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Abstract 

Advanced Reservoir Modeling and Fluid Flow Studies of Natural Gas 

Production from the Hydrate Reservoirs of the Alaska North Slope 

Taiwo Ajayi 

The emerging possibility of the production of gas hydrates as an unconventional source of 

energy have spurred many objectives for research studies going on in this area. One of these is the 

U.S national hydrate research program with a primary goal of determining the tools and 

technologies for environmentally safe gas production from hydrate reservoirs. The work presented 

in this thesis is motivated by the need to provide reliable reservoir model-based predictions to 

support proposed long-term hydrate field production tests on the Alaska North Slope permafrost. 

While first order predictions have been made from reservoir models based on assumptions of 

homogeneity of properties, it has been shown that the degree of reservoir heterogeneity can 

significantly affect the quantitative and qualitative results. 

This study is an advanced and robust evaluation of the gas production potential of hydrate 

reservoirs. The hydrate deposits within the region of Prudhoe Bay Unit (PBU) “L-Pad” and Mt. 

Elbert Well vicinity of the Milne Point Unit of the Alaska North Slope are primary subjects of 

investigation. It is an effort to build data-driven heterogeneous hydrate reservoir models by 

applying both conventional and novel methods of reservoir characterization to maximize the 

utilization of the available field data. Using well log data obtained from 78 L-Pad wells, 

geostatistical techniques were employed to obtain stochastic simulations of the 3D distribution of 

reservoir properties in the target hydrate units of the L-Pad region. Models for the Mt. Elbert 

deposit were developed by combining data obtained from well logs obtained during the 2007 Mt. 

Elbert stratigraphic test and a 3D seismic survey of the region. Additionally, wellbore flow 

assurance studies were coupled with reservoir models in order to predict potential production 

issues arising from the formation of secondary hydrates or ice within the wellbore fluids being 

produced under high pressure and low temperature conditions. 

CMG STARS, a finite difference reservoir modeling software package, was used to solve 

the material and energy balance equations in which an equilibrium model of hydrate dissociation 

was used. The simulator also provides a means to couple artificial lift design of the wellbore with 

the reservoir model using established pressure drop-heat loss correlations. Gas and water 

production rates and the evolution of reservoir properties were extensively studied in varying 

production scenarios with depressurization as the primary recovery technique. 

Predictions from 10 geostatistical realizations of the L-Pad model were within narrow 

ranges, which is an indication of the robustness and reliability of the model. Uncertainty 

assessment and sensitivity studies on the Mt. Elbert model showed that higher gas production rates 

were achieved in deeper (hence warmer) reservoirs and confirmed earlier studies that production 

from the Mt. Elbert prospect may too cold to be economically feasible. Furthermore, contrary to 

predictions from homogeneous models, the effect of secondary hydrate formation in the reservoir 

on gas flow was found to be very minimal. However, flow assurance and artificial lift design 

studies show that wellbore pressure and temperature conditions must be effectively managed to 

prevent formation of secondary hydrates or ice.   
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1. Introduction 

1.1 Overview and History of Gas Hydrates 

Gas hydrates (properly known as “gas clathrate hydrates”) are non-stoichiometric ice like 

compounds formed by the trapping of a guest molecule (usually gases) in a cage of hydrogen 

bonded water molecules. They were first discovered in 1810 by Sir Humphrey Davy1, who 

observed a yellow precipitate when feeding chlorine gas through water at temperature near 

freezing point. In prior laboratory experiments, Priestley2 had observed that vitriolic air (SO2) 

impregnated water and caused it to freeze and refreeze to form what would later be known as SO2 

hydrate. Perhaps, the first evidence of the existence of CO2 hydrate was demonstrated by 

Wroblewski3 during one of studies conducted on carbonic acid, where he increased the pressure 

of his CO2-H2O system and observed a white material resembling snow. 

In nature, gas hydrates occur both in the permafrost regions and in the marine sediments in 

the oceans and deep lakes where pressure-temperature conditions are suitable and where sufficient 

methane is delivered to the zone of hydrate stability in the uppermost sediments4. Stability of 

hydrates is favored by low temperature, high pressure, availability of a hydrate-forming gas and 

water.  

1.1.1 Hydrate structure 

The gas molecules in gas hydrates are not chemically bounded to the water molecules; 

instead, they are only simply trapped inside the crystal lattice. The hydrates have a physical 

appearance which resembles that of packed snow or ice. They burn easily, thus, they are also called 

“flammable ice”. Clathrate hydrates can possess many different crystal structures but only three 

structures are known to occur in natural environments. These structures, which are different from 

any of the known forms of ice, have been classified into Structure I (sI), Structure II (sII) and the 
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most recently identified Structure H (sH). The type of structure formed depends on the size of the 

guest molecule. The type of structure formed depends on the size of the guest molecule, which 

occupies a combination of small and large cages.  

A small cage has 12 pentagonal faces (denoted as 512) while a large cage could either have 

12 pentagonal and 2 hexagonal faces (51262), as found in sI structures, or 12 pentagonal and 4 

hexagonal faces (51264), as found in sII structures. These structures are shown in Figure 1-15. 

A unit cell of a sI hydrate structure contains 46 water molecules and is made up of two 512 (small) 

cages and six 51262 (large) cages. Gases that form sI hydrates include methane, ethane, CO2 and 

H2S. A unit cell of sII hydrate is composed of 136 water molecules in a combination of sixteen 512 

(small) and eight 51264 (large) cages. Large guest molecules such as propane and i-butane are 

common pure sII hydrate formers. The Largest sII formers such as n–butane and cyclohexane 

actually require a small help guest molecule which fits in the 512 cages to form a mixed hydrate. 

A mixed hydrate is formed when guest molecules from two or more gases are trapped in the cages.  

Structure type sH, first reported by Ripmeester and coworkers6, is formed by even larger 

guest molecules and is a much less frequently observed structure. It has a hexagonal lattice 

containing 34 water molecules and three cage types: three 512 cages, two medium 435663 cages, 

and one large 51268 cage. The sH hydrate structure forms with molecules such as 

methylcyclohexane, however, like the largest sII formers, it only forms when a second smaller 

help-gas (e.g. CH4) is present.  

It is to be noted, however, that there can be structural transitions to other hydrate structures 

under different conditions of temperature, pressure and gas composition. Only sI and sII have been 

identified with hydrocarbon gas components and they are usually formed by gas molecules of 

smaller size compared with the guest molecules of sH formers7. 
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Figure 1-1: Hydrate crystals and their component cavities 

  

The hydration number is the ratio of the number of water molecules to number of guest 

molecules in a unit cell. For example, the hydration number for a sI hydrate when all cages are 

filled is 5.75 (= 46/8) since a unit cell will contain 46 water molecules and 8 guest molecules. 

Hydrates are non-stoichiometric and hydration numbers vary widely based on the hydrate former 

and conditions. The hydration number increases with a decrease in the fractional cage occupancy. 

In methane hydrates, methane occupies almost all of the cages (around 95% of the large cages and 

85% of the small cages) with n = ~ 68.  
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1.1.2 Stability of hydrates  

Understanding the stability of hydrates is very crucial to understanding how hydrates occur 

in nature. It also helps in the investigation of possible gas recovery techniques and in the prevention 

of hydrate formation in pipelines (as in flow assurance applications). There are four conditions 

which need to be satisfied for the formation of gas hydrates: 

• Low temperature 

• High Pressure 

• Availability of methane or other hydrate forming gases 

• Availability of free water 

Hydrate stability is completely restricted to these four criteria, outside of which, hydrates 

become unstable. Figure 1-2, shows a plot of the hydrate phase equilibrium (P-T) diagram for 

hydrate deposits of the Prudhoe Bay region of the ANS and geothermal temperature obtained from 

equilibrated distribution temperature sensor (DTS) readings of the Ignik-Sikumi well. The high 

temperatures at zero depth are as a result of the temperature disturbances due to drilling pad 

activities at the surface. Geothermal gradient increases as depth transitions from the permafrost 

region to the HBS. The region between the top and bottom intersections of both curves is known 

as the hydrate stability zone (HSZ). The top intersection (at ~100 m depth) is the upper bound of 

the HSZ and the bottom intersection (at ~ 900 m depth) is defined as the base of hydrate stability 

zone (BHSZ). Any condition of temperature and pressure within the HSZ and to the left of the 

equilibrium curve implies a possibility of a hydrate phase. Increasing temperature and/or 

decreasing the pressure would tend towards dissociating the hydrate. Other factors which affect 

hydrate stability are salinity and presence of heavier hydrocarbons as guest molecules. These will 

cause the equilibrium curve to shift either to the left (as in the case of increased salinity) or to the 

right (as in the case of heavier hydrocarbons).  
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The presence of heavier natural gas components, such as ethane, propane, or isobutane, 

will cause the hydrate stability depth to increase due to a displacement of the phase boundary line 

away from the geothermal gradient. However, arctic hydrates have not been found at depths greater 

than 2000 m below the surface, due to the high temperatures resulting from the geothermal 

gradient7. 

 

 

Figure 1-2: Thermodynamic phase diagram showing the region of stability for Prudhoe Bay Unit 

hydrates 
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1.1.3 Hydrates in nature 

Gas hydrates are found throughout the world on every continent. They are mainly present 

off the coasts on the continental margins and below the permafrost. Figure 1-3 shows a map of 

known and inferred hydrate deposits worldwide9. 

 

 

Figure 1-3: Worldwide occurrences of gas hydrates9 

In nature, gas hydrates occur both in the permafrost regions and in the marine sediments in 

the oceans and deep lakes where pressure-temperature conditions are suitable and where sufficient 

methane is delivered to the zone of hydrate stability in the uppermost sediments. Naturally 

occurring methane hydrates can be found in both terrestrial and marine environments. Terrestrial 

deposits have been found in polar regions, hosted in sediments within and beneath the permafrost, 

while marine occurrences have been found mainly in sediments of the earth’s outer continental 

margins.  

Based on the fact that most naturally occurring gas hydrates are methane hydrates10, it is 

possible to estimate the upper bound to the depths within which gas hydrates occur in nature, by 

defining a global hydrate stability zone (GHSZ). From this estimate, most of the permafrost would 
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be in the GHSZ, where an increase in the depth of base of permafrost would increase the depth of 

the GHSZ. A more accurate estimate for the actual occurrence of natural gas hydrates involves the 

determination of areas with biogenic or thermogenic source of gas, which provide adequate 

amount of methane needed in the pore water to form hydrates. The available methane 

concentration must be higher than its solubility in water.  

Biogenic methane is produced as a common by-product of bacterial ingestion of organic 

matter in a process known as biogenesis. They are produced in swamps and buried sediments and 

are considered the most dominant source of the methane trapped in hydrate accumulations in 

shallow sediments beneath the permafrost such as those found in the Alaska North Slope (ANS). 

The biogenesis process selectively produces methane and this is why ANS hydrate deposits are 

assumed to be pure methane hydrates. 

Thermogenic methane, on the other hand, is produced from deeply buried organic-rich beds 

under very extreme condition of high temperature and pressure over a long period of time in a 

process called catagenesis. Thermogenic methane is the primary source of methane in conventional 

gas reservoirs. However, unlike the biogenesis process, catagenesis also creates high 

concentrations of heavier hydrocarbons such as ethane, propane, and butanes. Due to the fact that 

thermogenic methane is produced in areas much deeper than the base of hydrate stability zone 

(BHSZ), hydrates formed from thermogenic methane are far less common than biogenic methane.  

Owing to the kinetics of the formation process of the hydrate-forming gas in situ, gas 

availability becomes the limiting factor for the natural occurrence of hydrates and usually 

determines the extent of a hydrated reservoir.  
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1.2 Energy Potential of Hydrates 

The energy potential of hydrates is evident from the fact that they can store up to 164 times 

the volume of methane gas at STP and studies conducted by many investigators have indicated 

that commercial quantities of methane are trapped in naturally occurring gas hydrates. The nature 

of hydrate deposits and the quality of the reservoir are the primary technical factors which are 

indices of recoverability of methane from a hydrated reservoir 11. Therefore, a clear identification 

of a hydrate deposit that can be considered as an “energy resource” becomes very central to 

evaluating their recovery potential. Moridis and Collett12 developed a classification system for 

hydrate deposits in which each class of reservoir is associated with their gas recovery potential.  

Class 1 reservoirs are characterized by an underlying two-phase fluid zone with a mobile 

gas phase in which the base of the hydrate bearing sand (HBS) is exactly at the BHSZ. The 

thermodynamic proximity to hydrate equilibrium, combined with the fact that the underlying 

mobile gas phase is an excellent target for the onset of recovery by depressurization, makes class 

1 the most desirable for exploitation.12 In Class 2 reservoirs, the HBS is underlain by a free 

(mobile) water zone with no free gas while Class 3 hydrate deposits are typified by the absence of 

underlying mobile fluids. Both Class 2 and 3 accumulations can have the HBS situated well above 

the BHSZ, which may exist under stable or equilibrium conditions. In addition to thermodynamic 

proximity of the HBS to hydrate equilibrium, recovery from Class 2 and 3 is more dependent on 

other factors including the initial reservoir condition, environmental issues and economic 

implications (Moridis et al, 2004; Moridis, 2004). Class 4 hydrate reservoirs, typically found in 

marine sediments, are characterized with low hydrate saturations and, therefore, production rates 

from this class are expected to be lower that economic limits as predicted by reservoir 

simulations.13 Ultimately, the economic feasibility of production from gas hydrate deposits will be 
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significantly influenced by its proximity to already existing infrastructure for conventional oil and 

gas12. 

1.3 Gas Recovery Techniques 

Gas recovery techniques from hydrates are based on its stability criteria with the primary 

objective of making it unstable in a process known as hydrate dissociation. Dissociation of 

hydrates can be accomplished by: 

 Pressure Reduction (Depressurization) 

 Formation Heating (Thermal Stimulation) 

 Equilibrium Shifting (Hydrate Inhibition) 

 Novel techniques e.g. CH4-CO2 exchange (CO2 Sequestration) 

In the depressurization method, the reservoir pressure is lowered outside the pressure-

temperature stability region, which induces hydrate dissociation. This method has been assessed 

to be the simplest, cheapest and the most efficient single method to recover gas from hydrates14 

and is most effective in a Class 1 reservoir (as discussed in the previous section). The endothermic 

nature of hydrate dissociation coupled with additional cooling due to Joule-Thomson effects at the 

wellbore perforations, cause depressurization to be accompanied by a decrease in reservoir 

temperature. When the reservoir temperature becomes low enough, pressure-temperature 

condition in the reservoir may begin to favor hydrate stability, hence increasing the risk of 

secondary formation of hydrates or ice in the reservoir. An adequate control of the depressurization 

rate or heating of the well bore would reduce or eliminate these risks. The severity of the 

reformation of hydrates in the reservoir on gas production has been extensively studied by many 

researchers using predictions from simplistic reservoir models15-22, and is one of the focal points 

of discussion in this work. 



 

 

10 

 

The thermal stimulation method requires a heat source to increase the formation 

temperature and, thereby, destabilizing the hydrate. The required heat may be provided by the 

injection of hot fluids (e.g steam), direct electrical heating or heat recovery of the neighboring 

conventional oil and gas operations. Injection of hot fluids can be done using a single well or 

multiple wells. Due to the amount of energy required to heat up the hydrate bearing rock of the 

target hydrate zone, thermal stimulation may be too expensive to be efficient, as indicated by the 

results of the 2002 Mallik Production Tests and corroborated by previous reservoir simulation 

studies19, 23, 24. However, the method can be used as a recovery enhancement to supplement a 

primary recovery technique such as depressurization.  

Inhibitors can dissociate gas hydrates by causing the equilibrium curve to shift to the left, 

thereby, narrowing the stability region of the hydrate. They are usually combined with one or both 

of depressurization and thermal stimulation. Methanol, glycols and halides are examples of 

inhibitors which can be used. A significant concern about the use of inhibitors, is the environmental 

impact they may have. The tendency of the dissociating high water content hydrates to dilute 

inhibitors requires that the inhibitors be fed into the reservoir at sufficient concentrations. This 

heavy requirement of large inhibitor consumption increases the risks of corrosion and cost of 

production and, hence, leaves a very big question about the economic viability of the recovery 

technique. 

Gas-methane exchange is a technique which involves using a gas whose molecules have a 

higher affinity to form hydrates than methane to displace the methane molecule from the hydrate-

water cavity. For example, CO2 can be used to displace methane from methane hydrates while 

being trapped as CO2 hydrate in situ. A “proof of concept” for this recovery technique was 

demonstrated in a field production trial conducted at the Ignik-Sikumi well of the ANS Prudhoe 
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Bay oilfield during the Spring of 2012 25. In a “huff and puff” cycle, a 14 day continuous injection 

of a 23/77 molar ratio of CO2/N2 mixture was followed by a 28-day production by depressurization. 

Test data indicated that CO2-CH4 exchange did occur and history matching of the results from the 

test was performed to improve model predictions by hydrate reservoir simulator codes (Garapati, 

2013). One huge advantage of this method is the simultaneous sequestration of the CO2 (a 

greenhouse gas), as methane is being produced. Furthermore, the CO2 hydrate formed in situ will 

preserve the integrity of the hydrate-bearing rock and therefore reduce risks and concerns about 

possible geomechanical failure due to methane hydrate dissociation. 

1.4 Flow Assurance  

Hammerschmidt (1934) embarked on an investigation to understand the nature of the ice-

like substance blocking gas transmission lines frequently at temperatures above the freezing point 

of water, and later identified it as hydrate. Before this period, the subject of hydrates had always 

been an academic discourse and the possibility of their occurrence outside the laboratory had not 

been anticipated. Hammerschmidt’s discovery quickly led to a more intensified interest in gas 

hydrates because of the economic implications of pipeline blockages in the oil and gas industry.  

Blockage, due to secondary formation of hydrates, can also occur in the wellbore during 

production from hydrate reservoirs. The requirement of low well flowing bottom-hole pressures 

(BHP) during production by depressurization would necessitate the use of an artificial lift system 

(pump) to ensure that produced fluids reach the wellhead. The high pressure which would be 

supplied by the pump to move cold fluids up within a well surrounded by a cold reservoir would 

increase the risk of reformation and growth of hydrates in the wellbore as production progresses. 

During the Ignik Sikumi field trial, hydrates were confirmed to have formed within wellbore when 

pressures became high enough, which led to operational difficulties and occasional shutdowns.25 
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Therefore, wellbore conditions including temperature, pressure and solids control need to be 

managed effectively in order to forestall flow assurance issues during hydrate production.  

1.5 Motivation and Scope of Work 

The focus of natural gas hydrate research worldwide has since shifted from assessment of 

quantity of reserves to production. Research on hydrate production has also moved from laboratory 

scale to field scale. In the year 2000, the Methane Hydrate Research and Development Act was 

established to support the U.S national hydrate research program whose primary goal is to 

determine the economic viability of developing gas hydrates as an energy resource. Since the 

inception of the methane hydrate program, the U.S. Department of Energy (DOE) has made huge 

investments (over $100,000,000) on natural gas hydrate exploration projects which included two 

short-term production tests on the Alaska North Slope (ANS). The first project, carried out in 

February 2007, was an extensive data collection collaborative effort by the DOE, BP Exploration 

(Alaska), Inc. (BPXA) and the U.S. Geological Survey (USGS) at the Mt. Elbert Well located in 

the Milne Point Unit (MPU) of the ANS. The second project was a field production trial using the 

CH4-CO2 exchange technique at the Ignik Sikumi well located in the Prudhoe Bay Unit of the 

ANS. It was a joint effort led by DOE and Japan Oil Gas and Metals National Corporation 

(JOGMEC) and executed by ConocoPhillips. International drilling programs include the Malik 

Gas Hydrate Production Test at Mckenzie Delta, Canada (2002, 2007-2008) and Japanese 

Production Test at the Nankai Trough, Japan (2013-2015). Significant investments and 

contributions to hydrate exploration have also been made by China, South Korea and India. The 

objectives of these programs culminate into demonstrating the technical feasibility of producing 

methane hydrates through long term production tests. As of now, the ANS is the most promising 
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and available hydrate production test site in the U.S., where the State of Alaska has reserved 

unleased state lands in the PBU vicinity for a potential long-term hydrate tests26. 

There are continued efforts by the DOE, USGS and other international organization to 

build and develop the scientific foundation for establishing gas hydrates as a critical energy 

resource. These organizations have been involved in the significant advancements of gas hydrate 

production computer simulators for more than a decade. Recently, the DOE and USGS embarked 

on project under the International Code Comparison Group to conduct numerical gas hydrate 

production simulations for idealized scenarios of the ANS hydrate deposits27, 28. The project was 

aimed at establishing confidence in reservoir model predictions by sharing knowledge and cross 

validating results from various simulators.  Like in most published hydrate reservoir modeling 

efforts, these idealized scenarios are a simplistic geological and geophysical representation based 

on the assumption of reservoir homogeneity. While first order predictions are obtained from these 

simplified models, it has been shown that the degree of reservoir heterogeneity can significantly 

affect the quantitative and qualitative results obtained from homogeneous models.20, 29, 30 

Therefore, there is a need for continuous and advanced modeling and analysis to accurately 

and more realistically determine energy parameters related to the production potential of hydrate 

accumulations in an actual geological setting. This need forms the primary motivation for this 

work. 

1.5.1 Overall Thesis Objectives 

The main goal of this study is to obtain an advanced assessment of the gas recovery 

potential of the hydrate bearing sediments of the ANS permafrost. To obtain a more realistic 

evaluation, results from a data driven reservoir characterization must be incorporated into 

mathematical reservoir flow simulation models.  
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More explicitly, the objectives of this study are to: 

 Characterize hydrate reservoirs of the ANS in order to develop field-scale heterogeneous 

3D representative models of the ANS hydrate deposits 

 Investigate the effectiveness of depressurization as a gas recovery technique from gas 

hydrates of the ANS simulations to support long-term production tests and subsequent field 

development. 

 Identify the key parameters which influence model performance 

 Provide a clear understanding on the phenomenon of secondary hydrate formation in the 

reservoir 

 Investigate the effect of reservoir pressure and temperature on gas rate profiles and 

cumulative production in order to determine suitable well locations and designs. 

 Design and couple multiphase wellbore with reservoir models to forestall any flow 

assurance issues such as secondary hydrate formation 

 Recommend production design for long-term development 

The two main study areas are the hydrate deposits of PBU (“L-Pad”) and MPU (Mount 

Elbert). All models developed in this work are based on depressurization as a primary recovery 

method. Methods involving thermal stimulation, use of chemical inhibitors and gas molecule 

exchange are not studied. 
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2.  Theoretical Background 

2.1 Evolution of Hydrate Phase Equilibrium Prediction 

Hammerschmidt1 published a correlation of over 100 hydrate formation pressure-

temperature points. Other early efforts to predict the formation of hydrates include the works of 

Wilcox et al2 and Katz.3 Wilcox et al defined vapor-hydrate distribution coefficients (Kvsi values) 

for hydrates and developed a method to predict hydrate formation conditions in a method directly 

analogous to the stand vapor-liquid dew point calculations, leading to publication of Kvsi charts for 

CH4, C2H6, C3H8, H2S and CO2. Robinson and Ng4 presented a similar chart for i-C4H10 while 

Poettmann5 published a chart for n-C4H10. Katz3 developed a very simple method based on gas-

gravity, where different pressure-temperature hydrate formation conditions were predicted for 

gases with different specific gravities. While these methods are very simple, they only provide 

initial estimates and qualitative understanding of the hydrate phase equilibria. 

Recent efforts to predict hydrate formation conditions include those developed following 

the fundamental principles of statistical thermodynamics and equations of state. They are both 

more comprehensive and accurate, and provide the link between the molecular structures of 

hydrates and their measurable thermodynamic properties (e.g. pressure, temperature and density). 

