu.edu/etd/4313

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F4313&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/4313?utm_source=researchrepository.wvu.edu%2Fetd%2F4313&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

CLASSIFICATION OF SOFTWARE COMPONENTS BASED ON
CLUSTERING

Swetha Reddy Konda

Thesis submitted to the
College of Engineering and Mineral Resources,
West Virginia University
in partial fulfillment of the requirements
for the Degree of

Master of Science
in
Computer Science

Committee Members

Katerina Goseva Popstajanova, Ph.D., Chair
Hany Ammar, Ph.D.
James Mooney, Ph.D.

Lane Department of Computer Science and ElectricdEngineering

Morgantown, West Virginia
2007

Keywords: Clustering, Clustering tree, Decision Tres, Homogeneous groups

Abstract
Classification of Software Components based on Cltexing

Swetha Reddy Konda

This thesis demonstrates how in different phasethefsoftware life cycle, software

components that have similar software metrics canglouped into homogeneous
clusters. We use multi-variate analysis technigoegoup similar software components.
The results were applied on several real case estufiom NASA and open source

software. We obtained process and product relatettice during the requirements

specification, product related metrics at the dedhural level and code metrics from

operational stage for several case studies. Weemmghted clustering analysis using
these metrics and validated the results. This arsatpakes it possible to rank the clusters
and assign similar development and validation tésksll the components in a cluster,

as they have similar metrics and hence tend toveehiike.

Acknowledgement

First and foremost, | would like to thank my advisbr. Katerina-Goseva Popstajanova
for her guidance and patience while helping mekvam this research. She was always
there to give me valuable suggestions, without tvhity thesis would not have taken
proper shape. In addition, | would like to thank coynmittee members Dr.Hany Ammar
and Dr.Jim Mooney for their support and valuableeti Also, | would like to thank
Dr.Tim Menzies for providing assistance in impleitieq clustering using WEKA and
obtaining decision trees.

My sincere gratitude is also expressed to ChasiMoats and Kenneth Costello
for their guidance and assistance at the NASA W &acility. | would like to thank
Walid Abdelmoez for his work on reliability and m#&inability based risk assessment.
Arin Zahalka and Margaret Hamill provided more s&8ice to me in giving me
information required to implement clustering onecatudy Indent.

This work is funded in part by a grdram the NASA Office of Safety and
Mission Assurance (OSMA) Software Assurance Rese®mogram (SARP) managed
through the NASA Independent Verification and Vatidn (IV & V) Facility, Fairmont,
West Virginia. | thank them for their support. Ldmsit certainly not least, |1 would like to
thank my parents, friends, Swetha, Richa and Mayartkmy husband Vinay for their

support.

TABLE OF CONTENTS

Y = 1S I 7 2 R ii
ACKNOWLEDGEMENTS.ottt cmeeme e ettt e e e e e sttt ee e e e e s snteeeeeeeaamnne s e e snnneaeeaeeans iii
TABLE OF CONTENTS ..ottt m ettt e e e e et a e e e e st eaeeeaee e e e ennneneeaaeeannes iv
LIST OF TABLES. ...ttt e ettt et e e e e et e e e e e s en e neeeessteeeae s annssneeeaeee e nneees Vv
LIST OF FIGURES. ..ottt ettt ettt e e e ettt e e emnee e e s e bbeea e e e e sanbrneeea e Vi
1. INTRODUCGCTION. .. ettt et e e e e e e e e e e e e 1
2. RELATED WORK e e e e e e e e 3
3. BACKGROUND ON METHODS USED FOR CLUSTERING........ccomuiiiiiiiieienenne 7
3.1 Transformations ON at@...............utummmneeeeeeiiiiii e e e eeeaeeeaees 8
3.2 Hierarchical Clustering TEChNIQUES.......ccceumieiiiiiiiieeiieiie e eeeea 9
3.3 Expectation Maximization CIUSLENNG.......cuummeeeeereriiiiieeiiiiiieeeeeeiiie e eeeriieeeeen 12
3.4 Decision trees obtained using j48 classifiel............cccoeeeei i e eesies 13
4. CLASSIFICATION OF SOFTWARE COMPONENTS DURING THEEQUIREMENTS
SPECIFICATION . .. et e e e e e e e et e e e e e e 16
4.1 Software Integrity Level ASSESSMENt PrOCESS. .cccvvvvvviiiiiiiiiiieeeieie e 16
4.2 Implementation of agglomerative clustering oojgrtSc.cceeveiviiiiiiieieiiieee, 19
4.2.1 Clustering results based on weighted Consexpiand Error Potential
STol0] {1 TP OPPPPPTPPP .19
4.2.2 Clustering results based on direCt SCOMr@Suum..ceeeeveeeieiiiiiiiciiiiiiiieeeeen, 23
4.3 Implementation of Expectation Maximization G&réng and obtaining
[0 LT ot 1S o] g TN =T = 26
4.3.1 Clustering results based on weighted Congemgiand
Error Potential SCOIES.......uniii it e e 27........
4.3.2 Clustering results based on direCt SCOres.....cccvceeiviiiiiiiiiiiininn.n. 21.
4.3.3 Implementation of J48 Classifier to obtaicid®n trees..................ccccene 29.
4.4 Proposed algorithm for ranking clusters in@Ggmt.............cccovveeviiiviiiinnnns. 33
4.4.1 Ranking for ProjeCt X9........uuuuieieiiieicccce e s e s e ee e e eeeeeeeans 35

5. CLASSIFICATION OF SOFTWARE COMPONENTS BASED GRELIABILITY AND
MAINTAINABILITY BASED RISK AT THE ARCHITECTURAL

Y PP 37
N ROV b o= TSI (1 [0 | 37
5.2 Reliability based riSK MELHCSuummm e eeeerineeieeiias e e s e eeeaes e eeean e eeeenns 37
5.2.1 CML1 case study results based on Reliabifised risk.........cccccccceeiiiininnns 39
5.3 Maintainability based risSk MetriCS........ccooiii it e 44
5.3.1 CMlcase study results based on Maintainghidtsed risk............ccccvvvuenes 46
6. CLASSIFICATION OF THE SOFTWARE COMPONENTS AT BHOPERATIONAL
ST A G E ... it e e e 50
6.1 INAENE CASE STUY.......uuuiiiiiiiiiiiii e e e e e e e e e e e e e e e e e e s s nnnnrr e e aeaeeeeesaaaaans 50
6.2 Dynamic metrics for INAENt...........oo e 52
6.3 Clustering results for INdent...........ccccoceiiiiie e 53
7. CONCLUSION .ottt e ettt et e et e eeeaeeaeeeeaenaaeaaaaaeaaaaaaaaaaeens 55
8. REFERENCGES ..ottt oottt ettt e e e e e ee e e e et e e e e e e e e e e e e aaaaaa s 57

LIST OF TABLES

10.
11.
12.
13.

14.

FACTORS AFFECTING CONSEQUENCE.........ccviii i e 17
FACTORS AFFECTING ERROR POTENTIAL......ccviii i e 18
CLUSTER OF COMPONENTS OF PROJECT X9 BASED ONN3EQUENCE AND
ERROR POTENTIAL SCORES. ... e e 21
CLUSTER OF COMPONENTS OF PROJECT X10 BASED ORNSEQUENCE AND
ERROR POTENTIAL SCORES.o e e 22

CLUSTER OF COMPONENTS OF PROJECT X9 BASED ONRECT SCORES........ 24
CLUSTER OF COMPONENTS OF PROJECT X10 BASED ONRECT SCORES....26
CLUSTER OF COMPONENTS OF PROJECT X9 USING EXPETION
MAXIMIZATION CLUSTERING BASED ON CONSEQUENCE AND RROR
POTENTIAL SCORES..... .o et e e e e 27
CLUSTER OF COMPONENTS OF PROJECT X10 USING EXFPATION
MAXIMIZATION CLUSTERING BASED ON THE CONSEQUENCE AN ERROR

POTENTIAL SCORES ... o e e e e e 28
DECISION TREES FOR THE 12 PROJECTS.....ciiiii e e 29
RANKING OF THE CLUSTERS OF PROJECT X9 BASED @ONSEQUENCE......... 35

RANKING OF THE CLUSTERS OF PROJECT X9 BASED GRROR POTENTIAL...36
CLUSTER OF COMPONENTS OF CM1 BASED ON RELIABIY BASED

RIS K e 43
CLUSTER OF COMPONENTS OF CM1 BASED ON MAINTAINBALITY BASED

RIS K 48
CLUSTER OF COMPONENTS FOR INDENT ...ttt e e e e e e 54

LIST OF FIGURES

agrwdE

o

10.
11.
12.
13.
14.
15.
16.
17.

18.

EXAMPLE OF A CLUSTERING TREEcooiiiiiiimee e 10
EXAMPLE OF A BANNER PLOT ... e 11
EXAMPLE OF A DECISION TREEcooiiiiititiimme e s ee e 14

PICTORIAL REPRESENTATION OF THE FACTORS AFFECTENCONSEQUENCE 17
PICTORIAL REPRESENTATION OF THE FACTORS AFFECTENERROR

O I N I PP 18
CLUSTERING TREE OF PROJECT X9 OBTAINED USING THEONSEQUENCE AND
ERROR POTENTIAL SCORES ... e 20
CLUSTERING TREE OF PROJECT X10 OBTAINED USING THEONSEQUENCE

AND ERROR POTENTIAL SCORES........o it 22
CLUSTERING TREE OF PROJECT X9 OBTAINED USING THERECT SCORES........ 24
CLUSTERING TREE OF PROJECT X10 OBTAINED USING EBIRECT SCORES...... 25
J48 DECSION TREE FOR PROJECT XO9.. .ot 29
J48 DECSION TREE FOR ALL THE 12 PROJECTS TOGERH..........ccovviiiieiie 33
ORDER OF IMPORTANCE FOR CONSEQUENCE AND ERRORTENTIAL 33
CLUSTERING TREE OF CM1 OBTAINED FOR THE HOUSEKEING

SCENARIO(HK) BASED ON THE RELIABILITY BASED RISK MERICS. 40
CLUSTERING TREE OF CM1 OBTAINED FOR THE WORSRASE VALUES BASED

ON THE RELIABILITY BASED RISK METRICS.......o i 42
BANNER PLOT OF CM1 OBTAINED FOR THE WORSR CASALUES BASED ON

THE RELIABILITY BASED RISK METRICS ... 43
CLUSTERING TREE OF CM1 BASED ON MAINTAINABILITYBASED RISK

METRICS ettt e e et r e e e e e e e e e 47
BANNER PLOT OF CM1 BASED ON THE MAINTAINABILITYBASED RISK

METRICS oot e e e et r e e e e e r e 47
CLUSTERING TREE OF INDENT OBTAINED BASED ON THEXPECTED VISIT
COUNTS AND THE COMPONENTS ENTROPY VALUES......eoiiieiieecee 53

Vi

Chapter 1: Introduction

Clustering involves organization of collection aitferns into meaningful clusters based
on their similarity. Software modules are groupedoading to the value of their software
metrics in clustering. We assume that the compentrat have similar metrics behave
alike and hence are grouped together into clustassuseful to know the behavior of the
software components and classify them as we cassdya similar activities to all the
components in a cluster and rank the clusters. Mfdeimented clustering in different
phases of software life cycle and classified thiwsse components into homogeneous
clusters.

