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ABSTRACT 

Characterization of Genes Involved in SUMOylation during Embryogenesis in Rainbow 

Trout (Oncorhynchus mykiss) 

 

Xiaowei Zang 

 

SUMOylation is the post-translational modification of proteins by the addition of the 

small ubiquitin-like modifier (SUMO), which plays an important role in various cellular 

processes. It has been reported that SUMO and its related proteins are important in diverse 

reproductive functions such as ovulation, gametogenesis, and embryogenesis. Modification of 

target proteins by SUMO is an ATP-dependent enzymatic cascade involving three key enzymes: 

E1 activating enzyme (the heterodimer SAE1-SAE2), E2 conjugating enzyme (UBC9) and 

several E3 ligating enzymes (PIAS, RanBP2/Nup358 and Pc2). The objectives of this study were 

to characterize the genes involved in SUMOylation and determine their expression profiles 

during embryogenesis in rainbow trout. Through database analysis, ten Sumo related genes, 

which include Sumo1, Sumo2, Sumo3, Sae1, Sae2, Ubc9, Pias1, Pias4, Cbx4, and Nse2, were 

identified. Analysis of protein sequences of SUMO1 and UBC9, the key components in the 

pathway, revealed that they are highly conserved among human, mice, rat, cattle, pig, chicken, 

Xenopus, zebrafish and rainbow trout species. The expression profiles of the Sumo related genes 

during embryonic development in rainbow trout were analyzed by quantitative real time PCR 

using cDNAs derived from unfertilized eggs and embryos of 17 different developmental stages 

(0h, 3h, 7.5h, 11.5h, 13.5h, 18h, 27h, 34h, 2d, 3d, 4d, 5d, 6d, 8d, 10d, 12d, 16d and 25d post 

fertilization). The expression of Sumo3, Ubc9, Pias4, and Nse2 genes showed similar patterns, 

being low in unfertilized eggs and increasing gradually in early embryos until 18 h post 

fertilization followed by a gradual decrease in embryos after 18 h post fertilization; both Sumo1 

and Sumo2 genes were highly expressed during maternal to zygotic transition (3d-5d post 

fertilization); while Sae1, Sae2, Pias1, and Cbx4 were expressed constitutively at steady-state 

levels throughout embryogenesis. The data indicate that the expression of Sumo related genes are 

dynamically regulated during the embryonic development in rainbow trout. To better understand 

how SUMO modification regulates embryonic development, two oocyte specific factors, FIGLA 

and LHX8, were studied for their interactions with SUMO. Under the experimental conditions 

used in the study, no apparent interactions of FIGLA or LHX8 with SUMO were detected. The 

study represents the first attempt to characterize genes involved in SUMOylation in rainbow 

trout. Further studies to understand the role of SUMOylation in controlling early embryogenesis 

may ultimately lead to the development of molecular markers for egg quality and embryonic 

development potential in rainbow trout.  
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Introduction 

 

Rainbow trout is one of the most important cold-water fish species in the USA due to its 

significance as a research model, in sports and food industry. Use of rainbow trout as a research 

model has been reported in various fields including cancer, toxicology and nutrition (Thorgaard 

et al., 2002). Many environmental and biological factors are known to affect the ability of an egg 

to produce a viable embryo (Brooks et al., 1997; Kjorsvik et al., 1990). These factors defining 

the developmental competence of an egg are highly variable, which can be a serious problem in 

the fish farming industry, especially for intensively cultured species, such as rainbow trout. 

Understanding these variations would be of great economic importance in hatcheries to address 

the increased demand of aquaculture products with lower production costs (Lee 2003). However, 

the mechanisms by which these factors trigger the loss of egg quality are largely unknown. 

Maternal and paternal mRNA transcripts are known to be essential for the development of a 

healthy embryo (Brooks et al., 1997). To date, several oocyte-specific maternal effect genes have 

been identified that include maternal antigen that embryos require (Mater) (Tong et al., 2000), 

zygote arrest 1 (Zar1) (Wu et al., 2003), and nucleoplasmin 2 (Npm2) (Burns et al., 2003). Other 

oocyte-specific genes that are potentially important for early embryonic development include 

Factor in the germline alpha (Figla) and LIM homeobox protein 8 (Lhx8); both of them are 

essential factors required for normal follicullogenesis (Soyal, 2000; Choi et al., 2008; Pangas et 

al., 2006).  

Post-translational modifications are essential for certain proteins for their biological 

activities. SUMOylation is one of the post-translational modifications involving addition of the 

small ubiquitin-like modifier (SUMO), which plays an important role in various cellular 
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processes. Modification of target proteins by SUMO is an ATP-dependent enzymatic process 

involving three key enzymes: E1 activating enzyme (the heterodimer SAE1-SAE2), E2 

conjugating enzyme (UBC9) and several E3 ligating enzymes (PIAS, RanBP2/Nup358 and Pc2) 

(Johnson, 2004). It has been reported that SUMO and its related proteins are important in diverse 

reproductive functions such as ovulation, gametogenesis, and embryogenesis (Broday et al., 

2004; Shao et al., 2004; Yuan et al., 2010). Previous studies have shown that octamer-binding 

transcription factor 4 (OCT4), an oocyte-specific maternal factor, is a target for SUMO 

modification and that SUMOylation enhances OCT4 stability, DNA binding activity, and 

transactivation (Wei et al., 2007).  

As an initial step towards understanding the role of SUMOylation in controlling early 

embryogenesis in rainbow trout, the present study was carried out to identify Sumo-related genes 

and analyze their expression profiles during embryonic development in rainbow trout. Additional 

experiments were performed to determine whether FIGLA and LHX8 are SUMOylated.  
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Literature Review 

 

Quality of fish eggs  

Many environmental and biological factors are known to affect the ability of a fish egg to 

produce a viable embryo, including paternal genes, pollution, quality of water (bacteria, 

temperature, oxygen content, etc.) and diet (Brooks et al., 1997; Kjorsvik et al., 1990). However, 

the mechanisms by which these factors alter egg quality are largely unknown. In fish, 

accumulation of maternal transcripts and proteins, which occurs mostly at late stages of oocyte 

maturation, is accompanied by vitellogenesis, a process characterized by hepatic production and 

massive deposition of yolk lipoproteins within the oocytes, providing the nutritional reserves 

necessary for embryogenesis (Tyler, 1996). Genes involved in vitellogenesis, as well as in the 

utilization of these reserves during early development, are essential for normal embryonic 

development in fish. Previous studies have suggested that yolk proteins, which are mainly 

composed of two lipoproteins called lipovitellins and phosphoproteins, may be used as genetic 

markers for egg quality (Brooks et al., 1997). However, studies on genes controlling egg quality 

in fish are limited.  

 

Oocyte-specific genes 

Studies in mice and other species have demonstrated the importance of oocyte-specific 

genes in folliculogenesis, fertilization and early embryonic development (Zheng and Dean, 2007). 

Key oocyte-specific genes known to be vital in folliculogenesis include factor in the germline 

alpha (Figla) (Soyal et al., 2000), growth differentiation factor 9 (Gdf9), LIM homeobox 8 (Lhx8) 

and bone morphogenetic protein 15 (Bmp15) (Choi et al., 2008). The essential roles of these 
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genes in follicular development have been demonstrated primarily by their targeted deletion in 

mice and molecular genetic approaches in other species (Dong et al., 1996; Galloway et al., 2000; 

Soyal et al., 2000; Yan et al., 2001). Oocyte-expressed genes known to be essential for initial 

embryonic development include Mater (Tong et al., 2000), Zar1 (Wu et al., 2003) and Npm2 

(Burns et al., 2003). Despite these discoveries, our overall understanding of genes involved in 

oocyte development and regulation of early embryonic development is far from complete, 

particularly in fish species.  

Figla encodes a germ-cell specific basic-helix-loop-helix (bHLH) transcription factor (Liang 

et al., 1997) and it is a major regulator of multiple oocyte specific genes, including zona 

pellucida protein genes (Zp1, Zp2 and Zp3) which are essential for early embryonic survival 

(Liang et al., 1997). Figla knockout in female mice appears to have normal embryonic 

gonadogenesis, with abnormal reduction in oocyte numbers resulting in smaller ovaries and 

eventually infertility. Contrary to females, knockout in male mice have normal fertility. These 

observations indicate that Figla plays a key regulatory role in oogenesis (Soyal et al., 2000). 