The foundation of this new generation of thermodynamic models can be traced back to the work 

of Barrer and Stuart.6 Their work was later modified by van der Waals and Platteeuw7 based on 

the definition of a Langmuir constant and its relation to guest-host potential parameters. 

Ballard8 expanded on the work of van der Waals and Platteeuw by defining the hydrate 

fugacity and some reference parameters and derived equations to calculate the fugacity of water 

in hydrates. Ballard’s work also included an extension of the work of Gupta9, which is based on 

the minimization of the Gibbs free energy. The Gibbs free energy method allows for calculations 
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of formation conditions of the hydrate and the calculation of all the phases present at any 

temperature and pressure regardless of the presence of the hydrate phase. 

The increase in the availability of high performance computers is continually strengthening 

the applicability of computer simulation techniques which have been shown to yield significant 

improvements over earlier methods. Molecular Dynamics (MD) and Monte Carlo (MC) 

simulations are the most common computer based techniques. MD involves using an accurate 

water potential function to solve Newton’s equation of motion for small number of molecules over 

time. An integration of these intermolecular forces over several time-steps would yield to the 

evaluation of the macroscopic properties of hydrates.10 

Another computer simulation technique includes the ab initio methods or quantum 

mechanics, where efforts have been made to calculate potentials between atoms and molecules in 

hydrates. Among the notable works describing these methods are Cao11, Klauda12 and Anderson13, 

which have provided significant improvements on the works of van der Waals and Plateeuw. 

2.2 Hydrate Dissociation Models 

The dissociation process requires external energy (known as the enthalpy of dissociation) 

to break the bonds in the hydrate structure, that would lead to the liberation of the trapped methane 

molecule in the crystal lattice and produce the associated water. Hence, hydrate dissociation is an 

endothermic process.  

The mechanisms that control hydrate dissociation can be explained by the annotated phase 

diagram shown for a depressurization process in Figure 2-1. The overall process is initiated by a 

reduced pressure constraint which is held constant at P5 (e.g. a BHP of a production well at some 

location in a hydrated reservoir). In the first step (I), P1 is reduced at constant temperature T1 to 

the equilibrium pressure at T1, P2.  
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Figure 2-1: Hydrate dissociation process with depressurization 

The driving force for this step is P1 – P2. The second step (II) is the onset of the endothermic phase 

change occurring at equilibrium, where a +ΔH is absorbed and T1 decreases to T3 (the equilibrium 

temperature at P3), as pressure reduces from P2 to P3. The temperature difference T1-T3, which is 

a measure of the sensible heat available for heat transfer from the undissociated part of the 

reservoir (hence the magnitude of +ΔH that can be provided to break the hydrate bonds) is the 

driving force for this step. Stage 3 marks an onset of the evolution of a gas phase from the hydrate 

phase and step III is governed by intrinsic rate kinetics whose driving force is the difference in 

the fugacity of the gas molecule in the hydrate phase and its fugacity in the gas phase. The last 

step (IV) is the fluid flow from the hydrate/gas phase boundary to the bulk gas phase at P5 (e.g. 

gas flow to the well), with a driving force of P4 – P5. 
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Researchers14, 15 have shown that hydrate dissociation process can be mainly driven or 

controlled by any combination of heat transfer, intrinsic rate kinetics and fluid flow. Hydrate 

dissociation models are classified according to the importance of these three phenomena. 

2.2.1 Equilibrium Model 

In the equilibrium model, dissociation is considered to occur instantaneously with heat 

transfer as the rate-limiting process. In a heat transfer controlled dissociation, the sharp drop in 

temperature at the shrinking hydrate phase boundary caused by the endothermic nature of hydrate 

decomposition creates a temperature gradient, and the sensible heat from the remaining part of the 

reservoir provides the energy which drives the rest of the dissociation process.  For the case of 

pure methane hydrates, the endothermic dissociation reaction is 16: 

 
𝐶𝐻4. 𝑁𝐻𝐻2𝑂(ℎ) → 𝐶𝐻4(𝑔) + 𝑁𝐻. 𝐻2𝑂(𝑤) (2-1) 

NH is the hydration number (typically ~ 6, for methane). The equilibrium model is based on the 

assumption that Equation (2-1) occurs at chemical equilibrium, so that the hydrate will liberate a 

stoichiometric quantity of gas spontaneously as soon as the hydrate reservoir pressure and 

temperature (P, T) conditions reach the equilibrium values (Pe, Te) defined by the hydrate phase 

equilibrium relationship. With methane and water as the only components, the equilibrium model 

considers heat transfer among four phases namely:  

 Gas phase whose components are methane and water vapor 

 Aqueous phase whose components are water and dissolved methane 

 Solid ice phase which contains only water 

 Solid hydrate phase which contains  methane and water 

In the equilibrium model, the surrounding gas at the interface is assumed to always be at 

thermodynamic equilibrium with the hydrate. Heat transfer could be achieved via conduction, 
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convection or both.  Using a 1-D domain, Hong et al15 used an analytic procedure to describe the 

relationship between sensible heat (or ΔT) and rate of hydrate dissociation in a heat transfer 

controlled hydrate dissociation. It was shown that the evolution of temperature in the hydrate phase 

can be obtained following a similar solution approach to the melting moving boundary problem 17.  

 

𝑇(𝑥, 𝑡) = 𝑇𝑖 − (𝑇𝑖 − 𝑇𝑒)
𝑒𝑟𝑓𝑐 (

𝑥

2√𝛼𝑡
)

𝑒𝑟𝑓𝑐(𝜆)
 

(2-2) 

where, 

 𝑋(𝑡) = 2𝜆√𝛼𝑡 (2-3) 

i.e. location of the hydrate interface as the hydrate dissociates. λ is the solution of the equation: 

 
λ𝑒λ𝑒𝑟𝑓𝑐(λ) =

𝑆𝑡𝑒

√𝜋
 (2-4) 

Ste is the Stefan number, a dimensionless quantity which drives the dissociation process 15 and is 

defined as: 

 
𝑆𝑡𝑒 =  

𝑐𝑝(𝑇𝑖 − 𝑇𝑒)

𝜙𝛥𝐻

𝜌

𝜌𝐻
 (2-5) 

 

where, 

t = time (s) 

Ti = Initial hydrate temperature (K) 

Te = Equilibrium hydrate dissociation temperature (K) 

α = Average thermal diffusivity of the hydrate medium (m2/s) 

cp = Average heat capacity of the hydrate medium , J/kg/K 

ϕ = Porosity of hydrate medium 

ΔH = Heat of dissociation of hydrate (J/kg hydrate) 
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 ρ = Average density of the hydrate medium (kg/m3) 

ρH = Density of hydrate (kg/m3) 

In porous media, Stefan number can be used as an preliminary indication of how much recovery 

can be achieved under adiabatic conditions, based on reservoir temperature alone. The product of 

the porosity and interface velocity is a measure of rate of hydrate dissociation 15 obtained from the 

differentiation of Equation (2-3), the interface velocity is given by 

 𝑑𝑋(𝑡)

𝑑𝑡
= 𝜆√

𝛼

𝑡
 (2-6) 

Equation (2-6) clearly shows the proportional dependence of dissociation rate on Ste and, 

therefore, on ΔT.  

It has been shown that the rate of hydrate dissociation is mainly controlled by heat transfer in 

hydrate dissociation processes occurring over a reservoir production time scale 15, 18. This is why 

in many hydrate reservoir simulators, the hydrate dissociation process is fairly approximated with 

the equilibrium model, which is computationally less expensive than the more complex kinetic 

model. It is to be noted however, that the effects of intrinsic rate kinetics may become very 

significant at shorter time scales especially at the onset of hydrate dissociation. 15, 19 

2.2.2 Kinetic Model  

A kinetic model accounts for the phase changes and transitions are determined by a kinetic rate of 

dissociation or formation given by 20: 

 ṁ = 𝑘𝑑
0𝑒𝑥𝑝(−𝛥𝐸 𝑅𝑇⁄ )𝐹𝑎𝐴𝑑(𝑝𝑒 − 𝑝𝑔) (2-7) 

where, 

ṁ = Mass rate of hydrate dissociation  

kd0 = Intrinsic dissociation rate constant independent of temperature and pressure 



 

 

24 

 

ΔE = Change in activation energy for the dissociation reaction 

R = Universal gas constant 

T = Temperature of Hydrate 

A = Hydrate surface area of decomposition 

Fa = Adjustment factor, for reaction surface area corrections 

pe = Hydrate equilibrium pressure at T 

pg = pressure in bulk gas  

Equation (2-7) is a statement of the direct proportionality relationship between the rate of 

hydrate dissociation to the product of the rate constant and the dissociation surface area.  

Unlike the equilibrium model, a kinetic model considers hydrate as a third component composed 

only of CH4.NHH2O rather than separate methane and water components. 

While the kinetic rate model is more accurate for short dissociation times, it is 

computationally more intensive. In order to improve on kinetics-based dissociation models, there 

is need to incorporate nucleation phenomena and the tendencies of hydrate reformation.19 

However, based on current knowledge, in order for kinetics to be important, the kinetic rate 

constant would have to be reduced by more than 2–3 orders of magnitude.15 

 

2.2.3 Effect of Fluid Flow 

According to preliminary studies, it is very unlikely that hydrate dissociation rates would be 

controlled by fluid flow, however, the effect of fluid flow in the reservoir can become significant 

if fluid flow paths are considerably long enough15. Furthermore, fluid flow would have more effect 

in reservoirs with low formation porosity or permeability.18, 21 22 
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2.3 Numerical Solution with CMG STARS 

The complexity of the mass and energy conservation equations of fluid flow in porous 

media often makes the applicability of analytical (or closed form) solution techniques 

impracticable in real-life problems. As a result, this has given rise to the development of various 

numerical solution methods for hydrate dissociation in porous media, executable by computer 

program codes embedded in reservoir simulators. Although commercial made-for-hydrate 

reservoir simulators for hydrates are not yet available, the existing simulators include: 

 TOUGH + HYDRATE,23 developed at the DOE’s Lawrence Berkely National Laboratory 

 MH-21 HYDRES,24 a product of Japan's Methane Hydrate R&D Program developed by 

the National Institute of Advanced industrial Science and Technology, Japan Oil 

Engineering Co., Ltd. 

 STOMP-HYD, developed by Pacific Northwest National Laboratory25 

 HydrateResSim,26 developed at the DOE’s National Energy Technology Laboratory 

 CMG STARS27, developed by the Computer Modelling Group, Canada. 

STARS is a commercial reservoir simulator built for conventional thermal reservoir flow 

simulations27. The choice of STARS as the numerical simulator for all the models presented in this 

work is based on its well-established and advanced numerical techniques and, hence, its capability 

of modeling a reservoir with a very complex geometry with high degree of heterogeneity of 

geophysical properties, compared with the other built-for-purpose hydrate reservoir simulators. 

In order to gain confidence in simulation predictions by all of these simulators, efforts were made 

by the USGS and DOE in collaboration with international organizations to reach consensus 

between these codes.  This was the objective of the International Gas Hydrate Code Comparison 

Project which involved studies conducted on idealized problems. The performance of this study 
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using CMG STARS was the main subject discussed in the MSc thesis of Gaddipati28, in which a 

close agreement with other codes was confirmed. A more detailed results of the project is 

documented in a comprehensive report by Wilder et al.29 

2.3.1 Hydrate Dissociation and Formation Models 

In STARS, hydrate is modeled as a separate and only component of a highly component 

of a highly viscous “black oil” phase.28-30 A summary of all the components and phases are given 

in Table 2-1. The hydrate dissociation and formation processes are based on an equilibrium model 

approximated by intrinsic rate kinetics, as in the following discussion.  

 

Table 2-1: Components and phases in hydrate dissociation modeling with STARS31 

Component 
Phase 

Aqueous Gaseous Oleic (“oil-like”) 

H2O X X  

CH4  X  

CH4.NH H2O   X 

 

Pure methane hydrate is assumed in this study with NH = 6.176.28, 30, 32 The dissociation and 

formation processes are represented by the two kinetic reactions in Equations (2-8) and (2-9), 

respectively. 

 
𝐶𝐻4. 6.176 𝐻2𝑂(𝑜𝑙) + 𝐻2𝑂(𝑎𝑞) → 𝐶𝐻4(𝑔) + 7.176 𝐻2𝑂(𝑎𝑞) (2-8) 

 
𝐶𝐻4(𝑔) +  6.176 𝐻2𝑂(𝑎𝑞) → 𝐶𝐻4. 6.176 𝐻2𝑂(𝑜𝑙) (2-9) 

The additional H2O on both sides of Equation (2-8) is necessary because in STARS, the primary 

reacting component has to be in either one of aqueous or gaseous phases. 
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The rate of hydrate dissociation (in gmol/m3/s) in a porous media can be recast from Equation (2-

7) into Equation (2-10).31 

 
−

𝑑𝑐𝐻

𝑑𝑡
=

𝑘𝑑
0𝐴𝐻𝑆

𝜌𝑤𝜌𝐻
exp (−

𝐸

𝑅𝑇
) (𝜙𝑆𝑤𝜌𝑤)(𝜙𝑆𝐻𝜌𝐻)𝑝𝑒(1 − 1

𝐾(𝑃, 𝑇)⁄ ) (2-10) 

where kd0 is the first-order intrinsic dissociation rate constant AHS is the hydrate surface area of 

decomposition per unit volume ρw and ρH are the densities of water and methane hydrate, ϕ is the 

porosity of the media and Sw and SH are the saturations of water and hydrate in the pores. E is the 

activation energy, R is the universal gas constant, pe is the hydrate dissociation equilibrium 

pressure at temperature T and K (P,T) is the three-phase (Lw-H-V) equilibrium relationship. The 

K(P,T) function is inputted as a three-parameter correlation and is obtained by fitting a three-phase 

equilibrium data of water-rich liquid, hydrate and vapor of pure CH4. 

 
𝐾(𝑃, 𝑇) =  

𝑝𝑒

𝑃
= (𝑎 𝑃⁄ )𝑒𝑥𝑝 (

𝑏

𝑇 − 𝑐
) (2-11) 

where a, b and c are fitting parameters. 

Substitution of Equation (2-11) in Equation (2-10) would yield Equation (2-12) 

 
−

𝑑𝑐𝐻

𝑑𝑡
= 𝐴 exp (−

𝐸𝐻

𝑅𝑇
) (𝜙𝑆𝑤𝜌𝑤)(𝜙𝑆𝐻𝜌𝐻)(1 − 1

𝐾(𝑃, 𝑇)⁄ ) (2-12) 

where, 

𝐴 =
𝑘𝑑

0𝐴𝐻𝑆𝑎

𝜌𝑤𝜌𝐻
, and 

𝐸𝐻 = 
𝐸𝑇−𝑏𝑅𝑇−𝑐𝐸

(𝑇−𝑐)
 , the new parameter for hydrate activation energy31. 

Similarly, hydrate formation rate can be formulated and expressed as Equation (2-13). 

 𝑑𝑐𝐻

𝑑𝑡
= 𝐵(1 + 𝜙𝑆𝐻) exp (−

𝐸𝐻

𝑅𝑇
) (𝜙𝑆𝑤𝜌𝑤)(𝜙𝑆𝐻𝜌𝐻)(1 𝐾(𝑃, 𝑇)⁄ − 1) (2-13) 

𝐵 =
𝑘𝑓

0𝐴𝐻𝑆𝑎

𝜌𝑤
, with 𝑘𝑓

𝑜 being the hydrate intrinsic formation rate constant. 
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STARS input data for intrinsic rate parameters are summarized in Table 2-2.  

Table 2-2: STARS Input Data for Intrinsic Rate Kinetics15, 20, 31 

Parameter Value 

𝑘𝑑
𝑜(𝑔𝑚𝑜𝑙/(𝑑𝑎𝑦. 𝑘𝑃𝑎.𝑚2)) 1.17 x 1015 

𝑘𝑓
𝑜(𝑔𝑚𝑜𝑙/(𝑑𝑎𝑦. 𝑘𝑃𝑎.𝑚2)) 1.64 x 1011 

𝐴𝐻𝑆(𝑚
2/𝑚3) 3.75 x 105 

𝑎 (𝑘𝑃𝑎) 9.03 x 1015 

𝑏 (𝐾) -7894 

𝑐 ( 𝐶 / 𝐾𝑜 ) -273.15 / 0 

𝐸(𝐽/𝑔𝑚𝑜𝑙) 81084 

𝑅(𝐽/𝑔𝑚𝑜𝑙/𝐾) 8.314 

+𝛥𝐻(𝐽/𝑔𝑚𝑜𝑙) 51858 

 

Values of 𝑘𝑑
𝑜 and 𝑘𝑓

𝑜 are such that the magnitude of 𝐴 and 𝐵 are greater than 1027, and as a result, 

Equations (2-8) and (2-9) would occur spontaneously, essentially leading to an equilibrium model 

of hydrate dissociation. As mentioned earlier, the approximations of hydrate dissociation rate over 

a reservoir time-scale by an equilibrium model are valid, however, the inaccuracies for hydrate 

formation may be more significant owing to additional mechanisms such as hydrate nucleation 

and growth, which are not accounted for. 

2.3.2 Relative Permeability and Capillary Pressure Models 

Intrinsic or absolute permeability of a reservoir is a measure of its ability to flow a 

particular fluid at total saturation (i.e. when no other fluid is present in the reservoir pores). The 

ability of the rock to allow flow of a particular fluid becomes impaired in the presence of other 

immiscible fluids and the permeability of the reservoir to the fluid at this time is called effective 

permeability. The ratio of the effective permeability to the absolute permeability to a fluid is known 
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as relative permeability, and has been shown to be a function of the saturation of the fluid in the 

reservoir pores at any time.33 Intrinsic permeability is typically a function of porosity – the relative 

amount of void space in a reservoir rock. Therefore, in a hydrate reservoir, the formation porosity, 

hence the intrinsic permeability will change continuously, as saturation of hydrate decreases or 

increases due to hydrate dissociation or formation in the reservoir pores.  

Modeling hydrate as an oleic component in STARS makes it is impossible to explicitly 

include the dependency of permeability on porosity as hydrate is being dissociated or formed. 

However, the change in permeability is implicitly accounted for through the use relative 

permeability tables where values for relative permeability to water or gas are entered separately as 

a function of their respective saturations. In STARS and other numerical simulators, relative 

permeability are usually incorporated using data-fitted correlations similar to Equation (2-14), 

which is the modified three-phase relative permeability model of Stone.33 

 
𝑘𝑟𝛼 = {

(𝑆𝛼 − 𝑆𝛼𝑖𝑟)

(1 − 𝑆𝛼𝑖𝑟)
}
𝑛

 (2-14) 

where, 

𝑘𝑟𝛼 = 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡𝑜 𝛼 𝑝ℎ𝑎𝑠𝑒 

𝑆𝛼 = 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝛼 𝑝ℎ𝑎𝑠𝑒 

𝑆𝛼𝑖𝑟 = 𝐼𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝛼 𝑝ℎ𝑎𝑠𝑒  

𝛼 = 𝑤 (𝑤𝑎𝑡𝑒𝑟 𝑝ℎ𝑎𝑠𝑒), 𝑔 (𝑔𝑎𝑠 𝑝ℎ𝑎𝑠𝑒); 𝑛 = 𝑓𝑖𝑡𝑡𝑖𝑛𝑔 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡, 𝑡𝑦𝑝𝑖𝑐𝑎𝑙𝑙𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑎𝑛𝑔𝑒 3 − 5 

Irreducible water saturation is the relative amount of water which remains either clay- 

and/or capillary-bound to the formation pores during production. Figure 2-2 shows a typical 

relative permeability model curve generated for hydrate-bearing sands of the PBU L-Pad with 

𝑆𝑤𝑖𝑟= 0.10 and 𝑆𝑤𝑖𝑟 = 5.04 using Stone’s model. Relative permeability to water increases from 0 
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to 1 while gas relative permeability decreases from 1 to 0, as water saturation increases from 

𝑆𝑤𝑖𝑟 to 1 and gas saturation decreases from 0.9 to 0. 

  

Figure 2-2: Relative permeability and capillary pressure models of PBU L-Pad hydrates 

Capillary pressure exists in formation pores due to the interfacial tension between two 

immiscible fluids in contact with each other. It is the difference in pressures at the interface 

between the fluid which preferentially wets the inside of the pore (known as the “wetting phase”) 

and the other fluid (the “non-wetting phase”). Capillary pressure can also be interpreted as the 

pressure required to force a non-wetting phase to displace the wetting phase in the reservoir pore 

in a process known as “drainage”. Water is considered to be the wetting phase in most reservoirs 

as well as the reservoir models in this study34 and therefore, capillary pressure is the minimum 

pressure required to force trapped water out of the formation pores. 

Owing to the dependence of capillary pressure on pore size, capillary pressure models are 

typically associated with a reservoir with a particular set of pores. However, due to the complex 

structure of reservoir pores, capillary pressure is usually determined as a function of the saturation 
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of the wetting phase. The capillary pressure model used in this work is given by Equation (2-15), 

after van Genuchten35. 

 
𝑃𝑐 = −𝑃𝑚𝑎𝑥 [(𝑆∗)−

1
𝜆 − 1]

1−𝜆

 (2-15) 

where 𝑃𝑐= capillary pressure, 𝑆∗ = 
𝑆𝑤−𝑆𝑤𝑖𝑟

1−𝑆𝑤𝑖𝑟
, 𝑃𝑚𝑎𝑥=10 kPa, 𝜆=0.77437 and all other variables are 

as defined in Equation (2-14). 

The capillary pressure curve given by Equation (2-15) is also plotted as a function of water 

saturation in Figure 2-2, with capillary pressure expressed as a fraction of its maximum value in 

the reservoir (𝑃𝑚𝑎𝑥). As water saturation decreases, the force required to eject water out of the 

pores (or capillary pressure) increases. However, no amount of force or capillary pressure would 

be high enough to reduce water saturation below the irreducible water saturation. Furthermore, the 

endpoint of the capillary pressure at 𝑆𝑤 = 1 is known as the “entry pressure” (𝑃𝑐,𝑒) which is the 

minimum pressure required to squeeze out the wetting phase (water) from any of the reservoir 

pores. 