Software Integrity Level Assessment Process (SILASP}Yhe current state of
practice at NASA that is done early in softwares ldycle during the requirements
specification. SILAP uses some of the definitiorenf the COCOMO model to define
complexity criteria and uses domain expert's knaolgke to assign score to several
Product/Process metrics of the software compon&simplemented clustering on the
software components of 12 real NASA projects, usigprocess related metrics defined
in SILAP.

Also, we implemented clustering using the desigatrits obtained in the
architecture level derived from the unified modglianguage (UML) on a case study,
CM1 from the Data Metrics Program [33]. CM1 is dtware component of a data
processing unit in an instrument, used to explaiado probe the early universe.

We also clustered the components of on open saafteare, Indent using the
code metrics obtained in the operational stagesribtas 9 files totaling about 7000 lines
of code. It is used to beautify the C code. Runriifigas no effect on the functionality of
the code but makes the results aesthetically plgasnd more readable. Our results
demonstrate that classification of software comptmeénto meaningful homogeneous
clusters can be done in different phases of thevaoé lifecycle.

The rest of the thesis is organized as followsatel work and our contributions
are discussed in chapter 2. In addition, chaptero8ides the background on clustering
algorithms, classifiers that we used and expldiestieaning of decision trees. In chapter
4 we discuss ways to classify components early aftware life cycle during the

requirements specification and present the resldtained on 12 real NASA projects
using the metrics obtained from the current staf@actice in NASA called the Software
Integrity Level Assessment Process (SILAP). Chaptpresents results of classification
of software components in the architectural lewelaocase study, CM1, based on the
design metrics obtained from the Unified Modelingnguage (UML). Chapter 6
discusses the case study Indent and presents thdtsreof classification of its
components, based on the code metrics obtainetieinoperational stage. Chapter 7

presents our conclusions and lessons learned.

Chapter 2: Related Work

In this chapter we summarize the related work, als discuss how we classified
components into homogeneous clusters with clugierkithough clustering has been
used for the classification of components [21],, [B]], most of the previous work
implemented it later in the software life cycle,the details required are not available
until later stages of design phase. Most of theipus works implemented clustering on
large sample datasets. Very few implemented cluagten small size dataset [15].

In [21], unsupervised learning clustering techesjsuch as k-means and Neural
gas clustering algorithm were used to analyze dfigvare quality in the absence of fault
proneness labels. Clustering algorithms can graffware modules according to their
values of software metrics. Software fault measer@mmetrics were used for clustering.
The software engineering assumption is that faung@ software modules will have
similar software metrics and so will likely formusiters. Similarly, not fault-prone
modules will likely group together. When the clusémalysis is complete, a software
engineering expert labels it fault prone or notltfgmone. Data sets from two NASA
projects JM1 and KC2 were used as empirical cagtiest. JM1 has 8850 and KC2 has
520 software modules. The software measurementdaaiddata were obtained at the
program function, subroutine or method levels, ssofiware module is a program
function, a subroutine or a method. Clustering waplemented on these software
modules to analyze the software quality.

Most of the Clustering techniques used in the ipress work worked well for
large data sets. In our work our case studies hadadl size dataset, so we did research
on a method that works well on small size dataSee of the previous works that used
clustering to classify small size dataset was [Ib]15], clustering using Wards method
was implemented for identifying clusters in smaditaket of journals based on five
citation flows. This paper suggests that hierawhiclustering techniques, Wards
minimum variance method or simple average methocksvevell for small size dataset.
Journals that were clustered together are deemieel ¢ohesive..

Another work used clustering to cluster the sofevaxecution profiles and

predict failures [7]. The case studies used in gaper included the Java word count

program, the Java directory listing program, thgaJeegular expression parser and
regular expression finder, the java pretty prindeid the GNU Collection Compiler
(GCC) version 2.95.2.They found that clusterindates the failures and observed that a
considerable number of failures were isolated iralsrusters of executions. In [8],
Podgurski et al used GCC case study which has B880i@es of code, and another case
study called Lilypond which has 48,000 lines of €odnd implemented clustering
algorithms. The cluster analysis revealed that @kt profiles of failures typically have
unusual profiles. All clustering of executions mststudy was done using agglomerative
hierarchical clustering algorithm, later in the te@fre life cycle to identify failures in
execution profiles and classify them.

Clustering results presented in this thesis atstthat it can be used for identifying
homogeneous clusters in the software componentedbas the software metrics
available, in different phases of the software dijele.

* We implemented clustering during the requiremeipiscdication based on the
process/product metric values assigned by domagmeréex We used these metrics
from the current state of practice at NASA IV & \lled Software Integrity
Level Assessment Process (SILAP). SILAP consideveml factors that affect
consequence of failure and error potential of tfeasare components. The list of
software components in a project is graded aganset of criteria for these
factors and uses weights assigned by domain exjpegenerate a weighted score
for consequence and error potential. We clusténeccomponents of 12 projects
using SILAP scores.

* We also implemented clustering early in the sofen#e cycle using the design
metrics obtained at the architectural level. We dugbe reliability and
maintainability based risk metrics obtained fromevpous works [9], [1], [2], [3]
to implement clustering.

Brief description of the methodology used in tmeviious work [9] to obtain the
reliability based risk metrics is presented here tfee sake of completeness. In [9]
Architecture level risk assessment was done iretitey phases of software life cycle to
obtain reliability based risk metrics such as dyitaoomplexity, severity and fan out.

Unified Modeling Language (UML) [6] and commerciabdeling environment Rational

Rose Real Time (RoseRT) [34] were used to get indbion and data necessary for the
estimation of reliability based risk. For each cam@nt and connector in the software
architecture a heuristic risk factor was obtairBlde Markov model was used to obtain
the scenario risk factors. The risk factors of nases were obtained by averaging the
scenarios risk factors. Then, the overall systesk factor is obtained by weighting the
independent use cases risk factors with the probabf their execution. Furthermore,
critical components that would require careful gs@l, design and more testing effort
were identified.

Brief description of the methodology used in tmeviious work [1] to obtain the
maintainability based risk metrics is presenteceHer the sake of completeness. In [1]
architecture level maintenance risk assessment adelibgy has been presented for
assessing the maintainability based risk into thatext of corrective maintenance early
in the software life cycle. Corrective software ntanance deals with fixing defects that
escape detection before release and that whichfesamis field failures [3]. The initial
change probabilities for corrective maintenance ewebtained by normalizing the
frequency of occurrence of each component by tke ttumber of error reports. The
maintainability based risk metrics such as chanmg@anation probabilities and size of
change were estimated by analyzing the architecitithe system under investigation
using structural diagram or class diagram. Fronsehartifacts the components and the
connectors of the component based system archiéestere identified. The maintenance
impact of change in the component was estimateajus$ie size of change metric [1].
This way maintainability based risk metrics of ttanponents could be obtained early in
the software life cycle.

In our work we used the maintainability based ms&trics and reliability based
risk metrics for implementing clustering on theeatudy CM1 [33].

 We also implemented clustering on the componentspain source software,

Indent, based on the code metrics that are availdinling the operational stage.

We clustered the nine components of Indent, udiegcomponent entropy and

expected visit counts as their software metricse Txpected visit counts

represent the expected number of executions ofn@eaoent. The conditional

entropy was used to define the component entropy/falind that components of

Indent that were the most frequently executed &at had maximum number of

failed test cases that required a fix were clustéogether.

Chapter 3: Background on Methods Used for Clusterig

In this chapter we present different clusteringhteques that can be used for

classification and description of the J48 classsfithat is used to obtain decision trees.

Clustering groups a given collection of unlabelpedterns into meaningful clusters.

Pattern clustering activity involves the followisteps [12].

Pattern Representation: It is a reference to the number of classes, thebeurof
available Patterns, and the number, type, and stdhe features available to the
clustering algorithm. The most effective subseteatures to be used in clustering
are selected from the original features. This pgea# identifying effective subset
of features is called feature selection.

Pattern Proximity: Pattern proximity is estimated using distancecfiom which

is defined on pairs of patterns. For example, tlestnscommonly used similarity

measure is the Euclidean distance, in which pdiate location in space and the

distance between points (x1,yl) and (x2,y2)dis(x, y):\/(xl—x2)2+(y1—y2)2)
Some alternatives are Manhattan distaiie, y) =|x, - x,| +|y; - y,|, Mahanalobis

distance between any two samples x(i) and x() (is—y)" = *(x-vy).
Mahanalobis distance takes into account correlati@tween features and
normalizes each feature to zero mean and unitnaeif81].

Clustering or grouping: It can be done in many ways. Hierarchical or partdl
clustering techniques can be used. Hierarchicatetfing algorithms produce a
series of nested partitions depending on the witdor merging (agglomerative)
or for splitting (divisive) the clusters based dreit similarity. Whereas, the
partitional algorithms attempt to cluster the setally, in a manner that depends
on a set of parameters. They identify the partitibat optimizes a clustering
criterion. A partitional clustering algorithm ohtai a single partition of data
instead of a clustering structure such as a denamogroduced by hierarchical
technique. The k-means is the most commonly usedtta simplest algorithm

employing a squared error criterion. It starts watlandom initial partition and

keeps reassigning the patterns to clusters basettheosimilarity between the
pattern and the cluster centers until a convergention is met.

» Abstraction of Data: It refers to compact description of each clustehe T
representation should be such that it is easy tdenstand. The output is
represented by graphical display, Clustering treeBanner Plot.

» Assessment of output: It is done by cluster validity analysis which usespecific
criterion of optimality.

3.1 Transformations on data
Several transformations can be applied on the eatasfore applying the dissimilarity
measures and implementing clustering [7]. Differemtmalization techniques and fusion
rules could give better results when clustered.[EXperiments conducted indicated that
normalization schemes such as min-max followed bsingple sum of scores fusion
yielded better clustering results [13].
Some of the transformations are
Binary metric: In this transformation, non zero values of thedezd are replaced by one.
This is done in order to emphasize the coveragaeprogram elements rather than the
differences in the frequency of the coverage [7].
Proportional metric: In this transformation each attribute is normaliz€tle range of
values for each attribute is computed, and ther eatue is mapped to its relative
position within the range.
Min-Max Normalization: This normalization scheme is best for cases wtrerdounds
(maximum and minimum value) of the data are kno®iven a set of values {Y},
k=1,2,...n, the normalized score is given by [13]
v
The transformed scores can be combined using fusidmiques such as simple sum,
maximum value and minimum value [13].

We can use statistical tools like R [32] and S plasmplement hierarchical
clustering [18], [28]. Also, Waikato Environmentr finowledge Analysis (WEKA) [24]

[25], a machine learning scheme that enables prepsing, classifying, clustering,
attribute selection and data visualizing can be leygad when we want to apply a
learning method (classifiers) to the dataset aralyar its output to extract information
about that data. WEKA allows us to run the EM custg and get the j48 classifier.

