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Abstract 

Characteristics of Subordinate Follicles Following Removal of the Dominant 
Follicle: Induction of Selection 

Matthew Dean 

In mammals, ovarian follicles begin as primordial follicles.  Over time these follicles are 

gradually activated and begin growth.  As they proceed, granulosal and thecal cells are acquired.  

Eventually, the follicles become dependent on FSH for survival.  Two or three times each cycle, 

a transient increase in FSH allows a cohort of follicles, including the follicle that will ovulate, to 

continue growing.  However, these follicles secrete inhibin and estradiol, which suppress FSH 

secretion.  Eventually, all the follicles of the cohort undergo atresia due to the declining 

concentrations of FSH, except for the follicle which has the potential to ovulate.   This follicle 

survives the decline in FSH because the granulosal cells of that follicle develop LH receptors 

that allow stimulation to keep the follicle healthy.  The concentrations of estrogen and free 

insulin-like growth factor I are different in the selected follicles compared to the follicles that 

underwent atresia in the cohort of follicles.  However, because the ovulatory follicle cannot be 

identified until after it is selected, it is difficult to study the initial changes causing selection.  

One phenomenon from which insights to selection can be gained is compensatory hypertrophy, 

which is the ability of an animal to maintain the same ovulation rate after removal of one ovary.  

This compensation occurs at the next estrus, unless the unilateral-ovariectomy is carried out at 

the end of the cycle.  Therefore, the present study determined the fate of the subordinate follicles 

following removal of the selected follicle at different stages of the estrous cycle of the cow.  

Results indicated that if the dominant follicle of a second wave and the CL were removed at day 

13 post estrus, the largest subordinate follicle remaining became dominant.  However, all 

treatments later in thecycle resulted in regression of the remaining follicles and emergence of a 

new wave of follicles before ovulation.  
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I. Introduction 

Reproduction is essential for survival of a species.  In each reproductive cycle of female 

mammals, the two ovaries release one to several ova, which, if fertilized, result in pregnancy.  

The two major reproductive structures of the ovary are the growing follicles and the corpus 

luteum (CL, plural corpora lutea).   Each mature follicle contains an oocyte, granulosal cells, 

and thecal cells which produce estrogen.  Granulosal cells surround the oocyte and line the edge 

of a fluid filled cavity, the antrum.  The oocyte, granulosal cells, and antrum are enclosed by a 

basement membrane, and thecal cells line the outside of the basement membrane.  After 

ovulation (rupture of a follicle and release of the oocyte), a CL is formed by luteinization of the 

remaining follicular cells.  Luteinized granulosal and thecal cells, now termed large and small 

luteal cells, respectively, produce progesterone.  Therefore, the CL is a heterogeneous structure 

composed of luteinized granulosal and thecal cells, as well as vascular, supporting, and immune 

cells.   

The ovaries produce hormones that are essential for reproduction to occur.  Follicles 

produce several hormones, the most important of which is estrogen.  Estrogen has a wide array 

of actions, including regulation of hormonal release from the hypothalamus and pituitary, 

modulation of follicular growth, and initiation of estrus (mating behavior) in some species.  If 

pregnancy is not achieved, the uterus of most species begins to produce prostaglandin F2α, 

which causes regression of the CL (luteolysis).  Luteolysis allows ovulation of a new oocyte and 

formation of a new CL.  Thus, a new reproductive cycle begins.  This literature review will 

focus on follicular growth, giving particular attention to factors important in selection of the 

ovulatory follicle.  
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II. Literature Review 

A. Formation of Follicles 

Primordial germ cells (PGCs) are the direct precursors of oocytes.  They are dipoloid 

cells (contain a full complement of DNA) that develop in the yolk sac of the embryo and 

migrate to what will become the gonad.  During this migration the PGCs undergo several 

rounds of mitosis and then begin meiosis.  Meiosis is the process by which haploid (contain 

only half the normal complement of DNA) cells are produced.  During meiosis, the DNA 

replicates as the cell divides, producing two cells with a full complement of DNA.  However, 

these two cells divide again without replication of DNA, resulting in four haploid daughter 

cells.    The PGCs proceed into the first cell division of meiosis; however, the process becomes 

arrested after the first prophase. 

Primordial follicles form when the PGCs colonize the developing gonad and recruit cells 

from the ovarian epithelium and stroma to form pre-granulosal cells (Fortune, 2003).  This 

occurs in utero or shortly after birth and has been proposed to result in a non-renewable pool of 

follicles from which the female will draw for her entire life (Waldeyer, 1870).  This idea had 

been generally accepted by reproductive biologists (reviewed in Tilly et al., 2009), but has 

recently been challenged by several lines of evidence. 

 The first modern report contradicting this belief compared the number of primordial 

follicles present in the ovary to the number of primordial follicles expected after the follicular 

reserve at birth as adjusted to account for atresia or ovulation (Johnson et al., 2004).  The 

finding of more follicles than expected led the authors to conclude that the increased number of 

follicles must be the result of neoogensis.  While this study was conducted in rodents, it 

corroborated an earlier study in non-human primates (Vermande-Van Eck, 1956).  Another line 
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of evidence supporting post-natal neoogensis resulted from treating mice with doxorubicin, 

which induces apoptotic cell death in oocytes. As expected, treatment resulted in an 80% 

decrease in the primordial follicle reserve.  The surprising finding was a replenishment of the 

primordial reserve two months later (Johnson et al., 2005). 

However, there are several lines of evidence supporting the idea that females are unable 

to produce new follicles later in life.  One is a study employing a mathematical model to predict 

follicular dynamics concluded the rate of follicular depletion was adequately explained by 

accounting for follicular atresia and so supporting a lack of neoogensis (Bristol-Gould et al., 

2006).  The second line of evidence supporting this side of the issue was an inability to detect 

markers for germ cell proliferation in adult human ovaries (Liu et al., 2007).  In short, the 

controversy surrounding formation of oocytes in adult ovaries is unsettled and ongoing. 

B. Pre-antral Follicular Growth 

Follicles are termed primary when they enter an irreversible growth phase characterized 

by granulosal cells becoming cuboidal and displaying markers for cellular proliferation 

(Wandji et al., 1996).  Initiation of this growth has been linked to steroids (Yang and Fortune 

2006, 2008) and vascular endothelial growth factor (Yang and Fortune, 2007), but their roles 

are poorly defined. 

The next stage of development, secondary, is characterized by at least two layers of 

granulosal cells surrounding the oocyte; formation of a specialized layer of extracellular matrix 

around the oocyte, known as the zona pellicuda; and recruitment of thecal cells from ovarian 

connective tissue or stroma (Braw-Tal and Yossefi, 1997). In most species, secondary follicles 

continue uninterrupted into a tertiary or antral stage in which an antrum is present inside the 

follicle.  In cattle, formation of an antrum occurs when a follicle is 0.5 mm in diameter 
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(Fortune, 2003).  Once begun, follicular growth continues uninterrupted until the antral stage, 

at which time follicles become dependent on gonadotropic support (Richards, 1980). 

C. Antral Follicular Growth 

1. Follicular Waves 

Follicular growth was thought to be a continuous process in cattle until 1960, when 

Rajakoski (1960) proposed that follicular growth occurred in two waves during a normal bovine 

estrous cycle.  This controversial idea, with reports supporting (Hackett and Hafs, 1969; Ireland, 

Coulson, and Murphree, 1979) or refuting (Choudary, Gier, and Marion, 1968; Donaldson and 

Hansel, 1972) it, was based on morphological observations of ovaries harvested during the 

estrous cycle. 

