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Abstract

Information Centric Strategies for Scalable Data Transport in
Cyber Physical Systems (CPSs)

Ajay Krishna Teja Kavuri

Cyber-Physical Systems (CPSs) represent the next generation of
computing that is ubiquitous, wireless and intelligent. These networked sens-
ing systems are at the intersection of sensing, communication, control, and
computing [16]. Such systems will have applications in numerous fields such
as vehicular systems and transportation, medical and health care systems,
smart homes and buildings, etc. The proliferation of such sensing systems will
trigger an exponential increase in the computational devices that exchange
data over existing network infrastructure.

Transporting data at scale in such systems is a challenge [21] mainly
due to the underlying network infrastructure which is still resource con-
strained and bandwidth-limited. Efforts have been made to improve the
network infrastructure 5] [2] [15]. The focus of this thesis is to put forward
information-centric strategies that optimize the data transport over existing
network infrastructure.

This thesis proposes four different information-centric strategies:
(1) Strategy to minimize network congestion in a generic sensing system
by estimating data with adaptive updates, (2) An adaptive information
exchange strategy based on rate of change of state for static and mobile
networks, (3) Spatio-temporal strategy that maintains spatial resolution by
reducing redundant transmissions, (4) Proximity-dependent data transfer
strategy to ensure most updated information in high-density regions. Each
of these strategies is experimentally verified to optimize the data transport
in their respective setting.
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Chapter 1

Introduction

In this chapter, we present a brief overview and the challenges in building
Cyber-Physical System(s). Also, the list of contributions and focus of this
thesis is presented.

1.1 Motivation and Problem

Computational devices are increasingly occupying an import role in our daily
lives. Thanks to the advancements in Wireless Networking, Wireless Sen-
sor Networks, and Embedded Systems; this new generation of devices can
communicate with one another and the physical world. These ubiquitous
connected devices are finding applications in many domains including ve-
hicular systems and transportation, medical and health care systems, smart
homes and buildings, etc. Further proving Moore’s law [18], according to
Juniper research over 38 billion connected devices will be in use by 2020 [15].
Such integration of computation, networking, and physical processes form
Cyber-Physical System(s).

Cyber-Physical System(s) enable a new generation of services that
can sense the environment, communicate with one another and affect the
physical process. Unlike traditional wireless sensor networks, the nodes are



not just limited to resource constrained devices. Cyber-Physical System(s)
can encompass energy-rich nodes such as workstations, mobile nodes such
as vehicles and handheld devices such as smartphones, PDAs, tablets, etc.
This connected ecosystem takes feedback from the physical world to perform
critical actions.

At the core of the Cyber-Physical Systems is the information ex-
change between nodes. In many Cyber-Physical Systems, the central idea is
to obtain data from distributed nodes to sense the physical world; usually,
this data is queried for a fixed interval of time. Querying the data too often
can introduce congestion in the network while querying for a larger interval of
time might degrade the quality of information. Unlike traditional networked
systems, the information flows through a variety of heterogeneous platforms
and nodes. Transporting data at such scale is a major challenge. Hence a
device oriented architecture is no longer valid [6]. A broader information-
centric perspective is essential for building these complex ecosystems.

Through an information-centric perspective, our focus is on opti-
mizing the information (or data) in Cyber-Physical System(s) without losing
the quality of the information necessary for the application performance. We
aim to reduce the amount of information being communicated through the
network without degrading application performance so that a larger number
of nodes can be accommodated in a Cyber-Physical System. In other words,
our aim is to make Cyber-Physical System(s) scalable. Further, information-
centric approaches have been surveyed and found to optimize the web ser-
vices, provide better abstractions and improve security [3] [12].

In the past, such information-centric approaches are studied sep-
arately for Wireless Sensor Networks [7] [4]. Due to the nature of Cyber-
Physical System(s), there is no one strategy that can achieve our goal for all
the use cases. In this thesis, four different information-centric strategies are
proposed for Cyber-Physical System(s). These strategies are inspired from
challenges identified here at West Virginia University Distributed Computing
and Networking Lab.



1.2 Thesis Contributions

1. We propose a strategy for optimizing a generic sensing system. A sensor
model mg and controller model m, are designed such that the overall
load on the network is optimized. Further, the strategy is validated
for different network conditions. The strategy is inspired from Smart
Refractory Systems project for overall network optimization.

2. A communication strategy applicable to both static and mobile net-
works based on the rate of change in sensing system state is developed.
The optimization is implemented for MapMyTruck module within In-
tegrated Sensing Systems for Surface Mining Safety project.

3. A scenario for mobile sensor networks such as MANET(s) contains
nodes that are spatially distributed as a function of time t given by
D(t). A strategy is designed for such networks that ensures a spatial
resolution while reducing redundant transmissions.

4. Strategy to ensure most recent information at dense regions is devel-
oped. The strategy is experimentally verified by simulating a VANET
using NS3. We believe, such a strategy optimizes the Cooperative Col-
lision Warning System developed as part of Integrated Sensing Systems
for Surface Mining Safety project.