3.2 Hierarchical Clustering Technique

It was found that hierarchical technique is morgrapriate for small sample datasets
than the partitional algorithms [35], [16]. Hierhrcal cluster analysis has agglomerative
methods and divisive methods that find clustershservations within the dataset.

The divisive method starts with all observation®ome cluster and then splits (partition)
them into smaller clusters. The agglomerative naghbegins by considering each
observation as a separate cluster and proceedsribire until all observations belong to
one cluster.

The most commonly used hierarchical clustering wdthare [35]

» Single Link Method: Here, the distance between two clusters is themuim of
the distances between all pairs of clusters draam the two clusters.

» Complete Link Method: Here, the distance between two clusters is the rmaxi
of all pair wise distances between patterns inwteclusters.

» Average linkage method: Here, the distance between two clusters is compaged
the average distance between objects from thediuster and objects frorthe
second cluster. The averaging is performed ovepailk &,y) of objects, where
is an object from the first clusterjs an object from the second cluster.

* Wards Method: At each step of the cluster process in this methbd two
clusters are merged that result in the smallesease in the with-in cluster sum
of squares that is the sum of squared distancesebat each point and the
resultant cluster centroids. It is distinct frone thther methods because it uses an
analysis of variance approach to evaluate the rdiet between clusters. It

minimizes the sum of squares of any two clusteas ¢hn be formed in each step.

All the above mentioned methods display the clusgeresults graphically by means of a

clustering tree or by a banner plGlustering tree is a tree in which objects are

represented by the leaves. The vertical coordioftiee place where the two branches
join equals the dissimilarity between the corresjdon clusters. The Figure 1 shows an
example of a clustering tree. If we look for twasters in Figure 1, then components 1,

6, 4, 11 form one cluster and components 2, 91223, 7, 5, 8 form another cluster.

15
|

1.0

Height

0.5
11—

o

Figure 1. Example of a Clustering tree

0.0
L

The Banner plot representation [19] has a banrsrsiows the successive mergers from
the left to right. It looks like a waving flag. ¢dan be imagined as ragged flag parts at the
left and flagstaff at the right. The objects astdd from the top to bottom. The mergers
which commence at the between cluster dissimilaity represented by horizontal bars
of correct length. The banner represents the safoemation as the clustering tree. A
banner consists of stars and stripes. The staes t@flinking of the objects and stripes
refer to those objects. A banner is always reanh fieft to the right. Each line with stars
starts between the clusters being merged. Therdixa@ scales above and below the
banner, ranging from 0.00 (dissimilarity = 0) andhighest dissimilarity is found).It
gives a better overall insight into cluster struetand data quality. Figure 2 shows the
Banner Plot.

10

AAA+AAA+AAA+AAA+AAA+AAAHAAA+AAA+AAATLAAAHAAAFAAA+AAA+ABAHAAA
- 5 05 0 4 et XL RS bttt 2 P2 T PR S S LR R R R S Lt
FBB+BBB+N B+BBB+RED+BBB+PBB+BEB+EBE+PBB+BBB+EBP+BBB+BBB+EEE

cc+CCc+ccc+ccc+ccc+ccc+ccc+ccc cC
o e B o o e S Bt e o el il
DD+DDD+DDD+DD DDD+DDD+DDD+DDD+DDD+DDD+DDD+DD DD
B TN I 3N I3 3B B B DB
EE+EEE+EEE+EEE+EEE+EEE+EEE+EEE+EEE+EEE+EEE+EEEHEE

0,0 2,0 3.0 4.5 782

Figure 2. Example of a Banner plot [19]

The banner leads in a natural way to the coeffisiatescribing the strength of the
clustering structure found in the dataset (Agglatiee coefficient and Divisive
Coefficient). The average width of the banner plotes an idea of the quality of
clustering that is the amount of structure thatessn found by the algorithm. If the data
has a clear cluster structure, the between clulssimilarities (and hence the highest
level) will become much larger than the within ¢arsdissimilarities, so the black lines in
the banner become longer. For each object |, tteedontaining its label is seen and its
length is measured on a zero-one scale above owhlieke banner. The Agglomerative
coefficient [18], [19] is thus the average width (@ percentage filled or fraction of
blackness in the plot) of the banner plot. It dimensionless quantity between zero and
one, which does not change when all the originakidiilarities are multiplied by a
constant factor, which means that dissimilaritiess @sumed on a ratio scale. It tells us
the strength of the clustering structure that haenbobtained. But Agglomerative
coefficient (AC) tends to become larger when neases, so it should not be used to
compare datasets of very different sizes.

The Agglomerative Coefficient (AC) is defined fodataset as
AC=EZI 0} wherei =1ton (3.2)
n
Where for each objectl(i) is the length of the line containing its label.
When Agglomerative coefficient is small, close trq it implies that the clustering
algorithm has not found a natural structure, tBato clusters have been found and the

data consists of one big cluster. If the value gflamerative coefficient is close to one,

11

© D o Q

it implies that a very clear clustering structues lbeen found. We use the agglomerative
coefficient value to select the clustering methoak tclusters the data set the best. Thus,
when the banner is narrow we find that the agglamnex coefficient is low, indicating

that most of the objects remain unlinked for atreddy long time and hence the dataset

does not contain very natural clusters which wdade been formed sooner.

3.3 Expectation Maximization Clustering

In addition to the hierarchical clustering techmiguwe also used the Expectation
Maximization clustering on the software compondntsthe classification. Expectation
Maximization (EM) clustering is a mixture based althm [29] that models the
distribution of instances probabilistically, so ttfem instance belongs to a group with a
certain probability. EM calculates the densitiestéad of probabilities. The algorithm is
similar to the K-means procedure in that a set afameters are re-computed until a
desired convergence value is achieved. The finiteumes model assumes all attributes
to be independent random variables EM can handle faameric and nominal attributes.
A mixture is a set of N probability distributionshere each distribution represents a
cluster. An individual instance is assigned a pbiliig that it would have a certain set of
attribute values given it was a member of a pddiceluster. SupposE€ = 2, the
probability distributes are assumed to be normal data instances consist of a single

real-valued attribute. The algorithm determinesvdlee of five parameters, specifically:

1. The mean and standard deviation for cluster 1
2. The mean and standard deviation for cluster 2
3. The sampling probability P for cluster 1 (the pbitity for cluster 2 is 1-P)

The general procedure is as follows
1. Initial values for the five parameters mentionedwabare guessed.

2. In the case of a single independent variable wigamy and standard deviation

o, the formula to compute the probability densitgdtion is:

F(x) = 1 . (3.3)
(V2w)e~ A"

207

12

In the two-cluster case, we will have the two piolily distribution formulas
each having differing mean and standard deviatalnes. The probability density
function is used to compute the cluster probabibityeach instance.

3. The probability scores are used to raeveste the five parameters.

4. Returnto Step 2

The algorithm terminates when a formula that messsgtuster quality no longer shows
significant increase. This is called as EM algantHor expectation maximization. The
first step as mentioned above, calculation of thuster probabilities (Expected class
values) is Expectation. The second, that is calicmaof distribution parameters, is
Maximization of the likelihood of the distributiortd the given data [24]. One measure
of cluster quality is the likelihood that the datme from the dataset determined by the
clustering. The likelihood computation is obtaird®dthe multiplication of the sum of the

probabilities for each of the instances.

3.4 Decision Trees obtained using j48 classifier

Decision trees represent a supervised approaclagsification. The non terminal nodes
represent tests on one or more attributes and rtarmmodes reflect the decision
outcomes. The WEKA classifier package has its owrsion of C4.5 knows as J48
classifier [30]. J48 classifier forms rules fromuped partial decision trees built using
C4.5’s heuristics, which is non-commercial tredding algorithm. The main goal of this
scheme is minimization of the number of tree leagld tree nodes and hence maximizes
data generalization. It uses a measure taken fnenmtormation theory to help with the
attribute selection process. Hence, for any chpaat in the tree, it selects the attribute
that splits the data so as to show the largest amoli information gain. The J48

classifier builds a C4.5 decision tree.

The general approach for a decision tree algorithas follows
1. The attribute that best differentiate déput is chosen.

2. A separate tree branch is created for each ohadae.

13

3. The instances are divided into subgroups so asfliect the attribute values of the
chosen node

4. We terminate the attribute selection procesgéoh subgroup if
(i) All members for a subgroup have the sarmakie for the output attribute,
terminate the attribute selection process for threent path and label the branch
on the current path with the specified value.
(i)The sub-group has a single node or nohertdistinguishing attributes can be
determined. Branch is labeled with output valuensbg the majority of the
remaining instances.

5. The above process in repeated for each sub greaped in (3) that has not been
labeled as terminal.

The above algorithm is applied to a training détahe test data set is available, the
created decision tree is tested. If the test dataot available, the j48 does a cross

validation using the training data. If x is the rian of folds for cross-validation, then

(x=1 of the training data is used to construct the rhadd 1 of the training data is
X X

used to test the model. This process is then regedimes so that all the training data is
used exactly once in the test data. kheifferent error estimates are then averaged to
yield an overall error estimate [30]. While extesmsitests on numerous datasets have
shown that ten-fold cross-validation is one of thest numbers for getting the most
accurate error estimate, other values can be USgdre 3 shows an example of a

decision tree.

US3 <=2

| AS2 <= 3:classl (16.0)
| AS2 > 3:classO (11.0)
US3 > 2: class2 (6.0)

Figure 3. Example of a decision tree

14

Each line represents a node in the decision trée. Aext line that starts with “ | *
represents the child node of the first line. In egah a node with one or more “ | *
characters before the rule is a child node of tbdenthat the right-most line of ' | '
characters terminates at, if it is followed up gage. The next part of the line declares
the rule. If the expression is true for a givertanse it is classified if the rule is followed
by a semi colon and a class designation (that das@n becomes the classification of the
rule) or, if it isn't followed by a semicolon, werinue to the next node in the tree (the
first child node of the node we just evaluatedittgtance on). If the expression is instead
false, we continue to the "“sister" node of théenwe just evaluated; that is, the node that
has the same number of '|' characters before it taedsame parent node. The
classifications are sometimes followed by two nurabe the brackets. The first number
tells how many instances in the training set angectly classified by this node. The
second number, if it exists (if not, it is taken lte 0.0), represents the number of

instances incorrectly classified by the node.

15

Chapter 4: Classification of Software Components dung the

Requirements Specification

We implemented clustering on the software companehtl2 real NASA projects using
the metrics obtained early in the software lifeleyduring the requirements specification
from the Software Integrity Level Assessment PrecéSILAP), the current state of
practice in NASA IV & V.