2.3.3 Governing Equations 

A spatially discretized form of mass and energy conservation equations are written for each 

component in each grid block and is given by Equations (2-16) and (2-17), respectively 27.  
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𝑉

𝜕

𝜕𝑡
[𝜙𝑓(𝜌𝑤𝑆𝑤𝑤𝑖 + 𝜌𝑜𝑆𝑜𝑥𝑖 + 𝜌𝑔𝑆𝑔𝑦𝑖)]

=  ∑(𝜌𝑤𝑇𝑤𝑤𝑖𝛥∅𝑤 + 𝜌𝑜𝑇𝑜𝑥𝑖𝛥∅𝑜 + 𝜌𝑔𝑇𝑔𝑦𝑖𝛥∅𝑔)

𝑛𝑓

𝑘=1

+ 𝑉 ∑(𝑠′
𝑘𝑖 − 𝑠𝑘𝑖)𝑟𝑘

𝑛𝑟

𝑘=1

+ ∑(𝜙𝜌𝑤𝐷𝑤𝑖𝛥𝑤𝑖 + 𝜙𝜌𝑔𝐷𝑔𝑖𝛥𝑦𝑖 + 𝜙𝜌𝑜𝐷𝑜𝑖𝛥𝑥𝑖)

𝑛𝑓

𝑘=1

+ 𝜌𝑤𝑞𝑤𝑘𝑤𝑖 + 𝜌𝑜𝑞𝑜𝑘𝑤𝑖 + 𝜌𝑔𝑞𝑔𝑘𝑦𝑖 

(2-16) 

  
𝑉

𝜕

𝜕𝑡
[𝜙𝑓(𝜌𝑤𝑆𝑤𝑈𝑤 + 𝜌𝑜𝑆𝑜𝑈𝑜 + 𝜌𝑔𝑆𝑔𝑈𝑔 + (1 − 𝜑𝑓)𝑈𝑟)]

=  ∑(𝜌𝑤𝑇𝑤𝐻𝑤𝛥∅𝑤 + 𝜌𝑜𝑇𝑜𝐻𝑜𝛥∅𝑜 + 𝜌𝑔𝑇𝑔𝐻𝑔𝛥∅𝑔)

𝑛𝑓

𝑘=1

+ ∑ 𝐾𝛥𝑇

𝑛𝑓

𝑘=1

+ 𝜌𝑤𝑞𝑤𝑘𝐻𝑤 + 𝜌𝑜𝑞𝑜𝑘𝐻𝑜 + 𝜌𝑔𝑞𝑔𝑘𝐻𝑔

+ 𝑉 ∑ 𝐻𝑟𝑘𝑟𝑘

𝑛𝑟

𝑘=1

+ 𝐻𝐿 

 

(2-17) 

V = Total volume of a grid block 

ϕf = Porosity of formation grid block 

Sα = Saturation of phase α, α = w,o,g (w=water, o = oil, g = gas phases) 

ρα = Density of phase α 

wi, xi, yi = Mole fractions of component “i” in water, oil and gas phases, respectively 

Uα, Ur = Internal energies of phase α and rock, respectively 
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Hα = Enthalpy of phase α 

Hrk = Enthalpy of reaction k 

rk = Volumetric rate of reaction “k” 

qαk  = Well mass flow rate of phase α 

ski’, ski = Product and reactant stoichiometric coefficients of “i” in reaction “k”, respectively 

Tα = Mass transmissibility of phase α between two regions 

K = Thermal transmissibility at the interface between two regions 

ΔT = Temperature drop between the nodes 

Δ∅α = Mass flow potential difference between the current and previous nodes 

For a three-component system (water, CH4 and hydrate), three mass (component) conservation 

equations, one energy conservation equation and one phase constraint equation are solved 

simultaneously for each grid block using the Newton-Raphson method for a system of equations 

given by Equation (2-18). 

 𝑋𝑘+1 = 𝑋𝑘 − [𝐽𝑘]−1. 𝑅𝑘 (2-18) 

where k is the iteration level and Jk is the Jacobian matrix of the derivatives of the residual R given 

by Equation (2-19). 

 𝑅(𝑋) = [𝑛𝑒𝑡 𝑖𝑛𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒] + [𝑛𝑒𝑡 𝑠𝑜𝑢𝑟𝑐𝑒/𝑠𝑖𝑛𝑘 𝑟𝑎𝑡𝑒]  −  [𝑟𝑎𝑡𝑒 𝑜𝑓 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛] (2-19) 

Solution convergence requires that both  𝑋𝑘+1 − 𝑋𝑘  and R are sufficiently small. 

2.4 Geostatistics 

Reservoir characterization often requires the application of statistical principles to predict 

the distribution of geophysical properties in a given reservoir, which is the essential goal of a 

branch of study known as geostatistics. The motivation to employ geostatistical techniques stems 

from the need to build a high-fidelity and robust 3-D reservoir model that is consistent with 
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available data, which is the very foundation of the overall objective this study. Geostatistical 

methods are developed based on the concept of random function (or random variable) to model 

the associated uncertainties. Strictly speaking, distribution of reservoir properties like porosity, 

facies, phase saturations, etc. are not random since there is only one single true distribution of the 

properties. However, because it is impossible to develop a completely deterministic model to 

evaluate geophysical properties at every location based on the evolution of the reservoir, the 

validity of the treatment of sampled variables as random variables is justified.36  

Another very important concept in geostatistical analysis is the assumption of stationarity, 

which defines the applicability of a model developed based on sampled data over the entire region 

of interest. A small region of stationarity implies a closer approximation to satisfying the 

requirement of stationarity while a large region very much has the tendency to violate this 

requirement. The L-Pad model developed in this work assumes that the region of stationarity is 

limited to the areal extent within which data was collected and the validity of this assumption is 

discussed in Chapter 3.  

Following the treatment of variables as random variables within the assumption of 

stationarity, application of geostatistical techniques generally proceeds with the quantification of 

spatial relationships with the sampled variables and estimation of variable values at other 

unsampled locations. Variograms are often used to represent spatial relationships, and techniques 

like kriging are used to estimate values at unsampled locations, usually in combination with other 

conditional simulation algorithms.  
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2.4.1 Spatial Relationships 

Geostatistics takes advantage of the fact that in a naturally occurring sediment, 

measurements taken within a small radius of separation tend to be similar. It attempts to account 

for the spatial relationship through certain correlation functions. The variogram, which is the most 

commonly used, is a measure of the variability of a quantity sampled in different locations with 

respect to spatial coordinates. It is a function of both the separation (or “lag”) distance and 

direction. Mathematically, it is defined by37  

 

𝛾(𝒉) =  
1

2𝑁(𝒉)
∑[𝑧(𝒙𝑖) − 𝑧(𝒙𝑖 + 𝒉)]2

𝑁(𝒉)

𝑖=1

 (2-20) 

where, 

𝒉 = separation 𝑣𝑒𝑐𝑡𝑜𝑟 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎 𝑝𝑎𝑖𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (𝑙𝑎𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 vector) 

𝑁(𝒉) = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑎𝑖𝑟𝑠 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝒉 

𝒙𝑖 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑎𝑖𝑟 

𝑧(𝒙𝑖 ) = 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑤𝑖𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝒙𝑖 

(𝒉) = 𝑉𝑎𝑟𝑖𝑜𝑔𝑟𝑎𝑚 𝑜f all 𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑎𝑖𝑟𝑠 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝒉 

Equation (2-20) is the equivalent of a statement that the variogram is half of the variance of the 

difference between two sampled values located h distance apart.  

The physical interpretation of the variogram can be explained by Figure 2.3 which shows 

a normalized horizontal directional porosity variogram for “Unit C” of the PBU L-Pad hydrate 

bearing sands, calculated at a lag distance interval of ~ 70 m (with tolerance of +/- 70 m). It shows 

that the variability between any two sampled quantities (or the variogram) increases as the 

separation distance between them increases and reaches a maximum (the sill) at a lag distance 

equal to the range. Beyond this range, the variability remains the same regardless of the separation 
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distance between the two sampled locations. Normally, sampled variables at the same location (i.e. 

lag distance = 0) would have the same value (i.e variogram = 0), however structural discontinuities 

or measurement errors may cause γ(0) to be non-zero, leading to a nugget effect as shown in Figure 

2.3. (Note that the variogram in Figure 2.3 was intentionally modeled with a nugget effect for 

illustration purpose only). 

 

Figure 2-3: Normalized porosity variogram for “Unit C” of PBU L-Pad hydrate-bearing sands 

The variogram function is required to be defined for all lag distance and directions, hence, the 

variogram values calculated using Equation (2-20), known as sample (or experimental) 

variograms, cannot be used directly in subsequent geostatistical steps. Therefore, a variogram 

model must be fitted to the sample variogram using any combination of known positive definite 

functions.36, 38, 39 The requirement of positive definiteness of a variogram ensures that the ensuing 

kriging equations can be solved during stochastic simulations. Table 2-3 summarizes the most 

common positive definite functions that are used to model variograms.  
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Table 2-3: Positive Definite Variogram Models39 

Model Mathematical Definition Comments 

Nugget 𝛾(ℎ) = {

0, 𝑖𝑓 ℎ = 0

1, 𝑖𝑓 ℎ > 0
 

Models discontinuities at a scale smaller than 

the lag distance. Accounts for only a small 

fraction of the total variability. 

Spherical 𝛾(ℎ) = {
[1.5ℎ − 0.5ℎ3], 𝑖𝑓 ℎ ≤ 1

1,                       𝑖𝑓 ℎ ≥ 1

 
Used to describe variograms which rise 

linearly before reaching the sill 

Exponential 𝛾(ℎ) = 1 − 𝑒−3ℎ 
Similar to spherical but rises to the sill with a 

steeper slope 

Gaussian 𝛾(ℎ) = 1 − 𝑒−3ℎ2
 

Models implicit continuity at short distances 

such as structural surfaces and thickness 

Hole Effect 𝛾(ℎ) = 1 − cos(ℎ. 𝜋) 
Seldom used in models where data show 

cyclicity 

 

where, 

ℎ𝑖 =  √(
ℎ𝑣𝑒𝑟𝑡

𝑎𝑣𝑒𝑟𝑡𝑖

)

2

+  (
ℎℎ𝑜𝑟

𝑎ℎ𝑜𝑟𝑖

)

2

,   𝑖 = 1,  2,…𝑁(𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑠𝑡𝑒𝑑 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠) 

and 

ℎ𝑣𝑒𝑟𝑡 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑎𝑛𝑑 𝑢𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

ℎℎ𝑜𝑟 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑎𝑛𝑑 𝑢𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛  

𝑎𝑣𝑒𝑟𝑡𝑖
= 𝑣𝑎𝑟𝑖𝑜𝑔𝑟𝑎𝑚 𝑟𝑎𝑛𝑔𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖𝑡ℎ𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 

𝑎ℎ𝑜𝑟𝑖
= 𝑣𝑎𝑟𝑖𝑜𝑔𝑟𝑎𝑚 𝑟𝑎𝑛𝑔𝑒 𝑖𝑛 𝑡ℎ𝑒 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖𝑡ℎ𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 

The final variogram model structure is a combination of these “nested structures” with each having 

a variance contribution that sums up to the overall (normalized) sill value of 1. 
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2.4.2 Stochastic Simulation 

Following the development of a variogram model, it is then used to determine the 

weighting factors to be applied in the estimation of values in unsampled locations. This is done in 

a stochastic simulation process based on a set of interpolation techniques called known as kriging 

(developed and named by Matheron37, after a South African mining engineer Danie G. Krige40 

who is the pioneer of the geostatistics field). Kriging involves using a minimum variance unbiased 

estimation technique to estimate weights, yielding a minimum error variance. Usually, the result 

of kriging is the expected value (“kriging mean”) and variance (“kriging variance”) computed for 

every point within a region. 

In Simple Kriging (SK), a value at an unsampled location is evaluated by the linear 

estimator 

 
𝑋∗(�⃗� 0) = 𝜆0 + ∑𝜆𝑖

𝑛

𝑖=1

𝑋(�⃗� 𝑖) (2-21) 

where, 

𝑋∗(�⃗� 0) = value to be estimated at location �⃗� 0, 𝑋(�⃗� 𝑖) = value at a nearby sampled location �⃗� 𝑖 and  

𝑛 = total number of samples selected within a predefined search neighborhood. 

In this kriging technique, there is an assumption that the population mean is known and a condition 

that its value at both the sampled and unsampled locations be equal (a first order stationarity 

requirement). Imposition of these constraints to Equation (2-21) leads to the evaluation of the 

constant 

 
𝜆0 = 𝑚 (1 − ∑𝜆𝑖

𝑛

𝑖=1

) (2-22) 
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Since the weights 𝜆𝑖 are to be chosen such that the error variance is minimized, then  

 𝚲 =  𝑪−𝟏𝒄 (2-23) 

where, 𝚲 = [

𝜆1

𝜆2

⋮
𝜆𝑛

], 𝑪 = [
𝐶(�⃗� 1, �⃗� 1) … 𝐶(�⃗� 1, �⃗� 𝑛)

⋮ ⋮
𝐶(�⃗� 𝑛, �⃗� 1) … 𝐶(�⃗� 𝑛, �⃗� 𝑛)

] and 𝒄 = [
𝐶(�⃗� 1, �⃗� 0)

⋮
𝐶(�⃗� 𝑛, �⃗� 0)

] 

𝐶(�⃗� 𝑖 , �⃗� 𝑗) is the covariance between two sampled variables located at �⃗� 𝑖 and �⃗� 𝑗  and is obtained 

from the variogram as in Equation (2-24) 

 𝐶(�⃗� 𝑖 , �⃗� 𝑗) = 1 − 𝛾(�⃗� 𝑖, �⃗� 𝑗) 
(2-24) 

The assumption of a known mean makes simple kriging a less popular technique compared 

with Ordinary Kriging (OK). The OK technique assumes that the true population mean is 

unknown (which is often so in practice) and therefore, the local mean within a search radius is a 

function of the sample location �⃗� 0, i.e. there is no requirement of first order stationarity.  

However, Equation (2-21) is still valid for OK with the results of the relaxation of these 

assumptions being: 

 ∑ 𝜆𝑖
𝑛
𝑖=1 = 1, and 𝜆0 = 0  

Additionally, applying the minimum variance condition modifies Equation (2-23) to  

𝚲 =

[
 
 
 
 
𝜆1

𝜆2

⋮
𝜆𝑛

𝜇 ]
 
 
 
 

, 𝑪 = [

𝐶(�⃗� 1, �⃗� 1) … 𝐶(�⃗� 1, �⃗� 𝑛) 1

⋮ ⋮ ⋮
𝐶(�⃗� 𝑛, �⃗� 1) … 𝐶(�⃗� 𝑛, �⃗� 𝑛) 1

1 … 1 0

] and 𝒄 = [

𝐶(�⃗� 1, �⃗� 0)
⋮

𝐶(�⃗� 𝑛, �⃗� 0)
1

] 

where 𝜇 is a new constant called the Lagrange parameter. 

Universal Kriging (UK) is another interpolation technique used when a trend has been 

observed in the data. However, because it is often a better practice to remove trends observed in 

data before performing geostatistical analysis, the method is not used as often as OK.39 
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 One main drawback of the kriging technique is that extreme values observed in the original 

data are not reproduced except when such extreme value is the only sampled data present within 

the search radius.36 Therefore, because of the need to preserve the variability of data in the 

estimated values, a conditional simulation technique is used in combination with kriging. The main 

idea of condition simulation techniques such as the Sequential Gaussian Simulation (SGS) is to 

incorporate previously simulated values as input data to estimate other values in other unsampled 

locations. As a result, the technique ensures that the original sample distribution is honored. 
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3. Prudhoe Bay Unit “L-Pad” Reservoir Models 

3.1 Introduction 

Natural gas hydrate within ANS shallow sand reservoirs was first directly confirmed 

by data acquired in the Northwest Eileen State-02 well drilled in 1972.  Since then, the hydrate 

deposits in the ANS have been discovered to occur within two large expanses known as the 

Eileen and Tarn trends. The Eileen trend, shown in Figure 3-1 (a), spans over the eastern part 

of the Kuparuk River Oilfield, the southern part of the Milne Point and the western part of the 

Prudhoe Bay oil fields. Estimates indicate that the total gas in place interpreted within shallow 

sand reservoirs below the production infrastructures within the Eileen Trend may be up to 0.93 

trillion cubic meters (33 TCF)1. It has been described to compose of six laterally continuous 

gas hydrate-bearing sand units (as interpreted from the wells penetrating the Eileen 

accumulation) with thicknesses ranging from 3 to 30 m thick2. However, as shown in Figure 

3-1 (b), only three hydrate-bearing units (C, D and E) are found in the L-Pad region, with E 

being in the permafrost region and hence being too cold to be a production target2. 

The PBU L-Pad site has been evaluated to be a favorable site for long-term production 

testing because of the unique combination of relatively warm reservoirs (approximately 3 0C 

warmer than the most promising target in MPU) providing greater sensible heat to maintain 

gas production rates and the presence of multiple potential production targets (Units C, and 

D), offering more testing options and flexibility and less operational risks associated with 

conducting a successful gas hydrate production test2.  
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(a)      (b) 

  

 

(c) 

Figure 3-1: Map of ANS Hydrate Accumulations Showing (a) the Tarn and Eileen Trends (b) 
cross-section between selected wells (c) index map for (a)3 
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Prior to this study, well log inferred correlations from L-106 and Ignik Sikumi wells 

have been used to characterize the physical properties controlling the occurrence of gas 

hydrates within this region. However, in addition to these two control wells, there are other 76 

wells with gamma-ray logs that have penetrated the full target intervals (D and C units). The 

extensive range of well log data provides a sufficient means to describe and assess the reservoir 

complexity in the development of 3D heterogeneous reservoir model2.  

3.2 Previous Modeling Efforts 

Only a few of previous hydrate reservoir models have explicitly incorporated 

heterogeneity in flow simulation models. Based on a 2D cylindrical geometry and using a 

vertical heterogeneity in porosity, saturation and intrinsic permeability, Anderson et al.4, 5 and 

Myshakin et al.6 compared production forecasts with those developed based on homogeneity 

of these properties. In the vertical heterogeneous models, properties were uniform within the 

lateral extent of a hydrate layer but varied from layer to layer in the vertical direction. These 

heterogeneous models were significant improvements over their homogeneous counterparts as 

they predicted higher and accelerated gas production rates. In the study of the production 

potential of the Eastern Nankai Trough hydrate reservoirs, Kurihara et al.7, 8 incorporated a 

higher degree of heterogeneity and included features such as fault and structural dip, and also 

accounted for change in absolute permeability. It was found that sealing capability of faults 

and formation dip are the factors significantly affecting short term production. Reagan et al.9, 

10 investigated the impact of heterogeneity (both vertical and lateral) using a 2D reservoir 

model and concluded that vertical hydrate saturation variability derived from well log data 

results in enhanced gas production forecasts due to effects of small zones of greater in situ 

permeability. They also demonstrated that variability in hydrate saturations led to non-uniform 
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dissociation and the eventual secondary hydrate formation manifesting itself as “evolving solid 

barrier around a wellbore”, “moving solid barrier” or “hydrate lensing” predicted in numerous 

simulations, the features which can potentially deteriorate production performance9, 11, 12. Other 

models with homogeneous approximations in the descriptions of porosity, saturation 

distributions and other geophysical properties include those of Gaddipati13, Gaddipati and 

Anderson14, Myshakin et al.15, Reagan et al.16 and Kurihara et al.8.  

Heterogeneous 3D reservoir simulations of hydrate systems are very much less 

common largely due to the complexity of the model domain and sparsity of available field 

data. However, as the techniques of reservoir characterization of hydrate prospects are being 

more clearly understood, and more field data from downhole logging operations, core sample 

analysis, and fluid measurements become available to characterize gas hydrate deposits, more 

sophisticated reservoir models can be developed.  

3.3 Model Objectives 

One of the main advantages of three-dimensional reservoir modeling is the more 

realistic simulation of fluid flow path in the reservoir pore spaces, which might significantly 

affect the cumulative volumes of gas that may be produced8. As a result, a 3D reservoir model 

should yield a more reliable prediction of sustained gas production. 

The goal of the modeling efforts discussed in this chapter is to assess the production 

potential from 3D reservoir models of the “D” and “C” hydrate-bearing units of the PBU “L-

Pad” area of the ANS. The aim is to improve on the existing L-Pad models taking into account 

the structural and geophysical heterogeneities of the reservoir by maximizing the utilization of 

the available field data in a comprehensive characterization of the modeled region. Geological 
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features including faults, dips and hydrate-water contact would also be incorporated in some 

of the models and the key expected outcomes are: 

 a measure of reliability of predictions from a highly data-driven heterogeneous 

reservoir model 

 a deepened understanding of the implications of the differences between 

predictions of reservoir performance by homogeneous and heterogeneous 

models 

 identification of key reservoir parameters which affect production performance 

of a hydrate reservoir in a real geological setting 

 a description of the true effects of secondary hydrate formation reservoir fluid 

flow and, ultimately, gas production 

 an engineering basis for the design of artificial lift systems for wellbore 

management and flow assurance during production  

 economically viable development options for long-term production 
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3.4 Reservoir Characterization and Model Development 

Simulations were carried out using geostatistical porosity realizations conditioned to 

log data from 78 wells and incorporating porosity-dependent hydrate saturations and intrinsic 

permeability. The following is a list of the available field data provided by the USGS: 

 Contour map data of depth to top of D and C sand units (Figure 3-2) 

 Spatial coordinates (x, y, z) of the intersections of 78 L-pad wells with the top 

of D and C sand unit i.e. “D and C sand top picks” 

 Gamma ray log data from all 78 wells 

 Resistivity-derived hydrated saturation log data from two wells - L-106 and 

Ignik Sikumi (see Figure 3-3 for the cross-section of data from Ignik Sikumi) 

 Density logs from two wells (L-106 and L-112) 

The maps of Figure 3-2 indicate that there is a general monocline with dip of roughly 

50 to the east north-east2. It also shows a major normal fault (known as the “L-Pad fault”) which 

cuts across the western region of the model area in a roughly north-south orientation in both 

sand units. The fault has an offset of about 30 m (100 ft) with the most wells penetrating both 

target sand units on the upthrown side of the fault. This fault has been suggested by Collett et 

al.2 to be a lateral seal and therefore, the hydrate formations on both sides of the fault are 

assumed to be non-connecting. There is a strong indication of hydrate-water contact at ~ 685 

m (~ 2248 ft) which may be evidenced in the fact that the bottom of the C sand (pink numbers 

in Figure 3-2) in L-106 and Ignik Sikumi wells are both at ~ 685 m (~ 2248 ft), and in the well 

log cross-section for the Ignik Sikumi well shown in Figure 3-3. The water contact also 

explains why the areal extent of hydrate accumulations (to the east) stops definitively at depths 

of about 686 m (2250 ft), as shown by the shaded region and the blue line in Figure 3-2 (a). 
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Figure 3-2: Structure contour maps of depth to top of (a) C sand, (b) D sand showing major 
faults, extent of hydrate occurrence, L-pad location, well intersections points with the sands 

and model area (1275 m x 1275 m)17. 
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Figure 3-3: Composite LWD log and computed Sh variations with the true vertical depth 
subsea (TVDSS) within primary sand target intervals at the PBU Ignik Sikumi well. From 
left to right across the plot: i) equilibrated temperature, 0C ii) gamma ray, gAPI, iii) shale 

content corrected for non-linear effects, fractional, iv) electrical resistivity, m, v) hydrate 
saturation, fractional. Hydrate saturations were calculated from resistivity using Archie’s 

Law18 with the exponent n = 2 
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There has also been a suggestion of a possibility of hydrate-water contact at the western 

side of the fault which is also corroborated by the C sand bottom depths being at 677 m (2222 

ft) in the wells L-112 and NW Eileen 01-013. 

Characterization of the reservoir proceeded with calculating volume of shale content (Vsh) 

from gamma-ray logs for all 78 wells using a formula for tertiary sedimentary rocks, with the 

gamma ray log response in a 100% clean zone (30 API) and a 100% shale zone (120 API)19. 

The density logs available for the L-106 and L-112 wells were used to calculate the shale-

corrected porosity (c)20: 

 � = 	
� − ��

�� − ��
, ��� = 	

��� − ��

�� − ��
, �� = 	�	 − ������ = 	�	 − 0.17 ∗ ��� (3-1) 

 

where, 

ρ = density log value;   ρ
�

= matrix rock density = 2.65;  ρ
�

= density of water = 1.00; 

ρ
��

= shale density ≅ 2.37; φ = porosity without correction; 

 φ
��

= shale porosity correction  = 0.17; 

φ
�

= shale − corrected porosity; V�� = volume of shale from log 

Figure 3-4 shows the relationship between the calculated shale volumes, as inferred 

from the pooled gamma-ray well logs of L-106 and L-112, and their porosity values calculated 

using Equation (3-1). The field data were fitted by the least-square technique to get the 

mathematical expression given in Equation (3-2) which was used to estimate porosities for 

other 76 well logs.   

 � = 0.52	���
� − 0.81	��� + 0.48	 (3-2) 

 

where � = porosity and ��� = gamma ray-inferred volume of shale  
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Figure 3-4: Relationship between shale volume and porosity derived from the density and 
gamma ray logs of PBU L-106 and L-112 wells in the depth interval (33 – 853 m). 
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The computed “pooled” correlation is compared with a similar equation obtained by 

Collett et al.2, using log data from only L-106 (as it was the only available one at the time). 

