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ABSTRACT 
 
 

Fusion techniques for activity recognition using multi-camera 

networks 
 

Rahul Ratnakar Kavi 
 

 
Real-time automatic activity recognition is an important area of research in the fi 

of Computer Vision with plenty of applications in surveillance, gaming, entertainment and 
automobile safety. Because of advances in wireless networks and camera technologies, dis- 
tributed camera networks are becoming more prominent. Distributed camera networks offer 
complimentary views of scenes and hence are better suited for real-time surveillance appli- 
cations. They are robust to camera failures and in-complete fi    of views. 

 
In a camera network, fusing information from multiple cameras is an important problem, 

especially when one doesn’t have knowledge of subjects orientation with respect to the cam- 
era and when arrangement of cameras is not symmetric. The objective of this dissertation 
is to design a information fusion technique for camera networks and to apply them in the 
context of surveillance and safety applications (in coal-mines). 

 
In my fi contribution, I have developed and tested multi-camera action recognition 

framework. It doesn’t make assumptions of orientation information of the subject or sym- 
metric arrangement of the cameras (for training and deployment) and it is robust to camera 
failures. I have also developed a simple framework to recognize and handle longer, vari- 
able duration and inter-leaved actions in real-time. Computed feature vectors depend on 
locality-specific motion information extracted from spatio-temporal shape of a human sil- 
houette. This framework is independent of the underlying machine learning classification 
algorithm (supporting probabilistic classifiers). I have implemented this fusion framework 
on a portable multi-camera system and have shown that multi-view camera systems are 
superior to single camera systems in terms of accuracy and can be used for real-time compu- 
tation of feature vectors and classification. I have demonstrated this system in the context 
of camera network based surveillance applications. 

 
In my next contribution, I have applied deep learning based approaches in multi-camera 

network scenario. Deep Learning has made a big impact in the area of computer vision 
recently. Convolutional Neural Networks has made a significant impact on image recogni- 
tion problems. They are used for unsupervised feature learning of image/video samples. 
LSTMs can be used to model temporal sequences. Combination of these two techniques 
have been shown to model and understand videos with high accuracy. However, multi-view 
deep learning techniques have not been explored. In this work, I have addressed this research 
gap by applying multi view deep learning techniques. Convolutional Neural Networks with 
LSTMs (Long Short Term Memory) from a multi-view camera network perspective. I have 



 

 
demonstrated this in the context of driver activity tracking (in surface coal-mines) and in 
automated evaluation of console interfaces in coal-mine trucks. 
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Chapter 1 

Introduction 

Real time action recognition has wide applications in public surveillance, industrial safety, 

behavioral biometrics and entertainment. State of the art action recognition systems can 

increase the functionality of many of the applications when combined with other systems like 

face recognition, object tracking and anomalous activity detection in videos. In this chapter, 

a general overview of action recognition systems and their applications are discussed. It 

is followed by objective of the work. Contributions made by this work are discussed next. 

Finally, a general outline for the rest of the document of the document is presented in the 

end. 

 

1.1 Overview and Objectives 
 

Deployment of public camera surveillance systems is important for everyone. These pro- 

vide important information and help enforcing law and order to maintain peace and quiet 

in a community. However, these systems are manually operated by technicians. Managing 

multiple camera systems only with limited number of personnel is very tough and cumber- 

some task. It is in interest of the larger good to automate and scale these systems. Camera 

systems can be automated with use of Computer Vision and Machine Learning techniques. 

 

Progress in the area of machine learning and computer vision are closely intertwined with 

each other. Progress in one of these areas leads to better understanding and better results 
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in another area. Past two decades has seen lots of progress made in these two areas [1] [2] 

[3]. In the area of action recognition, computer vision research deals with the science behind 

constructing a representation of the image/video scene into a proper representation so that a 

machine can learn from these patterns and recognize what is going on in the scene. Similarly, 

machine learning research deals with building systems that can properly identify patterns 

in data and report any activity of interest. These two areas of research are closely related 

to each other. Many of the action recognition systems mentioned in [1] [2] [3] broadly fall 

into three categories namely Gesture Recognition Systems, Action Recognition Systems and 

Activity Recognition Systems. 

 

Combining data from multiple cameras is not a straight forward task. There are chal- 

lenges in synchronization, handling large data, etc. Through this work, I aim to explore 

the problem of action recognition using multiple-cameras with applications in surveillance. 

Also, I have explored application of newer (deep learning) based techniques in multi-camera 

action recognition systems with applications in safety. 

 

Distributed camera networks that provide multiple views of a scene are ideally suited for 

real-time activity recognition. Multiple camera systems which provide overlapping fi of 

view can overcome the problem of self occlusion, occlusion due to multiple subjects in a scene, 

camera failures, etc. However, deployments of multi-camera-based real-time action recogni- 

tion systems have thus far been inhibited because of several practical issues and restrictive 

assumptions that are typically made, such as the knowledge of a subjects orientation with 

respect to the cameras, computational overhead of distributed processing and the confor- 

mation of a network deployment during the testing phase to that of a training deployment. 

The first aim of this dissertation is to design a computationally lightweight framework that 

allows for relaxing some of these restrictive assumptions and enables recognition of human 

actions based on data from multiple cameras. 

 

Convolutional Neural Networks (ConvNets) are simple feed forward networks with automatic 

feature extraction capability using randomly initialized convolution fi ters. ConvNets have 
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been applied for pattern recognition applications with great success in recent years. They can 

be extended for classification in the temporal domain using recurrent neural networks. Long 

Short Term memory networks (LSTMs) are a particular type of recurrent neural networks 

that have become very popular in speech recognition, hand-writing recognition because they 

can learn mappings from sequential inputs to single or sequential outputs. Noting that the 

combination of ConvNets with LSTMs can be used to classify data in a temporal domain, 

recent studies have applied this idea successfully for video classification. The second aim of 

this dissertation is to design a multi-view fusion framework that can be easily integrated with 

deep neural network based activity recognition systems. 

 

1.2 Contributions 
 

This section briefl describes the contributions made by my work presented in [4] [5] [6] 

[7]. I have explored multiple camera action recognition systems based on traditional machine 

learning approaches with applications in Surveillance. I have also explored applications of 

these systems based on deep learning approaches in coal-mine safety. I have studied how to 

efficiently combine data from multiple cameras to make an effective decision as to what is 

going on in the scene. The following subsections describe contributions made through this 

work. 

 
1.2.1 Orientation independent score fusion technique 

 
When using information from multiple views for action recognition, the angle made by 

the subject with respect to a camera while performing an action is not known. Pose estima- 

tion of a human subject based on body posture itself is a hard problem, and it is, therefore, 

not practical to assume that information. View-invariant techniques, on the other hand, do 

not fully utilize the variations in multi-view information that is available for classification [8]. 

 

The question then arises as to how view-specific classifiers can be used without knowledge of 

subject orientation. To address this challenge, instead of feature-level fusion of multi-camera 

data, I use an output-level score-based fusion strategy to combine information from a multi- 
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view camera network for recognizing human actions [5]. By doing so, I’m able to use the 

knowledge of camera deployment at run-time and seamlessly fuse data without having to 

re-train classifiers and without compromising on accuracy. Moreover, its important to note 

the cameras acquiring data may not be deployed in any symmetry. Also, as opposed to using 

only the best-view in classification [9], the proposed design utilizes information from all avail- 

able views, yielding higher accuracy. The proposed score fusion technique is independent 

of the underlying view-specific classifier applied to generate scores from individual views. I 

evaluate the performance of the system using two diff t supervised-learning classifiers: 

Support Vector Machines and Linear Discriminant Analysis. 

 
1.2.2 Framework to handle variable length motion sequences 

 
It is not sufficient to evaluate the performance of an action recognition system assuming 

that each action is of a fi length and that each action occurs in isolation. In reality, hu- 

man activity action recognition involves classification of continuously streaming data from 

multiple views, which consists of an interleaved sequence of various human actions. Single 

or multi-layer sequential approaches, such as hidden Markov models (HMMs) [10] [11] [12], 

dynamic Bayesian networks (DBNs) [13] [14] or context-free grammars [15] [16] [17] [18], 

have been designed to address this challenge and to recognize longer activities and activities 

involving multiple subjects. 

 

However, sequential approaches for activity recognition have mainly been studied only in 

the context of single views and not for the case of multi-view camera networks without 

knowledge of subject orientation. Doing the same in a multi-camera video sensor network 

setting is much more challenging, because data is continuously streaming in from multiple 

sources, which have to be parsed in real-time. In this work, I describe how the multi-camera 

score fusion technique can be augmented to achieve real-time recognition of interleaved ac- 

tion sequences. I consider a human activity to be composed of individual unit actions that 

may each be of variable length and interleaved in a non-deterministic order. This fusion 

technique is then applied to streaming multi-view data to classify all unit actions in a given 
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sequence. 
 
 

1.2.3 Design of portable camera testbed and evaluation 
 

This activity recognition framework was designed to be deployed with an embedded, 

wireless video sensor network testbed. It was assembled using Logitech 9000 cameras and an 

Intel Atom 230 processor-based computing platform. This system is used to fi evaluate 

the performance of the score fusion strategy on individual unit actions and, subsequently, 

on interleaved action sequences. Then, I systematically evaluate the system in the presence 

of arbitrary subject orientation with respect to the cameras and under failures of diff t 

subsets of cameras. 

 

I only consider action sequences to be composed of an interleaved set of nine pre-trained 

actions along with some arbitrary actions for which the system is not pre-trained. Once 

trained, the system is also able to accurately recognize actions that belong to the class of 

trained actions, as well as reject actions that do not belong to the trained set. Specifically, I 

have developed an algorithm that builds on the fusion framework described in [5] to identify 

interleaved sequences of human actions. 

 
1.2.4 Evaluation of deep learning fusion idea 

 
Through the work presented in [7], I have contributed to designing a software framework 

to evaluate driver activities in a coal mine. The framework was based on deep learning 

based action recognition techniques. This software framework was based on extension of the 

work presented in [5] and [6]. I created a system (using off the shelf components) to collect, 

evaluate driver activities in coal-mine using a camera based activity recognition approach. 

I tested a Convnet-LSTM based driver action recognition system (originally based on [19]). 

This approach was chosen over traditional techniques (such as spatio-temporal approaches 

and supervised learning based recognition) due to rough environment conditions in a coal- 

mine (movement of camera and subjects). 
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Figure 1.1: Subject talking performing actions in front of cameras 
 

1.2.5 Multi-view fusion for deep learning 
 

Much of the traditional techniques for activity recognition have been based on super- 

vised feature learning techniques that exploit the spatio-temporal characteristics of an ac- 

tion for classification [1] [2] [3]. However, such techniques often rely on accurate foreground 

extraction techniques in order to be able to discern the characteristics of an activity be- 

ing performed. Foreground extraction is challenging in applications such as driver activity 

analysis inside surface mines because of vehicle motion in uneven terrain and camera motion. 

 

Moreover, camera deployment is challenging inside vehicles and the view obtained by each 

driver may change because of changes in height and seat position. Therefore, in this work, 

I explore the use of automatic feature learning techniques using deep neural networks for 

activity recognition. Moreover, I do not make any assumption regarding the length, start 

time, and end time of each action sequence being known before hand. Since LSTM inher- 

ently learn temporal relationships, the classifier can be directly applied to continuous video 

streams. 
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Figure 1.2: Picture of driver talking on a radio while looking outside 
 
 
 
 
 
 

 

 

 

Figure 1.3: Subject driving in the simulator 
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1.3   Dataset collection 
 

As a part of this work, I have assisted in collection of three datasets which are WVU 

Multi-View Action Recognition Dataset 1 [20], WVU Multi-View Action Recognition Dataset 

2 [21] and Multi-View Simulator Action dataset [7]. 

 

WVU Multi-View Action Recognition Dataset 1 ([20] [5]) is presented in Table 3.1. The 

dataset consists of data from 5 subjects. The subjects were standing in a central region 

equi-distant from all the cameras. The data was also collected with subject standing in 

diff t locations too. The relative orientations of the camera are assumed to be known. 

The dataset was collected at 20 fps with 640 x 480 resolution. 

 

WVU Multi-View Action Recognition Dataset 2 ([21] [6]) is presented in Table 3.2.  The 

dataset consists of data from 3 subjects. The subjects were standing in a region R (in a 

room of 50 feet x 50 feet in size). The relative orientations of the camera are assumed to 

be known. Subjects performed the actions in-place (region where they were standing). The 

dataset was collected at 20 fps with 960 x 720 resolution. 

 

Multi-View Simulator Action dataset [7] was collected with a driving simulator as shown 

in Figure 1.3. The list of actions performed by the subject is listed at Table 4.2. I have also 

collected a large dataset of 38,000 images from the coal-mine. A driver driving a coal-mine 

truck is shown in 1.2. Inside the mine trucks, data was collected on multiple subjects on 4 

most commonly performed activities such as driving, changing controls, talking on the radio 

and some other activity (any activity such as eating/drinking/sitting idle/looking outside, 

etc.). There was only a single camera collecting data at 15 Hz. An extra action of no-driver 

in the scene was added to the dataset to see if our system could identify if there were no 

drivers in the scene. Table 4.1 represents the list of actions performed by the drivers in the 

mine. There are over 38,000 images in the dataset performing 4 actions. 

 

In Multi-View Simulator Action dataset [7], there were 3 subjects driving in a simulator 
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performing 8 actions such as driving, changing controls, changing gears, looking left, looking 

right, picking a phone, talking on a phone. An action of no-driver was later added. Table 

4.2 represents the list of actions performed in the simulator. The data was collected on 3 

cameras with left view, side view and right view. The data was collected at 15 Hz. There are 

over 60,000 images in the simulator dataset. Each action was performed at least 30 times 

by each subject. These cameras were time synchronized with NTP protocol. For a given 

time-stamp, one can can obtain data from three cameras. 

