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ABSTRACT 

Development of Hydraulic Models, Mass Transfer Models, and Dynamic Models of 

Solvent-Based Carbon Capture Processes with Uncertainty Quantification and Validation 

with Pilot Plant Data 

Anderson Soares Chinen 

 

To accelerate the development and commercial deployment of CO2 capture technologies, computational 

tools and models are being developed under the auspices of the U.S. Department of Energy’s Carbon 

Capture Simulation Initiative (CCSI). The CCSI process modeling team was tasked with developing a 

“gold-standard” model that will serve as a definitive reference for benchmarking the performance of 

solvent-based CO2 capture systems under steady-state and dynamic conditions over a large operating-range. 

The main three areas that this work focused on are: development of the hydrodynamic and mass transfer 

submodels for a monoethanolamine (MEA) solvent system, uncertainty quantification of these submodels,  

development of a dynamic model for this system, and development of a dynamic design of experiment 

methodology for model validation and parameter estimation of this system. 

For the gold-standard model, it was desired that the pressure drop and holdup models must be applicable 

over a wide range of operating conditions. In this work, a large range of liquid and gas flowrates, and wide 

range of viscosity and density for the liquid phase are considered and an optimal model is developed.  The 

pressure drop and holdup models are also evaluated with data from numerous process scales. 

Typically the mass transfer models and their parameters such as the liquid and gas-side mass transfer 

coefficients, diffusivity, and interfacial area are regressed using the data obtained from different 

experimental set-ups and scales, often in a sequential and sub-optimal way. In this work, a novel 

methodology is developed where parameters of the mass transfer models are simultaneously regressed by 

using the data from the wetted wall column, and packed towers, simultaneously. It is observed that the 

technique helps to improve the predictive capability of the process model.  

Uncertainty in process models and their parameters are unavoidable. A Bayesian uncertainty quantification 

technique is applied for the first time to quantify the parametric uncertainty of the hydraulic and mass 

transfer models. 

Dynamic models of CO2 capture solvent systems are very few in the existing literature. Model validation 

with the dynamic data from pilot plant has been scarcely reported. In this project, dynamic models are 

developed in Aspen Plus Dynamics®. Approximate pseudo random binary sequences are designed for the 

input signals and applied to the National Carbon Capture Center (NCCC) pilot plant during the 2014 MEA 

campaign. The pilot plant data were found to be noisy, did not satisfy mass and energy balances. In addition, 

some key variables were not measured. Preprocessing of the data followed by solution of a dynamic data 

reconciliation problem showed that the model could predict the transient response reasonably well.    

For the first time, a dynamic design of experiments (DDoE) is developed for solvent-based CO2 capture 

processes using pseudo-random binary sequence and Schroeder-phased input techniques. The design 

ensured plant friendliness and could be successfully implemented in NCC during the 2017 campaign. The 

transient data are used to solve a dynamic data reconciliation and parameter estimation problem. Due to the 

computational expense and large dimensionality of the underlying problem, only the parameters 

corresponding to the holdup model could be estimated. It is observed that the holdup parameters could be 

optimally estimated by using the dynamic data collected over only a day. The parameters are slightly 

superior to those that have been regressed by using a large amount of the steady-state data collected over 

weeks. The techniques shows promise for the model development and parameter estimation by using the 



 
 

dynamic data that can be collected very quickly as opposed to the traditionally used steady-state data that 

take months thereby saving considerable resources.  
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Chapter  1. Introduction 

Fossil fuels are currently being utilized to provide most of the world’s energy needs. However, their 

utilization releases large amount of CO2. Due to the anticipated strong reliance on fossil fuels in the 

foreseeable future and increased concern over global warming, there is strong interest in the development 

of CO2 capture and sequestration (CCS) technologies as effective means for reducing greenhouse gas 

emissions from fossil fuel burning power plants (Gibbins, 2008; Folger, 2010). These power plants release 

over 30 billion metric tons of CO2 a year. To accelerate the development and commercial deployment of 

CO2 capture technologies, computational tools and models are being developed under the auspices of the 

U.S. Department of Energy’s Carbon Capture Simulation Initiative (CCSI). As part of CCSI, it was desired 

to develop a comprehensive model of a solvent-based CO2 capture system, that can serve as a definitive 

reference for benchmarking the performance of solvent-based CO2 capture systems under both steady-state 

and dynamic conditions. It was desired that the model should be validated with the experimental data over 

wide operating regime and should be well-documented.  

 The MEA-based CO2 capture technology is evaluated in this work since this technology is matured, there 

is large amount of physical properties data in the open literature for the MEA-H2O-CO2 system, and the 

solvent is not proprietary in nature.  Therefore, it was decided that a model of the MEA-H2O-CO2 system 

be developed first as the desired benchmark model.  A typical MEA-based post-combustion CO2 capture 

process of a coal-fired power plant is shown in Figure 1.1 (Folger, 2010). The flue gas from the power plant 

enters at the bottom of the column with a high CO2 concentration. The lean MEA solvent enters at the top 

of the column. The CO2-rich solvent from the bottom of the absorber is sent to the stripper where the solvent 

is heated to release the CO2. The regenerated MEA is then recycled back to the absorber.  

Development of the properties models for the benchmark model, uncertainty quantification of the properties 

models and validation of the steady-state model with the data from National Carbon Capture Center 

(NCCC), Wilsonville, AL have been described in details in the PhD dissertation of  Morgan (2017).  

This thesis mainly focuses on four tasks: 

• Development of the mass transfer model and hydraulic model for the benchmark model 

• Uncertainty Quantification of the mass transfer model and hydraulic model 

• Development of the dynamic model for the MEA-H2O-CO2 system and its validation using 

dynamic data from NCCC 

• Design of dynamic design of experiments (DoE) for NCCC and development of dynamic data 

reconciliation and parameter estimation framework using the NCCC data  
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Figure 1.1- Post-combustion, chemical absorption CO2 capture process of a coal-fired power plant 

 

1.1.  Mass transfer and hydraulic models and their uncertainty quantification and model 

validation 

Mass Transfer Models 

Mass transfer models for the towers mainly comprise of four models-mass transfer coefficient model for 

the liquid-side, mass transfer coefficient model for the gas-side, diffusivity model, and the interfacial area 

model. Mass transfer coefficients and interfacial area depend on the packing-type and the operating system 

(Razi et al. 2012). Sensitivity studies performed by evaluating different combinations of the literature 

models for the interfacial area, mass transfer coefficients and holdup show that the model selection has 

strong impact especially when the operating range is 50-85% CO2 capture. (Cormos and Gaspar, 2012; 

Kvamsdal and Hillestad, 2012; Razi et al., 2014). However, most of the correlations available in the open 

literature for mass transfer coefficients and interfacial area were neither developed for nor tested on the 

packing-types that have been recently developed. Furthermore, they were not developed specifically for the 

MEA-H2O-CO2 system. Although it is common practice to  apply the literature models for the mass transfer 

directly to the MEA system without any adjustments (Tobiesen et al., 2007; Zhang et al., 2009; Dugas,  

2009; Faramarzi et al., 2010; Tonnies et al., 2011; Khan et al., 2011; Cormos and Gaspar, 2012; Simon et 

al., 2011; Kvamsdal and Hillestad, 2012; Saimport et al., 2013; Jayarathna et al., 2013; Afkhamipour and  
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Mofarahi, 2013; Kale et al., 2013, Razi et al., 2014; Zhang and Chen 2013; Afkhamipour and  Mofarahi, 

2014; von Harbou et al., 2014), the model and the parameters are likely to be sub-optimal. A pioneering 

work on mass transfer phenomena for recently developed packing-types has been presented by Tsai (2010) 

by studying various flow regimes and operating conditions, but for a H2O-NaOH-CO2 system.   

For solvent-based CO2 capture systems, it is difficult to separate the effects of mass transfer and chemical 

reactions since they take place simultaneously. Therefore, the reaction model needs to be considered as well 

while developing the mass transfer model and estimating its parameters. In the open literature, these models 

are obtained and their parameters are estimated one by one, i.e. by following a sequential approach. In this 

approach, typically, the diffusivity model is developed assuming no reaction and by using correlations such 

as the Stokes-Einstein relation. This diffusivity model is then applied while developing the models for mass 

transfer coefficients and reaction kinetics by using the experimental data from the wetted wall column 

(WWC)  (Simon et al. 2011;  Dugas 2009;  Plaza 2011). Finally, an interfacial area model is developed for 

a given packing based on the experimental data from the absorbers/regenerators. Another approach is to 

obtain the mass transfer coefficient model by using the experimental data from a nonreactive system in the 

packed tower. Then data are collected for the actual, reactive system and are used to develop the interfacial 

area model assuming that the mass transfer coefficient models are still accurate. There are two issues with 

this traditional approach. First of all, it is implicitly assumed that the diffusivity and mass transfer 

coefficient models obtained from a different equipment type such as the WWC column experiments or from 

the non-reactive system would still be valid for the experiments with the reactive system in a given packing. 

However, the hydrodynamics, liquid and gas velocities, loading of the solvent and operating temperatures 

can be very different between the WWC and the packing operation. Considerable differences can exist 

between the reactive and non-reactive flows in terms of density, viscosity, surface tension, etc. that can 

affect the wettability and flow characteristics of the fluids.  Furthermore, mass transfer for electrolyte 

systems are affected by the ionic species present in the solution, ion-molecule interactions, ion mobility, 

etc.  Therefore, the errors and uncertainties in the models and their parameters obtained at one step gets 

propagated to the next step.  The second issue is that instead of using the full-blown rate-based model, most 

researchers have used a simple model for the WWC using the enhancement factor approach so that the 

parameters for the kinetic and mass transfer coefficient models can be easily estimated (Dang and Rochelle 

2003, Puxty et al. 2010, Darde et al. 2011). Recently, a few researchers have considered the rigorous rate-

based model while analyzing the WWC experiments (Frailie 2014, Li 2015, Sherman 2016), albeit, 

following a sequential approach. Another alternative is to develop a model of the volumetric mass transfer 

coefficient, where the mass transfer coefficients are multiplied by the interfacial area. While the model of 

the volumetric mass transfer coefficients can be obtained directly using the data from the packing 
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experiments (Piche et al. 2001 and 2002), the main difficulty with this approach is that the mass transfer 

coefficients and interfacial area become indistinguishable.   

In this paper an approach to the development of an integrated mass transfer model is proposed where the 

model selection and parameter estimation for diffusivity, interfacial area, liquid- and gas-side mass transfer 

coefficients, and the kinetic model are done simultaneously using the data from the WWCs along with the 

data from the packed towers for the MEA-H2O-CO2 system. Existing commercial process simulation 

software such as Aspen Plus is inadequate for parameter estimation of such an integrated model due to the 

segregation of these models in such software. Diffusivity belongs to the transports model package; reactions 

belong to a separate callable class while the hydraulics and mass transfer models belong to the tower model. 

Furthermore, large number of WWC experiments and tower experiments should be considered 

simultaneously for parameter estimation of the integrated model. This large-scale optimization problem is 

computationally expensive and can be difficult to solve in many commercial software. An external 

optimization framework, named FOQUS (Miller et al. 2015), that can read from and write to Aspen Plus 

models has been developed as part of CCSI and has been utilized in this work for developing the integrated 

model.  

 

Hydraulic Models 

Hydraulic models mainly comprise of the pressure drop model and hold up model in addition to models 

developed for predicting flooding and weeping. An accurate model for the pressure drop is important for 

calculating the fluid flowrates particularly that of the gas phase, especially during dynamic simulations, 

because of the pressure-driven flow across the columns. Hold up in the packing affects the extent of 

reaction. In addition, due to close coupling between holdup and pressure drop, as will be explained in more 

details later, it is important to have accurate models for both, especially for transient simulation when both 

of these variables can significantly change leading to undesired tower operation such as flooding. Hold up 

also directly affects the rate of change in the transport variables such as the temperature and concentration. 

Similar to the mass transfer model, most of the correlations available in the open literature for column 

hydraulics were neither developed for nor tested on the packing-types that have been recently developed. 

It should be noted that significant advances have been made in recent commercial packings for improving 

their hydraulic performance by reducing the pressure drop and increasing the operational regime without 

flooding or weeping. Similar to the mass transfer model, while it is common practice to  apply the literature 

models for column hydraulics directly to the MEA system without any adjustments (Tobiesen et al., 2007; 

Kvamsdal and Hillestad, 2012; Afkhamipour and  Mofarahi, 2014; von Harbou et al., 2014), the hydraulic 



5 
 

model and its parameters are likely to be sub-optimal. Tsai (2010) has presented their work on hydraulic 

models for recently developed packing-types by studying various flow regimes and operating conditions, 

but for a H2O-NaOH-CO2 system.   

  Correlations developed for air-water systems are typically applied to the hydraulic modeling of the MEA-

H2O-CO2 systems (Kvamsdal et al., 2008; Kvamsdal and Hillestad, 2012; Cormos and Gaspar, 2012; 

Jayarathna et al., 2013). Stichlmair et al. (1989) and Billet and Schultes (1993) proposed pressure drop and 

holdup models that can be applied to both random and structured packings from the loading region up to 

the flooding point. Billet and Schultes (1999) later improved and expanded their models by considering a 

larger database.  Rocha et al. (1993) proposed a correlation for pressure drop and holdup in the loading 

region of a structured packing. Other notable works in this area are due to Bravo et al. (1985), Bravo et al. 

(1986) and Fair and Bravo (1990). It is important to note that these models utilize packing-specific 

parameters to address the effect of geometry on the pressure drop and holdup and, therefore, the existence 

of experimental data for a given packing-type is critical for development of these hydraulic models. 

Appropriate parameters for a number of recently developed packings with improved mass transfer rate and 

hydraulics performance are not available in the open literature.  In this work, updated parameters for the 

hydraulics of one of the newer packing types have been estimated. 

 

Uncertainty Quantification 

Uncertainty in models and their parameters is unavoidable and therefore must be quantified for predictive 

models. To the best of our knowledge, there is no work in the existing literature on uncertainty 

quantification (UQ) of the mass transfer and hydraulic models for the solvent-based CO2 capture system. 

In the existing literature, a systematic approach to UQ of not only the mass transfer and hydraulic models, 

but of process models, in general, is rare. Uncertainty in model parameters has been evaluated by a few 

authors through perturbation method (Mathias and Gilmartin, 2014; Mathias, 2014) or Monte Carlo analysis 

(Whiting, 1996; Gel et al., 2014; Lane et al., 2014). A rigorous approach to UQ of the thermodynamic 

models by using the fully Bayesian approach has been reported by some authors (Mebane et al., 2013; 

Weber et al., 2006; Sarkar et al., 2012).  

Uncertainty quantification of density, surface tension and viscosity models using a Bayesian approach has 

been reported by Morgan et al. (2015). More recently, Morgan et al. have presented a Bayesian inference 

procedure for UQ of the thermodynamic model of a MEA-H2O-CO2 system where the VLE, enthalpy and 

chemistry models were considered together (Morgan et al., 2017). One significant difference in the UQ of 

the mass transfer and hydraulic models in comparison to the UQ of the thermodynamic and transport models 
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is the consideration of the tower model. Therefore, the input space spanned by the prior belief of the 

parametric uncertainties and the space of operating conditions must be propagated through the complicated 

and computationally demanding rate-based tower model for Bayesian UQ of the parameter space. This 

leads to challenging computational issues that are undertaken in this research. 

 

Model Validation  

In the existing literature, typically, the range of validation is usually narrow, around 90-100% CO2 capture, 

(Faramarzi et al. 2010, Tonnies et al. 2011, Khan et al. 2011, Simon et al. 2011, Afkhamipour and  Mofarahi 

2013, Kale et al. 2013, Razi et al. 2013, Zhang and Chen 2013, Afkhamipour and  Mofarahi 2014). 

Validation for lower capture rates, such as 50-85%, is rather limited in literature and are typically limited 

to only a few data points. Higher errors in model predictions have been reported for lower capture in 

comparison to the cases when CO2 capture is more than 90% (Tobiesen et al. 2007, Zhang et al. 2009, 

Dugas et al. 2009, Kvamsdal and Hillestad 2012, Saimport et al. 2013, Jayarathna et al. 2013, von Harbou 

et al. 2014).   

Currently, most of the models available in the open literature for solvent-based CO2 capture systems are 

steady-state and validated with a narrow set of operating conditions. Plaza (2011), Dugas et al. (2008) and 

Tobiesen et al. (2007) developed steady-state models for the solvent-based CO2 capture systems, however, 

the experimental data considered in these studies for model validation were limited and did not include 

comparison of all key variables. 

Tobiesen et al. (2007) compared results from the commercially available tools and models with the pilot 

plant data. Very little variation in the CO2 captured was observed in the pilot plant data of Dugas et al. 

(2008). The CO2 content of the flue gas was not varied in the work of Plaza (2011). Furthermore, most of 

the authors have collected data using synthetic flue gas, rather than the flue gas from actual power plant 

that contains species other than CO2 and N2. In addition, sizes of most of the pilot plants from which data 

have been presented in the literature are rather small in comparison to what would be expected at the 

commercial scale. 

 

1.2. Dynamic model development 

Dynamic models for the MEA-based CO2 capture process are not as common in the literature as steady-

state models. A thorough review of the dynamic models in this area has been presented by Bui et al. (2014) 
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Biliyok et al. ( 2012) validated a gPROMS model using the data from the SRP pilot plant in Austin, TX. 

The dynamic CO2SIM model has been validated by using the data from the Brindisi pilot-plant ( Flø  et al., 

2014) and the Gløshaugen pilot-plant ( Flø et al., 2015). 

 (Kvamsdal, Chikukwa, Hillestad, Zakeri, & Einbu, 2011) is an example of a collection of previous works 

from the authors, with the full PCCC model being an update to a singular absorber model previously 

discussed (Kvamsdal, Jakobsen, & Hoff, 2009). This gPROMS/Matlab model was validated with dynamic 

data from the VOCC pilot-plant operated by NTNU and SINTEF. This same data set has been used to 

validate the CO2SIM model (Tobiesen et al., 2012).  

Harun et al. (2012) developed a dynamic model of the Pickle pilot-plant at UT, Austin in gPROMS®. The 

model was used to simulate a MEA-Campaign described by Dugas (2006). The model was used to predict 

the steady-state lean loading and capture efficiency and to study the transient response due to single-step 

changes and due to the sinusoidal change in the flue gas flowrate. But the transient model was not validated 

with any experimental data.   

The same authors later presented a plant-wide model of a CO2 capture process and evaluated three control 

structures (Nittaya et al., 2014a). Disturbance rejection characteristics of these controllers due to the flue 

gas flowrates were studied. The model was then scaled-up to a 750 MW capacity power plant (Nittaya et 

al. 2014b). Here authors studied the effect of the CO2 concentration in the flue gas. The authors also 

presented a study on CO2 capture scheduling. 

An Aspen Plus Dynamics® model of a MEA-based CO2 capture process has been presented by Lin et al. ( 

2011) by developing an equilibrium-stage model for the towers. The authors observed, similar to others, 

that there is strong impact of the water make-up, solvent flowrate and lean loading on CO2 capture. Their 

control scheme could successfully reject disturbances due to change in the flue gas flowrate while avoiding 

column flooding. The authors later developed a model of a 580 MW power plant (Lin et al. 2012) integrated 

with CO2 capture. The extent of CO2 capture range was varied between 50- 90%. The manipulated variable 

was either the lean solvent flowrate at constant lean loading, or the lean loading at a constant solvent 

flowrate. While both works rely heavily on an accurate model of the column hydraulics for flooding 

prediction, no discussion on the hydraulics model could be found. 

Walters et al. have developed a dynamic model in MATLAB® for CO2 capture (Walters et al., 2016). The 

steady-state model was validated with the data from Frailie (2014). The dynamic model was validated using 

the data from the Separation Research Program  (SRP) pilot-plant at the University of Texas at Austin for 

a single step change. The input signals were filtered prior to their implementation in the model and relatively 
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satisfactory fit to the data was obtained. However, dynamic data reconciliation (DDR) was not performed 

to account for errors in mass and energy balances in the collected data. The model was later scaled up to a 

CO2 capture unit as part of a 550 MW power-plant (Walters et al., 2016b) and used for plant-wide control 

studies. The authors evaluated open loop responses to single step changes in the flue gas CO2 concentration, 

the steam flowrate to the reboiler and flue gas flowrate. Control system performance was evaluated by 

considering disturbances in the flue gas flowrates among others (Walters et al.,  2016a) , but the open loop 

and closed-loop studies were limited to only single step changes in one variable at a time. 

Zhang et al. have developed a dynamic model in Aspen plus®
 dynamic model using a steady-state Aspen 

plus® model as a starting point (Zhang et al., 2016). As rate-based equations are not supported in Aspen 

plus dynamics, their approach relied on a methodology based on the Murphree efficiencies to obtain an 

accurate 550 MW PCCC equilibrium steady-state model, that can be exported to the dynamic platform. The 

model was used for several control studies of PID and LMPC strategies, including an extensive set of 

scenarios that mimic the typical disturbances observed in the process. The same authors later (Zhang et a., 

2018) modified the dynamic model by incorporating additional variables in the efficiency model. The 

improved dynamic model was then utilized to design Nonlinear Model Predictive Control (NMPC) and 𝐻∞ 

control strategies, while evaluating the effects of uncertainty due to measurement noise and model 

discrepancy.  

Following observations are made from the review of the existing literature on dynamic models: 

• Validation of the dynamic models with the data from experimental systems, especially from pilot 

plants, is seriously lacking. In few cases, where the models have been validated, they have been 

done using data from a single step change. Data from single step changes cannot maintain 

persistence of excitation for such a high order system. More discussion on this aspect is provided 

later. 

• Typically, step changes in only one variable is provided at a time. Such studies do not necessarily 

capture the confounding effects when multiple variables change simultaneously, which is realistic.  

• Data from experimental systems especially from larger scale systems such as pilot plants would 

invariably have noisy data, data that do not satisfy mass and energy balances and possibly missing 

measurements of some crucial variables. How to treat the data from such real-life systems for model 

validation is not addressed in the open literature.  

It was desired to address the issues mentioned above. The dynamic test runs are conducted at the NCCC. 

Transient responses of the following variables are investigated: 
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• Lean solvent flowrate 

• Flue gas flowrate 

• Reboiler steam flowrate 

Data collected during the experiments include the expansive measurements available from the highly-

instrumented NCCC. The lean and rich solvent compositions (both CO2 loading and MEA concentration) 

were measured both online and manually through titration and gas chromatography.  

From these measurements, it was observed that the data have significant mass balance errors. Considerable 

discrepancy was observed between CO2 capture estimated from the liquid side with that estimated from the 

gas side. Furthermore, estimates of CO2 capture from the absorber side did not agree well with that from 

the stripper side even when due consideration of the holdup and transport lag was made. Under these 

circumstances, solving a DDR problem becomes necessary (Montañés et al., 2017). This step becomes 

critical for validation of dynamic models and estimation of model parameters (Mobed et al., 2014). 

Therefore, a DDR methodology is developed applied tin the Aspen Plus Dynamics framework. 

The dynamic model is used to perform two case studies. In the first study, transient response due to the 

change in the solvent flow rate, gas flowrate, and steam flowrates are studied. The study provides valuable 

information about the gain and time constant of the process and can provide valuable insight into operational 

strategies. 

The second study in this work evaluates the effect of variable CO2 capture rate, that is desired from an 

upper-level scheduler. The scheduler maximizes the power plant profit by considering short term and long 

term impacts due to load demand, price of electricity, and CO2 release penalty/award over a base period 

(Bankole et al., 2018). The objective of this study is to evaluate the thermal efficiency of a large pilot-plant 

under variable capture scenario. 

 

1.3. Dynamic Design of Experiments (DoE)  

Current literature lacks work on systematic design of experiments (DoE) for CO2 capture plants even though 

considerable amount of data do exist in the literature for MEA-based CO2 capture systems (Llano-Restrepo 

& Araujo-Lopez, 2015).  

While steady-state DoE for non-CO2 capture systems has been widely available in the Literature (Fedorov, 

1972; Jiju, 2003; Mead, 1988), there is not much work on the dynamic DoE (Georgakis, 2013) especially 
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for pilot plants. However, one can draw from the rich literature in the area of system identification to 

develop dynamic DoE. The typical approach for identifying non-linear processes is to determine the 

minimum number of experimental runs for estimating model parameters with reduced uncertainty, under a 

cost or time constraint (Körkel, et al., 2004).   

One of the methods applied for system identification is the utilization of a series of step changes signal to 

keep each variable being studied constantly excited, with the goal of capturing the process non-linear 

effects. This signal is called Pseudo-random binary, and is often employed in control studies.   Alternatively, 

a sinusoid signal can also be used to keep the process excited, but without relying on rapid changes of the 

experimental variables being studied. Both of these methods have been applied in the past to linear systems 

as a demonstration (Gaikwad & Rivera, 1996) and to other system identification applications. 

One of the methods applied for system identification is to design a series of step changes so that the 

underlying process remains persistently excited. A pseudo-random binary sequence (PRBS) is often 

employed due to its practicality in obtaining a sufficient spectral content (Gaikwad & Rivera, 1996). Due 

to the long sequence size, the PRBS signal can be time-consuming and prohibitive for large-order systems. 

A multisine signal can be designed that has similar characteristics as the PRBS yet can be implemented 

within realistic time for higher-order systems. A Schroeder-phased input signal is such a multisine signal 

with the desired characteristics (Rivera, et al., 1993). Both PRBS and Schroeder-phased input signals have 

been applied to the linear (Rivera, et al., 1994) and nonlinear systems (Rivera, et al., 1997). These input 

signals have been designed also for case studies including distillation towers (Gaikwad & Rivera, 1996; 

Mart, et al., 2015), but with no implementation in an actual chemical plant has been reported. 

A nonlinear pH neutralization process was  identified by a PRBS signal (Lara & Milani, 2003), where the 

data for system identification was obtained from a Simulink® process model.  

For real-life implementation of the inputs signals, the designed signal should be plant-friendly. Plant-

friendliness of the input signals ensures that the designed signals do not lead to unacceptable change in the  

products quality and controller set-points that cause “wear and tear” on the process equipment (Rivera, et 

al., 2009). Furthermore, input signals should not lead to unsafe operation of the plant. For designing plant-

friendly input signals, one needs to also consider crest factor in addition to the persistence of excitation.  If 

these properties are not considered, it can lead to signals that are practically unacceptable due to the signal 

variability, frequency content (harsh changes), amplitude (designed values cannot be achieved at 

implementation) and waveform (some forms of signals may not be integrated in a given control system of 

a plant) (Hjalmarsson, 2014). One can ensure plant-friendliness to minimize the experimental cost by 

developing a suitable cost model (Narasimhan & Bombois, 2012). This design philosophy has been applied 
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to both PRBS and a multisine signals for the identification of a process represented by a finite impulse 

response model (Kumar & Narasimhan, 2013).  

In this work, experiments for the National Carbon Capture Center are designed using both the Schroeder 

phased input and PRBS methodologies. The generated signals are focused on key input variables of the 

process: 

• Flue gas flowrate 

• Flue gas CO2 concentration 

• Lean solvent flowrate 

• Steam flowrate 

The generated signals are designed for plant-friendliness and persistence of excitation by leveraging the 

dynamic model developed in this work. 

1.4. Scope of the research 

The main contributions of this work are summarized below:  

• A novel approach to the integrated model development and parameter estimation is proposed. The 

approach is used for simultaneous parameter estimation of interfacial area models, mass transfer 

coefficient models, and kinetic models by considering the experimental data from wetted wall 

column and packed column simultaneously.  

• Hydraulic models are developed for MellapakPlusTM 252Y, a new promising packing-type with 

very little investigation on its hydraulic properties in the literature. 

• Rigorous uncertainty quantification of the mass transfer models as well as the hydraulic models is 

performed by considering a fully Bayesian approach.  

• A dynamic model of a large-scale pilot plant is developed in Aspen Plus®  Dynamics, where a 

modified Murphree efficiency approach and a rigorous hydraulic model, developed for the specific 

packing-type used in NCCC, are implemented 

• A quasi-PRBS signal was developed and implemented in the NCCC pilot plant. The raw data were 

filtered and processed through a DDR framework for dynamic model validation. 
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• A dynamic DoE was designed and implemented for the first time in a pilot plant by designing both 

Schroeder-phased input and PRBS signals. These signals not only ensured persistence of excitation, 

but also plant-friendliness. 

• A dynamic data reconciliation and parameter estimation framework was developed where the 

dynamic data collected from the dynamic DoE were utilized. The framework also considers 

implementation error in the input signals.  

• A number of open-loop and closed-loop transient studies are conducted by using the dynamic 

model developed in this work. These studies provide valuable information on the operation of CO2 

capture units integrated with load-following power plants and when they are operated under 

variable capture rates.  

In addition, the integrated model development and parameter estimation methodology was successfully 

applied to a novel solvent system being developed by an industrial collaborator by using the data from the  

laboratory scale and bench-scale system. The process model was validated against data from both pilot-

plant scale (NCCC) and bench-scale systems. Several economic studies were performed for scaling the 

process to a 550 MW power plant scale. Due to the proprietary nature of the project detailed information is 

not included in this dissertation, but limited information approved by the industrial partner is provided in 

appendix B. 
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Chapter  2. Hydraulic and Mass Transfer Models 

  

The methodologies developed in this work are generic and can be readily applied to any solvent system 

operating on any packing type. However, the hydraulic and mass transfer performances strongly depend on 

the packing type as well as the solvent system. Therefore, optimal models and their parameters can be 

different depending on the packing type and the solvent. In this work, it was desired that the models be 

tested using pilot plant data collected from the National Carbon Capture Center (NCCC) in Wilsonville, 

AL. This pilot plant uses MellapakPlusTM 252Y, one of the newer packings from Sulzer (Sulzer Chemtech 

2015), in both the absorber and regenerator. It can be noted that there are very few studies in the open 

literature on this packing. This packing offers low pressure drop, can operate in a wide range of operating 

conditions without flooding or channeling, and offers a high interfacial area resulting in high mass transfer 

efficiency (Sulzer Chemtech 2015). Therefore, the experimental data used in this work are from 

MellapakPlusTM 252Y or packings that are structurally similar to it. The final FORTRAN code of each one 

of the sub-models presented in this chapter, and implemented in Aspen plus®, are presented in Appendix 

A. 