4.1 Software Integrity Level Assessment Process (3\P)

Software Integrity Level Assessment Process (SILFSB], the current state of practice
at NASA IV & V is implemented very early in the Sofre Life Cycle, even before the
requirements specification based on several Pri@eshict metrics and Domain Experts
Knowledge. SILAP considers three factors that affemsequence and thirteen factors
that affect the error potential of the software poments. Some of the Complexity
definitions in COCOMO are used in SILAP to definbet evaluation criteria
“Complexity” early in software life cycle. The lisf software components in a project is
graded against a set of criteria for different dastrelated to Consequence and Error
Potential. This results in a score for Consequeara Error Potential. The scores are
assigned values in a range of 1 to 5. Score 1 msidered a really good score (low
Consequence and low Error Potential). Score 5 issidered a bad score (high
Consequence and high Error Potential). Using thght® assigned by domain experts to
these factors a weighted average of these scoresldalated to generate a score for
consequence and Error Potential. These scoreti@mdridividually used to select tasks.
If the software is a human rated flight, final s=dor the consequence is obtained taking
the human safety into account. An algorithm waslusaletermine the set of tasks based
on the Consequence and the Error Potential sc8te&\P assigns weights to different
factors in order to generate a weighted scoredaosequence and Error Potential. We use
clustering and study the behavior of the componeased on the SILAP scores.

SILAP considers the factor categories and weightsve in Table 1 and Figure 4 for

obtaining a weighted score for Consequence.

16

Table 1. Factors affecting Consequence (CO1)

Factor Category Weights
Human Safety(HS2) 0
Asset Safety(AS2) 0.35
Performance(PF2) 0.65

e
ED O

Figure 4. Pictorial representation of the factors affecting @nsequence

Figure 4 shows a pictorial representation of tlediacategories that affect Consequence.
Score for consequence (CO1) is obtained by the hieigaverage of the Human safety
(HS2), Asset Safety (AS2) and Performance (PF2)esco

SILAP considers the factor categories and weightsve in Table 2 and Figure 5 for

calculating weighted score for Error Potential.

17

Table 2. Factors affecting Error Potential (EP1)

Factor Category Weights
Development(DV2) 0.579
Experience(EX3) 0.828
Development Organization(DO3) 0.172
Process(PR2) 0.249
Use of Standards(US3) 0.0955
Use of CM(UC3) 0.0962
CMM Level(CL3) 0.0764
Use Of Formal Reviews(FR3) 0.1119
Use of Defect Tracking System(DT3) 0.0873
Use of Risk Management System(RM3) 0.0647
Re Use Approach(RA3) 0.226
Artifact Maturity(AM3) 0.242
Software Characteristic(SC2) 0.172
Complexity(CX3) 0.547
Degree Of Innovation(DI3) 0.351
Size Of System(SS3) 0.102

EP1

DV2 @ sC2

[Exs] [DOS] [uss] [ucs] [CLs] [FRS] [DTa] [RMa] [RAa] [AMs] [cxs] Dls]

—_—

[583]

Figure 5. Pictorial representation of the factors #ecting Error Potential

There are two types of scores that are considerdtei Error Potential calculations.
» Direct scores. These are the scores that entered by the analydthave a score
from one to five (EX3, DO3, US3, UC3, CL3, FR3, DTRM3, RA3, AM3,
CX3, DI3, SS3).
» Composite Scores: These are the scores that are computed based oreiteted
average of the direct scores (Development (DV2jhc€ss (PR2), Software
Characteristic (SC2)).

18

The score for Error Potential (EP1) is obtainedh®/weighted average of the composite
scores.

We used the sanitized names for the 12 projectX1gasX2, .., X12. Software
components of these projects were assigned diceces ranging from 1 to 5 by the
domain experts and the composite scores were @otais a weighted sum of the direct
scores. We implemented clustering for all the conemds of the projects based on these
SILAP scores. Since the Consequence and Error fatetores are obtained as a
weighted sum of the direct scores, we implemerdtehing at two levels of granularity
on the components of the projects.

The two levels of Granularity at which we implemehtstering are
* At a higher level we implemented clustering on teenponents of each project
using the weighted average scores of Consequen©é)(@nd Error Potential
(EP1) scores.

* At a lower level we implemented clustering on tlemponents of the project

using the direct score attributes which were assigoy the analysts that is the

factors in the leaves of the tree representatidfignre 4 and Figure 5.

4.2 Implementation of Agglomerative clustering on pojects

We implemented clustering on the SILAP scores efliB projects X1, X2, ..., X12. Due
to space limitation we present the results obtafoetivo projects X9 and X10 here.

4.2.1 Clustering results based on weighted Consequenceda&rror Potential scores
Project X9
We implemented clustering using the hierarchicalrd¥anethod for each project with

the weighted consequence and error potential scohesclustering tree that we obtained

for project X9 is as shown in Figure 6.

19

Height

Cluster A

Cluster B

Cluster C

Cluster D

Figure 6. Clustering tree of project X9 obtained usg the Consequence and Error

Potential scores (Agglomerative Coefficient: 0.979)

In hierarchical clustering we can decide the nundfesiusters, by analyzing the output.
From Figure 6 it is evident that the 19 compone@ntgroject X9 form 4 distinct clusters,

A, B ,C and D. The Agglomerative coefficient vakligtained was 0.979, which indicates

a good quality of clustering.

Table 3 shows the four distinct clusters, the conegpds in each cluster and their

CO1 and EP1 values.

20

Table 3. Clusters of the components of project X9dsed on Consequence and Error

Potential scores

Cluster and components _ Error Potential

Cluster | Components Co1 EP1
1 2.30 2.49

13 2.30 2.58

15 2.30 2.58

A 6 2.30 2.68
8 2.30 2.68

11 2.30 2.68

16 2.30 2.68

5 1.65 2.58

B 10 1.00 2.58
14 1.00 2.49

2 3.60 2.58

18 3.60 2.58

C 19 3.70 2.68
3 3.35 2.77

9 3.35 2.77

4 4.35 2.68

D 12 4.65 2.68
17 4.65 2.49

7 5.00 2.68

From the Table 3, it is evident that the compon#mas have similar characteristics are in
one cluster. For instance, components in clustehake moderate consequence and
moderate error potential scores, while componehtsluster B have low consequence
and moderate error potential scores, componentsluster C have relatively high

consequence and moderate error potential scoresaangonents of cluster D have very
high consequence and moderate error potential Scbi@re, in this project as the error
potential scores are close to each other clustesiege being guided by consequence

Sscores.

Project X10

The clustering tree obtained for project X10 udimg weighted score of CO1 and EP1 is
shown in Figure 7. From Figure 7, we see that theme 3 distinct clusters. The
agglomerative coefficient value obtained was 0.99Mich indicates a good quality of

clustering.

21

Table 4 shows the clusters of project X10, its congmts and CO1 and EP1 values of
project X10.

Height

= =| Cluster C

Cluster A

Cluster B

Figure 7. Clustering tree of project X10 obtained sing the Consequence and Error

Potential scores (Agglomerative coefficient — 0.9D4

Table 4. Clusters of components of project X10 badeon Consequence and Error Potential

scores
Clusters and components - Error Potential
Cluster Components Co1 EP1
1 2.3 1.74
3 2.0 1.75
A 7 2.35 1.74
8 2.30 2.64
9 2.30 1.93
13 1.65 2.64
2 1.65 1.74
B 10 1.65 1.55
4 1.00 1.74
11 1.00 1.74
5 3.0 1.74
C 6 3.6 1.55
12 4.3 1.93

22

From Table 4, it is evident that the componentd tieve similar characteristics are
clustered together. Cluster A has moderate consequand error potential values.
Cluster B has relatively low consequence and maddezrror potential. Cluster C has
relatively high consequence and moderate errompiate

Similarly we implemented clustering on the otherpktjects based of the CO1

and EP1 scores and used the Agglomerative Coeffigedues for their validation.

4.2.2 Clustering results based on direct scores

We implemented clustering using the Hierarchicalré¥aclustering method on the 12
projects with the 3 direct scores HS2 , AS2 and it affect Consequence and the 13
direct scores EX3, DO3, US3, UC3, CL3, FR3, DTBIRRA3, AM3, CX3, DI3, SS3

that affect the Error Potential of the componentsefach project.

Project X9

The clustering tree obtained after implementingtgting on the X9 project is as shown
in Figure 8. As seen in the Figure 8, clusterireptthere are 3 distinct clusters. The
Agglomerative coefficient value obtained was 0.988jch indicates a good quality of

clustering. Table 5 shows the clusters, compon@néach cluster and their direct score

values

23

Cluster C

ST

WbieH

Cluster B

Cluster A

Figure 8. Clustering tree of project X9 obtained uimg the direct scores

(Agglomerative Coefficient -0.938)

Table 5. Clusters of components of project X9 basesh the direct scores

Error potential

Cluster and component

Cluster

Components | HS2 JAS2|PF2JEX3|DO3|US3UC3|CL3|FR3|DT3|RM3|RA3|AM3 |CX3|DI3] SS3

10

13
15

11
16

18
12

19

17

24

Comparing Table 3 and Table 5, we observe that coents of project X9 were grouped
in a different way. When clustering was based orgited average scores CO1 and EP1
than they were clustered in a different when comgpao based on the direct score
attributes. This difference in clustering could dee to loss of information because of

weighting as the scores for CO1 and EP1 are thghtesi average scores.

Project X10

The clustering tree obtained after implementingstgting on project X10 is shown in
Figure 9. As seen clustering tree has three distilusters, A, B, C. The Agglomerative
Coefficient value 0.704 indicates a good qualitgloftering. Table 6 shows the clusters,

components in each cluster and the direct scorqedégect X10.

Height

| N

™

Cluster B Cluster C

Cluster A

Figure 9. Clustering tree of project X10 obtained #&er using the direct scores
(Agglomerative coefficient — 0.704)

25

Table 6. Clusters of components of project X10 badeon the direct scores

Cluster and components _ Error Potential

Cluster | Components

PAS2

o
N

EX3|DO3|U

(dV)

U

(O]

C

W

FR3|DT3|RM3|RA3|A

w
0O
X
w

(%]

1
2
4
11
10

[EEN

9
5
7

o
cooo |[ocoloooooo|lL
WWERN |[PRlPRPRRRPR
GWwwhN [Mw|lan ke wlh
FRrRrR |lowlkrrRrRrRrR
ENGU NN NI NI N N N N NI NJE N
i) B i I
A G R e i)
WWwwWww |[wwlwwowowoww|-
FRrRrR PR, RrRrRrR
RPRRER [ONRPRPRPRRRE
Tl e
NPNDNDN P EFRPINDNDNDNDDNDDN
WWWN |[wwlwwwowoww|Z
Wb |[wwlFrwowoww
N l—‘l—‘l—‘l—‘l—‘l—‘l—‘l—‘g

12

WwwN I\JI\JOOOOOOOOOOOO%

Comparing Table 4 with Table 6 we find that compuseof project X10 were grouped
in a different way. This difference in the clustgyicould be due to the loss of
information due to weighting as the scores for Go#l EP1 are the weighted average
scores.

Similarly we implemented clustering on all the athé projects using the direct
scores as attributes. For all the projects, whencthstering tree for the components of
each project obtained with the weighted averageesc6O1 and EP1 and the clustering
tree obtained with the direct scores was compdhsy, were different. Hence we could
infer that weighting causes loss of information #mel behavior of the components could
be understood better using the direct scores,eas thould be no loss of information. We

need domain expert’'s knowledge to further validateresults.