 

1.4  Organization of rest of the dissertation 
 

This dissertation consists of 5 chapters. Chapter 2 discusses about background work 

done in the area of computer vision and machine learning. It then focuses on how this 

work is diff t from others. Chapter 3 talks about the challenges of multi-view action 

recognition systems from a surveillance perspective. It introduces the system architecture, 

data collection process for WVU Action Recognition Dataset 1 and 2. It also talks about 

the system architecture designed to collect multi-camera data, process it and report results 

in real-time. The results from [5] and [6] are discussed. Chapter 4 introduces the problem 

of action recognition in an uncontrolled environment (in a coal-mine). It also talks about 

the data collection process, system architecture and framework to recognize actions in real- 

time. It also talks about extension of the same technique in a controlled environment (in the 

driving simulator). The performance of the results are then discussed [7]. Finally, in chapter 

5, the guidelines for proposed future work is then discussed. 
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Chapter 2 

 
Background work and literature 

review 

 
In this chapter, I discuss existing research work done in the area of action recognition with 

application of computer vision, machine learning (Supervised Learning) and deep learning. 

These are fi discussed from a perspective of a single-camera system. Then, the background 

work done in the area of multi-camera systems is discussed. It is then followed by the recent 

progress in the area of unsupervised feature learning applied to computer vision and related 

areas. Finally, I discuss how this work diff tiates itself from others (in the related work 

section). 

 

2.1 Single-camera feature extraction and classification 

approaches 

In any pattern recognition system, it is important to have a good feature extraction sys- 

tem and a classification process in order properly identify patterns in the data. Performance 

of the feature extraction and classification algorithm together determine the performance of 

the system. Feature vector extraction is an important component of any action recognition 

system. One can extract features (class discriminating information) from the images and 

videos. 
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This data is then passed onto a classification algorithm in order to determine which ac- 

tion the series of images/videos correspond to. Over the years, many researchers have come 

up with various techniques to carefully extract meaningful and important features from the 

images/videos. Many of these approaches require domain knowledge of the data underneath. 

 

These feature vectors were designed by researchers who were domain experts in image & 

video processing. Once, a proper feature vector has been extracted from the video/image 

data, the classification algorithms such as support vector machines (SVM), random-forests 

or decision trees, principal component analysis (PCA), Linear Discriminant Analysis (LDA), 

Neural Networks can been applied for action recognition. Many of these have been covered 

in my previous work in [4]. These feature extraction techniques are highlighted as follows: 

 

 
1. Spatio-temporal features from video: 

Spatio-temporal features have been one of the most intuitive and commonly used fea- 

tures for action recognition. These methods consider an entire video or a partial subset 

of a series of frames to build a spatio-temporal sub-space. This representation can then 

be classified using a classification algorithm. Examples of spatio-temporal features can 

Motion History Image (MHI), Motion Energy Images (MEI). Bobick and Davis intro- 

duced these features to perform action recognition [22]. 

 

MHI and MEI can be obtained by background subtraction and simply setting a bi- 

nary threshold on each pixel. MHI and MEI try to capture information on pixel level 

and assign a weight to each pixel indicating how active that particular pixel was during 

sequence of frames. A series of images are thus reduced to a single image and magni- 

tude of the pixel value indicates recent activity or in-activity. This information can be 

used the classification techniques to classify the given activity/action. 

 

Background subtracted human silhouette also been used as a feature. Human silhou- 

ette can be obtained using simple background subtraction techniques [23]. A simple 
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thresholding with Foreground detection is employed to extract the human silhouette. 

PCA along with other classification techniques are applied to classify the action. 

 

Other techniques such as calculating histogram of gradient on the image have been 

popular as well. An image is divided into a mesh-grid with blocks of a certain size. 

For each block, gradient image gradient image is calculated and a histogram of gra- 

dients is obtained for the entire image. These histograms are considered to be features. 

 

[24] used a Kinect sensor to obtain foreground images of subjects. This information 

is mapped into a feature space of 3D Histogram of Optical Flow and Histogram of 

Oriented Gradients combined. Linear SVM was then applied to perform classification. 

[25] used 3D HOG descriptor to model a video sequence. 3D gradient orientation is 

computed for short snippets of video. Further processing is performed on these features 

and a linear SVM is applied in the end. 

 

Histogram of optical fl w (HOF)[26] can also be used as a feature vector, subject’s 

silhouette is obtained after foreground detection, optical fl w is computed for this im- 

age. After some post processing, these motion vectors are clustered using K-Means. 

This information compared using a similarity measure. Similar techniques are followed 

in [27], with use of SVM to detect unusual visual events in a video. 

 

 
2. Feature tracking over videos: 

Action recognition can also be performed by detecting and tracking interesting points. 

Kanade-Lucas-Tomasi Feature Tracker (KLT) is one of the popular feature trackers 

used in computer vision. [28] compared performance of space time interest points such 

as KLT against HOG, HOF, etc. [28] HOG, HOF, other features are extracted on mul- 

tiple scales. These features are computed in a space-time volume. All these features are 

concatenated with some post-processing and a non-linear SVM is used for classification 
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A technique has been employed that combines Spatio-Temporal Interest Points (STIP) 

and Histogram based technique [29]. STIP are extracted at multiple scales. A his- 

togram of visual words is constructed and local motion features are concatenated for 

the video and an SVM based classifier has been applied to perform action recognition. 

 

SIFT (Scale-Invariant Feature Transform) [30] based techniques have been applied 

for object recognition. These features were extended into the time domain to perform 

action recognition. [31] [32] For a given video, 3D SIFT features are computed and 

bag of words model is applied with a discriminative classifier (SVM) to perform action 

recognition. 

 

SURF (Speeded-Up Robust Features) [33] are features similar to 3d features that have 

been popular in the object recognition domain. These were extended into the temporal 

domain (over time) by [34]. These spatio-temporal interest points were tracked over 

time and SVM classification is applied. 

 

Though spatio-temporal features have been the most studied features in the area of 

action recognition, other approaches like pose-based action recognition exist as well. 

[35] Pose based approaches rely on identifying human pose from a video. [35] relies 

on identifying a human, detecting diff t parts of the human body (shoulder, legs, 

arms, torso, etc). Once these parts are identified, they are tracked over spatial and 

temporal domain and a dictionary is constructed. This dictionary is used to compute 

a histogram of the entire action. These histograms are classified using multiple binary 

SVMs. 

 

Disadvantages of these techniques are with movement of the camera, change in back- 

ground and limited number of interest points available, they affect the number of 

feature vectors and the quality of the feature vectors. Spatio-temporal features are 

usually good in diff tiating simple actions such as sitting, standing, etc. but are 

not good at long duration activity recognition. They are good at identifying anoma- 
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lies in the video data. However, it may fail if there are multiple subjects in a scene 

interacting in a complex manner. 

 

 
3. Graphical model based approaches: 

Hidden Markov Model based approaches have been popular in action recognition. 

HMM is a graphical model based technique. HMMs are composed of diff t states 

and in each state, an HMM outputs a series of symbols(observations). Transition in- 

between states and in-between observations are modelled using initial parameters of 

an HMM. An HMM can be trained using Baum-Welch algorithm to maximize these 

probabilities. 

 

Yamato [10] used HMMs to perform action recognition. Foreground is extracted and 

then these frames were divided into multiple grids. This is transformed into a fi 

size feature vector and mapped to a symbol/observation using a codebook (obtained 

during training). A single HMM is trained for a given action. This captures transition 

between the states and observation symbols. Maximum likely HMM is used to identify 

the most likely action performed. Many other diff t approaches to use HMMs for 

action recognition have been proposed [36] [37] [38]. Conditional Random fi are 

considered to be an extension of HMMs. But they are harder to train compared to 

HMMs [39]. 

 

Many of these techniques require manual intervention and tuning the parameters. 

HMM requires setting number of states, observed symbols, etc. These initial pa- 

rameters affect the performance, Spatio-Temporal features are sensitive to setting of 

threshold (of the low high pass fi to distinguish the background from foreground, 

camera movement, etc. Space-Time interest points are prone to failure in occlusion. 

Reliability of detection of interest points is also an issue. Movement of the camera also 

affects detection of space-time points (due to change in background and diffi y in 

distinguishing background from foreground). 
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2.2 Multi-camera feature extraction and classification 

approaches 

Multiple View action recognition is another area of action and activity recognition that 

receives less attention. Multiple view action recognition systems are based on the ideas of 

Single View action recognition. It has been shown that multiple views tend to improve per- 

formance of the action recognition systems in certain cases[5] [6]. An overview of multiple 

view action recognition techniques has been studied comparing diff t techniques on (IX- 

MAS) and i3DPost Multi-View Human Action and Interaction dataset [40]. 

 

3D techniques mainly include obtaining 3D motion from diff t cameras. 3D motion 

can also be constructed from multiple 2D cameras arranged in a certain manner. These 2D 

feature vectors are transformed into a 3D space. Transforming feature vectors into a 3D 

space reduces the problem of self-occlusion, view-point dependence. Spatio-Temporal fea- 

tures are then obtained to classify the feature vectors. Usually these 3D feature vectors are 

computationally intensive to compute. [41] extracted data from multiple views for diff t 

subjects and constructed feature vectors in 3D space. 

 

These feature vectors were used for tracking and other purposes. [42] used 3D body pose and 

HOG features along with an SVM to classify simple actions performed by hands. [43] used 

3D features obtained by multiple cameras to avoid problems such as viewpoint invariance 

and self-occlusion. Dynamic Time Warping and template matching were used to perform 

classification. [44] use multiple cameras to generate view point independence with MHV 

(Motion History Volume) and MEI (Motion Energy Images) extended to 3D. 

 

2D approaches mainly include obtaining spatio-temporal features from multiple cameras 

and fusing the results using various techniques. Popular classification techniques used are 

PCA, HMM, LDA, SVM, etc. Optical Flow feature stacking is also performed sometimes. 

HMM and Dynamic Time Warping are used to obtain frame-length independent feature 

vector classification. 2D techniques [45] used multiple cameras to recognition actions such 
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as walking, jumping, etc. 
 

 
The localized binary posture masks were generated and LDA was used to perform clas- 

sification. [46] used multiple view data (from iXMAS multi-view dataset) to generate bag 

of visual-words representation of feature vectors. Results from diff t cameras are fused 

using a Locally Weighted Ensemble technique [47]. [48] applied optical fl w and silhouette 

extraction along with HMMs to perform action classification. First foreground was esti- 

mated; region of interest was obtained. Size of this image was then normalized and PCA 

compression was applied. These images were used to obtain optical fl w features and this 

data was concatenated with PCA compressed image data. HMM was then used to perform 

action classification. 

 

3D approaches follow feature vector transformation to achieve a global representation of 

the action performed. 2D approaches rely on feature vector fusion or late fusion of scores to 

achieve a consensus among diff t views to perform classification. [9] used 3 approaches 

to feature vector fusion, i.e. Best View Fusion, Combined View Fusion, Mixed View Fusion. 

Best View Fusion technique relies on identifying the best performing camera (determined by 

quality of the spatio-temporal features detected in the camera) and using it for classification. 

 

Combined View Fusion technique fuses data from multiple cameras and performs classi- 

fi using SVM. Mixed View Fusion technique involves obtaining Bag of Features (BOF) 

from diff t cameras. Bag of Features for short snippets of video is obtained from all 

views. If spatio-temporal features from a certain view is above a threshold, only then it gets 

included in the BOF. These BOF features are used for classification. 

 

Multiple View Action recognition problem is comparable to classification in Multi-Sensor 

problems. [49] used camera data (such as facial features, gestures) and pressure sensors to 

estimate interest in a puzzle solving problem. [50] used multi-modal data with sensors and 

camera to determine actions performed by a human. 
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2.3 Automatic feature extraction and classification ap- 

proaches 

Unsupervised feature learning is class of algorithms that can directly operate on the data 

and pick most important features in the data. These selected/transformed features can be 

used to properly identify the classes of data. As the name suggests, these techniques need 

no prior labelled data to extract features from the data (unlike LDA is a supervised classifi- 

cation and dimensionality reduction technique). 

 

Dimensionality reduction problem is closely related to the problem of unsupervised feature 

learning. By reducing dimensionality of the data, one is essentially removing the redundant 

data and only the data that seems important is retained (which is determined using an 

objective which varies across diff t algorithms). This is performed in an unsupervised 

manner. 

 

The most common techniques[51] are PCA (principal component analysis), ICA (indepen- 

dent component analysis), vector quantization, Auto-Encoders (neural networks) [52]. Re- 

stricted Boltzman Machine[53] can be considered as generative Auto-encoders (they have 

diff     t initial parameters, diff     t loss functions, etc.). 

 

PCA is computed on given data by subtracting the mean, calculating the covariance ma- 

trix and then calculating Eigen values and vectors for the matrix. The Eigen vectors are 

arranged in descending order (based on their corresponding Eigen values). A dot product 

of Eigen vectors and the original data will give us data with reduced dimensionality. The 

number of Eigen vectors to retain can be tuned manually (depending on the data). PCA 

can be applied on any data. PCA has been applied with HOG [54], other spatio-temporal 

features such as Motion History Volume (MHV) [55]. It can also be combined with other 
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classification techniques such as SVM, Random Forest, etc. 
 

 
Autoencoder is a simple neural network that can be used to reduce the dimensions. For 

a given input (image), auto-encoder learn a hidden representation (hidden layer) and tries 

to replicate the given input in the output layer. By learning this hidden representation 

(with some constraints in sparsity) the auto-encoder learns most important features of the 

image. An autoencoder is trained with back-propagation. [56] used a convolutional sparse 

autoencoder to perform action recognition on the KTH dataset. 