2. 1. Models for Column Hydraulics  

Table 2.1 presents three leading hydraulic models that have been widely used for calculating pressure drop 

and holdup. Equations 2.1-5 represent the hydraulic models due to Rocha et al. (1993). This model was 

developed as an update of the previous hydraulic models (Bravo et al. (1985), Bravo et al. (1986), Fair and 

Bravo (1990)).  Equations 2.6-14 represent the models developed by Billet and Schultes (1999) while 

Equations 2.15-17 are due to Stichlmair (1989). These models typically consider holdup and pressure drop 

to be dependent on each other. On the other hand, Equation 2.18 represents a model of the holdup which is 

independent of the pressure drop. It is observed in  the work of Tsai (2010) that the accuracy of Equation 

2.18 is higher than the models for holdup that are coupled with the pressure drop model. This model showed 

an average error of 12% for the entire database considered by Tsai (2010), but the results for the 

MellapakPlusTM 252Y had an error of above 20% for most of the cases. 

The pressure drop, ΔP , can be calculated using Equations 2.1 and 2.2, as a function of the gas density 𝜌𝐺, 

he packing channel size S, the packing void fraction ε, the packing corrugation angle α, the gas velocity 𝑢𝐺 

and the gas viscosity 𝜇𝐺.   

The holdup calculation is presented in Equations 2.3-5, in which 𝜌𝐿 is the liquid density, 𝜇𝐿 is the liquid 

viscosity, 𝑢𝐿 is the liquid velocity. It is important to note that the holdup model is tied to the pressure drop 
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calculation by the effective gravity 𝑔𝑒𝑓𝑓 and the correction factor 𝐹𝑇, which is calculated as a function of 

the dimensionless numbers of the liquid phase: 𝑅𝑒𝐿, 𝑊𝑒𝐿 and 𝐹𝑟𝐿. 

In the hydraulics correlation  given by the Equations 2.6-13 (Billet and Schultes, 1999), the pressure drop, 

ΔP/z, is a function of the parameter 𝐶𝑃 , the gas phase Reynolds number,  𝑅𝑒𝐺, the void fraction of the 

packing, ε, the column holdup, ℎ𝐿 , the holdup bellow the loading point, ℎ𝐿,𝑆 , the Froude number, 𝐹𝑟𝐿 , the 

specific packing area, a, and the gas capacity factor, 𝐹0 . The parameter K is a lumped term that is a function 

of the packing void fraction, ε, the packing specific diameter, 𝑑𝑃,  and the column diameter, 𝑑𝑆. The holdup, 

ℎ𝐿, is a function of liquid viscosity, 𝜇𝐿, the packing specific area, a, the gravity acceleration, g, the liquid 

velocity, 𝑢𝐿, the liquid density, 𝜌𝐿 . Above the loading point, the holdup becomes also a function of the gas 

velocity, 𝑢𝐺, the gas velocity in the flooding point, 𝑢𝐺,𝐹𝐿, the water viscosity,  𝜇𝑤𝑎𝑡𝑒𝑟, the water density, 

𝜌𝑤𝑎𝑡𝑒𝑟, and the parameter 𝐶𝐻. 

Pressure drop and holdup of a packing depend on the flooding point of a given packing and therefore can 

restrict applicability of a given model. In the work of Tsai (2010), a value of 1025 Pa/m for the pressure 

drop has been suggested at the flooding point. The model developed by Billet and Schultes (1999) explicitly 

takes care of this aspect. In this model, under the loading point, which is defined as the flow regime in 

which the liquid flow does not significantly decrease the packing void fraction available for the gas flow, 

the holdup model is given by Equation (2.8).  As the liquid flowrate is increased, the towers goes through 

a transition region (𝑢𝐺,𝑆<𝑢𝐺<𝑢𝐺,𝐹𝐿) before it eventually floods (𝑢𝐺>𝑢𝐺,𝐹𝐿). The model provides two 

correlations, one for the pre-loading region (𝑢𝐺 < 𝑢𝐺𝑆) and another for the loading region (𝑢𝐺𝑆 < 𝑢𝐺). 

 

Table 2.1 - Summary of hydraulic models 

Authors Correlation Eq. No. 

Rocha (1993) ∆𝑃𝑑𝑟𝑦
𝑍

=
0.177 𝜌𝐺
𝑆𝜀2(𝑠𝑖𝑛 𝛼)2

𝑢𝐺
2 +

88.774 𝜇𝐺
𝑆2𝜀 𝑠𝑖𝑛 𝛼

𝑢𝐺  (2.1) 

∆𝑃

𝑍
=
∆𝑃𝑑𝑟𝑦
𝑍

(
1

1 − 𝐶1ℎ𝐿
)
5

 (2.2) 

ℎ𝐿 = (4 
𝐹𝑡
𝑆
)

2
3⁄

(
3𝜇𝐿𝑢𝐿

𝜌𝐿(𝑠𝑖𝑛𝛼)𝜀𝑔𝑒𝑓𝑓
)

1
3⁄

 (2.3) 
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𝑔𝑒𝑓𝑓 = 𝑔 [(
𝜌𝐿 − 𝜌𝐺
𝜌𝐿

)(1 −
∆𝑃

𝑍⁄

∆𝑃
𝑍⁄ 𝑓𝑙𝑜𝑜𝑑

)] (2.4) 

𝐹𝑡 = 29.12(𝑊𝑒 𝐹𝑟)𝐿
0.15

𝑆0.359

𝑅𝑒𝐿
0.2𝜀0.6(1 − 0.93 𝑐𝑜𝑠 𝛾)(𝑠𝑖𝑛𝛼)0.3

 (2.5) 

Billet and Schultes 

(1999) 

∆𝑃

𝑍
= 𝐶𝑃 (

64

𝑅𝑒𝐺
+

1.8

𝑅𝑒𝐺
0.08)(

𝜀 − ℎ𝐿
𝜀

)
1.5

(
ℎ𝐿
ℎ𝐿,𝑆

)𝑒𝑥𝑝 (13300
𝐹𝑟𝐿
𝑎1.5

)
𝑎

(𝜀 − ℎ𝐿)
3

𝐹𝐺
2

2

1

𝐾
 (2.6) 

1

𝐾
= 1 +

2𝑑𝑃
3(1 − 𝜀)𝑑𝑆

 (2.7) 

𝑢𝑔 < 𝑢𝑔𝑠 (bellow loading point) 

ℎ𝐿 = ℎ𝐿,𝑆 = (
12𝜇𝐿𝑢𝐿𝑎

2

𝑔𝜌𝐿
)

1
3⁄

 

(2.8) 

𝑢𝑔 > 𝑢𝑔𝑠 (above loading point) 

ℎ𝐿 = ℎ𝐿,𝑆 + (ℎ𝐿,𝐹𝐿 − ℎ𝐿,𝑆)(
𝑢𝑔

𝑢𝑔,𝐹𝐿
)

13

 

(2.9) 

ℎ𝐿,𝐹𝐿 = 2.2ℎ𝐿,𝑆 (
𝜇𝐿𝜌𝑤𝑎𝑡𝑒𝑟

2

𝜇𝑤𝑎𝑡𝑒𝑟𝜌𝐿
2)

0.05

 (2.10) 

ℎ𝐿,𝑆 = (
12𝜇𝐿𝑢𝐿𝑎

2

𝑔𝜌𝐿
)

1
3⁄

(
𝑎ℎ
𝑎
)
2
3⁄

 (2.11) 

𝑅𝑒𝐿 < 5:       
𝑎ℎ
𝑎
= 𝐶ℎ (

𝑢𝐿𝜌𝐿
𝜇𝐿𝑎

)
0.15

(
𝑢𝐿
2𝑎

𝑔
)

0.1

 (2.12) 

𝑅𝑒𝐿 ≥ 5:      
𝑎ℎ
𝑎
= 𝐶ℎ0.85(

𝑢𝐿𝜌𝐿
𝜇𝐿𝑎

)
0.25

(
𝑢𝐿
2𝑎

𝑔
)

0.1

 (2.13) 

∆𝑃𝑑𝑟𝑦
𝑍

= 𝐶𝑃 (
64

𝑅𝑒𝐺
+

1.8

𝑅𝑒𝐺
0.08)

𝑎

𝜀3
𝐹𝐺
2

2

1

𝐾
 (2.14) 

Stichlmair (1989) 
∆𝑃

𝑍
= 0.75

1 − 𝜀

𝜀4.65
𝑓0𝜌𝐺

𝑢𝐺
2

𝑑𝑃
[
1 − 𝜀 (1 −

ℎ𝐿
𝜀
)

1 − 𝜀
]

2+𝐶
3

(1 −
ℎ𝐿
𝜀
)
−4.65

 (2.15) 

 

𝐶 =

−
𝐶1
𝑅𝑒𝐺

−
𝐶2

2𝑅𝑒𝐺
0.5

𝐶1
𝑅𝑒𝐺

+
𝐶2
𝑅𝑒𝐺

0.5 + 𝐶3

 (2.16) 
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ℎ𝐿 = 0.555𝑢𝐺
2
𝑎𝑝
𝑔𝜀4.65

[1 + 20(
∆𝑃

𝑍𝜌𝐿𝑔
)
2

] (2.17) 

Tsai (2010) ℎ𝐿 = 𝐻𝐿1 [
1

𝑆2𝑔
2
3⁄
(
𝜇𝐿
𝜌𝐿
)

1
3⁄ 𝐴 𝑢𝐿
𝐿𝑃
]

𝐻𝐿2

 (2.18) 

 

Holdup model selection  

For parameter regression and model evaluation, the holdup data reported by Tsai (2010) for MellapakplusTM 

252Y were used. Experimental conditions in the work of Tsai (2010) span gas and liquid flowrates from 

under the loading region up to the flooding point for low viscosity (1 mPa.s) and high viscosity systems (10 

mPa.s).  A nonlinear least squares method was used for regression of the packing-specific parameters in 

Matlab. The optimization problem was solved considering an objective function weighted/normalized by 

the experimental data variance. In this work, parameters for both holdup and pressure drop models were 

simultaneously regressed for the Stichlmair model (Stichlmair, 1989) and  Rocha model, (Rocha, 1993) due 

to their interdependence while for the Billet and Schultes model (Billet and Schultes, 1999), the parameters 

for the holdup model were regressed first followed by regression of the parameters of the pressure drop 

model. Comparisons of the regressed models are presented in Figure 2.1 and Figure 2.2 for low and high 

viscosity systems, respectively. The root mean squared error for each model for the entire data is presented 

in Table 2.2. It should be noted that even though Tsai (2010) did consider the same data that are considered 

here while regressing the same parameters, the model error could be reduced further as observed in Figure 

2.3 and Figure 2.4 and in Table 2.2.  
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Figure 2.1 - Comparison of various holdup models for MellapakPlusTM 252Y operating with a low 

viscosity liquid (1 mPa. s) at FV=1.02 Pa0.5 

 

 

 

Figure 2.2 - Comparison of various holdup models for MellapakPlusTM 252Y operating with a 

high viscosity liquid (10 mPa. s) at FV=1.02 Pa0.5 
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Table 2.2 shows that the RMSE for the Billet and Schultes (1999), Stichlmair (1989) and Rocha (1996) 

models has negligible change due to regression when compared to the corresponding unregressed models 

with parameters for MellapakTM 250Y, which has a strong structural similarity to MellapakPlusTM 252Y. 

For both the high viscosity and low viscosity systems, the Rocha (1996) model has large error followed by 

the Billet and Schultes (1999) model. Both the Stichlmair (1989) and Tsai (2010) models have low errors 

while the regressed Tsai (2010) model has the least error for both the low viscosity and high viscosity 

systems and therefore it is selected as the final model.  

 

 

Table 2.2 - Root Mean Squared Error values for the holdup models 

Model RMSE (%𝑣) 

Stichlmair (1989) 0.0138 

Stichlmair (1989) - Regressed 0.0135 

Billet and Schultes (1999) 0.0665 

Billet and Schultes (1999) - Regressed 0.0665 

 Tsai (2010) 0.0095 

Tsai (2010) - Regressed 0.0074 

Rocha (1993) 0.1748 

Rocha (1993) - Regressed 0.1745 

 

Pressure drop model selection and optimization 

Other than the simultaneous regression of the pressure drop and holdup model parameters for the Stichlmair 

model (Stichlmair, 1989) and the Rocha model, (Rocha, 1993), and sequential regression for the Billet and 

Schultes model (Billet and Schultes, 1999), it was desired to evaluate error of the Stichlmair, Rocha and 

Billet and Schultes pressure drop models while using the regressed Tsai model (2010) for holdup. Figure 

2.5 compares experimental data with the model results for pressure drop as a function of the F-factor FG, 
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which is the square root of the product between the gas superficial velocity and its density,  for the low and 

high viscosity systems, respectively. The RMSE values of the investigated models are presented in Table 

2.3. It can be observed from Figure 2.5 and Table 2.3 that when the regressed Tsai model is used for holdup, 

errors of all three pressure drop models get significantly reduced. Furthermore, Table 2.3 shows that while 

the unregressed Rocha (1993) model has the highest and very large error, its error gets significantly reduced 

upon regression, finally yielding much lower error than the regressed Stichlmair model when the regressed 

Tsai model is used as the holdup model for both cases. The final models selected for the MellapakPlusTM 

252Y are the regressed Billet and Schultes (1999) model for pressure drop and the regressed Tsai (2010) 

model for holdup. It is worth mentioning that although this hydraulic model can satisfactorily predict the 

pressure drop, the quality of the prediction deteriorates at higher pressure drop values, or under higher liquid 

and gas flowrates approaching the flooding point. This behavior can be observed in the parity plot of the 

entire data from Tsai (2010), presented in Figure 2.7. 

 

  

 

Figure 2.3 - Comparison of pressure drop models for the low-viscosity case 
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Figure 2.4 - Pressure drop candidate models validation in a high-viscosity case 

 

Table 2.3 - Total root mean squared error values for the pressure drop models 

Correlation RMSE values (Pa) 

Stichlmair (1989) 162.97 

Billet and Schultes (1999) 95.97 

Rocha (1993) 325.58 

Stichlmair (1989) regressed 57.36 

Billet and Schultes (1999) regressed 40.25 

Rocha (1993) regressed 48.48 

Regressed Stichlmair (1989) with modified holdup model 46.26 

Billet and Schultes (1999) regressed with modified holdup model 10.49 

Rocha (1993) regressed with modified holdup model 25.88 
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Figure 2.5 - Parity plot of the regressed Billet and Schultes (1999) with regressed Tsai (2010) holdup 

 

2. 2. Mass transfer and kinetic models 

As mentioned earlier, an integrated mass transfer model is developed here where the model selection and 

parameter estimation for diffusivity, interfacial area, liquid- and gas-side mass transfer coefficients, and 

reaction kinetics are carried out simultaneously using the data from the WWCs and packed towers. 

Mathematically, the key differences of this simultaneous approach to the traditional sequential approach 

are due to the solution to the   optimization problem that are solved. In the traditional approach, assume, 

that two steps of sequential optimization problems are solved as shown below. 

Sequential Optimization Approach (assuming a two stage approach is used): 

First Stage Optimization (Typically applied to a smaller scale apparatus or equipment type such as 

WWC) 

min
𝜃1
(𝑦1 − 𝑦1,𝑚𝑒𝑎𝑠)

′
𝛴−1 (𝑦1 − 𝑦1,𝑚𝑒𝑎𝑠) (2.19) 

𝑠. 𝑡.                                                                    

𝑓1(𝜂1 ,  𝑢,  𝜃1) = 0  

𝑔1(𝜂1,  𝑢, 𝜃1) ≤ 0  
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𝑦1 = ℎ1(𝜂1,  𝑢)  

𝑢𝐿1 ≤ 𝑢 ≤ 𝑢𝑈1  

𝑦𝐿1 ≤ 𝑦1 ≤ 𝑦1  

 

Second Stage Optimization (Typically applied to a larger scale apparatus or equipment type such as 

a packed tower) 

min
𝜃2
(𝑦2 − 𝑦2,𝑚𝑒𝑎𝑠)

′
𝛴−1 (𝑦2 − 𝑦2,𝑚𝑒𝑎𝑠) (2.20) 

𝑠. 𝑡.                                                                    

𝑓2(𝜂2,  𝑢,  𝜃1, 𝜃2) = 0  

𝑔2(𝜂2,  𝑢, 𝜃1, 𝜃2) ≤ 0  

𝑦2 = ℎ2(𝜂2,  𝑢)  

𝑢𝐿2 ≤ 𝑢 ≤ 𝑢𝑈2  

𝑦𝐿2 ≤ 𝑦2 ≤ 𝑦𝑈2   

 

Simultaneous Optimization Approach (apparatus/equipment of all types spanning different scales): 

min
𝜃1 ,𝜃2

(𝑦1 − 𝑦1,𝑚𝑒𝑎𝑠)
′
𝛴−1 (𝑦1 − 𝑦1,𝑚𝑒𝑎𝑠) + (𝑦2 − 𝑦2,𝑚𝑒𝑎𝑠)

′
𝛴−1 (𝑦2 − 𝑦2,𝑚𝑒𝑎𝑠) (2.21) 

𝑠. 𝑡.                                                                    

𝑓1(𝜂1 ,  𝑢,  𝜃1) = 0  

𝑓2(𝜂2,  𝑢,  𝜃1, 𝜃2) = 0  

𝑔1(𝜂1,  𝑢, 𝜃1) ≤ 0  

𝑔2(𝜂2,  𝑢, 𝜃1, 𝜃2) ≤ 0  



23 
 

𝑦1 = ℎ1(𝜂1,  𝑢)  

𝑦2 = ℎ2(𝜂2,  𝑢)  

𝑚𝑖𝑛(𝑢𝐿1, 𝑢𝐿2) ≤ 𝑢 ≤ 𝑚𝑎𝑥(𝑢𝑈1, 𝑢𝑈2)  

𝑦𝐿1 ≤ 𝑦1 ≤ 𝑦𝑈1  

𝑦𝐿2 ≤ 𝑦2 ≤ 𝑦𝑈2   

 

In Equations (19-21), 𝑦 represents an arbitrary measured variable bounded between  𝑦𝐿 and 𝑦𝑈 , 𝜂 represent 

process variables, and  𝜃 represents model parameters. Input variables,  𝑢, are bounded between  𝑢𝐿 and 

𝑢𝑈.  

Remarks: 

• If the solutions to the 1st step and 2nd step optimizations of the sequential optimization techniques 

are unique, then the solutions obtained from the simultaneous and sequential optimizations would 

be the same. 

• Total estimation errors can be the same between two approaches, i.e. estimation error from the 1st 

step plus 2nd step of the sequential approach can be the same as the error from the simultaneous 

approach if the same data are used in both the approaches, but parameters can be different. 

Therefore, the models/ parameters from both approaches should be evaluated for their prediction 

capability for new sets of data that have not been ‘seen’ by both approaches.  

• The solutions from the simultaneous approach can be superior to the sequential approach, but 

should not be inferior as information content and the search space in each step of the sequential 

optimization is a subset of those in the simultaneous optimization approach.  

 

First the individual models are described followed by a description of the methodology developed in this 

work. Finally, the results from the integrated mass transfer model are presented. 

2.2.1.  Mass transfer coefficient model 
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Several correlations for calculating mass transfer coefficients exist (Razi et al., 2012). The correlations that 

are evaluated in this work are listed in Table 2.4. Equations 2.22 and 2.23 represent the mass transfer 

coefficients proposed by Bravo et. al (1985) as part of the Separation Research Program in UT-Austin. 

These were later updated in the work of Rocha et al. (1996), represented by Equations 2.24 and 2.25. 

Equations 2.26 and 2.27 represent the model proposed by Billet and Schultes (1999), in which a large data 

base was utilized to regress parameters 𝐶𝐺 and 𝐶𝐿. 

Table 2.4 - Mass transfer coefficients models 

References Correlation  

Bravo et al. (1985) 𝑘𝐺 = 0.0338
𝐷𝐺

𝑑𝑒𝑞
(
𝜌
𝐺
𝑑𝑒𝑞(𝑢𝐿𝑒 + 𝑢𝐺𝑒)

𝜇
𝐺

)

0.8

𝑆𝑐𝐺
0.33 (2.22) 

 𝑘𝐿 = 2√
𝐷𝐿

𝜋𝑆
𝑢𝐿𝑒 (2.23) 

 𝑢𝐿𝑒 =
9 Γ2𝑔

8 𝜌
𝐿
𝜇
𝐿
sin 𝛼

 ;  𝑢𝐺𝑒 =
𝑢𝐺

𝜀 sin 𝛼
  

Rocha et al. (1996) 𝑘𝐺 = 0.054
𝐷𝐺

𝑆
(
𝜌
𝐺
𝑆(𝑢𝐿𝑒 + 𝑢𝐺𝑒)

𝜇
𝐺

)

0.8

𝑆𝑐𝐺
0.33 (2.24) 

 𝑘𝐿 = 2√
0.9𝐷𝐿

𝜋𝑆
𝑢𝐿𝑒 (2.25) 

 𝑢𝐿𝑒 =
𝑢𝐿

𝜀 ℎ𝐿 sin 𝛼
 ;  𝑢𝐺𝑒 =

𝑢𝐺

𝜀(1 − ℎ𝐿) sin 𝛼
  

Billet and Schultes (1999) 𝑘𝐺 = 𝐷𝐺𝐶𝐺 (
𝑎

𝑑𝐻
)
0.5

𝑆𝑐𝐺
0.333 (

𝑢𝐺𝜌𝐺
𝑎𝜇

𝐺

)

0.75

√
1

𝜀 − ℎ𝐿
 (2.26) 

 𝑘𝐿 = 𝐶𝐿 (
𝑔𝜌

𝐿

𝜇
𝐿

)

0.167

(
𝐷𝐿

𝑑𝐻
)
0.5

(
𝑢𝐿

𝑎
)
0.333

 (2.27) 

 

2.2.2. Interfacial area model 
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The effective interfacial area depends on a number of factors including packing geometry and its surface 

properties, physical properties of the system such as the surface tension, and density of the liquid as well 

as the operating conditions such as the liquid velocity. Table 2.5 shows the leading correlations for 

interfacial area that are evaluated in this work. The interfacial area model proposed by Bravo et. al (1985), 

presented in Equation 2.28, is based on the assumption that the packing is entirely wetted during operation. 

Billet and Schultes (1999) proposed a model that is presented in Equation 2.29. Equation 2.30 is due to Tsai 

(2010) and uses dimensionless numbers for the prediction of the wetted area. 

Table 2.5 - Interfacial area models 

Authors Correlation  

Bravo (1985) 𝑎𝑒 = 𝑎𝑝 (2.28) 

Billet and Schultes 

(1999) 
𝑎ℎ = 1.5 (

𝑎𝑝

𝑑ℎ
)
−0.5

(
𝜌𝐿𝑢𝐿𝑑ℎ
𝜇𝐿

)
−0.2

(
𝜌𝐿𝑢𝐿

2𝑑ℎ
𝜎𝐿

)

0.75

(
𝑢𝐿
2

𝑔 𝑑ℎ
)

−0.45

 (2.29) 

Tsai (2010) 𝑎ℎ = 𝐴1 [
𝜌𝐿
𝜎
𝑔
1
3⁄ (
𝑢𝐿𝐴

𝐿𝑃
)

4
3⁄

]

𝐴2

 (2.30) 

 

2.2.3. Diffusivity model 

It is practically impossible to measure diffusivity of CO2 in the MEA-H2O system due to the fast chemical 

reactions.  Typical approach to circumvent this issue is to consider a non-reactive system such as the 

diffusion of CO2 into H2O (Glasscock, 1990; Versteeg et al., 1987; Versteeg et al., 1988) or the diffusion 

of N2O into a MEA-H2O system (Ying and Eimer, 2012). However, as discussed before, diffusivity of CO2 

measured from such non-reactive systems may not be necessarily the same as in the reactive system. Since 

the mass transfer data from the WWCs and packing captures the effect of diffusivity as well, it is desired 

to regress the parameters of the diffusivity model as well in the integrated approach. Equations 2.31 and 

2.32 represent the diffusivity models, where 𝐷𝐶𝑂2𝑜 and 𝐷𝑀𝐸𝐴𝑜 refers to CO2 and MEA diffusivity in water, 

respectively, under reference condition (Plaza, 2011). In this work, only the parameter 𝑛 is regressed.  

𝐷𝐶𝑂2−𝑠𝑙𝑛 =
𝐷𝐶𝑂2𝑜
𝐷𝑀𝐸𝐴𝑜

(
𝜇𝑤𝑎𝑡𝑒𝑟
𝜇𝑠𝑖𝑛

)
0.8

(
𝑇

313.15
)
𝑛

 
        

(2.31) 
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𝐷𝑀𝐸𝐴−𝑠𝑙𝑛 = 𝐷𝑀𝐸𝐴𝑜 (
𝜇𝑤𝑎𝑡𝑒𝑟
𝜇𝑠𝑖𝑛

)
0.8

(
𝑇

313.15
)
𝑛

 
      

(2.32) 

 

2.2.4. Reaction Kinetics 

Reaction kinetics of the MEA-H2O-CO2 system has been studied by several authors (Austgen et al. 1989; 

Versteeg et al. 1996;  Hilliard, 2008; Plaza, 2011). In this work a reduced set of reactions represented by 

Equations 2.33 and 2.34 is considered (Plaza ,2011; Morgan et. al., 2017). Corresponding rate expressions 

are given by Equations 2.35 and 2.36. As discussed in the work of  Morgan et. al. (2017), this particular 

form of reaction rate that includes activity coefficients of species given by 𝑎𝑖, ensures that the electrolyte 

system correctly approaches equilibrium consistent with the chemistry model (Mathias and Gilmartin, 

2014). Expressions for the equilibrium constants and more details about the reactions models are available 

in our previous publication (Morgan et. al., 2017).  

2𝑀𝐸𝐴 + 𝐶𝑂2  
𝐾𝐸𝑄1
↔  𝑀𝐸𝐴+ +𝑀𝐸𝐴𝐶𝑂𝑂− (2.33) 

 

𝑀𝐸𝐴 + 𝐶𝑂2 +𝐻2𝑂
𝐾𝐸𝑄2
↔   𝑀𝐸𝐴+ +𝐻𝐶𝑂3

− (2.34) 

 

𝑟1 = 𝑘𝐹1𝑒
−
𝐸𝐴1
𝑅 (

1
𝑇−

1
298.15) (𝑎𝑀𝐸𝐴

2 𝑎𝐶𝑂2 −
𝑎𝑀𝐸𝐴𝐶𝑂𝑂𝑎𝑀𝐸𝐴𝐻

𝐾𝐸𝑄1
) (2.35) 

 

𝑟2 = 𝑘𝐹2𝑒
−
𝐸𝐴2
𝑅 (

1
𝑇−

1
298.15) (𝑎𝑀𝐸𝐴𝑎𝐶𝑂2 −

𝑎𝑀𝐸𝐴𝐻𝑎𝐻𝐶𝑂3
𝐾𝐸𝑄2𝑎𝐻2𝑂

) (2.36) 

 

2.2.5. Integrated model selection and methodology 

Models of the tower and WWC are developed in Aspen Plus® V8.4 by using the Aspen plus® RateFracTM 

block. As it was desired to obtain the packing specific parameters for the interfacial area model for 

MelapakPlus 252Y, it was desired to use mass transfer data from a tower with MellapakPlus 252Y or with 



27 
 

a packing that is structurally similar to it.  Therefore, mass transfer data from Tobiesen et al. (2007) for 

MEA-H2O-CO2 system in a relatively wide range of operating conditions are used. Even though the data 

from Tobiesen et al. (2007) is from Mellapak 250Y, it is structurally similar to MellapakPlus 252Y (Tsai, 

2010).  The tower model is set up as per the dimensions and packing information from Tobiesen et al. 

(2007). The WWC data are obtained from the work of Dugas (2009). The WWC model is developed using 

the same rate-based model as the tower, but a fixed interfacial area is used instead. 

As noted earlier, parameter estimation of such an integrated model is not currently feasible in Aspen Plus 

mainly because of the segregation of the diffusivity model, reactions model, and the selected mass transfer 

coefficients and interfacial area models. To circumvent this issue, the FOQUS framework developed as part 

of U.S. DOE’s CCSI (Miller et al., 2015) is used. The FOQUS framework facilitates optimization, 

quantification of uncertainty and development of surrogate models (Miller et al., 2015). The objective 

function is presented in Equation 2.37. The problem is solved by the derivative free optimizer “BOBYQA” 

(Powell, 2009) as the derivative calculation is not feasible due to the external call to Aspen Plus. 