Using India ink to identify follicles, Dufour et al. (1972) and Matton et al. (1981) 

studied follicular growth in cattle. Dufour et al. marked the storma surrounding the largest 

follicle per pair of ovaries and re-examined the ovary after the next estrus, while Matton et al. 

marked the two largest follicles on each ovary and then determined the fate of the marked 

follicles three to five days later.  Matton et al. demonstrated that at least one of the largest 

follicles on the ovaries at day three was still present at day thirteen, confirming the first wave 

of Rajakoski’s two-wave theory.  However, none of the largest follicles marked by Dufour et 

al. on days 13 to 17 ovulated, refuting the purported second wave as the ovulatory wave. 

In the 1980s, use of ultrasonographic technology allowed for multiple, non-invasive 

observations of ovarian follicles in individual animals.  Pierson and Ginther (1984; 1987) were 

the first to track follicular growth over time via ultrasonography and confirmed Rajakoski’s 

hypothesis.   However, other studies (Savio, Keenan, Boland, & Roche, 1988; Sirois & 
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Fortune, 1988) concluded that follicular growth occurred in a three-wave pattern.   In a study 

(Townson et al., 2002) of 106 Holstein dairy cows, 68% of the cows exhibited two follicular 

waves during the estrous cycle studied, while 30% exhibited three follicular waves, and the 

remainder had one, four, or five waves.  While the proportion of two- and three-wave cycles 

varied, together two- and three-wave cycles made up the vast majority (over 95%) of estrous 

cycles in beef cattle and dairy heifers (Ginther, Knoph, and Kastelic, 1989; Ahmad et al., 

1997). 

2. Emergence 

As shown after hypophysectomy in rodents, follicles can grow from primordial to antral 

stages without gonadotropic support (Edwards, et al., 1977).  Hence, this growth has been 

termed gonadotropin-independent.  Studies in the cow involving administration of a GnRH 

antagonist revealed that gonadotropin-independence ends when follicles have a diameter of 4 

mm in this species (Gong et al., 1995). Hence, growth after this size is gonadotropin-dependent 

and represents the emergence of a follicular wave (Fortune, Sirois, and Quirk, 1988).  

Follicle stimulating hormone is the gonadotropic hormone secreted by the pituitary 

gland that stimulates follicles during gonadotropin-dependent growth.  Adams et al. (1992), 

used frequent blood sampling and ultrasonography to determine that the initiation of each 

follicular wave was associated with a transient increase (50-75% above baseline) in the 

endogenous concentration of FSH.  Each wave is composed of a group of follicles known as the 

cohort. 

3. Selection 

After a cohort of follicles is recruited for continued growth, serum concentrations of 

FSH begin to decline.   By selectively ablating follicles of different sizes post-emergence, 



 
 

6 
 

Gibbons et al. (1997) found that follicles 5 mm or larger contributed to the decline in 

concentrations of FSH.  Follicles at that diameter in the cow are capable of secreting estrogen; 

however, estrogen did not fully account for the suppressive effects on FSH secretion.  To 

investigate the possibility of an FSH suppressor besides estrogen, Law et al. (1992) treated 

animals with follicular fluid stripped of steroids with charcoal.  Even without estrogen, 

follicular fluid that had been suppressed FSH, suggestive of action by a protein in the follicular 

fluid.  A major protein suspected of the action was inhibin.   

Inhibin is a dimer with two isoforms (A and B).  Both isoforms contain an α subunit, but 

inhibin A has the βA subunit, while inhibin B contains the βB subunit.  However, the β subunits 

can dimerize forming activin.  Activin has three isoforms (A, B, A/B) depending on the 

subunits.  Finally, follistatin, a single mono-unit protein, has similar biological actions as 

inhibin, however, these actions are due to follistatin binding activin and rendering it inactive.  

The inhibitory action of inhibin was confirmed when Wood et al. (1992) immunized against 

inhibin and prevented the suppressive effects of steroid-free follicular fluid.  These effects can 

be counteracted by activin.  However, these proteins also have intra-follicular effects.  Inhibin 

increases androgen biosynthesis by the theca (Hsueh, et al., 1987).  On the other hand, activin 

blocks this effect and increases mRNA expression for the FSHR in the granulosa (Findlay, 

1993). 

Exploring the relationship among these proteins in human beings, Schneyer et al. (2000) 

monitored components of the inhibin/activin/follistatin axis during the human menstrual cycle.  

While concentrations of inhibin B, activin A, and follistatin remained constant, inhibin A was 

associated with follicular maturity.  Hence, they examined the ability of the follicle to produce 

inhibin A and B in vitro (Welt and Schneyer, 2001).  Inhibin B was produced by the granulosal 
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cells of preantral follicles and was not affected by FSH.  Inhibin A was produced only by small 

antral follicles and its production was increased by FSH and insulin-like growth factor (IGF)-I.  

During the common growth phase, when all follicles of the cohort are growing synchronously, 

inhibin A from the entire cohort suppresses FSH.  However, as the subordinate (non-selected) 

follicles undergo atresia, the sources of inhibin are lost, and the selected follicle becomes 

estrogen-active (Roche and Ireland, 1981).  Estrogen replaces the negative feedback effects of 

inhibin on FSH secretion (Bodensteiner et al., 1996). 

To explore the dependency of follicles on FSH, Ginther et al. (2000) treated cows with 

exogenous estradiol.  Estrogen inhibits FSH secretion without affecting concentrations of LH.  

When concentrations of FSH were reduced before selection, growth of all follicles was 

decreased, showing their dependence on FSH.  However, decreasing concentrations of FSH 

during selection affected the growth of only the follicle being selected, meaning that it was still 

dependent on FSH for survival.   

In rodents, estrogen increases follicular sensitivity to FSH (Richards, 1980).  Because 

the selected follicle is the only follicle to produce large amounts of estradiol (Xu et al., 1995), it 

utilized FSH for a longer interval during FSH’s decline.   However, eventually concentrations of 

FSH declined to a point where subordinate the selected follicle can no longer survive on only 

FSH.   

a. LH Receptors 

The granulosal cells develop LH receptors (LHR) at the same time that the selected 

follicle begins to secrete copious amounts of estradiol (Xu, et al., 1995).  Campbell et al. (1999) 

suppressed concentrations of gonadotropins with a GnRH antagonist, then infused FSH and LH 

in different patterns to study follicular selection in sheep.  When high concentrations of FSH 
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were maintained, ovulation rates were greater than normal, regardless of LH concentration.  

However, when FSH infusion was withdrawn, mimicking natural FSH patterns, a normal 

number of follicles survived to ovulation when LH was present, but none survived when LH 

was absent. In fact, the selected follicle cannot grow past 7 to 9 mm in diameter if LH is 

suppressed (Gong et al., 1995) and , therefore, the selected follicle is LH dependent. 

Receptors for LH develop on the granulosal cells of the selected follicle of the first wave 

in cows between days 2 and 4 post estrus (Bodensteiner et al., 1996; Xu et al., 1995).  By 

evaluating gene expression of follicles across the first follicular wave, Bao et al. (1997) 

confirmed an increase in expression of LHR genes during selection.  While FSHR mRNA was 

expressed in granulosa from the secondary stage of follicular growth and LHR mRNA was 

detected in the thecal cells of preantral follicles, LHR mRNA was not expressed in the 

granulosal cells until after selection.  One defining characteristic of selection is the development 

of LH receptors on the granulosal cells.  Presence of mRNA for the LH receptor may be an 

important aspect of a follicles ability to become dominant. 