1.3 Thesis Outline

The rest of the document is organized as follows. In Chpater 2] we present
a strategy to minimize network congestion in a generic sensing system by
estimating data with adaptive updates. In Chpater [3] we propose a rate
of change based information exchange strategy for static and mobile net-
works. In Chpater |4, we extend the information-centric approach to mobile
nodes using a spatio-temporal strategy that ensures a spatial resolution. In
Chpater [3, we propose a proximity-dependent data transfer strategy to en-
sure most updated information at high-density regions for Vehicular Ad hoc
Network (VANET). We present conclusion and future work in Chpater [6]



Chapter 2

Strategy to minimize network
congestion in a generic sensing
system by estimating data with
adaptive updates

2.1 Overview

In this case, our objective is to build a generic model that can optimize
the sensor network infrastructure. Traditionally, networked sensors transmit
data at a constant frequency. When the application requires most recent
information, sensors communicate more frequently and vice versa. The goal
is to curtail traffic in the network generated from sensors thereby reducing
packet collisions in the network. This model achieves the objective using
a linear model that intelligently makes a decision whether to communicate
based on the generated data from the sensor.

The trade-off with this model is that it introduces a small error (up
to 1%) in the value of the sensor data. This model applies to both static
and mobile sensor networks. In the subsequent sections, the model, sensor
communication algorithm, and experimental results are presented.



2.2 Methodology

For any given sensor s it generates data ds such that at any given time t,
sensor data dg has a value v;. For example, a temperature sensor s would
generate data d, that is a tuple of values {vg, v1, v, v3......v, } corresponding
to time {tg, t1....... t,}. Ideally, the goal of a sensor network is to communicate
this tuple d, to a controller within an application at every interval controlled
by frequency f.

This model aims to optimize the traffic irrespective of the underlying
network protocol stack. The model runs synchronously on both ends of the
communication; namely, sensor and controller within an application. In this
model, in addition to the primary components, Sensor s consists a linear es-
timator, thresholding phase and network interface represented in Figure [2.1]
Initially, sensor values corresponding to time ¢, and t; are communicated
irrespective of the system state.

Sensor Model (mg)

Primary ::“/\ Linear :: > IZ" > Network
Sensor Estimator Thresholding Interface

Figure 2.1: Sensor Model m, block diagram

For the model m, at the sensor s, m, estimates the value e; of the
sensor s at time t using values at time ¢ — 1 and ¢ — 2. The model estimates
the value e; by using a linear equation represented by Eq. over a sliding
window with previous two time intervals. It achieves this by first solving
m and c in Eq. using the values {t — 1,¢ — 2} and corresponding data
values from sensor s: {v;_1,v;_2}.



ee=mxt+c (3.1)

Once it has an estimated value e; at time t it is compared with
the real value from sensor v;; if the difference percentage o; calculated using

Eq. (3.2)) falls within the threshold percentage th, then the sensor does not
communicate to the controller.

(575 = |6t — Ut|/vt * 100 (32)

When the difference percentage d; doesn’t compare with the th the
sensor transmits the real value v; and control message to update estimator.
The algorithm for the model m, can be summarized as follows:

Algorithm 1 Algorithm for sensor model m

1: Initialize:
Transmit the values (vg, v1) for time (to, ;)

2: for each time ¢t do

3 Solve for m, ¢ in Eq. using (vi_1,v4—2) and (¢t — 1, — 2)

4: Estimate sensor data value e; at current time ¢

5: Calculate difference percentage d; <— |e; — vy| /vy % 100

6 if §; > th then > If §; doesn’t compare
7 Transmit vy

8 Send control message

9: end if

10: end for

On the other hand, model at controller m, represented using Fig-
ure also consists a linear estimator. Controller model m, estimates the
value e; at time ¢ and if no message is received from sensor s at the given
interval, the controller reports estimated value ¢; as the value from the sen-
sor. It is important to note that e; at both m. and m, are always identical
at any given time ¢ provided that there be no packet loss in the network.
Further, we have studied the performance of model under packet loss in the

Section 2.4]



Controller Model (m,)

Network E Linear I::>
Interface Estimator Output

Figure 2.2: Controller Model m,. block diagram

The model m,. updates the parameters m, c in Eq. on receiv-
ing the control messages and reports the received value v, as the sensor s
value. The model m,. can introduce a small error e; but reduces traffic on
the network. The strategy is represented with the following algorithm:

Algorithm 2 Algorithm for controller model m..

1: Initialize:
Receive the values (v, v1) for time (o, 1)
Solve for m, ¢ in Eq. (3.1)) using (vg,v1) and (to,t1)

2: for each time ¢t do

3 Estimate sensor data value e; at current time ¢

4 if control message is heard then > If §; doesn’t compare
5: return v;

6 end if

7 return e;

8: end for

The above model has been validated using a sensor network simu-
lated for different conditions. Further, this strategy has been inspired from
Smart Refractory Systems project. In the following sections, the experiment
and results are presented.