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = (
𝐶𝑎𝑝𝐶𝑂2,𝑒𝑥𝑝 − 𝐶𝑎𝑝𝐶𝑂2,𝑝𝑟𝑒𝑑

𝐶𝑎𝑝𝐶𝑂2,𝑒𝑥𝑝
)

′

𝛴−1 (
𝐶𝑎𝑝𝐶𝑂2,𝑒𝑥𝑝 − 𝐶𝑎𝑝𝐶𝑂2,𝑝𝑟𝑒𝑑

𝐶𝑎𝑝𝐶𝑂2,𝑒𝑥𝑝
)

+ (
𝐹𝑙𝑢𝑥𝐶𝑂2,𝑒𝑥𝑝 − 𝐹𝑙𝑢𝑥𝐶𝑂2 ,𝑝𝑟𝑒𝑑

𝐹𝑙𝑢𝑥𝐶𝑂2,𝑒𝑥𝑝
)

′

𝛴−1 (
𝐹𝑙𝑢𝑥𝐶𝑂2,𝑒𝑥𝑝 − 𝐹𝑙𝑢𝑥𝐶𝑂2 ,𝑝𝑟𝑒𝑑

𝐹𝑙𝑢𝑥𝐶𝑂2,𝑒𝑥𝑝
) 

 

(2.37) 

 

2.2.6. Integrated mass transfer model regression results 

Mass transfer sub-models presented in Table 2.4 and Table 2.5 are implemented using FORTRAN 

subroutines, if not available in the Aspen plus® model library. Minimum value of the objective function of 

each combination is presented in Table 2.6, which shows that the Billet and Schultes (1999) model for the 

mass transfer coefficients, combined with the Tsai (2010) model for the interfacial area provide the best 

combination out of the candidate models considered here.  
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Table 2.6 - Minimum value of the objective function for various combinations of mass transfer 

coefficient and interfacial area models 

Combination Mass transfer coefficient Interfacial area Objective Function 

1 Billet and Schultes (1999) Billet and Schultes (1999) 1.32 

2 Billet and Schultes (1999) Bravo (1985) 2.58 

3 Billet and Schultes (1999) Tsai (2011) 1.15 

4 Bravo (1985) Billet and Schultes (1999) 3.53 

5 Bravo (1985) Bravo (1985) 2.43 

6 Bravo (1985) Tsai (2011) 1.75 

7 Rocha et al. (1996) Billet and Schultes (1999) 5.40 

8 Rocha et al. (1996) Bravo (1985) 5.18 

9 Rocha et al. (1996) Tsai (2011) 5.04 

 

Table 2.7 compares the typical values of the parameters from the literature versus the optimal values of the 

parameters for all models considered in the simultaneous optimization approach. Typical values of the 

parameters are extracted from literature models that have regressed one or more parameters by using at 

least a portion of the experimental data considered here. For example, Plaza (Plaza, 2011) has used the 

same WWC data considered here (Dugas, 2009) for obtaining their kinetic parameters. The final integrated 

mass transfer model comprises of the regressed Billet and Schultes (1999) model for mass transfer 

coefficient (Equations 2.26-27), the regressed Tsai (2010) model for interfacial area (Equation 2.30), the 

regressed diffusivity model given by Equations 2.31-32  and the regressed kinetic model given by Equations 

2.33-36 with the regressed parameters presented in Table 2.7. 

Figure 2.6 - 2.8 present parity plots for the packed tower and WWC comparing the final integrated mass 

transfer model using the regressed parameters with the same models as the integrated mass transfer model 

but using the literature parameters listed in Table 2.7. Both figures show that the accuracy of the selected 

models especially in the 60-80% CO2 capture rate was improved due to regression. In Figure 2.7Figure 2.6, 

the gain in the WWC model is not apparent looking at the figure, as most of the improvements on the model 
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occurred at lower fluxes. Figure 2.8 zooms into the lower flux region showing the improvements due to 

simultaneous regression. The objective function value corresponding to only the WWC data is 177.02 and 

163.22 for literature parameters and the integrated model parameters, respectively. Likewise, the objective 

function value corresponding to only the packed tower data is 1.06 and 0.41 for literature parameters and 

the integrated model parameters, respectively. 

Table 2.7 - Literature values vs the optimal values obtained through simultaneous regression 

approach for all models considered in the integrated mass transfer model 

Parameter Typical value from the literature Reference Regressed value 

CL 0.50 Billet and Schultes (1999) 0.203 

CG 0.37 Billet and Schultes (1999) 0.35 

A1 1.34 Tsai (2010) 1.42 

A2 0.12 Tsai (2010) 0.12 

n 22.19 Plaza (2011) 21.81 

kF1 3963.90 Morgan et al. (2017) 3763.9 

EA1 2.51× 109 Morgan et al. (2017) 2.51× 109 

kF2 22991.13 Morgan et al. (2017) 22959.57 

EA2 49000.00 Morgan et al. (2017) 49745.08 

RMSE 0.1040 - 0.0674 

 



30 
 

 

Figure 2.6 - Parity plot of the CO2 (%) capture in the absorber (Experimental data from Tobiesen 

et al., 2007) 
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Figure 2.7 - Parity plot of the CO2 flux in the WWC (Experimental data from Dugas, 2009) 

 

Figure 2.8 - Zoomed parity plot of the CO2 flux in the WWC (Experimental data from Dugas, 2009) 
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of the parameters may differ as seen in Table 2.7, since the parameters are not necessarily unique. To 

evaluate the improvement, if any, due to the simultaneous regression approach in comparison to the 

literature parameters that were obtained through sequential approach, predictive capabilities of the models/ 

parameters from both approaches should be evaluated using data that have not been ‘seen’ by both. The 

pilot plant data from the open literature for a similar packing (Notz et al., 2012) are used for this purpose. 

The data set span a wide range of operating conditions, with CO2 capture rates varying from 40% to 90% 

and therefore serves as an excellent test set. The column has a diameter of 0.125 m, a height of 4.20 m 

packed with MellapakTM 250Y similar to Tobiesen et al. (2007)), but was operated under a much wider 

range of liquid and gas flowrates. Figure 2.9 shows comparison between the integrated mass transfer model 

and literature parameter values for the absorber. The integrated mass transfer model has the lower error 

(RMSE of 5%) showing good prediction capability of the model when compared to parameter values from 

the literature (RMSE of 9%).  

 

Figure 2.9 - Comparison of the literature model and integrated mass transfer model with data from 

Notz et al. (2012) 
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computationally very expensive, complex, and highly nonlinear, UQ of hydraulic and mass transfer models 

becomes challenging. A brief summary of the UQ methodology is presented here. 

2.3.1. Uncertainty quantification methodology 

As per Bayes theorem: 

 𝜋(𝜃|𝑍) ∝ 𝑃(𝜃)𝐿(𝑍|𝜃) (2.35) 

, where 𝜋(�̃�|𝑍) denotes the posterior distribution, 𝑃(�̃�) denotes the prior distribution of the parameters 

based on the initial belief, and 𝐿(𝑍|�̃�) denotes the likelihood function.  

Since the Bayesian inference requires thousands of simulations and the rate-based tower model is 

computationally expensive, a response surface model is developed by using the data generated by 

simulating the rigorous model the over the entire range of the prior distribution of the parameters as well 

as over the range of the operating conditions that spans the experimental input space. Multivariate Adaptive 

Regression Splines (MARS) models are found to be satisfactory as response surface models as evidenced 

by cross validation. It can be noted that for higher-order nonlinear systems, the MARS models have been 

reported to yield mean values estimates with lower errors and relatively higher robustness in comparison 

to other typical response surface models such as radial basis functions, polynomial regression, and kriging 

(Chen et al. (2001)). 

To generate a response surface model, a normal distribution of the parameters is considered as priors with 

the standard deviations being estimated from the regression results. From this distribution, N samples are 

drawn by using Monte Carlo sampling method by adequately sampling from the priors. The rigorous model 

is then simulated for M process variables over the parameter samples resulting in (M x N) observations.  

The Markov Chain Monte Carlo (MCMC) algorithm with Gibbs sampling is used for approximating the 

multi-dimensional integral in the Bayesian inference finally yielding the posterior distributions of the 

parameters. More details about this approach can be found in our earlier publications (Morgan et al., 2015, 

2017). 

2.3.2. Hydraulics model UQ 

 

Parametric UQ of the final pressure drop and hold models, i.e. regressed Billet and Schultes model (1999), 

given by Equation 2.6, and regressed Tsai (2010) model given by Equation 2.18, respectively, is carried out 

by using the experimental data  from by Tsai (2010) for MellapakplusTM 252Y. Means of the priors for the 
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parameters CP, HL1 and HL2 are taken to be the value obtained in the deterministic regression and their 

standard deviations are obtained using the covariance matrix and the matrix of correlation 

coefficients. By drawing 100 samples from three prior distributions using Monte Carlo sampling technique 

and by considering 68 experimental conditions (Tsai, 2010), a total of 20,400 (=68 x 300) data points are 

generated by simulating the rigorous model. These data are then used to generate the response surface 

model.  Single-parameter marginal probability density functions for prior and posterior distributions are 

shown in Figure 2.10 while Figure 2.11 shows the two-parameter prior and posterior marginal distributions. 

The probability density functions presented in Figure 2.10 and Figure 2.11 imply that no significant 

information about the holdup parameters HL1 and HL2 uncertainty could be obtained using the Bayesian 

Inference, as the prior and posterior probability density functions are almost overlapping. However, the 

pressure drop model parameter, CP , has a narrower posterior distribution than the priors pointing to the 

improvement obtained using the Bayesian inference approach. 

 

Figure 2.10 - Single-parameter prior and posterior marginal probability density functions of the 

parameters in the hydraulics model 
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Figure 2.11 - Two-parameter prior and posterior marginal posterior distributions of the 

parameters in the hydraulics model. 
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Posteriors are propagated through the process models and uncertainties in pressure drop and holdup 

calculations are observed. Figure 2.12 shows uncertainty in pressure drop calculations with respect to F-

factor, for a given liquid load, or velocity. Figures 2.12a/12b and Figures 2.12c/12d are generated for a 

liquid load of 6 m3/m2∙h and 18 m3/m2∙h, respectively. Figures 2.12a/12c and Figures 12b/12d correspond 

to a system of viscosity 1 cP and 12 cP, respectively. Figure 2.13 shows uncertainty in holdup calculations 

with respect to the liquid load for a given F-factor. Figures 2.13a/13b and Figures 2.12c/13d are generated 

for an F-factor of 0.71 Pa0.5 and 1.6 Pa0.5, respectively.  Figures 2.13a/13c and Figures 2.13b/13d correspond 

to a system of viscosity 1 cP and 12 cP, respectively. In both Figure 2.12 and Figure 2.13, relatively high 

uncertainty is observed. It should be noted that overall uncertainty could be further reduced if more 

experimental data were available.  
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Figure 2.12 - Stochastic pressure drop model for a water-air system in a tower packed with 

MellapakPlusTM 252Y. The green lines represent a liquid load of 6 m3/m2∙h and the red lines a 

liquid load of 18 m/h. Cases ‘a’ and ‘c’ corresponds to the liquid viscosity of approximately 12 cP ‘*’ 

represent corresponding experimental data 
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Figure 2.13 - Stochastic holdup model for a water-air system in a tower packed with 

MellapakPlusTM 252Y. The green lines represent an F-factor of 0.71 Pa0.5 and the red lines an F-

factor of 1.6 Pa0.5. Cases ‘a’ and ‘c’ regards a viscosity of approximately 1 cP and ‘d’ a viscosity of 

approximately 12 cP 
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2.3.3. UQ of the integrated mass transfer model 

Parametric UQ of the final integrated mass transfer model where the mass transfer coefficient model is 

given by Equation 2.23 and 2.14, the interfacial area model is given by Equation 2.27, the diffusivity model 

is given by Equations 2.28-29 and the kinetic model is given by Equations 2.30-33, respectively, is obtained 

by using the experimental data from Tobiesen et al. (2007).  Unlike only three uncertain parameters in the 

hydraulic model, the integrated mass transfer model has 9 parameters, namely 𝐶𝐿, 𝐶𝐺, 𝐴1, 𝐴2, 𝑛,   𝑘𝐹1, 

𝐸𝐴1, 𝑘𝐹2, 𝐸𝐴2. Generation of the response surface model and Bayesian inference can be very time 

consuming for large number of parameters. In addition, Bayesian inference is not expected to provide any 

useful insight on uncertainty of a given parameter if sensitivity to that particular parameter in the space of 

the experimental space is low. To reduce the parameter space that is investigated during UQ, a global 

sensitivity analysis using the Sobol index is performed so that parameters with relatively low sensitivity 

(low Sobol index) can be eliminated without compromising the result of the Bayesian inference.  It can be 

noted that the Sobol sensitivity analysis is a popular variance-based method for identifying important 

parameters (Sobol, 1993). Figure 2.14 presents the results of the Sobol analysis for the input parameters. 

Considering a threshold of 0.08 for the Sobol index, the parameters  𝐶𝐺, 𝐴2, 𝑛,   𝑘𝐹1, 𝐸𝐴1, 𝑘𝐹2, 𝐸𝐴2 are 

disregarded for the UQ. 

  

Figure 2.14 - Sobol analysis of the integrated mass transfer model 
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Therefore the only remaining parameters that are used to develop the response surface and subsequent 

Bayesian inference are 𝐴1, corresponding to the interfacial area model, and 𝐶𝐿, corresponding to the liquid 

side mass transfer coefficient.  

Methodology for developing the response surface model and Bayesian inference are similar to before. The 

posterior distributions are presented in Figure 2.15.  

 

 

Figure 2.15 - Parameters distributions 

 

Samples are drawn from posterior distribution of parameters and then propagated through the process 

model. Figure 2.16 represents one such realization showing the uncertainty in CO2 capture for changes in 

the flowrate of incoming CO2.  Additional realizations were not included in the plot because they have 

distinct operating conditions. 
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Figure 2.16 - Stochastic response obtained from the uncertainty propagation compared with data 

from Tobiesen et al. (2007) 

 

It was desired to study the effect of the Bayesian UQ procedure on the overall uncertainty in CO2 capture 

prediction. Figure 2.17 shows the probability density function for CO2 capture corresponding to prior and 

posterior distributions of the mass transfer parameters for a specific set of conditions when the flow gas 

flowrate at the inlet is 165.5 kg/h with 2.6 wt% CO2 and the solvent flowrate is 254.4 kg/h with a CO2 

loading of 0.22 mol CO2/mol MEA. It is observed that the Bayesian UQ resulted in reduced uncertainty in 

predicting CO2 capture as reflected by a narrower distribution obtained using the posteriors.  
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Figure 2.17 - Probability density function for the fractional CO2 capture for a particular operating 

condition 

 

2. 4. Conclusion 

Obtaining rigorous pressure drop and holdup models is essential for a process model especially for process 

models intended for pressure-driven dynamic simulations. Therefore, hydraulic models for a relatively 

newer packing type, MellapakTM plus 252Y, is developed utilizing data from the literature. The regressed 

Tsai (2010) model is found to be the best model for this packing. It was observed that while selecting the 

pressure drop model, the holdup model plays a key role due to the dependency of pressure drop on holdup. 

The final models selected for the MellapakPlusTM 252Y are the regressed Billet and Schultes (1999) model 

for pressure drop while the regressed Tsai (2010) model is used for holdup calculations.  

As opposed to the sequential approach in the literature for obtaining the mass transfer model and estimatisng 

their parameters, this paper proposes a sequential approach where simultaneous parameter regression of the 

mass transfer coefficients model, diffusivity model, interfacial area model, and kinetic model is carried out 

by simultaneously using the experimental data from multiple scales. Since such regression is not feasible 

in the framework of leading process smulation software platforms, the FOQUS toolbox developed by U.S. 
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DOE’s CCCSI is leveraged. The final integrated mass transfer model comprises of the regressed Billet and 

Schultes (1999) model for mass transfer coefficient, the regressed Tsai (2010) model for interfacial area 

along with the regressed diffusivity and kinetic models given by Equations 2.28-33. It was observed that 

the model/parameters eobtained using the simultaneous approach have better predictive capability than 

those obtained using the sequential  aparoach as tested on a set of data that are not ‘seen’ by either of the 

approaches.   

Uncertainty in the parameter space is quantified by the Bayesian approach. The approach resulted in 

reduced uncertainty for the pressure drop model parameter while no or negligible change is observed in the 

parametric uncertainty of the holdup model. It is observed that there is still relatively high uncertainty in 

the hydraulic models that could be improved if additional experimental data were available. The authors 

would like to acknowledge the scarcity of the data in the open literature for the relatively newer packing 

types such as the one considered in this work.  

For down-selecting the parameter space of the mass transfer model, Sobol indices are leveraged. It is 

observed that the prediction uncertainty for CO2 capture gets reduced due to Bayesian uncertainty 

quantification of the mass transfer models.   
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Chapter  3. Dynamic Model 

 

Properties models and the chemistry model corresponding to the steady-state model that is used for 

developing the dynamic model is described in details in the PhD thesis of Morgan (2017). Mass transfer 

models and hydraulic models for that steady-state model are described in the previous chapter. Therefore, 

only a brief summary of the steady-state model is provided below. 

Models for the density, viscosity, and surface tension have been developed as function of temperature and 

composition using large amount of datasets available in the literature for the MEA-H2O-CO2 system 

(Morgan et al., 2015). The  thermodynamic model has been developed using the e-NRTL thermodynamic 

framework (Morgan et al., 2017) where the Akaike Information Criterion (AIC) (Han et al., 2011) has been 

used for parameter selection. The thermodynamic model was developed by using both binary (MEA-H2O) 

and ternary (MEA-H2O-CO2) data for the vapor-liquid equilibrium (VLE), enthalpy data, and heat capacity 

data. The reaction kinetics was modeled to ensure consistency with the thermodynamic framework by 

making it a function of activity coefficients, instead of the typical power laws that does not capture the 

nonlinearity of the chemical equilibrium for this electrolyte system. The reaction set and their corresponding 

rate equations are given by Equations 2.33-34 and Equations 2.35-36, respectively. 

The final hydraulic model is represented by Equation 2.6-7 (Billet & Schultes, 1999) for pressure drop 

calculations combined with Equations 2.18 (Tsai, 2010) for holdup calculations. The mass transfer model 

comprises of the models for the liquid-side and gas-side mass transfer coefficients (Equations 2.22-23), 

interfacial area (Equation 2.30), and diffusivity (Equation 2.31-32). Validation of the steady-state model 

and uncertainty quantification of the individual properties models as well as the plant-wide models have 

also been presented in various publications (Morgan et al., 2018; Morgan et al., 2017; Morgan et al., 2015 

). The model has been found to predict the steady-state data from the NCCC for various key variables, such 

as CO2 capture efficiency and CO2 loading, satisfactorily over a wide operating range. 

 

3. 1. Dynamic model development 

 

The dynamic model is developed in Aspen Plus Dynamics (APD) platform. However, the APD platform 

does not support the rate-based tower model, but only an equilibrium model.  One of the possible 
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methodologies to obtain a reasonable approximation of the rate-based model is to use a correlation for the  

Murphree efficiency in the equilibrium model  (Zhang et al., 2016b).  

In this work, the equation is used in the work of Zhang et al. (2016) is modified by incorporating additional 

terms by taking into consideration the effects of the MEA concentration and CO2-loading of the lean 

solvent. The modified equation is given by Equation 3.1 where the multiplication factor and exponents are 

regressed using the benchmark model described earlier. 

A random sample of 100 operating conditions are generated with due consideration of the expected 

operating ranges of the key process variables in NCCC as shown in Table 3.1 - Key variables ranges 

considered for the Murphree efficiencies modelthe Murphree efficiency is calculated for each discretization 

of the packing, a total of 8900 points is generated. Figure 3.1 shows the equilibrium model with modified 

Murphree efficiency yields a reasonable approximation of the equilibrium model.   

Table 3.1 - Key variables ranges considered for the Murphree efficiencies model 

Variable Minimum Max 

Liquid flowrate (kg/hr) 5100 6250 

MEA (w%) 25.4 29.3 

CO2 loading (mol/mol) 0.15 0.26 

Flue gas flowrate 2020 2470 

 

 

𝜖𝐶𝑂2,𝑖 = 1.245𝜖𝐶𝑂2𝑜,𝑖 (
𝐹𝑔𝑎𝑠

𝐹𝑔𝑎𝑠 𝑜
)

−0.42

(
𝐹𝐶𝑂2
𝐹𝐶𝑂2 𝑜

)

−0.42

(
𝐹𝑙𝑖𝑞

𝐹𝑙𝑖𝑞 𝑜
)

0.64

(
𝐹𝑀𝐸𝐴𝑤
𝐹𝑀𝐸𝐴𝑤 𝑜

)

−1.01

(
𝛼𝐶𝑂2
𝛼𝐶𝑂2 𝑜

)

1.06

 (3.1) 
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Figure 3.1. Equilibrium model and rate-based model comparison 

Dimensions of the buffer and storage tanks as well as the column sumps at NCCC are shown in  Table 3.2. 

These dimensions are inserted in the Aspen Plus model before exporting it to APD. The pressure drop and 

holdup models presented earlier are implemented as scripts in APD. As discussed in this chapter, while 

pressure drop is not expected to vary much under a wide range of operating conditions, it can significantly 

change as the tower approaches the flooding condition. Also, the holdup plays an important role in affecting 

the plant transient response.  

Table 3.2 - Dimensions of Various Equipment Items in the NCCC pilot-plant 

Equipment Diameter (m) Height (m) 

Absorber 0.641 18.51 

Absorber sump 0.641 4.15 

Wash tower 2.44 2.44 

Buffer tank 2.44 2.44 

Stripper 0.59 12.1 

Stripper Sump 0.59 1.22 

Storage Tank 2.44 2.44 
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In accordance with the NCCC control strategy, PID controllers are implemented for controlling the lean 

solvent flowrate, flue gas flowrate, and steam flowrate. Figure 3.2 presents a simplified version of the 

NCCC PFD with the key controllers. 

 

 

 

Figure 3.2 - Simplified PFD of the NCCC pilot-plant 

 

3. 2. NCCC pilot-plant test runs  

3. 2. 1. Test Protocol 

Details of the NCCC pilot-plant have been thoroughly discussed in other publications (Morgan et al., 2017; 

Morgan et al., 2018). Dynamic experiments were conducted using an absorber configuration of 3 beds with 

2 intercoolers. The stripper had a fixed configuration of 2 beds during all the dynamic experiments. The 

objective of the test protocol was to keep the process excited during the entire run. One method to achieve 

this is to use the PRBS signals (Gaikwad & Rivera, 1996). The PRBS is a two-level signal that depends on 

two parameters: the number of shifts (𝑛𝑟) and the switching time (𝑡𝑠𝑤) that require a prior knowledge of 
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the process, or a model that can accurately represent it. However, these dynamic test runs were conducted 

during 8/20/2014-8/21/2014 when a process model was not available. Therefore these parameters were 

estimated through a series of preliminary step changes in the key variables of process in NCCC prior to the 

test runs. By analyzing the results from these step tests, it was realized that it would not be possible to run 

the entire PRBS signal, as it would require a number of shifts 𝑁𝑆 equal to 2𝑛𝑟 − 1, if all 4 variables are 

investigated simultaneously. Due to the limited time-availability to run these tests and due to the time 

required to program the control system for implementing these tests, a modified signal, that will be called 

pseudo-PRBS signal here, is designed that could be implemented manually by the plant operators. 

First of all, for a nonlinear process, the process gain and time constant is expected to vary depending on the 

step magnitude. For example, if the step magnitude is doubled, i.e. if the step magnitude is changed from x 

to 2x, it may not result in two-times change in the output variable; nor the time constant remains the same. 

Additionally, the gain can vary depending on the conditions the step is introduced and whether it is a step 

increase or decrease to the nominal value. Therefore, a test protocol as given in Table 3.3 is implemented. 

Similar to the PRBS signal, each successive step is introduced before the process has reached steady-state. 

It should be noted that although this signal does not have all the properties as a full PRBS design, it provides 

more information than the usual single step tests that are currently available in the literature. Moreover, this 

simplified protocol was implemented for 3 variables, namely solvent flowrate, inlet flue gas flowrate, and 

reboiler steam flowrate while dynamic data are typically found in the literature for 1 or 2 variables. 

Table 3.3 - Example set of dynamic step tests in a given input or disturbance 

Test# Test Condition 

1 Datum 

2 +x% of datum 

3 -x% of datum 

4 +2x% of datum 

5 -2x% of datum 

6 +x% of datum 

7 -x% of datum 

8 Datum 

 

The specific test plan for each of the input variables is shown in Table 1.4. Each variable was investigated 

independently to avoid a worst case dynamic response that could introduce safety issues for the pilot-plant. 
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This was done as timely investigation of these worst case responses could not be evaluated earlier in absence 

of a dynamic model when the test runs were conducted. 

Table 3.4 -  Dynamic step tests that were completed in the NCCC pilot-plant 

Test# Solvent Flow (lb/hr) Comment 

1 5675 Datum 

2 6015.5 value of x1= 340.5 lb/hr 

3 5334.5 
this step results in 2x1% decrease from the existing 

state 

4 6353 
this step results in 3x1% increase from the existing 

state 

5 4994 
this step results in 4x1% decrease from the existing 

state 

6 6015.5 

this step results in 3x1% increase from the existing 

state, note that even the final value is same as 

dynamic Test#2, the magnitude is different 

7 5334.5 

this step results in 2x1% decrease from the existing 

state, same as test#3, but introduced at different state 

of excitation 

8 5675 

return to datum, but doesn't need to settle to datum, 

next step introduced while the process is through 

transient 

Test# Inlet Flue Gas (kg/hr) Comment 

9 2497 value of x2= 227 kg/hr of flue gas 
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10 2043 
this step results in 2x2% decrease from the existing 

state 

11 2724 
this step results in 3x2% increase from the existing 

state 

12 1816 
this step results in 4x2% decrease from the existing 

state 

13 2497 

this step results in 3x2% increase from the existing 

state, note that even the final value is same as 

dynamic Test#9, the magnitude is different 

14 2043 

this step results in 2x2% decrease from the existing 

state, same as test#10, but introduced at different state 

of excitation 

15 2270 return to datum 

Test# Reboiler Steam Flow (kg/hr) Comment 

16 726.4 value of x3=227 kg/hr 

17 454 
this step results in 2x3% decrease from the existing 

state 

18 862.6 
this step results in 3x3% increase from the existing 

state 

19 317.8 
this step results in 4x3% decrease from the existing 

state 

20 726.4 

this step results in 3x3% increase from the existing 

state, note that even the final value is same as 

dynamic Test#16, the magnitude is different 
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21 454 

this step results in 2x3% decrease from the existing 

state, same as test#17, but introduced at different state 

of excitation 

22 590.2 return to datum 

 

3. 2. 2. Sampling and Data Analysis 

In NCCC, there is a lean solvent storage tank in between the stripper and the absorber and typically, the 

lean solvent samples are collected after the lean solvent storage tank, which can cause a large damping of 

the dynamics of the stripper. While this may be a desired operational strategy, for validation of the dynamic 

model, it was desired to collect sample at the stripper outlet so that the stripper outlet dynamics (mainly the  

rate of change of the solvent composition) can be adequately observed. Additional sampling line was laid 

out in NCCC for this purpose and samples were collected manually during the dynamic test run. These 

liquid samples were later manually analyzed to measure the CO2 and amine concentrations. Due to the  

presence of the storage tank between the stripper and absorber and because of the recycling solvent, it 

results in slower dynamics of the integrated absorber-stripper process while the stripper itself has much 

faster response. Therefore, to observe the dynamics of the stripper as well as the integrated system, separate 

dynamic tests with shorter and longer time periods between introductions of step changes in the reboiler 

steam flow rate were conducted. The relative change in the steam flowrate remained same for these tests as 

given in Table 3.4 but only switching times were different.  

While evaluating the dynamic data, it is important to consider time delay of the measured samples especially 

when the measurement samples are taken further from their source. During the experimental runs, MEA 

samples were collected at the lab that were at a considerable distance from the sample sources.  measured 

data, this is especially critical for the laboratories analysis conducted in the collected liquid samples. If the 

measurements are not properly synched with the changes, the dynamic responses will not be observed 

correctly. For instance, in the specific case of measuring concentrations of the lean and rich loadings leaving 

the columns, the samples were transported, through piping, from the plant to the laboratory (where the MEA 

concentration and CO2 loading are measured). Therefore, the time delay between the column and the 

laboratory needs to be calculated using hydraulic information. 

The calculation was performed using the Fanning friction factor and the Darcy-Weisbach equation for the 

calculation of the average velocity using Churchill correlation (Churchill, 1977), shown below: 
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𝑓 = 2((
8

𝑅𝑒
)
12

+ (𝐴 + 𝐵)−1.5)

1
12

 (3.2) 

∆𝑝 = 𝑓𝐷
𝐿

𝐷
𝜌
𝑣2

2
 (3.3) 

𝑓𝐷 = 4 𝑓 (3.4) 

 

 

where A and B are given by the following relations: 

 

𝐴 = (2.457 ln(((
7

𝑅𝑒
)
0.9

+ 0.27
𝜀

𝐷
)

−1

))

16

 (3.3) 

𝐵 = (
37530

𝑅𝑒
)

16

 

 

(3.4) 

In these equations,  f is the fanning friction factor, Re is the Reynolds number, ε is the roughness of the 

pipe, D is the pipe inner diameter, fD is the Darcy friction factor, L is the length of the pipe, ρ is the liquid 

density and v the liquid velocity. As pressure drop (calculated from the sample take-off and return line 

pressures) and the length of the tubes were available (by using the sensor data and isometric drawings of 

the pump inlet and outlet lines), the delay time could be estimated. Typical delay times for the sampling of 

the lean and rich solvents were found to be 20.32 seconds and 20.87 seconds, respectively. 

