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Abstract

Quality Assessment and Prediction in Software Product Lines

by

Thomas Ryan Devine
Master of Science in Computer Science

West Virginia University

Katerina Goseva-Popstojanova, Ph.D., Chair

At the heart of product line development is the assumption that through structured reuse
later products will be of a higher quality and require less time and effort to develop and test.
This thesis presents empirical results from two case studies aimed at assessing the quality
aspect of this claim and exploring fault prediction in the context of software product lines.
The first case study examines pre-release faults and change proneness of four products in
PolyFlow, a medium-sized, industrial software product line; the second case study analyzes
post-release faults using pre-release data over seven releases of four products in Eclipse, a
very large, open source software product line.

The goals of our research are (1) to determine the association between various software
metrics, as well as their correlation with the number of faults at the component/package
level; (2) to characterize the fault and change proneness of components/packages at various
levels of reuse; (3) to explore the benefits of the structured reuse found in software product
lines; and (4) to evaluate the effectiveness of predictive models, built on a variety of products
in a software product line, to make accurate predictions of pre-release software faults (in the
case of PolyFlow) and post-release software faults (in the case of Eclipse).

The research results of both studies confirm, in a software product line setting, the find-
ings of others that faults (both pre- and post-release) are more highly correlated to change
metrics than to static code metrics, and are mostly contained in a small set of compo-
nents/packages. The longitudinal aspect of our research indicates that new products do
benefit from the development and testing of previous products. The results also indicate
that pre-existing components/packages, including the common components/packages, un-
dergo continuous change, but tend to sustain low fault densities. However, this is not always
true for newly developed components/packages. Finally, the results also show that predic-
tions of pre-release faults in the case of PolyFlow and post-release faults in the case of Eclipse
can be done accurately from pre-release data, and furthermore, that these predictions benefit
from information about additional products in the software product lines.
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Chapter 1

Introduction

The first chapter presents the motivation for this thesis. We include a description of

software product lines (SPLs) in general followed by brief, high-level descriptions of the two

case studies performed and the principal questions that guided our research.

In software engineering today, a widely used approach to reuse is through development of

a software product line (SPL), which explicitly defines the common and variable components

present in a family of systems [16]. Weiss and Lai define a software product line as, “a family

of products designed to take advantage of [their] common aspects and predicted variabilities”

[50]. A software product family1 is a group of software products similar in purpose which

share a basic platform of core components, yet are individualized by utilizing a set of variation

components. These common, core components are called “commonalities” while the variation

components are often generally referred to as “variabilities” [16]. For example, consider a

vehicle manufacturer’s use of cruise control software. The basic functions of the software

are the same across all models of vehicles, so many core components in the software may be

reused. However, each separate model has its own variations in hardware and user interface

that require slightly different software components to be effective. Rather than rewrite

the entire software system for every model of car, a software product line approach can

take advantage of structured reuse to reduce production time and cost and increase overall

product quality [46].

1With regards to terminology, the terms “software product family” and “software product line” are often
used interchangeably, as noted by Pohl et al. in [46]. Throughout this thesis, we use both terms.
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Developing software from reusable parts is not a new idea. However it has been demon-

strated in the field of software product line engineering that structured and strategic reuse

can result in considerable improvements in quality, time-to-market, scalability, and software

engineering cost [28]. Software product lines are set apart from other forms of reuse by be-

ing predictive rather than opportunistic. By planning out the commonalities and effectively

managing variabilities in a software family, software product line engineering (SPLE) allows

for mass customization, the ability to efficiently create many variations of a product to suit

the specific needs of users [28]. By combining mass customization with a common platform,

SPLE allows for the simultaneous reuse of a common base of technology and delivery of

products in close accordance with customers requirements [46].

There have been several empirical studies in the software engineering community which

provide evidence of the benefits of systematic reuse. Reuse studies put to the test the

intuitive claims that structured reuse will increase productivity, lower fault density, lower

modification rates of modules, reduce development and maintenance effort, and reduce the

complexity of the source code [14], [30], [36], [47], [49]. Though structured reuse is prevalent

in SPLE, few empirical case studies on quality assessment in SPLs exist in the literature.

This provided a strong motivation for both of the empirical studies presented in this thesis.

Another open research area in the software engineering community is fault prediction.

While many empirical studies attempt to develop consistent and accurate fault prediction

methods, none of them take place in a product line setting. Fault prediction studies test in-

tuitive claims related to learning from prior mistakes, i.e., by studying software development

history, accurate models can be constructed to identify future modules which are likely to

be faulty. The intertwined relations among members of a product line offer a unique test

bed for examining fault prediction.

In this thesis we present two empirical studies of two very different software product

lines. The first study examines pre-release software faults in four members of the PolyFlow

product line of software testing tools developed by Avaya [51]. In the second study, we present

an empirical quality assessment and results from experimental post-release fault prediction

models of four products from Eclipse, an open source product line. We are motivated by the

current lack of empirical results related to the benefits of reuse and to fault prediction in a
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SPL context.

In this thesis, a “fault” is defined as an accidental condition, which if encountered, may

cause the system or system component to fail to perform as required [3]. A “failure” occurs

when the software system fails to produce the expected results. Thus, a single failure could be

caused by one or more software faults. We use and explicitly define the term fault because

other terms, such as “defect” or “error” are used inconsistently throughout the software

engineering literature.

All predictive models used in the studies presented in this thesis are numerical. We

predict the number of faults for a unit (i.e., component or package) of software, rather than

performing binary classification of “fault-prone” or “not fault-prone” on units. When per-

forming an empirical analysis of software faults, it is tempting to use the binary classification

for units. However, some software units exhibit many more faults than others, a fact that is

lost if a unit with twenty faults and one with a single fault are lumped together under the

classification “fault-prone”. Furthermore, numerical prediction conveys more information

useful for determining the effort required to repair faulty software units. This, in turn, may

allow for more efficient allocation of verification and validation resources.

In the PolyFlow study, we focus on examining pre-release trends in an industrial SPL

during its development and testing phases. To evaluate this SPL, we extracted data from

the modification request tracking system and the source code repository for the four prod-

ucts. Based on the nature of the measures taken and their method of acquisition, we break

the metrics gathered into three general categories: code metrics, change metrics, and fault

metrics.

The PolyFlow study explores the following three main areas, each with its own research

questions:

1. association of pre-release software faults with other metrics at the component level,

2. characteristics of pre-release fault and change proneness depending on the level of reuse,

and

3. longitudinal study of pre-release faults over the period of development and testing of

the SPL.
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We first study the correlation between each possible pair of different metrics gathered

at the component level. Specific attention is given to the correlations between the number

of pre-release software faults and collected static code and change metrics. Secondly, we

study the fault-proneness and change-proneness of components with different levels of reuse.

This analysis addresses issues central to SPLs and their structured reuse in the form of

commonalities and variabilities. The research questions (RQs) in areas (1) and (2) assume

a cross-sectional analysis, i.e., the data was gathered at the end of the SPL’s development.

Our third set of research questions address data over the entire period of development and

testing, that is, form a longitudinal study. These questions take into account the genesis of

new products in the SPL, as well as the changes occurring in existing products. Furthermore,

these research questions address the benefit newly generated products gain from product line

reuse and focus on prediction of pre-release faults in new products.

In our second study, we present a longitudinal analysis of the quality of products in

a large, open source software product line. The study is based on four products in the

Eclipse software product family, which currently consists of fourteen different members that

systematically share main components and are set apart by variable components. New

products are introduced by combining parts of pre-existing products with new packages

specifically developed for the new products. (A package, in this context, is a group of

related Java class files.) Eclipse has a broad user base and maintains extensive collections

of reported faults and release archives, enabling empirical studies of the quality of products

developed in a SPL. Therefore, Eclipse is a fertile area for empirical research in a software

product line context. For Eclipse, we follow trends in post-release faults across multiple

releases. We examine static code metrics, gathered by analyzing downloaded source code for

each of seven releases, combined with change metrics, which are taken from analysis of the

CVS repository used to host all of the code for the Eclipse project.

The research questions which guided the Eclipse study are divided into two broad cate-

gories, each with its own research questions:

1. assessment of the overall quality of the SPL, and

2. prediction of post-release faults from pre-release data.
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The first set of questions focuses on assessing whether the overall quality of the product

line improves through releases over time. This is directed by a longitudinal examination of

post-release fault trends, identifying the faultiest packages, and determining the benefit in

quality, if any, that new products receive from reuse in the SPL. The second set of questions

are devoted to the prediction of post-release faults from pre-release data. These questions

attempt to determine if accurate predictions of post-release faults can be made from pre-

release data, which features are the best predictors, and whether any benefit can be gained

from predictions made across members of the product family.

It is our belief that by contributing these studies to the existing literature, software

developers may find insight into the benefits of structured reuse, the process of making

accurate fault predictions, and the quality of products developed in SPLs. This thesis offers

directly actionable information that could be used to focus testing resources, determine

release dates, facilitate update and patch creation, and guide efforts to refine and improve

future predictive efforts.

1.1 Thesis Outline

Herein we present an outline of the content of the rest of this thesis.

In chapter 2, we give a thorough review of current work in the literature relating to

our research. We review related work concerning the field of software reuse and its benefit,

quality assessment in terms of the correlation of software metrics to pre- and post- release

faults, and prediction of continuous values for software faults.

The contributions this thesis offers to the software engineering community are listed, in

chapter 3. The contributions are grouped by case study.

Chapters 4 and 5 provide detailed accounts of the results from the industrial and open-

source SPLs presented in this thesis, respectively. For each case study, the software product

line used as the object of the study is first described. Then we detail the methods used to

extract the data and what kind of data were extracted, followed by detailed results. Each

chapter concludes with a discussion of study-specific threats to validity and the actions taken

to mitigate them.
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In chapter 6, we summarize the findings of the thesis, breaking the conclusions down for

each product separately. We conclude with a summary of the main results that are consistent

across both studies.
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Chapter 2

Related Work

In this chapter we present a thorough review of all literature relating to systematic reuse

in software development, as well as quality assessment and prediction in software engineering,

both in general and within the specific context of software product lines.

2.1 Related work on reuse

Several empirical studies have been conducted on the general benefits of systematic reuse.

Of the case studies that examine the beneficial aspects of reuse as it relates to code quality,

Frakes and Succi’s analysis of four different sets of industrial data [14] indicated that more

reuse results in fewer faults, higher perceptions of quality, and lower fault density. The reuse

in their study was ad-hoc, black box, code reuse. In a study of twenty-five different software

systems developed by NASA [47], Selby found that modules reused verbatim had on average

98% less faults, while reused modules that were modified showed 55% less faults than non-

reused modules. Seven medium-scale projects with reused components, also developed for

NASA, were analyzed by Thomas et al. [49]. They determined that verbatim reuse resulted

in over a 90% reduction in fault density when compared to new code, while modified reuse

resulted in a 59% decrease. Lim studied two products from HP that utilized reusable code

[30] and found in both cases a reduction in fault density of around four times for the reused

code over the newly developed code.
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2.2 Related work on quality assessment

In this thesis, we explore the correlation of various static code and change metrics to the

number of faults (pre- or post-release) in a component/package. This type of analysis has

been performed before on software products that may or may not utilize reuse. Nagappan

and Ball performed a correlation analysis between change metrics gathered from the forty-

five million lines of code in Windows Server 2003 and the associated fault database [38]. In

[5], Andersson and Runeson presented an empirical study including correlational analysis of

static code metrics and fault densities for three members of a large telecommunications SPL.

Zimmerman et al. computed the Spearman correlations between faults and fourteen different

static code metrics collected from the Eclipse project in [54]. Metrics were calculated based

on both pre- and post-release data and the file level data were aggregated into packages.

2.3 Related work on numerical prediction

Prediction of fault-proneness is another active subject of research in software engineering.

Several works in the literature have constructed and tested numerical models for fault

prediction, which aimed to predict the number of faults at a unit level (e.g., file, component,

package) rather than providing a binary classification of whether the unit is fault-prone or

not1.

Of these papers, four have used Eclipse as a case study [10], [11], [20], [54]. It should

be noted that none of [10], [11], [20], [54] considered the SPL aspects of Eclipse. Rather,

they analyzed collections of files and/or packages in several subsequent releases of Eclipse.

In particular, recently D’Ambros and Robbes used generalized linear models to explore the

utility of change coupling metrics for predicting post-release faults in [10] and to compare

predictive techniques on four different Eclipse components in [11]. Both [10] and [11] used n-

fold cross validation within a single data set to arrive at their final results. Kamei et al. used

linear regression, regression tree, and random forest models to predict post-release faults in

three components of Eclipse in [20]. Experimental data showed that fusion performed after

1For a comprehensive survey of binary classification studies the reader is referred to the recent paper [17].
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making file-level predictions provided slightly better results than aggregating file-level static

code and process metrics to make predictions on the package-level. The results were validated

by both a fifty-fifty split, where training was performed on half the data and the model was

tested on the other half, and by building models on one release and predicting on the next.

Zimmerman et al. in [54] used linear regression models on both file and package levels to

perform a ranking from most to least faulty file and package, respectively. Models were built

for each of three releases of Eclipse (2.0, 2.1, and 3.0) and tested on every other release.