There is a close agreement between two equations within the Vsh range [0 - 0.4], an interval 

of which covers more than 80 % of the shale volume data points throughout depths [33 – 853 

m]. Validation with the correlation by Collet et al.2, combined with the indication that the 

pooled correlation predicts a more realistic deeper reduction in porosity with increase of shale 

content, justifies the use of the pooled correlation in this study to estimate the porosity values 

in other 76 wells. The correlations displayed in Figure 3-4 follows a similar trend for the 

porosity change relative to shale volume derived in other works21, 22. 

A total of 83,450 porosity values were estimated for other 76 wells at intervals of 0.30 

m (1 ft) along their trajectories (shown in Figure 3-5) over an approximate area of 1212 m x 

1281 m and were the “sampled” input porosity values to be honored in computing geostatistical 

realizations of porosity distributions over the grid representing the reservoir volume.  

Prior to a conducting a geostatistical analysis, it is often a practice to transform original 

coordinates of the reservoir geometry. This allows for a simpler and more accurate description 

of spatial relationships among the property values and also ensures that the final model actually 

reflects geological features such as dips and fault offsets (Pyrcz and Deutsch, 2014). In this 

work, a simple z-coordinate transformation was done by “flattening” the top of the reservoir 

with reference to the D sand top picks in each well. 
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Figure 3-5: Approximate trajectories of 76 L-pad wells penetrating the tops of D and C sands 
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The transformed z-value (z*) would now represent “thickness” of the sand with respect 

to top of the D sand, at a given depth (z).  For example, the L-106 well intersects the D sand at 

a depth z0 = 597 m, therefore a point at z = 620 m in the L-106 well was transformed to z* = z 

– z0 = 23 m, where z and z0 are true vertical depths with reference to sea level (TVDSS). Figure 

3-6 shows the pooled variation of estimated porosity values in all 76 wells with transformed 

depth z* in the interval [0 m– 100 m].  The trend of the porosity distribution is better visualized 

in the green line, which represents a 400 data point-moving average of the calculated porosity 

values, and suggests the following general cut-off points for three different sand facies for 

which three separate geostatistical analyses were conducted. 

 [0 m – 20 m] – D Sand 

 [20 m – 50 m] – DC Intermediate Shale 

 [50 m – 100 m] – C Sand 

Many existing well log-based interpretations2 and reservoir models5, 13, 23, 24 have described the 

C sand having a subdivision into an upper (C1) and a lower (C2) by an intermediate shale 

formation and, although there is only a little supporting evidence of this feature in the depth 

interval [66 m – 70 m] of Figure 3-6, some of the models developed in this study have included 

a subdivided C sand for sensitivity and comparison purposes. 
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Figure 3-6: Porosity vs transformed depth. The blue dots are the porosity values from 

Equation (3-2), and the green line represents a 400 data point-moving average of the porosity 
values 
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WinGSLIB v.2015, a geostatistical software developed by Clayton and Journel25 was 

used for further analysis of the porosity data. To obtain a 3D distribution of the porosity within 

each of the units, the following steps were taken: 

 pre-processed data by trimming, declustering and obtained a normal-score 

transform of the well log-derived porosity values 

 determined and quantified spatial relationships between the porosity values by 

modeling anisotropic variograms from sample variograms (see Section 2.4.1) 

 performed ordinary kriging (OK) with sequential Gaussian simulation (SGS) 

using the modeled variogram as a weighting function to obtain 10 realizations 

of normal-score porosity distribution.  

 back-transformed the normal-score values into actual porosity values and 

combined the outputs of three separate sand units for each realization 

 converted the transformed coordinates back into original coordinates to obtain 

the actual reservoir geometry 

A more detailed description of the above steps are given in Appendix A. Figure 3-7 

shows high low resolution 3D models of a single realization of porosity distribution in the 

reservoir. The high resolution model (geocellular model) was developed for the purpose of 

geologic representation while flow simulations were conducted on the low resolution models 

with near-wellbore grid refinements. High resolution cross-sections across selected wells 

including L-106 and Ignik-Sikumi are shown in Figure A-11 in the appendix. 

 



 
 

59 
 

 

(a) 

 

(b) 

Figure 3-7: (a) High resolution and (b) Low resolution models of a geostatistical realization 
of 3D porosity distribution in D and C units of L-pad hydrate-bearing sands 
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Porosity-dependent hydrate saturation (Sh) distribution was estimated from a linear 

correlation given by Equation (3-3), which was developed from pooled well log data from the 

L-106 and Ignik Sikumi wells. 

 �� = 2.67	� − 0.43 (3-3) 

 

The distribution of intrinsic permeability, i.e. permeability of a hydrate-free rock, was 

estimated by adopting the permeability-porosity correlation given by Equation (3-4)6, 

 log � = 0.8052 + 5.2818	� (3-4) 
 

The equation above is a result of correlation of porosity and permeability data obtained 

from measurement experiments on core sections retrieved from the Mt Elbert stratigraphic test 

well6. Given that the petrophysical properties of the D and C sands of the Mt Elbert and L-pad 

regions have been interpreted as being very similar2, the use of Equation (3-4) as a proxy is 

justified.  

As indicated on Figure 3-7 (b), in this study, flow simulation models which accounted 

for all the geological features of the reservoir were conducted using the section of the reservoir 

model in the eastern upthrown side of the L-pad “main fault” based on a) the fact that most of 

the wells penetrate the sands in the upthrown side of the fault b) the assumption of a lateral 

seal provided by the fault, as explained in the previous section. 

The following modifications were made to the original low resolution reservoir model 

derived from geostatistical analysis: 

 Large thickness of low permeable overburden and underburden shale layers were added 

to the top and bottom of the hydrate bearing sands. 
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 Porosity of intermediate D-C shale was reset to have a uniform value at 0.16, 

corresponding to the lowest obtained from geostatistical simulation. Shale (horizontal) 

permeability obtained from Equation (3-4) was also reset to 0.001 mD 

 To account for the presence of a hydrate-water contact, hydrate saturation of grid 

blocks below 685 m were reset from their values obtained from Equation (3-3) to 0.0, 

and water saturation was set to 1.0. 

The addition of the overburden and underburden shale accounts for the heat sink and no mass 

flow boundaries at the top and bottom of the hydrate bearing sands. The need to adjust shale 

permeability (kxy_shl) is related to the fact that Equation (3-4) was developed for core-sections 

retrieved from hydrate-bearing interval, and so the original permeability value (44.7 mD) 

obtained for shale (with � = 0.16), may not be accurate. The choice of kxy_shl = 0.001 mD used 

in all the models in study is somewhat arbitrary, however, the motive for assigning a small 

non-zero value is to allow hydraulic communication with hydrate-bearing sand units. Shale 

permeability should be a focus of model refinement in future studies, as it has been shown that 

predictions can significantly be influenced by shale permeability13, 15. Modifications of 

intermediate shale porosity values were done for simplicity since preliminary sensitivity runs 

showed no significant difference between a model with the geostatistical values and a model 

with uniform value at 0.16. Vertical cross-sections of the final model showing porosity, 

permeability, hydrate and water saturation distributions are shown in Figure 3-8. 
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(a)      (b) 

 

(c)      (d) 

Figure 3-8: Vertical cross-sections of actual reservoir geometry-based models showing 
distributions of a) porosity (�), b) horizontal permeability (�, mD) c) hydrate saturation (��) 

and d) water saturation (��) 
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The absence of hydrates in the free water region below hydrate-water contact which is 

well above the inferred approximate base of hydrate stability at 823 m2 has been attributed to 

the unavailability of methane gas charge to form hydrates. The water contact at the base of the 

C unit makes it a Class 2 reservoir (see Section 1.2) and the implications of production from 

this class of reservoir will be further discussed in this study. 

3.5 Reservoir Model Parameters and Initial Conditions 

A summary of the model geometry and discretization based on the sand cut-off 

intervals suggested by Figure 3-6 are presented in Table 3-1.  

Table 3-1: Model geometry details 

Formation Top (m) Thickness (m) 
Layer Range 

(Number of Layers) 
Simulation Layer  

Thickness (m) 

Shale  575 – 626  10 (x 10)* 1 (1) 100* 

D Sand 585 – 636 20 2 – 41 (40) 0.5 

Shale 605 – 656  30 42 – 45 (4) 7.5 

C Sand 635 – 686  50 46 – 145 (100) 0.5 

Shale 685 – 736 10 (x 10)* 146 (1) 100* 
*Grid thickness was multiplied by a volume modifying factor of 10, so that effective simulation 
layer thickness = 100 m 

A summary of the other reservoir properties and initial conditions are given in Table 

3-2. The parameters for relative permeability model (see Section 2.3.2) used in this study were 

such that the average effective (horizontal) permeability of the hydrate-bearing sections of the 

reservoir is ~ 0.2 mD. This value compares very closely to the result from the analysis and 

history matching of data obtained from the pressure buildup and drawdown tests from the 

Mount Elbert stratigraphic test well using Schlumberger’s Modular Dynamics Formation 

Tester (MDT) wire line tool26.  
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Table 3-2: Reservoir properties, initial conditions, and pertinent model parameters. 

Parameter Value 

Porosity of sand units,  0.16 – 0.45 
Geostatistical realizations based on 78 well logs  

Initial hydrate saturation 0.00 – 0.78 

Intrinsic permeability of sand units, 
ksand, mD 

47 – 1521 horizontal and 24 – 761 vertical 
permeability (0.5 anistropic factor) 

Intrinsic permeability of the shale  
layers, kshl, mD 

0.001 horizontal and 0.0005 vertical 

Porosity of shale layers,  0.16 

Pore compressibility,  p,Pa-1 5 10-10   

Thermal conductivity of hydrate-
bearing sand, ksand, W/m K 

2 

Thermal conductivity of shale, ksand, 
W/m K 

2 

Capillary pressure model27     
1/1* 1)(SPPcap  

)(

)(

max

*

irAA

irAA

SS

SS
S




  

SirrA
24 0.10 

5, 23 0.77437 

SmaxA 1 

Pmax, Pa 104  

Pore water salinity, ppt 5 

Relative permeability 
Modified Stone 3-phase model28 

nA
ArA Sk )( * ;  nG

GrG Sk )( *  

)1(

)(*

irA

irAA
A

S

SS
S




 ; 

)1(

)(*

irG

irGG
G

S

SS
S




  

n4, 5 nA = 5. 04; nG=3.16 
SirrG 0 
SirrA 0.1 

Rock density, kg/m3 2650 
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The pressure in the sediment subsurface was assumed to follow a hydrostatic pore 

pressure distribution. This assumption is supported by measurements taken in natural hydrate 

deposits29. For thermal distribution throughout the reservoir model the local geothermal 

gradient, 0.038 °C/m, derived from the Iġnik Sikumi DTS temperature log was used30. This 

resulted in average pressure and temperature of 7.4 MPa and 5.05 °C for unit D, and 8.0 MPa 

and 7.15 °C for unit C, respectively. For the layers of the reservoir model, the initialization of 

P/T conditions (pressure and temperature gradients throughout the vertical dimension of the 

domain) were carried out to achieve hydraulic, thermal, thermodynamic, and chemical 

equilibrium and ensure correct pressure and temperature conditions of the layers relative to the 

base of gas hydrate stability. A no-mass/heat flow boundary is imposed at the western 

boundary due to the presence of the assumed “sealing” L-pad fault2. Owing to lack of 

additional information, the model assumes no mass or heat flow at the north, south and east 

boundaries and the possible implications of this assumption is outside of the scope of the work 

and should be a focus of model refinement in subsequent studies. The top of the overburden 

and the bottom of the underburden are kept at a fixed temperature condition to provide heat 

flux from the surrounding strata into the reservoir.  

The original size (25 m x 25 m) of the grid blocks in the horizontal plane was refined 

to the smaller grid blocks (0.6 m x 0.6 m) around the wellbore to improve accuracy of 

numerical computation. The size of the refined grid blocks is such that their effective radii is 

at least 10 % larger than the wellbore radius of 0.11 m to ensure numerical convergence31. 

Depressurization is initiated by setting a fixed minimum well flowing bottom-hole pressure 

(BHP) at 2.8 MPa, which is just above the quadruple point of pure methane hydrate i.e. a 

thermodynamic equilibrium state where water, gas, ice and hydrate phases coexist. In the 
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absence of significant additional heat-losses due to Joule-Thomson effect, the well BHP 

constraint would prevent ice formation. The numerical studies were performed using CMG 

STARS, a commercial simulator for non-isothermal reservoir processes31 (see Section 2.3). 

3.6 Flow Simulation Results and Discussions 

This section describes the design and discusses the results of all simulation cases in this 

part of the study. In the first set of flow simulations, production forecasts done based on 10 

different geostatistical realizations with each utilizing vertical and inclined well designs, 

respectively. The purpose was to quantify uncertainty assessments in the estimation of property 

distributions in the reservoir and also to observe the response of reservoir performance to 

different well designs.  

In the vertical well design (Well-1 in Figure 3-8), a well was completed in the vicinity 

of the actual location of the L-106 well, which is an optimal location with respect to formation 

temperature and well-hydrate contact i.e. in the deepest (warmest) possible region in which the 

wellbore-hydrate contact area is maximized. The inclined well design (Well-2a in Figure 3-9 

(b)) penetrates the top of the D sand in the eastern part of the reservoir and drilled westward 

through the sands with an inclination of ~ 8 0 to the horizontal. Sensitivities were conducted 

using other five inclined well configurations based on a selected geostatistical realization. 

Well-2b, shown in Figure 3-9 (c), was such that the direction of completion of the well section 

in the D and C units is exactly opposite that of Well-2a, to model a fish-hook style of 

completion. Well-3a is different from Well-2a in the sense that it is drilled from west to east 

(Figure 3-9 (d)) and Well-3b is the fish-hook counterpart of Well-3a. Well-L2a and Well-L2b 

(Figure 3-9 (e) and (f)), represent well designs with two lateral legs penetrating each of the 

sands. A summary of the well trajectories is presented in Table 3-3.  
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(a)      (b) 

 

(c)      (d) 

 

(e)      (f) 

Figure 3-9: Well designs for a) Well-2a, b) Well-2b, c) Well-3a,  

d) Well-3b, e) Well-L2a, and f) Well-L2b  
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Table 3-3: Well trajectory and completions summary 

Well Configuration 
Angle to 

Horizontal 
Plane (0)* 

Perforated Length (m) 
Overall Length (m) D Sand C Sand 

Well-1 90 20 30 700 

Well-2a/Well-2b 8 134 217 1275 

Well-3a/Well-3b 8.5 183 150 1270 

Well-L2a/Well-L2b 2.3 650 650 1980 

*within the target sands 

A guide to drilling these wells is given in Table B-1 of Appendix B. In all 

configurations, wells were perforated only in the hydrate bearing sand intervals and well 

sections below the hydrate water (free water zone) were not perforated. However, a sensitivity 

study based on well perforation in the free water-zone was performed and is discussed in 

Section 3.6.2. Well BHP reference depth was set to be at the highest point in the well trajectory 

within the sand for all well designs, as indicated on the cross-sections shown in Figure 3-9. A 

production time of 30 years was simulated. 

3.6.1 Uncertainty Assessment 

The gas rates and cumulative volumes of gas produced using 10 realizations are given 

in Figure 3-10 (a) and (b) as a time-dependent series for the vertical (Well-1) and inclined 

(Well-2a) well configurations, respectively. In Well-1, the peak gas rates are within the range 

7.00 x 104 – 8.82 x 104 ST m3 (2.5– 3.1 MMSCF/day), and are reached within 14 – 23 years 

of production. The highest rates in Well-2a are in the interval 1.05 x 105 – 1.20 x 105 ST m3/day 

(3.71 – 4.24 MMSCF/day), are quickly reached within 3 – 5 years of production. 
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(a) 

 
(b) 

Figure 3-10: Gas rate and cumulative volumes using 10 realizations of porosity distributions with 
coupled hydrate saturation and intrinsic permeability with a) Well-1 (vertical), and  b) Well-2a 
(inclined) 
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At the end of the production period, cumulative gas volumes are within 4.63 x 108 – 

5.59 x 108 ST m3 (16.35 – 19.74 BSCF) and 5.93 x 108 – 6.20 x 108 ST m3 (20.94 – 21.90 

BSCF) for Well-1 and Well-2a models, accordingly. The calculated means and standard 

deviations of cumulative gas volumes at the end of the 30 year-production period indicate that 

uncertainties (in form of standard error of the means) are only about 1.7 % and 0.5 % of the 

mean values 5.33±0.09 x 108 ST m3 (18.820.32 BSCF) and 6.07±0.03 x 108 ST m3 

(21.440.11 BSCF) for the vertical and inclined wells, correspondingly. These numbers show 

that deviations in assessment of gas production potential based on 10 geostatistical realizations 

are within narrow ranges and are an indication of consistency in model predictions. This also 

provides the evidence that the amount of well log data available for this study is sufficient to 

adequately characterize the reservoir, as earlier inferred by Collett et al.2 from which reliable 

estimates of production potential can be obtained. 

Table 3-4 provides a summary of the probability associated with the predictions, which 

is inferred from the plots of cumulative probability of the total gas volume produced at the end 

of 30 yr shown in Figure 3-11. 

Table 3-4: Probabilities of cumulative gas volume predictions at 30 yr 

P-Level, % 
Cumulative gas volume @ 30 yr, 108 ST m3 (BSCF) 

Well-1 Well-2a 

10 ≤ 4.70 (16.60) ≤ 5.98 (21.12) 

50 ≤ 5.33 (18.82) ≤ 6.07 (21.44) 

90 ≤ 5.70 (20.13) ≤ 6.23 (22.00) 

  



 
 

71 
 

 
(a) 

 
(b) 

Figure 3-11: Probability distribution of cumulative gas volume produced at 30 yr in  

a) vertical well (Well-1), and b) inclined well (Well-2a) 
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3.6.2 Sensitivity to Well Design 

The results reported in this section provides an opportunity to study the effect of well 

design on reservoir performance in order to provide a basis for recommending an optimum 

well configuration.  

Gas rates and cumulative volumes 

Figure 3-12 shows gas production rates and cumulative volumes for selected well designs (of 

Figure 3-9). Results for Well-2b and Well-3b show no significant disparity from Well-2a and 

Well-3a, respectively, and hence are not plotted in Figure 3-12. The gas rate profiles show that 

production from the 2-leg lateral well (Well-2a) is highest during the first 10 years of 

production. However, rates from Well-2a continue to fall below those from other well 

configurations in the period between 10 – 17 yr. In the last 10 years of production, rates from 

all deviated wells (Well-2a, Well-3a and Well-L2a) converge, with the vertical well producing 

at significantly higher rates for most of the period.  The maximum gas rate, peak time and 

cumulative gas volume achieved at 30 yr are given for each well configuration in Table 3-5. 

A common feature in the observed gas rate profiles is the rise to two distinct peaks at 

different times, and the interval between these peak times seems to be consistent (7 – 8 yr) in 

all four well configurations. The “lag” time between these two peaks may be directly related 

to the difference in stability between the D and C hydrates i.e. the difference in time required 

for the reservoir conditions of the D and C units to be shifted outside the zone of hydrate 

stability under the effect of depressurization. 
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Figure 3-12: Gas rates and cumulative gas volumes from selected well configurations shown 
in Figure 3-9 

 

Table 3-5: Maximum gas rates, peak times and cumulative gas volumes 

Well configuration 
Maximum gas rate, 

104 ST m3/day 
(MMSCF/day) 

Time to 1st 
peak, yr 

Time to 2nd 
peak, yr 

Cumulative gas 
volume at 30 yr,  

108 ST m3 
(BSCF) 

Well-1 (vertical) 7.51 (2.65) 10 18* 5.32 (18.79) 

Well-3a (inclined, W-E) 8.95 (3.16) 4 12* 5.65 (19.95) 

Well-2a (inclined, E-W) 10.58 (3.74) 4* 11 5.93 (20.94) 

Well-L2a (2-leg lateral) 18.95 (6.69) 2* 9 7.27 (25.67) 

*time at maximum gas rate 

  

1st peak 2nd peak 
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Due to warmer temperatures and, hence, proximity to equilibrium, hydrates in the C 

sand would dissociate first, and therefore is the source of the bulk part of the total gas produced 

in earlier times, as indicated by the rise to the 1st peak. As reservoir pressures are further 

lowered, hydrates in the D sand begin to dissociate (rise to 2nd peak) and contribution to gas 

production from the D sand increases during later periods. 

Additional sensitivity simulations with reference to Well-L2a as a base case (Figure C-

1, Appendix C) showed that higher initial gas rates were achieved in a well completion with 

tightly perforated intervals (as in the base case), than completions with wider perforated 

intervals. Essentially the same cumulative gas volume was produced at the end of 30 yr, 

however, well perforations of the base case may provide the highest economic returns owing 

to its initial high production volumes. Moreover, if there are appreciable costs associated with 

more number of perforations, well with an intermediate perforation interval (ref. x3 in Figure 

C-1) could be the economically optimal choice. 

Evolution of reservoir properties 

A study of the evolution of reservoir properties with time provides more insight on the 

observed characteristics of the gas rate profiles of Figure 3-12. Vertical cross-sections with 

distributions of hydrate saturation, gas saturation, pressure and temperature in the reservoir for 

the vertical well (Well-1) and double-lateral well (Well-L2a) are shown in Figure 3-13 and 

Figure 3-14, respectively. 
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Figure 3-13: (a) Pressure distribution (kPa), (b) temperature distribution (oC), (c) hydrate 
saturation, and (d) gas saturation in the reservoir with Well-1 (left column) and Well-L2a 

(right column) well configurations after 2 years of production. 
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Figure 3-14: (a) Pressure distribution (kPa), (b) temperature distribution (oC), (c) hydrate 
saturation, and (d) gas saturation in the reservoir with Well-1 (left column) and Well-L2a 

(right column) well configurations after 15 years of production.  
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In Figure 3-13, pressure distribution indicates that pressure drop in each of the hydrate 

units around the lateral sections of Well-L2a is greater than that near the vertical one, which is 

as a result of a larger contact area of the lateral well with the hydrate, leading to a more effective 

depressurization. At the onset of production, the mobile phase flow out of the lateral wells 

creates a pressure front propagation throughout the surrounding formation, which induces 

hydrate decomposition. Due to the endothermic nature of the hydrate decomposition, the 

temperature is reduced in the areas with dissociating hydrate. Deeper temperature reduction by 

the laterals compared to the vertical well confirms more intense hydrate dissociation, as can be 

inferred from the contrast in distributions of residual hydrate and gas saturation in both well 

designs at 2 yr. These saturations are a direct evidence of the higher gas rates achieved in the 

lateral well design at the early stages. 

After 15 years of production, Figure 3-14 shows that reservoir pressure declines below 

3400 kPa only in a limited area around the vertical well, while it drops below that value in the 

entire reservoir for the double-leg lateral well. More pronounced reduction of average reservoir 

pressure in the lateral well design means that the drawdown i.e. the difference between the 

average reservoir and flowing bottom-hole pressure, which is the driving force for the mobile 

phase flow to the well has declined. For the vertical well the pressure drop changes more slowly 

as it is evident comparing the pressure distributions of Figure 3-13 (a) and Figure 3-14 (a). The 

result of this is the observed lower gas rates from the bi-lateral wells and slower decline of the 

gas rate from the vertical well, with the gas rate from the vertical well becoming higher well 

after 13 years of production (Figure 3-10). The corresponding temperature distributions of 

Figure 3-13 (b) and Figure 3-14 (b) show that temperatures in the hydrate bearing sands are 

reduced to about 3 – 6 0C and 1 – 3 0C for the vertical and bi-lateral well configurations, 
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respectively. This indicates the availability of more sensible heat available in the reservoir to 

drive the dissociation process which further corroborates reason for the higher gas rates 

observed in the vertical well during later part of the production period.  