The activation of many signaling pathways has been detected prior to development of 

LH receptors.  These pathways are believed to be involved with the development of LHR, but a 

definitive pathway has been difficult to establish.  Elucidating the mechanism responsible for 

the development of LH receptors in the granulosa of only the selected follicle would benefit 

protocols in animal agriculture and human medicine aimed at altering ovulation rate. 

b. Estradiol 

Estrogens are a class of hormones that produce female characteristics in mammals 

(Concise Oxford American Dictionary, 2006).  Estradiol-17β, the major estrogen produced by 

the ovaries in mammals, is synthesized from cholesterol by enzymes located in granulosal and 
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thecal cells.  Production begins in the thecal cells where LH stimulates the production of 

androgens, hormornes that produce male characteristics (Concise Oxford American Dictionary, 

2006) .   This multi-step process begins with conversion of cholesterol to pregnenolone via 

P450 sidechain cleavage enzyme (P450scc).  Next, pregnenolone is converted to progesterone by 

the 3β-hydroxysteroid dehydrogenase enzyme.  Finally, androgen is produced by action of the 

17α-hydroxylase and 17,20 lyase enzymes.  Androgen then diffuses to the granulosal cells, 

where it is converted into estrogen by aromatase (Leung and Armstrong, 1980). 

Estrogen has many important functions during follicular development, making 

steroidogenesis a control point for follicular growth.  To investigate steroidogenic enzyme 

expression, Bao et al. (1997) analyzed follicles during growth of the first follicular wave.  Gene 

expression for the FSH receptor (FSHR) was first detected within the granulosal cells of 

secondary follicles, and expression increased as follicular size increased. Expression continued 

to the largest follicles analyzed (15.0 ± 0.7 mm in diameter).  The mRNA for the LHR was 

found in the thecal cells of all follicular sizes, but it was not detected in granulosal cells until 

follicles were 7.8 mm in diameter which is approximately the same diameter at which Ginther 

has determined that the growth rates of the selected and subordinate follicles become different 

(deviation; Ginther et al., 1997).  Expression in the granulosa then increased significantly by 

10.8 mm and remained constant until 15.0 mm, when it again increased.   In the thecal cells, 

P450scc  increased in expression between 5.2 and 7.5 mm and then remained constant regardless 

of size.  However, expression in the granulosal cells increased slowly and steadily as size 

increased.  Aromatase gene expression changed in the most telling fashion.  Expression 

increased significantly between 5.2 mm and 7.5 mm (emergence) and then increased again 

between 7.8 and 10.8 mm (deviation).   Changes in aromatase gene expression correlated well 
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with stages of follicular growth.  These results could be interpreted as estrogen playing a key 

role in follicular maturation. 

To study the effects of estradiol on follicular growth, Beg et al. (2003) used 

progesterone to decrease LH pulse frequency which resulted in lower concentrations of estrogen 

or infused estrogen antiserum to lower estrogen availability directly.  Both treatments had the 

extra-ovarian effects of increasing the concentration of FSH.  Perhaps more interesting was the 

finding that both treatments increased the interval of time between emergence of the wave and 

follicular deviation.  Yet, the size of the largest follicle at the time of deviation did not differ 

from controls, supporting an intra-follicular role for estrogen in controlling follicular 

maturation. 

A well established control point for estrogen production is ovulation, as estrogen 

triggers the LH surge.  To investigate control of estrogen production, Tian et al. (1995) induced 

luteolysis in cows while the selected follicle from the first wave was still dominant, and then 

they removed this follicle at either 0, 12, or 24 hours post injection.  Estrogen production 

increased during luteolysis, and this increase was associated with mRNA expression for SCC, 

3β-hydroxysteroid dehydrogenase , and 17β-hydroxysteroid dehydrogenase, but aromatase 

mRNA did not increase.  This could mean that the other enzymes are limiting estrogen 

production; although, mRNA expression may not reflect protein expression. 

Dominant follicles initially have a high estrogen to androgen ratio due to high aromatase 

activity and are termed estrogen-active.  As atresia begins, aromatase is lost resulting in high 

concentrations of progesterone; these follilces are termed estrogen-inactive (Ireland and Roche, 

1982).  It is likely that the fate of a follicle is determines by its ability to produce estradiol.  In 
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turn, estradiol production is control by many enzymes, two important of which is aromatase and 

P450scc. 

c. Insulin-Like Growth Factor System 

 Much research has identified differences between selected and subordinate follicles.  

One difference consistently identified in selected follicles is an increase in free insulin-like 

growth factor (IGF)-I.  The IGF system contains two ligands (IGF-I and – II), two receptors 

(IGFR-1 and IGFR-2), six high affinity IGF binding proteins (BPs), and several binding protein 

proteases.  The IGF system regulates growth and development in most bodily organs and 

processes throughout the body (reviewed in Pinchas, 2008), including follicles (Boldt and 

Conover, 2007; Monniaux and Pisselet, 1994).  However, results of studies looking at the IGF-I 

system are difficult to interpret.  Early assays for IGF-I measured total IGF (bound to BPs and 

free).  In the bound form, IGF has an altered affinity for its receptor.  Most reports found that 

bound IGF has lowered affinity for its receptor (reviewed in Rosenfeld et al., 2000), but in some 

cases the affinity was increased (Elgin, Busby, and Clemmons, 1987).  Also, concentrations of 

free IGF-I can be changed by changes in the translation, transduction, or post-translation 

modification of ligand, IGFBPs, or IGFBP proteases. 

Original studies linking IGF-I to follicular dominance merely showed a correlation.  

However, Ginther et al. (2004) found that injecting free IGF-I into a subordinate bovine follicle 

increased its estrogen content and stimulated it toward dominance, showing a causative effect.  

Those results agree with those of Silva and Price (2002) who found that IGF-I increased 

aromatase expression in cultured granulosal cells.  Ablation of the largest follicle (F1) increased 

free IGF-I in the second largest follicle (F2) 12 hours later in the cow (Beg et al., 2002) and 

before size deviation occurred in the horse (Ginther et al., 2002).  The concept that IGF 
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stimulation is critical for dominance is further supported by the finding of Grado-Ahuir et al. 

(2009) that IGF-I induced changes in gene expression in porcine granulosal cells that promoted 

vascularization.  However, the origin of free IGF in the follicle remains ambiguous, because 

IGF-I mRNA was found in the granulosal cells by some researchers (Hastie and Haresign, 

2008) but not by others (Sudo et al., 2007; Aad et al., 2006). 

Whichever is the case, concentrations of total IGF do not seem to change during 

follicular growth.  In human follicles, IGF concentrations were not correlated with follicular 

diameter (Van Dessel et al., 1996) and Sudo et al. (2007) found that IGFR-1 and total IGF-I 

were expressed similarly across all developmental stages of healthy follicles in cattle.   

However, free IGF did change (Sudo et al., 2007; San Roman and Magoffin, 1993). 

Concentrations of free IGF could be controlled by changes in IGFBP concentrations.  

When co-dominant follicles were induced by injection of FSH, both follicles had the same 

concentrations of IGFBP- 4 as the dominant follicle of control animals, but lower IGFBP-4 

concentrations than in the largest subordinate follicle in control animals (Rivera and Fortune, 

2001).  In turn, IGFBPs are controlled by changes in pregnancy associated plasma protein A 

(PAPP-A) expression, primarily a protease for IGFBP-4, but also for IGFBP-2 and 5.  Growing 

follicles tended to have greater expression of PAPP-A mRNA; PAPP-A expression was 

increased in cultured granulosal cells by treatment with FSH alone but not estrogen (Sudo et al., 

2007).  However, Aad et al. (2006) found that estrogen increased PAPP-A mRNA expression in 

the theca of large follicles.  Culturing equine chorionic gonadtropin (eCG)- primed rat 

granulosal cells with IGFBP-7 decreased aromatase expression and estrogen production in an 

IGF-independent manner (Tamura et al., 2007).   Hence, IGFBPs may have roles other than 

binding IGF. 
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Free IGF has been correlated with status of a follicle after deviation by numerous authors.  