Numerical, post-release fault prediction studies of other software products not related

to Eclipse include [6], [7], [9], [21], [22], [29], [39], [43], [44], [45], [48], and [52]. Bell et al.

examined a voice recognition system using Naive Bayesian models to compare the predictive

ability of different combinations of LOC and change metrics in [6]. Models were built on

data from all of the previous releases and then used to predict the fault-proneness of the

next release. In [7], Bibi et al. compared twelve different models to determine the benefits

of regression via classification. Results were validated using n-fold cross validation. Cruz et

al. in [9] used logistic regression models built from object oriented metrics gathered from

one project to predict post-release faults in different, unrelated projects. Static code metrics

were combined with change metrics by Kastro and Bener in [21] to create neural network

prediction models for Linux. In [22], Taghi and Munson used complexity metric features

selected by stepwise regression or factor analysis to compare linear regression models which

predicted fault densities. Li et al. also used linear regression and neural network models, as

well as clustering, tree, and moving average models built from previous releases to predict the

number of faults in the next release in [29]. The models were constructed from source code,

change, deployment, and usage metrics. In [39] Nagappan et al. built logistic regression

models from static code metrics alone on the module level and made predictions within a

single project and across five different Microsoft projects (Internet Explorer 6, IIS W3 Server

Core, Process Messaging Component, DirectX, and NetMeeting). The remaining studies all

used negative binomial regression for binary classification on different software systems to

predict fault-proneness and validated their results by building models on one or all previous

releases, then making predictions on the next. Ostrand et al. built models from file level

information on LOC, number of previous faults, and change metrics in [43] and [44], and
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used LOC and change metrics only in [45]; in [52], Weyuker, et al. used static code metrics

combined with change metrics to build models at the module level; and in [48], Shin et al.

used different combinations of LOC, static code metrics, change metrics, faults from previous

releases, and calling structure information to construct negative binomial regression models.

2.4 Related work on quality assessment and prediction

in SPLs

Large, industrial product lines rarely provide data for academic research. To bypass this

problem, Zhang and Jarzebek developed four members of a mobile gaming product line, both

simultaneously using a SPL architecture and developing each product independently [53].

The results showed that the products developed under the SPL architecture were easier to

develop and maintain, consisted of less total code, and also showed a decrease in execution

speed and memory usage.

Mohaghegi et al. examined data from three large telecom product lines in [35] and [36].

The empirical analysis concluded that components used in multiple products required fewer

modifications and had fault densities 39% to 56% less than those of components used in only

one product. The hypothesis that fault density was not related to component size in either

type of component could not be confirmed or rejected by the data.

Some previous work from our collaborative research group funded by NSF was also based

on Eclipse, viewed as a SPL. Specifically, in [25] we analyzed the change metrics and post-

release fault data from four releases of the Eclipse project. In that work, components were

grouped based on the level of reuse across the product line family. The results showed

that commonalities followed a decreasing trend in file churn through subsequent releases

and exhibited fewer post-release faults than any other level of reuse. Furthermore, variable

components exhibited a high degree of change as the SPL evolved through releases.

In a follow up study [26] we used change metrics as features and the J48 decision tree

algorithm to classify Eclipse components as fault-prone or not fault-prone. The classification

results were very good (probability of detection 79% to 85%, probability of false positive 2%
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to 4%), with the particular subset of change metrics {number of authors, Changeset (i.e.,

number of files committed along with this particular file), Number of revisions} performing

well throughout all the studied releases of the SPL. Additionally, the results showed that as

the product line evolved the learner’s performance improved.

We further studied Eclipse in [27] by using multiple learners for classification and com-

paring three data collection approaches: using change and fault data from the entire release

(i.e., no distinction between pre-release and post-release faults); using twelve months of

change data and considering the file as faulty only if it displayed post-release faults; and

using pre-release change and fault data to predict fault-prone files post-release. The best

results were achieved via the first data collection technique, while using pre-release data to

classify the files as fault-prone or not fault-prone post-release resulted in much lower true

positive classification rates.
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Chapter 3

Contributions

The findings of our research provide several contributions to the software engineering

community and are set apart from the rest of the literature. In this section, we list the

contributions of each empirical study individually.

3.1 Quality assessment and pre-release fault prediction

in a medium sized, industrial software product line

In the PolyFlow study we examined four separate products which were each a subset of 42

total components. The entire set of components was comprised of approximately 65,000 lines

of code. Our results related to the association of the number of faults and other collected

metrics support the findings of other works [26], [38] that change metrics are more highly

correlated to the number of faults in software components than static code metrics. We also

found, in agreement with [5], [13], and [54] that most faults in pre-release testing are found

in about 20% of the components. Furthermore, we found that complexity metrics were poor

predictors of pre-release faults, which lends support to similar results in [13]. This part of

our work can be considered as a literal replication carried out on a different type of system,

within a different development context. Unlike more mature areas of scientific research, such

as medicine, which rely on replication, in software engineering replicated studies are often

disregarded. We believe that more replicated studies need to be published to establish trends

that are valid across multiple case studies, thus addressing the external validity of results.
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Our research related to fault-proneness and change-proneness within different levels of

reuse is specific to product lines, an area with few empirical studies to date. The only other

work on this topic seems to be previous work of our group in [25] working on the collaborative

research project funded by the NSF, which was also based on analysis of post-release failures

of Eclipse. Unlike [25], in the case study of PolyFlow we studied pre-release faults and

change proneness of an industrial SPL. Results showed that variation components used only

in individual products had the highest fault density, and were the most change prone. As in

[25], common components reused in all four products had similar fault densities and higher

average code churn than the high-reuse variation components. Closer exploration showed

that this was mainly due to one very change prone common component having many New

Features, Improvements, and detected and fixed faults.

The longitudinal analysis from the PolyFlow study presented new results related to the

development and testing of SPLs. We found that newer members of the software product line

benefited significantly from the development and prior testing of the more mature members.

We also found that, in this SPL, the number of faults in variable components of subsequent

products could be successfully predicted by a linear model developed using code and change

metrics extracted from previously developed, more mature products. We believe that nu-

merical prediction of the number of faults would be more useful for developing SPLs than

binary classification of components into fault-prone and not fault-prone, as it would allow

for more efficient allocation of testing effort and planning of release time. This latter result is

new to the community because while others, [39], have used models created from one project

to predict faults in another project, this has not been done in the context of a SPL.

Throughout the literature many predictions are aimed at binary classification, i.e. clas-

sifying components as faulty or not. We use numerical prediction to gain more information

from the data on the degree of fault-proneness of component. In particular, based on the

data collected from more mature products we build and test a linear model to predict the

number of pre-release faults in subsequent products. While [39] used regression models to

make numerical estimations, they used only static code metrics and models created from

independent, stand-alone products that did not share code as the PolyFlow SPL does.
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3.2 Quality assessment and post-release fault predic-

tion in a large, open-source software product line

The Eclipse study presented here also differs from the related work and offers its own

contributions to the software engineering community. First, our analysis considers multi-

ple products from the Eclipse product line rather than a collection of individual files and/or

packages. This allows us to determine the benefits of building models and making predictions

on different products in a software product line. Other studies that attempted to make pre-

dictions across software applications (such as [9] and [39]) were based on unrelated software

applications (e.g., Internet Explorer 6, IIS W3 Server Core, Process Messaging Component,

DirectX, and NetMeeting), rather than products that are members of a SPL. Second, we

collected a large amount of data in both size, as measured in number of files and lines of

code, and duration, as measured by number of releases and weeks in existence. We gathered

both static code and change metrics and linked them to post-release faults for seven releases

of Eclipse (i.e., seven years). This information totaled 125,118 files containing over 20 million

lines of code.

For this case study we focused on post-release faults observed over seven releases in

four large products of an open-source product line. Furthermore, in this study we apply a

specific generalized linear model to the problem of numerical software fault prediction for the

first time. While generalized linear models were used in [10] and [11], the linking functions

were not specified. In this study, we use the cumulative negative log-log linking function,

which is well suited for software fault prediction. This is because it is optimal for skewed

distributions characterized by higher probabilities of lower or zero values that are typical for

the way post-release faults are distributed across software units (i.e., files, components or

packages).

Compared to previous studies of Eclipse in [26] and [27] performed by our collaborative

research group under NSF funding, this study incorporates both change and static code

metrics, and performs numerical prediction rather than binary classification. We also propose

a new machine learning approach, which has not been used previously either for numerical

prediction of post-release faults or for classification of fault-prone units. Specifically, we
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constructed a model from the data of one member of the product line family and used it to

predict the number of post-release faults for packages of other members in the subsequent

release. This approach allowed us to explore whether predictions for each product benefit

from additional product line information.

The results of the Eclipse study extend related work in this area, including our study of

PolyFlow, toward identifying actionable insights. The key aspects of the work presented in

this case study that support these actionable insights are as follows:

• In addition to using traditional performance measures, such as Spearman’s ρ and

Kendall’s τ , to assess the predictive ability of our models, we introduce a new nor-

malized measure of the number of post-release faults in the top 20% of the most fault-

prone packages. This new measure, which we call the nTop20%, attempts to establish

a method of quantifying the predictive value of models that is commensurable between

different projects.

• The scope of the empirical study is large, focused on four distinct Eclipse products

longitudinally across seven releases.

• We perform extensive quality assessment of Eclipse as a product line by analyzing

post-release fault and change trends and how systematic reuse improves the quality of

products.

• We use a broader range of metrics (i.e., features) than the previous predictive studies,

including static code metrics at the release date combined with change metrics and

pre-release faults collected during the six month period prior to the release date. Our

response variable is the number of user reported faults submitted during the six month

period after the release of the software product.

• The predictions are based on a specific generalized linear regression model which is

optimal for data that follow skewed distributions, typically observed when examining

post-release fault data. Predictive models created via this theoretically appropriate

regression model performed very well in this study.
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• The number of post-release faults at package-level are predicted using the pre-release

static code and change metrics from the model built on the previous release. Predictions

made in this manner, as opposed to using cross-validation or bootstrapping, are of

direct use to developers because they mimic the actual data collection process and

thus have more practical value.

• Unlike previous works which made predictions for Eclipse and other software applica-

tions over multiple releases, in this study we build models from the individual products

in each release and then use these models to predict the number of post-release faults

for each product in the subsequent release. Overall, we build 19 models, which are used

to make predictions for a total of 54 combinations of products and releases. It appears

that this is the first research work that explores the benefit of additional product line

information on predictions of post-release faults.

• The models are used to predict the number of post-release faults in the top 20% of the

most fault-prone packages, as well as to rank software packages based on the number

of post-release faults they contain. Compared to the typical binary classification of

packages as fault-prone or not, this type of prediction conveys more information about

the additional effort required to repair faulty packages, which in turn may allow for

more efficient allocation of verification and validation resources.
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Chapter 4

Quality assessment and pre-release

fault prediction in a medium sized,

industrial software product line

This chapter presents a description of an empirical case study of the software product

line (SPL), PolyFlow1. It begins with a brief description of the SPL being studied, which

is followed by the results of our analysis. This chapter concludes with a detailed account of

different threats to the validity of this study and the steps that were taken to mitigate them.

4.1 Case study description

PolyFlow, formerly known as eXVantage, is a suite of software testing tools developed by

Avaya Corporation that allows developers to generate and execute test cases and calculate

associated coverage measures [51], in addition to other tasks. Variabilities across the prod-

uct line include support for various operating systems, target programming languages, and

user interfaces. The entire suite was developed in Java and was designed with a modular

architecture, i.e., related classes were grouped into packages that serve as components.

From this SPL, we were able to examine the Modification Request (MR) database and

1An earlier version of this chapter appeared as Thomas R. Devine, Katerina Goseva-Popstojanova,
Sandeep Krishnan, Robyn R. Lutz, J. Jenny Li: An Empirical Study of Pre-release Software Faults in
an Industrial Product Line. ICST 2012: 181-190
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Table 4.1: Number of components and LoC for the four products from the PolyFlow SPL

examined in this thesis

Product Components LoC
P1 22 47,138
P2 33 35,238
P3 22 49,676
P4 28 36,852

source code repository for four products P1, P2, P3, and P4. Each product is a different

subset of 42 components totaling approximately 65,000 LoC. Table 4.1 shows the number

of components and LoC that comprise each product. The total number of components

in Table 4.1 is greater than 42 due to components being used in more than one product.

Figure 4.1 shows the distribution of the components in a Venn diagram, to help visualize

their organization by level of reuse. In the diagram, the 13 components in the central region,

which are reused in all products, are common components. The four regions directly adjacent

to the center contain components that are common to three of the four products. We label

them high-reuse variation components. Low-reuse variation components are in the regions

where only two products overlap. The perimeter regions contain the single-use variation

components, i.e., components currently used in only one product. Of these products, the

members of the sets {P1, P3} and {P2, P4} are similar to each other in composition and

function, and share many common components.

Figure 4.1: The distribution of components among four products

Figure 4.2 presents a Gantt chart depicting the development effort in the Polyflow product

line chronologically. The period covered by the chart began with the initial development of P1

and P2 in January of 2008 and ended with the completion of P4 in December of 2010, with a
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horizontal axis interval of four months. As the chart shows, development of P1 and P2 began

simultaneously and continued concurrently throughout the completion of the development

of P1. Development of P3 began upon the completion of P1, and was concurrent with the

final months of P2’s development. The completion of P3 marked the beginning of an eight

month period during which other products not covered by this study were the main focus

of development efforts. Following this time, development of P4 began and was completed in

the final span of seven months.

Figure 4.2: Timeline of products development

The MR database from which some of our metrics were mined consists of three MR types.