Expression of Figla is critical not only for activation of oocyte-associated genes but also for 

repression of sperm-associated genes during postnatal oogenesis (Hu et al., 2010). Therefore, 

Figla is a critical transcriptional regulator sustaining transcription of target genes in 

folliculogenesis. However, the molecular role of Figla during early embryogenesis is yet to be 

understood. 

LHX8 is a member of the homeobox protein family that participates in tissue differentiation 

during ontogenesis (Kitanaka et al., 1998). The superfamily includes protein kinases, GTPase-

activation factors, and transcription factors, which are essential to intracellular signaling and 

cellular architecture (Dawid, 1998; Hunter and Rhodes, 2005). LHX8 contains two LIM homeo 
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domains and is expressed from embryonic day 18.5 (E18.5) throughout folliculogenesis in mice 

(Jagarlamudi and Rajkovic, 2012) with its expression in the maxillary and mandibular processes 

and ventral forebrain during embryonic development in mice (Matsumoto et al., 1996; Grigoriou 

et al., 1998). Similar to Figla, Lhx8 knockout mice exhibit infertility due to oocyte depletion 

along with repression of multiple germ-cell specific genes, such as Figla and Bmp15 (Choi et al., 

2008; Pangas et al., 2006). Recent studies in Xenopus suggest that loss of Lhx8, together with 

Msh homeobox 2 (Msx2) and retinoic acid results in decreased cell proliferation and failure to 

form the frontonasal prominence (Kennedy and Dickinson, 2012). However, the exact function 

of Lhx8 in early embryonic development has not been fully discerned.  

 

Embryonic development (Embryogenesis) 

 Embryonic development (embryogenesis) is a process that starts with fertilization of the 

egg by sperm to form a zygote, followed by development of the embryo and eventually into a 

fetus. The developmental stages of zebrafish embryo, based on morphological features, were 

zygote (0-
3
/4 hours post fertilization), cleavage (

3
/4-2

1
/4 hpf), blastula (2

1
/4-5

1
/4 hpf), gastrula 

(5
1
/4-10 hpf), segmentation (10-24 hpf), pharyngula (24-48 hpf), to hatching (48-72 hpf) 

(Kimmel et al., 2005) (Table 1). Cleavage of the zygote after fertilization (the newly fertilized 

egg with one-cell), begins with two-cell stage and continues to 64-cell stage without significant 

increase in cell size. Division further to 128-cells into a ball-like shape is the blastula stage until 

the onset of epiboly, a characteristic of gastrula. Epiboly is the thinning and spreading of a 

multilayered sheet of cells, to form a cover over the embryo during gastrulation (Gilbert, 2003). 

Cell cycle lengthening marks the maternal-zygotic transition (MZT) of the blastula stage where 

maternal transcripts are degraded and zygotic genes activated (Schier, 2007). Formation of the 
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embryonic axis defines the end of the gastrula period followed by morphogenetic movement, the 

segmentation period, where the somites and neuromere develop until the tail appears. Then the 

body axis is straightened and fin development begins in the pharyngula period. The last stage in 

embryogenesis is hatching where the rapid morphogenesis is complete, transforming into larvae 

3 days after fertilization regardless if they have hatched or not (Kimmel, 2007). 

Table 1. Stages of early development in zebrafish (Kimmel et al., 2005). 

Period 
Hours post 

fertilization 
Description 

Zygote 0 
The newly fertilized egg through the completion of the first 

zygotic cell cycle 

Cleavage ¾ Cell cycles 2 through 7 occur rapidly and synchronously 

Blastula 2¼ 

Rapid, metasynchronous cell cycles give way to lengthened, 

asynchronous ones at the midblastula transition; epiboly then 

begins 

Gastrula 5¼ 

Morphogenetic movements of involution, convergence, and 

extension form the epiblast, hypoblast, and embryonic axis; 

through the end of epiboly 

Segmentation 10 
Somites, pharyngeal arch primordia, and neuromeres develop; 

primary organogenesis; earliest movements; the tail appears 

Pharyngula 24 

Phylotypic-stage embryo; body axis straightens from its early 

curvature about the yolk sac; circulation, pigmentation, and 

tins begin development 

Hatching 48 

Completion of rapid morphogenesis of primary organ systems; 

cartilage development in head and pectoral tin; hatching occurs 

asynchronously 

Early larva 72 
Swim bladder inflates; food-seeking and active avoidance 

behaviors 
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Maternal-zygotic transition (MZT) 

Maternal-zygotic transition (MZT) is the stage at which the zygote switches to its own 

transcriptional machinery from its dependence on maternal RNA. After fertilization, maternal 

RNAs and proteins deposited by the mother into the egg drive early embryonic development 

while the newly formed embryo is transcriptionally inactive. During the transition, maternal 

RNAs are degraded from one-cell stage to blastula and gastrula stages, while zygotic genes start 

to be transcribed after blastula and gastrula stages (Schier, 2007). Previous studies in Drosophila 

provided evidence of the involvement of certain regulatory factors that recognize sequences in 

the 3’ untranslated region (UTR) of maternal transcripts and mediate their degradation (Tadros 

and Lipshitz, 2005). Later studies in Xenopus and zebrafish demonstrated the role of microRNAs 

in the degradation of maternal mRNAs (Giraldez et al., 2006; Lund et al., 2009). Concomitantly, 

zygotic genome activation (ZGA) during early development must overcome maternal silencing. 

Silencing of maternal transcripts is facilitated mainly by three mechanisms, namely chromatin-

mediated repression, lack of transcription machinery and transcriptional repression due to 

shortened cell cycles (Schier, 2007).  

 

Small ubiquitin modifier (SUMO) 

Post-translational modifications of proteins play a critical role in many cellular processes by 

altering functional capability of preexisting proteins, multi-protein complexes, and intracellular 

structures. In addition to phosphorylation, acetylation and ubiquitination, several small ubiquitin-

like proteins (UBLs) have recently been discovered to be reversible post-translational protein 

modifiers. All UBLs have similar 3D structure, which includes an ubiquitin fold even with 

highly variable amino acid sequences (Bayer et al., 1998). Among these, small ubiquitin-like 
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modifier (SUMO) is the best characterized protein (Hay, 2005). However, unlike ubiquitin that 

targets proteins for degradation, SUMO-modification affects the coordinate the protein’s 

intracellular localization, interactions, stability and activity (Hay, 2005), thereby affecting a wide 

range of cellular processes, including gene transcription, cell cycle progression, protein stability, 

nuclear localization, signal transduction, protein-protein interactions and chromatin dynamics 

(Geiss-Friedlander and Melchior, 2007). 

SUMO constitutes a highly conserved protein family ubiquitously expressed in eukaryotes. 

SUMO proteins are ~10kD in size and share only ~18% sequence identity with ubiquitin, with 

similar three-dimensional structure as they share ubiquitin fold (β1-β2-α1-β3-β4-α2-β5) (Bayer 

et al., 1998; Johnson, 2004). S. cerevisiae, C. elegans and D. melanogaster have a single SUMO 

gene whereas vertebrates have at least three SUMO genes, namely SUMO-1, 2, 3 (Saitoh and 

Hinchey, 2000), with recent addition of SUMO4, found in humans to date (Geiss-Friedlander 

and Melchior, 2007). Eight isoforms of SUMO in the Arabidopsis thaliana’s genome have been 

reported (Lois et al., 2003; Kurepa et al., 2003). Mammalian SUMO2 and SUMO3 are ~95% 

identical with each other and share only 50% sequence identity to SUMO1. SUMO2/3 are, in 

part, functionally different from SUMO1 as they conjugate different substrates in vivo, in spite of 

being activated by the same pathway with the same enzymes. Moreover, on the basis of current 

studies, SUMO1 responds differently to stress, while SUMO2/3 are almost identical and 

presumably play identical functions (Saitoh and Hinchey, 2000; Matunis et al., 1996; Hoege et 

al., 2002).  
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SUMOylation 

SUMOylation is a key regulator of numerous biological and cellular events, including gene 

transcription, cell cycle progression, protein stability, nuclear localization, signal transduction, 

protein-protein interactions and chromatin dynamics (Geiss-Friedlander and Melchior, 2007). 