But, the amount of free IGF is controlled by a number of factors.  An increase in free IGF could 

be the result in an increase the production of IGF or PAPP-A or a down-regulation of IGFBPs, 

specifically IGFBP-2 and -4 have been shown to vary with follicular status.  Therefore, the 

epression of genes for these proteins could be indicative of a follicles ability to assume 

dominance. 

D. Ovulation  

Ovulation is the process by which the follicle ruptures and the oocyte is released into the 

oviduct.  Traditionally ovulation has been viewed in two ways: as an inflammatory reaction and 

due to smooth muscle contraction (Espey, 1980).  Similar to an inflammatory response, the LH 

surge causes an increase in blood flow to the ovary within minutes (Lee and Novy, 1978).  Also, 

leukocytes accumulate in the ovulatory follicles in the hours after mating and before ovulation 

in the rabbit, an induced ovulator (Espey, 1974).  The newly arrived basophils release 

histamine, which increases vascular permeability and edema; macrophages and thrombocytes 

release prostaglandins and proteolytic enzymes, all resembling an inflammatory response 

(Espey, 1980). Control of prostaglandin secretion is unclear, but oxytocin (Bridges and Fortune, 

2007) and progesterone (Bridges, Komar, and Fortune, 2006) have been implicated.  Within the 

follicle, prostaglandins (Espey et al., 1981) and progerone (Rondell, 1974) cause thinning of the 

follicular wall prior to ovulation.   

Ovulation also can be seen as a result of ovarian contractility (Espey, 1978).  Although 

smooth muscle is found in the ovaries of rats (O'Shea, 1970), human beings (Okamura, 

Virutamasen, and Wright, 1972), and cows (Walles et al., 1975) a wide discrepancy exists in the 

presence, location, and amount of muscle tissue, in part because numerous authors simply used 
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the presence of cytoplasmic filaments as evidence for smooth muscle.   Many authors described 

expulsion of follicular contents as oozing from the follicle (Blandau, 1967; Motta and Van 

Blerkom, 1975), which would not indicate muscle contraction.  However, Pendergrass and 

Reber (1980) described the ovulation in hamsters as an eruption and concluded this to be 

indicative of muscle contraction.  Indeed, the morphology of smooth muscle in the basal 

hemisphere of a hamster follicle changed as the follicle ovulated (Martin and Talbot, 1981a), 

and ovulation and the associated changes in the smooth muscle morphology were blocked by 

inhibiting smooth muscle contraction (Martin and Talbot, 1981b).  These differences could be 

due to differences between species or differences in methods and interpretation of different 

laboratories, so the role of smooth muscle in ovulation remains unclear. 

E.  Atresia 

Atresia, the death of a follicle (Krysko et al., 2008), is the fate of most follicles (over 

99%; Baker, 1963).  In fact, the stockpile of germ cells is reduced from approximately one 

million before birth to about 300,000 at puberty.  Of those remaining, only 0.1% will ovulate 

(Matova and Cooley, 2001).  Atresia commonly occurs during one of two phases of follicular 

growth.  The first is during follicular formation.  Most follicles that undergo atresia do so before 

the primary stage.  Once on the course of growth, little atresia occurs between the primary and 

antral stages.  However, once follicles become gonadotropin-dependent, during the antral stage, 

atresia again starts to increase in frequency (reviewed in Richards, 1980). 

Atresia of antral follicles is typically linked to apoptosis of the granulosal cells.  

Apoptosis is programmed cell death and is characterized by internucleosomal DNA 

fragmentation, cell shrinkage, plasma membrane blebbing, and formation of apoptotic bodies.  
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Apoptosis is usually viewed as resulting from lack of growth/survival factors necessary for a 

particular cell type or the presence of pro-apoptotic factors (Matsuda-Minehata et al., 2006).   

The cell death ligand-receptor systems in mammals include Fas ligand (FasL) and Fas, 

tumor necrosis factor-α (TNF-α) and TNF-α receptors, and TNF-α-related apoptosis-inducing 

ligand (TRAIL) and TRAIL receptors (reviewed in Matsuda-Minehata et al., 2006).  Apoptosis 

is induced when these receptors trimerize with ligand.  Once trimerized, the intracellular death 

domain (DD) binds to the Fas-associated DD (FADD), which then binds two procapase-8 

molecules, forming the death-inducing signaling complex (DISC).  Dimerization of procaspase-

8 causes activation of capase 8 via auto-proteolytic cleavage.  Downstream caspases are then 

activated either directly (type I) or via mitochondrial perturbation (type II), each resulting in 

apoptosis (Chinnaiyan et al., 1995; Medema, et al., 1997; Scaffidi, et al., 1998).   

Expression of Fas correlated with the degree of apoptosis in human granulosal cells 

(Kondo et al., 1996).  Activation of Fas via Fas-activating antibody promotes apoptosis of 

granulosal cells and atresia in the rat (Sakamaki et al., 1997).  Apoptosis results when TNF-α 

binds to TNFR-1; however, when it binds to TNFR-2 it has survival/anti-apoptotic actions (Hsu, 

Xiong, and Goeddel, 1995; Prange-Kiel et al., 2001; Xiao, Asselin, and Tsang, 2002).  Finally, 

TRAIL and its receptor have been indicated to cause apoptosis in granulosal cells based on their 

levels of expression and activity (Inoue et al., 2003), yet its specific role is unknown. 

The Fas/FasL system is the most well-characterized apoptotic signaling pathway in 

follicles.  Based on evidence that FasL and Fas are present in healthy, non-atretic follicles 

(Inoue et al., 2006), factors blocking the actions of death receptors are purportedly essential for 

maintaining the health of non-atretic follicles (Matsuda-Minehata et al., 2006).  Cellular FADD-
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like interleukin-1 beta-converting enzyme (FLICE)-like inhibitory protein (cFLIP) is an 

inhibitor of Fas activity and has been found in porcine follicles (Goto et al., 2004) and was 

shown to be high in healthy follicles and to decrease during atresia (Matsuda-Minehata et al., 

2005).  Transfection of a human ovarian granulosal tumor cell line (Nishi et al., 2001) or a 

porcine derived line (Chedrese et. al., 1998) with pcFLIP reduced apoptosis of the cells 

compared to those treated with an empty vector. 

F. Ovulation Rate 

Ovulation rate, the first factor limiting litter size, is determined by complex interactions 

between survival and apoptotic mechanisms during emergence and selection.  In cattle, the 

cohort begins with 10-50 follicles during each wave, and superovulation protocols have 

demonstrated that all of these follicles are capable of ovulation (Breuel et al., 1991).  Despite 

this, the incidence of multiple ovulations is rare (Ginther et al., 2001).  The follicle that will be 

selected cannot be identified beforehand, making studies examining selection difficult.  

However, there are several phenomena through which insights can be gained. 