The categorization of each MR in the database is dependent upon the nature of the change

requested. We performed the classification in consultation with the lead software developer

who had been with the project from the beginning. MRs of the type fixes were made to

fix software faults. A fault is defined as an accidental condition, which if encountered, may

cause the system or system component to fail to perform as required [3]2. All faults analyzed

in this study are pre-release faults detected during testing, as data from field usage had not

yet been collected. Improvements are any requests for modifications to improve the quality,

efficiency, or output of existing code. An example of an improvement is refactoring the code

in a component. New Features represent requests for entirely new code to produce previously

unimplemented functionality. These are commonly associated with the introduction of new

products, but sometimes refer to new functionalities being implemented in existing products.

The data from the MR database had to be preprocessed before it could be used in

our analysis because we found that individual MRs were mapped to multiple components.

2Bug is often used as a synonym to software fault. We avoid using the term defect because in the past it
has been used to refer to both software faults and failures, as well as anomalies.
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Table 4.2: Distribution of MRs by type

MR Type Overall Code Related Closed
Faults 117 92 92

Improvements 52 35 30
NewFeatures 83 61 41

Other 6 0 0
Total 258 188 163

In particular, 10.3% of the MRs labeled fixes were mapped to two or three components.

This percentage is somewhat lower than the 17% to 23% of fixes which affected two or

more components in the two NASA data sets considered in our earlier work [18], but still

shows a significant spread. Similarly to fixes, 11.5% of Improvements and 20% of New

Features resulted in changes to two or three components. In order to perform analysis at the

component level, we replicated fixes/Improvements/New Features that affected more than

one component so that one entry exists for each affected component.

The MR database, post-processing, consists of 258 individual entries, distributed by type

as shown in Table 4.2. The third column shows how many of the overall MRs were code-

related, and the last column shows how many of those code-related MRs were closed. 70

MRs were either not directly related to the products considered in this study or were not

directly related to changes in the code of the products. For example, the database contained

26 MRs concerning changes to the Decision Model, which is defined as a specification of a

partially-ordered sequence in which choices of values for parameters of variation must by

made. While the Decision Model is used in the creation of each product, the code for it is

not contained in any of the products and therefore contributes nothing to the functionality

of the products. Of the remaining 188 MRs, 25 Improvements or New Features are still

open and unresolved. This means that the additional functionality requested by those MR

has not yet been implemented in code. Since our study is directed toward the analysis of

implemented code, we removed those MRs from our consideration.
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4.2 Description of metrics and the process of their ex-

traction

For an empirical study to be effective, large amounts of data must be collected. For this

study, we were fortunate to have access to several different sources of data from the PolyFlow

product family, allowing a more diverse exploration of this SPL. We divided the metrics

gathered into three categories: source code metrics, change metrics, and fault metrics.

4.2.1 Static code metrics

The static source code metrics considered for this study were gathered at the component

level. They are listed in Table 4.3. These LoC and Complexity metrics were gathered at

the class level using the freeware code analysis tool SourceMonitor [1]. We then aggregated

these class level metrics into component level metrics. (The complexity metrics used by

SourceMonitor approximately follows the definition by McConnell in [32]. It is a popular

static code metric that represents the number of execution paths through a method.)

Table 4.3: A list of static code metrics and their descriptions

Static Code Metric Description
Lines of Code (LoC) The number of non-comment lines of Java code in a compo-

nent
Number of Files The number of files comprising the component.
Average Complexity The average complexity of the methods in a given component.
Maximum Complexity The maximum complexity exhibited by any method in a given

component

4.2.2 Change metrics

Change metrics were gathered from two places, the MR database and the logs in the sub-

version (SVN) repository in which the code was maintained. Table 4.4 gives these metrics,

which quantify the amount of modification to a component during development and testing.

The data for Improvements and New Features were collected from the MR database and

mapped to the components they affected as described in Section 4.1. The four churn metrics
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were extracted using the freeware application StatSVN and utility code that we wrote. The

StatSVN application was used to analyze the SVN logs kept by the code repository and

acquire general folder level metrics in an html format. We then wrote code to extract indi-

vidual metrics for each file in the repository. These individual results were then aggregated

to compute the change metrics at the component level.

Table 4.4: A list of change metrics and their descriptions

Change Metric Description
Improvements The number of MRs requesting changes for improvements of

the code
New Features The number of MRs requesting new code to be written to

implement new features
CodeChurn The sum of the LoC added to and deleted from a component

over the course of its existence in the repository
Average CodeChurn The codechurn of a component divided by the total LoC for

that component
FileChurn The number of times a component’s files were added to or

deleted from the repository
Average FileChurn The filechurn of a component divided by the number of files

in that component

Finally, the number of faults per component metric was computed based on the data

from the MR database, as explained in Section 4.1.

4.3 Association of software faults with other metrics

The first two research questions in this section investigate the associations that exist

between the gathered metrics and pre-release faults. The third research question examines

whether the software engineering principal of a majority of faults existing in a small amount

of the code holds true for this study.

Table 4.5 shows the results of the correlation analysis between all pairs of metrics. In this

study we used the Spearman correlation, because the data did not conform to the normal

distribution and thus violated the assumptions necessary to apply the Pearson correlation.

The cells of the table contain the value of the Spearman correlation coefficient ρ, with the

p-value below in parenthesis, for all non-trivial combinations which resulted in statistically
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Table 4.5: Spearman correlation ρ values for non-trivial associations, accompanied by the

p-value in parentheses
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Faults
0.597 0.760 0.702 0.612 0.435 0.490 0.469 0.321

(0.0001) (0.0000) (0.0000) (0.0000) (0.0056) (0.0015) (0.0026) (0.0461)

Improvements
0.676 0.586 0.597 -0.388 0.418 0.359 0.299 0.352

(0.0000) (0.0001) (0.0001) (0.0146) (0.0082) (0.0247) (0.0645) (0.0281)

NewFeatures
0.734 0.674 0.359 0.398

(0.0000) (0.0000) (0.0247) (0.0122)

CodeChurn
0.548 0.497

(0.0003) (0.0013)

AvgCodeChurn
0.398 0.417

(0.0121) (0.0083)

FileChurn
0.344

(0.0320)

AvgFileChurn
-0.343 -0.344

(0.0327) (0.0319)

LoC
0.599

(0.0001)

NumFiles
0.374

(0.0192)
Max Complexity
Avg. Complexity

significant results at the α = 0.05 significance level. The blank cells represent either met-

rics with statistically not significant correlation or metrics which are highly correlated by

definition and are therefore trivial (e.g., maximum complexity and average complexity).

Since the number of faults per component is of special interest, Figure 4.3 presents the

scatter plots for each metric versus the number of faults in a component.

4.3.1 RQ1: Are faults correlated with any of the gathered met-

rics?

The table clearly shows that the number of faults is positively correlated with almost

every metric gathered in this study. The only change metric that showed no correlation was

Average File Churn, whereas the only static code metric not correlated to the number of

faults was Average Complexity. We make the following observation based on the correlation

coefficients presented in the first row in Table 4.5: The correlation of the number of faults

at the component level with each of the change metrics except File Churn is higher than
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Figure 4.3: Scatter plots of the number of faults and each metric for which the correlation

was statistically significant

the correlation with any static code metric. Specifically, the strongest correlation is with

New Features and Code Churn (0.760 and 0.702, respectively), followed by the correlation

with the Average Code Churn, Improvements, and File Churn (0.612, 0.587, and 0.439

respectively). On the other side, the highest correlation among the static code metrics is

with LoC, followed by Number of Files and Maximum Complexity (with values of 0.490,

0.469, and 0.321 respectively). These results are in agreement with Nagappan and Ball, who

found in [38] that average codechurn had a positive correlation to fault density that was

both statistically significant and very high (p-value < 0.01, ρ = 0.883). We are led by these

results to agree with their general conclusion, which, in the terms of this study, is that an

increase in change metrics in a component is often accompanied by an increase in faults in

that component.

We also compared our results to the works of Andersson et al. [5] and Zimmerman et al.

[54] regarding the use of size metrics as predictors for the number of faults in a component.

When considering LoC versus number of faults, Andersson et al.’s results showed correlation

coefficient values (they used the Pearson test, as opposed to the Spearman) of 0.37 and 0.6

in the most closely correlated projects and 0.05 in the least correlated. Zimmerman et al.
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calculated ρ = 0.487, significant at the 0.01 level. Our values for LoC versus number of

faults are consistent with these results, as the components in our study showed a positive

correlation ρ = 0.490 with a p-value = 0.0015. Further, we found that the number of files

in a component was also positively correlated with the number of faults with ρ = 0.469 and

p-value = 0.0026. This result is also supported by Zimmerman et al., who computed a ρ

value of 0.406, significant at the 0.01 level, for the same relation.

In [13], Fenton and Ohlssen determined that cyclomatic complexity was not a good pre-

dictor of pre-release faults. Our results for the average cyclomatic complexity of a component

are in agreement. However, we did note a positive correlation between Maximum Complexity

and number of faults. The higher correlation of Maximum Complexity to number of faults

than Average Complexity was indicated in [54], with ρ = 0.475 for Maximum Complexity

and ρ = 0.300 for Average Complexity, both significant at the 0.01 level. Compared to our

results Zimmerman et al.’s results for Maximum Complexity show a slightly higher level of

correlation than ours, while we are unable to support the correlation between the average

complexity and number of faults.

4.3.2 RQ2: Are any of the gathered metrics correlated to each

other?

Our examination of the results in Table 4.5 led to the following observations about the

association between metrics. Improvements and New Features are highly correlated to each

other, and both are moderately to highly correlated to Code Churn and Average Code

Churn. This is expected, as both Improvements and New Features lead to changes in the

code. Similarly, New Features are correlated to File Churn because New Features often result

in the addition of new files. Improvements, however, are not correlated with File Churn.

Improvements have small to moderate correlations with all static code metrics, which

indicates that larger and more complex components tend to undergo more Improvements.

Of the static code metrics, New Features is only correlated with Maximum Complexity.

Maximum Complexity is actually correlated with all metrics except Average File Churn.

However, Average Complexity is correlated with only Average File Churn and Improvements.
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These observations indicate that a higher Maximum Complexity (i.e., having at least one

complex method in a component) has much more impact on change and fault metrics than

the Average Complexity of all methods in that component.

4.3.3 RQ3: Does a minority set of components contain the ma-

jority of faults?

Figure 4.4: Percentage of components versus percentage of faults

To address RQ3, we computed the percentage of total faults for each component and

plotted this against the percentage of the total components. The results of these calculations

are ordered and plotted in Figure 4.4. The graph shows that approximately 85% of the bugs

detected across all of the products are located in approximately 20% of the components.

This result agrees with other works [5], [8], [13], [18], [42], which have consistently found

that between 60 and 90% of bugs normally reside in around 20% of the components. However,

when we examined the data from a LoC perspective, we found that 80% of the faults were in

50% of the code. This still shows a skewed distribution of the number of faults across code,

but with a greater spread.
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4.4 Fault and change proneness for different levels of

reuse

This section studies the effects and benefits of the systematic code reuse in the PolyFlow

SPL. To account for different levels of reuse, we organized the component data into four

groups: (1) Common component shared by all four products (2) High-reuse variation com-

ponents reused in three products (3) Low-reuse variation components reused in two products

and (4) Single-use variation components used in only one product. The organizational struc-

ture and accompanying data are shown in Table 4.6. Some of the metrics shown in Table 4.6

are plotted on bar graphs for ease of visual comparison in Figure 4.5.

Table 4.6: Component level data organized by level of reuse

Common High-reuse Low-reuse Single-use
comp variation comp variation comp variation comp

NumComps 13 8 12 5
Faults 26 22 15 15

Faults/KLoC 1.201 1.295 0.799 2.555
Improvements 7 3 11 7
NewFeatures 5 6 12 10
CodeChurn 300,293 62,154 139,783 93,096

AvgCodeChurn 13.873 3.660 7.442 15.857
FileChurn 1229 1016 971 241

AvgFileChurn 8.361 8.397 7.301 6.025
LoC 21,646 16,984 18,783 5,871

NumFiles 147 121 133 40
MaxComplex 33 25 25 35
AvgComplex 1.761 2.278 2.550 3.492

4.4.1 RQ4: Do the number of faults and/or fault density vary in

components by level of reuse?

The groups of low-reuse variation components and single-use variation components share

the fewest number of total faults (see Figure 4.5a). However, the low-reuse variation com-

ponents have the lowest fault density after normalization by LoC (see Figure 4.5b). Due to

the considerably smaller LoC in the single-use variation components (nearly one-third the
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size of the next smallest), they have the highest fault density even though they have the

least number of total faults. If we consider single-use variation components as non-reused

components to conform to the context of [36], then this result is in agreement with their

finding that components that are reused have lower fault densities than those that are not.

This may be due to the fact that single-use variation components have high Maximum Com-

plexities. (Four of the five single-use variation components have Maximum Complexities

over fifteen, and three of those four have values over twenty. The most complex component

in the product family also resides in this area.) The high fault density for the single-use

variation components can then, at least partially, be explained by the correlation between

faults and maximum complexity (ρ = 0.321, p < 0.05) expressed in section 4.3.

Figure 4.5: Comparisons of multiple metrics by level of reuse

4.4.2 RQ5: Do the number of New Features and Improvements

vary in components by level of reuse?

As shown in Figure 4.5a, the low-reuse variation components exhibit the greatest number

of New Features and Improvements. This is due to the fact that low-reuse variation com-

ponents, which are reused in two products, often were not originally designed to be reused.

Instead, when a new product was added, it was concluded that some components can be

reused, which in turn resulted in the increased number of New Feature and Improvement

MRs in these components. This result agrees with our earlier finding in [25] that variation

components evolve rapidly.
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When values for the low-reuse variation components are combined with the values for

the single-use variation components, these numbers far surpass the combined amounts con-

tained by the high-reuse variation components and common components (1.8 times more

Improvements and exactly twice the New Features). This is consistent with the fact that

New Features introduce new components. Since the high-reuse variation components and

common components are designed to be used in almost all products in a SPL, the intro-

duction of new components into this area after the creation of several products is unlikely.