The liquid samples were used to determine both the MEA wt% and CO2 loading from the dynamic test 

runs. The MEA wt% was measured using a conductometric equivalence point titration using 0.1 M HCl 

acid. The CO2 loading was determined using a similar titration technique to obtain the total CO2 

concentration in the solution, with the solvent sample dissolved in excess methanol and using 0.1 M NaOH 

base as the titration agent. As mentioned, Morgan (Morgan, 2017) has reported that a significant uncertainty 

is present in the liquid composition measurements. There, the liquid composition measurements from the 

dynamic test runs were used mainly for qualitative comparison 

The data collected from the pilot plant are typically noisy, do not necessarily satisfy mass and energy 

balances. In addition certain important variables may not be measured. First the noise in the raw data are 

removed by using a Butterworth filter, which is a bandpass filter, followed by a moving average filter. The 

filters are implemented in MATLAB. As an example, Figure 3.3 presents the raw and filtered measurements 

of the gas flue gas flowrate. The pre-processed data are considered to be adequate for the next step, which 

is dynamic data reconciliation, to satisfy the mass and energy balances.    
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Figure 3.3. Raw and preprocessed flue gas flowrate data 

3. 3. Dynamic Data Reconciliation (DDR) 

 

An optimization problem is solved for DDR. The problem is set up in Aspen Plus® Dynamics as shown in 

Figure 3.4. The optimization objective is shown in Equation 3.5. Following variables are considered as 

decision variables- flowrate and CO2 concentration of the flue gas to the absorber, lean solvent flowrate to 

the absorber, steam flowrate to the reboiler.  These variables are also included in the objective function in 

Equation 3.5.  One of the important variables with missing measurement is the water make-up to the storage 

tank between the stripper and absorber. During the test runs, whenever the storage tank’s level would 

decrease below 30%, a pump would turn on automatically providing make-up water to the tank. Since the 

water make-up was not provided continuously, it can result in considerable variation in the lean solvent and 

therefore, providing an estimate of this variable was important. An estimate of the make-up water flow was 

obtained by using the make-up water pump performance curve and the information available for the pump 

on-off status. Due to uncertainty in the water make-up flowrate estimate, this variable is also reconciled. 

Overall, following variables are reconciled: 

 

• Lean CO2 loading 

• Gas flowrate from the absorber 

• Lean solvent temperature to absorber 

• Lean solvent temperature from regenerator 
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• Lean solvent flowrate to absorber 

• Flue gas flowrate and its CO2 concentration 

• Steam flowrate 

• Water make-up 

 

The dynamic data reconciliation problem was solved by specifying the objective function described in 

Equation 3.5 in the Aspen Plus® Dynamics flowsheet environment and using the optimizer to minimize a 

pre-determined number of discrete data at specific time instants.  The optimizer algorithm ‘FEASOPT’ in 

Aspen Plus® Dynamics, which uses a feasible path SQP algorithm, is used. The computational time 

increases considerably depending on the number of discrete time instants considered for optimization. 

About 4 hours were necessary to find an optimal solution corresponding to the solvent step tests, using 15 

discrete points. For solving the DDR problem corresponding to the gas flow and steam flow step tests, 45 

and 90 discrete points were used, respectively, with the solution times increasing to about 14 and 20 hours, 

respectively.  

 

 

Figure 3.4 - DDR algorithm followed by raw data processing 

 plus Dynamics® 

min  (𝑦𝑒𝑥𝑝 − 𝑦)
′
∑ (𝑦𝑒𝑥𝑝 − 𝑦)

−1

 

s.t. 

𝐻(𝜂, 𝑦, 𝑢) = 𝑓(𝜂, 𝑦, 𝑢) 

(3.5) 
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𝑔(𝜂, 𝑦, 𝑢) ≤ 0 

𝑢𝐿 < 𝑢 < 𝑢𝑈 

𝑦𝐿 < 𝑦 < 𝑦𝑈 

 

3. 4. Results and discussions 

3. 4. 1. Step Tests in Solvent Flowrate: 

Figure 3.5 and Figure 3.6 shows the raw versus reconciled lean solvent flowrate and CO2 capture rate 

calculated from the gas side, respectively. It can be observed in Figure 3.6 that at the beginning of this test 

run, the plant is not at the steady state, which was undesired. Since the initial values of all state variables 

including the holdup was not known, it was practically impossible to match this initial transient.  However, 

despite this initial transient, it can be observed that the model results match closely with the reconciled 

transient data.  

 

Figure 3.5. Reconciled Lean solvent flowrate from the solvent test 
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Figure 3.6. Reconciled CO2 capture calculated from the gas side measurements for the solvent test 

Figure 3.7 show the results for the reconciled CO2 loading of the lean solvent at the stripper outlet. This 

sample was collected not at the mixing tank outlet, but immediately downstream of the stripper from where 

extra liquid samples were collected during the test run. Here the reconciled model results are qualitatively 

show the right trend, but the experimental data show much more variability that what is reflected in the 

model results. Figure 3.8 shows the results for the reconciled CO2 loading of the rich solvent at the absorber 

outlet. Here the experimental data exhibit more variability than that in the model results. Uncertainty in 

liquid sample measurements have been documented in the work of Morgan (2017). It should be noted that  

these liquid samples capture mass balance closures of CO2 from the liquid side while Figure 3.6 captures 

CO2 mass balance from the gas side. Since the gas side measurements have far less uncertainty and Figure 

3.6 shows a satisfactory fit to the experimental data, discrepancies between the liquid side measurements 

and model predictions are attributed to the errors in the experimental measurements, as discussed in Morgan 

et al. (2018) and Morgan (2017). Uncertainties in the liquid side measurements in NCCC were estimated 

by comparing the measurements with more accurate methods. The MEA concentration measurements were 

compared to a gas chromatography with thermal conductivity and flame ionization detectors (GC-

TCD+FID). The CO2 concentration was compared to a Total Inorganic Carbon (TIC) method with an IR 

detector. Both MEA and CO2 concentrations are found to have an average error of about 4% with higher 

discrepancies for the rich solvent than for the lean solvent measurements. 
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Figure 3.7. Reconciled lean CO2 loading from the solvent test 

 

 

 

Figure 3.8. Reconciled rich CO2 loading from the solvent test 
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3. 4. 2. Step Tests in Steam Flowrate: 

When the steam flowrate to the stripper is changed, it takes longer to affect the absorber CO2 capture due 

to the holdup in the downstream equipment items such as the lean/rich heat exchanger, storage tank, and 

the absorber. Therefore, for studying the dynamics of the stripper, it was desired to introduce step change 

in the steam flowrates and compare the dynamics in the CO2 flowrate from the stripper top and lean loading 

composition from the stripper bottom.  Figure 3.9 shows the reconciled steam flowrates when the step tests 

in the reboiler steam flowrates are introduced.  Figure 3.10 shows the comparison of the CO2 flowrate from 

the stripper top. Model results are in good agreement with the data. 

 

 

 

Figure 3.9. Reconciled steam flowrate 
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Figure 3.10. Reconciled regenerated CO2 flowrate from the steam test 

Figure 3.11 shows the comparison between the model results and the experimental data of the lean solvent 

CO2 loading. Similar to the results when the solvent flowrate was changed, the experimental data show 

much more variability than the model results. Again, as gas flowrate and composition from the stripper are 

considered to have lower uncertainty in measurements and a reasonable fit to the gas side measurements 

were obtained, the discrepancy is attributed to the liquid-side measurements.   
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Figure 3.11. Lean solvent CO2 loading from the steam test 

3. 4. 3. Step Tests in Flue Gas Flowrate: 

Figure 3.12 presents the reconciled flue gas flowrate to the absorber. Figure 3.13 presents the reconciled 

CO2 capture percentage in comparison to the experimental data. It is observed that while the model 

prediction for some of the undershoots, especially around 1.1. hr and 1.6 hr, can be improved, generally the 

comparison is reasonably satisfactory. In general, it is it is believed that the model results could have 

improved further if the water make-up flowrate was a measured variable and liquid sample measurements 

would have better accuracy. 

 

0.15

0.2

0.25

0.3

0.35

0 0.5 1 1.5 2

Le
an

 s
o

lv
en

t 
C

O
2

lo
ad

in
g 

(m
o

l/
m

o
l)

Time (h)

Experimental data

Model



61 
 

 

Figure 3.12. Reconciled flue gas flowrate 

 

 

Figure 3.13. Reconciled CO2 capture calculated from the gas side measurements for the flue gas test 
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3. 5. Transient studies 

Two transient studies are conducted here by using the transient model of the NCCC pilot. The first study is 

similar to the typical single step change studies. In this case study, 5% step changes in the flue gas flowrate, 

lean solvent flowrate, and steam flowrate are simulated.  In the second, a variable capture scenario is 

simulated and under these scenario, performance of traditional PID controllers are evaluated. In this 

scenario, the desired CO2 capture rate is set by a scheduler at an upper level that maximizes the plant profit 

by taking into consideration the real-time price of the electricity, the real-time demand of the electricity, 

CO2 capture target over a base period, and the carbon taxation described in Scenario 2 of Bankole et al. ( 

2018). In this scenario, a penalty is imposed on CO2 emissions above an allowable limit during the base 

period. However, there is no reward for capturing more CO2 beyond this set limit. This scenario provides 

incentive to CO2-emitting plants to capture at least the carbon target set by the regulatory agencies. 

3. 5. 1. Case 1 results 

The purpose of this case study is to evaluate the process gain and time constant for similar percentage 

change in some of the key variables from their nominal value. In a CO2 capture unit, flue gas flowrate is a 

disturbance variable while the solvent and steam flowrates are manipulated variables. Therefore the 

transients can be helpful in designing the controllers. The nominal conditions considered for this study is 

similar to the dynamic test runs conducted at NCCC, with a lean solvent flowrate of 5675 kg/hr, a flue gas 

flowrate of 2270 kg/hr, and a steam flowrate of 663 kg/hr. All the step changes in this case study are 

introduced at the 2nd hour and utilized the same control scheme as the NCCC pilot-plant.  ±5% step changes 

in the lean solvent flowrate and flue gas flowrate are introduced only to the absorber model so that the 

transient response of only the absorber can be studied as opposed to the integrated system that takes much 

longer to settle due to the circulating solvent.  Corresponding CO2 capture rates are presented in Figure 

3.14. ±5% step changes in the steam flowrate are introduced only to the stripper model, with the 

corresponding flowrates of the CO2 released presented in Figure 3.15. 
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Figure 3.14 - Absorber-only case study step tests 

 

Figure 3.15 - Stripper-only case study step tests 

 

The CO2 capture rates for the whole pilot-plant, i.e. when the absorber and stripper are coupled, are 

presented in Figure 3.16. Case 1a, 1b, 1c, 1d, 1e, and 1f represent a +5% step change in the steam flowrate, 

a -5% step change in the steam flowrate, a +5% step change in the flue gas flowrate, a -5% step change in 

the flue gas flowrate, a +5% step change in the lean solvent flowrate, and a -5% step change in the lean 

solvent flowrate, respectively.  
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Figure 3.16 - CO2 capture response in Case 1 

First of all, the responses for the change in the solvent flowrate is similar to the flue gas flowrate in the 

isolated absorber study. This is expected for an absorber since it essentially changes L/G ratio by similar 

magnitude. The slight differences are due to the nonlinearity in the absorber and properties models. 

Furthermore, the gain is different when the flue gas flowrate or the solvent flowrate is increased in 

comparison to when they were decreased further demonstrating nonlinearity of the process.  

In the integrated plant studies (Figure 3.16), when the flue gas flowrate and solvent flowrate are changed, 

the steam flowrate to the stripper remains unchanged therefore resulting in a change in the lean solvent 

composition. Due to this couple effect, the plant takes longer to settle in comparison to the absorber only 

and stripper only cases. It is observed that when only the solvent step changes are introduced it takes longer 

for the process to settle than when the flue gas flowrate is changed. It is expected since there is higher 

change in the solvent concentration when the solvent flowrate is changed in comparison to when the flue 

gas flowrate is changed.   

Finally, it is observed that the time constant of the CO2 release flowrate for the stripper only case is smaller 

than the time constants for the CO2 capture rate for the absorber only cases. The time constants for CO2 

capture rate are ~18 minutes for the absorber and ~170 minutes for the stripper in the full pilot-plant cases, 

which are close to the value estimated at NCCC through step tests (21 minutes for absorber side and 90 

minutes for stripper side). The time constant for CO2 capture rate for the absorber model only cases and 

stripper model only cases are ~17 minutes, and ~173 minutes, respectively. Table 3.5 presents the individual 

time constants and gains observed for each case. 
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Table 3.5 - Gains and time constants observed in the case studies 

Case gain 𝜏(min) 

Case a 0.24 179 

Case b 0.52 164 

Case c -0.45 19 

Case d -0.59 16 

Case f 0.41 19 

Case g 0.33 16 

+5% solvent 0.49 17 

-5% solvent 0.65 18 

+5% flue gas -0.57 15 

-5% flue gas -0.43 17 

+5% steam 0.20 167 

-5% steam 0.24 178 

 

3. 5. 2. Case 2 results 

The optimal schedule for the CO2 capture setpoints were taken from (Bankole et al., 2018). The flue gas 

flowrate was scaled down to a 0.5 MW equivalent pulverized coal power plant size and its composition was 

also changed accordingly to match the pilot-plant model presented in this work. However the variability in 

the flue gas flowrate was similar to the work of Bankole et al. (2018). For this study, the control strategy 

was changed from the previous process models: using the scheduled CO2 capture as set-points controlled 

by the lean solvent flowrate, while the lean solvent CO2 loading was controlled by the steam flowrate. 

Figure 3.17 presents the scheduled CO2 capture. A zoomed version between 4.5-6 hr comparing the 

scheduler setpoint versus the actual CO2 capture is shown in Figure 3.17satisfactorily achieved.  The flue 

gas flowrates schedule used in this study and its model implementation are presented in Figure 3.19. 
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Figure 3.17 – Schedule of CO2 capture rate in Case 2 

 

 

Figure 3.18 – Zoomed Schedule of CO2 capture rate in Case 2 
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Figure 3.19 – Schedule of the flue gas flowrate in Case 2 

 

Figure 3.20 presents the lean solvent flowrate. As expected, the flowrate increases for higher CO2 capture 

percentage, and vice versa. Figure 3.21 presents the steam consumption in the reboiler, used to control the 

lean loading. As expected, it has an increased flowrate when the CO2 capture percentage is higher and vice 

versa. Significant variation in these two flowrates, especially in the steam flowrate, is noticeable. The 

resulting transient in the lean solvent loading is presented in Figure 3.22. Significant discrepancies in the 

lean solvent loading from its setpoint is noticeable especially for the cases with high variation in the flue 

gas flowrate and CO2 capture target. When the flue gas flowrate and the desired CO2 capture both are at 

their low values such as between 21-24 hr, both the lean solvent flowrate and steam consumption are at 

their lowest values.  
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Figure 3.20 - Lean solvent flowrate in Case 2 

 

 

Figure 3.21 - Steam flowrate in Case 2 
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Figure 3.22 - Lean loading in Case 2 

Figure 3.23 presents the stripper temperature profile in this case study. Even though the bottom temperature 

varies considerably, it still remains well below the solvent decomposition temperature. Considerably higher 

variability in the stripper top temperature is observed in comparison to the bottom.  Figure 3.24 presents 

the instantaneous energy efficiency, which also shows considerable variability. Obviously, the variability 

can be correlated to the variability in the steam flowrate. 
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Figure 3.23 - Stripper bottom and top temperatures in Case 2 

 

 

Figure 3.24 – Energy efficiency in Case 2 
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While conducting the studies presented above, the PID controllers were manually tuned. It was desired to 

analyze if the loop tuning techniques such as the IMC, Ziegler-Nichols, and Cohen-Coon rules, could 

lower the variability in the manipulated variables especially in the steam flowrate and thereby the energy 

efficiency. The estimated tuning parameters are presented in Table 3.6. The CO2 capture rate in each of 

these cases had little variability in comparison to the manually tuned controller results, as presented in 

Figure 3.25. Figure 3.26 presents a zoomed view of the comparison between the CO2 capture target and 

the actual CO2 capture for various loop tuning techniques. 

 

Figure 3.25 - CO2 capture in Case 2 for various tuning methods 
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Figure 3.26 - Zoomed CO2 capture in Case 2 for various tuning methods 

 

Figure 3.27 presents the simulation results for the various controller tuning methods for the steam flowrate. 

Figure 3.28 and 3.29 shows that the variability in the lean loading could be lowered considerably by using 

the Ziegler-Nichols, and Cohen-Coon rules, while the IMC method introduced more variability in the steam 

flowrate in comparison to the manually-tuned controller. The high variability observed in the lean solvent, 

however, did not affect the CO2 capture percentage performance not only due to the upper-level controller 

that uses the solvent flowrate as a manipulated variable, but also for the dampening effects of the storage 

tank in between the stripper and absorber. Similarly, Figure 3.30 and 3.31 show that the variability in the 

stripper temperatures especially in the top temperatures got reduced significantly. Figure 3.32 shows that 

there is some improvement in the energy efficiency when the Ziegler-Nichols, and Cohen-Coon rules were 

used in comparison to when the loop was manually tuned or tuned using the IMC rule. However, there is 

still considerable opportunity to maintain the efficiency close to its optimum using advanced controllers.  
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Figure 3.27 - Steam flowrate in Case 2 for various tuning methods 

 

 

 

 

Figure 3.28 - Lean loading in Case 2 for various tuning methods 
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Figure 3.29 - Zoomed lean loading in Case 2 for various tuning methods 

 

 

 

 

Figure 3.30 - Stripper bottom temperature in Case 2 for various tuning methods 
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Figure 3.31 - Stripper top temperature in Case 2 for various tuning methods 

 

 

 

Figure 3.32 - Energy efficiency in Case 2 for various tuning methods 
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Manually tuned 2% 0.5 0 

IMC 3.8% 6.87 0.37 

Ziegler-Nichol 43.9% 1.56 0.39 

Cohen-Coon 49.8% 1.82 0.28 

 

 

3. 6. Conclusion 

In this work, an APD model was developed starting with the Aspen Plus steady-state model by using  a 

Murphree efficiency approach. A modified correlation for calculating the Murphree efficiency was 

developed where the parameters were estimated by using the results from the rate-based Aspen Plus model 

under varying operating conditions. 

A pseudo-PRBS methodology was developed and implemented at the NCCC for performing dynamic test 

runs. The noisy data could be satisfactorily preprocessed using filtering technique. For satisfying the mass 

and energy balances, a DDR methodology was developed. This technique also helped to estimate the 

transient values of the variables that were not measured. The dynamic model was found to yield satisfactory 

estimates of transient CO2 capture when steps changes in the solvent flowrate, flue gas flowrate, and steam 

flowrates were conducted. It was noticed that there is considerable discrepancies between the liquid side 

measurements and model predictions for all three cases. Considering the CO2 balance of the system and 

based on the studies presented by Morgan (2017), these discrepancies are attributed to the errors in the 

experimental measurements of liquid loading and composition.  

Two case studies were conducted that exhibit the nonlinearity of the process. It was noticed that depending 

on the change in the direction (increase or decrease) of the disturbance or manipulated variables, the process 

gain and time constants can change. It was observed that the time constant of the full plant can be 

considerably longer than the time constants of the absorber only or stripper only systems. It can be noted 

that the storage tank in between the absorber and stripper also resulted in an increase in the time constant. 

In another study, transient response to an optimal CO2 capture schedule was studied. In this study, the flue 

gas flowrate also changes as the power plant optimally follows the load. It was observed that if the 

controllers are not optimally tuned, it can lead to considerable variations in the process variables especially 

in the steam flowrate to the reboiler that can affect the process efficiency. While the existing loop tuning 

techniques could improve the transient process efficiency, further improvement may be possible by using 

advanced controllers. 



77 
 

Lastly, it should be noted that the experiments conducted at NCCC were prepared without completing a 

full PRBS signal and, therefore, the data do not have the richness for parameter estimation. Moreover, one 

variables was changed at a time. Thus the process interaction due to simultaneous change in multiple 

variables are not captured in the data. A formal design of dynamic experiments methodology can, therefore, 

be useful to improve the outcome from the dynamic test runs. 
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Chapter  4. Design of Dynamic Experiments 

 

Limitations of the dynamic design of experiments implemented at NCCC have been described in the 

previous chapter. The objective of the dynamic experiments described in this chapter is to estimate model 

parameters rather than validation of the dynamic model. For estimating n model parameters, the input signal 

should be designed to ensure persistence of excitation such that the signal has a spectrum of 𝑛 nonzero 

distinct frequencies in its period. Various methods that vary in their frequency content, and waveforms can 

be used to design an input signal with the required properties. Each of these signal properties affect the 

following characteristics in the process as described below (Hjalmarsson, 2014): 

• Variability: it is correlated to the level of excitation of the signal, and may cause the output being 

studied to reach an undesired value or specification. 

• Frequency content: high frequency in the input signal may damage plant accessories and equipment 

items. 

• Amplitude: a high values may be unacceptable and can also result in unrealistic values for the 

actuators whereas a low value may result in low signal-to-noise ratio for the output variables. 

• Waveform: some waveforms may have difficult programming in the plant control system or can 

have large implementation error.  

The power spectrum of a signal is an important criterion for design the input signals. It shows how the 

power of a signal is distributed over the frequencies.  For a discrete-time signal 𝑥(𝑛) being applied to a 

process, the power spectrum can be calculated from its Discrete Fourier Transform (DFT): 

𝑋(𝑘) =
1

𝑁
∑ 𝑥(𝑛)𝑊𝑁

𝑘𝑛

𝑁−1

𝑛=0

 
 (4.1) 

𝑊𝑁
𝑘𝑛 = 𝑒−𝑗2𝜋𝑘𝑛/𝑁  (4.2) 

This transformation is often called “forward DFT”, while a “backward DFT” differs by the sign of the 

exponent in Eq. (4.2), i.e. the exponent is given by 𝑗2𝜋
𝑛𝑘

𝑁
. It can be noted that the DFT can be readily 
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calculated by using the  Fast Fourier Transform (FFT) algorithm.  It should be noted that the designed input  

signals are always real. Because of that, the output signal 𝑋(𝑘) satisfies the symmetry:  

𝑋𝑚(𝑘 − 𝑛) = 𝑋
∗(𝑛) (4.3) 

, where * denotes complex conjugate. The power spectrum 𝑃𝑆 can then be generated by the following: 

𝑃𝑆(𝑓𝑚) = 2
[𝑋𝑚]

2

𝑓𝑆𝑁
;     𝑚 = 0, … ,𝑁/2 

(4.4) 

The power spectrum can be expressed in decibels (dB) to normalize its value and give an overall 

representation of its intensity, the conversion is defined as:  

𝑟𝑎𝑡𝑖𝑜[𝑑𝐵] = 10𝑙𝑜𝑔10 (
𝑠𝑖𝑔𝑛𝑎𝑙 𝑝𝑜𝑤𝑒𝑟

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑤𝑒𝑟
) 

(4.5) 

Another important design criterion for the input signal is the sampling frequency. If a signal has its 

maximum frequency 𝑓𝑁𝑦, then as per the Nyquist theorem, its sampling frequency 𝑓𝑠, should be at least:  

𝑓𝑠 = 2𝑓𝑁𝑦 . 

As mentioned earlier, the objective here is to estimate model parameters by optimal design of the dynamic 

experiments. Since large amount of data can be collected in a much shorter span of time as opposed to the 

steady-state test runs, it can help to reduce the time and resources for collecting the data. It is desired that 

the parameter estimates be unbiased, i.e. 𝐸{𝜃𝑁} = 𝜃𝑁 for a set of parameters 𝜃𝑁 and consistent, i.e. 

lim
𝑛→∞

𝜃𝑁 = 𝜃𝑁. It is also desired that 𝜃𝑁 has a small covariance.  It is also desired that the estimator is 

efficient, i.e. its covariance is at least equal to the Cramér-Rao lower bound, which is given by: 

𝐶𝑅 = 𝐹𝑖−1(𝜃𝑁) (4.6) 

, where 𝐹𝑖 is the Fisher information matrix, which is a measure of the information content in the 

experimental data.   
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With the objectives discussed above in mind, two signals, the pseudo-random binary sequence/signal 

(PRBS) and the Schroeder-phased input waveform signals are considered for the design of dynamic 

experiments (DoDE) at the NCCC pilot plant. Details of these signals are presented in details in the 

following sections. 

4. 1. Pseudo-Random Binary Signal design of experiments 

A PRBS is a two-level signal, represented by 0’s or 1’s generated with shift registers, which is given by 

Equation 4.7 (Miljković et al., 2011): 

𝑢(𝑡) = 𝑟𝑒𝑚(𝐴(𝑞)𝑢(𝑡), 2)

                                               = 𝑟𝑒𝑚(𝑎1𝑢(𝑡 − 1) +⋯+ 𝑎𝑛𝑢(𝑡 − 𝑛),2)
 

, where 𝑟𝑒𝑚(𝑥, 2) is the remainder of 𝑥 divided by 2, which provides a binary value. 

A representation of a 3 bit shift register sequence is presented in Figure 4.1. 

(4.7) 

 

Figure 4.1 - 3 bit shift register example 
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The PRBS is a deterministic signal that has covariance similar to the white noise but its power spectrum is 

an impulse train while the while noise has flat spectrum. The signal has a length 𝑁𝑠, as described by 

Equation 4.8-11:   

𝑁𝑆 = 2
𝑛𝑟 − 1 (4.8) 

𝑁𝑆1 ≥
𝜋6𝜏𝑑𝑜𝑚

𝐻

𝑇𝑠𝑤
 

(4.9) 

𝑁𝑆2 ≥ 𝑝 × 𝐷 (4.10) 

𝑁𝑆 = max (𝑁𝑆1, 𝑁𝑆2) (4.11) 

Here 𝑛𝑟, 𝜏𝑑𝑜𝑚
𝐻 , and 𝜏𝑑𝑜𝑚

𝐿  denote the number of shift registers, fastest and slowest time constants, 

respectively.  It can be noted that the time constants can be estimated by using a process model, if available 

or through step tests. For example, during the 2014 NCCC test runs, the slowest (𝜏𝑑𝑜𝑚
𝐻 = 0.15 ℎ𝑟) and 

fastest (𝜏𝑑𝑜𝑚
𝐿 = 0.92 ℎ𝑟) time constants for the NCCC pilot plant were estimated through preliminary step 

tests.  For multivariable PRBS design, it should be ensured that there is lack of cross-correlation between 

the signals (Gaikwad & Rivera, 1996). This is achieved by applying a delay  𝐷 before implementing the 

subsequent variable till all 𝑝 variables are exhausted. The delay can be calculated by taking into account 

the switching time 𝑇𝑠𝑤  as shown in Eq. 4.12. The overall time required to implement the signal for a single 

variable can be obtained by multiplying the signal length 𝑁𝑠 with the switching time, 𝑡𝑓𝑖𝑛𝑎𝑙 = 𝑇𝑠𝑤𝑁𝑠. 

𝐷 =
𝑇𝑠𝑒𝑡𝑡𝑙𝑒
𝑚𝑎𝑥

𝑇𝑠𝑤
 

(4.12) 

𝑇𝑠𝑤 ≤
2.8𝜏𝑑𝑜𝑚

𝐿

2
 

(4.13) 

A persistently exciting input signal with high signal to noise ratio may not be acceptable to the plant 

operators due to its possible impact on equipment wear and tear, product quality violation, safety hazards 

and violation of environmental hazards. Therefore, the signals need to be designed such that the sequence 

is ‘plant friendly’ (Narasimhan et al., 2011; Rivera et al., 2009). While the friendliness of the input signal 
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can be quantified by considering the crest factor that can be represented by the ratio of the 𝐿∞ norm to the 

𝐿2 norm of the signal, it was determined that the desired magnitudes and switching times of the bi-level 

signals were acceptable for all inputs, but it was desired that the output plant friendliness be considered as 

reflected in variability of the CO2 capture percentage. It can be noted that large variability in CO2 capture 

rate can not only cause considerable noise in the gas composition sensor measurements, it can cause loss in 

the solvent from the absorber due to large variations in the pressure. Due to the high nonlinearity of the 

process, it was desired that the magnitudes of the bi-level signals be adjusted to ensure the desired 

boundedness in the output. All other parameters as discussed above for PRBS design were determined by 

simulating the Aspen Plus dynamics® model described earlier. Due to inaccuracies in the model, the 

designed signals were implemented in the NCCC control system in such a way that the signal magnitude 

for each bi-level signal can be readily changed if it violates plant friendliness criteria. Figure 4.2 presents 

the designed PRBS in its general form. 

 

Figure 4.2 - PRBS designed signal 
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the following operating conditions: 

• Lean solvent flowrate: 5400 kg/hr – 5950 kg/hr 

• Flue gas flowrate: 2130 kg/hr – 2360 kg/hr 

-1.5

-1

-0.5

0

0.5

1

1.5

0 5 10 15 20 25 30st
ep

 v
al

u
e

Time (hr)



83 
 

• Flue gas CO2 concentration: 10%w – 17.5%w 

• Steam flowrate: 465 kg/hr – 515 kg/hr 

Figure 4.3-4.6 present the designed signals already taking into consideration each of the delays necessary 

for the experimental implementation for the mentioned variables. Figure 4.7 presents the combined signals 

as designed to be implemented in NCCC. While plotting in Figure 4.7, individual signals are scaled so that 

the relative time delay can be clearly seen on the same figure. The gas flowrates, solvent flowrates, steam 

flowrates, and flue gas CO2 concentration are scaled between -1 to 1, 2 to 4, 5 to 7, 8 to 10, respectively. It 

should be noted that this scaling is done only for illustration purpose and does not indicate relative intensity 

of the signals. 