 

Convolutional Neural Networks have obtained state of the art results on object recogni- 

tion [57] [58] [59]. They can be naturally extended into the temporal domain using various 

techniques. Convolution Neural Nets have received a lot of attention recently [60] [61] [62] 

in video classification. Convolutional Neural Networks are simple feed forward network with 

automatic feature extraction (in initial layers). The features are extracted automatically by 

convolving the image with a convolution fi These convolution fi are initialized by 

random number generators. 

 

A single operation in a convent consists of applying a convolution fi , dimensionality 

reduction (by performing max/average-pooling) and its followed by a non-linear transfor- 

mation (Tan-H or a Sigmoid function). In each layer of the network, these operations are 

performed and in the fi al layers, they are connected to a simple feed forward network to 

perform classification. [63] used stacked convolutional autoencoders for feature extraction 

in object recognition. [64] used autoencoders for action recognition on the KTH datasets[65]. 

 

[66] [19] were one of the fi to use LSTM with a convolutional neural network to perform 

video classification. LSTMs can be used to model temporal data using a neural network. 

LSTMs have been popular in the Natural Language Processing area [19] [67] [68]. For the 

past few years they have been applied along with convolutional neural networks [66] [19] to 

perform video classification. More recently in [69] [70] [71] people have explore combination 

of convnet and LSTMs in action recognition. In this work, I study how convolutional neural 
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2.4 Related work 
 

This section describes and compares how my research work is diff t from others contri- 

bution in the similar area. Traditional approaches and techniques used in the fi of action 

recognition are mentioned fi Then, the applicability of these existing techniques in the 

area of public surveillance with multi-camera networks are then discussed. Then extension 

of these approaches for use in driving simulators and coal-mines are discussed next. 

 

The most popular techniques in single view action recognition are non-parametric techniques 

such as computing spatio-temporal features (such as HOG, HOF, Motion Energy Image, Mo- 

tion History Images) and performing classification using SVM, Decision Trees, etc. Multiple 

view action recognition is the lesser studied area of action recognition but holds a lot of 

promise due to applicability in public surveillance (multiple camera surveillance networks). 

Multiple view action recognition techniques rely on similar feature vectors computed in single 

view action recognition but are transformed (into 3D) or fused to perform action recognition. 

 

There are many way to combine data or information from multiple cameras to make an 

effective decision [9]. One can fuse the data from multiple cameras and design a classifi- 

cation approach. This is also known as feature vector fusion. One can combine data by 

considering decisions made by multiple cameras. This is otherwise known as majority vot- 

ing. One can also construct a complex feature vector (3D feature vector) from 2D data and 

make a decision to classify the action [42] [43] [44]. 

 

Once a frame is classified as an action, one can take most frequently classified action for 

the given video stream by diff t cameras and take a frequently classified action as the fi 

nal action. There is one means of combining information which is score fusion. Each camera 

reports an action with an associated score (probability). Scores from diff t cameras are 



Rahul R. Kavi Chapter 2. Background work and literature review 20 
 

 

combined to make an effective decision. I have explored score fusion schemes from multi- 

camera surveillance and safety perspective [6][7][5]. 

 

I worked on Multi-view action recognition from a camera surveillance perspective [5] [6] 

[4] and contributed to two datasets as a part of this work [20] [21]. Through this work, I 

have shown that overlapping views of an scene can aid in better action recognition accuracy. 

I have described a feature vector (Locally weighted Motion Energy Images or LMEI) that 

aims to capture motion of a human silhouette. The data from multiple views is captured 

and LMEI feature vectors are extracted. 

 

The subject is seen performing actions in center of the room (50 feet x 50 feet in dimensions). 

I described a framework to combined data from multiple views using view-specifi classifiers 

and simple score fusion. Advantages of using view specific classifiers and score fusion is 

discussed in [5] and [6]. Only relative orientations of the cameras need to be known and 

subject can face any camera before performing an action (known). 

 

I have also described a online streaming action recognition framework with [6]. This frame- 

work doesn’t have to know the length of the video stream before processing (as this uses 

threshold for each action to validate actions). This is often overlooked in many camera 

based action recognition systems. The framework designed in [6] [5] can be modifi to work 

with any machine learning classification algorithm that supports score (probability) based 

classification (like Naive Bayes, Support Vector Machines, LDA, PCA, etc. ). 

 

There exists limited research in application of action recognition in tough environments 

such as heavy industrial vehicles in mines [72]. Driver attentiveness is a major problem in 

coal mines. This problem can be viewed from an activity recognition problem perspective. I 

developed an activity recognition system for drivers in a coal mine operating heavy vehicles. 

Traditional approaches such as obtaining motion history images (MHI) and motion energy 

images (MEI) are not going to work as the drivers constantly drive on un-even surfaces and 

un-paved roads in the coal mines. 
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This results in a bad MHI and MEI feature vector. Optical fl w techniques are not go- 

ing to work either as the camera position though stationary, is subject to movement along 

with the truck. This is very much unlike driving on a highway. Drivers driving on highways 

drive on good roads compared to the drivers driving in the mines. So a diff   t approach 

is required to classify driver’s actions in the mine. put a picture of the mine 

 

There exits lots of research in the area of drowsiness detection [73] [72] [74] [75] based on 

computer vision. These techniques involve eye tracking and identifying [76] how frequently 

the driver is blinking and calculating the PERCLOS rate (which is an algorithm to determine 

driver’s drowsiness level). 

 

These techniques aren’t directly applicable in a high vibration environment (like heavy vehi- 

cles in a coal mine). These techniques have been frequently tested on a highway (usually in 

a personal vehicle) where the driver is constantly looking straight, following traffic rules and 

driving safely. For these techniques to work, the driver has to look straight and they will 

not work when the driver wears wears eye shades or cooling glasses. A diff t approach is 

required in such cases. 

 

This problem is approached with an action recognition perspective and use a convolutional 

neural network coupled with LSTMs to handle spatio-temporal information. This technique 

is effective as one doesn’t need to compute MHI/MEI/Optical Flow at each frame. Con- 

volutional Neural Network is used to identify important features in the image. LSTM is 

used to handle the temporal information over time. I have achieved 85% to 95% accuracy in 

identifying actions such as changing controls, driving, talking on the phone or radio, some 

other activity (and no-driver present). 

 

Many techniques[24] [26] [77][6][5] often rely on obtaining foreground extraction and track- 

ing the foreground over time using spatio-temporal features. However due to the nature 

of the problem of activity recognition in mine driving vehicles, these techniques are not 
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directly applicable. The drivers drive in various illuminating conditions (away from the 

sun in a shadow, or drive facing the sun, etc.). Background subtraction is highly sensitive 

to change in illumination. Since, one relies on convolutions to detect features in the image, 

this approach is not affected by these changes. This feature extraction technique isn’t drasti- 

cally affected by slight change in illumination (and no background subtraction is performed). 

 

[62] relies on a 3D convolutional layers to model the entire video. I have instead chosen 

to operate a series of 2D convolutional layers on frame by frame basis. 2D convolutions 

are computationally less intensive and they can be improved in speed with faster FFT base 

convolutions [78] if needed. 

 

Deep Learning techniques have been popular in the recent past [60] [61] [62]. A neural 

network is capable of identifying the most important features in an image and automatically 

learning from it. [79] has shown that automatic feature extraction with a convolutional 

neural network is better than hand-designed features. These techniques have been applied 

successfully in action recognition, face recognition, speech recognition, etc. However, these 

techniques haven’t been studied in-depth in a multiple view scenario. I study these tech- 

niques in driving simulator. Data was collected in a driving simulator at WVU. Three 

subjects participated in this test. The drivers drove on a highway in the simulator environ- 

ment. 

 

The drivers performed actions such as driving, operating controls, changing gear, looking 

left, looking right, talking on a phone (and no-driver present). Cameras were setup in 3 

places, one of the left, one on the right and one on the side (diagonally). Data was collected 

at 15 frames per second. I have used a similar technique explored in [66]. I used 3-layer 

convolutional neural network followed by a single LSTM layer followed by a SoftMax re- 

gression layer. I call this DeepSimNet. Multiple layers of the convolutional neural network 

act as hierarchical feature extractors. First layer extracts feature from the input (image), 

successive layers’ extract features from features. This cycle goes on until the last layer where 

a SoftMax Regression or a linear classifier is employed to perform classification. 
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The data collected in the mine was using a single camera with IR illumination deployed 

on 3 trucks. The data was sampled at 15 frames per second. A similar network has been 

tested on the data collected in the mine. This network has 3 convolutional layers followed 

by 2 LSTM layers. The last layer is a fully collected SoftMax regression layer. I refer to this 

network as DeepMineNet. 

 

This technique was explored in the mine and similar technique based on similar convolu- 

tional neural network architecture was used in the simulator. This framework processes data 

at frame by frame level using the convolutional layers (acting as the feature detectors). The 

network remembers the past using the LSTM layer. This layer can be trained to remember 

and forget about the past. Whenever a new action occurs, the network can be made to 

forget. The fi layer of the network is a linear SoftMax regression layer. It outputs prob- 

abilities of each action class. These probabilities can be used across diff  t views to come 

to conclusion on what action was performed in the scene. I follow a score fusion technique 

to fuse the scores across diff     t views. 

 

I also explore feature vector fusion techniques. One can also use the DeepSimNet as a feature 

extractor. Data is passed through multiple layers of the convent and each view/camera has 

its own classifier. The fi softmax layer from each view in the DeepSimNet is removed and 

features obtained until then are fused across the views. Processed data from diff t views 

are fused and a SVM and Softmax regression layer is trained to classify the actions. Even 

though each individual view classifier is itself capable of handling classification of variable 

length videos, one has to normalize the length of the video when fusing the feature vector 

itself (not required when performing score fusion). 
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Chapter 3 

 
View agnostic fusion techniques for 

multi-view camera networks 

 
In this chapter, I discuss the challenges and approaches to solving problem of action 

recognition in multi-camera systems applied to surveillance. First, I discuss the system 

setup, data collection process. Then, the list of diff t classification algorithms used are 

explained along with feature vector extraction using LMEI (Locally weighted Motion Energy 

Images) and HOG (Histogram Of Gradients). 

 

It is then followed by the score fusion strategy. I also take a look at the results at the 

end. In the related work section, I have presented reasons why score based techniques are 

advantageous over feature vector fusion and decision fusion approaches in multi-view cam- 

era action recognition systems. Here, I present a framework to do action recognition with 

unknown orientation using score based techniques. I also present a framework to recognize 

actions when length of test actions is unknown [4] [5] [6]. 

 

3.1 System Setup and Model description 
 

I have a camera network of 8 cameras setup in a region R covering an area of 50 feet 

x 50 feet [4] [5] [6]. The cameras are installed on tripod stands at a height of 8 feet about 

the ground. There is only one subject in the scene. The subject is standing in the region 
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Figure 3.1: The camera setup with the subject standing at Z 

 

R (roughly at the center). The subject is standing in the center during the training phase. 

Though this is not necessary in the testing phase, if we apply some kind of size (binary 

silhouette) normalization as presented in [5]. The cameras are referred using the notation Ci 

(1 ≤ i ≤ 8). The data collection was performed using Logitech 9000 USB cameras in which 

the data was sampled around 15 Hz (or 15 fps). The image resolution is around 960 x 720 

pixels. 

The camera network has Nc cameras (where c = 8 ). We can setup any number of 

cameras setup in the region R as long as they provide an overlapping view in a circular 

manner. I assume the relative orientations of the cameras are known during testing phase. 

The camera setup needs to be symmetric in the training phase and during testing, it may not 

have to conform to the exact positions during the training phase. This is shown in fi     3.1. 

The subject performs actions or sequence of actions in the region R. These actions are 

referred to as unit-actions. Unit-actions are small duration actions that are atomic (doesn’t 

include any other actions). They are performed in short duration of time and after each ac- 
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Figure 3.2: The camera deployment and view regions 
 

tion, there is a small pause (where the subject doesn’t perform any action and stands still). 

The action performed are waving 1 arm, waving 2 arms, clapping hands, jogging, punching, 

kicking, bending, bowling, jumping in place. These actions are mentioned in the table 3.2. 

I have used the notation {A} to refer to the unit action set performed by 3 diff t sub- 

jects in the region R. We have Na = 9 unique actions performed by the subjects. These 

unit-actions are separated by short pauses. An unit action only consists of ordered series of 

frames performed by the subject. The subject stands at location Z as shown in fi       3.1 

and fi       3.2. 

The actions performed by the subject are roughly similar duration with no widely varying 

actions. These actions are performed at roughly same place by diff t subjects in the re- 

gion R [4] [5] [6]. The subject may directly face a camera or a region in between two cameras 

while performing the action. 

Once, the actions are performed, the action recognition framework is trained and actions 

C 
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Figure 3.3: The view angle with subject standing at Z 

 

are performed by the subjects. The system is designed in such a way that, it tries to avoid 

misclassifi of the pause between two actions as belonging to one of the actions per- 

formed by the subject (in the region R) which belongs to set {A}. 

Actions are performed at location Z. The angle made by the axis passing through the 

camera along with the direct in which the subject is performing the action is defi as the 

camera view-angle. The view-angle is roughly 0o-30o. We assume the view-angle is measure 

clock-wise from the line in which the subject is facing and the optical axis of the camera. 

This is clearly shown in the fi       3.3. 

For this experiment, we have the view-regions mentioned in the fi      3.2.  The subject 

is facing the region between ZB and ZA along the camera C1. The camera Ci will provide 

view Vj if the view-angle Ci with respect to action being performed belongs to view Vj . 

Our dataset consists of 40 unit actions. These actions were split into training and test- 

ing sets randomly. The unit-actions were separated with a time pause of 2 - 3 seconds. The 

frames across all the Nc = 8 cameras were synchronized using NTP protocol. For a given 

timestamp, we can obtain the data from all the cameras. Such actions may not perfectly 

refer to the exact frame, but the similar time instances. This way, we can use the data from 

B 



Z 
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across diff t cameras. 
 