Furthermore, the fact that the newly introduced variation components are less mature than

the highly reused components may contribute to the higher number of improvements they

require. Lending support to this claim, the high-reuse variation components, which exist in

three of the four products, show the least number of Improvements. This could be interpreted

as showing the benefit of their planned reuse.

4.4.3 RQ6: Does the change-proneness of the code vary by level

of reuse?

Before normalization, the common components show the highest amount of Code Churn.

However, when considering the amount of code contained in each reuse group (see Fig-

ure 4.5b), the single-use variation components have the most change-prone code (i.e., have

the highest Average Code Churn). This finding lends support to the results of Mohaghehi

et al. in [36] that non-reused components have higher code modification rates.

Interestingly, the most reused components, i.e. the group of common components, still

exhibit a relatively high Average Code Churn. One reason for this is that this study looks

at code as it is being developed. As the development of the SPL progressed, and new

products were introduced, common components had to be changed to accommodate different

requirements from different products. Another reason for the large change proneness was

the known phenomenon of evolving requirements (not always related to reuse) throughout

the development of some components. In particular, 67% of the Code Churn in the group of

common components was due to a single component which had only 4.57% of the code, but

was responsible for 67% of the New Features, 57% of Improvements, and 50% of the Faults. It
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would be interesting to explore, once the data is available, whether this particular component

continues to be faulty and change-prone post release. We note that in an earlier study of

post-release failures of an open source product line, common components also experienced

more churn than expected [25].

4.5 Longitudinal study of software faults over the span

of development and testing

RQs 7 and 8 investigate the evolution of the SPL through its development. As depicted

in Figure 4.2, development of P1 and P2 began simultaneously. Since these two products

were the first to exist, in these questions we focus on the components of these two products,

many of which are then shared by subsequently developed products P3 and P4.

4.5.1 RQ7: Do products developed later benefit from the reuse

inherent in the product line?

To explore this question we considered the frequency of faults occurring in each of the

newer products P3 and P4. We distinguished between those faults that occurred in rele-

vant components before a product’s creation and those that occurred afterward, when later

products reusing those components were created. We examined the MR data in this light

and found that of the 37 faults that affected components in P3, eight were found and fixed

before P3 was created. These eight faults were all located in the common components, which

illustrates how P3 benefited from the structured, planned reuse across all products. Each of

the remaining 29 faults was located in a component that was shared between P3 and another

previously or concurrently developed product (i.e., 11 faults were in low-reuse variation com-

ponents shared between P1 and P3 and 18 in high-reuse variation components shared across

P1, P2, and P3) i.e., not a single fault was unique to P3. There are two main reasons for

these faults in low-reuse and high-reuse variation components: (1) new faults were intro-

duced or existing faults were detected in the process of accommodating requirements due to

the introduction of the new product P3 and (2) the concurrent development of P3 and P2
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(see Figure 4.2).

The benefit of reuse is more prominent in the case of P4, which is the only product in

this study to be developed after the completion of the other three products in the SPL.

It demonstrated the most benefit from prior fault fixes. Of the 69 faults affecting code

components included in P4, 67 were detected and fixed before P4 existed (out of which 26

were in the common components, 22 were in the high-reuse variation components, and 20

were in the low-reuse variation components). That is, only two faults were detected during

the actual development of P4, one in a single-use variation component and another in a

high-reuse variation component shared with P1 and P2. Since P4 was under development for

the least amount of time, and therefore had less time for testing to expose faults within the

scope of our study, it is possible that future testing and field usage may expose additional

faults. Clearly, however, the fact that 67 faults were fixed in code subsequently reused in P4

shows that P4 benefited from the development and testing of earlier products.

4.5.2 RQ8: Can the number of faults in a new product be pre-

dicted from previously existing products’ data?

In addition to common components, P3 and P4 share high-reuse and low-reuse variation

components with products P1 and P2, and as a result each one has only one single-use

variation component. These variation components, however, are non-trivial, and together

they contain over 2,000 lines of code. The fact that there are only two new components

made the traditional classification into fault-prone and not fault-prone components infeasible.

Instead, we used the data from P1 and P2 to construct a linear model to predict the number

of faults in the components introduced by P3 and P4. Numerical prediction in this manner

can give a valuable insight into the degree of fault-proneness of a new component enabling

more efficient estimation of testing effort and release date.

The data from P1 and P2 was used to create a linear model via stepwise regression

[24]. Stepwise regression is an iterative feature selection method that builds a linear model

by selecting predictors from the feature set having high correlations with the dependent

variable. Each step in the creation of the model eliminates the least significant feature,
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Table 4.7: Results of numerical prediction of the number of faults in P3 and P4, using a

predictive model created from the combined data of P1 and P2

Product 3 4
Actual # Faults 0 1

Predicted # Faults 0.18 1.08
Absolute Error 0.18 0.08

resulting in a smaller, more highly correlated feature set. Our final model consisted of the

following static code and change metrics: LoC, Number of Files, New Features, Code Churn,

Average Code Churn, File Churn, and Average File Churn.

We used this model to predict the number of faults in the two components new to P3 and

P4. As shown in Table 4.7, using the model created from the metrics of P1 and P2 resulted

in absolute errors of 0.18 for P3 and 0.08 for P4. These results indicate that, in this SPL, a

linear model of code and change metrics gathered from previously developed products can

be used to accurately predict the number of faults in variation components of subsequently

developed products. We are hesitant to place too much emphasis on this result, however, as

the sample size was regrettably small due to insufficient data.

4.6 Threats to validity

In this section, we describe several threats to the validity of this study and what measures

were taken to mitigate them.

Construct validity addresses whether we are testing what we wanted or intended to

test. One obvious threat to construct validity is having insufficiently defined constructs before

their translation to metrics. Using inconsistent and/or insufficiently precise terminology in

the area of software quality assurance is a serious threat to validity, often making meaningful

comparisons of results difficult. Therefore, we provided the definitions of the terms and

metrics used in this thesis and avoided using terms, such as defects, that lack rigorous

definitions or are used inconsistently across related works.

So called mono-operation bias to construct validity is related to under-representation of

the cause-construct. Many empirical studies experience lack of some types of data that,
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if available, may improve the interpretation of the results or help explain the cause-effect

relationships. For example, many studies in prediction of fault-proneness consider only static

code metrics. As our results and some of the related work results show, the number of faults

is more correlated with change metrics than static code metrics.

Internal validity threats are concerned with influences that can affect the independent

variables and measurements without researchers’ knowledge. Data quality is one of the

biggest threats to internal validity. To ensure the quality of the MR data, we studied each

individual record with the domain expert. MRs related to New Features and Improvements

which were not closed (i.e., implemented) were excluded from the analysis, as well as MRs

which were not related to the actual code. Furthermore, as described in Section 4.1, the

remaining MRs were preprocessed to reflect that around 10% of all MRs were mapped to

more than one component. The missing information in some MRs (e.g., whether the MR

is directly related to implemented code) was acquired through an iterative and painstaking

process of review with each step receiving validation from the lead developer of the products.

In cases where the components in the source code were organized differently than the

original design documents, preference was given to the source code over any initial design

documentation. As a result, each component consists of files that belong to only one of the

defined levels of reuse. Our investigation also lead to the discovery of components that existed

in multiple levels of reuse, e.g. one component had some files that were variabilities in P2 and

the rest were common to P2 and P4. In these cases the components in question were divided

into multiple components, so that each one had files in only one area of reuse, a process which

was also overseen and validated by the lead developer. There are a couple other notable

threats to the internal validity of this study. First of all, there may be confounding factors

at work throughout the development phase that we were unable to consider. Unmeasured,

process-related factors such as the experience level of the programmers or the effort given to

testing individual products or components could potentially affect the number of pre-release

faults as much, or more than, the factors which we were able to measure. We again referred

to the lead developer whenever possible to take any unmeasured factors into account when

considering our results.

Conclusion validity is concerned with the ability to draw correct conclusions. The most
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obvious threat to conclusion validity is using statistical tests in cases where their underlaying

assumptions are violated. To avoid this, we were careful in our analysis of correlations to

test the underlying assumptions of statistical tests before invoking them. For instance, none

of our data conformed to the normal distribution. This forced us to use the less powerful

Spearman correlation test to avoid violating the normality assumption of the Pearson test.

Additionally, the similarity of product pairs {P1, P3} and {P2, P4} in this SPL could play

a role in the prediction of number of faults in variation components of P3 and P4. This threat

to the conclusion validity is based on the nature of our case study and cannot be lessened

in this study.

External validity is related to the ability to generalize the results. Obviously, research

based on one case study cannot claim that the results would be valid across other studies.

The external validity of our study is, to some extent, supported by the fact that whenever

possible we compared our results with related works. This threat is somewhat mitigated by

our performance of similar analysis on a different, and much larger, SPL as the second case

study presented in this thesis. This, together with dissemination of our results and results

based on other SPLs in time will provide support for identifying observations that apply

across multiple studies.
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Chapter 5

Quality assessment and post-release

fault prediction in a large,

open-source software product line

This chapter presents a description of an empirical case study of the software product

line (SPL) Eclipse1. It begins with a brief description of the SPL being studied, which is

followed by a description of our machine learning approach and the results of our analysis.

We conclude this chapter with a detailed account of several threats to the validity of this

study and how we attempted to mitigate them.

5.1 Case study description

Eclipse is a set of products developed by an open-source collaboration to create integrated

development environments (IDEs) to aid software development [2]. Originally created by

IBM in November 2001, it is currently maintained by the Eclipse Foundation, a not-for-

profit member supported corporation that hosts the various Eclipse projects. Eclipse is

written in Java, and the original platform was a single product designed for Java and plug-

in development. However, as support and ambition in the community grew, the scope of

1An earlier version of this chapter is submitted for publication as Thomas R. Devine, Katerina Goseva-
Popstojanova, Sandeep Krishnan, Robyn R. Lutz: A longitudinal study of post-release faults in an evolving,
open-source software product line.
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the projects also expanded to encompass (currently) fourteen different products designed

for development in many different languages and several different industries. Each of these

products builds upon the common Eclipse platform shared by all. With well over a million

downloads, Eclipse has an active user base. These qualities make Eclipse a fertile ground for

testing research questions from the SPL community.

Our study examines four products from the Eclipse project, Classic, C/C++, Java, and

JavaEE, through multiple releases. Table 5.1 gives the size of each product for each release.

In the early releases, only one product existed in the Eclipse product line, namely Classic.

Starting with the release codenamed Europa, Eclipse evolved from a single, all-encompassing

product into several specialized products. These products all contain shared component code

implementing the commonalities.

Table 5.1: A timeline of the products examined in this study with the sizes (in thousands of

lines of code) and number of packages

Release
Date

Classic C/C++ Java JavaEE Total
(codename) KLoC Pkgs KLoC Pkgs KLoC Pkgs KLoC Pkgs KLoC Pkgs Faulty

2.0 June 27, 2002 773 34 773 34 26
2.1 March 27, 2003 1,054 41 1,054 41 37
3.0 June 25, 2004 1,756 76 1,756 76 70

3.3 (Europa) June 25, 2007 2,317 85 1,107 62 2,633 103 3,988 185 3,988 185 148
3.4 (Ganymede) June 25, 2008 2,505 89 1,158 62 2,788 105 4,291 200 4,291 200 152

3.5 (Galileo) June 24, 2009 2,125 77 1,117 61 2,748 104 3,913 188 3,913 188 120
3.6 (Helios) June 23, 2010 2,208 77 1,184 61 2,921 105 4,262 206 4,262 206 103

Europa Ganymede Galileo Helios

Figure 5.1: Venn Diagrams showing the distribution of packages among the four products

for the final four releases considered in this study

Figure 5.1 provides a visual overview of the amount of code shared among the four

products on the package level for the releases codenamed Europa through Helios. In each
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diagram, the 61 to 62 packages in the central region, which are shared by all four products,

are common packages. For example, the package org.eclipse.ui.ide, which contains many

of the classes involved in the user interface for the integrated development environments is

included in every product in the Eclipse SPL.

The four regions directly adjacent to the center in Figure 5.1 contain packages that are

used in three of the four products. In this case study, there are sixteen shared packages found

in each release of Classic, Java, and JavaEE. For example, the package org.eclipse.jdt.core

contains the classes that are the core of Eclipse’s Java Development Tools, so it is naturally

not included in the product C/C++. We label these packages used in all but one product

high-reuse variation packages.

Low-reuse variation packages are in the regions where only two products overlap. In this

study, are the 25 - 28 (depending on the release) packages shared by Java and JavaEE, such

as Eclipse’s Graphical Editing Framework (org.eclipse.gef ).

The remaining 75 - 101 packages are currently used in only one product, and can be

found in the perimeter regions of Figure 5.1. We call these packages single-use variation

packages. The Web Standard Tools package org.eclipse.wst.wsi, used only in one product,

belongs to this group.

Figure 5.1 shows that, following the terminology listed above, C/C++ is made entirely

of common packages2, and is thus a subset of the three remaining products. Java and

Classic are specific subsets of JavaEE, which contains all the studied packages. Java and

Classic contain a mixture of common, high-reuse variation, and low-reuse variation packages.

JavaEE contains all of the single-use variation packages.