1. Compensatory Hypertrophy 

Sir John Hunter (1787) reported that removing one ovary from a gilt did not reduce the 

size of subsequent litters.  This experiment, which used only one animal, was the first to 

highlight a phenomenon now known as compensatory hypertrophy.  This ability for one ovary 

to compensate and maintain the ovulation rate of two ovaries has been demonstrated in the rat 

(Mandl and Zuckerman, 1951), hamster (Greenwald, 1961), pig (Brinkley, 1964) and ewe 

(Mallampati and Casida, 1970). In hamsters, ovulation rate did not change following unilateral 

ovariectomy (ULO) in 14 subsequent estrous cycles, but this compensation could be blocked by 

estradiol cyclopentylpropionate.  Conversely, progesterone was unable to block compensation, 
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but instead lengthened the estrous cycle.  Similarly, hemi-spayed rats showed full compensation 

for 10 cycles, before ovulation rate was reduced to six to eight ovulations per cycle (Chatterjee 

and Greenwald, 1972), which was still greater than the normal ovulation rate of one ovary.  

Similar lines of evidence led Lipschutz (1928) to formulate his “Law of Follicular Constancy,” 

which states, “[T]he number of ova entering into follicular development, the rhythm of 

follicular development and the degree which is attained by follicular development are constant 

and are controlled by somatic factors outside the ovary.” 

Removing one ovary on different days of the estrous cycle has been used to determine 

how late in the cycle compensation can occur.  Pigs compensated fully when ULO was 

performed on days 12, 14, and 16 of the estrous cycle, but ULO on day 16 of the cycle also 

lengthened the estrous cycle.    Performing ULO on day 18 in gilts led to partial compensation, 

and compensation at the next estrus was totally lost by day 19 (Coleman, Fleming, and Dailey, 

1984).  Findlay and Cumming (1977) performed ULOs on day 14 and 16 of the ovine estrous 

cycle during the breeding season.  Compensation was complete when ULO was performed on 

day 14 but incomplete when performed on day 16.  Taken together, these results (Findlay and 

Cumming, 1977, Coleman, Fleming, and Dailey, 1984) indicate that selection can occur late in 

the estrous cycle.  The follicular wave of origin of the ovulatory follicles was unaccounted for 

in either study, but it is assumed the results are due to selection of potentially atretic follicles.  

Following cauterization of all visible follicles on the porcine ovary, six days were required to 

produce ovulatory follicles (Dailey et al., 1976), which is longer than the interval from surgery 

to ovulation in Coleman’s study. 

After ULO, species that have single-ovulations compensate by continuing to ovulate one 

follicle each cycle.  Coupled with the fact that relatively large follicles can be tracked via 
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ultrasonography and the fact that follicular dynamics have been well characterized, cows make 

an ideal model to study compensation.  Because ULO is associated with higher concentrations 

of FSH and more similar sizes of the two largest follicles at estrus (Saiduddin, Rowe, and 

Casida, 1970), Merz (1977) tried to induce double ovulations using ULO on day 13 or 14 and 

injections of hCG at the onset of estrus.  The number of CL after the next estrus was not 

affected.  In contrast, ULO the day after ovulation resulted in an abnormally high number of 

cows ovulating multiple follicles (4 of 6) following the next natural luteolysis (Mohan and 

Rajamahendran, 1997).  Based on ultrasonographic data, they concluded that growth dynamics 

of the follicles or hormonal concentrations (FSH, LH, and progesterone) did not differ 

following ULO, but the wave from which the ovulatory follicles originated was not addressed. 

2. Prolific Sheep Strains 

Intensive screening and selection of Merino ewes in New Zealand led to development of 

a strain of highly prolific sheep called Booroola Merino (Piper and Bindon, 1982).  A genetic 

basis for this prolificacy quickly became apparent with increased ovulation rate being inherited 

in a Mendelian manner (Davis et al., 1988).  The effect on ovulation rate was additive with an 

increase in ovulation rate of 1.65 per copy of the mutated gene (Piper, Bindon, and Davis, 

1985).  The mutation is in the gene encoding bone morphogenetic protein (BMP) receptor 1B 

(Mulsant et al., 2001; Souza et al., 2001).   

A similar mechanism is responsible for the increased ovulation rates of Inverdale 

Romney ewes.   In this case the high prolificacy is due to one of two different point mutations in 

the gene encoding BMP 15 (Galloway et al., 2000).  Ewes heterozygous for this mutation 

(FecX1) gene have an increased ovulation rate (Davis et al., 1995).  However, homozygous 

carriers are infertile, apparent from their streak-like ovaries (Davis et al., 1992). 



 
 

19 
 

Therefore, both strains have defects in bone morphogenic protein (BMP)-15 signaling.  

The ligand is expressed only by the oocyte, but receptors are found on granulosal cells (Souza et 

al., 2002), where it has an anti-apoptotic effect (Hussein et al., 2005; Galloway et al., 2000).  

So, the reduced BMP-15 signaling results in fewer granulosal cells per follicle, as evidenced by 

the smaller follicles in these strains.  Yet coupled with the higher ovulation rate, the combined 

number of granulosal cells present in ovulatory follicles and the total ovarian estradiol secretion 

is similar to wildtype ewes (Baird et al., 1982).  This can be interpreted as follicles being 

continually selected until a threshold concentration of estrogen is reached.  If this interpretation 

is correct, then aromatase is key to determining a follicle’s fate. 

3. Mathematical Models 

A mathematical model was proposed to explain how each species accurately controls 

ovulation rate (Lacker, 1981).  This model relied on six basic assumptions for a system 

consisting of ovaries, a hypothalamic-ovarian (HPO) axis, and a circulatory system.  The 

assumptions are `  

1. The estrogen secretion rate of a model follicle is a measure of its 
maturity. 
2. The maturation rate of each model follicle at any time depends on 
its maturity and on the circulating concentrations of FSH, LH, and 
estrogen. 
3. All model follicles are assumed to inherit the same developmental 
program.  More precisely, any two follicles with the same maturity will 
develop at the same rate when exposed to the same circulating hormone 
concentrations. 
4. The circulating concentration of estrogen at any time is the sum of 
the contributions made by each follicle. 
5. The circulating estrogen concentration regulates the release of FSH 
and LH from the pituitary-hypothalamic axis.  The response of the 
pituitary-hypothalamus is fast on the time scale of follicle development. 
6. Estrogen, FSH, and LH are removed from the circulation at rates 
that are proportional to their concentration.  The half-life of a molecule of 
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estrogen, FSH, or LH in the circulation is short on the time scale of follicle 
development. 

Assumption two rests on the idea that a follicle’s growth rate depends on its current 

maturity and hormonal concentrations.  Because follicular maturity and hormonal milieu 

change, the growth or regression of follicles is constantly changing.  This idea can be best 

thought of as a maturation surface with growth or regression rate depicted at each combination 

of maturation and endocrine environment (Lacker et al., 1987).   

The final test for any mathematical model would be to run computer simulations, to 

judge how closely it can mimic physiological events.    By starting the program with follicles of 

random beginning maturities, surprisingly accurate results were obtained.  With the correct 

maturation table, one follicle was always allowed to continue growth, while all others regressed.  

While this scenario was very similar to events in single-ovulating species, the program could be 

adapted to allow a variable and increased number of follicles to proceed to ovulation (Lacker et 

al., 1987), mimicking litter-bearing species. 

Assumption one stated that estrogen secretion rate is a measure of follicular maturity.  

This assumption is valid, because aromatase expression increases as follicular maturity 

increases (Bao et al., 1997).  However, early in the follicular wave, the dominant inhibitor of 

FSH secretion is inhibin (Law, 1992).   While Lacker’s assumptions ignore this, it is not a major 

caveat.  Inhibin is less potent than estradiol and the effect due to inhibin is replaced as 

subordinate follicles undergo atresia.  In other words, this model uses estradiol as a marker of 

maturity, although it is not the only hormone regulating FSH.  