 
 
 

 
 

Action ID Action Name  

 
Event 1 Standing Still  

Event 2 Nodding head  

Event 3 Clapping  

Event 4 Waving 1 hand  

Event 5 Waving 2 hands  

Event 6 Punching  

Event 7 Jogging  

Event 8 Jumping Jack  

Event 9 Kicking  

Event 10 Picking  

Event 11 Throwing  

Event 12 Bowling  

 
Table 3.1: List of Actions in WVU Multi-View Action Recognition Dataset 1 

 
 
 
 
 

3.2 Feature vector computation and extraction 
 

In this section, I describe the feature vectors, their construction and extraction tech- 

niques. I have chosen a computationally simple feature vector and one that is very descriptive 

of the unit-action frames it represents. 

 
3.2.1 Localized Motion Energy Images(LMEI) 

 
Localized Motion Energy Images(LMEI) are compressed feature vector representation 

based on Motion Energy Images (MEI) [22]. We can construct Localized Motion Energy 
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Action ID Action Name  

 
Event 1 Clapping hands  

Event 2 Waving one arm  

Event 3 Waving two arms  

Event 4 Punching  

Event 5 Jogging in place  

Event 6 Jumping in place  

Event 7 Kicking  

Event 8 Bending  

Event 9 Bowling  

 

Table 3.2: List of Actions in WVU Multi-View Action Recognition Dataset 2 
 

Images (LMEI) by obtaining MEI images and performing frame differentiation on them. 

The series of frames are the summed up to obtain a compressed representation of the image 

[4] [5] [6]. I have assumed static backgrounds and only one subject performing the actions. 

This makes it easy to obtain LMEI feature vectors. 

 

Once a foreground image of the subject is obtained, the silhouette is surrounded using a 

bounding box and rest of the image is ignored. We perform this for the series of F consecu- 

tive frames in the unit-action performed by the subject [4] [5] [6]. Let us assume that pi(t) 

represents the pixel i in frame t and 1 ≤ t ≤ F with p ∈ {0, 1}. The LMEI can be then 

constructed over a set of frames using the following formula described in 3.1. 

 
x=F 

EF  = 
\
(pi(x) − pi(x − 1)) (3.1) 

x=2 

 
 

In a LMEI image, the magnitude of each pixel represents the frequency of activity that has 

taken place (in that specific pixel). Once an LMEI image is obtained, we divide the image 

in 7x 7 grid. The sum of pixels in each grid is obtained and this is represented as a 1 x 

49 length feature vector. In this feature vector, unit value represents the sum of pixels in 
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Figure 3.4: The background subtracted silhouette of the subject performing waving 1 hand 
action. 

 

that region of the grid. I believe this representation is descriptive enough to diff tiate 

diff t actions being performed in the region R. This is performed for all the unit actions 

performed by the subjects. 

 
 
 
 

3.2.2 HOG (Histogram of Gradients) 
 

In a similar procedure mentioned above, we construct the HOG (Histogram of Gradients) 

representation of the MEI images. This helps us to evaluate the performance of the LMEI 

feature vector representation. HOG was fi  introduced in CVPR 2005 [80]. It is still one 

of the popular ways to detect humans and represent actions [54] [81] [82] [83]. 

 

The HOG representation is constructed using a contrast normalized image. The image 

is fi contrast normalized and a gradient image is obtained. The image is then divided into 

small cells of certain known size. A 1-D histogram of the gradient directions is obtained. 

These cells are then grouped into rectangular shaped blocks (of certain number of blocks). 

The feature vector is then constructed based on these blocks. 

 

For a given video or a unit-action of F consecutive frames, we can construct LMEI feature 

vector and HOG of MEI feature representation. LMEI is trained with supervised learning 

approach called Linear Discriminant Analysis (LDA). HOG-MEI is trained using Support 

Vector Machines. A detailed explanation of LDA and SVM is mentioned in the next section. 



Rahul R. Kavi Chapter 3.  View agnostic fusion techniques for multi-view camera networks 31 
 

 
 
 
 
 

3.3 classification  algorithms 
 

This section talks about the diff t classification strategies and algorithms that have 

been used in this work [4] [5] [6]. I have used LDA to classify the LMEI feature vector and 

SVM to classify the HOG feature vector. 

 
 
 

3.3.1 Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) ( previously used in [4] [5] [6]) is a popular dimen- 

sionality reduction approach. LDA can be used to project data in higher dimensions to data 

in lower dimensions. If we have a 2-class classification problem, the data can be projected 

into 1 dimension using LDA. Higher class or N -class classification problems can be pro- 

jected into N − 1 dimensions. Once, the data is projected into lower dimensions, we can use 

eucledian distance based approaches to classify data. 

 

Assuming we have N class classification problem, we fi obtain the Sb in-between class 

scatter or inter-class scatter. Then, we obtain Sw within-class scatter. Once these two ma- 

trices are obtained, we can use this information to try to clearly separate the data. For 

the data to be clearly diff tiable, we need Sb/Sw to be large. The Eigen vectors and 

Eigen values of Sw
−1 Sb are obtained and arranged in descending order. The weight vector 

w is obtained (using fi N-1 Eigen vectors). This is used to project the data into lower 

dimensions. The projected vector y = wT x is obtained. This projected vector is supposed 

to be a better diff     tiable from other class data. 

 
 
Even though, we are dealing with multi-class classification problem (Na = 9actions), we 

train a 2-class LDA. We train our LDA classifier using one vs rest strategy. This way, we 

obtain Na = 9 LDA classifiers for each view. Let the LDA classifier for action A be repre- 

sented as LDAa. LDAa classifier has a positive cluster (which represents action A) and a 
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negative cluster (which represents other Na − 1 actions). The fi     3.5 shows action (waving 

one hand) on left hand side (positive cluster) and rest of the actions on the right hand side 

(negative hand cluster). 

 

We train a 2-class LDA classifier (N=2 ) using the procedure described as follows in al- 

gorithm 1. 

 
Step 1: Calculate in-between class scatter Sb; 

Step 2: Calculate within-class scatter Sw ; 

Step 3: Calculate Eigen vectors of (Sw
−1 Sb) and arrange vectors in descending order of 

their respective Eigen values; 

Step 3: Obtain the weight vector w using first N-1 eigenvectors; 

Step 4: Project training data for a given class into lower dimensions. Lower ion data = 

dot-product(wT , LMEI feature vector); 

Step 5: Calculate positive class cluster center (PCi) and negative class cluster center (NCi) 

for the given class Ci in eucledian space; 

Algorithm 1: Obtaining LDA projection vector of a given action. 
 
 

In the test phase, we obtain the LMEI of the unit-action using F consecutive frames. 

We construct the 49 unit length feature representation. This is projected into 1 dimensions 

using LDA. Then, we measure the distance to the positive cluster center to each of the 

LDAa classifier. We assign the action to the closest cluster center. The distance to positive 

cluster and negative cluster center (PCi and NCi) are normalized to [0, 1] to represent it as 

a probability. In this representation, 0 represents less likely to be action A and 1 represents 

most likely to be action A. 

 

Using the LDAa, we obtain positive cluster center PCa and negative cluster center NAa 

for all the given samples of unit actions represented using LMEI feature vectors projected 

in lower dimensions. Let λa,j correspond to the LDA projection vector corresponding to Aa 

(∀1 ≤ a ≤ Na) using data from view Vj (∀1 ≤ j ≤ 8). During the testing phase of the setup, 

the subject can face any camera and perform the above mentioned unit-actions. LMEI pro- 

jected feature vector is obtained and eucledian distance to cluster centers are obtained to 
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Figure 3.5: This fi shows LDA projected feature vectors for a given unit-action. We 
have waving one hand (positive cluster) feature vector projected along x axis on the left 
hand side. On the right hand side, we see rest of the other actions projected into lower (1) 
dimensions. 
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determine if the unit-action is one of the trained actions. 
 
 
 
 

 
3.3.2 Support Vector Machines (SVM) 

 
SVMs are supervised classification algorithms that can identify patterns in data. They 

can be used for classification and regression too. I’m interested in using SVM for classifica- 

tion. Support Vector Machines (SVM) are optimal margin classifiers. The data is projected 

into higher dimensions and an optimal margin hyper-plane is drawn to best separate the 

data to perform classification. I have used a linear hyper-plane SVM. These were originally 

introduced by Vapnik in [84]. The SVM learns to map the data to higher dimensions from 

data in higher dimensions. SVM then, tries to fi a decision boundary using a linear (or any 

other shaped) kernel. I have used SVM (linear kernel) to classify the HOG feature vectors 

of the MEI images [4] [5] [6] for classifying the HOG feature vectors. 

 

Unlike other classification algorithms, SVM is only interested in identifying and best sepa- 

rating support vector points (the data points that are hard to classify). The support vectors 

are data points in higher dimensions that are hard to classify and are close to other class 

data points. Using a hinge loss function, L2 regularization and kernel trick, support vectors 

are used to draw an optimal separating hyper plane to separate the data points. A criterion 

is specified to choose the hyper-plane. Let x is the feature vector that needs to be classified. 

Let +1 and −1 are the class labels. The linear SVM fi    a weight vector θ such that data 

in higher dimensions hθ (x) is obtained as shown in 3.2. Here b is a constant (bias). 

 
 

 
hθ (x) = dot(θ, x) + b (3.2) 

 
The weight vectors are obtained using Sequential Minimal Optimization algorithm [85]. 

Once, θ is obtained, we can classify a given data point using the equation 3.3. I have used 

SVM provided through Sklearn (a python package)[86]. Using it, one can train a linear SVM 
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to classify the data. 

 

 
 

 

 
hθ (x) = 

 

+1 if hθ (x) ≥ +1 

−1 if hθ (x) ≤ −1 

 

(3.3) 

The distance of the data point in higher dimensions to the hyper-plane can be represented 

as a probability [87] of the data point belonging to a certain class. By obtaining probability 

of a data point belonging to diff t classes, we can use score fusion to combine the data 

from multiple cameras. This helps us in fusion of the data and effectively making use of 

multiple cameras. 

 
 
 
 

3.4 Score Fusion Strategy and Unit Action Classifica- 

tion 

This section describes how I combined data from multiple cameras in order to perform 

Multiview action recognition (originally taken from [4] [5] [6]) . I only consider a static back- 

ground with one subject performing an unit-action. At the end of each unit-action there is 

a small pause (where the subject does nothing). 

 

The subject stands at point Z (as shown in fi re 3.1) [4] [5] [6]. Let the view provided 

by camera Cref with respect to the action being performed be Vj . The angles between prin- 

cipal axes of the camera pair (r, s) is assumed to be known. For fi     3.1 we have ref = 1). 

In the test phase, we assume the consecutive relative camera orientations are known. We 

have Nc = 8. Using θref,s where (1 ≤ s ≤ Nc), we have each of the Nv possible views 

and each view Vj (1 ≤ v ≤ Nv ). When the subject is performing the action, we assume 

the camera Cref can provide a view Vj . Using this information other relative views can be 

calculated. With this given information, we have φ, of Nv possible view configurations. So 

let the view configuration set be denoted as φk , 1 ≤ k ≤ Nv . We have totally Nv = 8 possible 
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configurations as shown in equation 3.4 3.5. 

 

 
 
 

 

φ = {{φ1}, {φ2}, .., {φNv}} (3.4) 

φ = {{φ1, .., φNc}, .., {φNc, .., φNv}} (3.5) 
1 1 1 Nc 

 

In the training phase, the symmetric deployment has to be retained [4] [5] [6]. However, 

the testing phase doesn’t necessarily need the symmetric deployment. The symmetric de- 

ployment will give Nv = 8 possible configurations (as it depends on the number of views). 

The test phase camera deployment can be randomly placed in the region R. However, they 

need to be cyclic in arrangement. It may be possible for 2 cameras deployed very close to 

each other. If views V1 and V2 are similar to each other, they can provide similar views 

as described in 3.6 3.7. I have also described the performance of the system with certain 

cameras being absent. In such cases, the Nc and φk represents total number of available 

cameras only. 

 
 

φ = {{V1, V2, V3, .., V8}, {V2, V3, V4, .., V1}, ..., {V8, V1, V2, .., V7}, (3.6) 

 

φ = {{V1, V1, V2, .., V8}, {V1, V3, V4, .., V1}, ..., {V8, V1, V1, .., V7}, (3.7) 

In the test phase, the configuration set is unknown. We compute the probability of each 

action belonging to a certain class in each possible configuration in φk sets. Then, only the 

most likely action is picked. In the training phase, I obtain the matching scores under every 

configuration. Let Sa,k,i represent the score, with respect to action Aa at camera Ci under 

configuration φk . Let FVi represent the feature vector computed for the test data generated 

by camera Ci. 

 
Sa,k,i is generated using ηa,j (FVi). This is normalized to a range of [0, 1]. This score is 

generated at each camera for the respective view it provides in the given configuration. For 

LDA, the projected feature vector FVi is used to convert the distance to the cluster centers 
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for the classifier in that view and normalized to [0, 1]. In a SVM, I obtain the probabilities 

using platt scaling [87] to obtain the score ranging from [0, 1]. This is done internally by 

Sklearn package in Python. This is done each possible configuration in set φ. 

 
 

vspace-2mm 

 
 

Nc 

Sa,k = 
\ 

Sa,k,i (3.8) 
i=1 

 

The most likely action is obtained by combining (adding) the scores Sa,k,i generated at 

each camera and each possible configuration for each action.  Maximum of Sa,k over the 

configuration sets φ determines the most likely action Aa. This is denoted using Sa which 

is calculated using the equation 3.9. The action AF (1 ≤ F ≤ Na) with the highest possible 

score is obtained during the test phase where F is determined using equation 3.10. 