Recently, SUMO and SUMO pathway genes were shown to be important in diverse reproductive 

functions such as steroid receptor activity, ovulation, gametogenesis and embryogenesis (Broday 

et al., 2004; Jones, 2006; Abdel-Hafiz et al., 2009; Wang et al., 2010). In C. elegans, the 

reproductive system is a major SUMO target during postembryonic development, and is required 

for gonadal and uterine-vulval morphogenesis (Broday et al., 2004).  

SUMOylation, the conjugation of SUMO peptide to the target protein, results in the 

formation of an isopeptide bond between the C-terminal glycine residue of the modifier protein 

and the ε-amino group of a lysine residue in the acceptor protein by a series of enzymatic 

reactions similar to those involved in ubiquitination (Johnson, 2004). SUMOylation is a highly 

conserved process from yeast to humans and targets mostly specific proteins that contain a 

consensus motif, ψKXE, where ψ represents a large hydrophobic amino acid (leucine, valine or 

isoleucine, in general); K (lysine) is the SUMO attachment site; X can be any residue and E is a 

glutamic acid (Tatham et al., 2001; Johnson, 2004). Modification of target proteins by SUMO is 

an ATP-dependent enzymatic cascade involving three key enzymes: E1 activating enzyme (the 

heterodimer SAE1-SAE2), E2 conjugating enzyme (UBC9) and several different E3 ligating 

enzymes, PIAS, RanBP2/Nup358 and Pc2 (Melchior et al., 2003; Johnson, 2004; Hay, 2005). 

Newly synthesized SUMO is immature, as it cannot conjugate to its targets until a SUMO-

specific protease generates a mature SUMO by removing some carboxy-terminal residues to 

expose two C-terminal glycine residues (Hay, 2005). Mature SUMO is further activated by the 
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SUMO-specific E1 activating enzyme heterodimer SAE1-SAE2 (also known as AOS1-UBA2) 

and requires ATP for the formation of a SUMO-adenylate conjugate. The adenylated SUMO is 

then transferred from SAE2 to the active site cysteine (Cys) of the SUMO-specific E2 

conjugating enzyme (UBC9), forming a thioester linkage between the catalytic Cys residue of 

UBC9 and the C-terminal carboxy group of SUMO. Next, UBC9 transfers SUMO to the target 

protein (substrate), forming an isopeptide bond between the C-terminal glycine residue of 

SUMO and a lysine side chain of the target. This step is usually facilitated by SUMO E3 ligases, 

with exceptions so that some targets are efficiently SUMOylated directly by E2 conjugating 

enzyme (UBC9). SUMO ligases consist of three different groups of enzymes, viz 1) the protein 

inhibitor of activated STAT (PIAS) family that contains a C3HC4 RING-like domain 

(Hochstrasser, 2001; Jackson, 2001; Kotaja, 2002), 2) the nuclear pore protein RanBP2/Nup358 

(Pichler et al., 2002), and 3) the polycomb group protein Pc2 (Kagey et al., 2003) (Figure 1).  

SUMOylation is a reversible modification, and cleavage of the isopeptide bond between the 

glycine of SUMO and the lysine of the target is carried out by SUMO-specific proteases of the 

SENP/Ulp family. Seven SENP genes have been found in humans and they target different 

SUMO isoforms (Drag and Salvesen, 2008). Three other SUMO proteases have been identified 

in humans recently, including two desumoylating isopeptidase (DeSI1 and DeI2) and ubiquitin-

specific protease-like 1 (USPL1) (Shin et al., 2012). Both the released SUMO and target are then 

recycled for subsequent rounds of SUMOylation (Melchior, 2000; Johnson, 2004; Hay, 2005; 

Geiss-Friedlander and Melchior, 2007).  
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Figure 1.  SUMOylation pathway: activation, conjugation and deconjugation (Muller et al., 

2004). 

 

 

SUMO modification in reproductive function  

Some of the germ-cell specific transcription factors such as octamer-binding transcription 

factor 4 (OCT4) and homeobox protein NANOG (NANOG) are targets of SUMO modification 

and are regulated by SUMO. OCT4 is a transcription factor that is expressed in embryonic stem 

(ES) cells and is needed for germ-cell viability (Nichols et al., 1998; Kehler et al., 2004). 

NANOG, a homeobox transcription factor, plays a critical role in regulating the cell fate of 

pluripotent ES cells by maintaining pluripotency (Chambers et al., 2003). SUMOylation of 

OCT4 enhances its stability, transactivating and DNA binding activity (Wei et al., 2007). 

Moreover, SUMOylation represses NANOG expression and the SUMOylated OCT4 and SOX2 

(sex determining region Y-box 2) proteins regulate NANOG in opposing manners (Wu et al., 

2012). SUMOylation therefore provides a critical regulatory mechanism to control the stability 

and activity of some germ-cell specific proteins, such as OCT4 and NANOG, during embryonic 

development. 
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In summary, the preceeding studies show that SUMO and its attendant genes can 

influence developmental programing of both vertebrate and invertebrate metazoans. Work over 

the last decade has shown that SUMOylation is an important regulator of protein function and is 

essential in a number of different biological pathways. However, investigations in regard to how 

SUMO affects maternal proteins are still limited. Many basic questions regarding SUMO 

components, mechanism of action and SUMO target proteins remain unanswered and need 

further investigation.  
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Objectives of the Study 

 

SUMOylation is a key regulator of protein modification and is essential in a number of 

different biological pathways including embryogenesis. However, studies of SUMO and its 

related proteins in fish are limited. The main hypothesis of this study is that SUMOylation plays 

an important role during early embryonic development in rainbow trout and certain oocyte-

specific factors are SUMOylated. The aims of the study are: 1) identify and characterize genes in 

the rainbow trout SUMOylation pathway, 2) determine the mRNA expression of Sumo paralogs 

and related genes in embryogenesis of rainbow trout and; 3) determine if FIGLA and LHX8 are 

SUMOylated. 
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Materials and Methods 

 

Collection of samples 

 Adult rainbow trout were obtained from the National Center for Cool and Cold Water 

Aquaculture (Kearneysville, WV). Embryonic samples were collected at a series of time points 

after fertilization, including 0h, 3h, 7.5h, 11.5h, 18h, 27h, 34h, 2d, 3d, 4d, 5d, 6d, 8d, 10d, 12d, 

16d and 25d post fertilization. Tissue samples were collected from mature fish including gill, 

liver, stomach, head kidney, ovary, muscle, heart, small intestine, spleen, and brain. All samples 

were quick frozen in liquid nitrogen and stored at -80°C until use. 

 

RNA isolation 

Total RNA from all samples was extracted with Tri-Reagent (Molecular Research Center, 

Cincinnati, OH) according to the manufacturer’s protocol. RNA isolated from oocytes and 

embryos was further purified by lithium chloride precipitation. The RNA integrity was evaluated 

by gel electrophoresis and the RNA concentration was measured by OD260 reading using a 

Nanodrop spectrophotometer. 

 

Treatment of RNA samples with DNase 

Six µg of total RNA was treated with DNase by adding 3 µl of 10x DNase I buffer and 1 

µl of DNase I (Ambion) and the volume of the reaction made up to 30 µl with double distilled 

water (ddH2O). The mixture was incubated at 37°C in a waterbath for 30 minutes followed by 

addition of 5 µl of DNase inactivation reagent to inactivate the enzyme. After incubation at room 
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temperature for two minutes followed by centrifugation at 14,000g for 2 minutes, the supernatant 

containing DNase treated RNA was transferred to a fresh tube. 