 

 

 

Figure 4.3 - Designed PRBS for gas flowrate 

2100

2250

2400

0 8 16 24 32

G
a
s
 f

lo
w

ra
te

 (
k
g
/h

r)

Time (hr)



84 
 

 

Figure 4.4 -  Designed PRBS for solvent flowrate 

  

Figure 4.5 -  Designed PRBS for steam flowrate  
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Figure 4.6 -  Designed PRBS for CO2 percentage in the flue gas  

 

Figure 4.7 - Combined scaled PRBS design for implementation in the pilot plant (Signals are scaled 

so that the signals and the time delay can be distinct; scaled values do not mean to show the relative 

intensity of the signals) 
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rate of change in the pilot plant and the plant will not reach mass transfer pinch. As seen in Figure 4.7, the 

design inputs signals were considered to be acceptable. It can be noted that in reality, no other changes were 

made in the input signals during the actual implementation in NCCC.  

 

Figure 4.8 - CO2 capture prediction from the PRBS designed signals 

Figure 4.9 presents the power spectrum for the designed PRBS signal and Figure 4.10 presents the power 

spectrum for the CO2 capture output signal. It can be observed that the power of the signals is reasonably 
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Figure 4.9 - Power spectrum of the PRBS DoDE 

 

Figure 4.10 - Power spectrum of the PRBS DoDE response 
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discrete frequency points. Thus low peak-factors, or crest factors can be attained, often associated with the 

Schroeder phased signals.  The signal is given by Eq. 4.14: 

𝑢𝑛 = 𝜆𝑛∑√2𝛼[𝑛,𝑗]𝑐𝑜𝑠(𝜔𝑗𝑘𝑇 +Φ[𝑛.𝑗])

𝑁𝑠
2⁄

𝑗=1

 

(4.14) 

𝜔𝑗 =
2𝜋𝑗

𝑁𝑠𝑇
, 𝑘 = 1,2… . ,𝑁𝑠 

 

𝛼[𝑛,𝑗] = {
1,
0,
   𝑖𝑓 𝑗 = 𝐿𝑢(𝑖 − 1) + 𝑛

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.15) 

 

2𝜋

𝑁𝑠𝑇
≤ 𝜔 ≤

2𝜋𝑛𝑆𝐿𝑢
𝑁𝑠𝑇

<
𝜋

𝑇
 

(4.16) 

max(2𝑛𝑆𝐿𝑢,
2𝜋

𝜔∗𝑇
) ≤ 𝑁𝑠 ≤

2𝜋𝑛𝑠𝐿𝑢
𝜔∗𝑇

 
(4.17) 

1

3𝜏𝑑𝑜𝑚
𝐻 = 𝜔∗ ≤ 𝜔 ≤ 𝜔

∗ =
2

𝜏𝑑𝑜𝑚
𝐿  

(4.18) 

𝑛𝑠 ≥
1

𝐿𝑢

𝜔∗

𝜔
 

(4.19) 

 

In the equations above, 𝜆𝑛 is a scaling factor, 𝑁𝑠 is the signal period, 𝑇 is the sampling time. Each sinusoid 

has a coefficient 𝛼[𝑛,𝑗] that is used to specify the power of each one of them, 𝜔𝑗 specifies the sinusoid 

frequency and Φ[𝑛.𝑗] its phase. The coefficients 𝛼[𝑛,𝑗] are determined by assuming that the signals are 

orthogonally excited in frequency. In this work a “zippered” design is used for the coefficients (Mart et al., 

2015), which means that for a specific non-zero Fourier coefficient frequency,  all other signals have a zero-

valued Fourier coefficient. The total number of harmonics is determined by the number of excited sinusoids 

𝑛𝑠 and the number of input variables 𝐿𝑢 by using the equation: 𝑛ℎ = 𝑛𝑠𝐿𝑢. 

The phase matrix Φ[𝑛.𝑗] provides considerable flexibility to the design of the Schroeder-phased signal. A 

simple general form for specifying the phases requires consideration of the relative power 𝑝𝑗 of the jth 

harmonic (Rivera et al., 2009): 

∑𝑝𝑗

𝑁

𝑗=1

= 1 (4.20) 
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Φ𝑗 = 2𝜋∑𝑝𝑘

𝑗

𝑘=1

 (4.21) 

 

The design parameters such as the signal period,  𝑁𝑠, the lower and the upper frequency bounds 𝜔∗ and 𝜔∗, 

were calculated by simulating the dynamic model of the NCCC pilot plant described in Chapter 3. The 

corresponding signals for four inputs are presented in Figure 4.11. It can be noted that Figure 4.11 is 

generated using  𝜆 = 1, for demonstrating the issue with the high crest factor, if the signals are properly 

designed. The final values of 𝜆𝑛 are determined to ensure the signal would be constrained in the same 

operating conditions as described earlier for the PRBS signal design. The high peaks, i.e. high crest factors, 

observed at 𝑡 = {6,12,18} hr are not acceptable. To make the signals plant friendly, the phases Φ[𝑛.𝑗] can 

be designed appropriately. 

 

Figure 4.11 - Non optimized Schroeder-phased design signals 

To avoid the issue with high crest factor, Φ[𝑛.𝑗] were determined by minimizing the crest factor (CF) defined 

in Equation 4.22-24 (Guillaume et al., 1991).  

𝐶𝐹 =
𝐿∞(𝑝𝑛)

𝐿2(𝑝𝑛)
 (4.22) 

𝐿∞(𝑝𝑛) = max|𝑝𝑛| (4.23) 
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𝐿2(𝑝𝑛) = [
1

𝑇
∫ |𝑝𝑛(𝑇)|

2𝑑𝑇
𝑇

0

]

1/2

 (4.24) 

  

The signals obtained for each of these variables is presented in Figure 4.12 - 4.15. While designing the 

signal for the CO2 concentration in the flue gas, its variability is kept constrained based on what could be 

achieved using the existing control strategy in NCCC, where the flue gas CO2 concentration is controlled 

by diluting it with N2.  It should be noted that these signals are simultaneously implemented as shown in 

Figure 4.16.  

 

Figure 4.12 - Designed Schroeder-phased input for Solvent flowrate 
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Figure 4.13- Designed Schroeder-phased input for flue gas flowrate 

 

Figure 4.14- Designed Schroeder-phased input for CO2 concentration in the flue gas 
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Figure 4.15 - Designed Schroeder-phased input for steam flowrate 

 

Figure 4.16 - Combined normalized signals for the Schroeder-phased design 

Figure 4.17 presents the estimated CO2 capture percentage from the Schroeder-phased input signal design 

of experiments. It can be observed that the CO2 capture would remain constrained within the bounds 65-

90% as discussed earlier.  
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Figure 4.17 - CO2 capture prediction from the Schroeder-phased input signals 

The power spectrum of the input signals designed from the Schroeder-phased input guidelines are presented 

in Figure 4.18. As observed in that figure, the main characteristics of the signals can be verified in this plot, 

as the power spectrums present the same behavior and shape, but with different relative powers and phases.  

Figure 4.19 presents the power spectrum for the simulated Schroeder-phased inputs signal response, which 

exhibits high and reasonably flat power in the entire frequency range of interest. It can be observed that the 

designed Schroeder-phased inputs have better properties in comparison to the PRBS signals as they yield 

higher power with less variability in the entire frequency range in comparison to the PRBS signal. In 

addition, as noted earlier, the Schroeder-phased input can be implemented in shorter time span than the 

PRBS signal. For this case, the PRBS signal took about 32 hrs while the Schroder-phased inputs took less 
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Figure 4.18 - Power spectrum density of the designed Schroeder-phased signals 

 

 

Figure 4.19 - Power spectrum density of the simulated CO2 capture 
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4. 3. Summary of the overall methodology 

A summary of the approach taken in this work can be described by the algorithm presented in Figure 4.20. 

For each input signal design technique, various information need to be obtained and decisions need to be 

made as listed below: 

• Number of input variables 

• Feasible ranges of input variables 

• Rate of change of input variables 

• Maximum settling time 

• Lowest dominant time constant 

• Highest dominant time constant 

• Factors and variables for plant-friendliness analysis 

For information such as feasible range of design variables and plant friendliness analysis, plant operating 

personnel needs to be consulted to check with hardware limitations, plant control system constraints, 

operating constraints based on the plant design and the solvent-type and impurities present in the flue gas 

and circulating solvent, safety constraints, environmental emission issues, unmodeled phenomena, etc. 

Other information such as the time constants and settling time can be obtained by performing preliminary 

step tests in the plant or by simulating these steps in an existing process model with due consideration of 

the inaccuracies in that model. While input plant friendliness can be ensured, it is hard to ensure output 

plant friendliness especially if the plant is highly nonlinear. Once the preliminary design is obtained, if a 

preliminary dynamic process model is available, it can be used to check the output plant friendliness. In 

absence of a model, a worst case analysis can be made to determine the worst case change/rate of change 

in the output variables through tests in the plant.  
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Figure 4.20 - DoDE Development Approach 

4. 4. Implementation errors 

The signals designed and presented in the  previous sections were implemented in NCCC over the course 

of approximately 3 days (2 days for the PRBS DoDE and 1 day for the Schroeder-phased DoDE), where 

the tests were initiated after bringing back to the plant close to the desired steady state. Figure 4.21 to Figure 

4.26 present the designed PRBS and the actual implementation/measured values for the main input variables 

discussed in Section 4.1. It is observed that there is low implementation error in the solvent flow rate  

(Figure 4.23) and steam flowrate (Figure 4.25), but there is high implementation error in the gas flowrate 

(Figure 4.21). The main issue is found in the implementation of the input signal for the wt% CO2 as seen in 

Figure 4.26. The actual value did never reach below about 12.5 wt% CO2 while the desired value was as 

low as 10 wt% CO2. Looking at these signals, two other observations can be made: (1) the signals were 

noisy, (2) considering the relative large change in the input variables before the PRBS signals were 

implemented and based on our current knowledge about the settling time of the overall process, it can be 

anticipated that the plant was not at the steady-state. Therefore, dynamic data-reconciliation and estimation 

of the initial states and parameters become challenging and very important. Figure 4.27 compares the power 

spectrum of the actual vs design signals for the CO2 weight percentage in the flue gas. It is observed that 
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the implemented signal still has reasonably high power in the entire range albeit low power at some 

frequency range.   

 

Figure 4.21 - Comparison between design and implementation for the PRBS for  the gas flowrate  

 

Figure 4.22 - Comparison between design and implementation for the PRBS for the solvent 

flowrate 
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Figure 4.23 - Zoomed comparison between design and implementation for the PRBS for the solvent 

flowrate 

 

Figure 4.24 - Comparison between design and implementation for the PRBS for the steam flowrate  
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Figure 4.25 - Zoomed comparison between design and implementation for the PRBS for the steam 

flowrate 

 

Figure 4.26 - Comparison between design and implementation for the PRBS for CO2 wt% in the 

inlet flue gas 
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Figure 4.27 - PRBS power spectrum density for the CO2 w% 

 

Figure 4.28 to Figure 4.31 show that the implementation error in the Schroeder-phased input signals is far 

less than the PRBS signals with the exception of the CO2 wt% in the flue gas, even though presence of 

noise in all signals especially in the flue gas flowrate is still observed.  Figure 4.32 compares the power 

spectrum of the actual vs design signals for the CO2 weight percentage in the flue gas. It is observed that 

the implemented signal still has reasonably high power in the entire range albeit low power at some 

frequency range. 
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Figure 4.28 - Comparison between design and implementation for the Schroeder-phased input for 

the gas flowrate 

 

Figure 4.29 - Comparison between design and implementation for the Schroeder-phased input for 

the solvent flowrate  
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Figure 4.30 - Comparison between design and implementation for the Schroeder-phased input for 

the steam flowrate 

 

Figure 4.31 – Comparison between design and implementation for the Schroeder-phased input for 

CO2 wt%  
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Figure 4.32 - Schroeder-phased input power spectrum density for the CO2 wt% 

 

4. 5. Dynamic Data Reconciliation (DDR) with parameter estimation 

After implementing the presented signals at the NCCC pilot-plant, the data was preprocessed by applying 

a Butterworth filter (a band-pass filter) followed by a moving-average filter to remove noise from the data. 

The clean data were then utilized for DDR with parameter estimation. The DDR methodology is similar to 
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computational cost for the DAE solver. Second, since a data reconciliation problem was solved, it led to 

large number of decision variables. Third, as discussed earlier, the plant was not necessarily at the steady 

state when the signals are initiated. Therefore, the initial value of some of the key state variables were also 

estimated leading to the large dimensionality of the problem. Fourth, there were some missing 

measurements such as the water makeup flowrate to the intermediate storage tank. These need to be 

estimated as well. Fourth, when the process model parameters noted above were included in the estimation 

problem, it led to a large dimensional optimization problem. One issue with the sequential approach with 

such problems is that the NLP solver cannot take advantage of the sparsity or structure of the underlying 

dynamic model, neither that of the KKT system (Biegler, 2010). Even with several days of simulation, 

parameter estimation problem for not even a single model could be successfully solved. It should be noted 

that in comparison to the dynamic DDR problem solved in Chapter 3, here the dimensionality and 

computational expense of the problem became significantly larger due to inclusion of the initial values of 

some of the state variables and because of the long time span of the test run data. Since dynamic data 

reconciliation, initial state estimation and missing measurement estimation must be considered, it was 

decided that the parameter estimation will be performed only for the holdup model since that has a strong 

impact on the transient response, but not so much on the steady state response. Also, the parameters were 

estimated manually through sensitivity studies. Furthermore, due to high implementation error and 

significant noise in the input data and due to the high noise in the output data corresponding to the PRBS 

design and due to high computational time required by the DAE solver for the PRBS design (the solver had 

to cut steps significantly where only very short integration steps could be successfully converged), it was 

desired that the parameter will be estimated by using the data corresponding to the Schroeder-phased input 

signal design. These estimated parameters are then tested on the data corresponding to the PRBS design.   

4. 5. 1. Schroeder-phased input data DDR and parameter estimation 

The DDR with parameter estimation was implemented as an optimization problem in Aspen plus 

Dynamics® as described by Equation 4.25.  

 

min  (𝑦𝑒𝑥𝑝 − 𝑦)
′
∑ (𝑦𝑒𝑥𝑝 − 𝑦)

−1

 

s.t. 

𝐻(𝜂, 𝑦, 𝑢, 𝜃) = 𝑓(𝜂, 𝑦, 𝑢, 𝜃) 

𝑔(𝜂, 𝑦, 𝑢, 𝜃) ≤ 0 

(4.25) 
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The flue gas, lean solvent and steam flowrates and CO2 concentration in the flue gas were used as decision 

variables. These variables were included while calculating the objective function as well. Overall, following 

variables were reconciled: 

• Lean CO2 loading 

• Gas flowrate from absorber 

• CO2 concentration in flue gas 

• Lean solvent temperature to absorber 

• Lean solvent temperature from regenerator 

• Lean solvent flowrate to absorber 

• Flue gas flowrate 

• Steam flowrate 

 

These variables were selected as they are the key input and output variables that affects the plant mass and 

energy balance. The estimated parameters for the holdup model are presented in Table 4.1. These 

parameters correspond to the holdup correlation presented in Equation 2.18. The estimated value for the 

linear parameter 𝐻𝐿1 did not change much, while 𝐻𝐿2 got reduced from approximately 0.65 to 0.39. These 

column hydraulic parameters could be estimated from the dynamic data collected in about 24 hr.  As 

discussed earlier in Chapter 2, data from air-water systems are generally used for estimating these 

parameters and these data are collected over the period of about four weeks for each packing type (Tsai, 

2010). While the parameters are not too different, they are certainly superior as seen in Table 4.1, are for 

the actual MEA-H2O-CO2 system, and could be estimated using data collected from considerably lesser 

time.  

 

Table 4.1 - Estimated holdup parameters 

Parameter Original value (Soares Chinen et al., 2018) Estimated value 

𝐻𝐿1 11.45 11.5 

𝐻𝐿2 0.6471 0.39 
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The discrete-time cumulative root means squared error (DCRMSE) in % CO2 capture, given by Equation 

4.26, for the original versus regressed holdup model parameters corresponding to the PRBS and Schroeder-

phased input signals are shown in Table 4.2. For both cases, a modest improvement could be observed. 

 

𝐷𝐶𝑅𝑀𝑆𝐸 = √
1

𝑁
∑𝜀2
𝑁

𝑖=1

 (4.26) 

 

Table 4.2 - DCRMSE (% CO2 capture) for original and regressed holdup parameters 

 Original holdup parameters  Regressed holdup parameters  

Pseudo Random 

Binary Signal 
3.25 3.11 

Schroeder-phased 

input signal 
2.15 1.96 

 

 

 

Figure 4.33 to Figure 4.36 show the experimental versus reconciled Schroeder-phased inputs for the solvent 

flowrate, flue gas flowrate, CO2 concentration in the flue gas, and steam flowrates, respectively.  Figure 

4.37 presents the comparison between the model results and experimental data for the CO2 capture 

percentage.   
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Figure 4.33 - Reconciled Schroeder phased input solvent flowrate 

 

Figure 4.34 - Reconciled Schroeder phased input flue gas flowrate 
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Figure 4.35 - Reconciled Schroeder phased input CO2 percentage in the flue gas 

 

Figure 4.36 - Reconciled Schroeder phased input steam flowrate 
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Figure 4.37 - Schroeder phased input CO2 capture percentage 

It is observed that while the model could capture general trend well, there are still peaks in the experimental 

data that could not be addressed by the model. It can be noted that both the solvent concentration and the 

absorber outlet gas flowrate are variables that have large impact, but are not reconciled due to the poor 

quality of its measurement data. Reconciling this variable and estimation of other model parameters could 

have improved the fit further.   
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Figure 4.38 - Reconciled PRBS solvent flowrate 

 

Figure 4.39 - Reconciled PRBS flue gas flowrate 
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Figure 4.40 - Reconciled PRBS CO2 percentage in the flue gas 

 

Figure 4.41 - Reconciled PRBS steam flowrate 
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Figure 4.42 - Reconciled PRBS CO2 capture percentage 

 

Figure 4.38 to Figure 4.41 show the experimental versus reconciled PRBS signals for the solvent flowrate, 

flue gas flowrate, CO2 concentration in the flue gas, and steam flowrates, respectively.  Figure 4.42 presents 

the comparison between the model results and experimental data for the CO2 capture percentage. Similar 

to before, while the model could capture the trend generally well except at a few time instants, the peaks 

could not be well addressed. It can be noted that there is considerable mismatch for the PRBS data when 

the CO2 capture is calculated from the liquid side as opposed to the gas side. It is felt that reconciling the 

solvent concentration and absorber outlet gas flowrate, estimation of other model parameters, and initiation 

of the test run from the steady-state condition would have improved the fit.  

4. 5. 3. Case studies 

Similar case studies as Chapter 3 is presented by Figure 4.43, in which a study is conducted by introducing 

+/-5% step changes in the flue gas flowrate and the lean solvent flowrate, but by using the regressed holdup 
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change. The same percent step changes were implemented for the flue gas flowrate in cases “c” and “d”, 
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Figure 4.43 - Case study CO2 capture response 

 

First of all, the CO2 capture response for the change in the solvent flowrate became closer to that of the flue 

gas flowrate in comparison to what was observed earlier with the original holdup model parameters in 

Chapter 3.  The gains are found to be 0.36 and 0.33 % CO2 capture/% solvent flowrate, respectively when 

the solvent flowrate is increased and decreased, respectively, as opposed to 0.58 and 0.46 % CO2 capture/% 

solvent flowrate, respectively using the original holdup model parameters in Chapter 3. Similar 

observations are made for the response when the solvent flowrate is changed. There is practically no 

difference in the time constant between the earlier and current responses.  

4. 6. Conclusions 

For the first time, PRBS and Schroeder-phased input signals are designed and implemented for a CO2 

capture pilot plant. Signals are designed for a multivariable system where the signals are designed to ensure 

output plant friendliness. As expected the Schroeder-phased input signal took shorter time to implement in 

comparison to the PRBS design. Both input signal designs result in the power of the signals reasonably 

uniformly distributed over the entire frequency range of interest. However, the designed Schroeder-phased 

inputs yield higher power with less variability in the entire frequency range in comparison to the PRBS 
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signal. Higher implementation error is observed for the PRBS signals. Considerable implementation error 

is observed in the signal for CO2 concentration in the flue gas for both types of input signals. Instead of the 

implementation error, the power spectrum of the actual signal is still reasonably close to that of the designed 

signals albeit low power at some frequency range.  

A sequential strategy is implemented for solving the DDR and parameter estimation problem where the 

DAE solver and the NLP codes are used sequentially to solve the optimization problem. A number of key 

input and output variables are reconciled so that plant mass and energy balances could be satisfied. A few 

key unmeasured input variables are also estimated. Due to computational intractability, the parameter 

estimation problem could not be solved. A sensitivity study is performed to obtain the optimal estimate of 

the parameters for the holdup model by using the data corresponding to the Schroeder-phased input signal 

design. The regressed parameter is then used while performing DDR for the PRBS data. While the model 

predicted the transient response well especially for the Schroeder-input signal, the peaks in the CO2 capture 

response could not be addressed.  It is believed that the reliable liquid concentration measurement and 

parameter estimation could improve the model prediction. Further, initiation of the test runs under steady 

state would have also reduced the uncertainty in the estimates of the initial states.  

Regression of parameters for the holdup model resulted in some differences in the transient response of the 

process, especially the gain, in comparison to the original parameters for same perturbations. Finally, it can 

be noted that even though only holdup model parameter could be estimated, it resulted in a slightly superior 

estimate of the parameters in comparison to the original values. As discussed in Chapter 2, the holdup 

parameters were obtained by regressing the steady-state holdup and pressure drop data collected over 

several weeks of test runs. It is worth noting that superior values for the model parameters could be obtained 

using the data collected for just a data. Further improvement in the results are anticipated if computational 

capability can be developed in the future for estimation of other model parameters.   
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Chapter  5. Final Remarks and Future Work 

 

One of the main objectives of the CCSI was the development of a rigorous “gold-standard” process model 

for the solvent system for CO2 capture. In this work, sub-models were developed for interfacial area, mass 

transfer coefficients, reaction kinetics, pressure drop, and holdup and implemented in Aspen Plus as 

FORTRAN user models. A novel simultaneous optimization technique was proposed for parameter 

regression. The technique results in a better predictive capability of the models. Predictive capability of the 

process model is evaluated further by using the steady-state data from the National Carbon Capture Center 

in Wilsonville, AL for an MEA-H2O-CO2 system over a wide operating regime (Morgan, 2017). The overall 

approach is generic and can be readily applied to other solvent systems, packings and column 

configurations, as demonstrated in appendix B for a high viscosity solvent system being developed by an 

industrial collaborator. 

Obtaining an accurate model requires rigorous pressure drop and holdup models, especially for pressure-

driven dynamic simulations. Most of these models are restricted to well-known packing types, while newly 

developed packings are overlooked. Therefore, hydraulic models were developed utilizing data from the 

literature for a relatively newer packing type, MellapakTM plus 252Y. During the selection of the most 

suitable pressure drop model, a strong dependency of pressure drop on holdup was observed. The final 

models selected for the MellapakPlusTM 252Y are the regressed Billet and Schultes (1999) model for 

pressure drop while the regressed Tsai (2010) model is used for the holdup calculations. 

Opposed to the typical sequential approach in the existing literature for development of mass transfer 

models, a simultaneous optimization approach is proposed in this work where the optimal estimates of the 

parameters of the mass transfer coefficients model, diffusivity model, interfacial area model and kinetic 

model are obtained by using the data from multiple scales that span wide range of operating conditions and 

flow regimes. The FOQUS toolbox developed by the U.S. DOE’s CCSI is utilized for the simultaneous 

regression, since the proposed approach is not feasible for implementation in the leading commercial 

process simulation platforms. The final integrated mass transfer model comprises of the regressed Billet 

and Schultes (1999) model for mass transfer coefficient, the regressed Tsai (2010) model for interfacial 

area along with the regressed diffusivity and kinetic models. An improved predictive capability was 

observed for the models developed using the simultaneous regression approach in comparison to those from 

the open literature, while applying them to a data-set “not previously seen” by neither of the methods. 
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A Bayesian uncertainty quantification methodology was implemented for both the mass transfer and 

hydraulics models. The approach resulted in a reduced uncertainty for the pressure drop model parameter 

while no or negligible change was observed in the parametric uncertainty of the holdup model. It is observed 

that there is still relatively high uncertainty in the hydraulic models that could be improved if additional 

experimental data were available. There is scarcity of the data in the open literature for the relatively newer 

packing types such as the one considered in this work. Sobol indices are leveraged for down-selecting the 

parameter space of the integrated mass transfer model. It is observed that the prediction uncertainty for CO2 

capture gets reduced due to Bayesian uncertainty quantification of the mass transfer models.   

Using the results from the rate-based model, a modified Murphree-efficiency method is developed for an 

equilibrium-based Aspen Plus Dynamics model.  A pseudo-PRBS signal design was developed for the 

steam flowrate, solvent flowrate, and flue gas flowrate by using information obtained from step tests in the 

NCCC pilot plant. Noisy signal are filtered and used for DDR to satisfy mass and energy conservation as 

well for estimating unmeasured variables.  The dynamic model yielded satisfactory estimates of the CO2 

capture rates when solvent flowrate, flue as flowrate, and steam flowrate step changes were introduced. 

Notable discrepancies between the liquid side measurements and model prediction are observed for all 

cases.  A previous investigation by Morgan (2017) shows that the discrepancies are a reflection of errors in 

the measurement of CO2 loading and solvent composition. 

Two case studies were conducted to study the nonlinearity of the process. It was observed that the process 

gain and time constants would change depending on the change in the direction of the perturbation. It was 

verified that the time constant of the full plant can be significantly longer than the time constants of the 

isolated absorber or stripper systems. The storage tank in between the absorber and stripper also resulted in 

an increase in the time constant and dampening of the effect of the stripper operation on the absorber 

operations. In another study, transient response to an optimal CO2 capture schedule was studied. In this 

study, it was observed that if the controllers are not optimally tuned, it can lead to considerable variations 

in the steam flowrate to the reboiler, which may affect the process efficiency and solvent quality. While the 

existing loop tuning techniques could improve the transient process efficiency, further improvement may 

be possible by using advanced controllers. 

It should be noted that the dynamic experiments conducted at NCCC in 2013 were executed without 

completing a full PRBS signal and, therefore, the data do not have the required information content for 

parameter estimation. Moreover, one variables was changed at a time. Thus the process interaction due to 

simultaneous change in multiple variables are not captured in the data. A formal design of dynamic 

experiments methodology, therefore, is proposed to improve the outcome from the dynamic test runs. 
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The systematic methodology developed for the Design of Dynamic Experiments was implemented 

successfully in the NCCC pilot plant to obtain a rich dataset. Both a full-length PRBS and a Schroeder-

phased input signal designs were developed for the multivariable system. The data were filtered and used 

for DDR and parameter estimation. It was observed that the Schroeder-phased input signal could be 

implemented in shorter time than the PRBS signals, even though it yielded similar richness in the data. 

Considerable implementation error was observed in the signal for CO2 concentration in the flue gas for both 

types of input signals. Instead of the implementation error, the power spectrum of the actual signal was 

found to be still reasonably close to that of the designed signals albeit low power at some frequency range. 

The DDR and parameter estimation problem are solved using a sequential strategy where the DAE solver 

and the NLP codes are used sequentially to solve the optimization problem. Several key input and output 

variables are reconciled to ensure that mass and energy balances are satisfied. A few key unmeasured input 

variables are also estimated. A sensitivity study is performed to obtain the optimal estimate of the 

parameters for the holdup model by using the data corresponding to the Schroeder-phased input signal 

design. The regressed parameter is then used while performing DDR for the PRBS data. The model 

satisfactorily predicted the transient response, especially for the Schroeder-input signal, although the peaks 

in the CO2 capture response could not be addressed.   

A superior estimate of the holdup model parameters could be estimated using the dynamic data. The 

approach points to the promise of parameter estimation using the dynamic data that can be collected over 

much shorter period of time than the conventional steady-state test runs. The estimated parameters resulted 

in a slightly higher gain, in comparison to the original parameters presented in Chapter 2.  

Future Work 

It should be noted that the integrated mass transfer model was obtained when the mass transfer rate was 

modeled using the two film theory. Development of other mass transfer models such as those based on the 

penetration theory or the eddy diffusion theory and extension of the simultaneous regression approach to 

those mass transfer models that are inherently transient is a desired future work. Comparison of these mass 

transfer models for different scales and flow regimes for solvent-based capture systems can be a valuable 

contribution in the future. 

One desired future work in the area of uncertainty quantification will be to evaluate scaleup uncertainty. 

Study on the impact of liquid distributions on the column hydraulic and mass transfer characteristics will 
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be very valuable. Investigation of various mass transfer models for commercial-scale applications and 

development of new mass transfer models, if needed, will be worthwhile.   

A dynamic uncertainty quantification methodology would be a valuable future direction of research. This 

should take into consideration uncertainty in the process model and parameters along with the measurement 

uncertainty.  

 An equilibrium-based model with Murphree-efficiency approach is used in this work. Development of a 

rigorous rate-based dynamic model will be desired to improve the model accuracy especially when the plant 

transient drifts further from the nominal condition. 