2.3 Experimental Setup

To validate the model, sensor network has been simulated using data from
Mica2Dot sensors with weather boards deployed at Intel Berkeley Research
Lab [13]. The data contains the time-stamped values of humidity, tempera-
ture, light, and voltage from 54 sensors. The data is queried once every 31
secs and collected between February 28th and April 5th, 2004. The entire
simulation is implemented using a custom tool written in Python here at
West Virginia University Distributed Systems and Networking Lab.

The model is validated for three different threshold percentage val-
ues i.e. th = {0.1, 0.5, 1} for all 54 sensors. Further, packets are intentionally
dropped to observe the behavior of models. The percentage of packets saved
for each threshold and bar plots for the average of d; for all values t validate
the strategy. In the following section, results are presented.

2.4 Results

2.4.1 Percentage of packets saved without packet loss

In the figure the percentage of packets saved through the network for
different threshold percentage (th) under no packet loss is presented. The
Figure shows the trend that when the threshold(th) is relaxed, the con-
troller reports more data values that are estimated rather than queried from
the real sensor. Further, it is important to note that even with the least
allowed threshold percentage(th = 0.1) the strategy saves about a median of
40% of the data packets.
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Figure 2.3: Percentage of Packets Saved vs Threshold Percentage (th)

2.4.2 Percentage of packets saved with packet loss

Further, the simulation is repeated for a list of packet drop percentages given
by {5,10,20}. This is intentionally simulated to observe the behavior of the
model at controller m. when it doesn’t receive the control messages to update
the estimator. The Figure presents all the plots for comparison. It is
evident that although there is a packet drop the percentage of packets saved
doesn’t vary significantly.
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Another important observation is that individual sensor values re-
ported by the controller at any given time ¢ should be close to the real sensor
value v;. This is validated by comparing the threshold percentage (th) with
the average of actual difference percentage (9;) at all values of ¢ calculated

using Eq. (3.3)).

n

average of difference percentage = Z(|et — | /v % 100) /n
=1

(3.3)

10



2.4.3 Average difference percentage without packet loss

The box plot in Figure [2.5 suggests that although there is allowed thresh-
old percentage(th); the majority of the reported sensor values has a lower
difference percentage than (th).

1 0Average Difference(s) Percentage vs Threshold(tk) Percentage

0.8 |-

0.6 |-

0.4} !

Average Difference(d) Percentage

0.2

—

0.0

0.1 0.5 1
Threshold(th) Percentage

Figure 2.5: Average Difference Percentage (§) vs Threshold Percentage(th)

2.4.4 Average difference percentage with packet loss

Further, Figure [2.6| contains the box plots for different packet drop values.
Clearly, the spread of average difference percentage(d) increases as the packet
drop percentage increases. A counter-argument can be made that while this
strategy ensures that there is less load on the network, one can expect a low
packet drop.

11
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2.5 Conclusion

This model presents a generic approach to optimize the sensor network infras-
tructure using the information generated from the sensor. Such information-
centric approach has the flexibility to be applied to any underlying network
infrastructure. The algorithms have been presented and experimentally val-
idated. The initial results have been satisfactory and such models have a lot

of potential to be investigated.
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Chapter 3

An adaptive information
exchange strategy based on
rate of change of state for static
and mobile networks

3.1 Overview

Similar to the strategy presented in Chapter [2] this strategy aims to mini-
mize traffic in the network generated from sensors thereby reducing packet
collisions in the network. The idea is to use rate of change of current sen-
sor state as a key metric to dynamically vary communication interval of a
sensor. Data from sensors change with respect to time, and a sensor state
can be defined based on the value of the sensor. We use the rate of change
of the defined state as key a metric; if it is identified that sensor state is
changing at a greater rate, the strategy adjusts the interval such that sensors
communicate more often and vice versa.

This strategy is inspired by a real-world use case. An important
component of Integrated Sensing Systems for Surface Mining Safety project
is to build MapMyTruck, a cloud-based logging system for GPS data from

13



trucks for traffic analysis and route planing. The challenge is to build sensor
cloud infrastructure while complying with bandwidth limitations of the mo-
bile network. The rest of the chapter includes the methodology, experimental
setup, results and MapMyTruck use case implementation.

3.2 Methodology

Consider a sensor s, at any given time t, sensor has a value v; and a sensor
state U, based on this value. We define the rate of change of state ROCy
as the difference between sensor state values ¥, and ¥,_; over time interval
t,; the same is represented using Eq. . Unlike the strategy in Chapter
2] frequency of the sensor varies with time such that at given time ¢, fre-
quency f; is the value corresponding to rate of change of state ROCy. A
discrete number of frequency values are mapped to the ROCy given by tuple

{f07f17f27f3 """" fn}

ROCy + (U, — W, 1)/t, (3.1)

Although this strategy applies to both static and mobile sensor
networks, it is particularly useful if the sensor state is constantly varying and
data is not required for every state. For example, if a given sensor is in an
idle state (which can be identified using the sensor value); the corresponding
interval could be set to a relatively higher value to reduce the congestion
on the network. This strategy does not require any additional logic at the
controller.