 

Reverse-transcription polymerase chain reaction (RT-PCR) 

The first strand cDNA synthesis was carried out using DNase treated RNA as template 

with the reaction mixture containing 8 µl of DNase treated RNA, 1 µl of Oligo dT18 primer (100 

µM), 1 µl of dNTP mix (10 µM), 3 µl of random primers (50 ng/µl), 4 µl of 5x first strand 

cDNA synthesis buffer, 2 µl of DTT (0.1 M), and 1 µl of Super-Transcript III reverse 

transcriptase (200 U/ml, Life Technologies). The reverse transcription was performed in a 

thermal cycler with 5 minutes of priming at 25°C, 30 minutes of reverse transcription at 42°C, 

and 5 minutes of inactivation at 85°C. The first strand cDNA was diluted by adding 80 µl of 

ddH2O and was stored at -80°C. 

The diluted first strand cDNA was used as a template for PCR amplification. PCR 

amplification was carried out with the reaction mixture composed of 1 µl of diluted cDNA, 2.5 

µl of gene specific forward primer (5 µM) and reverse primer (5 µM) (see Table 4 for the list of  

primer sequences), 1.5 µl of MgCl2 (25 mM), 0.5 µl of dNTP (10 mM), 5 µl of 5x PCR buffer, 

and 0.25 µl of Go Taq
®
 DNA polymerase (5u/µl, Promega) with the final volume adjusted to 25 

µl with ddH2O. Amplification was carried out in a thermal cycler with 3 minutes of denaturation 

at 94°C, followed by 30-35 cycles of 30 seconds of denaturing at 94°C, 30 seconds of annealing 

at 58°C, 1 minute of extension at 72°C with a final extension at 72°C for 10 minutes. A negative 

control was always included and the amplified products were separated through a 1% agarose gel 

and stained with 1:10,000 diluted RBG nucleic acid stain (Phenix). 
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Quantitative real-time polymerase chain reaction (qPCR) and statistical analysis 

The mRNA expression of genes involved in SUMOylation during embryogenesis were 

quantified using real-time PCR (qPCR) on a Bio-Rad CFX96™ Real-Time PCR Detection 

System. One µg of DNase treated total RNA was converted into cDNA using miScript reverse 

transcriptase mix (QIAGEN, Valencia, CA). Gene specific primers for qPCR (Table 4) were 

designed by Primer 3 software based on the corresponding cDNA sequences. Rainbow trout 

ribosomal RNA 18S and β-actin genes were used as endogenous controls (primers shown in 

Table 4). Each reaction was set up based on iQ™ SYBR
® 

Green Supermix (Bio-Rad, Hercules, 

CA) manufacturer’s protocol in a 20 µl reaction containing 100 µM of each primer and 3 µl of 

1:5 diluted cDNA. Cycling parameters were 95°C for 3 minutes followed by 40 cycles of 95°C 

for 10 seconds and 60°C for 1 minute. Melting curve analyses were programmed after 

amplification. Standard curves for each gene of interest and the endogenous controls were 

constructed by using 3 fold serial dilutions of a pooled cDNA sample. The quantity of each 

sample was determined from respective standard curve and then normalized to the corresponding 

reference gene. Four biological duplicates for each embryonic stage were performed.  

Mean differences in expression of each gene was evaluated as relative fold changes using 

the lowest expression value as a calibrator. One-way ANOVA was performed on gene 

expression values by R software system to determine the significance of differences in gene 

expression among different samples. Different letters indicate significant differences (P<0.05). 

 

Analysis of protein sequences 

 Alignment of protein sequences were performed using ClustalW2 software 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/). The evolutionary relationship of SUMO1 and 
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UBC9 proteins among different species including human, mouse, rat, cattle, pig, chicken, 

Xenopus, zebrafish, and rainbow trout was analyzed by Quicktree/Archaeopteryx. Prediction of 

SUMOylation motifs on the germ-cell specific transcription factors FIGLA and LHX8 was 

performed using SUMOsp 2.0 software (http://sumosp.biocuckoo.org/program). 

 

Plasmid construction 

 The coding sequences for rainbow trout Sumo1, Figla, and Lhx8 were amplified by PCR 

using gene-specific primers containing restriction sites (Table 4). The PCR product for Sumo1 is 

flanked by EcoRI and XhoI restriction sites and cloned in frame with a Flag tag, while the PCR 

product for Figla or Lhx8 is flanked by HindIII and EcoRI cutting sites and cloned in frame with 

a Myc tag. The amplified coding sequences and pcDNA3.1 vector (Life Technologies) were 

digested with the same pair of restriction enzymes for 2-3 hours at 37°C, and separated through a 

1% agarose gel. The corresponding bands were cut out and extracted by QIAquick gel extraction 

kit (QIAGEN, Valencia, CA) following the manufacturer’s instructions. Insert and vector were 

incubated with T4 ligase (Promega, 3 u/µl) at room temperature for 4 hours or at 4°C overnight. 

E. coli competent cells (Novagen) (> 1.5 x 10
8
 cfu/µg) were transformed with 1 µl of ligation 

mixture using a heat shock method involving incubation on ice for 5 minutes, followed by a heat 

shock for 30 seconds in a 42°C water bath, and then on ice for another 2 minutes. The 

transformation mixture was plated on LB 1% carbenicillin agar plates. Plates were incubated 

overnight at 37°C. A single colony was inoculated the next day and cultured in 3 ml of LB broth 

with 1% carbenicillin overnight in shaking incubator at 37°C with 250 rpm. Plasmids were 

isolated from the overnight grown culture using a QIAprep miniprep plasmid isolation kit 
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(QIAGEN, Valencia, CA) or QIAfilter plasmid midi kit (QIAGEN, Valencia, CA) following 

manufacturer’s instructions. 

 

Cell culture & transfection 

HEK293 cells were grown in Dulbecco’s modified eagles’ medium (DMEM) (Life 

Technologies) supplemented with 10% fetal bovine serum (Life Technologies) and 1% 

penicillin/streptomycin (Life Technologies). HEK293 cells were transiently transfected with 1µg 

of high quality plasmid using X-tremeGENE 9 DNA transfection reagent (Roche) following the 

manufacturer’s instructions. After 24-48 hours of incubation, cells were collected using Pierce IP 

(Immunoprecipitation) lysis buffer (Thermo) and centrifuged for 5 minutes at 14,000 rpm. The 

supernatant was transferred to a fresh tube and stored at -20°C until use. 

 

Western blot analysis 

Thirty µg of total protein from cell lysates was used for Western blot analysis. The 

samples were boiled at 95°C for 5 minutes with 2x sample buffer (950 µl of Leammli sample 

buffer and 50 µl of β-mercaptoethanol), followed by centrifugation for 5 minutes at 14,000 rpm. 

Pre-cast Tris-HCl ready gel (Bio-Rad, Hercules, CA) was loaded with protein samples and 

Precision Plus Protein™ Kaleidoscope™ Standards protein ladder (Bio-Rad, Hercules, CA). 

Electrophoresis was carried out using 1x running buffer (Tris base/ Glycine/ SDS) for 2 hours at 

100 volts, followed by protein transfer from gel to a PVDF membrane in 1x transfer buffer (Tris 

base/ glycine /SDS /methanol) with an ice pack for 1 hour at 100 volts. Then the PVDF 

membrane was blocked (5% non-fat dry milk in 1x PBS) for 2 to 4 hours at room temperature to 

reduce non-specific binding sites. The membrane was transferred to primary antibody buffer (1: 
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1000 dilution in 1x PBS with 0.1% Tween-20) and incubated overnight at 4°C. The primary 

antibodies used include monoclonal anti-FLAG M2 antibody (F1804, Sigma), monoclonal 

THE™ c-myc tag antibody (A00704, GenScript), and polyclonal anti-SUMO-1 (C-terminal) 

antibody (S5446, Sigma). The membrane was washed with 1x PBS containing 0.1% Tween-20 

(PBST) buffer three times for 5 minutes each, and then incubated in secondary antibody buffer 

(IRDye 800CW goat anti-rabbit secondary antibody (LI-COR) and IRDye 680RD goat anti-

mouse secondary antibody (LI-COR), 1:10,000 dilution in 1x PBS containing 0.2% Tween-20 

and 0.01% SDS in the dark for 30 minutes at room temperature. After washing three times for 5 

minutes each in 1x PBST, the membrane was scanned wet or dry using the Odyssey Infrared 

Imaging System (LI-COR) to detect the protein signal. 