Due to computational intractability, the desired parameter estimation problem comparison all mass transfer 

and hydraulic submodels could not be solved. While it was desired to design the Schroeder-phased input 

signals for D-optimality, it could not be implemented due to computational challenge of the software 

platform of choice for this work, although plant-friendliness could be satisfied. It will be desired to develop 

Schroeder-phased input signal design that satisfies both the D-optimality and plant-friendliness criteria.  

A software platform that can handle large-scale DDR and parameter estimation problem with large amount 

of transient data will be very valuable. The framework should also be capable of estimating initial states 

and missing parameters. Observability and identifiability of the states, missing measurements, and 

parameters should be evaluated. Additional measurements may be needed and should be evaluated. 

In this work, parametric uncertainty in the mass transfer and hydraulic models could not be evaluated for 

the dynamic model due to the Murphree-efficiency approach and due to the considerable computational 

expense of solving the dynamic data reconciliation problem. Development of simultaneous approach to 

solving the dynamic data reconciliation (and parameter estimation) problem would be a valuable future 

capability.  
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Appendix A: FORTRAN codes for Aspen plus® User Models 

A.1 Pressure drop FORTRAN code 

 
c Revision 1.1  1996/05/20  17:34:17  apbuild 
c New Template, Salinas 
c 
C ==========================cvs revision history======================== 
      SUBROUTINE USRPCK (MODE,      J,     PJ,   FLMJ,   FVMJ, 
     1                   FLVJ,   FVVJ,  RMWLJ,  RMWVJ,  RHOLJ, 
     2                  RHOVJ,  XMULJ,  XMUVJ, SIGMAJ,    FPJ, 
     3                    QRJ,  FFACJ,   FFRJ, SYSFAC, IPTYPE, 
     4                 IPSIZE,  IPMAT, PACKFC,   VOID,  SURFA, 
     5                  STICH,  HETPJ,     FA,   DIAM,   NINT, 
     6                    INT,  NREAL,   REAL, DPSTGJ, HTSTGJ ) 
C 
C ******************************************************************* 
C     USER SUBROUTINE TEMPLATE FOR PACKING SIZING AND RATING 
C     FOR RADFRAC, MULTIFRAC AND PETROFRAC 
C ******************************************************************* 
C 
C MODE  INTEGER  — Calculation mode: 1 = Sizing, 2 = Rating 
C N       INTEGER  — Stage number 
C P       REAL*8   — Stage pressure (N/m2) 
C FLMJ   REAL*8   — Mass liquid flow from the stage (kg/s) 
C FVMJ  REAL*8   — Mass vapor flow to the stage (kg/s) 
C FLVJ  REAL*8   — Volumetric liquid flow from the stage (m3/s) 
C FVVJ  REAL*8   — Volumetric vapor flow to the stage (m3/s) 
C XMWL  REAL*8      — Average molecular weight of liquid from the stage 
C XMWVJ     REAL*8   — Average molecular weight of vapor to the stage 
C RHOLJ  REAL*8      — Mass density of liquid from the stage (kg/m3) 
C RHOVJ     REAL*8      — Mass density of vapor to the stage (kg/m3) 
C XMULJ  REAL*8   — Viscosity of liquid from the stage (N-s/m2) 
C XMUVJ     REAL*8      — Viscosity of vapor to the stage (N-s/m2) 
C SIGMAJ  REAL*8   — Surface tension of liquid from the stage (N/m) 
C FP      REAL*8   — Flow parameter 
C QR      REAL*8      — Reduced vapor throughput (m3s) 
C FFACJ  REAL*8   — F factor (for rating only) (m/s (kg/m3) ½) 
C FFRJ     REAL*8      — Reduced F factor (m/s (kg/m3) ½) 
C SYSFAC  REAL*8      — System foaming factor 
C IPTYPE  INTEGER  — Packing type 
C IPSIZE  INTEGER  — Packing size 
C IPMAT  INTEGER  — Packing material 
C PACKFC  REAL*8      — Packing factor (1/m) 
C VOID  REAL*8      — Packing void fraction 
C SURFA  REAL*8      — Packing surface area (m2/m3) 
C STICH   REAL*8 3  — Stichlmair constants 
C HETPJ   REAL*8      — Height equivalent to a theoretical plate (m) 
C FA      REAL*8      — Fractional approach to flooding Input for sizing, 
Output for rating 
C DIAM  REAL*8      — Column diameter (m) Input for sizing, Output for 
rating 
C NINT  INTEGER  — Number of integer parameters (see Integer and Real 
Parameters) 
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C INT      INTEGER NINT — Vector of integer parameters (see Integer and 
Real Parameters) 
C NREAL  REAL*8      — Number of real parameters (see Integer and Real 
Parameters) 
C REAL   REAL*8 NREAL  — Vector of real parameters (see Integer and Real 
Parameters) 
C DPTSG   REAL*8      — Pressure drop per stage (N/m2) 
C HTSTG   REAL*8      — Fractional liquid holdup 
       
      IMPLICIT NONE 
C 
C     DECLARE VARIABLES USED IN DIMENSIONING 
C 
      INTEGER NINT 
C 
C *** ARRAY DIMENSIONS *** 
C 
C 
#include "ppexec_user.cmn" 
      EQUIVALENCE (RMISS, USER_RUMISS) 
      EQUIVALENCE (IMISS, USER_IUMISS) 
C 
C *** EXIT SUBROUTINE 
C 
C     DECLARE ARGUMENTS 
C 
      INTEGER INT(NINT) 
     +        ,    MODE,  J,     IPTYPE, IPSIZE,IPMAT, NREAL 
      REAL*8 STICH(3),     PJ,    FLMJ,  FVMJ,  FLVJ, 
     +       FVVJ,  RMWLJ, RMWVJ, RHOLJ, RHOVJ, 
     +       XMULJ, XMUVJ, SIGMAJ,FPJ,   QRJ, 
     +       FFACJ, FFRJ,  SYSFAC,PACKFC,VOID, 
     +       SURFA, HETPJ, FA,    DIAM,  DPSTGJ 
      REAL*8 HTSTGJ 
C 
C     DECLARE LOCAL VARIABLES 
C 
      INTEGER IMISS 
      REAL*8 REAL(NREAL),  RMISS 
      REAL*8 FRL, REV, UV, UL, HL, fo, FV 
      REAL*8 P1, C, ho, DP 
       
C     Code by Anderson Soares Chinen (Summer 2014) 
C     Pressure drop correlation for NCCC case, using Stichlmair correlation 
 
 
C     PRESSURE DROP GENERAL VARIABLES 
       
      UV=FVVJ/(3.1415/4*DIAM**2) 
      UL=FLVJ/(3.1415/4*DIAM**2) 
       
      DP=6*(1-VOID)/SURFA 
 
C fo = 1/K in Billet a 
      fo=1+2/3*DP/DIAM/(1-VOID) 
       
      REV=UV*DP*RHOVJ/XMUVJ/fo 
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      FRL=(UL**2)*SURFA/9.81 
       
      FV=UV*RHOVJ**0.5 
 
C Stichlmair Correlation, currently not being used. 
       
C     fo 
C      fo=STICH(1)/REV+STICH(2)/(REV**0.5)+STICH(3) 
      
C     C 
C      C=(-STICH(1)/REV-STICH(2)/2/(REV**0.5))/fo 
 
C     Solving using custom holdup instead of the multual dependent function from 
Stichlmair/Billet and Schultes 
C     STICH(2) and STICH(3) represents the parameters for UQ 
 
      ho=STICH(2)*(3.185966*(XMULJ/RHOLJ)**0.3333*UL)**STICH(3) 
C      ho=11.45038*(3.185966*(XMULJ/RHOLJ)**(1/3)*UL)**0.647111 
       
C      P1=0.75*(1-VOID)/VOID**4.65*fo*RHOVJ*UV**2/DP*((1-VOID*(1-ho/VOID) 
C     +)/(1-VOID))**((2+C)/3)*(1-ho/VOID) 
 
C Billet and Schultes Pressure drop 
 
C Stich(1) is substituting here the value of Cpo, as it cannot be set 
C C = PSIL 
 
C HLS CALC 
      HL=(12/9.81*XMULJ/RHOLJ*UL*SURFA**2)**0.3333 
 
      C=STICH(1)*(64/REV+1.8/(REV**0.08))*((VOID-ho)/VOID)**1.5* 
     +EXP(13300/(250**1.5)*FRL**0.5)*(ho/HL)**0.3 
 
       
      P1=C*SURFA/((VOID-ho)**3)*FV**2/2*fo       
 
 
      HTSTGJ=ho 
      DPSTGJ=P1*0.67456 
C 0.67456 = packing height for 1 section 
 
      RETURN 
      END 
 

A.2 Holdup FORTRAN code 

C $Log: rs_uholdup.f,v $ 
C 
C ==========================cvs revision history======================== 
      SUBROUTINE USRHLDUP(KSTG,   FRATEL, FRATEV, AVMWLI, AVMWVA, 
     1                    VISCML, DENMXL, SIGMAL, VISCMV, DENMXV,  
     2                    LHLDUP, VHLDUP, VSPACE, COLTYP, USRCOR,  
     3                    TWRARA, COLDIA, HTPACK, PACSIZ, SPAREA,  
     4                    CSIGMA, PFACT,  PKPRMS, VOIDFR, PLHOLD,  
     5                    PVHOLD, IPAKAR, IPTYPE, IVENDR, IPMAT,   
     6                    IPSIZE, WEIRHT, DCAREA, ARAACT, FLOPTH,  
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     7                    NPASS,  WEIRL,  IFMETH, SYSFAC, HOLEAR,   
     8                    ITTYPE, TRASPC, PITCH,  NINT,   INT,     
     9                    NREAL,  REAL) 
C 
      IMPLICIT NONE 
      INTEGER KSTG, COLTYP, USRCOR, IPAKAR, IPTYPE, IVENDR, IPMAT,  
     1        IPSIZE, NPASS, IFMETH, ITTYPE, NINT, INT(NINT), NREAL 
      REAL*8  FRATEL, FRATEV, AVMWLI, AVMWVA, VISCML, DENMXL, 
     1        SIGMAL, VISCMV, DENMXV, LHLDUP, VHLDUP, VSPACE, TWRARA, 
     2        COLDIA, HTPACK, PACSIZ, SPAREA, CSIGMA, PFACT, 
     3        PKPRMS(20), VOIDFR, PLHOLD, PVHOLD, WEIRHT, DCAREA, 
     4        ARAACT, FLOPTH, WEIRL, SYSFAC, HOLEAR, TRASPC, PITCH, 
     5        REAL(NREAL)  
C*********************************************************************** 
C  LICENSED MATERIAL.  PROPERTY OF ASPEN TECHNOLOGY, INC.  TO BE       * 
C  TREATED AS ASPEN TECH PROPRIETARY INFORMATION UNDER THE TERMS       * 
C  OF THE ASPEN PLUS SUBSCRIPTION AGREEMENT.                           * 
C*********************************************************************** 
C----------------------------------------------------------------------- 
C         COPYRIGHT (C) 2004 
C          ASPEN TECHNOLOGY, INC. 
C          CAMBRIDGE, MA 
C----------------------------------------------------------------------- 
C 
C     DESCRIPTION: User provided RateSep routine to calculate the 
C                  liquid holdup and vapor holdup 
C 
C     WRITTEN BY:  Jianjun Peng            DATE WRITTEN: July 02, 2004 
C 
C     VARIABLES IN ARGUMENT LIST 
C 
C     VARIABLE I/O  TYPE   DIMENSION   DESCRIPTION AND RANGE 
C     -------- ---  ----   ---------   --------------------------------- 
C     KSTG      I    I         -       SEGMENT NUMBER 
C     FRATEL    I    R         -       FLOW OF LIQUID (KMOL/SEC) 
C     FRATEV    I    R         -       FLOW OF VAPOR (KMOL/SEC) 
C     AVMWLI    I    R         -       AVERAGE MOLECULAR WEIGHT 
C                                      OF LIQUID MIXTURE 
C                                      (KG/KMOL) 
C     AVMWVA    I    R         -       AVERAGE MOLECULAR WEIGHT 
C                                      OF VAPOR MIXTURE (KG/KMOL) 
C     VISCML    I    R         -       VISCOSITY OF LIQUID 
C                                      (N-SEC/SQ.M) 
C     DENMXL    I    R         -       DENSITY OF LIQUID MIXTURE 
C                                      (KMOL/CU.M) 
C     SIGMAL    I    R         -       SURFACE TENSION OF LIQUID 
C                                      (N/M) 
C     VISCMV    I    R         -       VISCOSITY OF VAPOR MIXTURE 
C                                      (N-SEC/SQ.M) 
C     DENMXV    I    R         -       DENSITY OF VAPOR MIXTURE 
C                                      (KMOL/CU.M) 
C     LHLDUP    O    R         -       LIQUID STAGE HOLDUP (CU.M) 
C     VHLDUP    O    R         -       VAPOR STAGE HOLDUP (CU.M) 
C     VSPACE    O    R         -       VAPOR SPACE HOLDUP (CU.M) 
C     COLTYP    I    I         -       TYPE OF COLUMN 
C                                        1 = PACKED 
C                                        2 = TRAY 
C     USRCOR    I    I         -       CALCULATION METHOD (I.E. 
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C                                      CHOICE OF USER CORRELATION) 
C                                        1 = USER1 
C                                        2 = USER2 
C                                        3 = USER3 
C                                        4 = USER4 
C     TWRARA    I    R         -       CROSS-SECTIONAL AREA OF 
C                                      TOWER (SQ.M) 
C     COLDIA    I    R         -       COLUMN DIAMETER (M) 
C     HTPACK    I    R         -       HEIGHT OF PACKING IN THE 
C                                      SEGMENT (M) 
C     PACSIZ    I    R         -       SIZE OF PACKING (M) 
C     SPAREA    I    R         -       SPECIFIC SURFACE AREA OF 
C                                      PACKING (SQ.M/CU.M) 
C     CSIGMA    I    R         -       CRITICAL SURFACE TENSION 
C                                      OF PACKING MATERIAL (N/M) 
C     PFACT     I    R         -       PACKING FACTOR (1/M) 
C     PKPRMS    I    R        20       PACKING PARAMETERS 
C                                      PKPRMS(1) = STICHLMAIR CONSTANT C1 
C                                      PKPRMS(2) = STICHLMAIR CONSTANT C2 
C                                      PKPRMS(3) = STICHLMAIR CONSTANT C3 
C                                      PKPRMS(4) = CL IN BILLET 93 
C                                      PKPRMS(5) = CV IN BILLET 93 
C                                      PKPRMS(6) = B IN BRF 85 
C                                      PKPRMS(7) = S IN BRF 85 
C                                      PKPRMS(8) = H IN BRF 85 
C                                      PKPRMS(9) = Fse IN BRF 92 
C                                      PKPRMS(10) = CE IN BRF 92 
C                                      PKPRMS(11) = THETA IN BRF 92 
C     VOIDFR    I    R         -       VOID FRACTION OF PACKING 
C     PLHOLD    I    R         -       User specified % free volume 
C                                      for liquid holdup 
C     PVHOLD    I    R         -       User specified % free volume 
C                                      for vapor holdup 
C     IPAKAR    I    I         -       PACKING ARRANGEMENT 
C                                        1 = RANDOM 
C                                        2 = STRUCTURED 
C     IPTYPE    I    I         -       PACKING TYPE 
C                                      See IPTYPE in packsr.f 
C     IVENDR    I    I         -       PACKING VENDOR CODE 
C     IPMAT     I    I         -       PACKING MATERIAL CODE 
C     IPSIZE    I    I         -       PACKING SIZE CODE 
C     WEIRHT    I    R         -       AVERAGE WEIR HEIGHT (M) 
C     DCAREA    I    R         -       TOTAL AREA OF DOWNCOMER 
C                                      ON TRAY (SQ.M) 
C     ARAACT    I    R         -       TOTAL ACTIVE AREA AVAILABLE 
C                                      ON TRAY (SQ.M) 
C     FLOPTH    I    R         -       AVERAGE FLOWPATH LENGTH (M) 
C     NPASS     I    I         -       NUMBER OF TRAY PASSES 
C     WEIRL     I    R         -       AVERAGE WEIRH LENGTH (M) 
C     IFMETH    I    I         -       FLOODING CALCULATION 
C                                      METHOD; REQUIRED FOR SIEVE 
C                                      TRAY 
C     SYSFAC    I    R         -       SYSTEM FACTOR; REQUIRED FOR 
C                                      SIEVE TRAY 
C     HOLEAR    I    R         -       HOLE AREA/ACTIVE AREA; REQUIRED 
C                                      FOR SIEVE TRAY 
C     ITTYPE    I    I         -       TRAY TYPE 
C                                        1 = BUBBLE-CAP 
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C                                        2 = VALVE 
C                                        3 = SIEVE 
C                                        4 = USER 
C     TRASPC    I    R         -       TRAY SPACING (M) 
C     PITCH     I    R         -       SIEVE TRAY HOLE PITCH (M) 
C     NINT      I    I         -       Size of INT 
C     INT      I/O   I         *       BLOCK INT ARRAY 
C     NREAL     I    I         -       Size of REAL 
C     REAL     I/O   R         *       BLOCK REAL ARRAY 
C*********************************************************************** 
C 
C     Define local variables 
C 
      INTEGER ITER, KHTERR, KDPERR 
C     Variables used in the Stichlmair 89 correlation 
      REAL*8  DEQ, UL, UV, REV, C1, C2, C3, 
     +        DP, DPDRY, DPWET, FRL, HT, HT0, AUX, F, D, 
     +        C_S, GRAV, FF, HTETA 
C 
C     Variables used in the Bennett 83 correlation 
      REAL*8  RS_BennettA, RS_BennettC, RS_BennettHL 
      REAL*8  FREVOL, US, RHOV, RHOL, ALPHAE, C_B, QL, HL, HF, 
     +        VOID, PLH, PVH 
      DATA GRAV /9.806599D0/ 
C 
      IF (COLTYP .EQ. 1) THEN 
C 
C     PACKED COLUMN 
C 
         VSPACE = 0.0D0 
         IF (USRCOR .EQ. 1) THEN 
C           user subroutine example for packed column: Stichlmair 89 
C 
C           Stichlmair, J., Bravo, J.L. and Fair, J.R., "General Model  
C             for Prediction of Pressure Drop and Capacity of  
C             Countercurrent Gas/Liquid Packed Columns", Gas Sep.  
C             Purif., 3, (1989), P19 
C 
            DEQ = 6D0*(1D0 - VOIDFR)/SPAREA 
            RHOL = AVMWLI*DENMXL 
            RHOV = AVMWVA*DENMXV 
C 
C ***       CALCULATE FRICTION FACTOR *** 
C 
            UV = FRATEV/DENMXV/TWRARA 
            REV = DEQ*UV*RHOV/VISCMV 
            C1 = PKPRMS(1) 
            C2 = PKPRMS(2) 
            C3 = PKPRMS(3) 
            FF = C1/REV + C2/DSQRT(REV) + C3 
            IF (FF .EQ. 0D0) FF = 10D0 
            C_S  = (-C1/REV - C2/2D0/DSQRT(REV))/FF 
C 
C ***       CALCULATE DRY PRESSURE DROP *** 
C 
            DPDRY = 0.75D0*FF*(1D0 - VOIDFR)/VOIDFR**4.65D0 
     1            *RHOV*UV*UV/DEQ/RHOL/GRAV 
C 
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C ***       CALCULATE LIQUID HOLDUP BELOW THE LOADING POINT *** 
C 
            UL  = FRATEL/DENMXL/TWRARA 
            FRL = UL*UL*SPAREA/GRAV/VOIDFR**4.65D0 
            HT0 = .555D0*FRL**(0.33333333D0) 
C 
C ***       SET INITIAL ESTIMATE OF WET PRESSURE DROP *** 
C 
            DP  = DPDRY 
            ITER = 0 
C 
C ***       CALCULATE WET PRESSURE DROP USING NEWTON'S METHOD *** 
C 
  101       KHTERR = 0 
            HT = HT0*(1D0 + 20D0*DP*DP) 
            HTETA  = HT/VOIDFR 
            IF (HTETA .GE. 1D0) THEN 
               KHTERR = 1 
            ELSE 
               AUX = ((1D0 -VOIDFR*(1D0 -HTETA))/(1D0 -VOIDFR)) 
     1             **((2D0 +C_S)/3D0) 
               F = DP/DPDRY -AUX/(1D0 -HTETA)**4.65D0 
               D = 1D0/DPDRY -40D0*HT0*DP*AUX/(1D0 -HTETA)**4.65D0* 
     1           (4.65/(VOIDFR -HT) +(2D0+C_S)/3D0/(1D0 -VOIDFR +HT)) 
            END IF 
C           END OF IF (HTETA... 
C 
C ***       CHECK IF LIQUID OCCUPIES THE WHOLE PACKING VOIDAGE *** 
C 
            IF (KHTERR .EQ. 1) THEN 
               HT = DMAX1(VOIDFR, HT0) 
               DPWET = DSQRT((HT/HT0 - 1D0)/20D0) 
               GOTO 301 
            END IF 
C           END OF IF (KHTERR... 
C 
C ***       GET NEW ESTIMATE *** 
C 
            DPWET = DP - F/D 
C 
C ***       CHECK FOR CONVERGENCE *** 
C  
            IF (DABS(DPWET - DP)/DP .GT. 1D-12) THEN 
               IF (DPWET .GT. 0.3D0) DPWET = 0.3D0 
               IF (DPWET .LT. 0.0D0) DPWET = 0.01D0 
               ITER = ITER + 1 
               IF (ITER .GT. 30) THEN 
                  KDPERR = 5 
                  GOTO 201 
               END IF 
               DP = DPWET 
               GOTO 101 
            END IF 
C           END OF IF (DABS... 
C 
C ***       CALCULATE TOTAL LIQUID HOLDUP *** 
C 
  201       HT = HT0 * (1D0 + 20D0*DPWET*DPWET) 
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  301       LHLDUP = HT * TWRARA * HTPACK 
            VHLDUP = (1D0 - HT - VOIDFR) * TWRARA * HTPACK 
 
C NEW CODE - USRCOR = 2 
C BASED ON SPIEGEL AND MEIER, REGRESSED FOR MP252Y FOLLOWING TSAI(2010) INITIAL WORK 
C THIS CASE IS FOR THE OPERATIONAL REGION UNDER THE LOADING POINT 
 
C option two for specific case of Mellapak Plus 252Y by Anderson Soares Chinen 2018 
         ELSE IF (USRCOR .EQ. 2) THEN 
              RHOL = AVMWLI*DENMXL 
              UL = FRATEL/DENMXL/TWRARA 
               
              HT=REAL(1)*(3.185966*(VISCML/RHOL)**0.3333*(UL)) 
     +**REAL(2) 
C Total holdup calculation               
              LHLDUP = HT * TWRARA * HTPACK 
              VHLDUP = (1D0 - HT - VOIDFR) * TWRARA * HTPACK 
         END IF 
C        END OF IF (USRCOR... 
C 
      ELSE IF (COLTYP .EQ. 2) THEN 
C 
C     TRAY COLUMN 
C 
         IF (USRCOR .EQ. 1) THEN 
C           user subroutine example for tray column: Bennett 83 
C 
C           Bennett, D.L., Agrawal, R. and Cook, P.J., "New Pressure  
C             Drop Correlation for Sieve Tray Distillation Columns", 
C             AIChE J., 29, (1983) p 434   
C 
            US = FRATEV/DENMXV/ARAACT 
            RHOV = DENMXV * AVMWVA 
            RHOL = DENMXL * AVMWLI 
            ALPHAE = RS_BennettA(US, RHOL, RHOV) 
            C_B = RS_BennettC(WEIRHT) 
            QL = FRATEL/DENMXL 
            HL =RS_BennettHL (ALPHAE, WEIRHT, C_B, QL, WEIRL) 
            HF = HL/ALPHAE 
            LHLDUP = HL*ARAACT 
            VHLDUP = (HF-HL)*ARAACT 
            VSPACE = TRASPC*(ARAACT+DCAREA) 
     +             - (LHLDUP+VHLDUP)*(ARAACT+DCAREA)/ARAACT 
C 
         END IF 
C        END OF IF (USRCOR... 
C 
      END IF 
C     END OF IF (COLTYP... 
 