The fourth assumption stated that the concentration of estradiol in the serum is the sum 

of the contributions of each follicle.   While other sources of estradiol exist (adipose tissue and 

adrenal gland), their contributions are minute and relatively constant compared to changes 
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during follicular growth.  Thus, this assumption is valid, allowing concentration of estrogen to 

predict follicle development.    

While inhibin and estrogen are thought to be primarily responsible for control of FSH 

(Rocke and Ireland, 1981; Law, 1992), Lacker’s assumptions ignored the role of progesterone in 

regulating LH.  LH is released in a pusatile manner, and the frequency and amplitude of the 

pulses can be modified so as to affect the overall concentration.  Using ovariectomized ewes, 

Goodman and Karsch (1980) showed that LH pulse amplitude was limited by estradiol.  So, 

estradiol does have an effect on LH.  However, progesterone decreased pulse frequency, which 

was more important for regulating the overall concentration of LH.  Stumph et al. (1993) 

showed a similar response in ovariectomized cows, finding that estradiol reduced LH pulse 

frequency to a lesser degree than progesterone. 

The concentration of progesterone is high and does not change much during the 

gonadotropin-dependent growth of the ovulatory follicle; therefore, LH pulse frequency 

changes little.  In contrast, the concentration of progesterone during the first follicular wave is 

increasing but overall it is lower than during the ovulatory wave.  The lower concentration of 

progesterone results in a higher LH pulse frequency.  This difference between follicular waves 

can be viewed as each wave having its own developmental program.  During the first wave 

greater LH pulse frequency results in a higher incidence of two follicles becoming dominant, 

but during the ovulatory wave in a normal cycle, fewer LH pulses result in fewer cases of 

double dominance (Kulick et al., 2001). 

The second assumption explained that maturation rate depends on the maturity of a 

follicle and concentrations of gonadotropins.  As noted earlier in this review, FSH and LH 
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regulate gonadotropin-dependent follicular growth, and the concentrations of gonadotropins 

change during a follicular wave, therefore, this assumption has a solid physiologic foundation.  

The third assumption stated that all follicles of the cohort have the same developmental 

program.  Selection, then, requires only a slight advantage in follicular maturity.  While not 

strictly true, the selected follicle does have a temporal advantage over the subordinate follicles 

in cows (Ginther et al., 1999), which affects estrogen secretion.  Follicles are selected based on 

their ability to secret estrogen.

III. Statement of Problem 

Lacker (1981) and Ginther et al. (1999) concluded that selection of a follicle occurs due to 

a temporal advantage of that follicle, i.e. the follicle to be selected is more mature than the follicles 

that become subordinates.  However, the expression of many genes and proteins changes with time 

during follicular selection (Bao et al., 1997; Sudo et al., 2007).  Comparisons of selected and 

subordinate follicles indicate a role for steroidogenic enzymes, components of the IGF system, and 

gonadotropin receptors in selection.  However, the dominant follicle cannot be identified until after 

selection, so initial changes resulting in dominance remain elusive.  Therefore, the objective of this 

research was to use compensatory hypertrophy in a mono-ovulating species to identify a time in 

which a subordinate follicle can be induced to become dominant. 

IV.  Materials and Methods 

A. Animals 

1. Experiment 1 

Nulliparous Holstein and Ayrshire heifers (average age of 16 months) were managed as 

part of the West Virginia University dairy.  Animals were kept on an indoor paddock with outside 
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access for approximately 10 hours per day.  The heifers’ estrous cycles were synchronized with a 

single intramuscular injection of 25 mg of Lutalyse® (Pharmacia and Upjohn Company, NY, NY).  

Then animals were observed twice daily for estrus, which was designated as day 0.  Animals were 

assigned randomly either to have the largest follicle ablated (as described by Pieterse et al., 1988) 

on day 17 or 19 of the estrous cycle or to serve as non-ablated controls. 

Beginning on day 8, both ovaries were scanned daily with an Aloka SSD-900v scanner 

(Aloka Co., Wallingford, CT, USA) equipped with a 7.5 MHz transducer.  Rectal contents were 

emptied manually, and the transducer was inserted and rotated until an ovary was located.  The 

approximate maximal diameter of each follicle ≥4 mm and the CL were measured in two 

dimensions, using the internal calibers, and the average of these two measurements was recorded 

as the diameter.  The location and size of each follicle were used to track follicular growth. 

Ablation was carried out as described by Bergfelt, Lightfoot, and Adams (1994) using an 

Aloka-500 ultrasound (Aloka Co., Wallingford, CT, USA).  Caudal epidural anesthesia was 

induced with 5 ml of 2% lidocaine, and the vulva was cleaned with iodine.  Next, a convex-array 

transducer, fitted with a plastic handle equipped with a needle guide, was inserted into the vagina.  

While the transducer was in the area of the vaginal fornix, the free hand was inserted into the 

rectum and used to position the ovary against the vaginal wall.  The follicle to be ablated was 

positioned against the transducer face.  An 18- gauge, 4 inch needle was placed on the needle 

guide and advanced through the vaginal wall into the follicular antrum.  Echogenicity of the needle 

allowed for determination of location.  After the follicle was punctured, the needle was withdrawn 

and slight pressure was applied to the follicle to expel residual follicular fluid.  All procedures for 

this experiment were approved by the West Virginia University Institutional Animal Care and Use 

Committee (# 08-0102). 



 
 

24 
 

2. Experiment 2 

Mutiparous beef cows of mixed breeding were observed for estrus twice daily.  After 

displaying an estrous cycle of normal length (19-23 days) animals were assigned to be unilaterally 

ovariectomized on day 13 or 15 post estrus.  Ultrasonography was carried out as in experiment 1.  

Follicular size and location were determined by ultrasonography and recorded every other day 

from day 9 until ULO, which was carried out via culpotomy (Casida, 1959).  Caudal epidural 

anesthesia was induced with 5 ml of 2% lidocaine, and the caudal area was scrubbed.  A hand was 

inserted into the vagina, and an incision was made on the dorsal, cranial vaginal surface.  The 

ovary to be removed was brought into the vagina, and the hilus of the ovary was clamped with an 

ecrasure and the ovary removed.  If an ablation and/or enucleation needed to be carried out, the 

remaining ovary was brought into the vagina.  Ablations were carried out by inserting a needle into 

the vagina and puncturing the desired follicle.  Enucleations were done by applying manual 

pressure around the CL, and removing the CL by blunt dissection.  After surgery, the remaining 

ovary was monitored by ultrasonography every 12 hours for 12.5 days.   

When the ULO was performed, one ovary, the CL, and the two largest follicles were 

removed or destroyed, leaving only subordinate follicles on the in situ ovary.  The removed ovary 

was placed in saline and transported on ice to the laboratory.  Within 20 minutes of removal, 

follicles greater than 5 mm were dissected from the ovary, trimmed of excess tissue, and snap 

frozen. 

Blood samples were harvested hourly via jugular venipuncture from -1 hour until 12 hours 

after surgery and then every 12 hours for 12.5 days.  Samples were allowed to clot for 12 - 24 

hours at 4°C, centrifuged at 2,000X for 25 minutes, and serum was aspirated, aliquoted, and frozen 
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at -20°C.  All procedures were approved by the West Virginia University Institutional Animal 

Care and Use Committee (# 08-1201). 