An interesting characteristic of the hydrate distribution shown in Figure 3-13 and 

Figure 3-14 is the absence of “a dissociating interface” between hydrate-bearing sediment and 

constantly evolving mobile phase zone that is an inherited feature of all simulations involving 

homogeneous representations of porosity and hydrate saturation. Also, there is no “protruded 

areas of fast hydrate decomposition” developing in the lateral direction in the hydrate 

reservoirs with vertical heterogeneity5, 6, 10, 23.  The 3D heterogeneous hydrate distribution 

implemented in these models has led to a highly non-uniform dissociation of hydrates as 

compared with models based on homogeneous and 2D heterogeneous distributions.  Figure 

3-13 (c) and Figure 3-14 (c) show the hydrate saturation evolving as “patches” of different 

saturation values. Therefore, in reality, the true nature of a hydrate dissociating front is 

determined by a complex interplay of initial and local geophysical properties including 

porosity and saturations, pore pressure and relative permeability32. 

Gas saturation distribution (Figure 3-13 (d) and Figure 3-14 (d)) show that unproduced 

dissociated gas, is distributed widely in heterogeneous porous network, which is again unlike 

the typical observations of a distinct layer of free gas at the boundaries between hydrate-

bearing layers and shale, as predicted in homogeneous and 2D heterogeneous models5, 6, 10, 23. 

This is a consequence of the multiple flow pathways provided by the 3D heterogeneous 

porosity network for mobile phase flow to a producing well. The incorporation of the actual 

reservoir geometry and geological features also has a major effect on the nature of gas flow in 

the reservoir. Dissociated gas is driven by buoyancy forces up-dip towards the assumed sealing 
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fault at the west boundary, as they are being produced. If the fault boundary was non-sealing 

in reality, it would provide conduits for “leakage” of dissociated gas, thereby reducing 

reservoir performance. However, the full 3D reservoir structures of Figure 3-7 show that the 

discontinuity in lithology caused by the fault offset could indeed provide a seal against any gas 

flow, and therefore the initial assumption seems justified.   

Reservoir performance evaluation 

Recovery factor is a very important index of reservoir performance. In this study, it is 

defined as the cumulative volume of gas produced from a well system at a particular time 

expressed as a percentage of initial gas-in-place (GIP) in form of hydrates. Table 3-6 

summarizes the cumulative volumes of gas produced and the recovery factors achieved in each 

sand unit after 30 years, for the selected four well configurations whose results have been 

discussed in the previous sections. 

Table 3-6: Cumulative gas volumes and recovery factors at 30 yr using different well designs 

Sand 
Unit 

Initial Gas in Place, 
108 ST m3 (BSCF) 

Well 
Configuration 

Cumulative Gas, 
108 ST m3 (BSCF) 

Recovery 
Factor (%) 

D 7.37 (26.03) 

Well-1 2.32 (8.19) 32 

Well-2a 2.70 (9.54) 37 

Well-3a 2.93 (10.35) 40 

Well-L2a_1 2.98 (10.52) 40 

C 10.65 (37.61) 

Well-1 3.00 (10.59) 28 

Well-2a 3.24 (11.44) 30 

Well-3a 2.72 (9.61) 26 

Well-L2a_2 4.28 (15.11) 40 

Overall 18.02 (63.64) 

Well-1 5.32 (18.79) 30 

Well-2a 5.93 (20.94) 33 

Well-3a 5.65 (19.95) 31 

Well-L2a 7.27 (25.67) 40 
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Interestingly, the ranges of recovery factors show that the depressurization seems to be 

more effective in D compared with C for all well configurations except Well-L2a, despite the 

warm temperatures of the C sand. One reason for this may due to the presence of the hydrate–

water contact along more than a half length of the C unit (Figure 3-8 and Figure 3-9). The 

water influx during production competes with gas flow and decreases the performance of the 

unit. The effect of water contact on gas production is discussed in more details later in a 

subsequent section.  Well perforation lengths in the hydrate bearing sands could also be a 

contributing factor to the higher recovery achieved in D as in the case of Well-3a, where Table 

3-3 shows that the length of perforation in the D sand (183 m) is greater that in the C sand (150 

m). An estimate of the relationship between the perforation lengths (Table 3-3) and recovery 

factor (Table 3-6) is shown in Figure 3-15. 

 

Figure 3-15: Recovery factors with varying well perforation lengths in D and C sands 

Well-1

Well 3a

Well-2a

Well-L2a_1

Well-1

Well-2a

Well-3a
Well-L2a_2

y = 0.02x + 25.23
R² = 0.88

y = 25.51x0.08

R² = 0.91

25

30

35

40

45

0 200 400 600 800

R
ec

o
v

er
y

 f
a

ct
o

r 
(%

)

Perforation length (m)

C unit

D unit



 
 

81 
 

From the figure, a linear relationship between perforation lengths and recovery factors 

in the C sand can be inferred, compared with the non-linear relationship in the D sand. 

Furthermore, comparison of the slopes of the fitted curves suggests that recovery in the D sand 

would respond more to increase in perforation length for lengths ≤ ~ 150 m. However, stronger 

dependency of recovery factor on perforation length in the C sand is suggested for lengths > 

200 m. Overall recovery factors achieved in all well configurations are in the range of 30 – 40 

%. In other words, less than half of the initial GIP is recovered at the end of the production 

period in the best performing well. This suggests a need for the application of a more advanced 

recovery technique to enhance reservoir performance within a typical life span of a producing 

well32. 

Water production 

Water production rates and cumulative volumes predicted from all well configurations 

are compared in Figure 3-16. After a sharp rise in the beginning of production, the rates from 

all wells monotonically decrease. The bi-lateral wells (Well-L2a) has the highest water 

production rates with a peak of about 4000 ST m3/day (~ 25 Mbbl/day) in the early period of 

production and, after two years, water production rates from Well-2a fall below those from 

other wells. In the period from 5 yr to the end of the production, water rates from all well 

configurations drop from a range 200 – 650 ST m3/day (1300 – 4000 bbl/day) to 20 – 86 ST 

m3/day (125 – 540 bbl/day) with the vertical well (Well-1) have the highest water production 

rates until 20 yr.  In the period within the last 10 years, water rates remain fairly constant with 

the inclined well (Well-2a) having the highest rates. At the end of the 30 yr period, a total of 

2.74 x 106, 3.58 x 106, 3.28 x 106 and 3.61 x 106 ST m3 (17.2, 22.5, 20.6 and 22.7 MMbbl) of 

water is produced by Well-1, Well-2a, Well-3a and Well-L2a, respectively.  
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Figure 3-16: Water production rates and cumulative volumes for different well 

configurations 

 

Figure 3-17: Cumulative water-gas ratios obtained using four different well configurations in 
the first five years of production. Inset graph shows ratios obtained from 5 – 30 yr. 
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These large amounts of liquid phase suggests a provision for downhole gas-water 

separation in the wellbore design in order to reduce the load on the production lift system by 

providing gas and water transportation to the surface using different flow lines.  

An important criterion of effectiveness of a certain production scenario is a water-to-

gas ratio which can be used together with a gas rate value to conduct technical and economic 

estimations of production at a selected site. Figure 3-17 shows computed cumulative water-to-

gas ratios for the four well configurations as a function of time.  At the onset of production the 

ratios are very high, however, they fall very rapidly to values within the range 0.04 – 0.57 ST 

m3/ST m3 (0.36 – 3.56 bbl/MSCF) in the first year, with Well-1 significantly having the highest 

ratios at this time. Water-gas ratios remain highest in Well-1 until about 20 yr, however, 

beyond this time, the ratios in all well configurations converge and remain fairly constant at ~ 

0.005 ST m3/ST m3 (0.89 bbl/MSCF) for the rest of the production period. The double-lateral 

(Well-L2a) has the least water-gas ratios during the entire production period. The range of 

ratios obtained in the vertical well (Well-1) between the period 1 – 2 yr (0.31 – 0.57 ST m3/ST 

m3) can be compared with previously estimates for the same or similar hydrate formations. 

Moridis et al.33 used a homogeneous approximation for porosity and hydrate saturation for the 

PBU L-Pad 2D reservoir model to predict the ratio range within 0.18 – 0.25 during the first 2 

years of production (vertical well). The model utilized simplified impermeable shale units 

precluding water influx into production stream from over- and underburden which effectively 

decreased the ratio. Predicted production from the vertically-heterogeneous Mount Elbert 

reservoir model adopting low-permeable shale layers resulted in the ratio spreading from 0.01 

to 0.56 during 30 years of reservoir performance (Myshakin et al., 2011). This is very much 

comparable to the predictions in this study in which the overall range of ratios produced by the 
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vertical well is in the range 0.005 – 0.57, since after the first year.  Apparently, in spite of the 

differences in initial porosity/saturation/permeability representations, geometry of a reservoir 

and number of hydrate units involved, the water-to-gas ratio is relatively consistent for those 

reservoir models. This provides more confidence to the estimates for water management based 

on the simplified reservoir models. 

3.6.3 Effect of Water Contact 

The purpose of this section to discuss the implications of the presence of hydrate water 

contact on the reservoir performance. Gas and water rate predictions from three model 

scenarios are compared. The reference case (wc_closed), described in the previous section, is 

the model with a hydrate-water contact at 686 m and produces from a vertical well (Well-1) 

which is not perforated in the free-water zone below 686 m. The second case (wc_open) is 

similar to the reference case except that Well-1 is perforated in the free-water zone. The third 

case (no_wc) assumes an impermeable formation in place of the free-water zone (i.e. a Class 

3 reservoir). Figure 3-18 shows wc_open produces the highest initial gas production rates 

within the first 7 years of production, with no_wc producing the lowest during this time 

interval. The reason for the initial high gas rates in wc_open can be attributed to the better 

hydraulic connection between the bottom C sand and the free water zone, therefore making 

depressurization more effective (which is less so in wc_closed and no_wc, respectively). Figure 

3-20 (a) shows the pressure distributions in wc_open and no_wc, respectively after 7 years. 
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Figure 3-18: Effect of water contact on gas production rate and cumulative gas volume 

 

 

Figure 3-19: Effect of water contact on water production rate and cumulative water volume 
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(a) 

 

 

  

(b)   

Figure 3-20: Vertical cross sections across wellbore showing a) pressure distribution (kPa) at 
7 yr, (b) residual water volume distribution (m3) at 30 yr, in models with wells perforated in 

the free-water zone (wc_open, left column) and no water contact (no_wc, right column) 
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The lower reservoir pressures in the cross-section for wc_open provide evidence that 

the ability to propagate the depressurization front from the well farther into the reservoir drives 

the production rate during the first 7 years. Initial high gas rates in the wc_open model is also 

accompanied high water production rates shown in Figure 3-19. As the free-water is being 

produced, the hydraulic communication advantage of a perforated free-water zone is reduced 

and gas rates in wc_open begin to drop below those of the other two cases. Furthermore, later 

in the production period, flow of mobile water begin to ‘compete’ with gas flow, leading to a 

reduction in the effective permeability of the reservoir to gas and, consequently, gas production 

rates. At the end of 30 years, Figure 3-18 shows that cumulative gas volumes produced in all 

three cases converge to about 5.4 x 108 ST m3 (16.5 BSCF). However, Figure 3-19 shows that 

cumulative water volume produced in wc_open is the highest at 3.25 x 106 ST m3 (~ 20 

MMbbl), which is 90 % more than the volume produced (1.7 x 106 ST m3 (~ 11 MMbbl)) in 

the model with no water contact (no_wc). This results to a higher residual water volume in the 

C sand in no_wc than wc_open, at the end of the production period (Figure 3-20 (b)). 

3.6.4 Gas Flow and Secondary Hydrate Formation 

Many researchers have expressed significant concerns about secondary hydrate 

formation because of its potential adverse effect on production potential5-7, 9, 11, 12, 15, 23, 34, 35. In 

these simulations utilizing 2D models a hydrate barrier evolves around the well bore because 

the reservoir pressure and temperature conditions are shifted into hydrate stability zone owing 

to heat absorption by the hydrate lattice decomposition reaction, the Joule-Thomson effect of 

gas exiting from the well bore, and salinity reduction that shifts the position of the phase 

equilibrium curve. The barrier impeded gas flow to a well bore causing substantial reduction 

of gas rate and, in severe cases, completely cut off gas flow to the well.    
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The 3D heterogeneity introduced in the reservoir model employed in this study delivers 

a natural possibility for gas flow to divert areas with reforming hydrate (should such occur) 

and, thus, mitigates its unfavorable effect on gas rate. The heterogeneous permeability model 

presented in this study allows for the faster hydrate dissociation in the areas with high local 

permeability values which, in turn, leads to evolution of preferential flow paths for mobile 

phases in the 3D porous space. Figure 3-21 depicts flow vectors of gas phase (blue arrows) 

captured after 10 years of production. The red lines indicate streamlines representing the 

preferential pathways for gas flow calculated from block face-based gas phase velocities. The 

preferential pathways of maximum velocities for gas flow are not necessarily directly 

connected to the producing vertical well shown as the point of blue arrow convergence.  

Figure 3-22 illustrates gas flow in the region of high hydrate saturation in the reservoir. 

It reveals that flow directions change reflecting the complexity of pore network and variability 

in intrinsic permeability. With this kind of flow pattern, it is very much unlikely that possible 

hydrate reformation in the reservoir would completely cut off mobile phase flow from the 

reservoir to the wellbore, as predicted by homogeneous 2D models. 

To explore possible secondary hydrate formation, a code was developed to scan and 

analyze time-dependent 3D hydrate saturations in order to identify sustained increase of 

hydrate accumulations in the reservoir persisted for more than 2 months. The results of analysis 

show absence of any signs of secondary hydrate formation emerging in the vicinity of vertical 

and inclined well bore completions. Instead, the only noticeable increases of hydrate saturation 

level are found in a few areas away from the wells. Their appearance is related to local increase 

of transient pressure fluctuating within the hydrate stability zone and attributed to gas trapping 

in those regions36.   
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Figure 3-21: Top view of the middle layer of Unit D at 10 yr showing gas flow vectors (blue 
arrows), streamlines (red lines) pathways and the location of a reformed hydrate patch of 

blocks  
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Figure 3-22: Gas flow vectors (blue arrows) around high hydrate saturation regions (Sh > 
0.70) in a heterogeneous 3D porous network 
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As hydrate continuously decomposes in adjacent areas it eventually creates pathways 

to release trapped gas and initiate dissociation of reformed hydrate. Such secondary hydrate 

formation is shown in Figure 3-22 (a) as a “patch” of grid blocks with the nearby flow vectors 

pointing away from or parallel to it. This is an indication that gas flow avoids the area on its 

way to the producing well. A similar flow pattern is observed in other cross sections (not 

shown), which reveal short-lived “patches” of secondary hydrate formation throughout the 

depressurization period. Similar temporarily reformed hydrate areas were predicted during 

hydrate decomposition in a laboratory-scale reactor36, where CT images of the hydrate-bearing 

sample were processed to provide 3D heterogeneous porosity and phase saturations for the 

reactor model. During depressurization, transient hydrate reformation has occurred inside the 

dissociating sample in response to local pressure buildup. The result that is also supported in 

this work suggesting that 3D heterogeneous reactor models of hydrate cores could serve as a 

valuable instrument to study phenomena developing at a reservoir scale.  

Hydrate reformation like that shown in Figure 3-22 does not interfere with sustained 

gas flow to a well. In the light of the foregoing analyses, secondary hydrate formation as an 

evolving barrier around a well bore shown by earlier studies5-7, 9, 11, 12, 15, 23, 33, 34 could be related 

to the numerical simplifications in the 2D reservoir models rather than to an underlying 

physical phenomenon. However, the need for additional flow simulation studies using a 3D 

model similar to those developed in this work, has not been ruled out. Further research is still 

very much required to explore different scenarios of hydrate depressurization over a broad 

range of initial conditions before a definitive conclusion can be reached. 
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3.6.5 Effects of Reservoir Heterogeneity 

Dimensionality of reservoir heterogeneity (2D vs. 3D) 

The previous estimations of production potentials from the PBU L-Pad reservoirs were carried 

out by Moridis et al.33 and Gaddipati13, who utilized 2D models (based on a cylindrical 

symmetry of the deposit) and a vertical well completion to depressurize hydrate. Moridis et 

al.33 used a 2D simplistic model with homogeneous porosity and hydrate saturation and 

uniform permeability values. The model was based on a subdivided C unit (C1 and C2), as 

inferred from log data obtained from L-106 and Ignik Sikumi wells. Production potential was 

estimated only for 2 years which is insufficient to conduct an adequate comparison. Based on 

Problem 7b of the International Code Comparison Project23, 24, Gaddipati13 presented results 

of a 30-yr flow simulation of gas production from the Unit C1 and C2 sands, with uniform 

permeability and vertical heterogeneity of hydrate saturation and porosity distributions (based 

on the composite LWD well log at L-106). These simplified 2D models did not incorporate 

actual reservoir geometry and geological features (like faults, dips, water contact, etc).  

In order to isolate the effects of 3D heterogeneity of hydrate saturation and porosity on 

model predictions, a model based on a simple 3D rectangular geometry which adopts a 

geostatistical distribution of porosity and hydrate saturation was developed.  
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To provide a proper basis for comparison, the model also incorporated the following 

(mostly according to the description of Problem 7b): 

 18 m thickness each of D, C1 and C2 sands separated by impermeable 

intermediate shale formations, including 100 m thick each of overburden and 

underburden shale (Figure 3-23) 

 Uniform horizontal  and vertical permeability of 1000 mD and 100 mD, 

respectively 

 Vertical well located at the center of the reservoir and perforated only in the 

C1 and C2 intervals 

Other reservoir parameters are the same as those summarized in Table 3-2. A 

comparison of gas rates and cumulative gas volumes predicted using the 2D model by 

Gaddipati13 and the model used in this study is shown in Figure 3-24. In the early stage of 

production, the gas rate from the 2D model is higher than that obtained from the 3D model and 

reaches a peak after 8 years. However after 11 years, higher gas rates are predicted by the 3D 

model which translates into a larger cumulative volume of produced gas after 17 years. At the 

end of production the 3D model provides about 62 % more gas volume (3.68 vs.  2.27 ST m3 

(13 vs 8 BSCF)) in comparison to the 2D model. Thus, using a 2D geometry with vertical 

heterogeneity of porosity and hydrate saturation significantly underestimates (by ~ 38 %) 

forecast made with the 3D model employed in this study.   
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Figure 3-23: Rectangular reservoir model geometry (not to scale) showing 3D porosity-
derived heterogeneous hydrate saturation distribution 

 

Figure 3-24: Gas rates and cumulative gas volumes using uniform permeability values 
predicted in this study (“3D”) and reported by Gaddipati13 (“2D”). 
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Heterogeneity of permeability 

In this section, the sensitivity analysis of intrinsic permeability representations is 

conducted to quantify their effect on production potential. Results presented here are based on 

the reservoir model discussed in the previous section with an inclined well configuration 

similar to Well-2a. Perforations are open in all three (D, C1 and C2) sand intervals. Two 

permeability representations were compared for that reservoir model.  For the first model, 

permeability values of the hydrate layers were heterogeneous following the geostatistical 3D 

porosity distribution. In the uniform permeability model, a constant value of 734 mD is 

specified for the horizontal permeability in the hydrate-bearing units, which is the pore-volume 

average of the porosity-correlated permeability distribution in the 3D model. An anisotropic 

factor of 0.5 is also applied to yield 367 mD for permeability in the vertical direction. In both 

models, permeability of the shale layers was set at 0.001 mD (horizontal) / 0.0001 mD 

(vertical). As can be inferred from Figure 3-25, gas rates obtained using the heterogeneous 

model are consistently lower than rates from the uniform permeability model in the first 25 

years of production. This translates into an overestimation of the cumulative gas volume 

calculated with the uniform model by ~ 40 % when compared with the prediction of the 

heterogeneous model at a 30-year mark. An explanation of the higher production performance 

of the reservoir with the heterogeneous model in the last 5 years can be made from the plots of 

temperature distributions for both models after 25 years of production. During the first 25 

years, the ability of the uniform permeability model to deliver more mobile phase flow to a 

production well dominates the reservoir performance.  
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Figure 3-25: Gas rates and cumulative gas volumes produced from the inclined well using 
heterogeneous and uniform permeability models. 
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This implies a faster decomposition of the hydrate layers in the reservoir which is accompanied 

by deeper temperature drop (due to the endothermic nature of the hydrate dissociation reaction) 

comparing to the heterogeneous model. 

Finally, after 25 years of production, temperature in the decomposing hydrate layers 

drops below 2 0C for the uniform model providing limiting sensible heat to support the 

decomposition reaction (Figure 14). As a result, the equilibrium conditions at the dissociating 

interface between hydrate and mobile phases moves toward the quadruple point that reduces 

P (the difference between a pressure at the interface and the constant well BHP), the driving 

force for mobile phase flowing to the producing well. This reduction is greater for the uniform 

model in comparison to the heterogeneous one which is still capable to maintain dissociation 

at higher temperature regimes (Figure 3-26). At 25 years that parameter (P) defines the higher 

gas rate predicted using the heterogeneous model in spite of greater ability to transmit mobile 

phases in porous media provided by the uniform model. The high transmissibility is a key 

factor for performance in early years of production when significant gas volumes are released 

into the reservoir.  

An interesting observation can be made from these results and those reported in the 

previous section. Considering only a simplistic 2D representation of the reservoir domain with 

vertical heterogeneity for porosity and hydrate saturation distributions, the predicted gas 

volume at the end of the 30 year-production period is underestimated by about 38 % when 

compared with the predictions from the 3D reservoir model using a geostatistical realization 

of porosity coupled with heterogeneous hydrate saturation. Both models were based on a 

uniform intrinsic permeability distribution. 
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(a) 

 

 
(b) 

Figure 3-26: Vertical cross sections of temperature distributions (0C) running along the 
inclined well after 25 years of production a) uniform permeability b) heterogeneous 

permeability. Dimensions are in meters. 
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On another hand, the uniform intrinsic permeability provides about 47 % more 

cumulative gas volumes than the heterogeneous permeability values based on the 3D porosity 

distribution.  Thus, the production potential deviations, introduced through ignoring spatial 

complexity of porosity coupled with hydrate saturations and by means of uniform permeability 

of porous media, occur in the opposite directions. Due to limited field data, in many 

applications of numerical simulations to estimate production potential of gas hydrate 

accumulations, a 2D geometry, homogenous or vertical heterogeneous representations of 

porosity and saturations, and uniform intrinsic permeability are a common choice to describe 

a reservoir model5-7, 9, 11, 12, 15, 23, 33, 34. In light of results obtained in this work, simplification of 

reservoir models may have been justified owing to the potential cancellation of the errors 

introduced by approximations. Therefore, homogeneous 2D models are still very much 

valuable in obtaining first order predictions, particularly in the absence of field data to 

characterize the reservoir or when a sophisticated numerical simulator capable of handling the 

complexities associated with heterogeneous models is not available.  

3.6.6 Flow Assurance 

As mentioned in chapter 1, gas production by depressurization would require an 

artificial lift system e.g. a pump. Therefore, it is essential to correctly determine the right size 

of pump which will provide the necessary force to move the produced fluids from the bottom-

hole to the wellhead, while also managing the wellbore pressure and temperature conditions to 

minimize the risk of secondary hydrate formation in wellbore.   