 
 

Sa = max(Sa,k )k=1,...,8 (3.9) 

 

 
F = argmax(Sa)a=1,...,Na (3.10) 

 

3.4.1 Real-Time classification of interleaved sequences 
 

This Multiview classification approach has certain challenges in real-world [4] [6]. We 

exactly do not know when the action starts and when it ends. Since, the system is designed 

to only classify unit-actions, this problems poses a challenge in real-world implementation 

when the data is coming through all cameras in form of a stream of frames. This has to be 

performed without generating a lot of false positives. There are pauses between the unit- 

actions. This should not be classified as one of the actions performed by the subject. Other 

challenge is to manage frame sampling rates across diff nt cameras (which are not exactly 

the same) and they vary from time to time. To address these issues, I have proposed a sliding 

window algorithm. I have cameras time synchronized using NTP protocol. 

 

Since I’m applying the sliding window algorithm, I have window sizes ranging from wmin 
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to wmax. The range of these window sizes was selected in a heuristic manner (looking at 

the window sizes of the actions performed by the subjects). Though we have same sampling 

rate, we have diff     t frame capture rate (due to diff in disk i/o). Using timestamps 

across diff t cameras, we can only consider minimum number of frame across diff t 

cameras. This is used to generate a LMEI feature vector that is uniform in length (as it only 

considers aggregate motion energy images). We then apply regular score fusion technique as 

mentioned above. Once a score is obtained. It is compared with pre-determined threshold 

(τF ) for the corresponding action, AF . These thresholds are obtained by averaging the true 

positive average score in the correct configuration in the training phase. This is clearly ex- 

plained in 2. 

 
 
 
 

D : = Length of stream IS; 

start : = 0; 

while start ≤ D do 

len : = wmin; 

/* Explore window sizes */ 

while len ≤ wmax do 

FD : = IS[start : start + w]; 

FV : = LMEI(FD); 

F, SF : = Classify(FV ); 

if SF ≥ τF  then 

Accept(IS[start : start + len − 1]); 

start = start + len; 

else 
 

start = start + δw ; 

end 

Reject(IS[start : start + γ − 1]); 

start : = start + γ; 

end 

Algorithm 2: Sliding window algorithm for parsing interleaved action sequences. 
For a given feature vector Fi, the score at each camera is obtained. The score is then 
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fused. If the fused score is less than the given threshold, it is assumed to be a wrong 

classification and I progressively increment the window size in steps of δw until a positive 

match is found. If the maximum window size has been reached, I just increase the starting 

frame point by a certain number of frames γ forward. This technique can be used to avoid 

mis-classifying the frame in the pauses between two diff  t unit-actions. There is trade-off 

in performance observed while the choosing the threshold and the step size for the window. 

We chose δw = 3 and γ = 5 for this problem. I have IS as the input stream of the data of 

length D. The input stream may contain multiple unit actions that are interleaved along 

with short pauses (of inaction or standing still). Let IS[x : y] represent the series of frame 

between time stamp x and y. For IS[x : y], the LMEI feature vector is obtained. The 

classification algorithm is applied and its score is compared with the threshold to positively 

classify the data stream IS[x : y]. 

 

3.5 Performance Evaluation 
 

This section briefl talks about the performance evaluation of the multi-view action 

recognition framework described above. First, I’m going to talk about the performance of 

the system on unit-actions. Next, I evaluate the performance of the system with real-time 

streaming data using the sliding window algorithm. The subjects are performing actions in 

the region R randomly facing a camera (as shown in fi      3.1). 

 
3.5.1 Performance with Unit Test Actions 

 
This subsection talks about offline testing of the performance of the feature vectors and 

the classification algorithms [4] [5] [6]. Here, I assume the unit-actions are clearly separated 

and the data doesn’t fl w in form of an input stream. This approach helps to properly iden- 

tify the performance of the chose feature vector and classification algorithm. I also show the 

performance of the system with diff    t number of available views. The order of removal 

is based on cameras which provide the best views for the feature vectors (observed in the 

training set). 
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The score fusion framework presented doesn’t depend on the classification algorithm or 

the feature vectors. As long as the classification algorithm can represent the result in prob- 

ability, the framework can be used for the given camera setup. 

 

Figure 3.6 represents the recognition accuracy for the framework using LMEI feature de- 

scriptors and HOG-SVM on MEI feature descriptors. This fi clearly shows that more 

views are advantageous over lesser number of available views. By combining information 

from multiple cameras performance of the classification algorithm using the given feature 

vector can be improved significantly. 

 

We see that with all 8 views available, an accuracy of 90% is achievable. The performance 

of HOG-SVM on MEI performs decently with 82%. The presented fusion framework can be 

used with diff t classification algorithms and feature vectors. More number of views give 

better classification accuracy. For the given problem, we can clearly see that LMEI outper- 

forms HOG-SVM on MEI feature descriptors with the given number of views. We believe 

this is because of the LMEI feature descriptor being able to properly capture the spatial 

distribution of the motion energy images for the given number of frames. This results in 

better performance for LMEI-LDA approach. 

 
3.5.2 Performance with Interleaved Action Sequences 

 
In this subsection, I present the performance of the system with interleaved action se- 

quences (across all 8 cameras). In this scenario, the starting and end frame numbers aren’t 

known [4] [6]. I have also presented the performance of the system when some cameras are 

absent or have failed. 
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Performance Metrics 

We can consider the input stream IS as a series of string of unit-actions. We can assume 

IS = {A1, X1, A3, X1, A4, X1, A1, ......}. In this representation, we have X1 as an action that 

system doesn’t recognize. The rest of the actions belong the action set A. All unit-actions 

don’t necessarily have the same duration. Few actions may have more frames and few may 

have lesser than the average. Let us assume we have ts(Ai) as the starting timestamp of 

action Ai in the given IS sequence. We can also assume te(Ai) as the ending timestamp 

for the given action Ai. We also have n(A) as the number of unit-actions belonging to A 

in the given input stream IS. O denotes the processed input stream (after processing using 

score fusion and sliding window algorithms). O also consists of action sequences that doesn’t 

belong to the given set of trained actions. The goal is to compare the string of actions in IS 

with that of output stream O. We have the concept of true matches matched, false matches 

and mis-classifi described as follows. 

 
 
 
 

• For each action Aj ∈ {A} in IS, if Aj ∈ {Aos(ts(Aj ), te(Aj ))}, then increment the 

number of true matches (TM) for IS. 

• For each action, Aj ∈ {A}, in IS, if AP ∈ {Aos(ts(Aj ), te(Aj ))}, where AP  /= Aj and Ap 

are not neighboring actions of Aj in IS, then increment the number of misclassifi 

for IS. 

• For each action, Xj 3 {A} in IS, if AP ∈ {Aos(ts(Xj ), te(Xj ))}, where AP ∈ {A} 

and Ap are not neighboring actions of Xj in IS, then increment the number of false 

matches for IS. 

True match occurs when a unit-action in the input stream is matched with unit-action 

in output stream within the interval in which the input action occurs. False match occurs 

when action that does not belong to the set {A} is matched to an action in the set {A}. 

Misclassification occurs when an valid action in {A} is matched to a diff   t valid action 

in {A} in the output stream. I also considered the action detected to be a true action if 
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the matching action is the bordering time window. This was considered due to the fact the 

actions may not exactly conform to exact start and end times. For the given time window, 

the classified action may fall exactly inside or may fall in the neighboring time window. I be- 

lieve this is a acceptable approach to classify the actions in a continuous stream of data. We 

can construct a higher level classifier or clustering algorithm that can still be able to stitch 

together the correct input sequence (if it falls within the similar time frame of the neighbors). 

 

In the real-time processing of continuous streams of data, it is not important on identi- 

fying the exact start and end time frames. This is due to the reason that frame rates across 

diff     t (even though they are close to each other) cameras are diff     t (due to diff 

in disk i/o and other reasons). If the correct action is not detected at all within the given 

time-frame of the input action, true matches are not incremented (according to the above 

mentioned algorithm). Thus, it is considered as a false negative for evaluation purposes. 

 
 
 

 
Classification of Action Sequences 

 
Using the above defi ition of true matches, false matches and mis-classifi I have 

evaluated the performance of the system in real-time to parse IS which consists of series 

of actions. The entire dataset consists of actions of duration of 17 minutes. The dataset 

consists of data from 8 cameras. The action sequence consists of unit-actions separated by 

short pauses. The performance of the system is shown as follows in the following fi 

 

First we consider the case where all the 8 camera views are available. Figure 3.7 describes 

the performance of the system using true matches and false matches as a function of the 

threshold (τF ). The threshold is chosen in the sliding window algorithm. The performance 

of LMEI-LDA (left) and HOG-SVM on MEI (right) is presented. For the LMEI-LDA, we 

obtain the true match rate of 90% with a false match rate of 20%. If the threshold is care- 

fully selected, we can preserve high true match rates and keep the false match rates low. 

HOG-SVM on MEI provides a true match rate of 70% with a false match rate of 20%. 
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In a similar setting, 3.8 3.9 3.10 3.11 represents true matches and false matches when 2, 

4, 6 and 7 views removed respectively in the camera network. The results have been pre- 

sented with LMEI-LDA and HOG-SVM on MEI. We can use these fi to illustrate the 

performance of the feature descriptor and classification algorithm performance with respect 

to number of available views in the system. 

At a fi      false match rate of 20%, we have true match rate and mis-classifi per- 

centage presented in fi       3.12. 

 

 
Based on the performance presented in 3.8 3.9 3.10 3.11 and 3.12, we can notice that 

more the number of views, we can see the system performing better. This shows the strength 

of the score fusion framework that is view agnostic and can process variable length video 

streams. 

 

On the given dataset, we also see that the LMEI feature descriptors perform better than the 

HOG-SVM on MEI. The LMEI features capture the spatial distribution of the MEI for the 

given unit-actions better than the HOG-SVM on MEI. LMEI feature descriptors perform 

better even with 5 views removed. The accuracy is observed at 80% true match with corre- 

sponding 20% false match rate. With more than 5 views removed, the performance of the 

system falls fast. Multi-view fusion does indeed help in better identifying the actions than 

single camera systems. 

 
 
 
 
 

3.6  Conclusions and Future Work 
 

This chapter describes the score-fusion based multi-view action recognition framework 

that has been presented in [4] [5] [6]. The subjects perform actions in a multi-camera network. 
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The data is collected in the training phase with all cameras intact and subject orientation 

is assumed to be known. In the test phase, we assume that the subject may not face the 

same camera (as done in the training phase). The data also is processed as stream (made of 

multiple unit-actions separated by small pauses) using the sliding window algorithm. The 

data is combined using scores obtained at individual cameras. This technique accommodates 

possibility of handling camera failures. The framework works with diff t classification al- 

gorithms and feature vectors. 

 

The system performs well at a true-match rate of 90% while having a low false match rate 

and  mis-classifi rate. This was tested with all 8 cameras intact and with 2, 4, 6 and 

7 cameras missing. We have seen that multiple cameras help in improving the accuracy of 

the system. 

 

These kind of camera setups can be used for automated surveillance or any other restricted 

areas. The camera setup needs to have a overlapping common fi of view. The system can 

be setup with low cost hardware as the feature vectors don’t need much computation power 

to perform feature vector extraction and classification. 

 

The system was developed with view-specific classifiers using LMEI feature vector descrip- 

tors. View-specific nature of the framework helps us properly handling camera failures. The 

score fusion framework also helps in avoiding stringent conditions on camera setup (during 

training and testing phases). The score fusion framework [4] [5] [6] doesn’t depend on the 

underlying classification algorithm (as long as the result is described using probability like 

scores). We have shown the system to work efficiently with LMEI feature vectors. It also 

works with other feature descriptors such as MEI with HOG-SVM. 

 

We apply view specific classifiers on diff t cameras in diff t view configurations to 

indirectly identify the orientation of the subject performing the action. This makes it easy 

to deploy the cameras without retaining the setup as described in the training phase. This 

was originally featured in [5]. 
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In this work, cameras are synchronized using NTP. I have also ignored the network ef- 

fects (corruption of data, transmission delays, etc.) and its impact on the performance of 

the system. These can incorporated into the future work in this area. 

One more assumption that can be relaxed is the number of subjects in the scene. If one 

adds more subjects in the scene (and given they can perform actions anywhere in the given 

region R), it would increase the complexity. In such a case, one has to significantly change 

the feature vectors and possibly the classification approaches. 
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Figure 3.6: Recognition accuracy for the system with a diff rent number of available cam- 
era views. 

 
 

  
 

Figure 3.7: True/false matches vs. threshold with all views intact for Localized Mo- 

tion Energy Image (LMEI)-Linear Discriminant Analysis (LDA)-based classifier and His- 
togram of Oriented Gradients (HOG)-Support Vector Machines (SVM)-based classifier. 
(a) LMEI-LDA classifier. (b) HOG-SVM classifier. 

 

 

  
 

Figure 3.8: True/false matches vs. threshold with two views removed for LMEI-LDA-based 
classifier and HOG-SVM-based classifier. (a) LMEI-LDA classifier. (b) HOG-SVM classifier. 
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Figure 3.9: True/false matches vs. threshold with four views removed for LMEI-LDA-based 
classifier and HOG-SVM-based classifier. (a) LMEI-LDA classifier. (b) HOG-SVM classifier. 

 
 

 

  
 

Figure 3.10: True/false matches vs. threshold with six views removed for LMEI-LDA-based 
classifier and HOG-SVM-based classifier. (a) LMEI-LDA classifier. (b) HOG-SVM classifier. 

 
 

 

  
 

Figure 3.11: True/false matches vs. threshold with seven views removed for LMEI-LDA- 

based classifier and HOG-SVM-based classifier. (a) LMEI-LDA classifier. (b) HOG-SVM 
classifier. 
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Figure 3.12:  True match rate and misclassifi rate at false match rate of 20% for 
LMEI-LDA-based classifier and HOG-SVM-based classifier. (a) LMEI-LDA classifier. 
(b) HOG-SVM classifier. 
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Chapter 4 

 
Multi-view fusion techniques for deep 

learning based action recognition 

 
In this chapter, I discuss the overview and the system setup for the action recogni- 

tion framework. The experimental setup in the mine and the simulator is fi presented. 