      RETURN 
      END 
 

A.3 Mass transfer coefficients FORTRAN code 

      SUBROUTINE USRMTRF3(KSTG,   NCOMPS, IDX,    NBOPST, KPDIAG, 
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     1                    XCOMPB, FRATEL, YCOMPB, FRATEV, PRESS, 
     2                    TLIQ,   TVAP,   AVMWLI, AVMWVA, VISCML, 
     3                    DENMXL, SIGMAL, VISCMV, DENMXV, AREAIF, 
     4                    PREK,   EXPKD,  COLTYP, USRCOR, TWRARA, 
     5                    COLDIA, HTPACK, PACSIZ, SPAREA, CSIGMA, 
     6                    PFACT,  PKPRMS, VOIDFR, IPAKAR, IPTYPE, 
     7                    IVENDR, IPMAT,  IPSIZE, WEIRHT, DCAREA,  
     8                    ARAACT, FLOPTH, NPASS,  WEIRL,  IFMETH,  
     9                    SYSFAC, HOLEAR, ITTYPE, TRASPC, PITCH,   
     A                    IPHASE, NINT,   INT,    NREAL,  REAL) 
      IMPLICIT NONE 
      INTEGER KSTG, NCOMPS, IDX(NCOMPS), NBOPST(6), KPDIAG, 
     +        COLTYP, USRCOR, IPAKAR, IPTYPE, IVENDR, IPMAT,  IPSIZE,  
     +        NPASS, IFMETH, ITTYPE, NINT, INT(NINT), IPHASE, NREAL 
      REAL*8  XCOMPB(NCOMPS), FRATEL, YCOMPB(NCOMPS), FRATEV, 
     +        PRESS, TLIQ, TVAP, AVMWLI, AVMWVA, VISCML, DENMXL, 
     +        SIGMAL, VISCMV, DENMXV, AREAIF, PREK, EXPKD, 
     +        TWRARA, COLDIA, HTPACK, PACSIZ, SPAREA, CSIGMA, 
     +        PFACT,  PKPRMS(20), VOIDFR, WEIRHT, DCAREA, ARAACT, 
     +        FLOPTH, WEIRL, SYSFAC, HOLEAR, TRASPC, PITCH,  
     +        REAL(NREAL) 
C*********************************************************************** 
C  LICENSED MATERIAL.  PROPERTY OF ASPEN TECHNOLOGY, INC.  TO BE       * 
C  TREATED AS ASPEN TECH PROPRIETARY INFORMATION UNDER THE TERMS       * 
C  OF THE ASPEN PLUS SUBSCRIPTION AGREEMENT.                           * 
C*********************************************************************** 
C----------------------------------------------------------------------- 
C         COPYRIGHT (C) 2004 
C          ASPEN TECHNOLOGY, INC. 
C          CAMBRIDGE, MA 
C----------------------------------------------------------------------- 
C 
C     DESCRIPTION: User provided RateSep routine to calculate the 
C                  liquid (IPHASE=0) and vapor (IPHASE=1) binary mass 
C                  transfer coefficient parameters (PREK, EXPKD). 
C 
C     VARIABLES IN ARGUMENT LIST 
C 
C     VARIABLE I/O  TYPE   DIMENSION   DESCRIPTION AND RANGE 
C     -------- ---  ----   ---------   --------------------------------- 
C     KSTG      I    I         -       SEGMENT NUMBER 
C     NCOMPS    I    I         -       NUMBER OF COMPONENTS 
C     IDX       I    I       NCOMPS    COMPONENT INDEX VECTOR 
C     NBOPST    I    I         6       PHYSICAL PROPERTY OPTION 
C                                      SET BEAD POINTER 
C     KPDIAG    I    I         -       PHYSICAL PROPERTY 
C                                      DIAGOSTIC CODE 
C     XCOMPB    I    R       NCOMPS    BULK LIQUID MOLE FRACTION 
C     FRATEL    I    R         -       FLOW OF LIQUID (KMOL/SEC) 
C     YCOMPB    I    R       NCOMPS    BULK VAPOR MOLE FRACTION 
C     FRATEV    I    R         -       FLOW OF VAPOR (KMOL/SEC) 
C     PRESS     I    R         -       PRESSURE (N/SQ.M) 
C     TLIQ      I    R         -       LIQUID TEMPERATURE (K) 
C     TVAP      I    R         -       VAPOR TEMPERATURE (K) 
C     AVMWLI    I    R         -       AVERAGE MOLECULAR WEIGHT 
C                                      OF LIQUID MIXTURE 
C                                      (KG/KMOL) 
C     AVMWVA    I    R         -       AVERAGE MOLECULAR WEIGHT 
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C                                      OF VAPOR MIXTURE (KG/KMOL) 
C     VISCML    I    R         -       VISCOSITY OF LIQUID 
C                                      (N-SEC/SQ.M) 
C     DENMXL    I    R         -       DENSITY OF LIQUID MIXTURE 
C                                      (KMOL/CU.M) 
C     SIGMAL    I    R         -       SURFACE TENSION OF LIQUID 
C                                      (N/M) 
C     VISCMV    I    R         -       VISCOSITY OF VAPOR MIXTURE 
C                                      (N-SEC/SQ.M) 
C     DENMXV    I    R         -       DENSITY OF VAPOR MIXTURE 
C                                      (KMOL/CU.M) 
C     AREAIF    I    R         -       INTERFACIAL AREA 
C                                      (SEE NOTE-1 BELOW) 
C     PREK      O    R         -       BINARY MASS TRANSFER = 
C     EXPRKD    O    R         -          PREK*DIFFUSIVITY**EXPKD 
C                                      (SEE NOTE-2 BELOW) 
C     COLTYP    I    I         -       TYPE OF COLUMN 
C                                      1 = PACKED 
C                                      2 = TRAY 
C     USRCOR    I    I         -       CALCULATION METHOD (I.E. 
C                                      CHOICE OF USER CORRELATION) 
C                                        1  = USER1 
C                                        2  = USER2 
C                                        3  = USER3 
C                                        4  = USER4 
C     TWRARA    I    R         -       CROSS-SECTIONAL AREA OF 
C                                      TOWER (SQ.M) 
C     COLDIA    I    R         -       COLUMN DIAMETER (M) 
C     HTPACK    I    R         -       HEIGHT OF PACKING IN THE 
C                                      SEGMENT (M) 
C     PACSIZ    I    R         -       SIZE OF PACKING (M) 
C     SPAREA    I    R         -       SPECIFIC SURFACE AREA OF 
C                                      PACKING (SQ.M/CU.M) 
C     CSIGMA    I    R         -       CRITICAL SURFACE TENSION 
C                                      OF PACKING MATERIAL (N/M) 
C     PFACT     I    R         -       PACKING FACTOR (1/M) 
C     PKPRMS    I    R        20       PACKING PARAMETERS 
C                                      PKPRMS(1) = STICHLMAIR CONSTANT C1 
C                                      PKPRMS(2) = STICHLMAIR CONSTANT C2 
C                                      PKPRMS(3) = STICHLMAIR CONSTANT C3 
C                                      PKPRMS(4) = CL IN BILLET 93 
C                                      PKPRMS(5) = CV IN BILLET 93 
C                                      PKPRMS(6) = B IN BRF 85 
C                                      PKPRMS(7) = S IN BRF 85 
C                                      PKPRMS(8) = H IN BRF 85 
C                                      PKPRMS(9) = Fse IN BRF 92 
C                                      PKPRMS(10) = CE IN BRF 92 
C                                      PKPRMS(11) = THETA IN BRF 92 
C     VOIDFR    I    R         -       VOID FRACTION OF PACKING 
C     IPAKAR    I    I         -       PACKING ARRANGEMENT 
C                                        1 = RANDOM 
C                                        2 = STRUCTURED 
C     IPTYPE    I    I         -       PACKING TYPE 
C                                      See IPTYPE in packsr.f 
C     IVENDR    I    I         -       PACKING VENDOR CODE 
C     IPMAT     I    I         -       PACKING MATERIAL CODE 
C     IPSIZE    I    I         -       PACKING SIZE CODE 
C     WEIRHT    I    R         -       AVERAGE WEIR HEIGHT (M) 
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C     DCAREA    I    R         -       TOTAL AREA OF DOWNCOMER 
C                                      ON TRAY (SQ.M) 
C     ARAACT    I    R         -       TOTAL ACTIVE AREA AVAILABLE 
C                                      ON TRAY (SQ.M) 
C     FLOPTH    I    R         -       AVERAGE FLOWPATH LENGTH (M) 
C     NPASS     I    I         -       NUMBER OF TRAY PASSES 
C     WEIRL     I    R         -       AVERAGE WEIRH LENGTH (M) 
C     IFMETH    I    I         -       FLOODING CALCULATION 
C                                      METHOD; REQUIRED FOR SIEVE 
C                                      TRAY 
C     SYSFAC    I    R         -       SYSTEM FACTOR; REQUIRED FOR 
C                                      SIEVE TRAY 
C     HOLEAR    I    R         -       HOLE AREA/ACTIVE AREA; REQUIRED 
C                                      FOR SIEVE TRAY 
C     ITTYPE    I    I         -       TRAY TYPE 
C                                        1 - BUBBLE CAPS 
C                                        2 - SIEVE 
C                                        3 - GLITSCH BALLAST 
C                                        4 - KOCH FLEXITRAY 
C                                        5 - NUTTER FLOAT VALVE 
C     TRASPC    I    R         -       TRAY SPACING (M) 
C     PITCH     I    R         -       SIEVE TRAY HOLE PITCH (M) 
C     IPHASE    I    I         -       PHASE QUALIFIER 
C                                        0 = LIQUID 
C                                        1 = VAPOR 
C     NINT      I    I         -       Size of INT 
C     INT      I/O   I       NINT      User correlation INT array 
C     NREAL     I    I         -       Size of REAL 
C     REAL     I/O   I       NREAL     User correlation REAL array 
C 
C    NOTE-1: 
C         SPECIFIC INTERFACIAL AREA "AREAIF" HAS THE FOLLOWING UNITS. 
C           FOR PACKED COLUMNS, THE UNITS IS "SQ.M/CU.M OF PACKING" 
C           FOR TRAY COLUMNS, THE UNITS IS "SQ.M/SQ.M ACTIVE TRAY AREA" 
C 
C    NOTE-2: 
C         BINMTP = PREK * DIFFUSIVITY**EXPKD 
C         BINARY MASS TRANSFER COEFFCIENTS "BINMTP" HAVE UNITS (KMOL/SEC) 
C         DIFFUSIVITY HAVE UNITS (SQ.M/SEC) 
C         BINMTP HAS MOLAR DENSITY AND INTERFACIAL AREA INCLUDED 
C 
C*********************************************************************** 
C     Declare local variables used in the user correlations 
C 
      REAL*8 RS_BennettHL 
      REAL*8 RS_BennettA 
      REAL*8 RS_BennettC 
      REAL*8 ScLB,   ScVB,   rhoLms, rhoVms, ReLPrm, P, GM, 
     +       uL,     uV,     Fs,     QL, tL, THETA, dEQ, C,    
     +       uSV,   alphae, hL,     ShLB,   ReV, uSL, S, B, H, CE, 
     +       dTemp, Gz, Ka, Fth, uLE, uVE, DELTA, hld, G1, G2, 
     +        vel, hydia, qsoln, w, dtempa 
C 
C     Instead of computing BINMTP from diffusivity as in RATEFRAC 
C     compute PREK and EXPKD for RateSep 
C 
      IF (COLTYP .EQ. 1) THEN 
C 
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C**** PACKED COLUMN 
C 
         IF (USRCOR .EQ. 1) THEN 
C           user subroutine example for packed column: Onda 68 
C 
C           Onda, K., Takeuchi, H. and Okumoto, Y., "Mass Transfer 
C             Coefficients between Gas and Liquid Phases in Packed 
C             Columns", J. Chem. Eng. Jap., 1, (1968) P56 
C 
            IF (IPHASE.EQ.0) THEN 
C 
C              Liquid phase 
C 
               rhoLms = DENMXL * AVMWLI 
               uL = FRATEL / TWRARA / DENMXL 
               ReLPrm = rhoLms * uL / VISCML / AREAIF 
               dTemp = (rhoLms/9.81D0/VISCML)**(0.33333333D0) 
               dTemp = 0.0051D0 * (ReLPrm**(0.66666667D0)) 
     +                *((SPAREA*PACSIZ)**(0.4D0)) / dTemp 
C 
C              CONVERT K FROM M/S TO KMOL/S 
               dTemp = dTemp * TWRARA * HTPACK * AREAIF * DENMXL 
C 
C              COMPOSITION INDEPENDENT PART OF SCHMIDT NUMBER 
               ScLB = VISCML / rhoLms 
C 
               PREK  = dTemp / DSQRT(ScLB) 
               EXPKD = 0.5D0 
C 
            ELSE 
C 
C              Vapor phase 
C 
                rhoVms = DENMXV * AVMWVA 
                uV = FRATEV / TWRARA / DENMXV 
                ReV = rhoVms * uV / VISCMV / SPAREA 
                dTemp = SPAREA*PACSIZ 
                dTemp = dTemp * dTemp 
                   IF (PACSIZ .GE. 0.015D0) THEN 
                       dTemp = 5.23D0 / dTemp 
                   ELSE 
                       dTemp = 2.0D0 / dTemp 
                   END IF 
                dTemp = dTemp * (ReV**(0.7D0)) * SPAREA 
C 
C               CONVERT K FROM M/S TO KMOL/S 
                dTemp = dTemp * TWRARA * HTPACK * AREAIF * DENMXV 
C 
C               COMPOSITION INDEPENDENT PART OF SCHMIDT NUMBER 
                ScVB = VISCMV / rhoVms 
C 
                PREK = dTemp * ScVB ** 0.33333333D0 
                EXPKD = 0.66666667D0 
             END IF 
C            END OF IF (IPHASE) 
C 
         ELSE IF (USRCOR .EQ. 2) THEN 
C        This code is for mass transfer coefficients using Wang Chao 2013.          
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C        The gas coefficient uses a modified version BRF-96 
C        Modifying factor kL = REAL(1) kG = REAL(2)    
C        HOLDUP = REAL(3)  
C        THETA = REAL(4) 
C        S = REAL(5)     
C 
         dTemp = REAL(1) 
         CE = REAL(2)        
         hld = REAL(3)                             
         THETA = REAL(4) 
         S = REAL(5) 
         G1 = REAL(6) 
         G2 = REAL(7) 
 
 
 
            IF (IPHASE.EQ.0) THEN 
C 
C           Liquid phase 
C 
C           Access to user variable array     (Except for PREK, this is no longer needed)                       
                uL = FRATEL / (TWRARA * DENMXL) 
                  
                PREK = hld*(uL)**THETA 
C                   
C           Conversion of K from m/s to kmol/s                 
                PREK = dTemp * PREK * DENMXL *AREAIF * HTPACK * TWRARA 
                EXPKD = 0 
            ELSE 
C 
C           Vapor phase 
C 
          uV = FRATEV / TWRARA / DENMXV                
          PREK = G1*(uV)**G2 
C  
C           Conversion of K from m/s to kmol/s                 
                PREK = CE * PREK * DENMXV *AREAIF * HTPACK * TWRARA 
                EXPKD = 0                    
            END IF  
C           END OF IF (PHASE) 
 
CCCCCCCCCCCCCCCCCCCCCCCC 
         ELSE IF (USRCOR .EQ. 3) THEN 
C        This code is for mass transfer coefficients using ROCHA 1996.          
             rhoVms=DENMXV*AVMWVA 
             rhoLms=DENMXL*AVMWLI 
             uL=FRATEL/(TWRARA*DENMXL) 
             uV=FRATEV/TWRARA/DENMXV     
             hld=11.45*(3.185966*(VISCML/rhoLms)**0.3333*(uL))**0.6471 
             uV=uV/VOIDFR/(1-hld)/0.7071 
             uL=uL/VOIDFR/hld/0.7071 
              
            IF (IPHASE.EQ.0) THEN 
C 
C           Liquid phase 
C 
C           Access to user variable array     (Except for PREK, this is no longer needed)                       
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                PREK=2*(0.9*uL/3.14/0.017)**0.5 
C                   
C           Conversion of K from m/s to kmol/s                 
                PREK = PREK * DENMXL *AREAIF * HTPACK * TWRARA 
                EXPKD = 0.5 
            ELSE 
C 
C           Vapor phase 
C 
         
          PREK = 0.054/0.017*((uV+uL)*rhoVms*0.017/VISCMV)**0.8 
     +*(VISCMV/rhoVms)**0.33                      
C  
C           Conversion of K from m/s to kmol/s                 
                PREK = REAL(5)*PREK*DENMXV*AREAIF*HTPACK*TWRARA 
                EXPKD = 0.67                    
            END IF  
C           END OF IF (PHASE)         
CCCCCCCCCCCCCCCCCCCCCCCC 
 
 
C     FOR WWC  
      ELSE IF (USRCOR .EQ. 9) THEN 
C 
      IF (IPHASE.EQ.0) THEN 
C 
C Liquid phase 
C 
CC      qsoln =FRATEL/DENMXL / 100 
C The factor of 100 is needed since the simulation has 10x diamter (100x flow). 
C 
CCC      w = 0.03958407 
C w is the circumfrence of the column in meters. Diamter of WWC is 0.0126m 
C 
CCC      dTemp = 3**0.3333*2**0.5/3.1416**0.5 
CCC      dTemp = dTemp*qsoln**0.3333*0.091**0.5*w**0.6667/0.003852 
CCC      dTemp = dTemp*(9.81*DENMXL/VISCML*AVMWLI)**0.1667 
C     The proceeding equation is a simplification of the equaitons in Cullinane's thesis,  
pages 57-60. The simplification for theta is used to allow the form Aspen requires. 
C      The constants 0.091, 0.003852, and 9.81 refer to the height of the WWC, the area 
of the 
C     WWC and acceleration due to gravity. 
 
C CONVERT K FROM M/S TO KMOL/S 
CCC      dTemp = dTemp*TWRARA*HTPACK*AREAIF*DENMXL 
C This is the conversion used in the Onda mass transfer routine 
CCC      PREK = dtemp*1.0 
CCC      EXPKD = 0.5D0 
      dTemp = 0.042064*(DENMXL/FRATEL*0.0004)**1.3333 
      dTemp = dTemp*(DENMXL*AVMWLI*9.81/VISCML)**0.3333 
      PREK = dTemp**0.3333*FRATEL/DENMXL/AREAIF/1.46592 
      PREK = PREK*TWRARA*HTPACK*DENMXL*AREAIF 
      EXPKD = 0.3333 
C 
      ELSE 
C 
C Vapor phase 
C 
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C From Pacheco's correlation: R*T*kg*d/DCO2=1.075(Re*Sc*d/h)^0.85 
C Simplified, this gives RTkg=1.075*DCO2^.15*d^.7*(v/h)^.85 
C 
CCC      vel = FRATEV/TWRARA/DENMXV 
CCC      hydia = 0.0044D0 
C This corresponds to the estimated hydraulic diameter of the WWC, 0.44cm. 
c 
CCC      dTemp = 1.075D0*hydia**0.7D0 
CCC      dTemp = dTemp*(vel/(0.091D0))**0.85D0 
C The constant, 0.091, corresponds to the height of the WWC. Aspen has a argument for the 
C height of a stage but nothing for the # of stages. Therefore the total height was 
hardwired. 
C 
CCC      dTemp = dTemp*DENMXV*AREAIF*TWRARA*HTPACK 
C This time the number of stages is not need bc this mass tranfer coeffient is the moles 
reacted by stage 
C Note: this correlation results in a MT value (in mol/s) 100 times greater than the 
calculated excel value due to 10x diameter. 
C 
CCC      PREK = dtemp 
CCC      EXPKD = 0.15D0 
C 
      dTemp = 0.002897*(FRATEV/TWRARA/DENMXV/0.091)**0.85 
      PREK = dTemp*TWRARA*HTPACK*DENMXL*AREAIF 
      EXPKD = 0.15 
       
      END IF 
C END OF IF (IPHASE) 
C 
 
      END IF 
C END OF IF (USRCOR) 
c 
C This is the end of the Dugas Modification 
 
 
      ELSE IF (COLTYP .EQ. 2) THEN 
C 
C**** TRAY COLUMN 
C 
         IF (USRCOR .EQ. 1) THEN 
C           user subroutine example for tray column: AIChE 58 
C 
C           AIChE, Bubble Tray Design Manual: Prediction of Fractionation 
C             Efficiency, New York, 1958 
C 
C           For bubble cap, valve, and sieve trays 
C 
            IF (IPHASE.EQ.0) THEN 
C 
C              Liquid phase 
C 
               rhoVms = DENMXV * AVMWVA 
               rhoLms = DENMXL * AVMWLI 
               uV = FRATEV /DENMXV /ARAACT 
               Fs = uV * DSQRT(rhoVms) 
               C = 0.5D0 + 0.438D0 * DEXP(-137.8 * WEIRHT) 
               QL = FRATEL/DENMXL 
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               ALPHAE = DEXP(-12.55D0*(uV*DSQRT(RHOVMS/DABS(RHOLMS- 
     1                  RHOVMS)))**0.91D0) 
               hL =ALPHAE*(WEIRHT + C*(QL/WEIRL/ALPHAE)**0.67D0) 
               dTemp = 19700.0D0 *(0.4D0*Fs+0.17D0) * hL 
     +                 * ARAACT * DENMXL 
C 
               PREK = dTemp 
               EXPKD = 0.5D0 
C 
            ELSE 
C 
C              Vapor phase 
C 
               rhoVms = DENMXV * AVMWVA 
               uV = FRATEV /DENMXV /ARAACT 
               Fs = uV * DSQRT(rhoVms) 
               QL = FRATEL/DENMXL 
               dTemp = 0.776 + 4.57*WEIRHT - 0.238*Fs 
     +                + 104.8*QL/WEIRL 
               dTemp = dTemp * uV * ARAACT * DENMXV 
C 
C              COMPOSITION INDEPENDENT PART OF SCHMIDT NUMBER 
               ScVB = VISCMV / rhoVms 
C 
               PREK = dTemp /DSQRT(ScVB) 
               EXPKD = 0.5D0 
             END IF 
C            END OF IF (IPHASE) 
C 
         END IF    
C        END OF IF (USRCOR) 
C 
 END IF    
C     END OF IF (COLTYP) 
C 
      RETURN 
      END 
 

A.4 Interfacial area FORTRAN code 

      SUBROUTINE awang(KSTG,   NCOMPS, IDX,    NBOPST, KPDIAG, 
     1                    XCOMPB, FRATEL, YCOMPB, FRATEV, PRESS, 
     2                    TLIQ,   TVAP,   AVMWLI, AVMWVA, VISCML, 
     3                    DENMXL, SIGMAL, VISCMV, DENMXV, AREAIF, 
     4                    COLTYP, USRCOR, TWRARA, COLDIA, HTPACK, 
     5                    PACSIZ, SPAREA, CSIGMA, PFACT,  PKPRMS, 
     6                    VOIDFR, IPAKAR, IPTYPE, IVENDR, IPMAT,  
     7                    IPSIZE, WEIRHT, DCAREA, ARAACT, FLOPTH,  
     8                    NPASS,  WEIRL,  IFMETH, SYSFAC, HOLEAR,  
     9                    ITTYPE, TRASPC, PITCH,  NINT,   INT,     
     A                    NREAL,  REAL) 
      IMPLICIT NONE 
      INTEGER KSTG, NCOMPS, IDX(NCOMPS), NBOPST(6), KPDIAG, 
     +        COLTYP, USRCOR, IPAKAR, IPTYPE, IVENDR, IPMAT,  IPSIZE,  
     +        NPASS, IFMETH, ITTYPE, NINT, INT(NINT), NREAL 
      REAL*8  XCOMPB(NCOMPS), FRATEL, YCOMPB(NCOMPS), FRATEV, 
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     +        PRESS, TLIQ, TVAP, AVMWLI, AVMWVA, VISCML, DENMXL, 
     +        SIGMAL, VISCMV, DENMXV, AREAIF, TWRARA, COLDIA, 
     +        HTPACK, PACSIZ, SPAREA, CSIGMA, PFACT, PKPRMS(20), 
     +        VOIDFR, WEIRHT, DCAREA, ARAACT, FLOPTH, WEIRL, 
     +        SYSFAC, HOLEAR, TRASPC, PITCH, REAL(NREAL) 
C*********************************************************************** 
C  LICENSED MATERIAL.  PROPERTY OF ASPEN TECHNOLOGY, INC.  TO BE       * 
C  TREATED AS ASPEN TECH PROPRIETARY INFORMATION UNDER THE TERMS       * 
C  OF THE ASPEN PLUS SUBSCRIPTION AGREEMENT.                           * 
C*********************************************************************** 
C----------------------------------------------------------------------- 
C         COPYRIGHT (C) 2004 
C          ASPEN TECHNOLOGY, INC. 
C          CAMBRIDGE, MA 
C----------------------------------------------------------------------- 
C 
C     DESCRIPTION: User provided RateSep routine to calculate the 
C                  specific interface area AREAIF (see NOTE-1). 
C 
C     VARIABLES IN ARGUMENT LIST 
C 
C     VARIABLE I/O  TYPE   DIMENSION   DESCRIPTION AND RANGE 
C     -------- ---  ----   ---------   --------------------------------- 
C     KSTG      I    I         -       SEGMENT NUMBER 
C     NCOMPS    I    I         -       NUMBER OF COMPONENTS 
C     IDX       I    I       NCOMPS    COMPONENT INDEX VECTOR 
C     NBOPST    I    I         6       PHYSICAL PROPERTY OPTION 
C                                      SET BEAD POINTER 
C     KPDIAG    I    I         -       PHYSICAL PROPERTY 
C                                      DIAGOSTIC CODE 
C     XCOMPB    I    R       NCOMPS    BULK LIQUID MOLE FRACTION 
C     FRATEL    I    R         -       FLOW OF LIQUID (KMOL/SEC) 
C     YCOMPB    I    R       NCOMPS    BULK VAPOR MOLE FRACTION 
C     FRATEV    I    R         -       FLOW OF VAPOR (KMOL/SEC) 
C     PRESS     I    R         -       PRESSURE (N/SQ.M) 
C     TLIQ      I    R         -       LIQUID TEMPERATURE (K) 
C     TVAP      I    R         -       VAPOR TEMPERATURE (K) 
C     AVMWLI    I    R         -       AVERAGE MOLECULAR WEIGHT 
C                                      OF LIQUID MIXTURE 
C                                      (KG/KMOL) 
C     AVMWVA    I    R         -       AVERAGE MOLECULAR WEIGHT 
C                                      OF VAPOR MIXTURE (KG/KMOL) 
C     VISCML    I    R         -       VISCOSITY OF LIQUID 
C                                      (N-SEC/SQ.M) 
C     DENMXL    I    R         -       DENSITY OF LIQUID MIXTURE 
C                                      (KMOL/CU.M) 
C     SIGMAL    I    R         -       SURFACE TENSION OF LIQUID 
C                                      (N/M) 
C     VISCMV    I    R         -       VISCOSITY OF VAPOR MIXTURE 
C                                      (N-SEC/SQ.M) 
C     DENMXV    I    R         -       DENSITY OF VAPOR MIXTURE 
C                                      (KMOL/CU.M) 
C     AREAIF    O    R         -       INTERFACIAL AREA 
C                                      (SEE NOTE-1 BELOW) 
C     COLTYP    I    I         -       TYPE OF COLUMN 
C                                      1 = PACKED 
C                                      2 = TRAY 
C     USRCOR    I    I         -       CALCULATION METHOD (I.E. 
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C                                      CHOICE OF USER CORRELATION) 
C                                        1 = USER1 
C                                        2 = USER2 
C                                        3 = USER3 
C                                        4 = USER4 
C     TWRARA    I    R         -       CROSS-SECTIONAL AREA OF 
C                                      TOWER (SQ.M) 
C     COLDIA    I    R         -       COLUMN DIAMETER (M) 
C     HTPACK    I    R         -       HEIGHT OF PACKING IN THE 
C                                      SEGMENT (M) 
C     PACSIZ    I    R         -       SIZE OF PACKING (M) 
C     SPAREA    I    R         -       SPECIFIC SURFACE AREA OF 
C                                      PACKING (SQ.M/CU.M) 
C     CSIGMA    I    R         -       CRITICAL SURFACE TENSION 
C                                      OF PACKING MATERIAL (N/M) 
C     PFACT     I    R         -       PACKING FACTOR (1/M) 
C     PKPRMS    I    R        20       PACKING PARAMETERS 
C                                      PKPRMS(1) = STICHLMAIR CONSTANT C1 
C                                      PKPRMS(2) = STICHLMAIR CONSTANT C2 
C                                      PKPRMS(3) = STICHLMAIR CONSTANT C3 
C                                      PKPRMS(4) = CL IN BILLET 93 
C                                      PKPRMS(5) = CV IN BILLET 93 
C                                      PKPRMS(6) = B IN BRF 85 
C                                      PKPRMS(7) = S IN BRF 85 
C                                      PKPRMS(8) = H IN BRF 85 
C                                      PKPRMS(9) = Fse IN BRF 92 
C                                      PKPRMS(10) = CE IN BRF 92 
C                                      PKPRMS(11) = THETA IN BRF 92 
C     VOIDFR    I    R         -       VOID FRACTION OF PACKING 
C     IPAKAR    I    I         -       PACKING ARRANGEMENT 
C                                        1 = RANDOM 
C                                        2 = STRUCTURED 
C     IPTYPE    I    I         -       PACKING TYPE 
C                                      See IPTYPE in packsr.f 
C     IVENDR    I    I         -       PACKING VENDOR CODE 
C     IPMAT     I    I         -       PACKING MATERIAL CODE 
C     IPSIZE    I    I         -       PACKING SIZE CODE 
C     WEIRHT    I    R         -       AVERAGE WEIR HEIGHT (M) 
C     DCAREA    I    R         -       TOTAL AREA OF DOWNCOMER 
C                                      ON TRAY (SQ.M) 
C     ARAACT    I    R         -       TOTAL ACTIVE AREA AVAILABLE 
C                                      ON TRAY (SQ.M) 
C     FLOPTH    I    R         -       AVERAGE FLOWPATH LENGTH (M) 
C     NPASS     I    I         -       NUMBER OF TRAY PASSES 
C     WEIRL     I    R         -       AVERAGE WEIRH LENGTH (M) 
C     IFMETH    I    I         -       FLOODING CALCULATION 
C                                      METHOD; REQUIRED FOR SIEVE 
C                                      TRAY 
C     SYSFAC    I    R         -       SYSTEM FACTOR; REQUIRED FOR 
C                                      SIEVE TRAY 
C     HOLEAR    I    R         -       HOLE AREA/ACTIVE AREA; REQUIRED 
C                                      FOR SIEVE TRAY 
C     ITTYPE    I    I         -       TRAY TYPE 
C                                        1 - BUBBLE CAPS 
C                                        2 - SIEVE 
C                                        3 - GLITSCH BALLAST 
C                                        4 - KOCH FLEXITRAY 
C                                        5 - NUTTER FLOAT VALVE 
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C     TRASPC    I    R         -       TRAY SPACING (M) 
C     PITCH     I    R         -       SIEVE TRAY HOLE PITCH (M) 
C     NINT      I    I         -       Size of INT 
C     INT      I/O   I       NINT      User correlation INT array 
C     NREAL     I    I         -       Size of REAL 
C     REAL     I/O   I       NREAL     User correlation REAL array 
C 
C     NOTE-1: 
C           SPECIFIC INTERFACIAL AREA "AREAIF" HAS THE FOLLOWING UNITS. 
C            FOR PACKED COLUMNS, THE UNITS IS "SQ.M/CU.M OF PACKING" 
C            FOR TRAY COLUMNS, THE UNITS IS "SQ.M/SQ.M ACTIVE TRAY AREA" 
C 
C*********************************************************************** 
C     Declare local variables used in the user correlations 
C 
      REAL*8 WeL,   dTemp,  uV,    rhoVms, 
     +       uL,    rhoLms, ReL,   FrL,    uL2, 
     +       ReV,    d,     Wprime, LP, Ca, Aa, Bb 
 
C 
C     Compute specific interface area as described above 
C     Check COLTYP/USRCOR if providing multiple area correlations 
C 
      IF (COLTYP .EQ. 1) THEN 
C 
C**** PACKED COLUMN 
C 
         IF (USRCOR .EQ. 1) THEN 
C           user subroutine example for packed column: Onda 68 
C 
C           Onda, K., Takeuchi, H. and Okumoto, Y., "Mass Transfer 
C             Coefficients between Gas and Liquid Phases in Packed 
C             Columns", J. Chem. Eng. Jap., 1, (1968) p. 56 
C 
            rhoLms = DENMXL * AVMWLI 
            uL = FRATEL / TWRARA / DENMXL 
            uL2 = uL * uL 
            ReL = rhoLms * uL / VISCML / SPAREA 
            FrL = SPAREA * uL2 / 9.81D0 
C           WHERE 9.81D0 IS GRAVITY CONSTANT IN M/S^2 
            WeL    = rhoLms * uL2 / SIGMAL / SPAREA 
            dTemp = -1.45D0*((CSIGMA/SIGMAL)**0.75D0) 
     +                     *(ReL**0.1D0)*(FrL**(-0.05D0)) 
     +                     *(WeL**0.2D0) 
            dTemp = 1.D0 - DEXP(dTemp) 
 
            AREAIF = SPAREA*dTemp 
C         
    ELSE IF (USRCOR .EQ. 2) THEN  
C**** *  Correlation for Packing based on Tsai  
C    ae/ap = 1.34*(WeL*FrL**(-1/3))**0.116  
C 
            rhoLms = DENMXL * AVMWLI 
            uL = FRATEL / TWRARA / DENMXL 
            uL2 = uL * uL 
            ReL = rhoLms * uL / VISCML / SPAREA 
            FrL = SPAREA * uL2 / 9.81D0 
            WeL    = rhoLms * uL2 / SIGMAL / SPAREA 
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            rhoLms = AVMWLI * DENMXL 
            uL = FRATEL / TWRARA / DENMXL 
            Aa=Real(2) 
            Bb=Real(3) 
             
            dTemp = Aa*((WeL*FrL**(-1/3))**Bb) 
        
            AREAIF = (SPAREA*dTemp) 
            
    ELSE IF (USRCOR .EQ. 3) THEN  
C**** *  Correlation for Packing based on Tsai  
C    ae/ap = 1.34*(WeL*FrL**(-1/3))**0.116  
C 
            rhoLms = DENMXL * AVMWLI 
            uL = FRATEL / TWRARA / DENMXL 
            uL2 = uL * uL 
            dTemp=1.5*(4*VOIDFR)**(-0.5) 
            dTemp=dTemp*(uL*rhoLms*4*VOIDFR/SPAREA/VISCML)**(-0.2) 
            dTemp=dTemp*(uL*rhoLms*4*VOIDFR/SPAREA/SIGMAL)**(0.75) 
            dTemp=dTemp*(uL2*SPAREA/9.81/4/VOIDFR)**(-0.45) 
      