14



Sensor Model (m )

Obtain
sensor
value v,

Update
sensor
frequency

Derive
ROC,,

Figure 3.1: Sensor Model m; block diagram

The sensor model my is represented in the Figure |3.1, The model
ms contains a set of rules that map different rate of change of sensor state
ROCy and corresponding frequency. For each time interval .t sensor has a
state W,, using Eq. ROCy is obtained. The current frequency f.u rent
is updated based on the rules and if the interval duration is expired, then
the value v; is sent over the network. The algorithm for sensor model my is
described as follows:

Algorithm 3 Algorithm for sensor model m

1: Initialize:
Define rules R
. for each time interval ¢, do
Obtain rate of change of sensor state ROCy using Eq. (3.1])
Update feurrent(current frequency) < f;(corresponding frequency)
end for

A

To evaluate the model, a sensor network is simulated, and a sim-
plified version of the algorithm is implemented. The detailed algorithm is at
the core of MapMyTruck module. The experiment and results are presented
in the next section.

15



3.3 Experimental Setup

As described in the Section [2.3] the experiment consists of a sensor net-
work simulated using the data from Mica2Dot sensors with weather boards
deployed at Intel Berkeley Research Lab [13]. A custom tool written in
Python is used to conduct the experiment here at West Virginia University
Distributed Systems and Networking Lab.

The experiment consists of a simplified version of the Algorithm
described below:

Algorithm 4 Algorithm for sensor model m

1: Initialize:
Transmit the value vy for time ¢,
2: for Each time ¢t do
3 Calculate rate of change of state ROCy < |v; — vy_1|/ve—1 % 100
4 if ROCy > th(threshold percentage) then
5: feurrent(current frequency) <— frign
6 else
7 feurrent(current frequency) <— fiow
8 end if
9: end for

The Algorithm [4] described above has two major differences from
the Algorithm [3] First, the algorithm uses different equation to obtain range
of change of state ROCy given by Eq. instead of Eq. . Second,
instead of defining tuple of frequency values {fo, f1, f2, f3......fn}, the algo-
rithm has only two frequency values: { fiow, frigh}- The state is identified as
active if ROCy > th(threshold percentage) is satisfied and the sensor s will
transmit at frequency frign. Otherwise, the sensor s is in a idle state and no
transmission is recommended. Hence, a map of rules R is not required.

ROC\I/ <— |Ut — Ut—1|/vt—1 x 100 (32)

Further, the model is validated for five different threshold percent-
age values i.e. th = {1, 2, 3, 4, 5} for all 54 sensors. The bar plot between

16



the percentage of packets saved and threshold percentage (th) for all values
of t validate the model. The following section contains the results.

3.4 Results

In the figure[3.2] the bar plot between the percentage of packets saved through
the network for different threshold percentage (th) is presented. The fig-
ure shows that there is a significant reduction in the packets sent through
the network. A minimum threshold value (th = 1%) saves about 60% of the
packets. Also, there isn’t a significant increase in the percentage of packets
saved by increasing the threshold percentage (th).

Percentage of Packets Saved vs Threshold(ih) Percentage

Percentage of Packets Saved
w Y w
o o o

N
o
T

=
o
T

1 2 3 4 5
Threshold(th) Percentage

Figure 3.2: Percentage of Packets Saved vs Threshold Percentage (th)
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3.5 Use Case: MapMyTruck

3.5.1 Overview

MapMyTruck is a sub-system of Integrated Sensing Systems for Surface Mine
Safety Project. The goal of the tool is to log GPS traces for long term collision
safety evaluation. MapMyTruck is available to download at: http://bit.
ly/mapmytruck. The tool is the inspiration behind developing this strategy
and has been tested in Red Hills Mine in Ackerman, Mississippi. During the
initial testing, MapMyTruck saved up to 86.1% of data transmitted to cloud.

3.5.2 System Architecture

This section details the architecture designed to achieve the goal of the Map-
MyTruck described in section [3.5.1]

Differential data
rate logging

Auto sensor detect
((('))) BN Cloud storage

|

Tolerate
intermittent
connectivity

Extensible to other

sensors e

Y GPSsensors

R Vehicular traffic analysis
Data logging and and data mining
transmission middleware

Figure 3.3: MapMyTruck system architecture

MapMyTruck architecture is described in Figure [3.3l The GPS
information is logged from the CAT 769 haul trucks. A Garmin GPS device
attached to a Windows Tablet running the .NET framework in each of the
trucks. Upon installation, the GPS would log location coordinates locally as
well as establish a remote connection to an FTP server and upload the data.
Some of the features of this system are as follows:
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e Speed based logging rate: Logging all the data periodically (even
at a 10 second interval) would generate a huge amount of data which is
not cost effective (Internet Service Providers and cloud services charge
based on data transferred). For example, if each log is 100 bytes long,
logging at 1 Hz would generate 360 Kbytes per truck per day. On
the other hand, decreasing the logging frequency will prevent the data
from being useful when vehicles come closer. Hence, rate of change
based information exchange strategy has been designed. The idea is
to use rate of change of position, i.e. speed to determine the logging
frequency. Hence, it acts as a speed based differential logging service
which logs and transmits data proportional to the speed. No data
is transferred when the vehicle is idle and data rate is progressively
increased with speed and is transferred at 1 Hz at speeds of 25mph
and above. Further, Table provides detailed information on logging
frequency at different speeds.