The total number of packages and the number of packages which exhibited post-release

faults in each release are given in the right most column in Table 5.1 and shown in the bar

graph in Figure 5.2.

2C/C++ contains one single-use variation package called CDT which handles development in the lan-
guages C and C++. However, we were unable to access source code for this package and therefore it was
not considered in this study. For more details the reader is referred to Section 5.6.
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Figure 5.2: A histogram showing the total number of packages and the number of packages

which contain at least one post-release fault, for each of the releases considered in this study

5.2 Description of metrics and the process of their ex-

traction

In this study we use two types of software metrics - change metrics, which include the

number of pre-release bug fixes, and static code metrics. These metrics were collected at

file level and then aggregated to the package level for our analysis. This section details the

techniques we used to gather, combine, and aggregate the metrics to achieve our final data

set. Each of these metrics is then treated as a feature, in the machine learning sense, when

building and evaluating the predictive models.

5.2.1 Static code metrics

Static code metrics capture the information pertaining to the source code itself. They

range from simple metrics, such as lines of code (LOC), to metrics that measure structural
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intricacy, such as cyclomatic complexity. Static code metrics can be gathered via a variety of

software tools available online, in part for this reason, they are often used in fault prediction

studies. For this study, we used the freeware code analysis tool SourceMonitor3 [1] to extract

the static code metrics.

The list of the gathered static code metrics and their brief descriptions are given in

Table 5.2. To gather these metrics, we downloaded the source code from the Eclipse CVS

repository. First, batch files were generated to download the code for each set of packages

for which we already had change metrics. In these batch files, the exact date of the release to

be downloaded was specified in the CVS commands to ensure retrieval of the proper versions

of the code. We then created XML files to automate and guide the code analysis performed

by SourceMonitor. The result was a text file containing twenty-two static code metrics for

every file in each release under consideration.

5.2.2 Change metrics

Change metrics quantify the alterations made to a source code file over the course of

its existence. Change metrics used in this study were collected previously and used for

classification of fault-proneness at the file level in [27]. Specifically, for each file we extracted

the same set of seventeen change metrics as in [37]. Table 5.3 briefly describes these change

metrics, while detailed descriptions can be found in [37].

Next, we provide a brief description of the change metrics extraction process. The ver-

sion control system (CVS, in the case of Eclipse) maintains timestamped log files detailing

the history of changes made to any given source code file, such as which developers made

contributions and what changes they made. To extract the change metrics we mapped the

CVS log entries to the bug database at a file level. For the releases 2.0, 2.1, and 3.0, as in

[54], we searched the CVS log data for strings of four and five digits that matched the bug

IDs. For the later releases, we used six-digit strings to match bug IDs. This process was

manually validated to ensure that all metrics containing the word “bug” were captured by

this pattern match.

3The complexity measure used by SourceMonitor approximately follows the definition by McConnell in
[32].
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Table 5.2: A list of static code metrics and their descriptions

Static Code Metric Description
LOC Total number of lines
Statements Any LOC terminated by ‘;’
Percent Branch State-
ments

Percentage of statements causing a break in sequential execu-
tion, e.g., if, for, try, throw

Method Call State-
ments

All method calls, in statements and in logical expressions

Percent Lines with
Comments

Percentage of comment lines

Classes and Interfaces Total number of classes and interfaces, including anonymous
inner classes

Methods per Class Total method count divided by the total class count
Ave Statements per
Method

Total number of statements found inside of methods divided
by the number of methods

Max Complexity Complexity value of the most complex method
Ave Complexity Sum of all method complexity values divided by the number

of methods
Max Block Depth Maximum nested block depth level found within each method,

starting at block level zero for each file.
Depths up to 9 are recorded and all statements at deeper
levels are counted as depth 9.

Ave Block Depth Sum of all method block depths divided by the number of
methods

Statements at Block
Level x

Total number of statements in all methods contained at block
level x, where x ∈ (0, 1, 2, . . . , 9)

It should be noted that change metrics include the metric Bugfixes, which represents the

number of times a file was involved in pre-release bug fixes. Extracting the Refactorings

metric followed Moser’s approach in [37], which entailed tagging all log entries containing

the word “refactor”. We calculated the Age metric by noting the timestamp of the first

occurrence of each file name in all CVS log data since 2001. We used the CVSPS tool [31] to

determine changeset size, i.e., the files committed along with the file in question. Ensuring

that the file names produced in the changesets included the path information matching the

file names produced by our rlog processing script required slight modifications to the tool.

We did a few modifications to the log script to ensure that the data collected from various

input sources were compatible and mapped accurately. For example, files marked as “dead”

in Eclipse project are often moved to the Attic in CVS, which results in an alteration of the
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Table 5.3: A list of change metrics and their descriptions

Change Metric Description
Revisions Number of revisions made to a file
Refactorings Number of times a file has been refactored
Bugfixes Number of times a file was involved in bug-fixing (pre-release

bugs)
Authors Number of distinct authors who made revisions to the file
LOC Added Sum over all revisions of the number of lines of code added to

the file
Max LOC Added Maximum number of lines of code added for all revisions
Ave LOC Added Average lines of code added per revision
LOC Deleted Sum over all revisions of the number of lines of code deleted

from the file
Max LOC Deleted Maximum number of lines of code deleted for all revisions
Ave LOC Deleted Average lines of code deleted per revision
Codechurn Sum of (added lines of code - deleted lines of code) over all

revisions
Max Codechurn Maximum Codechurn for all revisions
Ave Codechurn Average Codechurn per revision
Max Changeset Maximum number of files committed together to the reposi-

tory
Ave Changeset Average number of files committed together to the repository
Age Age of a file in weeks (counting backwards from a specific

release)

Weighted Age
∑n

i=1 Age(i)×LOC Added(i)∑n
i=1 LOC Added(i)

file path. To account for this, we excluded from our study all instances that had the pattern

“/Attic/” in their file paths. Another modification was due to the fact that when using the

CVS rlog tool with date filtering, files that were unchanged during the filter period would be

listed as having zero revisions, with no date, author, or other revision-specific information.

This is true even if the file was previously marked “dead” on a branch. Therefore, the rlog

for the entire file history was obtained and we determined the alive files and revisions which

applied to each release, rather than examining only the date range required for each specific

release.
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5.2.3 Aggregation

We performed aggregation of all file-level metrics to the package level to achieve a coarser

granularity, which offered a key advantage to our analysis. The vast majority of files in the

various products we studied contained no post-release faults, making that data more suited

to binary classification than numerical fault prediction. In addition, when viewed from the

package level, the skewness of the distribution of post-release faults towards zero is much less

pronounced. Such aggregations are not uncommon and have been performed and supported

in the literature. For example, Zimmerman et al. found that it was better to classify Eclipse

packages than files using regression models based on complexity metrics in [54]. Furthermore,

in [12], D’Ambros et al. concluded that finer granularity has no effect on predictions made

from change metrics.

Change and static code metrics were aggregated using the naming conventions of the

Eclipse project, as in [54]. For example, the metrics for the file named:

org.eclipse.gef.Command.java

were combined with all of the class files named:

org.eclipse.gef.[Class name].java.

The aggregations were performed using the Aggregate function in IBM SPSS (v. 20.0),

and the mean, median, maximum, and total were maintained for each metric, when ap-

propriate. For instance, the file-level static code metric LOC after the aggregation became

Mean LOC, Median LOC, Max LOC, and Total LOC, while the change metric Ave Changeset

maintained only the mean value after the aggregation. The resulting data set contained a

total of 112 metrics (i.e., features) for each package, with the total number of packages for

each product by release listed in Table 5.1. Thus, each package was characterized by a vector

m of 112 metrics, where m [i] , i = 1, ..., 73 are static code metrics, while m [i] , i = 74, ..., 112

are change metrics.
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5.3 Machine learning approach

This section describes the data preprocessing steps, the background on the generalized

linear regression models, our machine learning approach, including the feature selection

method, and the performance metrics used to quantify the results.

5.3.1 Data preprocessing

In order to bring all attributes into equal ranges before creating regression models, we

normalized the raw data prior to analysis. Normalization is a common practice in machine

learning, see for example [6], [9], [23], [43], and [44]. For this study, we performed a loga-

rithmic transformation of all metrics with very skewed distributions, i.e., LOC, Statements,

Method Call Statements, Classes and Interfaces, Statements at Block Level [0-9], LOC Added,

and LOC Deleted. All other metrics were normalized using a min-max transformation, where

each instance x of an attribute i is calculated according to

x′ =
maxuser −minuser

maxi −mini

(x−mini) +minuser, (5.1)

where maxuser and minuser are the user selected maxima and minima of the transformed

values and maxi and mini are the actual maximum and minimum values. For our analysis,

we selected values of zero for minuser and one for maxuser.

5.3.2 Background on Generalized Linear Regression models

For prediction of the number of post-release faults at the package level we used the

generalized linear models (GLMs) introduced by Nelder and Wedderburn in [40] and later

extended in [34], which are implemented in IBM SPSS (version 20.0). These models are of

the general form given by

link(γij) = θj − [β1xi1 + β2xi2 + . . .+ βpxip ], (5.2)

where γij is the cumulative probability of the jth category for the ith case, θj is the thresh-

old for the jth category, p is the number of regression coefficients, β1, ..., βp are regression

coefficients, and xi1 , ..., xip are the values of the predictors for the ith case.
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The link function is a transformation of the cumulative probabilities that allows esti-

mation of the model. For post-release fault prediction in software, we use the link function

called the cumulative negative log log,

link(x) = − log(− log(x)), (5.3)

because it is optimal for data sets in which lower values are more probable [33]. Since post-

release fault distributions are typically skewed (i.e., have many packages with zero or small

number of faults and a few packages with many faults), GLMs are more suitable to the task

of software fault prediction than standard linear regression models. In GLMs two steps are

required to attain a predicted value for a vector of metrics. First, the probabilities must

be estimated for each possible value. Second, those probabilities must be used to select the

most likely value for that vector. These steps are further described in [34].

5.3.3 Our machine learning approach

A software development or testing team can clearly benefit by using the models con-

structed from data acquired from the previous release of their product to predict which

packages will likely exhibit the most post-release faults in the next release. Therefore, our

approach mimics this actionable procedure for the development community.

Specifically, we built regression models for each product in each release of Eclipse from the

aggregated and normalized data, which consists of 112 features as described in Section 5.2.

The change metrics were gathered for a six month period before each release date, and

static code metrics were extracted from the source code available on each release date. As

a response variable for the predictive models, we used the number of faults in a package

reported during a six months period after each products’ release, referred to as post-release

faults throughout the paper.

It should be emphasized that building a model on the n-th release to predict the post-

release faults of the n + 1-th release from the pre-release data of the n + 1th release is an

unbiased approach motivated by practical needs in software development. Many studies in

the literature, whether limited by the size of their data sets or for other reasons, choose to

employ some form of n-fold cross validation. Cross validation is the process of splitting the
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data randomly into k groups, and then predicting values for the i-th group by building a

model on the other k − 1 groups. This is repeated using each of the k groups as a testing

group and the average value of the predicted variable is reported. Cross validation may

provide better results than building models and predicting on disjoint data sets, however,

the latter approach is more practical for the software engineering community. One possible

reason is that during replication, there is a large overlap of data between the successive

iterations, leading to training samples that are not independent. Furthermore, averaging

out the results over many repeated trials can offer a more consistent and less extreme end

result than one achieved via building models and predicting on disjoint sets.

We used the models built on each of the products in release n to predict the number of

post-release faults in every product in release n+ 1. We built a total of nineteen predictive

models – one model for each of the first three releases (which contained only one product

each), and four for each of the next four releases (which contained four products each).

Prediction models built for each product in each release (n) were then used to predict the

number of post-release faults of all products in the subsequent release (n+1), which resulted

in total of fifty-four trials. Testing the models on all products in the subsequent release,

rather than on only the same product, is an approach taken for the first time. In this study,

the goal is to explore whether the systematic reuse inherent in product lines and the addition

of product line specific information can benefit the prediction of post-release faults.

5.3.4 Feature selection

In order to select the features that have the best predictive capability out of (typically)

many available features we applied feature selection, a standard step used in machine learn-

ing. Reducing the number of features by removing the irrelevant and noisy features typically

speeds up machine learning algorithms and improves their performance. The application of

feature selection to reduce the set of features considered during model creation allowed us

to use all available statistical measures of the aggregation, rather than a smaller subset as

in [54] and [39].

In particular, we performed feature selection via stepwise regression [24] before creating
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the regression models. Stepwise regression is an iterative feature selection method that builds

a linear model by selecting predictors from the feature set having high correlations with the

response variable. Each step in the creation of the model eliminates the least significant

feature, resulting in a smaller, more highly correlated feature set.

5.3.5 Performance metrics

We report four performance metrics, the mean absolute error (MAE), nTop20%, which

is a normalized version of the percentage of total post-release faults found in the top 20%

of packages predicted to be faulty, and the rank correlation coefficients Spearman’s ρ and

Kendall’s τ -b. The latter measure the association between two ranked lists of packages –

one based on the actual number of post-release faults and the other based on the predicted

number of post-release faults.