            AREAIF = (SPAREA*dTemp) 
          
C     Here we start for WWC 
 
    ELSE IF (USRCOR .EQ. 4) THEN  
C**** *  Correlation for Packing based on Bravo (1985)  
C    ae/ap = 1 
C 
            AREAIF = (SPAREA) 
 
          Else if (USRCOR .EQ. 9) THEN 
          AREAIF = 325.444D0 
          
c Actual wetted are of the WWC is 38.52cm2. 
c Column diamter is listed as 0.128655m (a factor of 10 bigger than the area which 
matches gas flow area) and height as 9.1cm. 
c This gives a surface area of 325.444m2/m3 for the Aspen Simulations. 
       END IF 
C END OF IF (USRCOR) 
 
 
      ELSE IF (COLTYP .EQ. 2) THEN 
C 
C**** TRAY COLUMN 
C 
         IF (USRCOR .EQ. 1) THEN 
C           user subroutine example for tray column: Scheffe-Weiland 87 
C 
C           Scheffe, R.D. and Weiland, R.H., "Mass Transfer 
C           Characteristics of Valve Trays." Ind. Eng. Chem. Res. 
C           26, (1987) p. 228 
C 
C           The original paper only mentioned valve tray. 
C           It is also used for bubble-cap tray and sieve tray. 
C 
C           CHARACTERISTIC LENGTH IS ALWAYS 1 METER. 
            d = 1.0D0 
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            rhoLms = DENMXL * AVMWLI 
            rhoVms = DENMXV * AVMWVA 
            uL = FRATEL / TWRARA / DENMXL 
            uV = FRATEV / TWRARA / DENMXV 
            ReL = rhoLms * uL * d / VISCML 
            ReV = rhoVms * uV * d / VISCMV 
            Wprime = WEIRHT / d 
            AREAIF = 0.27D0 * ReV**0.375D0 * ReL**0.247D0 
            AREAIF = AREAIF * Wprime**0.515 
         END IF    
C        END OF IF (USRCOR) 
C  
 END IF    
C     END OF IF (COLTYP) 
C 
      RETURN 
      END 

 

A.5 Diffusivity FORTRAN code 

C Log keyword added 
C 
C$ #1 BY: SUPHAT WATANASIRI 09-SET-2007 USER ROUTINE FOR LIQUID BINARY 
C                                       DIFFUSION COEFFICIENTS 
C 
C ==========================cvs revision history======================== 
      SUBROUTINE DL0U ( T, P, X, N, IDX, IRW, IIW, KCALC, KOP, 
     *                  NDS, KDIAG, QBIN, KER ) 
C*********************************************************************** 
C     Template for DL0U routine for binary liquid diffusion coefficients 
C     STUB ROUTINE 
C 
C     T = temperature 
C     P = pressure (system) 
C     X(N) = mole fraction 
C     N = number of components present in X 
C     IDX(N) = index of component present 
C     IRW = real work area index 
C     IIW = integer work area index 
C     KCALC = calculation code (0=do not calculate, 1 = calculate) 
C     KOP(10) = model option code 
C     NDS = data set number 
C     KDIAG = diagnostic message level 
C     QBIN(N,N) = results. Binary diffusion coeffcients. 
C     QBIN(i,j) is binary diffusion coefficient of component i in component j 
C     KER = error return code (0 = no error) 
C     All input and output in this user routine are in SI Units 
C     with Gas constant = 8314.33 
C*********************************************************************** 
C 
      IMPLICIT NONE 
C 
C     DECLARE VARIABLES USED IN DIMENSIONING 
C 
      INTEGER N 
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#include "dms_global.cmn" 
#include "dms_errout.cmn" 
#include "ppexec_user.cmn" 
#include "dms_maxwrt.cmn" 
#include "dms_plex.cmn" 
C 
C     DECLARE ARGUMENTS 
C 
      INTEGER IDX(N), IRW, IIW, KCALC, NDS, KDIAG, KER, KOP 
 INTEGER IWATER, IMEACOO, ICO2, IHCO3 
 INTEGER IMEAH, IMEA, ICO3, IN2, IO2 
 INTEGER DMS_KCCIDC, DMS_IFCMNC 
      REAL*8 X(N), QBIN(N,N), T, P 
 REAL*8 WATER, MEACOO, CO2, HCO3, MEAH, MEA 
 REAL*8 CO3, VBMEA, MUWO 
 REAL*8 LDG, XCO2T, XMEAT, EFACT1 
 REAL*8 MWMEA, MWCO2, MWH2O, XH2O, MWT, XWMEA 
 REAL*8 XWAMINE, B(1), DFACTCO2, DFACTMEA 
 REAL*8 IOND, CO2D, MEAD, XMOLT, CO2DW 
 REAL*8 MA, MB, MC, MD, ME, MUMX, MUMX1 
 REAL*8 A, E, BB, THET, C, MU0, MUW, R, HG 
 Real*8 VISC, LVISC, B1, C1, DZERO, MU0MEA, T0 
 EQUIVALENCE (B(1), IB(1)) 
 Integer DFACT1, EFACT 
 integer nbopst(6), name(2) 
 CHARACTER*256 BUFFER(1) 
C 
C     DECLARE LOCAL VARIABLES 
C 
      INTEGER IPROG(2), I, J, K 
C 
C      DATA STATEMENTS 
C 
      DATA IPROG /4HDL0U, 4H    / 
C 
C     BEGIN EXECUTABLE CODE 
C DIFFUSIVITIES CALCULATED BY (...) METHOD 
C VALUES OBTAINED FROM THE DIFFUSIVITY REGRESSION 
 KER = 0 
 IF (KCALC .EQ. 0) RETURN 
c 
C INDEX VALUES FOR COMPONENTS IN SIMULATION 
C 
      IWATER = DMS_KCCIDC('H2O') 
      IMEACOO = DMS_KCCIDC('MEACOO-') 
      ICO2 = DMS_KCCIDC('CO2') 
 IHCO3  = DMS_KCCIDC('HCO3-') 
      IMEAH = DMS_KCCIDC('MEAH+') 
      IMEA = DMS_KCCIDC('MEA')   
 ICO3 = DMS_KCCIDC('CO3--') 
 IN2 = DMS_KCCIDC('N2') 
 IO2 = DMS_KCCIDC('O2')     
C 
C 
C ASSIGNMENT OF INDEX NUMBERS FOR SPECIES PRESENT 
C 
 DO 50 I = 1, N 
 IF (IDX(I). EQ. IWATER) IWATER = I 



153 
 

 IF (IDX(I). EQ. IMEACOO) IMEACOO = I 
 IF (IDX(I). EQ. ICO2) ICO2 = I 
 IF (IDX(I). EQ. IHCO3) IHCO3 = I 
 IF (IDX(I). EQ. IMEAH) IMEAH = I 
 IF (IDX(I). EQ. IMEA) IMEA = I 
 IF (IDX(I). EQ. ICO3) ICO3 = I 
 IF (IDX(I). EQ. IN2) IN2 = I 
 IF (IDX(I). EQ. IO2) IO2 = I 
   50 CONTINUE 
C 
C LOADING CALCULATION 
 XCO2T = X(IMEACOO)+X(ICO2)+X(IHCO3) 
 XMEAT = X(IMEACOO)+X(IMEAH)+X(IMEA) 
 LDG = XCO2T/(XMEAT) 
C 
C 
C AMINE MASS FRACTION CALCULATION 
C 
 MWMEA = 61.8D0 
 MWCO2 = 44.01D0 
 MWH2O = 18D0 
 XH2O = X(IWATER) 
 MWT = XCO2T*MWCO2 + XMEAT*MWMEA + XH2O*MWH2O 
 
c Viscosity of solution from Aspen 
 call PPUTL_GOPSET ( NBOPST , NAME ) 
c 
 CALL PPMON_VISCL (T, P, X, N, IDX, NBOPST, KDIAG, VISC, KER) 
 LVISC = VISC 
 MUMX = LVISC 
C 
C     Viscosity of water according to Likhachev E.R. Technical Physics, Vol. 48 N0.4 2003 
pp. 514-515 
C     Viscosity in Pa-s 
      E = 4.753D0 
      MU0 = 0.000024055D0 
      THET = 139.7D0  
 A = 0.000442D0 
 BB = 0.0009565D0 
 C = 0.0124D0 
 R = 0.008314D0 
 P = P / 100000D0 
 HG = A * P +((E - BB * P)/(R * (T - THET - C * P))) 
 MUW = (MU0 * EXP(HG)) 
C 
C     DFACT1, EFACT STORE THE POSITION OF REGRESSED PARAMETERS FOR DIFF. CORRELATION 
C THEY REFER TO THE VALUES SPECIFIED IN PROPERTY-PARAMETER-USRDEF 
 
      DFACT1 = DMS_IFCMNC('DFACT1') 
      EFACT = DMS_IFCMNC('EFACT') 
C DFACT2 = DMS_IFCMNC('DFACT2') 
C     ASSIGNS THE DFACT1 POSITION TO CO2 AND DFACT2 POSITION TO MEA 
 DFACTCO2 = B(DFACT1+IDX(ICO2)) 
      DFACTMEA = B(DFACT1+IDX(IMEA)) 
      EFACT1 = B(EFACT+IDX(ICO2)) 
C 
C     DIFFUSIVITY OF CO2 IN WATER 
      CO2DW = 0.00000235D0 * EXP(-2119D0 / T) 
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C       
C     DIFFUSIVITY OF CO2 IN SOLUTION BASED ON VERSTEEG, 1988 
      CO2D = CO2DW * (MUW / MUMX)**(0.8D0)*((T/313.15)**(EFACT1)) 
      CO2D = CO2D * DFACTCO2 
       
      CO2D = ((DFACTCO2)**2)/DFACTMEA * (MUW/MUMX)**0.8 
      CO2D = CO2D*(T/313.15)**(EFACT1) 
C 
 
C     Diffusivity of Amine in water Hayduk and Laudie, 1974. AIChe Journal Vol.20 No. 3 
C     DZERO in cm^2/s 
C 
     
C      
C     Diffusivity of amine in solution - Aboudheir 
C      
      MEAD = (1/((MUMX/MUW)**0.8D0))*((T/313.15)**(EFACT1)) 
      MEAD = MEAD * DFACTMEA 
C 
C 
C 
C     ASSIGNING VALUES IN THE DIFFUSIVITY MATRIX 
C        
C 
      DO 200 I = 1, N 
        DO 100 J = 1, N 
          IF (I.EQ.J) THEN 
            QBIN(I,J) = 0D0 
            
          ELSE 
            QBIN(I,J) = MEAD 
            
            IF (I.EQ.ICO2)QBIN(I,J) = CO2D 
            IF (J.EQ.ICO2)QBIN(I,J) = CO2D 
            IF (I.EQ.IN2)QBIN(I,J) = CO2D 
            IF (J.EQ.IN2)QBIN(I,J) = CO2D       
          END IF 
  100   CONTINUE 
  200 CONTINUE 
 
c 
C WRITE VARIABLES TO HISTORY FILE 
C 
C  THE WRITE TO UNIT USER_NHSTRY WRITES TO THE HISTORY FILE 
 WRITE (BUFFER, *) 'Executed fortran subroutine' 
 CALL DMS_WRTALN(USER_NHSTRY, BUFFER(1)) 
 WRITE (BUFFER, *) 'Pressure ', P 
 CALL DMS_WRTALN(USER_NHSTRY, BUFFER(1)) 
 WRITE (BUFFER, *) 'Temperature ', T 
 CALL DMS_WRTALN(USER_NHSTRY, BUFFER(1)) 
 WRITE (BUFFER, *) 'LVISC ', LVISC 
 CALL DMS_WRTALN(USER_NHSTRY, BUFFER(1)) 
 WRITE (BUFFER, *) ' ' 
 CALL DMS_WRTALN(USER_NHSTRY, BUFFER(1)) 
  
  
 
C 999      RETURN 
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      END 
 
 

A.6 Reaction Kinetics FORTRAN code 

C Edited on 9/1/2015 to create a version in which forward reaction rate constants are 
adjustable 
C $Log: usrknt.f,v $ 
C Revision 1.1  1997/04/14 15:52:38  kishore 
C commit converted files 
C 
C Revision 1.3  1996/05/21  19:25:07  apbuild 
C ANAVI 9.3 upgrade 
C 
C Revision 1.2  1996/04/26  19:15:09  apbuild 
C Introduce 3phase modifications, Venkat 
C 
C ==========================cvs revision history======================== 
C$ #3 BY: SIVA DATE: 15-NOV-1994 ADD DOCUMENTATION 
C$ #2 BY: SIVA DATE: 21-JUL-1994 ADD X TO ARGUMENT LIST 
C$ #1 BY: ANAVI DATE:  1-JUL-1994 NEW FOR USER MODELS 
C 
C     User Kinetics Subroutine for RADFRAC, BATCHFRAC, RATEFRAC 
C     (REAC-DIST type Reactions) 
C 
C     EXAMPLE FOR AN ACTIVITY-BASED POWER-LAW KINETIC MODEL 
C     WRITTEN BY C. MOELLMANN, ASPENTECH EUROPE, 25 MAY 2001 
C 
C       REACTION 1: HOAC  + ETOH --> ETOAC + H2O 
C       REACTION 2: ETOAC + H2O  --> ETOH  + HOAC 
C 
C       Kinetics uses FRMULA 
C 
C       REAL(1)  is pre-exponential factor [SI] for reaction 1 
C       REAL(2)  is activation energy      [SI] for reaction 1 
C       REAL(3)  is pre-exponential factor [SI] for reaction 2 
C       REAL(4)  is activation energy      [SI] for reaction 2 
C 
C     THE MODEL ASSUMES A LIQUID HOLDUP SPECIFICATION IN KMOL 
C 
C 
      SUBROUTINE ACTKIN2 (N,      NCOMP,   NR,     NRL,     NRV, 
     2                   T,      TLIQ,    TVAP,   P,       PHFRAC, 
     3                   F,      X,       Y,      IDX,     NBOPST, 
     4                   KDIAG,  STOIC,   IHLBAS, HLDLIQ,  TIMLIQ, 
     5                   IHVBAS, HLDVAP,  TIMVAP, NINT,    INT, 
     6                   NREAL,  REAL,    RATES,  RATEL,   RATEV, 
     7                   NINTB,  INTB,    NREALB, REALB,   NIWORK, 
     8                   IWORK,  NWORK,   WORK) 
C 
C*********************************************************************** 
C  LICENSED MATERIAL.  PROPERTY OF ASPEN TECHNOLOGY, INC.  TO BE       * 
C  TREATED AS ASPEN TECH PROPRIETARY INFORMATION UNDER THE TERMS       * 
C  OF THE ASPEN PLUS SUBSCRIPTION AGREEMENT.                           * 
C*********************************************************************** 
C----------------------------------------------------------------------- 
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C         COPYRIGHT (C) 1994 
C          ASPEN TECHNOLOGY, INC. 
C          CAMBRIDGE, MA 
C----------------------------------------------------------------------- 
C 
C     DESCRIPTION: TO CALCULATE REACTION RATES FOR KINETIC REACTIONS 
C                  USING USER SUPPLIED SUBROUTINE 
C 
C      VARIABLES IN ARGUMENT LIST 
C 
C       VARIABLE  I/O  TYPE     DIMENSION     DESCRIPTION AND RANGE 
C       N          I    I          -          STAGE NUMBER 
C       NCOMP      I    I          -          NUMBER OF COMPONENTS 
C       NR         I    I          -          TOTAL NUMBER OF KINETIC 
C                                             REACTIONS 
C       NRL        I    I          3          NUMBER OF LIQUID PHASE 
C                                             KINETIC REACTIONS. 
C                                             NRL(1): NUMBER OF 
C                                                     OVERALL LIQUID 
C                                                     REACTIONS. 
C                                             NRL(2): NUMBER OF 
C                                                     LIQUID1 REACTIONS. 
C                                             NRL(3): NUMBER OF 
C                                                     LIQUID2 REACTIONS. 
C       NRV        I    I          -          NUMBER OF VAPOR PHASE 
C                                             KINETIC REACTIONS 
C       T          I    R          -          STAGE TEMPERATURE (K) 
C       TLIQ       I    R          -          LIQUID TEMPERATURE (K) 
C                                             * USED ONLY BY RATEFRAC ** 
C       TVAP       I    R          -          VAPOR TEMPERATURE (K) 
C                                             * USED ONLY BY RATEFRAC ** 
C       P          I    R          -          STAGE PRESSURE (N/SQ.M) 
C       PHFRAC     I    R          3          PHASE FRACTION 
C                                             PHFRAC(1): VAPOR FRACTION 
C                                             PHFRAC(2): LIQUID1 FRACTIO 
C                                             PHFRAC(3): LIQUID2 FRACTIO 
C       F          I    R          -          TOTAL FLOW ON STAGE 
C                                             (VAPOR+LIQUID) (KMOL/SEC) 
C       X          I    R         NCOMP,3     LIQUID MOLE FRACTION 
C       Y          I    R         NCOMP       VAPOR MOLE FRACTION 
C       IDX        I    I         NCOMP       COMPONENT INDEX VECTOR 
C       NBOPST     I    I          6          OPTION SET BEAD POINTER 
C       KDIAG      I    I          -          LOCAL DIAGNOSTIC LEVEL 
C       STOIC      I    R         NCOMP,NR    REACTION STOICHIOMETRY 
C       IHLBAS     I    I          -          BASIS FOR LIQUID 
C                                             HOLDUP SPECIFICATION 
C                                             1:VOLUME,2:MASS,3:MOLE 
C       HLDLIQ     I    R          -          LIQUID HOLDUP 
C                                             IHLBAS    UNITS 
C                                             1         CU.M. 
C                                             2         KG 
C                                             3         KMOL 
C       TIMLIQ     I    R          -          LIQUID RESIDENCE TIME 
C                                             (SEC) 
C       IHVBAS     I    I          -          BASIS FOR VAPOR 
C                                             HOLDUP SPECIFICATION 
C                                             1:VOLUME,2:MASS,3:MOLE 
C       HLDVAP     I    R          -          VAPOR HOLDUP 
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C                                             IHVBAS    UNITS 
C                                             1         CU.M. 
C                                             2         KG 
C                                             3         KMOL 
C       TIMVAP     I    R          -          VAPOR RESIDENCE TIME (SEC) 
C       NINT       I    I          -          LENGTH OF INTEGER VECTOR 
C       INT       I/O   I         NINT        INTEGER VECTOR 
C       NREAL      I    I          -          LENGTH OF REAL VECTOR 
C       REAL      I/O   R         NREAL       REAL VECTOR 
C       RATES      O    R         NCOMP       COMPONENT REACTION RATES 
C                                             (KMOL/SEC) 
C       RATEL      O    R         NRLT        INDIVIDUAL REACTION RATES 
C                                             IN THE LIQUID PHASE 
C                                             (KMOL/SEC) 
C                                             WHAT IS NRLT? 
C                                             NRLT = NRL(1)+NRL(2)+NRL(3 
C                                             NRLT IS NOT INCLUDED IN TH 
C                                             ARGUMENT LIST. 
C                                             * USED ONLY BY RATEFRAC * 
C       RATEV      O    R         NRV         INDIVIDUAL REACTION RATES 
C                                             IN THE VAPOR PHASE 
C                                             (KMOL/SEC) 
C                                             * USED ONLY BY RATEFRAC * 
C       NINTB      I    I          -          LENGTH OF INTEGER VECTOR 
C                                             (FROM UOS BLOCK) 
C       INTB      I/O   I         NINTB       INTEGER VECTOR 
C                                             (FROM UOS BLOCK) 
C       NREALB     I    I          -          LENGTH OF REAL VECTOR 
C                                             (FROM UOS BLOCK) 
C       REALB     I/O   R         NREALB      REAL VECTOR 
C                                             (FROM UOS BLOCK) 
C       NIWORK     I    I          -          LENGTH OF INTEGER WORK 
C                                             VECTOR 
C       IWORK     I/O   I         NIWORK      INTEGER WORK VECTOR 
C       NWORK      I    I          -          LENGTH OF REAL WORK VECTOR 
C       WORK      I/O   R         NWORK       REAL WORK VECTOR 
C 
C*********************************************************************** 
C 
      IMPLICIT NONE 
C 
C     DECLARE VARIABLES USED IN DIMENSIONING 
C 
      INTEGER NCOMP, NR, NRV, NINT, NINTB, NREALB, NIWORK, NWORK 
C 
#include "ppexec_user.cmn" 
      EQUIVALENCE (RMISS, USER_RUMISS) 
      EQUIVALENCE (IMISS, USER_IUMISS) 
C 
#include "dms_maxwrt.cmn" 
C 
#include "pputl_ppglob.cmn" 
C 
#include "dms_plex.cmn" 
      EQUIVALENCE (IB(1), B(1)) 
C 
#include "dms_ipoff3.cmn" 
C 
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#include "dms_rglob.cmn" 
C 
#include "dms_lclist.cmn" 
C 
C*********************************************************************** 
C 
C 
C 
C     DECLARE ARGUMENTS 
C 
      INTEGER NRL(3), IDX(NCOMP), NBOPST(6), INT(NINT), INTB(NINTB), 
     2        IWORK(NIWORK), N, KDIAG, IHLBAS, IHVBAS, NREAL,FN, 
     3        L_GAMMA,L_GAMUS,GAM,US,DMS_ALIPOFF3 
C 
      REAL*8 PHFRAC(3), X(NCOMP,3), Y(NCOMP), STOIC(NCOMP,NR), 
     2       RATES(NCOMP), RATEL(1), RATEV(NRV), REALB(NREALB), 
     3       WORK(NWORK), T, TLIQ, TVAP, P, F, HLDLIQ, TIMLIQ, 
     4       HLDVAP, TIMVAP,DUM,STOI(100),LNRKO 
C 
C     DECLARE LOCAL VARIABLES 
C 
      INTEGER IMISS, LFRMUL, DMS_IFCMNC, DMS_KFORMC,N_MEAH,N_MEAC,N_MEA, 
     2 N_CO2,N_H2O,N_HCO3, KPHI, KER, I, J, K, LGAMMA, LGAM,IHELGK 
C 
      REAL*8 REAL(NREAL), RMISS, B(1), PHI(100), DPHI(100), GAMMA(100), 
     2       RXNRATES(100),ACCO2,ACMEA,ACH2O,ACMEAC,ACMEAH,ACHCO3,A1,A2, 
     3       A3,A4,B1,B2,B3,B4,R,GAMUS(100),COEFFCO2,COEFFMEA,KEQ1,KEQ2 
C 
C 
C     BEGIN EXECUTABLE CODE 
C 
C     FORTRAN STATEMENT FUNCTIONS 
C 
      FN(I)=I+LCLIST_LBLCLIST 
      L_GAMMA(I)=FN(GAM)+I 
      L_GAMUS(I)=FN(US)+I 
      LFRMUL = DMS_IFCMNC('FRMULA') 
C 
C     COMPONENT INDEX NUMBERS FROM FORMULA 
C 
      N_H2O   = DMS_KFORMC('H2O') 
      N_CO2   = DMS_KFORMC('CO2') 
      N_MEA    = DMS_KFORMC('C2H7NO') 
      N_MEAH  = DMS_KFORMC('C2H8NO+') 
      N_MEAC = DMS_KFORMC('C3H6NO3-') 
      N_HCO3 = DMS_KFORMC('HCO3-') 
 
 t=tliq 
C 
C     CALCULATION OF LIQUID PHASE FUGACITY 
C 
      KPHI = 1 
      CALL PPMON_FUGLY (T,    P,      X,     Y,    NCOMP, 
     2                  IDX,  NBOPST, KDIAG, KPHI, PHI, 
     3                  DPHI, KER) 
C 
C     SET OFFSET LGAM TO ACCESS ACTIVITY COEFFICIENTS 
C 
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      GAM = DMS_ALIPOFF3(24) 
C 
      DO I=1,NCOMP 
   GAMMA(I) = 1.D0 
        IF (INT(1) .EQ. 1) GAMMA(I) = DEXP(B(L_GAMMA(I))) 
      END DO 
       
      US=DMS_ALIPOFF3(29) 
       
C     DO I=1,NCOMP 
C          GAMUS(I)=1.D0 
C        IF (INT(1).EQ.1) GAMUS(I)=DEXP(B(L_GAMUS(I))) 
C      END DO 
      COEFFCO2=DEXP(B(L_GAMUS(N_CO2))) 
      COEFFMEA=DEXP(B(L_GAMUS(N_MEA))) 
        
        
C     ACCO2=GAMMA(N_CO2)*X(N_CO2,1) 
C     ACMEA=GAMMA(N_MEA)*X(N_MEA,1) 
      ACCO2=COEFFCO2*X(N_CO2,1) 
      ACMEA=COEFFMEA*X(N_MEA,1) 
      ACH2O=GAMMA(N_H2O)*X(N_H2O,1) 
      ACMEAH=GAMMA(N_MEAH)*X(N_MEAH,1) 
      ACMEAC=GAMMA(N_MEAC)*X(N_MEAC,1) 
      ACHCO3=GAMMA(N_HCO3)*X(N_HCO3,1) 
       
      A1=85616000000 
      B1=3963.9 
      A2=24800 
      B2=59600 
      A3=22991.13 
      B3=49000 
      A4=18.35308 
      B4=96230 
      R=PPGLOB_RGAS/1000 
C      KEQ1=DEXP(-35.849+5612.903/TLIQ+7.517958*LOG(TLIQ)-0.03608*TLIQ) 
C      KEQ2=DEXP(-138.48+6440.715/TLIQ+25.61665*LOG(TLIQ)-0.0736*TLIQ) 
 
C     CALL FIRST EQUILIBRIUM CONSTANT 
 
      DO I=1,100 
          STOI(I)=0D0 
      ENDDO 
       
      DO I=1,NCOMP 
          IF (IDX(I).EQ.N_MEA) STOI(I)=-2D0 
          IF (IDX(I).EQ.N_CO2) STOI(I)=-1D0 
          IF (IDX(I).EQ.N_MEAH) STOI(I)=1D0 
          IF (IDX(I).EQ.N_MEAC) STOI(I)=1D0 
      ENDDO 
       
      LNRKO=RGLOB_RMISS 
       
      CALL PPELC_ZKEQ(T,1,1,0,STOI,0D0,NCOMP,IDX,0,1,1,NBOPST,KDIAG, 
     2 LNRKO,P,IHELGK,DUM) 
       
      KEQ1=DEXP(LNRKO) 
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C     CALL SECOND EQUILIBRIUM CONSTANT       
       
      DO I=1,100 
          STOI(I)=0D0 
      ENDDO 
       
      DO I=1,NCOMP 
          IF (IDX(I).EQ.N_MEA) STOI(I)=-1D0 
          IF (IDX(I).EQ.N_CO2) STOI(I)=-1D0 
          IF (IDX(I).EQ.N_H2O) STOI(I)=-1D0 
          IF (IDX(I).EQ.N_MEAH) STOI(I)=1D0 
          IF (IDX(I).EQ.N_HCO3) STOI(I)=1D0 
      ENDDO 
       
      LNRKO=RGLOB_RMISS 
       
      CALL PPELC_ZKEQ(T,1,1,0,STOI,0D0,NCOMP,IDX,0,1,1,NBOPST,KDIAG, 
     2 LNRKO,P,IHELGK,DUM) 
       
      KEQ2=DEXP(LNRKO) 
 
C     KINETIC MODEL (FORWARD/REVERSE REACTION RATES) 
C 
C      RXNRATES(1)=A1*DEXP(-B1/R*(1/TLIQ-1/298.15))*ACMEA**2*ACCO2 
C      RXNRATES(1)=RXNRATES(1)*(1-ACMEAC*ACMEAH/(KEQ1*ACMEA**2*ACCO2)) 
      RXNRATES(1)=REAL(1)*DEXP(-REAL(3)/R*(1/TLIQ-1/298.15))* 
     2 (ACMEA**2*ACCO2-ACMEAC*ACMEAH/KEQ1) 
      RXNRATES(2)=REAL(2)*DEXP(-REAL(4)/R*(1/TLIQ-1/298.15))* 
     2(ACMEA*ACCO2-ACMEAH*ACHCO3/(KEQ2*ACH2O))      
C      RXNRATES(2)=A2*DEXP(-B2/R*(1/TLIQ-1/298.15))*ACMEAH*ACMEAC 
c      RXNRATES(2)=A3*DEXP(-B3/R*(1/TLIQ-1/298.15))*ACMEA*ACCO2 
c      RXNRATES(2)=RXNRATES(2)*(1-ACMEAH*ACHCO3/(KEQ2*ACMEA*ACCO2*ACH2O)) 
C      RXNRATES(4)=A4*DEXP(-B4/R*(1/TLIQ-1/298.15))*ACMEAH*ACHCO3/ACH2O 
         
       
 DO K = 1,NRL(1) 
   RXNRATES(K) = RXNRATES(K) * HLDLIQ 
   ratel(k)=rxnrates(k) 
 END DO 
C 
C     INITIALIZATION OF COMPONENT REACTION RATES 
C 
      DO I = 1,NCOMP 
   RATES(I) = 0.D0 
 END DO  
C 
C     COMPONENT REACTION RATES in kmol/sec 
C 
      DO K=1,NRL(1) 
        DO I=1,NCOMP 
          IF (DABS(STOIC(I,K)) .GE. RGLOB_RMIN) RATES(I) = RATES(I) +  
     1    STOIC(I,K) * RXNRATES(K) 
        END DO 
      END DO 
C 
      RETURN 
      END 
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Appendix B: Novel high-viscosity solvent work 
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