Table 3.1: Logging rate as a function of vehicle speed and the corresponding
precision in track accuracy; the precision denotes the maximum distance that
can be travelled by a truck without logging any update

Speed (mph) | Speed (mps) | Frequency (s) | Precision (m)

<0.05 0.02572 600 15.432
0.05-2.3 1.0288 20 20.576
23-46 2.0576 10 20.576
4.6 -9.2 4.1152 5 20.576
9.2-184 8.2304 2.5 20.576
18.4 - 36.8 16.4608 1 16.461
36.8 - 73.6 32.9216 0.5 16.461

e Tolerates intermittent connection: It is not feasible to assume that
network connection is always available in a mine. So the service logs
data locally, and whenever connection is available, it uploads the data.

e Auto package installer and auto sensor detect: The service can
be installed with an easy to use package installer and starts itself au-
tomatically when a GPS device is detected.
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3.5.3 Results

MapMyTruck has been validated in a real-world scenario with the rate of
change based information exchange strategy at it’s core. The Figure
shows the GPS trace plotted using a custom tool developed in Java here at
West Virginia University Distributed Systems and Networking Lab. On a
normal working day, MapMyTruck logs about 50 Kbytes of data per truck
opposed to 360 Kbytes saving about 86.1% of data.

Figure 3.4: Sample track collected from the MapMyTruck for one of the
trucks in Red Hills Mine on a working day

3.6 Conclusion

The model presented in this section optimize the sensor cloud infrastructure
using a rate of change based information exchange strategy. The strategy
can be generalized to any sensor cloud infrastructure to effectively reduce
Internet Service Providers and Cloud Services costs. The results presented
in Section and Section |3.5.3| validate the model both experimentally and
practically through MapMyTruck.
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Chapter 4

Spatio-temporal strategy that
maintains spatial resolution by
reducing redundant
transmissions

4.1 Overview

This section describes a spatio-temporal strategy for the mobile sensor net-
works. In a mobile sensor network, the nodes position changes with respect
to time. The goal of this strategy is to obtain information from these spa-
tially distributed nodes such that the information always maintains a spatial
resolution over the time period. This strategy is particularly useful for mon-
itoring and surveying applications [24] where sensor nodes are distributed,
and the information is aggregated to obtain knowledge about environment
parameters such as atmosphere humidity, water level, wind direction, etc.

In such monitoring and surveying applications, aggregating infor-
mation from all the sensor nodes will have redundancies because the nodes
that are in close proximity contain same knowledge about the environment
parameter. Further, these spatially distributed nodes communicate in no
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particular order, i.e. it is not guaranteed that there is a spatial resolution of
the region maintained in this information. A centralized control can be used
to orchestrate among the nodes, but that would be computationally costly.
To further illustrate the case, a snapshot of mobile sensor network scenario
is presented in the Figure [4.1]

In the Figure [4.1] the sensor nodes are labeled and spatially dis-
tributed over the region. A virtual grid is overlayed through the region.
Ideally, by maintaining a spatial resolution, the information from these mo-
bile sensor nodes will detail about the whole region, i.e. data from all the
squares in the virtual grid is communicated and maintained temporally. Also,
multiple sensor nodes within close proximity (within the same square in the
virtual grid) may introduce redundancies.
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Figure 4.1: A snapshot of mobile sensor network scenario

The proposed spatio-temporal strategy uses a distributed asyn-
chronous algorithm to achieve the goal of eliminating the redundancies while
maintaining a spatial resolution without a need for centralized control. This
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model achieves the objective while transferring a minimum number of pack-
ets through the underlying network. The methodology, experimental setup,
and results are presented in the following sections.

4.2 Methodology

Consider a mobile sensor network spatially distributed over a region with
boundaries (xmin7ymin)7 (zminaymax)a (xmazaymin) and (xmaxyymax)- Con-
sider a mobile sensor node s in this network, the position P; =(z5,ys) varies
according to time ¢ as a function D(t) such that the position P is always
inside the boundaries. The same is represented using Eq. ([4.1)).