Mean absolute error

MAE is a common evaluation metric which is calculated over the set of n predictions for

each trial according to the equation:

MAE =
1

n

n∑
i=1

|fi − yi|, (5.4)

where n is the number of predictions (the number of packages, in this case), fi is the predicted

number of post-release faults and yi is the actual number of post-release faults in a package

i.

nTop20%

The percentage of actual faults found in the most faulty 20% of packages calculated by the

predictive model is a common performance metric reported in several other works, e.g., [6],

[13], [41], [43], [44], and [48]. To determine the nTop20% metric for our predictive models we

used Alberg diagrams. The Alberg diagram is a standard way to show the relative accuracy

of a set of predictions made by regression for software products [41], which provides a succinct

manner of showing the ability of independent variables to rank a dependent variable [13].
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As an illustration we show two Alberg diagrams – in Figure 5.3(a) for release 2.1 and in

Figure 5.3(b) for release 3.0 of Classic. The solid lines show the percentages of the cumulative

number of post-release faults contained by packages, which are sorted on the horizontal axis

in decreasing order by their actual number of faults in the corresponding release. (This

means that the most faulty package is furthest to the left and the least faulty package in

the release is furthest to the right). For the Alberg diagram in Figure 5.3(a) (Figure 5.3(b))

the dashed line shows the total number of actual faults located in the packages identified

as the most faulty in release 2.1 (3.0) by the predictive model built using the data from

the previous release 2.0 (2.1). Note that the predicted number of faults for each package of

Classic 2.1 (3.0) based on the model built from the previous release of Classic 2.0 (2.1) is

used to order the packages in decreasing order. Ordering the packages in this way provides a

ranking of the packages which were predicted to be the most faulty by the model. The area

between the dashed and solid lines shows how close the model’s ranking comes to identifying

the actual most faulty packages. It is important to note that we were conservative when

plotting the predictive models’ performances. Only packages with nonzero predicted fault

values were ranked and plotted in dashed lines in our Alberg diagrams. This is the reason

why the dashed lines in Figures 5.3(a) and (b) terminate before convergence with the solid

line.

The vertical dotted line at 20% is a reference line used for measuring the effectiveness of a

predictive model. From the figure, we see that for 2.1 Classic approximately 65% of the total

post-release faults (solid line) were located in the top 20% of actual faulty packages. The top

20% of faulty packages identified by our predictive regression model contained approximately

60% of the total post-release faults.

Due to its dependence on the total number of faults residing in the top 20% of the soft-

ware packages analyzed, and the fact that this number varies from product to product, the

number of faults in the top 20% of the most faulty packages does not generalize well enough

to allow comparisons between different products or even different releases. To overcome

this and support comparison, we used a normalized version of the Alberg measure consisting

of the percentage of faults calculated by the predictive model found in the top 20% of pack-

ages, divided by the actual number of faults in the top 20% of most faulty packages. For
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(a) Predictions made for Classic release 2.1 (b) Predictions made for Classic release 3.0
using the model built on release 2.0 using the model built on release 2.1

Figure 5.3: Alberg diagrams showing the effectiveness of regression models (dashed lines)

built on previous releases at predicting faults in the next release. The dotted vertical line

marks the top 20% of the most faulty packages.

brevity, we refer to this normalized performance metric taken from Alberg diagrams as the

nTop20% score for a model. In Figure 5.3, for 2.1 Classic the metric normalized in this

way is nTop20% = 60/65 and it shows that the predicted top 20% of most faulty packages

account for approximately 92% of the faults occurring in the actual top 20% of the most

faulty packages.

We prefer nTop20% over other performance metrics, such as the coefficient of determina-

tion R2, due to its ease of comparison across software projects combined with its robustness

to outliers, as detailed in [41].

Rank correlation measured by the Spearman’s ρ and Kendall’s τ

The Alberg diagram basically shows two ranked lists of packages – one based on the

actual number of post-release faults for each package (shown as a solid line) and another

based on the predicted number of post-release faults for each package using the model built

on the previous release ( shown as a dashed line).
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The association between two ranked lists is measured by Spearman’s ρ and Kendall’s τ

correlation coefficients. The values returned by each metric range from -1 to 1, with lower

values showing an indirect correlation, higher values indicating direct correlation, and values

around zero representing no correlation between the two lists.

Spearman’s ρ is the nonparametric version of Pearson’s r correlation coefficient, which is

used when the assumptions of normality and equal variance are not fulfilled or when the data

are given in ordinal scale (i.e., data are comprised of ranks) as in this case. For a sample of

size n of two variables X and Y , the differences in ranks on the two variables di = Xi − Yi
are used as an indication of the disparity between the two sets of rankings. The Spearman’s

ρ is computed by:

ρ = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)
. (5.5)

Tied values among the ranks are handled by assigning them the average of their positions in

the ascending order of the values. A full description of Spearman’s ρ correlation coefficient

is provided in [4].

Kendall’s τ -b, also described in [4], is a variant of the Kendall’s τ coefficient specifically

designed to handle ties within the ranked lists. The Kendall τ -b coefficient is defined as:

τb =
nc − nd√

(n0 − n1)(n0 − n2)
(5.6)

where nc is the number of concordant pairs, nd is the number of discordant pairs, n0 =

n(n− 1)/2, n1 =
∑

i ti(ti − 1)/2, n2 =
∑

i uj(uj − 1)/2, ti is the number of tied values in the

ith group of ties for the first quantity, and uj is the number of tied values in the jth group of

ties for the second quantity.

Kendall’s τ has several advantages4 over the Spearman’s ρ. Nevertheless, we used both

metrics to measure the association of the ranked lists based on the actual and predicted

number of post-release faults in order to be able to compare our results with the previous

works which used the Spearman’s ρ metric. It should be noted that when Spearman’s ρ

4Kendall’s τ approaches the normal distribution quite rapidly so that the normal approximation is better
for Kendall’s τ than it is for Spearman’s ρ. Another advantage of Kendall’s τ is its direct and simple
interpretation in terms of probabilities of observing concordant pairs (both numbers of one observation are
larger than their respective members of the other observation) and discordant pairs (the two numbers in one
observation differ in opposite directions from the respective members in the other observation).
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and Kendall’s τ are both used on the same data, typically Spearman’s ρ tends to be larger

than Kendall’s τ , in absolute value. However, as a test of significance both produce nearly

identical results in most cases.

5.4 Assessment of the SPL quality

The research questions in this section assess the quality of Eclipse as a product line.

First, we consider the distribution of post-release faults occurring in all products by release.

Then, we consider the distribution of the post-release faults across the packages. Finally, we

examine whether the quality of the products benefits from the reuse inherent in the product

line.

5.4.1 RQ 1: Does quality, measured by the number of post-release

faults for the packages in each release, consistently improve

as the SPL evolves?

Perhaps the most obvious measure of quality for any piece of software is the number

of faults reported after the software’s release. To discern trends in post-release faults we

offer the three plots in Figure 5.4. The box plot in Figure 5.4(a) shows the median value

and variance of post-release faults for the packages in each release. As Eclipse product line

evolves through releases, there is a noticeable trend of decreasing median values, decreasing

variances, and decreasing interquartile ranges in post-release faults.

The bar graph in Figure 5.4(b) displays the total number of post-release faults for each

release. As shown, the total number of post-release faults peaks in the Europa release,

then follows a decreasing trend. This peak can be explained by the developmental changes

that took place between release 3.0 and Europa. Between these two releases, the Classic

standalone product split into multiple products as the Eclipse project first began to resemble

a true product line. To accommodate this, many changes were made to the structure of the

packages and to the source code itself. The shift brought about 128 new packages, and the

source code more than doubled in size.
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(a) A box plot of the distribu-

tions of post-release faults for

each release

(b) A bar graph showing the

total number of post-release

faults for each release

(c) A bar graph of average

post-release fault density per

package, for each release

Figure 5.4: Plots showing total post-release fault data over all packages for each release

To account for this size increase, Figure 5.4(c) shows post-release faults normalized by

size, i.e., the average number of faults for each package per one thousand lines of code. When

the data is viewed in this light, the peak is seen in the first studied release and gradually

declines to a lower value for the Helios release, with the exception of the Ganymede release. It

is important to emphasize that despite the fact that three new products (i.e., C/C++, Java,

and JavaEE) were introduced in the Europa release with 128 new packages, the post-release

fault density of the Europa release still fits the decreasing trend.

To statistically confirm this observation we used the Kruskal-Wallis test, which deter-

mined that the distributions of the package post-release fault densities were not equal for

Eclipse releases 2.0, 2.1, 3.0, Europa, Ganymede, Galileo, and Helios. This was followed by a

post-hoc Jonckheere-Terpstra test, which rejected the null hypothesis in favor of the ordered

alternative hypothesis that the fault density of each release was less than or equal to the

fault density in the previous release (p = 6.2× 10−22).

Additionally, the trend was confirmed by ranking all packages by their total number

of post-release faults, numbering the releases chronologically from one to seven, and then

computing Kendall’s τ -b nonparametric rank correlation measure between the two ranked

lists. The resulting value for τ -b was -0.238 with a p value of 6.2 × 10−22. The negative

correlation confirms the inverse relationship of post-release fault density and chronological

releases, that is, proves that the post-release fault density decreases as the product
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line evolves through releases. This strong evidence of an overall trend of decreasing post-

release fault density shows that quality does improve as the SPL evolves.

5.4.2 RQ 2: Do the majority of faults reside in a small subset of

packages?

To address this question, we examined what percentage of the total number of post-

release faults is located in the top twenty percent of the most faulty packages, for each

release of Eclipse considered in this study. Figure 5.5 shows a bar graph and descriptive

statistics of the results. It follows that from 66% to 93% of the post-release faults

detected across all products in each release are located in approximately 20% of

the packages, with average and median around 81% and 84%, respectively.

Figure 5.5: A bar graph depicting the percentage of total post-release faults detected in the

top twenty percent of the total packages for each release, with accompanying descriptive

statistics

This result generally agrees with other works [5], [8], [13], [18], [42], which have consis-

tently found that between 60 and 90% of bugs normally reside in around 20% of the lines

of code, files, or packages, depending on the unit. Furthermore, this result confirms that

20% is a good cut-off point for the most faulty packages used in the nTop20% performance
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metric.

5.4.3 RQ 3: Does the quality of products benefit from the reuse

inherent in the product line?

A key goal of product line engineering is the application of structured reuse to achieve

higher quality products [16], [46]. To evaluate how products benefit from this structured

reuse, we examined the post-release fault densities of previously existing packages (third row

in Figure 5.6) and newly developed packages (bottom row in Figure 5.6) in the Ganymede,

Galileo, and Helios releases. (The Europa release was not considered because of the three

years time difference from the previous considered release 3.0, which made the identifica-

tion of newly developed packages impossible.) Note that the packages in each release are

grouped by their level of reuse: single-use variation packages (used in only one product),

low-reuse variation packages (used in two products), high-reuse variation packages (used in

three products), and common packages (used in all four products).

Exploring the average Codechurn, which is shown in the first and second rows of Fig-

ure 5.6, showed that previously existing packages at all levels of reuse, including the common

packages, continued to change. This suggests that rather than becoming stable over time

in terms of lines of code, common packages acquire new functionality and must also adapt

to coexist with newly introduced variation packages. Even though this introduction of new

functionality and adaptation introduced new post-release faults, the fault density of the com-

mon packages remained fairly low, that is, they incurred a low number of faults for their size.

In general, the third row of Figure 5.6 showed that even though pre-existing packages

had a relatively high average Codechurn, they sustained low post-release fault

densities, which clearly illustrates the benefit of reuse. This result is similar to our

earlier findings reported for PolyFlow and those of Krishnan, et al. reported in [25].

For the newly introduced packages, shown in the last row of Figure 5.6, no clear trend

of the post-release fault densities could be observed. In the Ganymede release the ten

newly developed single-use variation packages of JavaEE had noticeably lower post-release

fault densities than the six newly developed low-reuse variation packages, which were shared



Thomas R. Devine Chapter 5. Empirical Case Study of Eclipse 54

Ganymede Galileo Helios

Figure 5.6: Bar graphs showing the average code churn and post-release fault densities of

previously existing packages (first and third rows) and newly developed packages (second

and last row) grouped by their level of reuse for releases Ganymede, Galileo, and Helios.

1, 2, 3, and 4 annotate single-use variation, low-reuse variation, high-reuse variation and

common packages, respectively.
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between Classic and JavaEE. The one common package had very few post-release faults.

In the Galileo release, only one newly developed single-use variation package existed in our

dataset; it had no post-release faults. Of the nineteen newly introduced packages in the

Helios release, eighteen were single-use variation packages and one was a low-reuse variation

package. The eighteen new single-use variation packages, which belong to JavaEE, received

nearly twice the amount of average Codechurn as the newly introduced low-reuse package,

but contained only two post-release faults in total. Basically, the new single-use variation

packages had the highest average Codechurn and the lowest fault density. In contrast, the

low-reuse package, which was shared by Java and JavaEE, had over a thousand post-release

faults and the highest post-release fault density.

In summary, it appears that newly developed low-reuse variation packages tend

to have higher post-release fault densities than single-use variation packages and

the common package. However, we hesitate to make strong conclusions with respect to

the post-release fault density of the newly developed packages due to the small sample sizes,

especially when compared to the sample sizes of the previously existing packages5

5.5 Prediction of post-release faults from pre-release

data

This section discusses findings related to the predictive ability of models generated ac-

cording to the methods described in Section 5.3. Basically, in each release we built a model

on each product and then used it to predict the number of post-release faults in each product

of the subsequent release from the corresponding pre-release features (i.e., metrics). This

process resulted in building nineteen models which were then used for prediction in 54 trials.

The Alberg diagrams for each trial are shown in Figures 5.3 and 5.7. The solid lines in

each diagram represent the actual percentage of post-release faults, while the dashed lines

represent the performance of each predictive model constructed from a product of the pre-

5In the Ganymede, Galileo, and Helios releases the number of previously existing packages per level of
reuse (single-use variation, low-reuse variation, high-reuse variation, and common) were (74, 32, 16, 61), (83,
27, 16, 61), and (83, 27, 16, 61), respectively.
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vious release, as labeled in the legend at the bottom of the figures. The vertical dotted lines

represent the 20% cut off point for ease of reference as described in Section 5.3.5.