CMG STARS provides an explicit means of coupling reservoir flow simulation models 

with wellbore models using well-established pressure drop and heat loss calculations for 

multiphase flow31.  
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A simple wellbore artificial lift design with schematic shown in Figure 3-27 is 

proposed, based on the vertical well (Well-1) configuration described in Section 3.6.2. A pump 

will constantly take in fluid from the reservoir based on the predicted gas and water rates from 

the reservoir flow simulation model (Section 3.6.2) at a depth of 570 m (20 m above the first 

perforated hole in the D sand) at the well flowing BHP of 28 bar, and will discharge at the 

wellhead at the surface (depth = 0 m). The model assumes no water-gas separation occurs at 

the pump i.e. all reservoir fluids entering at the suction of the pump is produced at the wellhead. 

Wellbore completion parameters (Table 3-7) similar to the Ignik Sikumi well were assumed37. 

To select a base case design, a simple hydraulic calculation was done to determine a 

pump power output that will provide the minimum differential pressure required to lift a single-

phase water to the wellhead at a flowing wellhead pressure (WHP) of 1.03 bar. This was 

calculated to be 26.25 kW and therefore, a pump power output of 30 kW was selected as a base 

case (after allowing for possible additional equipment pressure losses). To simulate production 

scenarios where desired WHP may be different from atmospheric, two other cases were run 

with pump power outputs of 50 kW and 100 kW, respectively. Simulations were run for five 

years.  
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Table 3-7: Wellbore completion 

parameters and formation properties 

Wellbore, m  

Wellbore length 596 

Inner tubing radius 0.11 

Outer tubing radius 0.12 

Inner casing radius 0.19 

Outer casing radius 0.20 

Surface hole radius 0.29 

Tubing relative roughness 0.0001 

Thermal conductivity, W/m/K  

Tubing wall 245 

Casing wall 245 

cement 3.5 

formation 17 

Formation properties  

Heat capacity, J/kg/K 886 

Geothermal gradient, 0C/m 0.038 

Surface temperature, 0C 0 

 

 

 

 

 

Figure 3-27: Wellbore schematic for artificial lift 
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Plots of the temperature-pressure profiles are shown in Figure 3-28, Figure 3-29 and 

Figure 3-30 for pump hydraulic power outputs of 30, 50 and 100 kW, respectively. A summary 

of the comparison among the three cases is presented in Table 3-8. Results show that operating 

with a 30kW output-pump would provide a discharge pressure of about 55 bar (804 psi) 

initially, and will drop down to 40 bar (587 psi) at 5 yr. Wellhead pressures during the five 

year period are near atmospheric in the range 1.8 – 3.2 bar (26 – 46 psi) and wellbore conditions 

are outside the hydrate formation zone for most of the period. However, at 0.5 and 1 yr, there 

are tendencies for hydrate formation in the bottom-most 81 and 10 m-sections of the wellbore. 

Observations can be made in a similar fashion about using 50 kW and 100 kW pump power 

outputs. The following deductions can be made, and are only specific to the gas and water rate 

predictions from the reservoir model on which the wellbore model is based: 

 Production at atmospheric WHP (with 30 kW pump output) means it will take 

at least 15 days after production begins before first gas reaches the wellhead. 

 Using a pump with 50 kW power output, it will take at least 5 yr of production 

before the possibility of hydrate formation is eliminated. 

 With 100 kW, the wellbore is susceptible to secondary hydrate formation during 

the 5 yr period, with the entire wellbore length being at risk in the first two years 
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Figure 3-28: Wellbore temperature-pressure profiles with 30kW hydraulic output 

 
Figure 3-29: Wellbore temperature-pressure profiles with 50kW hydraulic output 
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Figure 3-30: Wellbore temperature-pressure profiles with 100kW hydraulic output 

Table 3-8: Summary of wellbore artificial lift design performance 
Pump power output, 

kW 
Time 

Pump discharge 
pressure, bar (psi) 

Wellhead pressure, 
bar (psi) 

Hydrate propensity 
depth interval (m) 

30 

0 day 55 (804) - - 

15 days 55 (805) - - 

0.5 yr 55 (805) 1.8 (26) 489 - 570 

1 yr 56 (805) 2.3 (33) 560 - 570 

2 yr 51 (736) 3.2 (46) - 

5 yr 40 (587) 2.0 (29) - 

50 

0 day 117 (1697) 61 (885) 0 - 570 

15 days 125 (1819) 69 (1004) 0 - 570 

0.5 yr 125 (1820) 70 (1008) 0 - 570 

1 yr 82 (1186) 27 (385) 244 - 570 

2 yr 67 (979) 14 (210) 407 - 570 

5 yr 49 (716) 24 (351) - 

100 

0 day 125 (1820) 69 (1006) 0 - 570 

15 days 125 (1819) 69 (1004) 0 - 570 

0.5 yr 125 (1820) 70 (1008) 0 - 570 

1 yr 126 (1821) 70 (1012) 0 - 570 

2 yr 109 (1586) 54 (790) 0 - 570 

5 yr 70 (1013) 35 (507) 244 - 570 
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 For a given pump power output, the fraction of wellbore length at the risk of 

secondary hydrate formation generally reduces with time. This suggests a 

possibility of the use of a higher pump power output as production progresses, 

without increasing any concerns of secondary hydrate formation. 

In flow assurance, hydrate formation prevention measures such as methanol injection 

and direct electrical heating (DEH) are usually based on a target hydrate formation temperature 

depression (ΔTHYD), which is the difference between the temperature at any pressure in a 

hydrate zone and the hydrate formation temperature at the same pressure. Preliminary 

calculations were done to determine the amount of methanol required and the minimum DEH 

heating power is required to maintain the wellbore outside hydrate formation conditions and 

the results are summarized in Table 3-9.    The calculations were based on a maximum ΔTHYD 

of 1.19, 9.28 and 9.25 oC for 30, 50 and 100 kW pump power outputs, respectively. The hand 

calculation method of Hammerschmidt38 was adopted to estimate the minimum methanol 

injection rates, using the gas production rate at 5 yr (3.0 x 104 ST m3/day (1.05 MMSCF/day), 

from Figure 3-12 for Well-1) and a water-gas ratio of ~ 0.3 (50 bbl/MSCF), which is the time-

averaged value obtained over the period of the first five years (Figure 3-17, Well-1). The 

estimates were also based on the injection of a 100 wt % (pure) methanol and the assumption 

of negligible methanol losses to the vapor phase compared with the diluted (Hammerschmidt 

minimum38) methanol concentration in the aqueous phase. Results (Table 3-9) show that very 

large volumes of methanol need to be injected into the wellbore in order to achieve the required 

ΔTHYD, making it impractical. These numbers, again emphasize the need for the provision of a 

downhole water-gas separation during production to reduce the pumping load and methanol 

injection, if necessary.   
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Table 3-9: Minimum methanol injection and DEH rates during the first five years of 
production using pumps with varying hydraulic power outputs 

Pump power output, kW 30 50 100 

Pmax, bar 56 125 126 

T (Pmax), oC 5.67 5.72 5.75 

Teq (Pmax), oC 6.86 15.00 15.00 

ΔTHYD 1.19 9.28 9.25 

Methanol injection rate, m3/day (bbl/day) > 308 (1938) > 2403 (15113) > 2395 (15065) 

Heating rate per unit length, W/m 8.73 68.05 67.83 

Tw (oC) 8.20 25.39 25.36 

 

Minimum DEH rate calculations were based on the maximum total (gas + water) mass 

flow rates achieved during the first five years of production and ΔTHYD. Table 3-9 shows that 

minimum DEH requirements are 8.73, 68.05 and 67.83 W/m heating power per unit length of 

wellbore, corresponding to the 30, 50 and 100 kW pump power outputs, respectively. Further 

calculations based on a Nusselt number (Nu) of 3.658 (for cylindrical pipes) show that these 

heating rates imply that the inside wall temperature of the wellbore (Tw) would be maintained 

at 8, 25 and 25 0C, when using a pump with power outputs of 30, 50 and 100 kW, respectively. 

These results suggest that DEH might be a more suitable alternative than methanol injection, 

in the absence of downhole water-gas separation. 

3.6.7 Long-term Development and Economic Assessment 

There is currently a very wide disparity in the understanding of the economic optimum 

number wells and well density (inter-well spacing) to be used in the development of 

conventional oil and gas fields39-43. However, there is an agreement among investigators that 

an optimum spacing can only be determined for a specific reservoir in a particular field, and 

that generalization of results to other fields may not be possible.  
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In this section, the economic viability of different options of development with multiple 

wells are evaluated. The main objective here is to conduct a preliminary study on the effects 

of well spacing, number of wells and type of well configuration on field production rates, 

cumulative gas volumes and the net present value of development of the L-pad gas hydrate 

field development over a 30 yr period. The foregoing analysis is based on the simple 3D 

rectangular reservoir models described in Section 3.6.5. The four different multi-well 

development scenarios considered are summarized in  

Table 3-10 and illustrated in Figure 3-31. 

All well configurations are centralized with respect to the boundaries of the reservoir 

model, and have perforated well sections along the entire interval of the D and C hydrate units. 

The 4I08 configuration was so designed to minimize well interactions in the colder D sand. 

Gas rates and cumulative volumes achieved from the entire field are plotted in Figure 3-32 are 

the results are summarized in Table 3-11. 

Table 3-10: Multiple well development scenarios 

Case ID Description Sensitivity relative to reference 

4V30 (reference) Four vertical wells at 30 acre-spacing - 

4V60 Four vertical wells at 60 acre-spacing Spacing 

9V30 Nine vertical wells at 30 acre-spacing Number of wells 

4I08 Four inclined wells at 80 to the horizontal Well configuration 
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(a)      (b) 

 

   

(c)      (d) 

Figure 3-31: Multi-well development scenarios showing plan views of (a) 4V30, (b) 4V60, 
and (c) 9V30 and (d) 3D view of 4I08 
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Figure 3-32: Gas rates and cumulative gas volumes produced in the entire field using 
different multiple well development scenarios 

 

 

Table 3-11: Summary of results from development using varying field development options 
with respect to number of wells, well spacing and well configuration 

 4V30 4V60 9V30 4I08 

Peak rate, 105 ST m3/day 

(MMSCF) 

1.07 

(3.78) 

1.26 

(4.44) 

2.16 

(7.63) 

1.44 

(5.10) 

Time to peak, yr ~ 9 ~ 6 ~ 3 ~6 

Cumulative volume at 30 

yr, 108 ST m3 

(BSCF) 

7.98 

(28) 

8.25 

(29) 

9.03 

(32) 

8.70 

(31) 
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The advantage of higher number of wells in 9V30 is evident only in the first three years 

during which rates are up to 3 times those from 4V30. After this period, gas rates decline for 

the remaining period, producing less than the 4V30 case in the last 21 years. Comparison 

between 4V30 and 4V60 also shows that increased well spacing produces a higher gas rates 

between 2 – 10 yr. During this period, 60 acre-spacing utilizes the wider drainage area around 

each well devoid of interference from other wells compared with the 30 acre-spacing, as 

evident in Figure 3-33.  

After 10 years, the lower reservoir pressures surrounding the wells in the 4V60 case (< 

4,000 kPa) decreases the flow potential from the reservoir to the wells, consequently leading 

to a lower gas production rates than 4V30 case which has a higher fluid flow driving force at 

the time, owing to higher surrounding reservoir pressures (4000 – 4400 kPa). The 4I08 case 

exhibits its advantage of a larger contact area with the hydrate sands only in the first 10 years, 

compared with the reference case. At the end of 30 years, cumulative volumes from all 

development scenarios are within a narrow range of 8 – 9 x 108 ST m3 (28 – 32 BSCF). To 

provide an economic viewpoint, the net present values (NPV) and breakeven gas prices of each 

field development scenario are compared based on the parameters given in Table 3-12. 

 

  



 
 

111 
 

 

 

  

(a) 

  

(b) 

Figure 3-33: Pressure distribution in a horizontal layer (k = 82) after (a) 4 years, and (b) 10 
years with 30 acre-spacing (4V30, left column), and 60 acre-spacing (4V60, right column)  
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Table 3-12: Parameters for economic assessment 

Parameter Value Comments/reference 

Wellhead gas price, $/MSCF 5.30 10 yr-average US national average44 

Drilling cost per well, $ 106 15 3 yr-average45 

Fixed costs per year, $ 106 1 

Nyayapathi46 

Myshakin et al6 

Operation costs, $/MSCF 0.15 

Discount rate, % 15 

Corporate tax rate, % 35 

 

The NPVs computed for all cases are plotted as a function of time in Figure 3-34 (a) 

and is expressed as a fraction of the reference case in Figure 3-34 (b). The NPVs and the 

breakeven gas wellhead prices at 30 yr are given in Table 3-13. Among the four scenarios 

considered, the most promising field development option is the use of four inclined wells 

(4I08), however, all of the options remain economically unattractive. Therefore an aggressive 

enhanced recovery method may be required to improve on the economic viability of long term 

production from this particular site.  

Alternatively, focus may be shifted to investigating productivity from probable hydrate 

accumulations located downdip and to the east of the L-pad region. In the light of this, two 

models were developed to simulate production from reservoirs 50 and 100 m deeper (depth of 

Problem 7c23), which translates to reservoir temperatures 1.9 and 3.8 0C warmer than the 

original L-pad region (based on a geothermal gradient of 0.038 0C/m), respectively. These 

areas would be located 1.10 and 2.20 km, respectively, to the east of the original L-pad location 

(based on an approximate W-E dip of 2.6 0). The well configuration of 4V30 was used in order 

to facilitate a quick comparison to the reference case.  

 



 
 

113 
 

 

(a) 

 

(b) 

Figure 3-34: (a) NPV, and (b) NPV expressed as a fraction relative to reference case, for all 
field development scenarios 
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Table 3-13: NPV and breakeven gas wellhead prices at 30 yr 

Case NPV, $ 106 Breakeven price, $ / MSCF 

4V30 -21.3 10.30 

4V60 -18.5 9.16 

9V30 -54.1 12.65 

4I08 -13.8 7.71 

 

Maximum gas rates achieved are 2.19 and 3.62 x 105 ST m3/day (7.7 – 12.8 

MMSCF/day) for the 50 and 100 m downdip models, which are 1.1 and 2.4 times more than 

the maximum production rate achieved from the original L-pad (4V30), respectively.  

Cumulative volumes achieved at the end of 30 yr (Figure 3-35), are 45 and 76 % more than 

the reference case for the 50 and 100 m-downdip models respectively. Using the parameters 

of Table 3-12, Figure 3-36 shows that the downdip models breakeven at ~ 22 and ~ 5 yr, 

corresponding to the 50 and 100 m models, respectively. At 30 yr, NPVs are $ 0.28 and $ 21.69 

million, and breakeven gas wellhead prices are $ 5.27 and $ 3.58 per MSCF for reservoir depths 

50 and 100 m, respectively. 

While these results show that the L-pad downdip accumulations are much more 

promising production targets than the original L-pad, there is an increase in uncertainties in 

predictions owing to the geological risks associated with the site2. 
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Figure 3-35: Gas rates and cumulative volumes of production from L-Pad Downdip 

 
Figure 3-36: NPV vs time for L-pad downdip development 
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3.7 Conclusions 

Numerical simulations were used to evaluate gas production potential of the reservoir 

based on the L-Pad methane hydrate deposit at Prudhoe Bay Unit on Alaska’s North Slope. In 

order to incorporate the true nature of distribution of the reservoir geophysical properties, 

geostatistical porosity models of the hydrate-bearing D and C sand units were developed based 

on 78 well log data, from which distribution of porosity-dependent hydrate saturation and 

intrinsic permeability were estimated. Using reservoir models which account for the actual 

geological features (reservoir geometry, fault and hydrate water contact), simulations were first 

conducted to quantify the uncertainties associated with predictions from this model based on 

production from vertical and inclined wells, respectively. Uncertainties in predictions based 

on this model were only about 1.7 % and 0.5 % of the mean values 5.33±0.09 x 108 ST m3 

(18.820.32 BSCF) and 6.07±0.03 x 108 ST m3 (21.440.11 BSCF)) for the vertical and 

inclined wells, correspondingly. The results are an indication of the reliability of the data 

driven model and provides an indication that the amount of well log data used for the study is 

sufficient to adequately characterize the reservoir. 

Sensitivity of reservoir performance to well design showed that the maximum overall 

recovery achievable were in the range 30 – 40 % of the original GIP in form of hydrates, with 

the well configuration having two lateral sections each penetrating the D and C sands having 

the highest recovery.  This indicates a need for the application of a more advanced recovery 

technique to enhance reservoir performance within a typical life span of a producing well. 

Large amounts of liquid phase produced (2.74 – 3.61 x 106 ST m3 or 1.72 – 2.27 x 107 bbl)) 

suggest a need for the provision for downhole gas-water separation in the wellbore design in 

order to reduce the load on the production lift system. Study also showed that the presence of 
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hydrate-water contact did not have any significant impact on the cumulative gas volume 

produced at the end of 30 years. However, a model with water contact produced 90 % more 

volume of water compared with that without water contact. From a water production 

management perspective, this result may have substantiated a basis for the consideration of a 

production method which would involve an initial injection of CO2 into the free-water zone 

just below the hydrate-water contact to form CO2 hydrates, which would now be followed by 

the production phase using the depressurization technique. 

Using a generalized 3D rectangular geometry, sensitivity analysis was conducted to 

explore effects of reservoir dimensionality, heterogeneity of porosity, hydrate saturation, and 

intrinsic permeability on production potential. A simplified 2D geometry for a hydrate 

reservoir model and assumption of vertical heterogeneity in porosity and hydrate saturation led 

to underestimation of reservoir productivity by about 38 % in comparison with the model 

employed in this study. Modeling gas production from the hydrate sand units using uniform 

intrinsic permeability (734 mD in the horizontal and 367 mD in the vertical direction) 

overestimates the cumulative gas volume produced at the vertical well by around 40 % 

comparing with the heterogeneous permeability representation. 

Secondary hydrate formation around a well bore predicted in previous simulations 

utilizing 2D geometry and homogeneous or vertical heterogeneous porosity and hydrate 

saturation distributions severely hinders gas production. In this study, the secondary hydrate 

formation was confirmed away from a producing well as short-lived patches of increased or 

sustained hydrate saturations. The reason of their appearance was attributed to local pressure 

fluctuations caused by temporal gas trapping during mobile phase flow in complex 3D porous 

network containing dissociating hydrate.   This is another evidence of the profound importance 
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of a 3D heterogeneous representation of a reservoir system which captures details of actual 

geological settings.  

Based on the current predictions of water production, flow assurance studies show that 

very large volumes of methanol (> 308 m3 /day or 1938 bbl/day) need to be injected into the 

wellbore in order to inhibit the secondary formation of hydrates in the wellbore , making it 

impractical. These numbers, again emphasize the need for the provision of a downhole water-

gas separation during production to reduce the pumping load and methanol injection, if 

necessary. In the consideration of a possible alternative, calculations show that minimum DEH 

requirements are 8.73, 68.05 and 67.83 W/m heating power per unit length of wellbore, 

corresponding to the 30, 50 and 100 kW pump power outputs, which translates to a requirement 

that the wellbore wall temperature (Tw) should be maintained at 8, 25 and 25 0C, when using a 

pump with power outputs of 30, 50 and 100 kW, respectively. These results suggest that DEH 

might be a more suitable alternative than methanol injection, in the absence of downhole water-

gas separation. 

The economic viability of different options of long-term field development were 

evaluated using a generalized 3D rectangular geometry. Among the four scenarios considered, 

the most promising field development option is the use of four inclined wells (4I08), however, 

all of the options remain economically unattractive with NPVs in the range -$ 21.3 – -$ 13.8 

million. Therefore, an aggressive enhanced recovery method may be required to improve on 

the economic viability of long term production from this particular site.  

The productivity of a probable hydrate deposit downdip and to the east of the L-Pad 

was also studied for reservoirs with depths 50 and 100 m, respectively. The maximum gas rates 

achieved were 1.1 and 2.4 times more than the maximum production rate achieved from the 
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original L-pad, respectively for the 50 and 100 m-depth models.  Cumulative volumes achieved 

at the end of 30 yr (Figure 3-35), are 45 and 76 % more than the reference case for the 50 and 

100 m-downdip models respectively.  At 30 yr, NPVs are $ 0.28 and $ 21.69 million, and 

breakeven gas wellhead prices are $ 5.27 and $ 3.58 per MSCF for reservoir depths 50 and 100 

m, respectively. These show that the L-Pad downdip would be a much more favorable 

production site than the L-Pad, however, geological risks associated with the site make 

predictions less reliable. 
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4. Mount Elbert-Like Models 

4.1 Introduction 

In February 2007, the US Department of Energy (DOE), BP Exploration Alaska (BPXA) and 

the USGS embarked on a study which was primarily aimed at confirming the nature of 

reservoir occurrence and collecting reservoir data in order to support reservoir simulation 

modeling and long-term production test design. This led to the Mount Elbert Gas Hydrate 

Stratigraphic Test drilling program. The Mount Elbert (or Mt. Elbert) prospect is located in 

the Milne Point Unit (MPU) of the Alaska North Slope (Figure 4-1). Its hydrate accumulations 

have been identified as part of the Eileen Trend1. Assessment have shown that the Mt. Elbert 

prospect is the highest-ranked MPU gas hydrate prospect2. Further evaluation by Inks et al.3 

also predicted the gas-in-place volumes of the Mt. Elbert prospect to be ~ 4.1 x 109 ST m3 (~ 

145 BSCF), which are trapped in two sand units (C and D) and located in stratigraphically 

highest portions of those sands. A series of formation pressure (drawdown and buildup) tests 

was conducted at various depth intervals to obtain a measure of the effective permeability of 

the reservoir. Results of the formation pressure tests and history matching efforts are detailed 

in the works by Anderson et al.4, Kurihara et al.5 and Pooladi-Darvish and Hong6. 

The Mt. Elbert hydrate prospect has been evaluated as a candidate for long-term 

production tests by Collett et al.7. The assessment shows that the site has minimal risks 

associated with ownership structure and interference with existing conventional oilfield 

production operations, when compared with the L-Pad prospect.  
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Figure 4-1: The location of the Mount Elbert well within the Milne Point Unit (MPU) on the 
North Slope of Alaska. Inset shows the position of the nearest offset wells on the MPU E and 

MPU B production pads. 
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4.2 Model Objectives 

The goal of the models discussed in this chapter is to evaluate alternative production 

sites with deeper hydrate accumulations and minimal geological risks within the MPU. The 

hydrate-bearing D sand of the MPU, being close to the permafrost with temperatures ranging 

between 2.3 – 2.6 0C8, are too cold for production. The hydrate-bearing C sand is at least 1 0C 

warmer than the D sand, which makes it a better production target than the D sand, however, 

previous studies7, 9, 10 have also shown that temperatures of the C sand hydrates are not 

adequately warm enough for viable production. In the light of the foregoing, production 

potential from 3D reservoir models of the hydrate-bearing C sand of the Mt. Elbert-like “Site 

2” models will be assessed with the aim of obtaining predictions from deeper hydrate 

accumulations having geological and petro-physical features similar to the Mt. Elbert region. 

Furthermore, as an improvement to existing models, the model developed in this study would 

also incorporate as much as possible the structural and geophysical heterogeneities of the 

reservoir by maximizing the utilization of the available field data. Using the Mt. Elbert model 

as a reference case, sensitivity of predictions of gas rates and cumulative volumes to reservoir 

depths (hence temperature) will be determined. The study would also obtain a qualitative 

measure of the sensitivity of predictions to uncertainties in the approximation of reservoir 

quality (hydrate saturation, porosity, intrinsic permeability and irreducible water saturation). 