P, = D(t) | Tmin <= Ts <= Timaz a0d Ymin <= Ys <= Ymaz (4.1)

Consider a monitoring and surveying application that uses spatially
distributed mobile wireless sensor network. Once deployed, a sensor node s
has knowledge about an environment parameter such as atmosphere humid-
ity, water level, wind direction, etc. at its location Py =(zs,ys). Each sensor
node s listens to any transmission from neighbouring nodes before transmit-
ting it’s sensor value v; at time ¢. Further, if all the nodes act synchronously,
i.e. all the nodes listen and transmit at the same time the strategy does not
have any effect. Hence, each node waits for a random amount of time t,, for
sniffing any transmissions from neighboring nodes.
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Figure 4.2: A scenario with two sensor node s, and s,.

Consider two sensor nodes s, and s, such that their positions P,
and P, are in communication range ¢, as illustrated in Figure 4.2} for each
time interval ¢,, sensor nodes waits for a time t,, = R(0.5 x ¢,,0.8 x t,)
during which sensor node s, listens to any transmission from other sensor
node s, and vice-versa. The waiting time ¢, is different for sensor nodes
s and s,. If either of the nodes listens to other node during the waiting
time t,, it doesn’t transmit the information, thereby redundant information
is suppressed between s, and s,. The algorithm at each sensor node s is

described below:
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Algorithm 5 Distributed algorithm at each sensor node s

1: for each time interval ¢, do

2 Wait for a time ¢, < R(0.5 x t,,0.8 X t,.)
3 if no transmission is heard then

4: Transmit v,

5 end if

6: end for

In addition to filtering redundant information, the strategy ensures
that the sensor nodes only communicate once for the unit of region bounded
by communication range ¢, in a distributed manner. Consider the case rep-
resented in Figure 4.2 either s, or s, will transmit the information for every
time ¢, but not both of them for the unit region. This is true even when
there are n sensor nodes sy, Sg, S3....5, in the region bounded by (Zmin, Ymin),
(Tmin, Ymaz), (Tmazs Ymin) a0A (Timaz, Ymae)- In the following section, the ex-
perimental setup is detailed.

4.3 Experimental Setup

The proposed strategy is validated using a simulated mobile wireless sensor
network in Network Simulator 3 (NS-3). The simulation consists of 100
mobile nodes spatially distributed in a 5 x 5 grid such that each unit satisfies
the Eq. , similar to the case represented in Figure [4.2,

d (Diagonal of unit cell in grid) = 2 x ¢, (4.2)

The position of the nodes varies with time using a random walk
mobility model. The random walk mobility model mimics an erratic move-
ment of sensor nodes. The model retains no knowledge of the past position
and speed. Using the model, each mobile sensor node position is determined
by randomly choosing the direction and speed for a constant time interval or
after covering a constant distance. If any sensor node reaches the boundaries,
it retracts its position into the bounded region. The simulation is repeated
for 20 runs with different seeding for each run.
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The analysis for the simulation is done using a custom tool writ-
ten in Python here at West Virginia University Distributed Systems and
Networking Lab. The analysis is done for five different precision values, i.e.
frequency precision = {20 Hz, 10 Hz, 2 Hz, 1 Hz, 0.2 Hz}; frequency precision
is defined as a measure for how often data is required. The experiment is
done with and without implementing distributed algorithm described in Sec-
tion for all 100 mobile sensor nodes. Finally, the percentage of packets
saved for each frequency precision value is plotted. The results are presented
in the following section.

4.4 Results

The Figure [4.3] shows the percentage of packets saved through the network
for each frequency precision value using a bar plot for 20 runs. Further, a
value frequency precision = 20 Hz implies that each sensor node transmits
the data once every 0.05 Seconds.

Percentage of Packets Saved vs Frequency Precision
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Figure 4.3: Percentage of Packets Saved vs Frequency Precision

The Figure suggests that a median of 77% of the packets sent
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through the network can be saved using the strategy for frequency precision =
20 Hz and there is almost similar behavior for all frequency precision values.
Hence, the percentage of packets saved through the network using the current
strategy remains same as the frequency precision value decreases, i.e., when
time interval after which each sensor node transmits the data is relaxed.

4.5 Conclusion

The presented model prescribes an asynchronous distributed strategy for
mobile sensor nodes that maintains spatial resolution over a region while
optimizing the number of packets sent through the network. Such a strategy
eliminates the need for centralized control and agnostic to the mobility model.
The algorithm presented has been experimentally validated.
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Chapter 5

Proximity-dependent data
transfer strategy to ensure
most updated information in
high-density regions

5.1 Overview

In the Chapter [2, Chapter [3] and Chapter [d] we have proposed strategies
to optimize the packets transmitted in the network by communicating less
often or not communicating at all when the current data is not contributing
to the overall quality of information. Contrary to the previous strategies,
this chapter presents a strategy that aims to communicate more often for
effectively maintaining the quality of information.

We propose an information centric strategy for Vehicular Ad hoc
Network (VANET). Vehicular Ad hoc Network (VANET) are a type of Mobile
Ad hoc Networks (MANETS) that help in establishing a wireless ad-hoc
network between vehicle to vehicle (V2V) and vehicle to infrastructure (V2I).
VANET is an essential component for building Intelligent Transportation
Systems (ITS); specially VANET is being investigated for safety applications
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such as Cooperative Collision Warning System, Collision Avoidance System,
Path Tracking Modules, etc [17] [8] [14] [19].