4.3 Implementation of Expected Maximization Clusteing and obtaining decision
trees
In addition to the hierarchical clustering techmque also implemented EM clustering

on the 12 projects, using the weighted averagetandirect SILAP scores.

26

4.3.1 Clustering results based on weighted Consequee and Error Potential scores
We implemented EM clustering on the 12 projectshwviite CO1 and EP1 scores. EM
clustered the components of the project X9 as shiowmble 7.

Table 7. Cluster of components of project X9 usingxpected Maximization

Clustering based on the Consequence and Error Pot#al scores.

Cluster Components

A (class0) 10

As seen from Table 7, all the 19 components ofgatoK9 were classified as a single
class (class0), which implies that all the compasndiehave similarly, when clustered
based on CO1 and EP1 scores.

Similarly we ran the WEKA tool on all the other piojects using the weighted
average scores CO1 and EP1 and obtained the slugtkrthe results obtained were

different from the results obtained in hierarchidaistering.

4.3.2 Clustering results based on direct score athutes

We implemented EM clustering on the componentshefgroject using the direct score
attributes, that is HS2, AS2, PF2, EX3, DO3, US&3UCL3, FR3, DT3, RM3, RA3,

AM3, CX3, DI3, SS3. The clusters that we obtainfidrave ran the WEKA tool on the

X9 project is shown in Table 8.

27

Table 8. Cluster of components of project X9 usingxpected Maximization Clustering
based on the direct scores.

Cluster Components
1
2
5
6
8
10
A (class0) 11
12
13
14
15
16
18
3
4
7
9
17
19

B (classl)

As seen from Table 8, when we implemented the HMter using the direct scores
HS2, AS2, PF2, EX3, DO3, US3, UC3, CL3, FR3, DTBIR RA3, AM3, CX3, DI3,
SS3 of the components for the project X9, companemre classified into two clusters
(classO and classl). We see that components 12H)61,12,13,14,15,16,18 are
clustered as one cluster (class0) and compone#is,®,17,19 are clustered as another
cluster (Classl) as shown in Table 8.

Similarly we implemented EM Clustering on the othérprojects using the direct
score factors and obtained the clusters. Theyearedtthe components in a different way
when compared to the clusters obtained using thghtexl score factors (CO1 and EP1).
All the results obtained using EM Clustering werHfedent from the results obtaimed

using hierarchical clustering.

28

4.3.3Implementation of J48 classifier to obtain decisionrees

We ran the J48 classifier using WEKA and obtairrexl 348 pruned decision tree for the
components of all the 12 projects that were clestdEM cluster) using the direct score.
The J48 decision tree tells us which attribute eaube components to behave and hence
cluster differently. We obtained J48 pruned deoidree when we ran the WEKA tool
using J48 classifier for all the projects. The dé8ision tree obtained for project X9 is as

shown in Figure 10.

HS2 <= 2: class0 (13.0)
HS2 > 2: classl (6.0)
Figure 10. J48 decision tree for project X9

This implies that the factor HS2 is the factor thas the highest information gain and
decides the cluster. If the HS2 score is less thraequal to 2 then it's classified as a
cluster, class0, otherwise it's classified as amotfuster (classl). There are 13 instances
correctly classified as classO and 6 instance®ctyrclassified as classl.

Similarly we ran the j48 classifier to obtain thectsion trees for all the other 11
projects based on the clusters that were obtairezhwhey were clustered using direct
score factors (EM Clustering). Table 9 shows thasilen trees that were obtained for all

the 12 projects.

Table 9. Decision trees for the 12 projects

Project 10 Fold Cross Validation Decision Trees
EX3<=2
1 Correctly Classified Instances 43 7973 % | PF2<=2:class3 (8.0)
Incorrectly Classified Instances 1 2727 % | PF2>2:classl (17.0)
EX3 > 2: class2 (19.0/1.0)
X2 Correctly Classified Instances 42 100 % DO3 <=4: class0 (15.0)

! Considering only the components of the project tieate values for all the factors affecting
consequence and error potential.

29

Incorrectly Classified Instances 0 0 % DO3 >4
| UC3<=1:classl (15.0)
| UC3>1:class2 (12.0)
DO3 <=4
3 Correctly Classified Instances 20 833% | DI3 <= 2: class2 (19.0)
Incorrectly Classified Instances 4 6660 | DI3 > 2: classl (2.0)
DO3 > 4. class0 (3.0)
4 Correctly Classified Instances 9 1.8382% EX3 <= 2: classl (3.0/1.0)
Incorrectly Classified Instances 2 1838 % EX3 > 2: class0 (8.0)
US3<=2
| EX3<=1:class3 (2.0)
Correctly Classified Instances 11 .3333% | EX3>1
xo Incorrectly Classified Instances 4 .6BB7 % | | PF2<=3:classl (7.0)
| | PF2>3:class2 (4.0)
US3 > 2: class0 (2.0)
Correctly Classified Instances 25 100 % DO3 <= 1: classl (15.0)
X6 Incorrectly Classified Instances 0 0 % DO3 > 1. class2 (10.0)
DO3 <=2
| HS2 <=1:class2 (77.0)
Correctly Classified Instances 137 2994 % | HS2>1
X Incorrectly Classified Instances 1 0.7246 % | | EX3<=1l:classl (10.0
| | EX3>1:class0 (6.0)
DO3 > 2: classl (45.0/1.0)
SS3 <=1
| US3<=1:class5 (3.0)
Correctly Classified Instances 24 3927 % | US3>1:class4 (7.0)
X8 Incorrectly Classified Instances 2 .6923 % SS3 >1
| EX3<=2:classl (5.0)
| EX3>2:class2 (11.0/1.0
%9 Correctly Classified Instances 17 .4837 % HS2 <= 2: class0 (13.0)
Incorrectly Classified Instances 2 .5DB3 % HS2 > 2: classl (6.0)
%10 Correctly Classified Instances 10 .9281 % EX3<=1
Incorrectly Classified Instances 3 .0ZB9 % | AS2<=1:class0 (7.0)

30

| AS2>1:classl (4.0/1.0
EX3 > 1: class2 (2.0)

US3 <=2

Y11 Correctly Classified Instances 33 010 % | AS2 <= 3:classl (16.0)
Incorrectly Classified Instances 0 0 % | AS2 > 3:class0 (11.0)
US3 > 2: class?2 (6.0)
UC3<=1
| EX3<=1
12 Correctly Classified Instances 37 0865 % | | DO3<=3:class3 (7.0
Incorrectly Classified Instances 6 95635 % | | DO3 > 3:class4 (2.0)

| EX3>1:class5 (29.0/3.0
UC3 > 1: class0 (5.0)

From Table 9, it is evident that each project iBedent and different attributes have

highest information gain for each project.

J48 Decision tree obtained for all the twelve projects

We implemented the EM clustering on all twelvejgcts together using the direct score

factors and then we ran the j48 classifier usingkWEool to obtain the decision tree.

The decision tree obtained for all the twelve petgedogether is as shown in Figure 11.

DT3<=1

RM3 <= 2: classl (14.0)

RM3 > 2

| EX3<=3

| | HS2<=1:class6 (68.0)

| | HS2>1:class2 (24.0/1.0)
| EX3> 3:class7 (45.0)

31

RM3<=1

UC3 <= 1: classl (11.0)
UC3>1

| US3<=2

| | DO3 <= 3: class0/R0)

| | DO3 > 3: classf)8.

| US3>2

| HS2 <=1

| | CX3<=3: chgk3.0/1.0)
| | CX3> 3:clagxB/1.0)

| HS2 > 1: classB)(2.

HS2 <= 0: class0 (89.0/3.0)
HS2 >0

| AS2<=2

| | DI3<=1: class@®{8.0)

| | DI3 > 1: class®)2.

| AS2>2:class3 (3.0)

FR3 <= 1: classl (2.0)

FR3>1

| AM3 <=2

| | PF2<=1:class5 (2.0)

| | PF2>1:class3 (100)/1
| AMS3 > 2: class5 (6.0)

AS2 > 4: class3 (19.0)

UC3<=1

| RA3 <= 3: class5 (3.0/1.0)

| RA3 > 3:classl (28.0/1.0)

uUCi>1

| FR3<=1] | | | | DO34k=lass4 (21.0)
| | DO3> 4. class5 (3.0)

| FR3> 1: class5 (30.0)

32

| US3 > 3: class8 (19.0)
Figure 11. J48 decision tree for all the twelve pijects together

Observing the decision trees obtained in Table @ igure 11, we find that different
attributes have highest information gain in diffar@rojects. Another observation from
Figure 11 is that, the attribute Use of Defect Knag System (DT3) has highest
information gain for all the twelve projects togethThis way implementing Clustering
and running the classifiers could contribute to ttlassification of the software
components and revealing the attribute that hashtbbkest information gain in the

decision trees very early in the software life eycl
4.4 Proposed Algorithm for ranking clusters in a Poject

We propose a way to rank the clusters based onegaersce and Error Potential. We
ordered the direct scores that affect consequemt@mor potential based on the weights

assigned by domain experts as shown in Figure 12.

Consequence Error Potential
HS2 (0.0) EX3 (0.828)
PF2 (0.65) CX3 (0.547)
AS2 (0.35) DI3 (0.351)
AM3 (0.242)
RA3 (0.226)
DO3 (0.172)
FR3 (0.1119)
SS3 (0.102)
UC3 (0.0962)
US3 (0.0955)
DT3 (0.0873)
CL3 (0.0764)
RM3 (0.0647)

Figure 12 Order of importance for Consequence and iEor Potential

33

Algorithm for Ranking n clusters based on Consegquence

Let Co represent the factors that affect consequence.
1. Selectthe Cahat has the highest order of importance.
2. LetComax; be the maximum value of selected foocluster j.

3. Sort the clusters based on their Comaxwalues for the selected Coi in descending order
and store in array sort][].
4. If (Comax_,, of sort[k]) > (Comax_, of sort[k+1])
Then rank cluster m higher rank
Repeat step 4 for next value of k in sort[] having same Cochecked.

Else

- Check the sequence of next values in sort[]thi# Comax; values of

index where sort[index] !=sort[k] for same Co

Repeat
{

If (! all Co,’s are checked for the sequence of sortlk] to

sort[index-1])
{
- Select the next Caccording to the order of

importance for these sequence of clusters in

sort[k] to sort[index-1]

- Resort sort[] only for these values from sort[k]

to sort[index-1] in descending order based on
the Comax values of selected Quf these

clusters.

- Repeat step 4 for these sequence of clusters

from sort[K] to sort[index-1]

34

Ranking based on Error Potential: is done similarly, except that we consider the

Else

}

1] are ranked the same.

ordering of the direct scores that affect erroeptal

4.4.1 Ranking for Project X9
Ranking of clusters of project X9 based on Consequence

As shown in Table 10, the maximum HS2 score ofteluB is higher than the maximum

HS2 score of cluster A (5>2), cluster B is rankddghbr than cluster A based on

consequence.