4.3 Previous Modeling Efforts 

Studies on gas production from the Mt. Elbert hydrate prospect have been mostly based 

on homogeneous models or models with incorporation of vertical heterogeneity. Problem 7a 

of the International Code Comparison11, 12 is a model with homogeneous approximations of 

reservoir properties which describes production from the hydrate-bearing C unit of a Mt. 
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Elbert-like site. Moridis8 investigated production from the Mt. Elbert D unit-hydrate with the 

assumption of  homogeneous distribution of properties and the absence of water contact at the 

base of the hydrate (a Class 3 reservoir). However, the works of Anderson9 and Myshakin et 

al.10 introduced vertical heterogeneities in the distribution of porosity, permeability, hydrate 

saturation and irreducible water saturation. While Anderson’s model described production 

only from the C sand hydrates, Myshakin et al. modeled production from the hydrates of both 

the D and C units with variable bottom-hole pressures. All these reservoir models are based on 

a 2D cylindrical geometry. There is no known model (at least to the author) of the Mt. Elbert 

prospect which incorporates a full 3D heterogeneous distribution of properties and the actual 

reservoir geometry. The importance of the incorporating the heterogeneities in reservoir 

models have been extensively discussed in the previous chapter (Section 3.6.5) and, therefore, 

will not be repeated in this chapter. Overall, predictions from all of these models showed 

consistency in terms of low gas production rates and cumulative volumes achieved from the 

cold reservoir. 

4.4 Reservoir Characterization and Model Development 

In 2003, the USGS embarked on a study to develop seismic interpretive methods to 

characterize gas hydrate accumulations in the MPU. Detailed analysis and interpretation of 3D 

seismic data led to the identification of the extent of hydrate accumulations in the Mt. Elbert 

region3, 13. The seismic-inferred reservoir depths to the top of the C sand shows that the Mt. 

Elbert well is drilled in the region of highest stratigraphy. 

Well log data (Figure 4-214) and retrieved core sections show that the entire C unit at 

the Mount Elbert location is comprised of two primary lithologic units.15 The formation within 

depth interval 650 – 663 m (2133 – 2176 ft) represents the upper portion of the C unit sand 
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with hydrates (C-GH1 in Figure 4-2) filling that section from 650 – 661 m (2133 – 2168.0 ft) 

while the remaining part is highly saturated with water10, 11, which essentially makes this upper 

section  a Class 2 reservoir14, 16. The upper portion of the C sand  is characterized by a 

succession of thin, fining upwards sequences of very-fine sand, silt, fine silt and clay layers.16 

The lower section, found in the interval 663 – 729 m (2176 – 2391 ft) makes up the most part, 

with hydrates (C-GH2 in Figure 4-2) filling only the depth interval 663 – 666 m (2176 – 2185 

ft), leaving an underlying thick section of high-reservoir quality sands with no gas hydrate 

present. The bottom  C unit characterized with by a thick sequence of fine to very-fine sands 

with rare shale inter-beds and exhibits an overall upward increase in reservoir quality16. The 

entire C unit is overburdened by a low permeable high-clay content section. 

In the models developed in this study, the following data provided by the USGS were 

processed to describe the nature of hydrate occurrences within the Mt. Elbert vicinity:  

 Seismic-interpreted depth to top of C sand unit (Figure 4-3 (a)) 

 Seismic-interpreted 2D map of hydrate saturation in the C unit (Figure 4-3 (b)) 

 Density log-derived porosity, NMR log-derived hydrate saturation and 

irreducible water saturation data obtained from the Mt. Elbert well 

Figure 4-5 shows that the Mt Elbert well was drilled at a high stratigraphic point in the region 

of high hydrate saturation. The Milne Point 3-D seismic gas hydrate prospecting effort also 

revealed the lateral nature of the well log inferred gas hydrate-bearing sedimentary units.  
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Figure 4-2: Mt. Elbert Well log profiles of sediment properties including: (a) NMR+density 
porosity-derived hydrate saturation (Sh)17, (b), (c), and (d) median grain size, percent sand, and 
percent clay-size determined from laser-grain-size analyses on physical property (PP), pore 
water (PW), microbiology (MB), and sedimentology samples15, (e) permeability 
measurements from core plugs, slabbed core using a mini-permeameter, and well logs16, (f) 
moisture and density (MAD) + combinable magnetic resonance (CMR)-derived porosity (g) 
MAD+CMR-derived bulk density16 (h) MAD-derived grain density16, (i) water content16, and 
(j) pore water salinity18 

 

(a) (b)   (c)    (d)      (e)        (f)        (g)         (h) (i) (j) 
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(a) 

 

(b) 

Figure 4-3: a) Structure contour maps of depth to top of C sand with color bar representing 

true vertical depth from sea level, and b) 2D Sh map in the C sand with color bar representing 

hydrate saturation, showing faults (red lines), Mt. Elbert well location and model area (black 

line-bounded box, 5 km x 6 km) 

Mt. Elbert 

Mt. Elbert 
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A summary of the geometry and discretization of the flow simulation model shown in 

Figure 4-4 is presented in Table 4-1. The vertical grid divisions is based on the heterogeneous 

model of Problem 7a9. It has a total of 50 hydrate layers with each layer being 0.25 m-thick. It 

also has 50 m-thick (each) low-permeable overburden and underburden shale formation which 

provide constant temperature-boundary conditions at the top and bottom of the hydrate-bearing 

sand, respectively. The bounding faults are assumed to be sealing and non-conducting, 

therefore, there is no flow to mass or heat at the north, east and west boundaries. Owing to the 

huge computational demand by the size of the original domain of the Mt. Elbert, a southern 

boundary of the modeled area (black box in Figure 4-3) was defined (based on preliminary 

simulations) with a prediction that the hydrate dissociation front will not hit the southern 

boundary within the simulated production time of 30 yr. This also implies no flow to heat or 

mass across the southern boundary. As shown by the inset figure of Figure 4-4 (a), the original 

size (100 m x 100 m) of the grid blocks in the horizontal plane was refined to the smaller grid 

blocks (0.6 m x 0.6 m) around the wellbore to improve accuracy of numerical computation. 

The size of the refined grid block at the wellbore is such that their effective radii is at least 10 

% larger than the wellbore radius of 0.11 m to ensure numerical convergence19. 

Characterization of the reservoir proceeded with estimating a 3D distribution of hydrate 

saturation in the C unit. The vertical hydrate saturation (Sh) profile (from well log) and surface 

hydrate saturation distribution (from seismic) were combined to give a first order estimate of 

the 3D hydrate distribution in the reservoir volume. The high resolution vertical profiles of the 

properties obtained from the well log (at every 0.5 ft or 0.15 m) has been coarsened to fit the 

model discretization in the vertical direction within depth range of the C sand thickness9.   
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Figure 4-4: 3D geometry of flow simulation model showing Sh distribution (color bar). Inset 
figure shows the horizontal grid refinement within the vicinity of the wellbore. 

 

Table 4-1: Model geometry details 

Formation Top (m) Thickness (m) 
Layer Range 

(Number of Layers) 
Simulation Layer  

Thickness (m) 

Shale  638 – 670  5 (x 10)* 1 (1) 50* 

C  Sand 643 – 675  12.5 2 – 51 (50) 0.25 

Shale 655 – 687 5 (x 10)* 52 (1) 50* 

*Grid thickness was multiplied by a volume modifying factor of 10, so that effective simulation 
layer thickness = 50 m 

Mt. Elbert
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The vertical Sh profile obtained from the log (Sh, log) was normalized by dividing each 

of the Sh log values by the maximum value from the 2D surface Sh distribution (Sh, 2D_max). The 

normalized profile was used as a multiplication factor by which the original surface hydrate 

saturation distribution (Sh, 2D) was multiplied to give an estimate of the surface hydrate 

saturation distribution in each layer. These steps are illustrated in Figure 4-5. 

Porosity (�) and irreducible water saturation distributions (����) were estimated by 

establishing a correlation between their log-derived vertical profiles and that of Sh. The 

development of these correlations are shown in Figure 4-6 and the relationships are given by 

Equations (4-1) and (4-2) 

 � = 0.20	�� + 0.22 (4-1) 

 ���� = −0.88	�� + 0.84 (4-2) 

Intrinsic “hydrate-free” permeability was calculated from the correlation developed by 

Myshakin et al10, as previously given by Equation (3-4). 

 

4.5 Reservoir Model Parameters and Initial Conditions 

A summary of the reservoir properties and initial conditions are given in Table 4-2. As 

a result of the variation in the 3D distribution of Swir and the dependency of relative 

permeability on Swir, each grid block in the model has a unique relative permeability model 

associated with it. The nature of the initial distributions of Sh and Swir ensured that the initial 

free water saturation in reservoir was not more than 16 % of the total pore space. The pressure 

in the sediment subsurface was assumed to follow a hydrostatic pore pressure distribution and 

thermal distribution was based on a geothermal gradient of 0.038 °C/m, derived from the MPU 

D-02 well temperature log.20 
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Figure 4-5: Well log and seismic-inferred (a) normalized vertical Sh distribution within the C 

sand interval, (b) Surface 2D Sh distribution in the 5th layer, and (c) surface 2D Sh 

distribution in the 40th layer 
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      (a) 

 
    (b) 

Figure 4-6: Correlation between well log-derived hydrate saturation (��,���) and (a) well log-

derived-porosity (����), and (b) well log-derived irreducible water saturation (����,���)  
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Table 4-2: Reservoir properties, initial conditions, and pertinent model parameters. 

Parameter Value 

Porosity of sand units,  0.23 – 0.37 

Initial hydrate saturation 0.03 – 0.76 

Intrinsic permeability of sand units, 
ksand, mD 

102 – 562, horizontal and 51 – 281, vertical permeability 
(0.5 anisotropic factor) 

Intrinsic permeability of the shale  
layers, kshl, mD 

0.001, horizontal and 0.0005, vertical 

Porosity of shale layers,  0.22, from Equation (4-1) with Sh = 0 

Pore compressibility,  p,Pa-1 5 10-10   

Thermal conductivity of hydrate-
bearing sand, ksand, W/m K 

2 

Thermal conductivity of shale, ksand, 
W/m K 

2 

Capillary pressure model21     
1/1* 1)(SPPcap  

)(

)(

max,

*

wcapw

wcapw

SS

SS
S




  

Capillary-bound water, Swcap 0.10 (see note below) 

9, 12 0.77437 

Sw,max 1 

Pmax, Pa 104  

Pore water salinity, ppt 5 

Relative permeability 
Modified Stone 3-phase model22 

nw
wrw Sk )( * ;  nG

Grw Sk )( *  

)1(

)(*

wir

wirw
w

S

SS
S




 ; 

)1(

)(*

Gir

GirG
G

S

SS
S




  

n9, 23 nw = 5. 04; nG=3.16 
Irreducible gas saturation, SGir 0 
Irreducible (total bound) water 
saturation, Swir 

0.20 – 0.82, from Equation (4-2) 

Rock density, kg/m3 2650 

Note: Swcap = ~ 50 % (arbitrarily set) of the minimum value of the irreducible (total bound) 
water saturation distribution (Swir) with the balance (Swir – Swcap) assumed to be clay-bound. A 
sensitivity study on this property is discussed in Section 4.6.2. 
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This resulted in average pressure and temperature of 7.13 MPa and 3.67 °C, 

respectively, in the C sand. For the layers of the reservoir model, the initialization of P/T 

conditions (pressure and temperature gradients throughout the vertical dimension of the 

domain) were carried out to achieve hydraulic, thermal, thermodynamic, and chemical 

equilibrium and ensure correct pressure and temperature conditions of the layers relative to the 

base of gas hydrate stability. Production by depressurization using the Mt. Elbert well was 

simulated with CMG STARS for a 30 year-period, with a minimum well flowing bottom-hole 

pressure (BHP) of 2.8 MPa. 

4.6 Flow Simulation Results and Discussions 

Previous simulations have shown that the Mt. Elbert hydrate prospect may be too cold 

to be economically viable. Therefore, a sensitivity study was carried with respect to reservoir 

depth to simulate scenarios where hydrates deposits (hereby named “Site 2”) similar to Mt 

Elbert may exist in deeper sediments. This analysis is followed by an uncertainty assessment 

to determine the range of production potential with respect to uncertainties in the distribution 

of hydrate saturation coupled with porosity, intrinsic permeability and irreducible water 

saturation.  

4.6.1 Sensitivity to depth 

Using the original Mt. Elbert model described in the previous section as a reference 

case, additional four “Site 2” models were developed, with reservoir depths to the top of the C 

sand (at the Mt Elbert well) of 700, 750, 800 and 850 m. It is to be noted that the base of 

hydrate stability is at ~ 900 m in the MPU. More details about the range of reservoir depths, 

temperatures and pressures are given in Table 4-3. 
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Table 4-3: Reservoir depths, temperature and pressure in Mt. Elbert and Site 2 models 

Model Depth to C sand (m) Temperature (0C) Pressure (kPa) 

Mt. Elbert (reference) 638 – 670 3.03 – 4.67 6936 – 7404  

Site 2 @ 700 688 – 720 4.91 – 6.53 7475 – 7943 

Site 2 @ 750 738 – 770 6.78 – 8.41 8015 – 8483  

Site 2 @ 800 788 – 820 8.66 – 10.28 8554 – 9022  

Site 2 @ 850 838 – 888 10.53 – 12.16 9094 – 9562 

 

Figure 4-7 shows the gas production rates and cumulative volumes for all cases 

including the reference model. Very low production rate and cumulative volumes are obtained 

in the Mt. Elbert over the 30 year-period and this further substantiates earlier predictions of the 

productivity of the region. Gas rates increase with increase in reservoir depth, with the highest 

gas rate being 4.08 x 105 ST m3/day (14.4 MMSCF/day), as predicted by the Site 2 @ 850 

model. The highest cumulative gas volume produced at the end of 30 years is 2.66 x 109 ST 

m3 (~ 94 BSCF). Based on the cost data of Table 3-12, evaluation of NPVs at the end of 30 yr 

(Figure 4-8) show that only the Site 2 @ 800 and Site 2 @ 850 models would have positive net 

cash inflow at the end of 30 yr with breakeven wellhead gas prices of $ 3.57 and $ 2.06 per 

MSCF. A Site 2 hydrate prospect that will breakeven exactly at 30 yr would have a reservoir 

depth between 750 – 800 m. 

  



 
 

139 
 

 
Figure 4-7: Sensitivity of gas rates and cumulative volumes to reservoir depth 

 
Figure 4-8: Sensitivity of NPV to reservoir depth 
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4.6.2 Effect of capillary-bound water 

The purpose of this section is to investigate the sensitivity of gas rate prediction to the 

capillary-bound water. Figure 4-9 compares the gas rates obtained from the model with an 

assumed capillary-bound water equal to 10 % of the total pore volume (reference case) with 

another model which assumes that the total irreducible water (or total bound water) is all 

capillary-bound. i.e. Swir = Swcap, implying no clay-bound water. 

 
Figure 4-9: Effects of capillary-bound water on gas rates and cumulative volume 

Significantly higher gas production rates are predicted for the model with no clay-

bound water with a prediction of cumulative volume at the end of 30 yr being 85 % more than 

the reference case having a fixed 10 % capillary-bound water. A more realistic prediction of 

gas rates and cumulative volumes will likely lie in the interval between the respective curves 

shown in Figure 4-9. The results further emphasizes the importance of ongoing studies to 

accurately describe the relative permeability and capillary pressure models of the hydrate 

bearing sands of the Alaska North Slope. 
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4.6.3 Sensitivity to reservoir quality 

The purpose of this section is to obtain a measure of reservoir response to the 

uncertainties in the approximated hydrate saturation distribution coupled with irreducible 

water saturation, porosity and intrinsic permeability of the reservoir. Using the Site 2 @ 750 

model as a base case, hydrate saturation (coupled with porosity, permeability and irreducible 

water saturation) were varied. Four additional simulation cases were developed by varying the 

original (base case) vertical Sh profile. To develop Case 1a, the base case vertical Sh distribution 

was randomly perturbed such that the resulting mean was 15 % higher, while maintaining the 

same distribution variance (or standard deviation). Case 1b was developed in a similar fashion 

but with a mean 15 % less than the base case. Cases 2a and 2b had the same mean as the base 

case but with standard deviations which are 25 % more and 25 % less than the base case, 

respectively. The percentage increases in the mean and standard deviation were chosen such 

that the resulting distribution had a realistic upper bound of Sh at 0.85. The perturbations are 

graphically illustrated using normalized vertical Sh profiles in Figure 4-10 and the resulting 

vertical Sh profiles are shown for all five cases in Figure 4-11.  A summary statistics of the 3D 

distributions of hydrate saturation (Sh), porosity (ϕ), intrinsic horizontal permeability (k) and 

irreducible water saturation (Swir) in the reservoir models in all five cases is presented in Table 

4-4. The average properties are based on pore-volumes of each grid block, however, for 

permeability, the harmonic average of the permeability of all grid blocks is shown. 

The gas rates and cumulative gas volume produced are plotted in Figure 4-12 and the 

cumulative probability distribution of the cumulative gas volumes produced at the end of 30 

yr is shown in Figure 4-13. Both figures show that predictions are within narrow ranges with 

a mean cumulative volume of 1.49 ± 0.08 x 109 ST m3 (52.6 ± 2.8 BSCF). 
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Figure 4-10: Standard normal distribution of normalized vertical Sh profiles for 5 cases 

 

Figure 4-11: Vertical Sh profiles at the Mt. Elbert well location for Site 2 
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Table 4-4: Summary statistics of varied properties in Site 2 models 

Property Base case Case 1a Case 1b Case 2a Case 2b 

Sh 

minimum 0.03 0.03 0.00 0.02 0.03 

maximum 0.76 0.83 0.72 0.82 0.67 

average 0.46 0.53 0.39 0.47 0.45 

φ 

minimum 0.23 0.23 0.22 0.23 0.23 

maximum 0.37 0.39 0.36 0.39 0.35 

average 0.31 0.33 0.30 0.32 0.31 

k, mD 

minimum 102 102 96 101 104 

maximum 562 693 537 693 475 

average 267 311 228 262 271 

Swir 

minimum 0.20 0.12 0.21 0.12 0.26 

maximum 0.82 0.82 0.84 0.82 0.81 

average 0.44 0.38 0.50 0.43 0.44 

 

 

 

Figure 4-12: Sensitivity of gas rates and cumulative gas volumes to initial hydrate saturation, 

irreducible water saturation, porosity and intrinsic permeability distribution 
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Figure 4-13: Cumulative probability distribution of cumulative volumes produced at 30 yr 

 

Figure 4-14: Sensitivity of water rates and cumulative volumes to initial distributions of 
hydrate saturation, irreducible water saturation, porosity and intrinsic permeability 
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The mean recovery factor computed based on initial volume of gas in place present as 

hydrate in the reservoir is 22 ± 1 %. Again, this low recovery factor (in spite of the warm 

reservoir temperatures) suggests the need to investigate more effective ways to enhance the 

productivity of the hydrate deposits in this region. Plots of water production rates and 

cumulative volumes shown in Figure 4-14, indicates that range of the cumulative volume of 

water produced at the end of 30 years is 3.33 – 3.85 x 106 ST m3 or 21 – 24 MMbbl).  

Figure 4-15 (a) shows the propagation of the depressurized zone from the wellbore into 

the reservoir for Case 1b. It indicates that after 10 years, less than half of the reservoir cross-

section have been depressurized to 50 % of the initial average reservoir pressure (~ 8200 kPa). 

Meanwhile, Figure 4-15 (b) shows that the hydrate dissociation potential, indicated by the 

difference between the reservoir pressure (�(�)) and hydrate equilibrium pressure at the 

prevailing reservoir temperature (���(�(�)) decreases with time. It is an evidence that during 

the proximity to hydrate equilibrium becomes more significant as the rate controlling factor as 

production progresses. Consequently, in the absence of any reservoir stimulation, hydrates will 

dissociate less readily in the later part of a production period. Figure 4-16 (a) shows the 

visualization of the hydrate dissociation front as the reservoir is being depressurized while 

Figure 4-16 (b) shows the increase in the residual gas saturation trapped in the reservoir as the 

dissociated gas are being produced. 
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(a) 

 

 

(b) 

Figure 4-15: Vertical cross section across the wellbore showing distribution of (a) pressure 
(P), and (b) difference between reservoir pressure and equilibrium pressure at the current 
reservoir temperature (∆� = � − ���(�) at � = 2	�� (left column) and at � = 10	�� (right 

column), for Case 1b 
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(a) 

  

 

(b) 

Figure 4-16: Vertical cross section across the wellbore showing distribution of residual 
 (a) hydrate saturation, and (b) gas saturation, at � = 2	�� (left column) and at � = 10	�� 

(right column), for Case 1b 
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4.7 Conclusions 

Numerical simulations were used to evaluate gas production potential of the reservoir 

based on the Mt. Elbert methane hydrate deposits of the Milne Point Unit on Alaska’s North 

Slope. In the absence of extensive well log data, reservoir characterization was based mostly 

on seismic-interpreted reservoir 2D structural maps and Sh distribution, combined with vertical 

Sh variation derived from the log data of the Mt. Elbert well.  

Poor productivity related to the cold temperatures of the original Mt. Elbert formation, 

necessitated sensitivity simulations on deeper Mt. Elbert-like (“Site 2”) hydrate reservoir 

models with varying depths. As expected, gas rates from the original Mt. Elbert were very low 

(0 – 10 ST m3/day), while the deepest Site 2 model (which is 200 m deeper and 7.5 0C warmer 

than original Mt. Elbert) produced the highest gas rate (4.07 x 105 ST m3/day or 14.4 

MMSCF/day) and cumulative gas volumes (2.66 x 109 ST m3 or 94 BSCF) at the end of 30 

years. Economic analysis show that only the deepest two Site 2 models would have a positive 

net cash inflow at the end of 30 years, with breakeven wellhead gas prices of $ 3.57 and $ 2.06 

per MSCF. A Site 2 hydrate prospect that will breakeven exactly at 30 yr would have a 

reservoir depth between 750 – 800 m (at least 100 – 150 m deeper than the original Mt. Elbert). 

A quick sensitivity study carried out on capillary-bound water identified it as a very crucial 

property of the reservoir which needs to be accurately determined because of its significant 

impact on gas production rates and cumulative volumes.  

To obtain a measure of the effect of the uncertainties in the distribution of Sh, ϕ, k and 

Swir on predictions, four different simulations (Cases 1a, 1b, 2a and 2b) were run by using 

different statistically perturbed sets of property distributions, with the Site 2 @ 750 model (100 

m deeper than original Mt. Elbert) as a reference case. The narrow range of predictions of gas 
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and water rates and cumulative volumes further supports the conclusion that the deeper Site 2 

prospects, if found, would be more economically viable in the limit of minimal geological 

uncertainties.  
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5. Overall Conclusions and Recommendations 

5.1 Conclusions 

The overall goal of this work was to obtain an advanced assessment of the gas 

production from hydrated reservoirs based true geologically representative reservoir models. 

The primary subject areas of study were the hydrate accumulations of the PBU “L-Pad” and 

MPU “Mount Elbert” regions of the Alaska North Slope. It involved comprehensive reservoir 

characterization to incorporate data-driven 3D heterogeneities of the distribution of 

geophysical properties of the reservoir in flow simulation models. Depressurization was used 

to obtain predictions of gas and water production rates, and reservoir response under varying 

field scenarios were studied. 

In the L-Pad models, geostatistical porosity distribution models of the hydrate-bearing 

D and C sand units were developed based on 78 well log data, from which distribution of 

porosity-dependent hydrate saturation and intrinsic permeability were estimated. The resulting 

reservoir models accounted for the actual geological features (reservoir geometry, fault and 

hydrate water contact). Numerical flow simulations were conducted using CMG STARS. 

The first set of simulations were done to quantify the uncertainties associated with 

predictions from this model using vertical and inclined production wells using 10 geostatistical 

realizations of porosity distribution.  