Such an application requires that each node has the most updated
information from the neighboring nodes which can be achieved by com-
municating more frequently. Unlike traditional wireless network, VANET
comprises of varied network densities [23] and ensuring the most updated
information at high density regions is a challenge. Also, broadcasting the
information for each interval is an overhead on the network. This strategy
proposes a distributed algorithm to achieve the objective.

The idea is to use the proximity of neighboring nodes as a key
metric to dynamically adjust the frequency. This model is inspired from
GPS based Cooperative Collision Warning System developed for Integrated
Sensing Systems for Surface Mining Safety project |[10]. The module uses
802.11 family of radios to establish an ad-hoc network between the haul trucks
in surface mines. In the following sections, the methodology, experimental
setup, and results are presented.

5.2 Methodology

In a Cooperative Collision Warning System consisting of n vehicles {Vg, V1, V2
moving on a highway, the position of the vehicles vary according to their re-
spective velocities {vg, vy, vs....... vp}. Ideally, the vehicles broadcast their
respective positions, and if the chance for collision is detected between two
vehicles, warnings are triggered at each vehicle. This strategy aims to min-
imize the number of packets in the network using a distributed algorithm
that runs at each vehicle in the Cooperative Collision Warning System.

Consider two vehicles V4 and Vg moving on a highway with respec-
tive velocities v4 and vg. Each vehicle has the ability to communicate over
a range R, i.e. the packets advertised by a certain vehicle can be heard by
another vehicle when the distance between them is less than the R.. The ve-
hicles are broadcasting periodically once for every time interval ¢,, determined
by frequency f,.
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The vehicles are at a safe distance when the distance d between V4
and Vg is greater than the communication range R.. The same is true for
n vehicles on a highway, i.e. it is safe to assume that vehicles are at a safe
distance if they cannot hear each other. Hence, the strategy prescribes to
communicate less often by doubling the time interval ¢,, until t5,,, (highest
time interval) when there is no transmission heard from neighboring vehicles.

Alternatively, the vehicles are in close proximity when distance d
between V4 and Vg is less than the communication range R.. The strategy
identifies when a transmission is heard and prescribes to communicate more
often by halving the time interval ¢,, until ¢;,,, (lowest time interval). Further,
while the proposed scenarios consist of only two vehicles V4 and Vg, the
presented case for the chance of a collision hold true for n vehicles.

By identifying the chance of collision based on the proximity be-
tween two vehicles d will enable them to adjust the time interval ¢, accord-
ingly. Further, this adaptive mechanism will enable vehicles to communicate
more often when there are more neighbors, i.e. the high-density regions will
have the most updated information to enable safety critical applications such
as Cooperative Collision Warning System. The distributed algorithm is sum-
marized using the Algorithm @ Further, the parameters t,, and tj;g, can
be tuned to ensure that the t;,, is high enough to avoid broadcast storm
situation.

Algorithm 6 Proximity adaptive algorithm

1: Initialize:
Set tion (lowest time interval), 44, (highest time interval)
2: for each time t do
3 if transmission is heard and t, > t;,, then
4: ty < t,/2
5: else
6 if ¢, < thigh then
7 t, < 2 xt,
8 end if
9: end if
10: end for
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The proposed strategy is tested using a simulated VANET. Further,
the strategy helped in devising a VANET for Integrated Sensing Systems for
Surface Mining Safety project. The detailed experimental setup and results
are presented in the following sections.

5.3 Experimental Setup

The proposed distributed algorithm presented using Algorithm [6]is evaluated
using a VANET simulated in Network Simulator 3 (NS-3). The simulation
consists of a highway intersection as depicted in Figure [5.1, The vehicles Vo,
V1, Vo and V3 depicted in the Figure move in four different directions;
vehicles move from bottom to top, top to bottom, left to right and right to
left respectively. However, the actual simulation consists of more one vehicle
in each direction and an equal number of vehicles moving in each direction.

Figure 5.1: Schematic of a VANET for simulation in Network Simulator 3
(NS-3)
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A different number of vehicles in tuple {40, 80, 120} are dispatched
for an interval of 300 seconds over the entire simulation time. For example,
from the starting time of the simulation ¢y to ¢y +300 s, there are 40 vehicles
participating in the simulation, i.e., 10 vehicles moving in each direction and
so on. The vehicles are initialized at a random position on the road using
random rectangle position in NS-3. The nodes are assigned random velocities
in the range of 25 mph - 70 mph and the position is determined using constant
velocity mobility model in NS-3. The vehicles on each of four lanes start from
one end of the road and travel in their respective direction. Node density is
calculated as the number of vehicles traveling through a unit road segment
area, and it is equal to the number of vehicles in the simulation.