} Until all clusters in sort[k] to sort[index-1] a& assigned a rank

Table 10 Ranking of the Clusters of project X9 bagton Consequence

Cluster

Components

Maximum HS2

Rank

1
2
5
6
8
10
11
12
13
14
15
16
18

2.0

3
4
7
9
17
19

5.0

Sequence of clusters from sort[K] to sort[index-

35

Ranking of clustersof project X9 based on their Error Potential

As seen in the Table 11

Maximum EX3 value of cluster A = maximum EX3 valofecluster B
Maximum CX3 value of cluster B > maximum CX3 vabfecluster A
Hence, Cluster B is ranked higher based on erranpial

Table 11 Ranking of clusters of project X9 basedn error potential

Cluster Components EX3 CX3 Rank

A (class0) 11 3.0 3.0 Il

B (classl) 3.0 4.0 I

17
19

Similarly, we ranked the clusters for all the otpesjects. This way we could rank the

clusters of components very early in the softwdeeclycle with clustering.

36

Chapter 5: Classification of Software Components Bsed on Reliability

and Maintainability Based Risk in the Architectural Level

We implemented clustering using metrics obtainatyea the software life cycle, when
the requirement specifications and design detaedlsagailable. In this chapter, we present
the clustering results obtained on the CM1 casdystising the reliability based risk
metrics such as Complexity, Severity and Fan-Outd8d the maintainability based risk
metrics such as Change Probabilities, Normalizedntdaance Impact Fan-Out and

Normalized maintenance Impact Fan-In [1], [2], [3]

5.1 CM1 Case Study

CML1 is a software component of a data processingused in an instrument which
exploits data, to probe the early universe. Thisecatudy is from the Data Metrics
Program [33]. CM1 has 12 components and 9 scengjoReliability based risk metrics
and Maintainability based metrics were obtained@M1 using methodology presented
in [1], [4], [9] early in the software life cycléVe implemented clustering on this case
study using these metrics and studied the behafittre components of CM1 early in the

software life cycle.

5.2 Reliability-based Risk Metrics

Reliability based risk is defined as an unexpecésuilt originated from a wrong system
behavior, which is out of the feasible space defiftem the functional requirements. In
this case the source of failure is a violation @ing functional requirement. It takes into
account that the probability that a software pradudll fail in the operational
environment and the adversity of the failure. I, [@] a methodology for assessing
reliability based risk in early phases of a sofevaycle was developed.

Description of the methodology used in the presiaworks [4], [9] and the
definitions of the reliability based metrics hasebeexplained for the sake of
completeness. Information necessary for estimatfareliability based risk was obtained
using unified modeling language (UML) [6] and thmramercial modeling environment

Rational Rose RT (RoseRT) [34]. From the UML diagsafor each component and

37

connector in the software architecture a heurissic factor was obtained. Scenario risk

factors were computed using Markov model. Riskdexfor usecases were obtained by

averaging the scenarios risk factors. In orderitaio the overall system risk factor the

independent use cases risk factors were weightegdtiaeé probability of their execution.

Reliability based risk metrics such as Dynamic Claxipy, Severity and Fan-Out were

obtained using as dynamic specification metricenfktdML

Dynamic Complexity

As there is a correlation between the number oftdatound in a software
component and its complexity, in [4] the dynamienpdexity of state charts was
obtained as a dynamic metric for components. Dyonanoupling between
components was computed as a dynamic metric reladefhult proneness
for connectors. Component’s Dynamic Complexity wasamed based on the
UML state charts that are available during theyestdges of software life cycle
[4]. A number of states and transition between éhgtaites in the state chart of

each component i describes the dynamic behavittreofomponent.

Dynamic Complexity is defined as follows [4]

For a scenario § a subset of all states of component i are visitetie scenario
and a subset of all the transitions are traver$ed’ denotes the subset of states
for a componeni visited in the scenario Sand with T as the subset of
transitions traversed in the state chart of compbnm that scenario. The subset
of states ¢ and the corresponding transitions Tvere mapped into a control

graph. ¢ = |Cix denotes the number of nodes in that graph

and t =

-I—iX

(cardinality of G') and number of edges in that graph (cardinality Tgf)
respectively. Dynamic Complexity dpaf component in scenario $ is defined
as [4]

doc=t- ¢+ 2. (5.1)

38

Normalizing the Dynamic Complexity dpcwith respect to the sum of
complexities for all active components gives Notizead Dynamic Complexity
DOC/ of a component in a scenario S [4]. Using this definition, Dynamic

Complexity metrics were obtained for the componentSM1 [4].

Severity metric: Severity metric measures the severity of the aqunseces of
potential failures [4]. To get this metric valuend&in experts play a major role.
Based on hazard analysis [23] [4], the severitgs#a were identified as follows:
Catastrophic A failure that could cause death or total syskess

Critical: A failure that could cause severe injury, majovgerty damage, major
system damage, or major loss of production.

Marginal: A failure that could cause minor injury, minoiooperty damage, minor
system damage, or delay or minor loss of production

Minor: A failure that is not serious enough to causearinjproperty damage, or
system damage, but could result in unscheduledterance or repair.

In [4] severity indices of 0.25, 0.50, 0.75 and%0W®Were assigned to minor,
marginal, critical and catastrophic severity clas@spectively.

Experts make an estimate of the severity of thepmrants and connectors based
on their experience with other systems in the s The components of CM1
were assigned a score based on their severity [dhss

Fan-Out: The Fan-out metric value was obtained from the Udildgrams for

each component [4] early in the software life cycle

We implemented clustering on the components of QMihg the Reliability based

metrics , Dynamic Complexity, Severity and Fan-Gobres that were assigned to the

components of CM1 according to the definitions rkedi above[4].

5.2.1 CM1 Case Study Results based on Reliabilityabed-Risk
We clustered the components of CM1 based on rétiabased metrics per scenario and

also fusion of all scenarios (Simple sum, Weigtsedn, Worst Case analysis) [17] [13].

We implemented hierarchical clustering methodsng®i Link, Complete Link, Average

39

Link, Wards method) on the case study and foumd ¥Mards method had the highest
agglomerative coefficient values than the othernoes.
* Per-Scenario Resultsfor CM1

We implemented hierarchical Wards method as it thadhighest agglomerative
coefficient value, using the Euclidean dissimifariheasure on each of the 9
scenarios [4] with the reliability based metricsclsuas Dynamic Complexity,
Severity and Fan-Out for all components. The resulhr the scenario
HouseKeeping (HK) using Wards method are as shavigure 13.

Helmhl
N

¥ /\1\ Cluster C

Cluster B

Cluster A

Figure 13. Clustering tree of CM1 obtained for theHouseKeeping (HK) scenario based on
Reliability based risk metrics (Agglomerative Coeficient AC 0.90)

As shown in Figure 13, if we look for 3 clustersitithe components 1, 5, 6, 7, 11 are the
most similar to each other forming a cluster (&u%t) , components 2, 8 ,9, 12 form the
second (Cluster B) and components 3, 10 and 4 tberthird cluster(Cluster C) for the
scenario HouseKeeping(HK) [4]. The AC value was liighest when clustering was

implemented using the hierarchical clustering Wangshod for all the 9 scenarios. This

40

indicates that the quality of clustering structtoend using the Wards method was better
than any other method for our dataset. For the elesping(HK) scenario explained
above the Agglomerative coefficient(AC) value wa@0with the Wards method.

Similarly, Clustering was implemented for the otBescenarios of CM1. Wards
method performed well for all the scenarios. Mutfeience could not been drawn about
the behavior of the components, as Clustering tletined for each scenario was
different., indicating that the components behadifeérently in different scenarios.

We then experimented ways to combine the religbibased metrics of
components across all the nine scenarios and ingoleoiustering in order to get better
interpretation of results.

* Fusion of Reliability based risk metrics across all scenarios

We implemented clustering on the CM1 componentagusechniques like the simple
sum scores fusion, weighted sum scores fusion amdtwase value (Maximum value)
[17] [13] across all the scenarios.

» We obtained clustering results using the hieraadhi¥ards method as it had the
highest AC value, with the simple sum scores fusibat is clustering the
components using the simple sum of the metricssacatl the 9 scenarios. Also
implemented the weighted sum scores fusion, thelustering components using
the weighted sum of metrics across all scenariasgfwed by the probability of
occurrence of each scenario) [13] [17].

For Risk, the worst case values are consideree thémost important. We looked at the
metric values in all the scenarios for each compbaead selected the worst case values
(i.,e. Maximum value) [13]. We implemented hieraoatiWards clustering method as it
had the highest Agglomerative Coefficient value.eTtlustering tree obtained for
clustering using the worst case values are as shioviAaigure 14. Figure 15 shows its
corresponding Banner plot. From the clustering ftiredigure 14, it is evident that
components 1, 6, 4, 11 form one cluster, comporris 12, 10, 3, 7, 5 form the second
and component 8 forms the third. Agglomerative @oeht value when Wards
clustering was implemented using the worst casaeegalvas 0.81. This indicated good
quality of clustering. From Table 12, we observat tmost of the components in cluster

A, that is components 1, 6, 4, 11 have relatively Fan-Out, relatively low Complexity

41

and moderate severity values. Most of the compenemtthe cluster B, that is

components 2, 9, 13, 10, 3, 7, 5 have moderate oty moderate Fan-Out and

relatively high Severity values. Cluster C, thatc@mponents 8 has relatively higher
Complexity, higher Severity and higher Fan-Out wealuthan most of the other
components. Domain experts ranked the componen®\Vif based on their knowledge
and experience, starting from the most criticaletst critical as 8, 3, 10, 7, 12, 9, 2, 5,
11, 6, 1, 4 [33]. The clustering results we olediim Figure 14 were in accordance with
the ranking given by the domain experts.

1.4

1.0

Height

0.4
]

Cluster B

o.o

Cluster A Cluster B

Figure 14. Clustering Tree of CM1 obtained for theworst case values of Reliability Based
Risk metrics (Agglomerative coefficient 0.81)

42

I T T T T T 1
0.0 0.20 0.40 0.60 0.80 1.00 1.44
Height
Agglomerative Coefficient = 0.81

Figure 15. Banner plot of CM1 obtained for the wors case values of Reliability based
risk metrics

Table 12. Clusters components of CM1 based on Rdiidity based risk

CLUSTER | Components | Complexity Severity FanOut
1 0.08 0.5 0.06
A 6 0.08 0.5 0.06
4 0.21 0.25 0.25
11 0.67 0.50 0.06
2 0.31 0.99 0.50
9 0.50 0.99 0.50
12 0.60 0.99 0.60
B 10 0.40 0.99 0.20
3 0.36 0.75 0.38
7 0.40 0.75 0.40
5 0.40 0.50 0.50
C 8 0.50 0.99 1.00

Table 12 shows the clusters A, B and C of companehCM1 corresponding to Figure
14 and Figure 15.

43

5.3 Maintainability-Based Risk Metrics
According to NASA standard on software safety [2idk is defined as a function of the
anticipated frequency of occurrence of an undesenht, the potential severity of the
resulting consequences and the uncertainties assdavith the frequency and severity.
Risk assessment is an integral part of softwakemanagement. Several types of risks
are ushered into the system when it undergoes emainte, like project risk, usability
risk and maintainability risk [20].