B. Radioimmunoassay                                                                                                          

Concentrations of LH were measured by double antibody radioimmunoassay as previously 

described and validated (Goodman et al., 2004). Inter- and intra-assay coefficients of variation 

were 3.77% and 0.33% respectively. 

C. Tissue Processing and Real time RT-PCR 

Subordinate follicles were dissected from the ovary, trimmed of extra tissue, snap frozen, 

and stored at -80°C.  When follicles were removed from storage, the surface of the follicle was 

dipped in saline, and 30 seconds later the thecal cells and basal lamina were peeled from the frozen 

granulosal cells and follicular fluid.  Each cell type was centrifuged and the supernatant was 

discarded.  Total mRNA was isolated from granulosa cells using RNAqueous Micro® (Ambion, 

Applied Biosystems, Foster City, CA), and  from the thecal cells using TRIzol® (Life 

Technologies Carlsbad, California). 

Total RNA from each cell type was treated with DNase, and then cDNA was made using 

Superscript III reverse transcriptase (Invitrogen, CA).  Primer sequences were designed based on 

the corresponding cDNA sequences using Primer3 software (Table 1).  Quantitative PCR was 

performed for each cDNA sample in a Bio-Rad iCycler iQ Real-Time PCR Detection System 

using iQTM SYBR Green Supermix (Bio-Rad, Hercules, CA) in 25-µl reaction volumes 

containing each primer at 300 nM and a cDNA generated from 0.58 µg of total RNA. Threshold 

lines were adjusted to intersect amplification lines in the linear portion of the amplification curve, 
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and cycles to threshold (Ct) were recorded.  Relative change of mRNA expression was calculated 

by the ΔΔCT method (ABI Prism 770 sequence detection system, 2001).   

D. Statistical Analysis 

Data were analyzed using the Proc Mixed model of SAS®.  Ultrasonic data from 

experiment 1 were analyzed by orthogonal contrasts comparing control to treated groups and day-

17 to day-19 treated groups.  Ultrasonographic data from experiment 2 were analyzed by t-test.  

Real-time RT PCR data were analyzed using analysis of covariance (Yuan et al., 2006). 

V. Results 

A. Experiment 1 

Control animals had an estrous cycle with two (5 of 6, Figure 1) or three follicular waves (1 

of 6, Figure 2).  Ablation of the follicle, regardless of day, significantly increased the number of 

animals experiencing a third wave (10 of 10, examples in Figure 3 and 4, P < 0.05).  Day of 

emergence of the second wave was not different between treatments (P > 0.1). 

 Overall, the length of the estrous cycle was affected by treatment, with cycle length and 

the interval from emergence of the second wave to ovulation being 4 days longer in the ablated 

groups than controls (P < 0.01 and P < 0.001, respectively), but no differences were observed 

between ablated groups.  Characteristics of the ovulatory follicle (size and growth rate) did not 

differ between control and treated groups (Table 2). 

B. Experiment 2 

Characteristics (day of emergence of the second wave and size of the largest subordinate 

follicle) of the subordinate follicles on the ovary left in situ were not different between groups.  All 

animals undergoing surgery on day 13 ovulated a subordinate follicle that was present on the ovary 
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at the time of ULO (Figure 5).  However, none of the animals undergoing surgery on day 15 

rescued a subordinate follicle (figure 6, P < 0.01).   Growth rates of the ovulatory follicles did not 

differ.  Neither did the day of ovulation differ, as determined by the disappearance of the dominant 

follicle and subsequent formation of a CL in the same location (Table 3). 

Concentration of LH increased gradually over the first 12 hours after surgery (P= 0.01), but 

there was no effect of treatment and no interaction between treatment and time (Figure 7).  

Concentrations of LH in serum samples taken at 12 hour intervals for 12.5 days increased 

significantly with time (P< 0.05), due to the LH surge occurring 108 - 144 hours post-ULO.  

Treatment had no effect on concentrations of LH over the 12.5 days, and there was no interaction 

between time and treatment (Figure 9).  When analyzed relative to the time of surgery, time was 

significant (P<0.0001), but again there was no effect of treatment or an interaction of time and 

treatment (Figure 9).  No differences were detected in gene expression of any genes investigated in 

the theca (Table 4).  Unfortunately, due to technical difficulties real-time RT- PCR could not be 

performed on mRNA collected from granulosa.  

IV. Discussion 

Confirming earlier reports (Ginther et al., 1989; Ahmad et al., 1997) normal estrous cycles 

contained two or three waves of follicular growth.  The current research showed that a non-

selected follicle can be recovered consistently on day 13 post estrus; however, this ability was lost 

by day 15.  That the day of emergence of the second wave did not differ affirmed the conclusion 

that removal of the selected follicle induced emergence of a third wave.  Ultrasonic observations of 

the recovered follicles revealed similar patterns of growth as in normally selected follicles, so this 

model can be used to study follicular selection. 
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That early follicular growth does not require FSH support is well established (Edwards et 

al., 1977).  In the cow, this has been shown to end when a follicle reaches 4 mm in diameter (Gong 

et al., 1995).  At the same time, the recruited follicles are secreting inhibin (Wood, 1992), which 

suppresses FSH secretion (Gibbons et al., 1997).  As concentrations of FSH decline, follicles of the 

cohort begin to undergo atresia.  Eventually, the suppressive effects of inhibin from the entire 

cohort are replaced by estrogen from a single follicle, in single ovulating species. 

The transition to regulation by estrogen is not well understood, but there is evidence that 

estrogen starts the process.  Booroola Merino and Inverdale Romney ewes recruited more follicles 

into the cohort, yet total estrogen production of all ovulatory follicles is similar to wild-type ewes 

(Baird et al., 1982).  In cows, decreases in estrogen availability delayed deviation, purportedly 

until concentrations of estrogen were restored.  Lacker’s (1981) assumptions of identical 

developmental programs for all follicles and estrogen being a measure of maturity mean that the 

most mature follicle secretes the most estrogen, and Ginther has shown the selected follicle to be 

more mature, and thus it should have greater aromatase expression than the follicles that become 

subordinate (Ginther et al., 1999).   

Estrogen increases the sensitivity of emerging follicles to FSH (Richards, 1980).  This 

would allow the first follicle to secrete estrogen to survive the declining concentrations of FSH.  

Estrogen, a potent inhibitor of FSH secretion, would also prevent follicles less mature and less 

sensitive to FSH from continuing growth.  Most importantly, estrogen in combination with FSH 

increases transcription of PAPP-A (Sudo et al., 2007).  Increased PAPP-A would lead to increased 

free IGF, which would cause follicular dominance (Ginther et al., 2004), but the pathway is 

unclear.  IGF has three major intrafollicular actions (Figure 9).  IGF-I induces estrogen production 

(Silva and Price, 2002), which would amplify the effects of estrogen.  Secondly, IGF stimulates 
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angiogenesis, increasing blood flow to the follicle (Grado-Ahuir et al., 2009).  Increased blood 

flow would bring more growth factors to the follicle, including the declining FSH and bound IGF, 

which would be freed by PAPP-A.   IGF also contributes to development of LH receptors, though 

the signaling mechanism involved is unclear.  During this feedback between estrogen and IGF of 

the second or third successive dominant follicle of an estrous cycle, the CL normally regresses.  

Loss of progesterone allows estrogen to trigger the LH surge and ovulation proceeds.   