The impact of variations in node density is observed. Since our fo-
cus is to observe the effects on the network for different node density values,
we ignore the effects of the collision between vehicles. For each experiment
setting, the simulation is repeated for 20 runs with random seeding. Simi-
lar to the previous strategies, a Python based tool is written here at West
Virginia University Distributed Systems and Networking Lab for performing
the analysis. The percentage of packets saved with and without using the
strategy for node density = {40, 80, 120} is analyzed using this tool. The
results are detailed in the following section.

5.4 Results

For each node density, the percentage of packets saved through the network
with and without using the strategy is represented using a box plot for all
20 runs in Figure 5.2 As it is shown in the Figure [5.2] it is observed that
a median value of 67.17% of packets sent through the network saved using
this strategy for node density = 40. Unlike the strategy presented in the
Chapter [ the median value of the percentage of packets saved using the
strategy decreases as node density increases.
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Figure 5.2: Percentage of Packets Saved vs Node Density (No. of vehicles in
the simulation)

5.5 Conclusion

A distributed strategy that aims to ensure the most updated information at
high density regions in a VANET is presented. The strategy achieves the
objective while optimizing the number of packets in the network. The Algo-
rithm [0] is validated using a simulated VANET. The strategy is observed to
save packets broadcasted in the network for different values of node density.
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Chapter 6

Conclusion and Future Work

6.1 Contributions

In this thesis, we have proposed four different information centric strategies
for Cyber-Physical System(s). Although each strategy addresses a different
challenge, they all share one common goal, i.e. optimizing the traffic with-
out significant modifications to the underlying infrastructure. Further, the
strategies are inspired by the challenges encountered while designing differ-
ent systems here at West Virginia University Distributed Computing and
Networking Lab. We list the proposed strategies below.

1. First, we propose a linear estimator based strategy for a generic net-
worked sensing system. Using Eq. , the sensor value is estimated
at sensor model mg and data is only transmitted if the value is greater
that certain threshold; otherwise, the controller model m,. uses esti-
mated value as current sensor value. The strategy is validated using
a simulated sensor network using data from weather boards deployed
at Intel Berkeley Research Lab. We have observed that the number of
packets sent through the network reduced by at least 40% calculated as
a median over 54 sensors. Further, we have observed that the model in-
troduces more error in the sensor value using the strategy under packet
loss. Such a generic optimization can be coupled with other strategies
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for better results.

. Second, a data optimization strategy is proposed to address the chal-
lenges encountered while designing MapMyTruck as part of Integrated
Sensing Systems for Surface Mine Safety Project. We propose an algo-
rithm for sensor model m, that identifies the sensor state ¥, and adjusts
the current frequency f.urrene based on a set of rules R. The strategy
is experimentally validated and observed to save at least 60% of the
packets sent through the network. Further, we have implemented the
MapMyTruck application for haul trucks in Red Hills Mine in Acker-
man, Mississippi and observed to save about 86.1% of data on a normal
working day.

. Third, for spatially distributed mobile sensor nodes, we have proposed
a strategy to ensure a spatial resolution over a region while transmitting
a minimum number of packets using a distributed algorithm presented
using Algorithm [5] The proposed strategy is experimentally validated
using a simulated mobile wireless sensor network in Network Simulator
3 (NS-3). We have seen that a median of 77% of packets can be saved
using the strategy. Further, the strategy works very well when the data
is needed more frequently.

. Fourth, a distributed strategy for vehicles participating in a Vehicular
Ad hoc Network (VANET) is proposed. Although we did not evaluate
the strategy in the real world like MapMyTruck, it is designed for a GPS
based Cooperative Collision Warning System developed for Integrated
Sensing Systems for Surface Mining Safety project. We use the proxim-
ity of the vehicles to dynamically adjust the communication interval £,,.
The strategy is found to save a median value of 67.17% of the packets
when validated using a simulated VANET for node density = 40 in
Network Simulator 3 (NS-3).

Overall, the proposed strategies found to reduce the traffic in the

network and there by reducing the packet collisions in the network. Specif-
ically, applications like MapMyTruck have found to reduce the operational
and carrier costs. We summarized the directions for future work in the fol-
lowing section.
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6.2 Future Work

Cyber-Physical System(s) encompasses complex processes with communica-
tion at the core. A synergy between robust infrastructure and application
strategies is very much needed to build such complex ecosystem(s). We ac-
knowledge the fact that there are a great number of ecosystems each with
different subsystems, components, and priorities; not all of them have been
addressed in this thesis. With the proposed strategies, we would like to eval-
uate the performance when multiple strategies are combined. For example,
generic strategy presented in Chapter [2|can be coupled with any of the other
three strategies presented in Chapter [3| Chapter [l and Chapter [f

The strategy presented in Chapter [3is evaluated using MapMyTruck
in real world scenario, and we would like to implement other three strate-
gies and observe the performance. Also, the strategies can be experimentally
validated for larger simulation environments with more processes and sensor
nodes. Further, we have observed satisfactory results using a linear model in
Chapter 2] and we would like to investigate the performance of more complex
machine learning techniques for information centric strategies.
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