* Project risk basically concerns that the maintergmoject cannot be completed
within the budget or timeframe because of an unprtide maintenance process
or deficiency of personnel and maintenance ressurce

» Usability risk focuses that the maintenance coreticn the system will trigger
problems and failures. It takes into account thecfionality, performance and
software failure risk.

* Maintainability based risk answers the question hoomplex will it be to
maintain the system in future because of the wayhamdled maintenance task
[2].Maintainability based risk is defined as theoguct of probability of
performing maintenance task and the cost of peffggnthis task. This can be
used to identify the most risky parts of the systdmore than 65% of the life
cycle of a software project is spent in maintenda¢én accordance with NASA-
STD-8719 standard maintainability based risk isirg&f as the product of the
probability of carrying out maintenance tasks amalitnpact of these tasks [27].If
the software system has good maintainability it b@neasily modified to fix
faults.

In [1] architecture-level maintenance risk assesgmmethodology has been
presented for assessing the maintainability bassd into the context of corrective
maintenance early in the software life cycle. Wespnt brief details of the methodology
used in [1] for sake of completeness. Correctiviebnsme maintenance deals with fixing
defects that escape detection before release atdwmtich manifest as field failures
[3]. The methodology proposed in [1] for estimatitige maintainability based risk
depended on the architectural artifacts such a®msysequirements, system design and

their evolution through the life cycle of the systdn this methodology, the requirements

44

maturity was first estimated and mapped into themanents stability. Then the initial
change probabilities of the components were esticthbased on the maintenance type
and the data available. The initial change propagaprobabilities and the change
propagation probabilities between them were usegetdhe unconditional probability of
change of the components of the system. To gdipact of maintenance tasks, the size
of change of change between the components of yeeera was used. Finally, the
product of the unconditional change probability #mel maintenance impact was used to
obtain the maintainability-based component riskdafl], [4].

Requirements Maturity I ndex:

Requirements Maturity Index is estimated by analyzheir evolution across the releases
of the system [1], [4]. The IEEE 982 standard ssgg software maturity index to
quantify properties of the requirements evoluti@®][In [5] Software Maturity Index
was adapted to Requirements Maturity Index (RMI) ni@asure the requirements
stability. In [1] the Use Case Maturity Index (UCMbas adapted and function points

were used as a size measure for the usecases.

UCMI for the usecase uavas given by

UCMI = Ur-Ue

T

(5.2)

Where U, is the function point of usecase,ua the current release
U . is the function point size of the change in thecase ugcin the next release from the

current release due to requirements change of ehscenario.

Initial Change Probabilities:

In [1] the Sequence Diagrams were used to idertiy set if components that

contributed to each use case. Use case stabilgytlnen mapped to component stability
and Initial Change Probability of system componemés consequently estimated. For
components that were part of multiple scenaricstaximum ICP, that is the worst case

scenario was considered.

45

Change Probabilities:
Change Propagation probability CRep];;] is the conditional probability that change

originating in one component of the architecturgurees changes in other components to
be made [4]. Initial Change Probabilities vectoth® components were multiplied by the
conditional change probabilities vector obtaineshfrthe system architecture in order to
account for the dependency among the componenie aystem [1][4].

Size of Change:

Size of change is defined as the ratio betweemtimber of affected methods of the
receiving component that was caused by the chaingdee interface of the providing
components and the total number of methods indbeiving components [1][4].

Impact of Maintenance task:

The impact of maintenance task was obtained bygus$ia size of change between pairs

of the system components.

5.3.1 CML1 Case study Results based on Maintainalifibased risk

We applied Wards clustering method as it has tghdst agglomerative coefficient and
works better than the other methods (Single Linken@lete Link, Average Link, Wards
Method) for all the components of CM1 system takingo consideration the
maintainability based risk using parameters suclClaange ProbabilitiedNormalized
maintenance Impact Fan-out, Normalized Maintenalmpact Fan-In [1], [2], [3]
obtained for the CM1 system as a whole. Figure héws the classification of
components of CM1 based on the maintainability tiskng Wards method. Figure 17
shows the corresponding Banner Plot. Table 13 shihesclusters formed and the
components in them. Agglomerative coefficient vadgained was 0.85, which indicates

that the strength of the cluster is good.

46

0.6
]

O

i Cluster C

0.4

Height

0.z
|

Cluster A

0.0
|

Chister F

Figure 16. Clustering tree of CM1 obtained based oMaintainability based risk metrics
(Agglomerative coefficient — 0.85)

r 1
0.0 0.47
Height

Agglomerative Coefficient = 0.85

Figure 17. Banner Plot of CM1 obtained based on mafainability based risk metrics

47

Table 13. Clusters of components of CM1 based on Naainability-based risk

Change qumalized qumalized
Cluster Components I Maintenance Maintenance
Probabilities

Impact FanOut Impact Fanin
1 0.09 0.13 0.17
6 0.09 0.13 0.17
10 0.11 0.10 0.17
3 0.11 0.12 0.17
A 8 0.11 0.14 0.17
11 0.13 0.13 0.17
4 0.13 0.17 0.17
12 0.17 0.19 0.17
5 0.23 0.32 0.19
B 7 0.20 0.27 0.17
9 0.20 0.25 0.22

C 2 0.42 0.42 0.46

When Figure 14 and Figure 16 are compared, it i8oois that the components of the
CM1 were classified in a different way based on i&dity based risk and
Maintainability based risk. This implies that thengponents behave differently when we
different attributes are considered. Hence compisnemre clustered differently when
clustered based on reliability and maintainabiligsed risk metrics.
The Table 13 shows the three distinct clusters AanB C components which form the
cluster and corresponding change probabilitiespidized Maintenance Impact FanOut
and Normalized Maintenance Impact Fanin valuese €uster is formed by components
1, 6, 10, 3, 8, 11, 4, 12, the other is formed by 59 and component 2 alone forms
another cluster when clustering is performed, baselaintainability Risk. Components
in cluster A, that is 1, 6, 10, 3, 8, 11, 4, 12 &aelatively lower change probabilities,
lower Normalized maintenance Impact FanOut and toNermalized Maintenance
Impact Fanin. Components in Cluster B, 5, 7, 9 hansglerate change probabilities,
moderate Normalized Maintenance Impact FanOut anddenate Normalized
Maintenance Impact Fanin. Component 2 has relgtiiyher change probabilities,
higher Normalized Maintenance Impact FanOut andhérigNormalized Maintenance
Impact Fanin than the other components.

Hence, its evident from the Table 13 that the camept 2 is very dissimilar from

others when classified according to maintainabitigsed risk and is the most critical

48

component when classified based on maintainalbhlised risk as it has higher values for
change probabilities, normalized maintenance imfmctout and normalized impact fan
in. But, according to the Table 12 component 8issidhilar from others. Hence, when
classifying the components in the early life cybleth reliability and maintainability
based risk should be considered.

We used Wards method to cluster as it gave theebtghgglomerative coefficient
value of 0.85, compared to the other methods, atohig that the strength of cluster
obtained by Wards method is better than the others.

This way clustering could be used in the early vgafe life cycle for the
classification of software components based ombédity based risk and maintainability

based risk.

49

Chapter 6: Classification of Software Components tathe Operational

Stage

We implemented hierarchical Wards Clustering onltitient case study [36] [37] , using
the component level measurements, Expected Visin@Goand the Component Entropy,
that are derived in the operational stage fromréve and aggregated measures of visit

counts[10].

6.1 Indent case study
Indent is an open source software project [36] ,[3Vhich consists of about 9 files,
totaling about 7000 lines of code, used to beatiié/C code. When Indent is ran ona C
program, it has no effect on the functionality betcode, but makes the code more
readable and aesthetically pleasing. Appearan€@prybgrams could be changed in many
ways such as

* Adding or removing white space

» Changing the indentation of blocks , declaratiom$ parenthesis

» Stylish parameters could be altered
Indent has ten versions of source code, multipl&@gs, many source code change logs
and a regression test suite along with a test dawel an oracle. The latest version of
Indent has about 11,000 lines of code, but theesanersion had only about 7000 lines
of code. There are two change logs with 66 entdeall the ten versions of Indent [10].

We used the component level measurements, Expeds#tdcounts and the

Component Entropy to implement clustering on theeht case study. A methodology to
estimate these metrics on Indent was presentetDin \We present a brief description of

the methodology used in [10] for better understagdif the metrics used in clustering.

Profiling Software:

Information about the execution path of a programd &he number of times parts of

program are executed is stored in tools calledilersf They can store information at the
basic block level, line level, or the function léverofilers can be sample-based tools or

event-based tools. Sample-based tools collect pet@adically based on the sampling

50

time period. Event-based tools collect data forrgwevent that occurs. Sample based
tools have less overhead but are less accuratthegscould miss events that occur
between sample periods. Event based tools introchare overhead but are much more
accurate as they can not miss the events betweesathple periods.

In [10] information on software executions werdlexied with the sample based
profiler, Gprof. It provides two types of profilea:call graph and a flat profile [10]. A
call graph represents the control flow and thermfation in it, describes the call tree of
the program and it is sorted by amount of time spereach function and its children.
The Flat profile lists all functions called, themier of times each was called and how
long each execution took. In [10] the Indent sofevevas instrumented with the Gprof
profiler, and the information needed was extradteth the call graph as the model used
in [10] depended on the flow of control transfeés8lest cases were run, while profiling
them, which gave 158 profiles [10].

Transition Probabilities:
The data in the call graph obtained from the Gaffiler, representing the transition
counts from a function f to another g was studeeddlculate the transition probabilities

[10]. The transition probability matrix was calcidd [10] using the equation

n

ij
=
J

P, = (6.1)

Where B represents the probability that componiecalls componenit The probability

of component calling componeni is equal to the number of times componienalls |

(n;) divided by the sum of the number of times compone&alls any other component

(n;).

Fault | dentification:

In [10] a methodology for the identification of tHecation of each fault has been
presented. Firstly, all the test cases were rutherearliest version of Indent, version
2.2.0. The failed test cases were re run on thaireng 9 versions of the software. Thus,

the release in which the fault was fixed was idadi Also, general time period of when

51

the fix was made was known. Once this was knowrthalchanges in the changelog for

the time period the bug would have been fixed veamsched and read. By looking at the

testcase, the diff files, the output and the exgmbautput the reason for the test case
failure could be known and the description of tag could be found in the change logs.

This method of mapping failures to fixes was susftedor 30 of the 34 failed test cases

[10].

6.2 Dynamic metrics for Indent
The dynamic metrics expected visit counts and thmponent Entropy were used to
implement clustering on the Indent case study. Whg these metrics were derived in

[10] are as follows.

Component Entropy:

An approach presented in [14] was used in [10}Heruncertainty analysis based on the
concept of entropy. The theory of entropy was usedcalculate the amount of
uncertainty in a Discrete Time Markov chain (DTMQhe entropy of a components

defined as the conditional entropy and is given by

H,=- z p; log(p;) (6.2)

where, p represents the probability that the control trarsffrom component to

componeny.