Then, the data collection procedure along with separating the data into training and test- 

ing datasets is then explained. Then, the list of diff t classification algorithms used are 

explained along with automatic feature vector extraction using convolutional neural net- 

works. The score fusion strategy and feature vector fusion strategy is explained afterwards. 

It should be noted that, score and feature vector fusion strategies are not applied in the 

real-time mine data when it was tested with a single camera. The feature and score fusion 

strategies are only applied in the multiple view simulator dataset. 

 

4.1 System Setup and Model description 
 

In this section, the overall system setup is discussed. I have two models DeepMineNet 

and DeepSimNet referring to the deep learning models that were developed for the Coal 

Mine and the Simulator respectively. Let Nc be the total number of cameras. Let SNa be 

the number of actions performed by the subject in the Simulator. Similarly let MNa be the 

number of actions performed by the subject in the simulator. For our experiment in the coal 

mine I have Nc = 1 camera and in the simulator, I have Nc = 3 cameras. Also the number 
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of views Nv = 3 in the simulator. The number of actions are determined by SNa = 8 and 

MNa = 5 for the Simulator and Mine respectively. 

 
 

The list of actions performed in the mine and the simulator are mentioned in Table 4.1 

and Table 4.2 respectively. The overview of camera setup is shown in Figure 4.1. The cam- 

era equipment used in the mine are shown in Figure 4.2. The camera setup used in the mine 

is shown in Figure 4.3. The Figure 4.4 shows overview of the camera setup shown in the 

simulator. Figure 4.5 shows the subject performing an action in the simulator. 

 
4.1.1 Camera setup in mine 

In this subsection, the camera setup in the mine is discussed. A camera node in the 

mine includes a setup of 2 Infra-Red illuminators emitting light at 850nm (to make up for 

the changes in natural illumination), a battery to power a ARM processor based embedded 

board (NVIDIA Jetson TK1) and a PointGrey Firefly camera capable of recording data at 

60Hz with a resolution of 640 x 480. This data was later processed and scaled down to 

a frame rate of 15Hz with a resolution of 256 x 256 image. I have Nc = 1 cameras and 

MNa = 5 actions namely no-driver, driving, controls, talking on phone/radio and some other 

activity (see Table 4.1). Some other activity includes drinking water or eating and looking 

outside (which are not a part of driver’s usual activities related to the work in the mine). 

The camera was set-up with a viewing angle of roughly 300 (see Figure 4.1 The subject is 

sitting at roughly 300 with respect to the camera at a distance of 2 − 4 feet. This slightly 

varies from driver to driver as each driver has his/her own preferences of how far from the 

steering wheel they drive and how high the seat should be. The data is recorded on a 64GB 

SD card inserted on the embedded board. 

 
 

The viewing angle of the camera Ci is measured as the angle made by the optical axis 

of the camera with the direction along which a subject performs an action. The camera is 

placed at roughly similar position but not exactly the same. This is due to the fact that 

diff     t trucks had diff     t equipment installed at the same position on the dashboard of 
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Figure 4.1: Viewing angle of Camera C1 in the mine with respect to actions performed by 
the subject. 

 

the truck. The Mine dataset was randomly sampled and extracted from a bigger dataset that 

was collected. The dataset used consists of over 39000 images. Each action is roughly 10 

frames long. The action recognition framework was evaluated with a 10 fold cross-validation 

on these short video samples. 

 
 
 

4.1.2 Camera setup in simulator 

In this subsection, the camera setup in the simulator is discussed. The camera setup in 

the simulator is similar to the one in the mine. However, in the simulator I had a chance 

to experiment the setup with multiple cameras (to test the framework). I have used Nc = 3 

cameras and MNa = 8 actions were performed (including those performed by the drivers in 

the mine). The setup includes 1 Laptop PC running Linux connected to a PointGrey Firefly 

camera recording data at 15Hz. There were 3 camera nodes (3 laptops with 1 camera each). 

The data was recorded at a resolution of 640 x 480. The data was later resized to 256 x 256 

resolution. The actions performed are (see Table 4.2) Looking Left, Looking Right, Picking 

Phone, Talking on Phone, Changing Gear, Changing Controls, Driving and No Driver. 

C1 

o V1 
30 

Z 

R 
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Figure 4.2: Camera setup in the coal mining truck. This a NVIDIA Jetson TK1 computer, 
small camera and IR illuminators connected to a battery. 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.3:  Camera setup in the coal mining truck. Includes a small camera and 2 IR 
illuminators. 
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Figure 4.4: Camera setup in the simulator. There are 3 cameras present on side, left and 
right. 

 

 
 
Figure 4.5: The subject performing controls action in the simulator as seen through the side 

o 

view. The camera is setup at roughly 30 with the driver. 
 
 
 

The multi camera node system setup is described in Figure 4.4. The driver sits roughly 

at 2 − 4 feet from the camera at roughly 30o degrees with respect to the subject. Let us refer 

to each camera as Ci where i indicates the camera id. The cameras are addressed from left 

to right. Ci = 1 indicates left camera, Ci = 2 indicates side camera and Ci = 3 indicates the 

right camera. The camera angle is calculated with respect to the side camera Ci = 2. Each 

action has a duration of 20 to 100 frames. The Simulator dataset was collected on 3 subjects 

performing each action at least 30 times. Roughly 68000 − 72000 images were collected in 

each view. The dataset was divided into training and testing using k-fold cross validation 

approach (with k=10). 
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Figure 4.6: The subject operating gear in the simulator as seen through the left view (V1). 
 
 
 

 
 

Figure 4.7: The subject operating gear in the simulator as seen through the side view(V2). 
 
 
 

 
 

Figure 4.8: The subject operating gear in the simulator as seen through the right view(V3). 
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4.2 Automatic feature vector extraction and classifica- 

tion strategy 

In this section, I describe what are the feature vector extraction and classification algo- 

rithms used for the DeepMineNet and DeepSimNet. First, a brief overview of neural networks 

and deep learning is presented. Then it is followed by brief description of a Support Vector 

Machine, SoftMax Regression, Neural Network (Feed forward or FC), Convolutional Neural 

Network, Recurrent Neural Network or LSTM. 

 

Our automatic feature extraction technique and the classifier are closely tied to each other. 

Our feature extraction and classification technique includes feed forward neural networks 

(sometimes referred to as Fully Connected Neural Network or FC), convolutional neural lay- 

ers (Conv layer), LSTM (Long Short Term Memory) and a fi layer of SoftMax Regression 

or a Support Vector Machine as our linear classifier. 

 

I have used a series of convolutional layers in our neural network as our automatic feature 

extractors. [88] was one of the fi  to use automatic feature extraction using convolutional 

fi [88] use the convolutional fi to detect hand-written MNIST digits and obtained 

high accuracy. This form of neural networks was one of the fi deep networks. Deep Learn- 

ing techniques are making a comeback [60] [61] [62] recently. They haven’t been popular in 

the past because of issues of training them. Large gradient or vanishing gradient has been 

a problem in training deep networks and recurrent neural networks [89] in the past. Now, 

better ways to train deep networks properly through greedy training, proper initialization 

have been found. 

 

Convolutional neural networks became really popular in the recent past when state of the 

art results were obtained on the ImageNet [90] by Krizhevsky [90]. Recently, there has been 

a lot of interest in the area of convolutional neural networks [60] [61] [62]. Initialization plays 

an important issue [91] in training a neural network. I used Xavier type initialization [91] for 

all the neural layers in the action recognition framework. Xavier weight initialization helps 
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1+e−z 

 

by restricting the initialization of the random weights of the neural layers to certain range 

of numbers. If the weights are too small in a neural network or too big in a neural network, 

the back-propagation and training becomes an issue. Hence, if one initializes the network 

properly, training the network to obtain high accuracy isn’t a problem anymore. 

 
 
 
 

4.2.1 Support Vector Machines(SVM) 
 

Support Vector Machines or SVM is a supervised machine learning classification tech- 

nique that can identify patterns in the data [84]. It has been previously described in section 

3.3.2. 

 
4.2.2 SoftMax  Regression 

 
Softmax Regression or Multinomial Logistic Regression is a linear machine learning clas- 

sification technique that can classify data. It’s an extension of Logistic Regression which is 

a binary classification technique (can classify two classes at a time). SoftMax Regression 

can handle multiple classes naturally and is one of the most frequently used classification 

techniques along with Neural Networks. The following equations are consistent with one of 

the most commonly used SoftMax Regression tutorials available on the web[92] from where 

it was derived. 

In Logistic Regression, one learns a hypothesis hθ (x) = g(θT x) where g(z) = 1
 . This 

can be written as: 
 

1 

hθ (x) = 
1 + e−θT x 

(4.1) 

and x ∈ X and hθ (x) is (0≤hθ (x)≤1). Here, θ is a parameter that the can be learned 

using an optimization algorithm (Stochastic Gradient Descent, etc.). Cost function or a 

loss function in statistics, machine learning and mathematical optimization problems is a 

function that maps performance of a classification technique to a number. The cost or loss 

is less if the classification accuracy is more and vice-versa. 
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T   (i) 

l 

 

 

 

The goal of the hypothesis is to learn hθ (x) which has low cost value. The cost of a function 

can be made low by employing any of various optimization algorithms based on cost such as 

L-BFGS, BFGS, Stochastic Gradient Descent, Mini-Batch-Gradient Descent, RMS Prop, etc. 

 

Let denote a training sample or a feature vector and denote its associated label/class. If our 

training dataset took the form (x(1), y(1)), (x(2), y(2)), (x(3), y(3)), ...(x(m), y(m)) where m is the 

total number of examples in the training dataset and where n is total number of dimensions 

of each data unit. Let there be k = 2 unique classes of data in our classification problem. 

Then, loss function (with cross-entropy) for Logistic Regression is given as follows described 

in equation 4.2. 

 

1 
m 

J (θ) = −  
[ 
\ 

m 
i=1 

(yi)log(hθ (x (i) )) + (1 − y 
(i) 

)log(1 − hθ (x 
(i) )) ] (4.2) 

Equation 4.2 works well when number of total classes k = 2. If one has more than 2 

classes, SoftMax Regression has to be used instead of Logistic Regression. SoftMax Regres- 

sion can be generalized to k > 2 classes with the following hypothesis hθ (x) and cost function 

J (θ). Using the equation 4.3, hθ (x
(i)) can be obtained. 

p(y(i) = 1|x(i) θ)  

hθ (x
(i)) = 

.  
 .  
  

p(y(i) = k|x(i) θ) 

(4.3) 

The above equation can be re-written as equation 4.4 
 
 

 

e(θT x(i))  

hθ (x
(i)) =  k 

1  
(θT x(i)))   ... 

 (4.4) 
j=1 (e j

 
  

e(θT x(i)) 

 

The cost function can be written as in equation 4.5 

 

1 
m k e(θ  x   )     \ \ (i)   j   

J (θ) = − 
m 

 
 
 
 

i=1 

 
 

j=1 

1{y = j}log   
l 

(4.5) 
l = 1keθT x(i)

 

In the equation 4.5, the function 1{.} is an indicator function of the following form. 
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i 

j x) 

 
 

 

F (a, b) = 
1 if a == b 

0 if a! = b 

 
(4.6) 

 

For sake of simplicity, one can re-write the logistic regression as the cost function de- 

scribed in equation 4.7. 

 

1 
m 1 

J (θ) = − 
    \ \ 

m 1{y 
(i) 

= j} log p(y 
(i) 

= j|x 
(i) ; θ) 

l 
(4.7) 

i=1 j=0 

From above equation 4.7, one can tell that SoftMax Regression is a generalization of 

Logistic Regression. In the training phase of the algorithm, the parameter θ that minimizes 

the cost function J(θ) is learned. During the test phase, one can obtain class label or the 

unknown input x as described in 4.8 and 4.9. 

 
 
 

 
 

and 

ypred = arg max P (Y = i|x, θ) (4.8) 

 
e(θT x) 

P (Y = i|x, θ) =     
j = 1ke(θT 

(4.9) 

In our classifi technique, I apply SoftMax Regression at the fi layer of the deep 

neural network. For a given unit feature vector x, the probability that it belongs one of 

the K classes is obtained using SoftMax Regression. The cost function is optimized using 

RMSProp optimization algorithm implemented in Theano software package[93]. 

 

SoftMax Regression works in a similar manner as compared to a linear SVM. They both 

try to learn θ and try to map the correct labels in higher dimensions. However, they are 

trained with different optimization criteria and optimization algorithms. 

 
4.2.3 Neural  Networks 

 
In this subsection, I briefl describe a simple neuron, a feed forward neural network with 

1 hidden layer. It is then followed by procedure to train a neural network using back prop- 

agation. 
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Figure 4.9: A simple neuron is a linear combination of its inputs. 
 
 

 
Neural Networks are sometimes referred to as Vanilla Neural Networks or Artificial Neu- 

ral Network or Fully Connected Neural Network or FC. They have been studied extensively 

in pattern recognition, document analysis and hand-written digit recognition [94] [95] [96]. 

Neural Networks are a supervised classification algorithm in machine learning that can clas- 

sify data into one of multiple classes. Neural Network consists of single or multiple layers of 

neurons. 

 

Each neuron constitutes a non-linear activation function (usually a sigmoid function) as 

described previously. Most commonly used non-linear activation functions are Sigmoid (as 

described in previous subsection), Hyperbolic Tangent (TanH) and ReLU (Rectified Linear 

Unit). ReLU was used in [90] which achieved state of the art results in image recognition. 

In a neural network, a layer contains multiple neurons. 