This was followed by a study on the sensitivity of reservoir performance to well 

configuration and completion. Further sensitivity studies included efforts to obtain a measure 

of the effect of reservoir dimensionality and heterogeneity on gas rate predictions. Extensive 

study of gas flow and patterns provided a clearer explanation and better understanding of the 
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phenomenon and effect of secondary hydrate formation on gas production. Flow assurance 

studies were conducted to determine how wellbore conditions need to be managed to prevent 

secondary formation of hydrates in the well during production. Finally, economic assessment 

was carried out to determine the viability of a long-term field development using multiple 

wells. The following are the summary of the conclusions reached 

 Uncertainties in predictions based on this model were only about 1.7 % and 0.5 % of 

the mean values 5.33±0.09 x 108 ST m3 (18.820.32 BSCF) and 6.07±0.03 x 108 ST 

m3 (21.440.11 BSCF)) for the vertical and inclined wells, correspondingly. The results 

are an indication of the reliability of the data driven model and provides an indication 

that the amount of well log data used for the study is sufficient to adequately 

characterize the reservoir. 

 Sensitivity of reservoir performance to well design showed that the maximum overall 

recovery achievable were in the range 30 – 40 % of the original GIP in form of hydrates, 

with the well configuration having two lateral sections each penetrating the D and C 

sands having the highest recovery.  This indicates a need for the application of a more 

advanced recovery technique to enhance reservoir performance within a typical life 

span of a producing well.  

 Large amounts of liquid phase produced (2.74 – 3.61 x 106 ST m3 or 1.72 – 2.27 x 107 

bbl) in all well configurations suggest a need provision for downhole gas-water 

separation in the wellbore design in order to reduce the load on the production lift 

system.  

 Study also showed that the presence of hydrate-water contact did not have any 

significant impact on the cumulative gas volume produced at the end of 30 years. 
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However, a model with water contact produced 90 % more volume of water compared 

with that without water contact. From a water production management perspective, this 

result may have substantiated a basis for the consideration of a production method 

which would involve an initial injection of CO2 into the free-water zone just below the 

hydrate-water contact to form CO2 hydrates, which would now be followed by the 

production phase using the depressurization technique. 

 A simplified 2D geometry for a hydrate reservoir model and assumption of vertical 

heterogeneity in porosity and hydrate saturation led to underestimation of reservoir 

productivity by about 38 % in comparison with the 3D model employed in this study. 

On another hand, modeling gas production from the hydrate sand units using uniform 

intrinsic permeability (734 mD in the horizontal and 367 mD in the vertical direction) 

overestimates the cumulative gas volume produced at the vertical well by around 40 % 

comparing with the heterogeneous permeability representation. 

 Based on the 3D heterogeneous models, secondary hydrates were formed away from 

the producing well and were seen as short-lived patches of increased or sustained 

hydrate saturations. The reason of their appearance was attributed to local pressure 

fluctuations caused by temporal gas trapping during mobile phase flow in complex 3D 

porous network containing dissociating hydrate.   This was another evidence of the 

profound importance of a 3D heterogeneous representation of a reservoir system which 

captures details of actual geological settings.  

 Based on the current predictions of water production, flow assurance studies show that 

very large volumes of methanol (> 308 m3 /day or 1938 bbl/day) need to be injected 

into the wellbore in order to inhibit the secondary formation of hydrates in the wellbore, 
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making it impractical. These numbers, again, emphasize the need for an effective water 

production management. As a possible alternative, calculations show that minimum 

DEH requirements are 8.73, 68.05 and 67.83 W/m heating power per unit length of 

wellbore, corresponding to the 30, 50 and 100 kW pump power outputs, which 

translates to a requirement that the wellbore wall temperature (Tw) should be 

maintained at 8, 25 and 25 0C, when using a pump with power outputs of 30, 50 and 

100 kW, respectively. These results suggest that DEH might be a more feasible 

alternative than methanol injection, based on the predicted water production rates. 

 The economic viability of different options of long-term field development were 

evaluated using a generalized 3D rectangular geometry. Among the four scenarios 

considered, the most promising field development option is the use of four inclined 

wells, however, all of the options remain economically unattractive with NPVs in the 

range -$ 21.3 – -$ 13.8 million at the end of the production period. Therefore, an 

aggressive enhanced recovery method may be required to improve on the economic 

viability of long term production from this particular site.  

 The productivity of a probable hydrate deposit downdip and to the east of the L-Pad 

was also studied for reservoirs with depths 50 and 100 m, respectively. The maximum 

gas rates achieved were 1.1 and 2.4 times more than the maximum production rate 

achieved from the original L-pad, respectively for the 50 and 100 m-depth models.  

Cumulative volumes achieved at the end of 30 yr, are 45 and 76 % more than the 

reference case for the 50 and 100 m-downdip models respectively.  At 30 yr, NPVs are 

$ 0.28 and $ 21.69 million, and breakeven gas wellhead prices are $ 5.27 and $ 3.58 

per MSCF for reservoir depths 50 and 100 m, respectively. These show that the L-Pad 
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downdip would be a much more favorable production site than the L-Pad, however, 

geological risks associated with the downdip sites make predictions less reliable. 

The primary goal of the Mt. Elbert models was to evaluate alternative production sites with 

deeper hydrate accumulations and minimal geological risks within the MPU, with the C unit 

hydrates being the production target.  In the absence of extensive well log data (unlike the L-

Pad), reservoir characterization was based mostly on seismic-interpreted reservoir 2D 

structural maps and Sh distribution, combined with vertical Sh variation derived from the log 

data of the Mt. Elbert well. Low reservoir productivity related to the cold temperatures of the 

Mt. Elbert formation (as shown by previous studies), necessitated sensitivity simulations on 

deeper Mt. Elbert-like (“Site 2”) hydrate reservoir models with varying depths. The models 

incorporated, as much as possible, the structural and geophysical heterogeneities of the 

reservoir by maximizing the utilization of the available field data. Using the Mt. Elbert model 

as a reference case, sensitivity of predictions of gas rates and cumulative volumes to reservoir 

depths (hence temperature) was determined. The study obtained a qualitative measure of the 

uncertainties in the approximation of reservoir quality (hydrate saturation, porosity and 

intrinsic permeability) and its implication on gas production. The following are the specific 

conclusions reached from the results of the flow simulations: 

 

 As expected, gas rates from the original Mt. Elbert were very low (0 – 10 ST m3/day), 

while the deepest Site 2 model (which is 200 m deeper and 7.5 0C warmer than original 

Mt. Elbert) produced the highest gas rate (2.67 x 105 ST m3/day or 9.4 MMSCF/day) 

and cumulative gas volumes (1.62 x 109 ST m3 or 57 BSCF) at the end of 30 years. 

Economic analysis show that only the deepest Site 2 model would have a positive net 
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cash inflow at the end of 30 years, with a breakeven wellhead gas price of $ 3.57 per 

MSCF. A Site 2 hydrate prospect that will breakeven exactly at 30 yr would have a 

reservoir depth between 750 – 800 m (at least 100 – 150 m deeper than the original Mt. 

Elbert). 

 To obtain a measure of the effect of the uncertainties in the distribution of Sh, ϕ, k and 

Swir on predictions, four different simulations (Cases 1a, 1b, 2a and 2b) were run by 

using different statistically perturbed sets of property distributions, with the Site 2 @ 

750 model (100 m deeper than original Mt. Elbert) as a reference case.  

 From the uncertainty assessments of distribution of Sh, ϕ, k and Swir, it was observed, 

interestingly, that the cumulative volume of gas produced from all sensitivity cases 

were all significantly (80 – 100 %) higher than the reference case. The observed higher 

gas rates was attributed its ability to a) achieve a more effective depressurization to its 

higher average effective permeability of the reservoir, b) allow more of the dissociated 

gas to flow from the reservoir to the wellbore which is related to the higher average 

Swir, that provides less impedance due to free water flow, when compared with the 

reference case. 

 The results gave an indication that optimum reservoir performance is strongly 

dependent on reservoir quality (Q), defined by a complex relationship between Sh, ϕ, k 

and Swir, and that local variations of this reservoir quality, especially around a 

production well, may further impact on the productivity of reservoir. Furthermore, the 

results emphasize that the model predictions of production potential from a Site 2 (if 

found) would be valid, only if it has similar petro-physical characteristics as the Mt 

Elbert prospect. 
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While information obtained from this work would be most beneficial to support the 

planning of the proposed long term hydrate production tests and subsequent field development 

of the ANS, results may also be useful in the planning and development of other hydrate 

prospects in other locations. 

 

5.2 Recommendations 

It is recommended that future work in the development of a hydrate resource focus on 

improving on the characterization and reliability of the reservoir models, investigating 

advanced recovery techniques to enhance production and providing solutions to operational 

challenges associated with hydrate production. A lifecycle assessment should also be 

conducted, which would involve addressing environmental concerns associated with hydrate 

production and establishing the utilization of the produced gas on site. Specific examples of 

these future areas of study include: 

 Incorporating depositional trends in the geostatistical models of the L-Pad models that 

will result into more geologically representative models. Ideally, a seismic survey of 

the L-Pad region would also provide more information on the lateral continuity of the 

hydrate accumulations 

 Continuous improvements should be made on the reservoir models by validating the 

model predictions with field production data through history matching, as soon as it is 

available 

 Investigation of several production techniques which will enhance recovery from 

hydrates and / or lead to a more effective water production management should be 

studied. For instance, a combination of producer wells and heat injection (circulating) 
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wells can be designed to enhance recovery. Also, depressurization can be preceded by 

injection of CO2 in free-water zones below a production target to form CO2 hydrates, 

in order to minimize volume of water produced. 

 Further flow assurance studies need to be conducted in order to address operational 

issues like blockage of equipment due to sand accumulation, ice and secondary hydrate 

formation during temporary shutdowns, etc. This would help to develop working 

startup and shutdown procedures. 

 Geomechanical studies would provide information about reservoir subsidence due to 

compaction as a result of hydrate dissociation, integrity of the wellbore during 

production and volumes of sand produced. Other environmental concerns such as 

carbon footprint, leakage of gases in the reservoir and gas emissions to the atmosphere 

need to be addressed. 

 Establishing the utilization of produced gas on field would help in the determination of 

the location of production pads and gathering lines in the planning stage of field 

development 
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Appendix 

A. L-Pad Geostatistical Analysis of Porosity 

This section provides more details on the geostatistical development discussed in 

Section 3.4. The original well log-derived porosity values within the sand intervals were 

trimmed to be within the range of 0.16 – 0.45, which includes about 96 % of the all original 

porosity values (Figure A-1 – Figure A-3). Trimming was necessary to reduce the 

variability of the hydrate-bearing sand porosity, because preliminary simulations showed 

that significant porosity fluctuations at adjacent grid blocks might lead to numerical 

convergence problems.  Figure A-4 shows a gridded location map of the intersection of the 

L-Pad wells with the top of the D sand. It reveals some “clustering” nature of the well 

positions / porosity data in the x-y plane. Clustering introduces some “bias” in the 

distribution; therefore, in an attempt to remove bias and to have a representative porosity 

histogram of the entire area, a cell declustering technique was used1-3. The main idea of 

cell declustering is to assign a weight, wi, to each data value as the reciprocal of the product 

of the number of occupied cells (L0) and the number of data in the same cell, nc(i). 

Therefore, values in cells with more data receive less weight than those in sparsely sampled 

area. By varying the cell sizes, a “declustered” mean (�̅ ) was calculated using Equation 

(A-1). 

 
�̅ = 	 � ����

�

���

, �ℎ���	�� =
1

����(�)
 (A-1) 

 
i = 1…n, with n = total number of data points. 
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The declustered mean was calculated for each cell size and the cell size with the 

minimum was selected. The declustered mean were 0.36, 0.25 and 0.36 for D, DC shale 

and C units, respectively. 

 
Figure A-1: Relative frequency histogram of trimmed originally estimated porosity 

values in the D sand interval 
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Figure A-2: Relative frequency histogram of trimmed originally estimated porosity 

values in the DC shale interval 

 
Figure A-3: Relative frequency histogram of trimmed originally estimated porosity 

values in the C sand interval 
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 Figure A-4: Well location map showing porosities at the top of the Unit D sand 
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Using normal score transformations, the porosity distributions were normalized 

(Figure A-5, Figure A-6 and Figure A-7) and were used in subsequent and separate 

variogram analyses and modeling for each D, DC shale and C units, respectively.  

The variogram is a measure of the variability of a quantity sampled in different 

locations with respect to spatial coordinates. It is a function of both distance and direction 

and mathematically defined as: 

�(�) = 	
1

2� (�)
� [�(��)− �(�� + �)]�

� (�)

���

																													(3) 

where, 

� − displacement	vector	between	a	pair	of	samples	(lag	distance); 

� (�)− number	of	sample	pairs	separated	by	�;	

�� − position	vector	of	one	of	the	i��sample	pair; 

�(��)− sampled	quantity	with	position	vector	��; 

�(�)− variogram	of	any	two	sample	pairs	separated	by	�. 

The next step was to estimate variograms in the principal directions, i.e. directions 

of maximum and minimum geological continuity. Two angles define variogram directions 

– the azimuth angle (ϕ) and the dip angle (θ), as illustrated in Figure A-8. At PBU L-Pad 

the hydrate accumulation has a calculated structural NE dip 2.3o downwards from the 

horizontal line, which is assumed as the horizontal direction of maximum geological 

continuity. However, since the reservoir top has been “flattened” (as described in Section 

3.4), isotropic horizontal variograms were calculated with dip angle of 0 0 and a large 

azimuthal angle tolerance of +/-180 0. A vertical variograms were computed with dip angle 

of – 90 0. Table A-1 summarizes the specific parameters used for the three separate facies. 
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Figure A-5: Relative frequency histogram of normalized porosity for D unit 

 

Figure A-6: Relative frequency histogram of normalized porosity for DC shale unit 
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Figure A-7: Relative frequency histogram of normalized porosity for C unit 

 
 
 

 
Figure A-8: Anisotropic variogram directions with dip and azimuth angles. 
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Table A-1: Parameters used for variogram calculations in D, DC shale and C units 

Variogram 
direction 

Dip angle (0) Parameter D unit DC shale C unit 

Horizontal 0 

Number of lags 10 10 10 

Unit lag separation 
distance (m) 

50 50 70 

Lag tolerance (m) 50 50 70 

Dip tolerance (0) 2 5 5 

Vertical - 90 

Number of lags 18 40 40 

Unit lag separation 
distance (m) 

0.50 0.50 0.5 

Lag tolerance (m) 0.25 0.25 0.5 

Dip tolerance (0) 10 10 10 

The number of lags represent the largest separation distance in which variograms 

are evaluated and is in the neighborhood of half the maximum separation distance in the 

data. This is the region in which computed variograms are known to be more realistic3. The 

unit separation (lag) distances were chosen to maximize the number of porosity data used 

to calculate the variogram for any given pair of spatial coordinates separated by a lag 

distance3. The lag tolerances were chosen to smoothen the variograms while preserving the 

variogram structure and the dip angle tolerances were chosen to capture the data in 

moderately deviated wells3, 4. Plots of the calculated (or sample) horizontal and vertical 

variograms and their models are shown for all three facies in Figure A-9. The sample 

horizontal and vertical variograms were fitted simultaneously using a combination of 

positive definite models (refer to Section 2.4.1) such that a) the sum of their variance 

contributions is equal to 1 and (b) they fit the sample variograms within a mean square 

error of no more than 1 % of the theoretical sill. Error! Reference source not found. 

shows the parameters of the variogram models for D, DC shale and C units, respectively. 
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(a) 

 

(b) 

 

 

(c) 

Figure A-9: Horizontal (left column) and Vertical (right column) sample variograms of 
(a) D, (b) DC shale, and (c) C units, and their fitted models 
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Table A-2: Variogram model parameters for D, DC shale and C units 

Unit 
Model type 
(index, i) 

Variance 
contribution 

Horizontal Range,  
ahor (m) 

Vertical Range,  
avert (m) 

D 

Spherical (1) 0.56 700 14.0 

Exponential (2) 0.13 60 1.0 

Gaussian (3) 0.31 60 20.0 

DC shale 

Spherical (1) 0.45 30 1.2 

Spherical (2) 0.20 30 13.0 

Exponential (3) 0.35 210 18.0 

C Exponential (1) 1.00 110 6.5 

The variogram functions are mathematically expressed in Equations (A-2), (A-3) 

and (A-4), for the facies D, DC shale and C, respectively. 

 

�� (ℎ) = 0.56 �
�1.5ℎ� − 0.5ℎ�

��,		ℎ� ≤ 1

1,																														ℎ� ≥ 1
+ 	0.13(1 − �����)	+ 	0.31�1 − �����

�
� (A-2) 

 

���� ��(ℎ) = 0.45	 �
�1.5ℎ� − 0.5ℎ�

��,			ℎ� ≤ 1

1,																																ℎ� ≥ 1
+ 	0.20 �

�1.5ℎ� − 0.5ℎ�
��,			ℎ� ≤ 1

1,																																ℎ� ≥ 1

+ 0.35(1 − �����) 

(A-3) 

 
��(ℎ)= �

�1.5ℎ� − 0.5ℎ�
��,		��	ℎ� ≤ 1

1,																																		��	ℎ� ≥ 1
 (A-4) 

where,  ℎ� = 	��
�����

������

�
�

+ 	 �
����

�����

�
�

,		� = 1,	2,…  

ℎ���� = ��������	��������	�������	�������	���	���������	������ 

ℎ��� = ℎ���������	��������	�������	�������	���	���������	������ 

����� = ���������	�����	��	�ℎ�	��������	��������� 

���� = ���������	�����	��	�ℎ�	ℎ���������	��������� 
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Using the model variogram as weighting functions, Ordinary Kriging along with 

Sequential Gaussian Simulation was performed using the normal score-transformed 

porosity as the input data on a rectangular reservoir grid with high and low horizontal (x x 

y) resolutions (Table A-3). 

Table A-3: Grid resolution, dimension and sizes used for D, DC shale and C units 

Horizontal 
resolution 

Unit 
Number of grids Grid size (m) 

nx = ny nz Δx = Δy Δz 

High  

D 

255 

40 

5 0.5 DC shale 60 

C 100 

Low 

D 

51 

40 

25 0.5 DC shale 60 

C 100 

 

As discussed in Section 2.4.2, Sequential Gaussian Simulation ensures that the 

location of the sample data honor their original values (unlike the case if only Ordinary or 

Simple Kriging was used). Search ellipsoids which have dimensions within the ranges of 

the variograms were used and search was restricted to a maximum of eight nearest points. 

The output from the stochastic simulation, which is a normal score porosity, was 

transformed back to actual porosity values. These porosity values were read into CMG 

STARS by means of a code generated in MATLAB, and then using the map data of the 

depth to the top of the reservoir, the rectangular “flattened” geometry was converted back 

to reflect the actual reservoir geometry. Figure A-10 and Figure A-11 show the horizontal 

and vertical cross sections of the high resolution geostatistical porosity distribution for 

selected layers. The 3D structure has been given in Figure 3-7 of the main text. 
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(a) 

 

(b) 
Figure A-10: Horizontal cross-sections across the middle of (a) D, and (b) C sands 

showing stochastically simulated porosity distribution 
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(a) 

 

(b) 

Figure A-11: Vertical cross-sections across (a) L-106, and (b) Ignik Sikumi wells 
showing stochastically simulated porosity distribution in the D, DC shale and C units 
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Figure A-12 shows that results from stochastic simulation are very close to the 

original well log-inferred porosity values, which confirms that the resulting distribution is 

tightly controlled by the input well log data. 

 

 

Figure A-12: Comparison of sampled porosity values taken at L-106 with those extracted 
from a porosity realization field at the same location and the Unit D sand interval. 
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B. Well Drilling Design 

This section of the appendix provides a guide (Table B-1) to drilling the well 

configurations studied in Section 3.6 of the main text. 

Table B-1: Drilling guide for inclined well configurations on the L-Pad 

Well-2a    

Entry depth @ D sand 610 m    

Deviation from the vertical  82.0 0    

Radius of Curvature (m) Build Rate 
Kickoff  

Depth (m) 
Horizontal 

Departure (m) 

Long Radius 286 6 0/100 ft 0.2 0/ m 200 247 

Medium Radius 82 20 0/100 ft 0.7 0/ m 493 70 

Short Radius 7 7.5 0/3 ft 8.2 0/ m 600 6 
      

Well-2b    

Entry depth @ D sand 686 m    

Deviation from the vertical   98.0 0    

Radius of Curvature (m) Build Rate 
Kickoff 

Depth (m) 
Horizontal 

Departure (m) 

Long Radius 286 6 0/100 ft 0.2 0/ m 1176 326 

Medium Radius 82 20 0/100 ft 0.7 0/ m 826 93 

Short Radius 7 7.5 0/3 ft 8.2 0/ m 698 8 
      

Well-3a    

Entry depth @ D sand 591 m    

Deviation from the vertical  81.5 0    

Radius of Curvature (m) Build Rate 
Kickoff 

Depth (m) 
Horizontal 

Departure (m) 

Long Radius 286 6 0/100 ft 0.2 0/ m 184 244 

Medium Radius 82 20 0/100 ft 0.7 0/ m 475 70 

Short Radius 7 7.5 0/3 ft 8.2 0/ m 581 6 
      

Well-3b    

Entry depth @ D sand 686 m    

Deviation from the vertical  98.5 0    

Radius of Curvature (m) Build Rate 
Kickoff 

Depth (m) 
Horizontal 

Departure (m) 

Long Radius 286 6 0/100 ft 0.2 0/ m 1179 329 

Medium Radius 82 20 0/100 ft 0.7 0/ m 827 94 

Short Radius 7 7.5 0/3 ft 8.2 0/ m 698 8 
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Table B-1: Drilling guide for inclined well configurations on the L-Pad (cont’d) 

Well-L2a     

Formation entry 
depth 

D Sand 596 m     

C Sand 653 m     

Deviation from the vertical  87.7 0     

Radius of Curvature (m) Build Rate 
Kickoff Depth (m) Horizontal 

Departure (m) D Sand C Sand 

Long Radius 286 6 0/100 ft 0.2 0/ m 158 215 275 

Medium Radius 82 20 0/100 ft 0.7 0/ m 471 547 79 

Short Radius 7 7.5 0/3 ft 8.2 0/ m 585 668 7 

       

Well-L2b     

Formation entry 
depth 

D Sand 621 m     

C Sand 679 m     

Deviation from the vertical  92.3 0     

Radius of Curvature (m) Build Rate 
Kickoff Depth (m) Horizontal 

Departure (m) D Sand C Sand 

Long Radius 286 6 0/100 ft 0.2 0/ m 1083 1141 298 

Medium Radius 82 20 0/100 ft 0.7 0/ m 753 811 85 

Short Radius 7 7.5 0/3 ft 8.2 0/ m 632 690 7 
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C. Sensitivity to well perforation 

Figure C-1 shows the results of the sensitivity runs conducted on well perforation 

intervals (mentioned in Section 3.6.2). Figure shows that initial gas rates are reduced as 

interval between the perforations are multiplied by a factor of 3 (ref. x3) and 9 (ref. x9), 

respectively when compared with the results of the original Well-2a (ref.). The cumulative 

gas volumes at the end of 30 years are essentially the same, however, at ~ 3 yr there is a 

difference of 8.4 x 107 ST m3 (~ 3 BSCF) in total volume produced between ref. and ref. 

x9. Owing to the fact that the net present value is more strongly dependent on production 

volumes in the earliest years, the well perforation intervals of the reference case would be 

the economic choice, provided there is no significantly increased cost associated with a 

higher well perforation density. However, a well with perforation interval of ref. x3 would 

be a good compromise if there are appreciable costs associated with more well perforations. 

 

Figure C-1: Gas rates and cumulative volumes from wells with varying perforation 
density 
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