 

Isolation of polyA mRNA 

 Total RNA from mature oocytes was prepared using Tri-Reagent (Molecular Research 

Center, Cincinnati, OH) following the manufacturer’s protocol. One mg of total RNA was 

hybridized with Biotinylated-Oligo(dT) probe and attached with Streptavidin-Paramagnetic 

Particle (SA-PMPs) using a PolyATract® mRNA isolation system (Promega). The hybrids were 

captured by magnetic separation stand and washed at high stringency using streptavidin coupled 

to paramagnetic particles. Supernatant with non poly(A) mRNAs was discarded by multiple 

washes. Poly(A) mRNA was retained and eluted by adding RNase-free ddH2O (Promega). 

 

Construction of cDNA library for yeast two-hybridization 

CDS III Olig-dT Primer was added to mRNA and incubated at 72°C for 2 minutes and 

cooled on ice for 2 minutes before centrifugation at 14,000 g for 10 seconds. The mixture was 
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then added to the reaction mix containing 5X First-Strand Buffer, DTT (100 mM), dNTP mix 

(10 mM), and SMART MMLV Reverse Transcriptase. After incubation at 42°C for 10 minutes, 

1μl of SMART III-modified oligo was added and then incubated at 42°C for 1 hour. First-strand 

synthesis was terminated by holding at 75°C for 10 minutes. After the sample was cooled to 

room temperature, 1 μl of RNase H (2 units) was added to the tube followed by incubation at 

37°C for 20 minutes.  

Long distance PCR was performed after first strand cDNA synthesis. Two PCR reactions 

were set up with each reaction mixture containing 2 μl of First-Strand cDNA, 70 μl of deionized 

water, 10 μl of 10X Advantage® 2 PCR Buffer, 2 μl of 50X dNTP mix, 2 μl of 5’ PCR Primer, 2 

μl of 3’ PCR Primer, 10 μl of 10X Melting Solution, and 2 μl of 50X Advantage 2 Polymerase 

Mix (Clontech). The conditions for PCR amplification were 95°C for 30 seconds, 20 cycles of 

95°C for 10 seconds and 68°C for 6 minutes with addition of extension time by 5 seconds with 

each successive cycle, and 68°C for 5 minutes for final extension.  

Two PCR products were added to two equilibrated CHROMA SPIN TE-400 columns 

followed by centrifugation at 700g for 5 minutes. The purified samples were combined and 

transferred to a fresh 1.5 ml tube with 20 μl of 3 M sodium acetate and 200 μl of ice-cold 100% 

ethanol. After chilling at -20°C for 1 hour, the mixture was centrifuged at 14,000 rpm for 20 

minutes at room temperature. The pellet was air-dried and resuspended in 20 μl of deionized 

water.  

 

Transformation of cDNA library into pGADT7 vector 

Y187 yeast competent cells were prepared following the manufacturer’s protocol 

(Clontech). Twenty μl of double-strand cDNA and 6 μl of pGADT7-Rec plasmid (0.5 μg/μl) 
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were incubated for 45 minutes at 30°C followed by addition of denatured Yeastmaker carrier 

DNA (10 μg/μl), Y187 competent cell, and PEG/LiAC buffer (40% PEG3350, 1 x TE buffer, 

0.1M LiAC) followed by addition of 160 μl of DMSO. After incubation at 42°C for 20 minutes, 

the cells were centrifuged and the pellet was collected. The pellet was then resuspended in YPD 

plus medium and incubated at 30°C in a shaking incubator for 90 minutes. Cells were 

centrifuged again and the pellet was resuspended in 9 ml of 0.9% (w/v) NaCl Solution. A 

dilution series was performed on SD/-Leucine for the purpose of transformation efficiency. The 

remaining cells in NaCl solution were spread on SD/-Leu plates and incubated at 30°C for 3-4 

days. Two ml of freezing medium were added to each plate for colony detachment. The cells 

were aliquoted and stored at -80°C until further use. 

  



22 
 

Results 

 

Identification of cDNA sequences for Sumo related genes in rainbow trout 

Through database mining (GenBank or Gene Index database), ten genes in the rainbow 

trout SUMOylation pathway were identified, which include Sumo1, Sumo2, Sumo3, Sae1, Sae2 

Ubc9, Pias1, Pias4, Cbx4, and Nse2 (Table 2 and Table 3). Only Sumo1, Sumo3 and Ubc9 have 

complete coding sequences while the others public sequences were only partially. Multiple 

alignment analysis showed that rainbow trout SUMO1 shares 82% sequence identity with the 

human, mouse, rat, cattle, pig, chicken and Xenopus counterparts and 93% sequence identity 

with the zebrafish SUMO1 protein (Figure 2). The amino acid sequences of UBC9 are very well 

conserved among all the species with more than 99% sequence similarity. Phylogenetic tree 

analysis of SUMO1 and UBC9 proteins revealed that rainbow trout SUMO1 and UBC9 are 

closely related to their zebrafish counterparts (Figure 3). 

 

Expression of genes involved in SUMOylation pathway during embryogenesis 

The expression profiles of mRNA of the identified genes during embryonic development 

of rainbow trout are presented in Figure 4, 5, and 6. Sumo1 is highly expressed in embryos 3d to 

5d post fertilization (dpf) (Figure 4A). Sumo2 has lower expression in early stage embryos while 

higher expression in embryos 3d to d8 post fertilization (Figure 4B) was observed. Sumo3 

showed high expression in early stage embryos but its expression dramatically reduced in 

embryos after 27 hours post fertilization (hpf) (Figure 4C). Sae1 and Sae2 have similar 

expression patterns where two peaks were observed in 11.5 hpf and 3 dpf stage embryos (Figure 

5A, B). Ubc9 showed high expression only in 11.5 hpf and 18 hpf embryos (Figure 5C) while 
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Pias1 and Cbx4 are constitutively expressed throughout embryogenesis with two slight peaks at 

stages 11.5-18 hpf and 3-5 dpf (Figure 6A, C). Increased expression of Pias4 and Nse2 from the 

day of fertilization to 18 hpf and followed by a gradually decrease thereafter was observed 

(Figure 6B, 6D).  

 

Tissue distribution profile of Sumo1 and Ubc9 

The tissue expression profiles of Sumo1 and Ubc9, two key genes in the SUMOylation 

pathway, were characterized using 10 different tissues (Figure 7). The expression of Sumo1 and 

Ubc9 was detected in all tissues studied. More specifically, Sumo1 showed relatively higher 

expression in muscle (Figure 7A) compared to other tissues while the expression of Ubc9 is 

numerically higher in brain and ovary (Figure 7B). 

 

Identification of protein interactions between SUMO1 and FIGLA or LHX8 

 Analysis of the protein sequences of FIGLA and LHX8 using SUMOsp 2.0 software 

program predicted putative SUMO attachment sites on both proteins. The specific sites are K107 

in FIGLA, and K4 and K188 in LHX8. The coding sequences for Figla, Lhx8, and Sumo1 were 

cloned in frame with either a Flag or a Myc tag in an expression vector pcDNA3.1 and co-

transfection experiments were performed using HEK293 cells. Western blot analysis indicated 

that large amounts of plasmids are required for proper expression, as the FIGLA (green band) 

band faded when less plasmid was used; while the SUMO (red band) band was not observed 

until a large amount of the Sumo1 plasmid was transfected (Figure 8A). SUMO1 bands were 

detected by anti-SUMO1 antibodies (Figure 8B), but no additional band was observed at higher 



24 
 

molecular weight for both FIGLA and LHX8, suggesting that both transcription factors do not 

interact with SUMO1 under the experimental condition used (Figure 9). 