The transition probabilities were used to estimidwe system uncertainty, the
expected execution rates and the uncertainty df eamponent [10]. The entropy of the
componenti, would be higher if it transfers the control to rmacomponents and the
transition probabilities are equiprobable [14]. Bencomponents with higher entropy are
considered critical as they affect larger parthef system [14].

Expected Visit Counts:
Expected visit counts values for the Indent thas wamputed in [10] was used for
clustering. The methodology in [22] [11] was usedcbmpute the expected visit counts

for a component [10]. It was assumed the controthef system is transferred among

52

modules based on a Markov process [22]. There iasaociated reliability with each
module that gives the probability that the moduleuld operate correctly when called
and would transfer control successfully when fiegh Eventually, the system would
either fail or complete its task successfully antee a terminal state. The expected visit

counts, y represents the expected number of visits to @ st#at is the expected

number of executions of a component

6.3 Clustering Results for Indent

We implemented clustering on the file level, foc@mponents of the Indent using the
derived dynamic metrics, Component Entropy andBkpected Visit Counts which are
derived from the raw and aggregated visit coun@].[TThe Figure 18 shows the
clustering tree obtained on the 9 components of ligent Case Study. The
Agglomerative Coefficient value (AC) obtained waSZB. This indicates a good quality

of clustering.

2.5"0%

1.5%10%

Height

106
|

510"

0
|

Cluster B

Cluster A
Figure 18. Clustering tree of Indent obtained usinghe Expected Visit Counts and the

Component Entropy values

53

As seen in Figure 18 we find that there are twdirtis clusters of components, Cluster A
(Components 1, 2, 3, 5, 9 and 4) and Cluster Bfa@bnents 6, 7 and 8). Table 14
shows the Clusters, the components in each clasigrithe number of failed test cases
that required a fix in the component. Component &nd 8 are the three most frequently
executed components and they had high number btéses that required a fix in the
component. Thus, the components that were the frexgiiently executed and that had
maximum number of test cases that required a firevetustered together as cluster B.
This way, Clustering could group the componentdnofent into meaningful clusters

based on the metrics available late in the softwireycle.

Table 14. Clusters of Components for the Indent

Number of Test cases that required a Fix
Cluster Component numbers .
in the Component
1 0
2 0
3 10
A 5 0
9 1
4 0
6 10
B 7 7
8 2

54

Chapter 7: Conclusion

In this thesis we have presented how clusterinddcbe used for the classification of
software components throughout the software lifelecyThe basic assumption was that
components that have similar metric values behanglasly. As clustering group’s
components into homogeneous clusters, it would dssiple to rank the clusters and
assign similar activities to all the componentsa iciuster.

We implemented clustering on the software comptmef several case studies
using metrics derived in different phases of sofewkife cycle. We used hierarchical
clustering methods, the Expectation Maximizatiarstdring method and also ran the J48
classifier to obtained decision trees for the congmts of twelve real NASA projects.
We also implemented hierarchical clustering methioé case study, CM1 that is derived
from the Data Metrics Program and another caseystindlent, open source software.
Clustering results obtained have been presentetisnthesis and several observations
were made.

» Clustering results obtained on the components @ftiwrelve real NASA projects
during the requirements specification based on Fmecess/Product metrics
obtained from the Software Integrity and Level Asseent Process (SILAP)
helped us draw several conclusions.

o0 One observation was that the Wards and the EM esingt results
obtained with the direct scores and the weightedesc(Consequence
and Error Potential) from SILAP were different. $himplies that
there is loss of information because of weightsgagsl in SILAP.

0 The decision trees obtained for each project wéferent. Different
attribute had highest information gain in differeptojects. This
reveals that each project is different.

* Clustering results obtained on the components sé ciudy CM1, based on the
reliability and maintainability based risk metrigsthe architectural level helped
us draw a few conclusions

0 Wards method works the best for small sample dttass it has the
highest agglomerative coefficient than any othererdrchical

clustering method.

55

0 Another observation was that clustering resultsevibe best when the
fusion of the reliability based risk metrics acradb scenarios was
done using the worst case values. This is becaugesk worst case is
considered the most important.

o Components were clustered in accordance with thkirrg based on
criticality given by the NASA domain experts whdnstered based on
the reliability based risk metrics.

o Clustering results obtained with the reliabilityskd risk metrics and
the results obtained with the maintainability basieé metrics were
different. This difference in the grouping of thengponents is because
Components behave differently when different attiels are
considered.

» Clustering results obtained using the code metpigsgined at the operational
stage for an open source software, Indent, clustdr® most frequently executed
components together.

All the results obtained, revealed that clustehietps in the classification of the software

components into homogeneous clusters through ewgdftware life cycle.

56

Chapter 8: References

1. W.Abdelmoez, K.Goseva-Popstojanova, and H.Ammar,ettiddology for
Maintainability-Based Risk Assessment’2006 Annual Reliability and
Maintainability Symposium (RAMS 2008)ewport Beach, CA, January 2006.

2. W.Abdelmoez, K.Goseva-Popstojanova ,and H.Ammaraifitainability Based
Risk Assessment in Adaptive Maintenance Conte&ad International Predictor
Models in Software Engineering Workshop (PROMISB620 Philadelphia,
September 2006.

3. W.Abdelmoez, K.Goseva-Popstojanova, and H.Ammasirfg Maintainability-
based Risk Assessment and Severity Analysis in rifzing Corrective
Maintenance Tasks'Supplemental Proc. 17th IEEE International Sympmosan
Software Reliability Engineering (ISSRE 20@®3Jeigh, NC, November 2006.

4. W.Abdelmoez, “Model based Risk Assessment”, Masteesis, West Virginia
University, 2006.

5. S.Anderson, M.Felici, “Quantitative Aspects of Regments Evolution”In the
Proceedings of 26th Annual International ConfereaneComputer Software and
Applications Conference (COMPSAC 200BEE Computer SocietyAugust
2002, pp 27-32.

6. G.Booch, l.Jacobson, and J.Rumbaugh, “The unifieddéling Language
Guide”, Addison Wesley1998.

7. W.Dickinson,D.Leon, and A.Podgurski, “Finding Faéa by cluster analysis of
Execution Profiles”, Proc. 23% International Conference on Software
Engineering 2001, pp. 339 — 348.

8. W.Dickinson, D.Leon, and A.Podgurski, “Pursuing |&ia: The Distribution of
Program Failures in a Profile Spac®toc. 10" European Software Engineering
Conference and "™ ACM SIGSOFT Symposium on Foundations of Software
Engineering 2001, pp.246-255.

9. K.Goseva-Popstojanova, A.Hassan, A.Guedem, W.Abaoetn D.Nassar,
H.Ammar and A. Mili, “Architectural Level Risk Angsis using UML”, IEEE
Transactions on Software Engineeringpl.29, No.10, 2003, pp. 946-960.

57

10.M. Hamill, “Empirical Analysis of Software Relialty”’, Masters Thesis, West
Virginia University, 2006.

11.M.Hamill and K.Goseva-Popstajanova, “Architectuesdd Software Reliability:
Why only a Few Parameters Matte€COMPSAsubmitted).

12.A.K. Jain, M.N. Murthy and P.J. Flynn, “Data Clustg: A Review”, ACM
Computing Survey¥/ol. 31, No. 3, 1999, pp. 264 — 323.

13.A.K.Jain, K.Nandakumar, A.Ross, “Score Normalizatio Multimodal biometric
systems”Pattern recognitionVVol.38, No.12, pp. 2270-2285, December 2005.

14.S.kamavaram and K.Goseva-Popstajanova, “Entropy aasMeasure of
Uncertainity in Software Reliability”Supplemental proc. 13'th Int'l Symp. On
Software Reliability EngineeringNov 2002, pp. 209-210.

15.G.Punj and D.W.Stewart, “Cluster Analysis in MaikgtResearch: Review and
Suggestions for Applicationsdournal of MarketingVol. 20, 1983, pp. 134-48.

16.G.Punj and D.W .Stewart, “Cluster Analysis in Mdikg Research: Review and
Suggestions for Applications’Jpurnal of MarketingVol. 20, 1983, pp 134-48.

17.A.Ross and A.Jain, “Information Fusion in Biomesfic Pattern Recognition
Letters Vol. 24, Issue 13, Sep 2003, pp. 2115 — 2125.

18.P.J.Rousseeuw, “A Visual Display for Hierarchicdas3ification”, In E.Diday,
Y.Escoufier, L.Lebart, J.Pages, Y.Schektman, R.3sona. (Eds). Data Analysis
and InformaticsVol.4, Amsterdam : New Holland ,1986, pp. 743-48.

19.P.J.Rousseeuw and L.Kaufman, “Finding Groups inaD&in Introduction to
Cluster Analysis”’New York: John Wiley & Sonkc, 2005.

20.S.Sherer, “Using Risk Analysis to Manage Softwarairitenance”,Software
Maintenance: Research and Practiéol. 9, 1997, pp.345-364.

21.T. Shizhong, M. Khoshgoftaar, and N. Seliya, “Arzahyg software measurement
data with clustering techniquedEEE Intelligent Systemgol.19, No 2, 2004,
pp.20-27.

22.K.Siegrist, “Reliability of System with Markov Trafer of Control” IEEE Trans.
Reliability, Vol.14 No.7, 1988, pp.1049-1053.

23.C.Sundarajan, “Guide to Reliability Engineering,t®a\nalysis, Applications,

Implementations, and Management”, \idastrand Reinhold1991.

58

24.1.H. Witten, E.Frank, “Data Mining: Practical Macdle Learning tools and
Techniques”’Morgan Kaufmann2005.

25.1.H. Witten, E. Frank, L. Trigg, M. Hall, G. Holmesand S.J. Cunningham,
“WEKA: Practical Machine learning tools and techmg with Java
implementations’Morgan Kaufmann1999.

26.IEEE Std 982.1 — IEEE Standard Dictionary of Measuto Produce Reliable
Software.

27.NASA-STD-8719.13A, “Software Safety NASA Technicg@tandard”, Sep.15,
1997.

28.“S plus 6 for Windows: Guide to statistics”, Insifyi, Vol. 2, July 2001.

29. http://grb.mnsu.edu/grbts/doc/manual/ExpectationxiMaation_ EM.html|

30. http://grb.mnsu.edu/grbts/doc/manual/J48_Decisioeed.html

31. http://www.cs.toronto.edu/~roweis/csc2515-2003/skee7x.pdf

32. http://www.r-project.org/

33. Metrics Data Program, NASA IV & V Facilitigttp://mdp.ivv.nasa.gov/

34.Rational Rose Real-Timéttp://www.rational.com/products/rosert/index.jtmpl

35. http://www2.chass.ncsu.edu/garson/PA765/cluster.htm
36. http://www.gnu.org/software/indent/indent.html

37. http://lwww.xs4all.nl/~carlo17/indent/

59

	Classification of software components based on clustering
	Recommended Citation

	CLASSIFICATION OF SOFTWARE COMPONENTS BASED ON CLUSTERING