The heat maps in Figure 5.8 show the resulting performance metrics recorded from the 54

combinations of model-building and model-evaluation products described in Section 5.3.3. In

these heat maps, the release on which the predictions were made are labeled on the bottom.

The models were built on the previous release. The columns represent the products on which

predictive models were built. Columns are labeled at the top by product name. The rows

represent the products on which the predictive models were evaluated, and are labeled on the

left. Each value in the heat map tables represents a performance metric score achieved by

evaluating the predictions made on the release of the row-labeled product by the model built

on the previous release of the column labeled product. For each metric, the better results

are shaded darker. Figures 5.3, 5.7 and 5.8 are used to illustrate the observations related to

the predictions of the post-release faults based on pre-release data.

5.5.1 RQ 4: Can we accurately predict the packages which will

contain a high percentage of the total post-release faults

from pre-release data?

To address this question, we refer to the results presented in Figure 5.8(a). It can be

observed that the best nTop20% prediction for each product across all releases is in the range

of 76% to 97%, which indicates that a high percentage of the most faulty packages

post-release within a product can be consistently predicted from the packages’

pre-release data.

Even more, the nTop20% scores for all releases remain at high levels, not only for the

best model, but in general. The only exceptions are two groups – the first full column of

Galileo predictions (made by models built on C/C++ data in Ganymede release), and the

last three cells of the bottom two rows in the Helios predictions (predictions made for Java

and JavaEE). Examination of the raw data and Alberg diagrams shown in Figure 5.7 showed

that these two groups of particular models performed worse than others due to an outlier

package in each case, as detailed next.
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Figure 5.7: Alberg diagrams for each product’s predictive trials in the final four studied

releases



Thomas R. Devine Chapter 5. Empirical Case Study of Eclipse 58

(a) A heat map of the values for the performance measure nTop20%. Higher values represent

better results and are shaded darker.

(b) A heat map of the values for the performance measure MAE. Lower values represent

better results and are shaded darker.

(c) A heat map of the values for the performance measure Kendall’s τ . Higher values

represent better results and are shaded darker.

(d) A heat map of the values for the performance measure Spearman’s ρ. Higher values

represent better results and are shaded darker.

Figure 5.8: Heat maps showing the results of the predictive trials for each product, in each

release. Releases on which the predictions were made are shown on the bottom. The rows

represent the products on which the predictive models were evaluated and are labeled on the

left by the product name. The columns represent the products on which predictive models

were built, and are labeled at the top by product name. Each value in the table represents a

performance metric score achieved by evaluating the predictions made on the release of the

row-labeled product by the previous release of the column labeled product.
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Models built from the Ganymede version of C/C++ provided uncharacteristically poor

predictions for all products in the Galileo release (see the first column of Galileo release in

Figure 5.8(a)). In fact, the model built on C/C++ data predicted only two faulty packages

for every product other than itself, neither of which was among the top 20% of the most

faulty packages in the Galileo release. This is represented by the low values of predictions

from the models built on C/C++ (shown with a dashed line) at the vertical 20% line in

the Alberg diagrams for Galileo Classic, Java, and JavaEE shown respectively in the second,

third, and fourth row of the third column in Figure 5.7.

Upon closer examination, we saw that Ganymede’s release of C/C++ had a much dif-

ferent distribution of faults than the other products in any release. As shown in Figure 5.9,

most products showed a similar distribution of faults, with one very faulty package steadily

followed by several more packages with a relatively high number of faults, then a small spread

of the majority of packages having very few faults. However, as the boxplot in Figure 5.9

shows, Ganymede’s C/C++ had one very faulty package and a large difference with the next

most faulty package. This lack of packages between the most faulty packages and those with

relatively few faults created an “all or nothing” effect in the predictive model.

Figure 5.9: A boxplot of the distributions of post-release faults of C/C++ across releases.

Notice the one extremely faulty package in the Ganymede release compared to the other

packages in that release
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Predictions for the Helios versions of Java and JavaEE made by the model built from

the Galileo versions of Classic, Java, and JavaEE are also worse than others (see the last

table in Figure 5.8(a)). The data revealed that the most faulty package in the Helios release

had 1,021 total post-release faults and it was a low-reuse variation package shared by Java

and JavaEE. This package, which comprised 36% and 25% of the total faults for the Helios

release of Java and JavaEE, respectively, was not identified as one of the top 20% of faulty

packages by the three specified models. In the Alberg diagrams for Java and JavaEE in the

Helios release (shown in the last column of the third and fourth rows in Figure 5.7) this

is indicated by the low values at the 20% vertical line followed by large vertical jumps for

the predictive models built on Classic, Java, and JavaEE of the Galileo release. At a closer

look it appeared that this particular package was not identified among the top 20% of the

most faulty packages in the Helios release because it had different values of the two main

features common to the predictive models of Classic, Java, and JavaEE (i.e., the values for

both Authors and Bugfixes were much lower).

5.5.2 RQ 5: Do predictions of the number of faults for each pack-

age improve as each product evolves through releases?

Figure 5.10: A graph of trend lines showing the best MAE score for each product across

releases examined in this study.

We showed in RQ 1 of Section 5.4.1 that the quality, measured by the number of post-
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release faults for the packages in each release, improved as the product line evolved through

releases. Here we consider the related question of whether predictive models built on the

products also improve. For this purpose, we focused on the MAE results shown in Fig-

ure 5.8(b) and observed a fairly steady reduction in the lowest mean absolute error

for each product from the first release to the final release considered in this

study.

This trend is illuminated more fully in the line graph shown in Figure 5.10. The lines

clearly show a decreasing trend of the mean absolute error for each product. This leads to

the conclusion that the predictions of the number of post-release faults for each package do

improve as each product evolves through releases.

5.5.3 RQ 6: Do the predictions of the most fault prone packages

(i.e. nTop20%) benefit from additional product line infor-

mation?

As shown in Figure 5.8(a), the best predicted values of nTop20% are typically not found

on the main diagonal, i.e., where the predictive model for a product is constructed from the

data of the same product in the previous release. This suggests that fault predictions for a

member of a SPL can benefit from using information from other members of the family. We

speculate that this benefit comes from the reuse inherent in the structure of SPLs. To test

this, when examining the values within the tables in Figure 5.8(a), we focus on exploring

row trends and column trends.

First, we note that row patterns show trends in which particular products have consis-

tently good predictions made by models built from any product. Specifically, we make several

interesting observations. C/C++ and Classic show a strong row consistency, i.e., no matter

on which product from the previous release a model is constructed, it will consistently make

accurate predictions for C/C++ and Classic. As shown in Figure 5.1, these two products

are comprised mostly of common code and are the smallest of the four products. The only

exception to this trend is the prediction made in Galileo release by the model built from the

Ganymede release of C/C++, which resulted in poor predictions across the board due to an
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outlier package, as discussed in RQ 5.

Second, column patterns emerge when the models built by a particular product have

consistent results regardless of the product on which they are evaluated. Thus, Java and

JavaEE show a strong column consistency, i.e., predictions made on any product by models

built from these two products are consistently very good. These two products are the largest

in terms of source code and packages, and also express the most variability. The only

exceptions are the predictions made on the Helios versions of Java and JavaEE, which suffered

from a very large outlier, as discussed in RQ 5. Based on these observations, we conclude

that models produced the best results when built from larger products with

more variation (non-shared packages), and when making predictions on smaller

products with less variation (more shared pakages). This is evidence that prediction

of the most fault prone packages benefits from additional product line information.

5.5.4 RQ 7: Can we accurately rank the packages based on the

predicted numbers of post-release faults? Does the accuracy

of the fault-based rankings of the software packages benefit

from additional product line information?

In addition to the nTop20% metric, we used the models to rank the packages based on

the predicted value of the number of post-release faults. The associations of these ranked

lists of packages with ranked lists based on the actual number of post-release faults were

then used as performance metric. The values of the Kendall’s τ and Spearman’s ρ are shown

in Figures 5.8(c) and 5.8(d), respectively.

In general, as discussed in Section 5.3.5, the associations measured by Spearman’s ρ are

higher than by Kendall’s τ . Although Kendall’s τ has some advantages for measuring the

association of two ranked lists, we presented the Spearman’s ρ values as well in order to

be able to compare our results with the results presented in related work. Specifically, the

Spearman’s ρ values shown in Figure 5.8(d) compare favorably to values achieved in similar

prediction attempts for Eclipse in related work. D’Ambros et al. examined two components

of Eclipse from releases 3.1 and 3.3 in [10]. Using 50-fold cross validation of regression models
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based on the static code metric Fanout and change coupling metrics, Spearman correlation

ρ values ranged from 0.4 to 0.810. The best values were achieved when correlating selected

change coupling metrics with number of faults, however, the paper is not specific as to

whether pre- or post-release faults are studied. In [11], D’Ambros and Robbes evaluated

many different prediction approaches on several components of Eclipse versions 3.1, 3.4, and

3.4.1. The Spearman’s ρ values attained when using the same change metrics as us ranged

from 0.165 to 0.534 and, when using comparable static code metrics, ranged from 0.277 to

0.547.

More related results were presented by Zimmerman et al. in [54]. They used logistic

regression models built upon static code metrics on Eclipse Classic releases 2.0 and 2.1 to

predict the post-release faults for releases 2.1 and 3.0, respectively (among other combina-

tions). The obtained values for Spearman’s ρ were 0.420 for the 2.1 predictions and 0.449

for the 3.0 predictions. Our results for these same combinations of Classic releases are better

(i.e., 0.570 and 0.520, respectively) as shown in Figure 5.8(d), which could be due to the

addition of change metrics to our features and/or to the different machine learning technique

we employed.

Next, we explore whether these rankings, which are based on predictions of the number

of post-release faults for packages, benefit from additional SPL information. As shown in

Figures 5.8(c) and 5.8(d), while some of the best values for Kendall’s τ and Spearman’s ρ

appeared on the main diagonals, at least three fourths of best rankings for both performance

metrics were made by models built from previous releases of other products. As in RQ 6,

this suggests that post-release fault rankings for products in a product line may benefit from

additional information from other members of the family.

When examining the results for values of Kendall’s τ and Spearman’s ρ, row and column

patterns also emerged. As it was the case for the nTop20% performance metric, both Classic

and C/C++ displayed a strong row consistency. Furthermore, Java and JavaEE showed a

strong column consistency with the ranking performance metrics Kendall’s τ and Spearman’s

ρ, as they did with the nTop20% metric. (The only exceptions are the slightly lower values

by the model built on the Ganymede release of Java and evaluated on the Galileo versions

of Classic, Java, and JavaEE.)



Thomas R. Devine Chapter 5. Empirical Case Study of Eclipse 64

In summary, the finding for the nTop20% metric in RQ 6 is confirmed here by the accu-

racy of the fault-based ranking – models produced the best results when built from

larger products with more variation (non-shared packages), and when making

predictions on smaller products with less variation (more shared pakages).

5.5.5 RQ 8: Are some features better indicators of the number of

post-release faults in a package than others?

Feature selection is a standard machine learning technique used to identify the features

that are the best predictors for a response variable. As described in Section 5.3.4, we

performed feature selection via stepwise regression. For each model, the selection method

incrementally determined the set of features that was most strongly correlated to the response

variable. The number of features selected for each of the 19 models created in this study

ranged from 1 to 16 (see the histogram shown in Figure 5.11) with a mean value of 9.6, which

indicates that a small number of features are sufficient to predict the number of

post-release faults from pre-release data.

Figure 5.11: A histogram of the number of features selected for each of the 19 models used

in this study

To determine the most often selected features across the set of all models, we created

the histogram in Figure 5.12. The histogram shows the number of models in which each

feature was used, in descending order. To further assess the ability of different features (i.e.,

change and source code metrics) we computed the Spearman correlation ρ value for each

feature pairwise with the actual value of the response variable, in every release. (We used
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Figure 5.12: A histogram of the number of times each feature was selected by stepwise

regression among the top predictors for the 19 models used in this study.

the nonparametric Spearman correlation because the data did not conform to the normal

distribution.) The correlation table is not given due to space limitations, but certain values

are discussed in support of the interpretations of the results.

The results showed that no single feature or set of features was consistently the best

predictor for every model. The top two most commonly selected features in this study,

which were selected in just under half (47%) of the 19 models, were both change metrics:

total Bugfixes and total Authors. Furthermore, the Spearman correlation ρ values for these

two features with the response variable were high for every release, with mean values over all

releases of 0.768 and 0.726, respectively. These high positive correlation values indicate that

post-release faults are often located in packages that have both a high frequency of pre-release

faults and a relatively high number of authors who made revisions.

The high correlation of the number of pre-release faults (i.e., Bugfixes) with post-release

faults contradicts the findings of Fenton and Ohlssen in [13], but it is consistent with the

results of the replicated studies performed on different software systems by Andersson et al.

in [5] and Grbac et al. in [19]. The fact that this result is consistently supported in several

very large, complex software systems offers some measure of generality to the conclusion that

the most faulty code before release tends to be among most faulty code after

release. With respect to total Authors, consistent with our results, post-release faults have

been shown to be related to more contributing authors by Giger et al. in [15]. However, no

consistent relationship between number of authors and post-release faults was indicated in
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the work of Weyuker et al. in [52].