In an attempt to explain the loss of ability of a subordinate follicle to assume dominance by 

day 15, concentrations of LH were analyzed.  However, this did not reveal any differences 

between treatments.  The role of estrogen has been studied extensively as it is related to the control 

of FSH.  Following the loss of estrogen production, either after unilateral ovariectomy (Findlay 

and Cumming, 1977), ablation of all gonadotropin-dependent follicles (Bergfelt et al., 1994; 

Ginther et al. (2008), or ablation of the dominant follicle (Amiridis et al., 1999) the concentration 

of FSH consistently rises.  Thus, concentrations of FSH would have risen following removal of 

estrogen negative feedback in the present study.  

The current experimental design relied on the assumption that all subordinate follicles are 

identical and have comparable opportunity to become dominant.  This design has the advantage 

that the follicles used to determine ability to be rescued and the follicles analyzed were from the 

same animals and were, therefore, genetically identical and exposed to the same hormonal 

environment, limiting variation.  The idea is supported by the ability of any follicle to become 

dominant after ablation of all follicles larger than it (Ginther et al., 2001), by the finding that the 

selected follicle’s advantage is temporal in nature according to the experimental findings of 

Ginther et al. (1999) and the assumptions of Lacker’s mathematical model (1981). 
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Expression of genes controlling steroidogenesis, gonadotropin signaling, and follicular 

growth was determined in the follicle using real-time RT-RCR.  The expression of thecal cell 

genes did not differ.  Due to technical difficulties, real-time RT-PCR on mRNA isolated from 

granulosal cells could not be performed.  This is unfortunate because most models aimed at 

explaining follicular selection focus on interactions involving the granulosal cells.   

Many current medical and agricultural practices alter selection to increase the number of 

follicles that ovulate by artificially increasing the concentrations of FSH.  However, how this 

changes follicular dynamics in not understood.  Therefore, understanding follicular selection and 

identifying factors that are important for maximizing success are becoming increasingly important.  

The current model provides a method of studying follicular selection, so that knowledge obtained 

can be used to maximize offspring borne from super-ovulation protocols.  This should facilitate the 

spread of superior genetics and improve animal agriculture. 
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Gene Name Primer Sequence Product 
Size 

Accession 
Number 

GAPDH F-GTT GTC TCC TGC GAC TTC AAC 
R-CCT GTT GCT GTA GCC AAA TTC 

129 NM_001034034 

P450 Side Chain 
Cleavage 

F-TTA GGA ATT ACC CAG GCA TCC 
R-CCA TCT CGT ACA AGT GCC ATT 

144 NM_176644 

Insulin-Like 
Growth Factor 1 

F- CCT CTG CGG GGC TGA GTT GGT 
R- CGA CTT GGC GGG CTT GAG AGG 

196 NM_001077828 

Insulin-Like 
Growth Factor 
BP-2 

F- GAC AAG CAT GGC CTG TAC AAC 
R- AAG AGA TGA CAC TCG GGG TCT 

143 NM_174555 

Insulin-Like 
Growth Factor 
BP-4 

F- GAA GGG AAG AGG TCA GAG GAA 
R- CCT TTC ATC AGG CAC ATA 

105 NM_174557 

Pregnancy 
Associated 
Plasma Protein-A 

F- GAT GTT GAG CAG CCC TGT AAG 
R-AGA CTC AGG AAC GGG CTA 

144 XM_613511 

LH Receptor F- TGA CCA TGG CCC GTC TAA AA 
R- TAC TAC CCA AAG CAA TTT ATA 
GAT TCA ATG 

91 NM_174381 

Table 1. Genes’ name, primer sequence, product size and accession number of genes examined in 
thecal cells. 
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Endpoint Mean ± S.E. Contrasts (P value) 
Control 
(n=6) 

Day 17 
(n=5) 

Day 19 
(n=5) 

Control vs 
Treated 

Day 17 
vs  19 

Number of waves 2.16±0.16 2.80±0.20 3.00±0.0 0.0015 0.389 

Emergence of second wave (day) 11.00±0.85 10.40±0.40 11.20±0.74 0.8196 0.46 

Emergence of third wave (day) 
 

14 
(n = 1) 

17.80±0.85 19.90±0.83 NA 0.34 

Cycle length (days) 19.16±0.48 22.8± 0.92 23.40±0.68 0.0004 0.56 

Interval- emergence of second 
wave to ovulation (days) 

8.17±0.91 12.40±0.68 12.20±0.80 0.0010 0.87 

Interval- emergence of third 
wave to ovulation 

7 
(n = 1) 

5.50±0.29 4.40±0.24 NA 0.02 

Size of largest subordinate 
follicle at time of ablation or on 
day 18 in control animals (mm) 

5.1±0.6 5.6±0.3 6.0±0.5 0.23 0.58 

Size of ovulatory follicle at last 
ultrasound before ovulation* 

(mm) 

11.73±0.51 11.51±1.03 11.96±0.41 1.0 0.66 

Growth Rate (mm/day) 1.11± 0.15 1.18±0.29 1.50±0.17 0.38 0.32 

Table 2. Characteristics of estrous cycles and follicles following ablation of the dominant follicle. 
*Ovulation was deduced as disappearance of a large follicle at next ultrasonography. 
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Endpoint Means ±S.E. P value 
Day 13 Day 15 

Number of waves 2.00±0.00 3.00±0.00 < 0.05 

Emergence of second wave 
(day) 

11.00±0.41 11.20±0.49 0.77 

Cycle length (days) 22±0.00 22±0.45 0.41 
 

Interval- emergence of 
second wave to ovulation 

(days) 

9.67±0.58 7.00±0.45 0.01 

Size of Largest Subordinate 
Follicle Left In Situ (mm) 

5.41±0.40 5.79±0.51 0.59 

Size of Ovulatory Follicle 12 
hours before ovulation* 

(mm) 

12.0±0.4 11.8±0.9 0.89 
 

Growth Rate (mm/day) 1.66±0.19 1.99±0.28 0.39 

Table 3. Characteristics of estrous cycles and follicles following unilateral ovariectomy. *Ovulation was 
deduced as disappearance of a large follicle by next ultrasonography. 

 

 

 

  



 
 

34 
 

Gene Fold Difference 
(Day 15 relative to Day 13) 

P Value 

PAPP-A 4.07 0.94 

P450scc 2.34 0.62 

IGF-I 2.14 0.12 

IGF-BP 2 4.29 0.98 

IGF-BP 4 1.62 0.59 

LHR 3.31 0.89 

  Table 4. Results of real-time RT PCR from mRNA harvested from thecal cells. 
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Figures 

 

Figure 1. Example of two follicular waves in a control cow. *W represents the follicular wave and F represents the ranking of the 
follicle within each wave. 
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Figure 2. Example of three follicular waves in a control cow. *W represents the follicular wave and F represents the ranking of the 
follicle within each wave. 
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Figure 3. Example of induction of a third follicular wave following ablation of the dominant follicle on day 17. *W represents 
the follicular wave and F represents the ranking of the follicle within each wave.      Represents ablation. 
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Figure 4. Example of Induction of a third follicular wave following ablation of the dominant follicle on day 19. *W represents the 
follicular wave and F represents the ranking of the follicle within each wave.      Represents ablation. 
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Figure 5. Growth of subordinate follicles following unilateral ovariectomy on day 13. *W represents wave, FR is follicle 
remaining after ULO. 
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Figure 6. Growth of subordinate follicles following unilateral ovariectomy on day 15. *W represents wave, FR is follicle 
remaining after ULO. 
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Figure 7. Concentrations of LH for the first 12 hours after surgery. 
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Figure 8. Concentrations of LH for 300 hours post surgery. 
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Figure 9. Concentrations of LH relative to the time of the LH surge.
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