 

Let the input x is of n dimensions where x = {x1, x2, x3, , xn}. In the above Figure 4.9, 

n = 4 and one can defi   hypothesis hθ (x) in equation 4.10. 
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Figure 4.10: A neural network with 1 input layer and 1 hidden layer and 1 output neuron 
for a binary classification task. 

 
 
 

hθ (x) = f (θT x + b) = 
1 

 
 

1 + e(−θT x+b) 

 

(4.10) 

The sigmoid function f (.) in above equation ensures any input to it is scaled between 

[0, 1]. One can stack multiple neurons into a single layer. A neural network consists of multi- 

ple stacked layers of these neurons. Figure 4.10 shows an example of 3-layer neural network 

with 1 input layer, 1 hidden layer and 1 output layer. One can say the neural network has 

4 input units (ignoring the bias term) and 2 hidden units (ignoring the bias term) and 1 

output unit. I follow the neural network notation that is fairly consistent with the neural 

network tutorial at [97]. 

 
 

 
Let us fi describe the notation used in this neural network terminology. Let nl = 3 

be the number of layers in this network. Let layer Ll denote layer l. So, I have layers L1, 

L2 and L3 where L1 is the input layer, L2 is the hidden layer and L3 is the output layer. 

This neural network is based on the parameters (θ, b) = (θ(1); b(1), θ(2); b(2)). Let θ
(l) 

denote 
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Figure 4.11: A sigmoid function scales its input into the range [0, 1]. 
 

weights associated with unit j in layer l, and unit i in layer l + 1. Also I have the bias units 

i . Bias is an intercept term added to each input to a neural layer. For a given layer l, sl 

is the number of neurons. So I have s1 = 3, s2 = 2 and s3 = 1 (ignoring the bias unit). 

 
 
 

Activation of a neuron is the output of the neuron for a given input. Let a
(l) 

determine 

the (non-linear) activation of layer l!s ith unit (neuron). For the fi layer (input layer), one 

can defi       a
(1) 

= xi. 

For the other layers, one can defi   activation function as follows 
 

a(2) (1) (1) (1) (1) (1) 

1 = f (θ11 x1 + θ12 x2 + θ13 x3 + θ14 x4 + b1  ) (4.11) 
 

a(2) (1) (1) (1) (1) (1) 

2 = f (θ21 x1 + θ22 x2 + θ23 x3 + θ24 x4 + b2  ) (4.12) 
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Figure 4.12: A hyperbolic tangent function scales its input into the range [-1, 1]. 
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Figure 4.13: A Rectified Linear Unit(ReLU) function scales the inputx to max(0, x). 

    

    

    

    

 

    
    
    
    
    
    
    
    
    
    
 



Rahul R. Kavi Chapter 4. Multi-view fusion techniques for deep learning based action recognition 63 
 

2 
θ 

 

The output out the neural network can be determined (at the fi layer) using 
 

hθ,b(x) = a(3) = f (θ(2)a(2) + θ(2)a(2) (2) 

1 11   1 12   2   + b1  )) = f (z(3)) (4.13) 

 

Generally, for a given parameter (θ, b), the activation of a neuron layer l is determined 

as a(l+1) = f (z(l+1)) = f (θ(l).a(l) + b(l)). 

 

The output for a given input x is obtained by passing the input through a series of ac- 

tivation layers. This process is called feed forward. In a neural network, let f (.) is a sigmoid 

function (or any other non-linear activation). The neural network can have any number of 

hidden layers in between. The weights θ(l) in each layer are initialized randomly. The loss 

function for a neural network is a squared-error cost function given as follows described in 

equation 4.14. 

 
 
 
 

1 
m   

1 nl−1  sl 

 

sl+1 

J (θ) = 
m 

\ 
(hθ,b(x(i)) − y(i))2

l 
+ 
\ \ \ ( (l))2 

ji (4.14) 
i=1 l=1 i=1 j=1 

The second term in the above equation is a regularization (weight decay) term that is 

added to the cost function, to avoid over-fitting by penalizing the cost function (increasing 

the cost). 

 

The training of a neural networks is a search problem of fi all possible combina- 

tion of weights (of the layers in between the input and the output) so that one may 

better classify the output. Training of a neural network is done using back-propagation. 

Back-propagation is used to used calculate the error at the fi layer and back-propagate 

the errors through the layers backward so that network adjusts its weights to perform 

better in the next feed forward pass. Let our dataset of images and labels is of form 

(x(1), y(1)), (x(2), y(2)), (x(3), y(3)), ...(x(m), y(m)) where m is the total number of training sam- 

ples. 

λ 

2 
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i 
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Making the algorithm perform better requires changing the weights of the neuron in the 

neural network. The weights are updated using the gradient descent update method de- 

scribed as in equations 4.15 and 4.16. The α is a learning rate where α > 0. It determines 

how quickly the algorithm has to learn from the changes detected the partial derivatives. 

 
 
 

θ(l) 
 

(l)    ∂   

ij = θij  − α ∗ (l) 
ij 

J (θ, b) (4.15) 

b(l) 
 

(l)   ∂   

i = bi   − α ∗ 
∂b(l) 

J (θ, b) (4.16) 

The partial derivative terms can be described in equations 4.17 and 4.18 

 
∂ 1 

m 
∂ 

J (θ, b) =    
\  

 J (θ, b; x(i), y(i))
l 
+ λθ

(l)
 (4.17) 

(l) 
ij 

 

∂ 

m 
i=1 

 

1 

(l) ji 
ij 

 
m 

∂
 

J (θ, b) =    
\  

 J (θ, b; x(i), y(i))
l 

(4.18) 

∂b(l) 
m 

i=1 ∂b(l) 

Back-propagation algorithms helps in identifying error caused by a neuron. For a given 

node i in layer l, error is computed as δ
(l) 

. 

 
Back propagation is performed as follows for given input 

 
1. Feed forward operation is performed by passing the input through all the layers L2, 

L3, .. Lnl. In the above mentioned example nl = 3. 

2. For the fi layer the error is δnl
 = f 

I 
(z

(nl)). ∗ (−yi − a(nl)) 
(i) i i 

 

3. In the reverse order (from output to input), for layers Lnl−1, Lnl−2, ..., L2 the error at 

each node i at layer l is calculated as δ
(l) 

= f 
I 
(z

(l)
). ∗ (   

sl+1 θl δ
(l+1)

) 
(i) i 

j=1 
ji (j) 

 

4. This will help us calculating the desired partial derivatives/gradients as follows 
∂ = J (θ, b; x(i), y(i)) = a

(l) ∗ δ(l+1)
 

(l) 
ij 

∂ 

∂b(l) 

j 

= J (θ, b; x(i), y(i)) = δ
(l+1)

 

(i) 

∂θ 

∂θ ∂θ 

∂θ 
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5. Perform gradient descent as described in above equations (Eq. 4.15 and Eq. 4.18), 

update weights and test the accuracy again. 

To get optimal weight values, one performs feed forward and back-propagation (in a re- 

peated manner) for all inputs, until a reasonably low cost is achieved for the entire training 

set. For the testing phase, one only has to perform feed forward operation (using the opti- 

mal weights). f 
I 
(z

(nl)) is the derivative of the activation function, obtained automatically in 

Theano [93] using Tensor.grad() function. 

 
 
To perform a traditional gradient descent update technique mentioned above, one needs 

a lot of memory. There are other techniques such as mini-batch gradient descent or stochas- 

tic gradient descent which load a portion of the dataset into computer memory to compute 

the errors, then gradients and the update the accordingly. So, using stochastic gradient 

descent along with RMSProp [98] to update our weights is a good strategy. The imple- 

mentation is done in Theano[93]. In our action recognition framework (in DeepSimNet and 

DeepMineNet), there are 2 hidden layers after a series of convolutional layer (ConvNet). Con- 

volutional Layer (ConvNet) is explained in the next sub-section. The classifier architecture 

in use inside our DeepSimNet and DeepMineNet is explained in section 4.3 

 
4.2.4 Convolutional Neural Network 

 
In this section I briefl talk about problems in a neural network and how those issues 

are solved with a convolutional neural network. I then explain convolution operation and 

max-pooling operation. 

 

Operating Neural Network on a large image (which takes image directly as an input) is 

computationally intensive. One easy way is to resize them and operate on that data. How- 

ever, fi patterns in visual data is still a problem for shallow neural network[99] (fewer 

hidden layer neural network). Multiple series of non-linear activation layers are required to 

identify patterns in data and obtain patterns from patterns. But, training deep network 

(more than 3 hidden layer fully connected neural network) has been an issue. The network 
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suffers the problem of vanishing gradient [99] in such cases and the network cannot train 

properly (obtain low cost for the cost function). This has been solved in the recent past[60] 

[61] [90] through use of convolutions and greedy training techniques. Convolution trick was 

originally experimented in [88] on recognizing hand-written digits. By using convolutions 

as feature vector extractors and passing the convoluted output through a non-linear layer 

followed by reducing the size of the image using max pooling, [88] and [90] were able to 

properly train a deep network which could identify patterns in visual data. 

 

A convolutional neural network [88] consists of series of convolution layers followed by a 

fully connected neural network with sigmoid layer in the end as the output. The sigmoid 

layer outputs the probabilities of the input belonging to various classes (SoftMax Regression). 

 

A convolution operation is one of the most important and frequently operations in image 

processing to identify edges/ curves in an image. In a convolutional neural network, fi a 

2D convolution operation on the image is performed. An example convolution is shown in 

Figure 4.14. For a given input array of size m x n, a convolution operation with a fi of 

size c1 x c1, will result to an image of size ((m − c1) + 1) x ((n − c1) + 1). For our action 

recognition framework, I used series of fi   of size 4 x 4 and 5 x 5 on the original image 

of size 256 x 256 (scaled down from an image of size 640 x 480 resolution). In Figure 4.14, I 

have an input of size 4 x 4. A convolution fi of size 3 x 3 is applied the input. This gives 

rise to a convolved output of size 2 x 2. 

 
 
A max pooling operation is a dimensionality reduction operation. For a given block of 

data, max pooling operation determines maximum activations in that block. An example of 

2D max pooling is shown in Figure 4.15. Each convolution layer in a convolutional neural 

network consists of single/multiple convolution fi applied to in-coming input, a non- 

linear activation (ReLU, Sigmoid or TanH) followed by max pooling layer (to reduce the size 

of the input). Figure 4.16 shows effects of diff t convolution fi on a given image. Feed 

forward and Back-propagation operation is similar to the operations in a feed forward neural 

network. I used Theano’s Tensor.grad() function to obtain the gradient (partial derivatives). 
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Figure 4.14: An example of a valid’ 2d convolution operation on the data. 
 

I used RMSProp [98] to update the weights. 
 

 
In our action recognition framework, I have 3 convolution layers each with ReLU non-linear 

activations and 2D max-pooling operation. The last convolutional layer is connected to a 

fully connected neural network. More details about the architecture is discussed further in 

section 4.3 

 
4.2.5 Recurrent Neural Network and LSTM 

 
In this subsection, I give a brief introduction to a Recurrent Neural Network based on 

LSTMs. Then, I discuss about how a feed forward operation works in a LSTM and how it 

has been used . Recurrent neural network is a kind of a neural network that has recurrent 

connections to itself. Recurrent neural networks (RNN) have been introduced long back 

but procedures to properly train them haven’t been introduced until recently[100]. Train- 

ing RNN has been an issue due to the vanishing gradient problem [89]. However, with the 

introduction of LSTM, researchers have been able to properly train RNN to perform tasks 

related to NLP and action recognition [66]. 

 

LSTM stands for Long Short Term Memory.  As the name suggests, it is capable of re- 
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Figure 4.15: A 2D Max Pooling operation on a given input data matrix. 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 

Figure 4.16: Effect of diff t convolution fi on a given input image. 
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membering long term dependencies of closely related data. An LSTM layer is made of many 

LSTM cells (instead of a basic neuron). An LSTM cell can be trained to remember, forget 

and update its state while taking inputs and producing outputs. With group of LSTM cells, 

one can model long term dependencies between the data. In [66] it was shown that LSTM 

layers were capable of handling spatio-temporal features by remembering some information 

about the data. 

 

Now I describe a simple LSTM cell. A LSTM cell consists of gates which control the input, 

output and the state of the cell. These gates allow information to be passed through them, 

remember something about the input passing through them and pass processed output (just 

like a fully connected neural networks). For a given time t, let Ct represent a cell state of a 

LSTM cell. Let ht represent the output of the LSTM cell and xt is the input to the input 

cell. An LSTM feed forward operation is defi     as 

 
 

 
ft = σ (Wf  .[ht−1, xt]) + bf ) (4.19) 

it = σ (Wi .[ht−1, xt]) + bi) (4.20) 

NCt = σ (Wf  .[ht−1, xt]) + bf ) (4.21) 

Ct = (ft ∗ Ct1 + it]) ∗ NCt (4.22) 

ot = σ(Wo.[ht−1, xt] + bo) (4.23) 

ht = ot ∗ tanh(NCt) (4.24) 

The LSTM cell is instantiated with randomly initialized [91] values for the weights 

Wf , Wi, Ct, Wo and back propagation [101] is performed. NCt represents the new infor- 

mation that needs to be updated in the cell state. it along with NCt and previous cell state 

Ct−1 with ft give rise to current cell state Ct. Figure 4.17 shows how LSTM is connected to 

itself through recurrent connections. 

 

For the DeepMineNet I used a 2-layer LSTM cells during the later stages of the neural 
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Figure 4.17: An LSTM cell un-wrapped over time 
 

network. This layer can capture the spatio-temporal properties of the video stream coming 

into the network. In the DeepSimNet, I’m able to achieve reasonable accuracy with just 1 

LSTM layer. 