As Figure 5.12 displays, total CodeChurn and total Revisions were among other most

often selected change metrics, with high mean correlations across all releases (i.e., Spearman

ρ values of 0.741 and 0.751, respectively.) These results are in agreement with Nagappan

and Ball, who found in [38] that Average CodeChurn had a statistically significant, very

high positive correlation to fault density (p-value < 0.01, ρ = 0.883) and concluded that an

increase in change metrics for a package is often accompanied by an increase in post-release

faults for that package.

The fact that total Bugfixes, total Authors, maximum Bugfixes, total CodeChurn and

total Revisions all had high frequencies of occurrence in predictive models and high correla-

tions with the response variable, implies that post-release faults are closely associated

with the total number of times the source code in a package was fixed during

pre-release testing, the number of authors contributing to a package, the amount

of source code added to and deleted from a package before that package’s release,

and the total number of times the package was revised. These results from a large

and widely used family of software products may offer actionable suggestions for members

of the software development industry interested in pinpointing packages likely to be faulty

from historical data.

Of the fifteen features appearing in more than a quarter of models, only four were static

code metrics: maximum Statements at Block Level 1, maximum and total Statements at

Block Level 4, and the total Method Call Statements. These four metrics also have relatively

high mean Spearman correlation ρ values, ranging from 0.610 for the total statements at

block level four to 0.683 for the total number of method call statements. The results for

these metrics indicate that post-release faults are also associated with large amounts

of source code in nested blocks at low and intermediate depths, and with many

method calls.

We also examined the metrics LoC and Cyclomatic Complexity, two static code metrics

which are widely explored in the literature on fault prediction. We found that LoC was also

correlated to total post-release faults with statistically significant ρ values ranging from 0.635

to 0.796 and an average ρ value of 0.692. However, it was selected among top predictors only



Thomas R. Devine Chapter 5. Empirical Case Study of Eclipse 67

for a small subset of the models. This correlation is slightly stronger than the results from our

study of PolyFlow, and those reported by Andersson et al. in [5] and by Zimmerman et al. in

[54]. With respect to Cyclomatic Complexity, our results from both this study and the study

of PolyFlow agreed with Fenton and Ohlssen in [13] that it is a poor predictor of faults, as it

was selected as an important predictor in only one of the 19 models. However, as in the case

study of PolyFlow and [54], we did note a positive correlation between Maximum Complexity

and number of post-release faults of ρ = 0.453. Compared to our results, Zimmerman et al.

in [54] showed slightly higher level of correlation for this metric.

5.6 Threats to validity

In this section, we describe several threats to the validity of this study and the measures

we took to mitigate them.

Construct validity addresses whether we are testing what we intended to test. An

obvious and prevalent construct validity threat is insufficiently defining constructs before

translating them to metrics. Inconsistency and imprecision of terminology are significant

threats to validity in software quality assurance which can complicate comparisons of results

across studies. We were careful to provide the definitions of all terms and metrics used in

this thesis and to avoid ambiguous or inconsistently used terms, such as defects, that are

often used differently throughout the literature.

Mono-operation bias to construct validity occurs when the cause-construct is under-

represented. Many empirical studies use limited data, that is, are missing type of data that

could help explain the cause-effect relationships better. For example, many fault prediction

studies were based on using only static code metrics. Throughout this study we used both

static code and change metrics, allowing feature selection method to choose the features that

are the best predictors.

Typically, a common step in creating regression models is to filter the data to remove

outliers. We did not remove outliers in order to maintain the relevance of this study to actual

software development. In software quality assurance, it is often the case that some files and

packages have significantly more post-release faults than others, which was confirmed in this



Thomas R. Devine Chapter 5. Empirical Case Study of Eclipse 68

study as well. The distributions of many of the metrics we gathered are also skewed. For

instance, in the Helios release the largest package, org.eclipse.jdt.core, has 431 KLOC, which

is significantly higher than the mean value of 20 KLOC over the entire release. In addition,

this is the second most faulty package in that release and therefore it is one of the main

targets of our search. In general, for skewed distributions such as the distribution of the

number of post-release faults across software packages, it is most important to identify the

packages at the tail of the distribution. Therefore, even though excluding outliers may have

led to more accurate predictions, no data were excluded from our datasets.

Internal validity threats concern influences that, without researchers’ knowledge, can

affect the independent variables and measurements. The biggest threat to internal validity

is data quality.

In the process of collecting the static code metrics, we made great efforts to assure that

the data we collected was as complete and accurate as possible. However, as we were dealing

with massive downloads of source code files that have been archived for close to a decade,

locating every single file was unrealistic. Not all source code files for which CVS logs were

recorded were available to anonymous developers at the Eclipse CVS repository server6. In

particular, no code was available for any files in the package CDT. This package includes

C/C++ development tools and would have been the single use variation package for the

C/C++ product. Additionally, the source code for the Ganymede and Galileo releases of

PDE (Plug-in Development Environment) were unavailable. For consistency with respect

to our predictive models, the unavailability of the PDE source code in the final two re-

leases prompted us to omit the PDE packages when creating the predictive models for the

Ganymede release. In total, for the named releases (i.e., Europa to Helios) we were able

to locate archived source code for 91.6% of the 136,567 total files for which CVS data was

retrieved.

While source code with metrics for the 2.0, 2.1, and 3.0 releases of Classic is available

online from [54], we chose to collect and analyze the source code directly from the CVS

repository in order to ensure repeatability. We were able to download source code for only

18,111 of the 41,416 files in these older releases. While this number seems low, it is compara-

6pserver:anonymous@dev.eclipse.org:2401/cvsroot
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ble to amount of data collected by Zimmerman et al. in [54]. In particular, we downloaded

the available data for 2.0, 2.1, and 3.0 releases from the repository given in [54] and found

that their dataset consists of 15,395 files.

We built our dataset by combining static code metrics with change metrics collected by

Krishnan et al. in [27]. This means that our data quality is dependent upon the quality of

that data. As described briefly in Section 5.2.2, there were several obstacles to collecting

a complete set of change logs for all files in every release of Eclipse, including “dead” files

moved to the CVS repository’s Attic. These difficulties, as well as how they were overcome

and how the data set was validated, are fully detailed in [27], and we are confident in the

quality of the data.

Conclusion validity concerns the ability to draw correct conclusions. Using statistical

tests in cases where their assumptions are violated is the most obvious threat to conclusion

validity. As our data did not conform to the normal distribution, we analyzed our results

using nonparametric tests, such as the Kruskal-Wallis test and the post-hoc Jonckheere-

Terpstra test for the trend of the post-release faults across releases. Due to the skewness

of the feature distributions and the response variable distribution, we used the Spearman

rank correlation coefficient to assess the correlation of individual features with the response

variable (i.e., number of post-release faults). In addition, for the association of the ranked

lists ordered by predicted and actual number of post-release faults we used the Spearman

and Kendall’s τ -b correlation coefficients, which have minimal assumptions. We also used

appropriate versions of the statistics for datasets with many ties.

External validity concerns the generalizability of results. It is impossible for research

based on one case study to claim that its results would be valid for other studies. However,

some of the observations made in this thesis have some degree of external validity because

they are consistent across both case studies in this thesis. Whenever possible, we also

compared our results to the findings of other studies, both of Eclipse and other software

systems. We have given complete details of how our study was performed so that it may

be replicated in the future. Finally, we provided definitions of the features and performance

metrics used in this study, which can be easily used to fairly compare our results with the

results of future case studies.
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Chapter 6

Conclusion

Software product line (SPL) engineering is a paradigm for systematic reuse that is widely

used to develop high-quality, diverse software product families faster and with less cost than

traditional development methods. Real world case studies of SPLs are necessary both to

empirically validate the advantages of product line engineering and to facilitate the develop-

ment process by supplying actionable insights into how SPLs behave in practice as well as

ways to improve SPL engineering. This thesis described two separate empirical studies– the

first of pre-release software faults in an industrial software product line (PolyFlow) and the

second of post-release faults in a large, evolving, open source software product line (Eclipse).

Conclusions drawn from these studies are presented separately in this chapter, followed by

a list of unified results from both studies.

6.1 PolyFlow

This section describes the results of our empirical study of pre-release software faults in

PolyFlow, a medium-sized industrial software product line. In this case study we collected

and examined both change and static code metrics for 42 different components comprised of

approximately 65,000 lines of code.

We found that change metrics have higher correlations to the number of pre-release faults

than static code metrics. Furthermore, our data revealed that Maximum Complexity was

correlated with pre-release faults but the correlation was low, while Average Complexity was
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not correlated at all. For the products in this SPL, the majority of pre-release faults were

contained in around one-fifth of the components.

Our research exploring the aspects of components with varying levels of reuse in PolyFlow

indicates that components used in only one SPL product are the most likely to change and

have the highest fault densities of any level of reuse. Common components reused in all four

products had fault densities close to those used in three products and higher Average Code

Churn.

The results of our longitudinal study of PolyFlow suggest that later products benefit

from the faults fixed in the components they share with other concurrently or previously

developed products. This provides some empirical support for the assumption that is at the

heart of product line development, namely, that through structured reuse of core, common

components, the subsequent products will be less fault-prone and require less time and effort

to develop and test. However, reused components also experienced an increased number of

New Features and Improvements, which were introduced to accommodate requirements due

to the gradual introduction of new products. We also showed that, in the SPL studied, the

data from more mature products could be used to build a model that predicts the number

of faults in subsequent products. Models developed in this manner might provide developers

with fault prediction tools that are specialized for their specific SPL and could be useful in

pinpointing those components that will likely exhibit the highest number of faults.

These results suggest two lessons learned that may affect other product lines. First,

the finding that change metrics are more highly correlated to faults than are static code

metrics helps make the case that rigorous change control is central to the quality of product

line products. Second, the finding that there is a spectrum of component reuse (ranging

from commonalities through high-reuse, low-reuse, and unique components, see Figure 4.1),

with significant, measurable differences among their fault profiles, tends to confirm that the

high degree of planned reuse in product line development enhances the quality of products.

We also saw, however, that even systematic reuse as in software product lines often results

in introduction of changes to accommodate requirements from different products gradually

introduced into the product line. The sustainability of a product line over time seems to

depend on consistent, ongoing reuse with a few, cohesive variations.
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6.2 Eclipse

The results presented in this section are based on an empirical study of Eclipse, a mature

and well documented open-source SPL with a wide and diverse user base. Our examination

included both static metrics derived from the source code and change metrics extracted

from the CVS repository logs. The data, collected over the course of seven releases for

four products, include over 135,000 files containing 20 million lines of code, aggregated into

packages and described by 112 different static code and change metrics.

The quality assessment results found that post-release faults are mostly located in a

small percentage of the total packages. Furthermore, as the product line continued to evolve

through releases, post-release fault densities at a package level showed a decreasing trend.

Reused packages continued to exhibit a high degree of change throughout the releases, yet

retained low fault densities.

For predicting the number of post-release faults we used generalized linear regression

models, with cumulative negative log log linking functions. These are particularly well-

suited for modeling skewed distributions, such as post-release fault data. The predicted

values for the number of post-release faults were then used to select the top 20% of most

fault-prone packages. The predicted values were also used to correlate the two ranked lists

of packages – one based on the actual number of post-release faults, another based on the

predicted number of post-release faults.

The results showed that models built from the data of one release could accurately predict

the number of post-release faults and the most fault prone packages from the pre-release

data of the subsequent release. Furthermore, rankings created by our models were positively

correlated to the actual rankings. In addition to experiencing improved quality (i.e., a

decreasing trend of the number of post-release faults), the accuracy of predictions measured

by the mean absolute error steadily improved as the SPL evolved through releases. Perhaps

the most surprising finding is that the best predictive models for each product were built from

the pre-release data that included other products. This means that the predictions benefited

from the use of additional product line information. Specifically, models built from larger

products with more variability typically produced better predictions than models built on
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the smaller products, which mainly consisted of common packages. Furthermore, all models

achieved their best results when making predictions on smaller products.

Last but not least, our results showed that a small number of features are sufficient to

produce accurate predictions. In general, pre-release change metrics are better predictors

of post-release faults than source code metrics. Specifically, post-release faults were closely

associated with the total number of times the source code in a package was fixed during pre-

release testing, the number of authors contributing to a package, the amount of source code

added to and deleted from a package before it was released, and the total number of times

the package was revised. Out of the fifteen most frequently selected features, only four were

static code metrics. Specifically, the results indicated that post-release faults were associated

with large amounts of source code in nested blocks at low and intermediate depths, and with

many method calls.

6.3 Consistent observations across both empirical stud-

ies

Several important results were consistent across both of the empirical case studies pre-

sented in this thesis. While more replications and new studies of more SPLs are needed,

having consistent results manifested across two different SPLs provides a certain measure

of generality to the conclusions. The following results were found to be consistent between

these two SPLs:

• There is a wide spectrum of different levels of reuse, from common packages shared

among all products, to high-reuse variation and low-reuse variation packages shared

among some, but not all products, to single-use variation packages used in only one

product.

• Both pre-release faults and post-release faults have skewed distributions, that is, most

of the faults are contained in a small set of components/packages.

• Pre-existing components/packages, including the common components/packages, con-

tinuously change (i.e., have high average code churn), but tend to sustain low fault
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densities. This is not always true for newly developed components/packages.

• Both pre-release faults (Polyflow) and post-release faults (Eclipse) are more highly

correlated with change metrics than with static code metrics.

• Predictions of pre-release faults (in the case of Polyflow) and post-release faults (in the

case of Eclipse) can be done accurately from pre-release data. Even more, predictions

benefit from additional product line information.
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