 

Construction of an oocyte cDNA library in pGADT7-Rec vector for yeast two hybridization 

 To better understand the targets of SUMO modification in early embryogenesis, a cDNA 

library from rainbow trout oocytes was constructed using Y187 yeast for future yeast two-

hybridization experiments. To determine the quality of the cDNA library, regular PCR was 

performed to amplify three selected genes (Figla, Lhx8 and Ubc9) using purified library plasmid 

as a template. As shown in Figure 10, a single band for each gene was observed, indicating that 

the constructed cDNA library is of good quality and can be used for future studies. 
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Discussion 

 

SUMOylation and deSUMOylation affect multiple biological and cellular events, 

including gene transcription, cell cycle progression, protein stability, nuclear localization, signal 

transduction, protein-protein interactions and chromatin dynamics. Recently, SUMO and SUMO 

pathway genes were shown to be important in diverse reproductive functions such as steroid 

receptor activity, ovulation, gametogenesis and embryogenesis (Broday et al., 2004; Jones, 2006; 

Abdel-Hafiz et al., 2009; Wang et al., 2010). In the current study, genes involved in 

SUMOylation were analyzed for their mRNA expression during early embryogenesis in rainbow 

trout. Two key genes in the SUMO pathway, Sumo1 and Ubc9, were characterized by analyses 

of their sequences and tissue distributions. In addition, the possibility of two transcription factors, 

Figla and Lhx8, being SUMOylated were investigated by co-transfection experiments followed 

by immunoblotting analysis. 

From genes identified in the database, three SUMO paralogs, two E1-activating enzymes, 

a single E2 conjugating enzyme, and four E3 ligases were characterized. Two of the four ligases, 

PIAS1 and PIAS4 paralogs, belong to the PIAS families; Cbx4 is one of the Pc2 families; NSE2 

also belongs to the PIAS family because it contains a C3HC4 RING-like domain. In humans, 

SUMO-1 is the most studied paralog and its function is different from SUMO2/3 since they 

conjugate different substrates in vivo. SUMO1 protein sequence is well conserved among human, 

mouse, western clawed frogs, zebrafish, and rainbow trout. The glycine at the C-terminal end is 

where the isopeptide bond forms between SUMO and its substrate (Johnson, 2004). The nearby 

amino acid sequences are quite conserved, suggesting they might help the isopeptide bond 

formation. Rainbow trout UBC9 is only one amino acid different at the C-terminal end from 
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human, mouse, and Xenopus; and one amino acid different near the N-terminal end from 

zebrafish. Sequence conservation of the UBC9 protein reflects its importance in the 

SUMOylation pathway. Previous studies have shown that depletion of the single conjugating 

enzyme, UBC9, resulted in embryonic lethality in zebrafish (Nowak and Hammerschmidt, 2006) 

and mice (Nacerddine et al., 2005). Therefore, UBC9 may also be an essential enzyme for early 

embryonic development in rainbow trout since it is the only conjugating enzyme known in the 

SUMOylation pathway and well conserved among five species. 

To better understand the protein relationships of the two most important proteins in the 

SUMOylation pathway, neighbor-joining phylogenetic trees were constructed for SUMO1 and 

UBC9 proteins. The amino acid sequences for SUMO1 and UBC9 from 8 different species were 

used to generate the phylogenetic trees. The phylogenetic tree for SUMO1 shows two main 

groups: fish and others. The tree for UBC9 indicates that this protein is more conserved among 

different species even though rainbow trout UBC9 showed its close resemblance with its close 

relative species zebrafish. 

The expression profiles of the Sumo related genes during embryonic development in 

rainbow trout indicate that gene expression is dynamically regulated. An important period in 

embryogenesis is the maternal-zygotic transition (MZT) when maternal RNAs are degraded in 

early embryogenesis beginning from one-cell stage to the blastula and gastrula stages, while 

zygotic genes are starting to be transcribed (Schier, 2007). MZT happens from 2 to 3 hours post 

fertilization in zebrafish (Tadros and Lipshitz, 2009). However, the transition in rainbow trout is 

around 3 to 6 days post fertilization because of the presence of microRNA-430 (unpublished 

data). The expression of Sumo3, Ubc9, Pias4, and Nse2 increased after fertilization, reaching a 

peak around 18 hpf, followed be a dramatic decrease thereafter. High expression level of Sumo1 
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and Sumo2 during 3 to 5 dpf could indicate the importance of SUMOylation during the maternal-

zygotic transition. Characterization of the expression of Sumo related genes in developing 

embryos provides valuable information about the importance of SUMOylation during 

embryogenesis in rainbow trout.  

Tissue specific expression of SUMO1 indicates its presence in muscle is greater than 

other tissues as it might be a key regulator in muscle differentiation because recent studies 

revealed that BS69 protein undergoes SUMO modification and plays an inhibitory role in muscle 

differentiation (Yu et al., 2009).  The brain-specific protein, G-protein coupled receptor 

interacting scaffold protein (GISP), is SUMOylated to modulate neuronal activity (Kantamneni 

et al., 2011). Moreover, higher expression level of Ubc9 in ovary and brain suggest their 

importance in the development of these tissues as absence of UBC9 is embryonic lethal in 

zebrafish (Nowak and Hammerschmidt, 2006) and mice (Nacerddine et al., 2005). 

To better understand the role of SUMO and its related proteins in embryogenesis in fish, 

the interactions of two germ-cell specific factors, FIGLA or LHX8, with SUMO1 were analyzed. 

Prediction using Sumo sp2.0 suggests that both proteins have a medium possibility to be 

recognized by SUMO. However, the present study failed to detect any interactions between 

FIGLA or LHX8 and SUMO1 under the conditions used. Future experiments may be carried out 

to confirm these results using in vitro SUMOylation systems. In addition, future experiments 

may use SUMO2/3 isoforms instead of SUMO1 for co-transfection in order to determine 

whether FIGLA and LHX8 is SUMOylated.  

To further determine the importance of SUMO modification in early embryonic 

development, a high quality oocyte cDNA library was constructed in yeast for future yeast two-

hybridization experiments. Because UBC9 is the single conjugating enzyme in the SUMOylation 
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pathway, it would be logical to identify SUMO targets using UBC9 as a bait. The rainbow trout 

UBC9 coding region has been cloned into pGBKT7-BD vector and maintained in Y2HGold 

yeast strain. Future experiments using UBC9 as a bait and the cDNA library need to be carried 

out to identify potentially novel SUMO modification substrates. 

In conclusion, rainbow trout has all the Sumo related genes. SUMO1 and UBC9 amino 

acid sequences are well conserved across species where UBC9 is more conserved among the 

species considered. During embryonic development (egg - d25), expression of all Sumo related 

genes can be classified into 3 groups (before and after maternal to zygotic transition) based on 

their expression patterns. Moreover, high expression of Sumo1 in embryos 3 to 5 days post 

fertilization suggests its importance during maternal to zygotic transition. Although Figla and 

Lhx8 might not be the target for SUMO, current and future work will focus on global 

SUMOylation during embryogenesis and determination of the unknown proteins that interact 

with UBC9 by yeast two-hybridization.  
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Tables and Figures 

 

Table 2. Genes involved in SUMOylation pathway of rainbow trout identified from current 

database. 

 
Groups Genes Proteins 

SUMO 

Sumo1 Small ubiquitin modifier 1 

Sumo2 Small ubiquitin modifier 2 

Sumo3 Small ubiquitin modifier 3 

E1 activating 

enzyme 

Sae1 SUMO activating enzyme subunit 1 

Sae2 
SUMO activating enzyme subunit 2, also known as Ubiquitin-like 1 

activating enzyme E1B 

E2 conjugating 

enzyme 
Ubc9 

SUMO conjugating enzyme UBC9, also known as Ubiquitin-

conjugating enzyme 9 

E3 ligating 

enzymes 

Pias1 
SUMO-protein ligase PIAS1, also known as protein inhibitor of 

activated STAT protein 1 

Pias4 
SUMO-protein ligase PIAS4, also known as protein inhibitor of 

activated STAT protein 4 

Cbx4 
SUMO-protein ligase CBX4, also known as Chromobox protein 

homolog 4 

Nse2 
SUMO-protein ligase NSE2, also known as Non-structural 

maintenance of chromosomes element 2 homolog 
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Table 3. GenBank or Gene Index (TC) number and sequence information for Sumo related 

genes in rainbow trout. 

 

GenBank or Gene 

Index number 
Gene name 

cDNA 

sequence size 

(bp) 

Protein 

size (aa) 

NM_001160594.1 
SMT3 suppressor of mif two 3 homolog 1 

(Sumo1) 
306 101 

NM_001165057.1 
SMT3 suppressor of mif two 3 homolog 2 

(Sumo2) 
288 partial 

BT074221.1 
Small ubiquitin-related modifier 3 precursor 

(Sumo3) 
324 partial 

TC193515 SUMO1 activating enzyme subunit 1 (Sae1) 854 partial 

TC203803 SUMO activating enzyme subunit 2 (Sae2) 1643 partial 

BT073773.1 SUMO1 conjugating enzyme UBC9 477 158 

TC187252 Protein inhibitor of activated STAT 1 (Pias1) 723 partial 

CX351371 protein inhibitor of activated STAT 4 (Pias4) 249 partial 

CA384029.1 Chromobox homolog 4 (Cbx4) 600 partial 

TC210241 Non-SMC element 2 (Nse2) 675 partial 
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Table 4. Primers used in the study. 

PCR 

method 
Primer name Primer sequences 

Product 

size (bp) 

Real-time 

PCR 

SUMO1-F500 ACTCTATTGGGGCTTCCATGT 
101 

SUMO1-R600 AGAAATGACTGTGCGAGGTGT 

SUMO2-F523 CCTCCGCTAAAACAACTCAGA 
115 

SUMO2-R637 AGGTGAACCAACAAGTCACCA 

SUMO3-F1192 CCACCATGACTTCAACAACCT 
119 

SUMO3-R1310 AAGGACTAGTGGACCCATGCT 

SAE1-F615 AACTGGCTCTGGAAGTGGATT 
93 

SAE1-R707 TCAGCAGTACGTGTAGCAGGA 

SAE2-F1381 ATACGACATGGTAGCCGTCTG 
103 

SAE2-R1483 CAAACTCCACATCCTTCTCCA 

UBC9-F769 TTACCTCTGGGTTGGAGTGTG 
124 

UBC9-R892 AAACCGGTACTGTGCTCTGTC 

PIAS1-F398 CTACAAGGGGACAACCATCAG 
105 

PIAS1-R502 GTAGGGACGGAAGTGGTTGA 

PIAS4-F339 AAAGCGTAGCTTGTCCTGGAT 
106 

PIAS4-R444 TTTAGTGCGGGTCTTCACATC 

CBX4-F126 GAGAAACCTTCCCTTTGCATC 
94 

CBX4-R219 CTTTCGATTCCGCTTCTTCTC 

NSE2-F521 CTGAGGCAGCAGAGAATATGG 
103 

NSE2-R623 TTCACCATCTCCACCTGAGTC 

β-actin-F541 GCCGGCCGCGACCTCACAGACTAC 
72 

β-actin-R613 CGGCCGTCCTCCTGAAGCTGTAAC 

R18s-F GTGGTGTTGAGGAAAGCAGACA 
 

R18s-R TGATCACACGTTCCACCTCATC 

Regular 

PCR 

SUMO1-ORF-F 
CCGGGAATTCGCCGCCACCATGTCAGACA

CGGAGACAAAAC 
352 

SUMO1-ORF-R 
CCGGCTCGAGCTACTTGTCATCGTCATCCT

TGTAATCATCATTCCAAAGTCCACCGGT 
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PCR 

method 
Primer name Primer sequences 

Product 

size (bp) 

PCR 

method 

Primer name Primer sequences Product 

size (bp) 

Regular 

PCR 

LHX8-ORF-F 
CCGGAAGCTTGCCGCCACCATGTATTGGA

AAAGTGAACTAATG 
1107 

LHX8-ORF-R 
GGCCGAATTCGGCATGGCTGATTGGCAGC

TG 

FIGLA-ORF-F 
CCGGAAGCTTGCCGCCACCATGAGTGTCCC

TGAGCGTGAG 
639 

FIGLA-ORF-R 
CCGGGAATTCACTGGGCTGGAACATCATG

GT 
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A 
Homo_sapiens             MSDQEAKPSTEDLGDKKEG-EYIKLKVIGQDSSEIHFKVKMTTHLKKLKESYCQRQGVPM 59 

Mus_musculus             MSDQEAKPSTEDLGDKKEG-EYIKLKVIGQDSSEIHFKVKMTTHLKKLKESYCQRQGVPM 59 

Bos_taurus               MSDQEAKPSTEDLGDKKEG-EYIKLKVIGQDSSEIHFKVKMTTHLKKLKESYCQRQGVPM 59 

Sus_scrofa               MSDQEAKPSTEDLGDKKEG-EYIKLKVIGQDSSEIHFKVKMTTHLKKLKESYCQRQGVPM 59 

Rattus_norvegicus        MSDQEAKPSTEDLGDKKEG-EYIKLKVIGQDSSEIHFKVKMTTHLKKLKESYCQRQGVPM 59 

Gallus_gallus            MSDQEAKPSAEDLGDKKEG-EYIKLKVIGQDSSEIHFKVKMTTHLKKLKESYCQRQGVPM 59 

Xenopus_tropicalis       MSDQEAKPSSEDLGDKKEGGDYIKLKVIGQDSSEIHFKVKMTTHLKKLKESYCQRQGVPM 60 

Danio_rerio              MSDTETKPSS-DGGEKKDG-EYIKLKVIGQDNSEIHFKVKMTTHLKKLKESYSQRQGVPV 58 

Oncorhynchus_mykiss      MSDTETKPSSGDGSEKKDG-EYIKLKVIGQDNSEIHFKVKMTTHLKKLKESYSQRQGVPM 59 

                         *** *:***: * .:**:* :**********.********************.******: 

 

Homo_sapiens             NSLRFLFEGQRIADNHTPKELGMEEEDVIEVYQEQTGGHSTV 101 

Mus_musculus             NSLRFLFEGQRIADNHTPKELGMEEEDVIEVYQEQTGGHSTV 101 

Bos_taurus               NSLRFLFEGQRIADNHTPKELGMEEEDVIEVYQEQTGGHSTV 101 

Sus_scrofa               NSLRFLFEGQRIADNHTPKELGMEEEDVIEVYQEQTGGHSTV 101 

Rattus_norvegicus        NSLRFLFEGQRIADNHTPKELGMEEEDVIEVYQEQTGGHSTV 101 

Gallus_gallus            NSLRFLFEGQRITDNHTPKELGMEEEDVIEVYQEQTGGHSTV 101 

Xenopus_tropicalis       NSLRFLFEGQRISDHQTPKELGMEEEDVIEVYQEQTGGHSTI 102 

Danio_rerio              NSLRFLFEGQRITDNLTPKELGMEDEDVIEVYQEQTGGCRND 100 

Oncorhynchus_mykiss      NTLRFLFEGQRISDNQTPKELGMEDEDVIEVYQEQTGGLWND 101 

                         *:**********:*: ********:*************  .  
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Homo_sapiens             MSGIALSRLAQERKAWRKDHPFGFVAVPTKNPDGTMNLMNWECAIPGKKGTPWEGGLFKL 60 

Mus_musculus             MSGIALSRLAQERKAWRKDHPFGFVAVPTKNPDGTMNLMNWECAIPGKKGTPWEGGLFKL 60 

Xenopus_tropicalis       MSGIALSRLAQERKAWRKDHPFGFVAVPTKNPDGTMNLMNWECAIPGKKGTPWEGGLFKL 60 

Sus_scrofa               MSGIALSRLAQERKAWRKDHPFGFVAVPTKNPDGTMNLMNWECAIPGKKGTPWEGGLFKL 60 

Gallus_gallus            MSGIALSRLAQERKAWRKDHPFGFVAVPTKNPDGTMNLMNWECAIPGKKGTPWEGGLFKL 60 

Bos_taurus               MSGIALSRLAQERKAWRKDHPFGFVAVPTKNPDGTMNLMNWECAIPGKKGTPWEGGLFKL 60 

Rattus_norvegicus        MSGIALSRLAQERKAWRKDHPFGFVAVPTKNPDGTMNLMNWECAIPGKKGTPWEGGLFKL 60 

Oncorhynchus_mykiss      MSGIALSRLAQERKAWRKDHPFGFVAVPTKNPDGTMNLMNWECAIPGKKGTPWEGGLFKL 60 

Danio_rerio              MSGIALSRLAQERKAWRKDHPFGFVAVPMKNPDGTMNLMNWECAIPGKKGTPWEGGLFKL 60 

                         **************************** ******************************* 

 

Homo_sapiens             RMLFKDDYPSSPPKCKFEPPLFHPNVYPSGTVCLSILEEDKDWRPAITIKQILLGIQELL 120 

Mus_musculus             RMLFKDDYPSSPPKCKFEPPLFHPNVYPSGTVCLSILEEDKDWRPAITIKQILLGIQELL 120 

Xenopus_tropicalis       RMLFKDDYPSSPPKCKFEPPLFHPNVYPSGTVCLSILEEDKDWRPAITIKQILLGIQELL 120 

Sus_scrofa               RMLFKDDYPSSPPKCKFEPPLFHPNVYPSGTVCLSILEEDKDWRPAITIKQILLGIQELL 120 

Gallus_gallus            RMLFKDDYPSSPPKCKFEPPLFHPNVYPSGTVCLSILEEDKDWRPAITIKQILLGIQELL 120 

Bos_taurus               RMLFKDDYPSSPPKCKFEPPLFHPNVYPSGTVCLSILEEDKDWRPAITIKQILLGIQELL 120 

Rattus_norvegicus        RMLFKDDYPSSPPKCKFEPPLFHPNVYPSGTVCLSILEEDKDWRPAITIKQILLGIQELL 120 

Oncorhynchus_mykiss      RMLFKDDYPSSPPKCKFEPPLFHPNVYPSGTVCLSILEEDKDWRPAITIKQILLGIQELL 120 

Danio_rerio              RMLFKDDYPSSPPKCKFEPPLFHPNVYPSGTVCLSILEEDKDWRPAITIKQILLGIQELL 120 

                         ************************************************************ 

 

Homo_sapiens             NEPNIQDPAQAEAYTIYCQNRVEYEKRVRAQAKKFAPS 158 

Mus_musculus             NEPNIQDPAQAEAYTIYCQNRVEYEKRVRAQAKKFAPS 158 

Xenopus_tropicalis       NEPNIQDPAQAEAYTIYCQNRVEYEKRVRAQAKKFAPS 158 

Sus_scrofa               NEPNIQDPAQAEAYTIYCQNRVEYEKRVRAQAKKFAPS 158 

Gallus_gallus            NEPNIQDPAQAEAYTIYCQNRVEYEKRVRAQAKKFAPS 158 

Bos_taurus               NEPNIQDPAQAEAYTIYCQNRVEYEKRVRAQAKKFAPS 158 

Rattus_norvegicus        NEPNIQDPAQAEAYTIYCQNRVEYEKRVRAQAKKFAPS 158 

Oncorhynchus_mykiss      NEPNIQDPAQAEAYTIYCQNRVEYEKRVRAQAKKFSPS 158 

Danio_rerio              NEPNIQDPAQAEAYTIYCQNRVEYEKRVRAQAKKFSPS 158 

                         ***********************************:** 

 

Figure 2. Comparison of rainbow trout SUMO1 and UBC9 amino acid sequences with 

homologous sequences from other species by ClustalW2 software. A) SUMO1 protein 

sequences of rainbow trout (NP_001154066.1) shares 82% sequence homology with human 

(NP_003343.1), mouse (NP_033486.1), rat (EDL98949.1), cattle (NP_001030535.1), pig 

(ABK63182.1), chicken (NP_989466.1) and Xenopus (AAH77048.1) SUMO1 proteins, and 93% 

sequence identity with zebrafish (NP_998324.1) SUMO1. B) UBC9 protein sequence of rainbow 

trout (ACO08197.1) shares over 99% sequence homology with human (NP_003336.1), mouse 
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(NP_035795.1), rat (NP_037182.1), cattle (AAI46108.1), pig (NP_001191298.1), chicken 

(BAB68210.1), Xenopus (NP_001016408.1) and zebrafish (NP_571426.1) UBC9 proteins. 
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Figure 3. Neighbor joining phylogenetic tree of SUMO1 and UBC9 proteins among 

different species. A) Phylogenetic tree of SUMO1 among nine species were generated by 

Quicktree/Archaeopteryx, suggesting rainbow trout has higher sequence homology with 

zebrafish. B) Phylogenetic tree of UBC9 indicates rainbow trout and zebrafish have a closer 

connection. Accession numbers for protein sequences listed: SUMO1, human (NP_003343.1), 

mouse (NP_033486.1), rat (EDL98949.1), cattle (NP_001030535.1), pig (ABK63182.1), chicken 
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(NP_989466.1), Xenopus (AAH77048.1), zebrafish (NP_998324.1), rainbow trout 

(NP_001154066.1); UBC9, human (NP_003336.1), mouse (NP_035795.1), rat (NP_037182.1), 

cattle (AAI46108.1), pig (NP_001191298.1), chicken (BAB68210.1), Xenopus 

(NP_001016408.1) and zebrafish (NP_571426.1), rainbow trout (ACO08197.1). 
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Figure 4. mRNA expression of SUMO paralogs during embryogenesis. A) Sumo1, B) Sumo2, 

and C) Sumo3. mRNA expression profile was analyzed by quantitative real-time PCR. Data were 

normalized relative to abundance of the endogenous control ribosomal RNA 18S and are 

expressed as relative fold changes (n=4, mean ± SEM). Different letters indicate statistical 

difference (p<0.05).   
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Figure 5. mRNA expression of SUMO activating and conjugating enzymes during 

embryogenesis. A) Sae1, B) Sae2 and C) Ubc9. mRNA expression profile was analyzed by 

quantitative real-time PCR. Data were normalized relative to abundance of the endogenous 

control ribosomal RNA 18S and are expressed as relative fold changes (n=4, mean ± SEM). 

Different letters indicate statistical difference (p<0.05).   
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Figure 6. mRNA expression of SUMO ligases during embryogenesis. A) Pias1, B) Pias4, C) 

Cbx4 and D) Nse2. mRNA expression profile was analyzed by quantitative real-time PCR. Data 

were normalized relative to abundance of the endogenous control ribosomal RNA 18S and are 

expressed as relative fold changes (n=4, mean ± SEM). Different letters indicate statistical 

difference (p<0.05).   
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Figure 7. Tissue distribution of Sumo1 and Ubc9 mRNA analyzed by quantitative real-time 

PCR. Abundance of A) Sumo1 and B) Ubc9 mRNA in each sample was normalized relative to 

abundance of the endogenous control β-actin gene. Data are expressed as relative fold changes 

(n=4, mean ± SEM). Different letters indicate statistical difference (p<0.05).  
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Figure 8. Analysis of protein interaction between FIGLA and SUMO1 in HEK293 cells. A) 

Western blot analysis showing Myc-FIGLA and Flag-SUMO1 protein bands detected by anti-

Myc and anti-Flag antibodies. B) Western blot analysis showing SUMO1 protein bands detected 

by anti-SUMO1 antibodies. Myc-FIGLA and Flag-SUMO1 expression plasmids were co-

expressed in HEK293 cell, with increasing amount of Flag-SUMO1 plasmid and decreasing 

amount of Myc-FIGLA plasmid. No additional band at higher molecular weight representing 

SUMOylated FIGLA protein was detected. The experiment was repeated three times with similar 

results.  
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Figure 9. Analysis of protein interaction between LHX8 and SUMO1 in HEK293 cells. A) 

Western blot analysis showing Myc-LHX8 and Flag-SUMO1 protein bands detected by anti-

Myc and anti-Flag antibodies. B) Western blot analysis showing SUMO1 protein bands detected 

by anti-SUMO1 antibodies. Myc-LHX8 and Flag-SUMO1 expression plasmids were co-

expressed in HEK293 cell, with increasing amount of Flag-SUMO1 plasmid and decreasing 

amount of Myc-LHX8 plasmid. No additional band at higher molecular weight representing 

SUMOylated LHX8 protein was detected. The experiment was repeated three times with similar 

results.  
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Figure 10. Evaluation of the oocyte cDNA library quality by PCR amplification of Ubc9, 

Figla, and Lhx8 genes. PCR amplification of Ubc9, Figla and Lhx8 genes using purified library 

plasmid from Y187 yeast as a template showed single bands for each gene, indicating the cDNA 

library is of good quality. Each gene was amplified by gene specific primers with negative 

controls for each gene (Neg).  
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