 
 
 
 
 

4.3 General classifier architecture 
 

In this subsection, I describe the specific architecture that I used for building our real-time 

action recognition framework in the DeepMineNet and DeepSimNet. The general approach 

to designing a convolutional neural network is to have many convolutional fi initially, 

increase the convolutional fi   in subsequent layers. Then fl   them to be connected to 

fully connected neural network (to compress the data) and pass them to SoftMax layer for 

further processing. I have followed the same approach but at the end, I have used LSTM 

memory layers capture the data in the temporal domain. 
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4.3.1 DeepMineNet 
 

DeepMineNet is the neural network which was built for the data collected at the mine. 

The data was collected over few days with 3 subjects. The data recorded was around 35,000 

frames and is randomly divided into 70% training and 30% testing. I used a multi-layer 

deep network built with 3 Convolutional Layers, 2 Fully Connected Neural Layers and 2 

LSTM layers connected to a SoftMax Regression (linear classifier) at the end. So, I have 

3 + 2 + 2 + 1 = 8layer Deep Neural Network consisting various kinds of neural networks. 

 

First convolutional layer consists of 20, 5x5 convolution fi rs, followed by a max-pooling 

of 2 x 2. The second convolutional layer consists of 50, 5 x 5 convolution fi    followed 

by a max-pooling layer of size 2 x 2. The third convolutional layer consists of 50, 4 x 4 

convolution fi       followed by a max-pooling layer of size 2 x 2. 

 

The following layers have size of 45000 x 1000 and 1000 x 500 fully connected neural layer. 

This is connected to a LSTM layers of size 500 x 512 x 100 and its output is passed to the 

second LSTM layer. The second LSTM layer has a size of 100 x 512 x 100. This is followed 

by a simple linear SoftMax Regression layer of 100 x 5 outputting individual probabilities 

of the input (belonging one of the 5 classes of actions). In DeepMineNet, I perform action 

recognition using decision level aggregation.  Figure 4.18 depicts architecture of a Deep- 

MineNet. 

 

DeepMineNet takes video input stream and processes one image at a time. The training 

is done through back-propagation with RMSProp as the optimization algorithm. Let λ 

represent the classification algorithm. If X is the input to the classifier, let Sa = λ ∗ X 

represent the output probability generated at the SoftMax layer for each action λ was trained 

on. Then 

Oa = max(Sa)a = 1, 2, .., MNa (4.25) 
 
Equation 4.25 represents the most likely actions detected at output layer. Since the inputs 

are taken in form of images and not continuous video stream, I have to classify the images 
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Figure 4.18: DeepMineNet architecture 
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from the video stream. I use a simple technique of considering last few continuous frames to 

determine what action was performed. If Oa,i is the action performed at ith frame and FL is 

the frame lengths to be considered to output a classified action. Then I have equation 4.26 

that determines that action performed in the scene. 

 

ActionPerformed = max(Oa,i)i=1,2,...,F L (4.26) 

I have considered FL = 10 for our classifier.  Using this approach, I note a 0 − 2% 

increase in accuracy when predicting the action based on last 10 frames instead calculating 

the accuracy in every frame. 
 
 

4.3.2 DeepSimNet 
 

DeepSimNet is the neural network which was built for the data collected at the simulator. 

The data was collected for 3 subject performing 8 actions. I used a multi-layer deep network 

built with 3 Convolutional Layers, 2 Fully Connected Neural Layers and 1 LSTM layers con- 

nected to a SoftMax Regression (linear classifier) at the end. So, I have 3 + 2 + 1 + 1 = 7layer 

Deep Neural Network consisting various kinds of neural networks. 

 

DeepSimNet has same architecture as described in DeepMineNet. It only has one LSTM 

layer and the output linear SoftMax layer has a size of 100 x 8. The number 8 refers to the 

fact that I have 8 actions to be classified in this system. I get output probabilities of each 

input action (image) belonging one of those 8 actions. 

 

I trained 3 classifiers for DeepSimNet (one for each view). Let λv represent the classifi- 

cation algorithm in View v where v = [1, 2, 3]. View 1, 2 and 3 correspond to left view, side 

view and right view respectively. If Xv is the input at camera v to the classifier λv and SNa 

is total number of actions, let Sa,v = λv ∗ Xv is the score generated for action a. Then, I 

have classified action at camera/view v described in equation 4.27. Figure 4.19 depicts how 

a DeepSimNet architecture looks like for a given camera view. 
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Figure 4.19: DeepSimNet architecture 
 
 

 
Ov = max(Sa,v )a=1,2,SNa (4.27) 

 
Since I have 3 camera views in the DeepSimNet, I can come up a more with an effective 

strategy to combine decisions made by multiple classifiers. Instead of voting based on the 

decision taken by diff t classifiers, I follow the technique presented at [5] [6]. Since, the 

number of number of frames across diff t views is diff t, I only consider minimum 

number of frames for a given time instance (across diff    t cameras). This is depicted in 

fi      4.22 and equation 4.28. 

 

Nv determines the number of frames for a given second. Then number of frames to con- 

sider to fuse scores across diff t views is determined by equation 4.28 

 

NF = min(Nv )v=1,2,3 (4.28) 
 

Let Sa,v determine the score for a given action in view v and Sa . I can now calculate 

fused score for a given action Sa as follows: 

 

1 
Nv   \ 

Sa = 
v 
∗ 

v=1 

Sa,v (4.29) 

Using scores of all actions for all views, I can make informed decision as to what the 

action is being more likely based on their individual scores across diff t camera views 

using equation 4.30. 

N 
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OF used = max(Sa) (4.30) 

 
 

4.4 Architecture for Feature Vector fusion 
 

In this subsection, I explore how one can use the action recognition framework as a feature 

vector extractor and dimensionality reduction technique. I use the extracted features across 

diff t views, fuse them into a single feature vector and observe its effect on the accuracy. 

Our features are automatically obtained from convolutions of the original image through 

the initial convolution layers in the network. Inner layers of convolution can be viewed as 

features extracted from the features using multiple layers of convolution. I have multiple 

layer of non-linear operations throughout the network through convolutions, fully connected 

neural layers, LSTM layers. All of these use ReLU, Sigmoid and TanH non-linearity activa- 

tion. 

 

Output at the last LSTM layer (see Figure 4.19 and Figure 4.18) can be considered as 

the most important features (from the perspective of our framework). This is passed to the 

SoftMax Regression layer (linear classifier). The output of the last LSTM layer is taken and 

passed to a SVM and a SoftMax Regression Layer. The architecture of the fused DeepSim- 

Net with SVM is presented in Figure 4.20. Architecture of fused DeepSimNet with SoftMax 

is presented at Figure 4.21. Recognition performance of these architectures are presented in 

the next section. 

 

4.5 Implementation Overview 
 

This section describes implementation details (e.g. what parameter were tuned) and how 

our action recognition framework performed on the collected datasets. I fi describe the 

process of pre-processing, fi ning a convolutional neural network and what parameters 

were set to improve accuracy. Then, I describe the performance of our Deep Neural Networks 

on two dataset based on those parameters. 
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Figure 4.20: Architecture of DeepSimNet with SVM. 
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Figure 4.21: Architecture of DeepSimNet with SoftMax Regression layer. 
 
 
 
 
 

 
 

Figure 4.22: Due to frame rate inconsistencies across multiple cameras, we only generate 
outputs at time instants when images from all 3 cameras are available. 
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I trained both the networks on a NVIDIA Quadro K2200 GPU with 4 GB of memory. 

GPUs have been popularly used in the area of deep learning in recent times. Alexnet [90] 

used a GPU with 3GB memory and came up with state of the art results based on convolu- 

tional neural networks in the ImageNet competition in 2012. 

 

I use both Caffe [102] and Theano[93] to build our classifiers. Caffe was used to quickly 

proto-type the architecture of the initial layers of the neural network. Caffe doesn’t offer 

full functionality of LSTM networks (in the Caffe Standard Library). In order to capture 

the temporal domain in the data, I used LSTM memory layers built in Theano [93]. Based 

on diff t trial and errors, I have came up with 3 convolutional layers, 2 fully connected 

layers, 2 LSTM layers and a fi    SoftMax layer for the DeepMineNet. 

 

However, DeepSimNet has 3 convolutional layers, 2 fully connected layers, 1 LSTM layer 

and a fi SoftMax layer. In pattern recognition, mean subtracted data and normalization 

are one of the most important pre-processing steps. Both of these pre-processing steps were 

performed before training the data. Both our deep neural networks were trained with 15,000 

iterations, epochs ε = 5 with an initial learning rate α = 10−5. 

 

The optimization algorithm used was RMSProp[98]. I didn’t use popular optimization algo- 

rithms like L-BFGS, BFGS because they require entire dataset to be present in the memory 

to calculate gradient of the learning parameters in the deep neural network. I used mini- 

batch with size mbatch = 32. Using mini-batch gradient descent was necessary as there are 

over 30,000 images in both datasets and they cannot fi into the GPU memory together at 

once. Mini-batch gradient descent operates on the data 32 images at a time optimizes the 

parameters of the network. Total ε = 5, makes sure that one traverse the entire training 

data-set 5 times using mini-batch gradient descent to optimally train the parameters. The 

code developed is highly parallel and performs almost in real-time. Necessary steps were 

taken to make the processing fast by configuring the used machine learning frameworks to 

use the GPU effectively. 
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4.6 DeepMineNet performance 
 

DeepMineNet was trained and tested with a k-fold (where k = 10 in our case) cross 

validation on the collected data. Leave. Data was collected from 5 drivers but only data 

from 3 drivers was labelled. 

 
 

Action ID Action Name 

MA1 Changing Controls 

MA2 Driving 

MA3 No Driver 

MA4 Some Other Activity 

MA5 Talking on Phone or Radio 

 

Table 4.1: List of 5 Actions performed by drivers in the coal mine 
 

 
The system averages with 92% overall accuracy. Changing controls action was recognized 

with high accuracy even when the complete view of the driver wasn’t available. Some other 

activity (includes driver eating, drinking, sitting idle, looking outside) was recognized with 

93% accuracy. Talking on Phone or radio is one of the most important tasks performed by 

the driver communicating with other drivers. This data also includes instances where the 

driver was driving and talking on the radio (not just sitting idle and talking on the radio). 

It was recognized with 94% accuracy. Driving action was classified with least accuracy but 

with a reasonable 83%. 

 

4.7 DeepSimNet performance 
 

DeepSimNet was trained and tested on the data collected in the simulator. Data was 

evenly divided into 34,966 images in training and 34,971 images in tested (almost equally 

divided).  Three classifiers were trained for the 3 views.  Each of those classifiers had a 
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Figure 4.23: Real-Time classification using DeepSimNet 
 

similar architecture as described in the previous sections. I fi look into how the individual 

classifiers perform, then I look at how to combine these results to see if multiple views indeed 

help or not. 

 

4.8 Individual view performance 
 

I tested the individual classifier from diff t views. One can see that for certain actions, 

certain views are better. 

Figure 4.6, Figure 4.7 and Figure 4.8 in previous sections show subject performing a gear 

changing action as seen from diff t views. One can clearly see that the entire action isn’t 

visible from left view. Also, the subject is wearing similar colored clothes as compared to 

the background. This makes it diffi for the left view classifier to properly classify this 

action. 

 

 
4.8.1 Fused Scores performance 

 
The average recognition has increased to 89.30% (better than the average accuracy of 

all individual views). This is due to the fact the certain actions are better visible in certain 
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Action ID Action Name 

S 1 Gears 

S 2 Driving 

S 3 Talking on phone 

S 4 Picking up phone 

S 5 Controls 

S 6 Looking Right 

S 7 Looking Left 
 

 

 

Table 4.2: List of 7 Actions in the simulator 
 

views. If one is able to properly fuse score of all the individual probabilities of actions across 

diff    t views, classifier performance goes up. 

 
 
 
 

4.8.2 Fused Feature vector DeepSimNet performance 
 

I also explored how the classifi may perform if the feature vectors are themselves fused 

and not instead of their individual scores or decisions being fused. I used DeepSimNet as a 

feature vector extractor and fused their feature vectors across diff t views into a single 

feature vector. One can get a 300-unit length feature vector (comprised of 100-unit length 

feature vector from each view). This was passed to a SoftMax Regression classifier and 

an SVM. SoftMax regression performance on the combined feature vectors are presented in 

Figure 4.28. 

 

We have also tested the performance of the simulator dataset using HOG [80] SVM on 

Motion Energy Images. These results are compared against deep learning based approaches 

in 4.3. We can notice that fused feature vector performance on a SVM performed as good as 

score based approaches in this dataset. However, we have to note that SoftMax Regression is 

a linear classifier whose performance depends on the factors such as fi initialization 
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Figure 4.24: Performance on WVU Action recognition dataset (2). 

strategies (setting learning rates, batch sizes for gradient descent, etc.). 

We have also tested our deep learning approach against our WVU Action recognition dataset. 

The results are presented in 4.24. We have also tested Motion History Image with HOG on 

the simulator dataset. The performance of the system is presented in 4.25. 

 

 
4.9  Conclusion 

 
Fusing of data and classification scores seems to be working better than relying on in- 

dividual scores for action classification. I have previously shown this in [6] [5]. Fusion of 

feature vectors and fusion of scores are effective methods to process data. 

 

I have tested and demonstrated an automatic feature vector extraction strategy that works 

well in coal mines and in simulators. No computationally intensive and time consuming 

strategies are required. Decision fusion strategy for the DeepMineNet performed with high 
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Figure 4.25: Performance of MHI feature vectors 
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Figure 4.26: Performance of DeepSimNet with 1 Layer LSTM 
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Figure 4.27: Performance of DeepSimNet with 2 Layer LSTM 
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Figure 4.28: Performance of DeepSimNet with score fusion and feature vector fusion (with 
1 and 2 layer LSTMs) 
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Classification  Technique Max Error Rate (%) Average Error Rate (%) 

Left View ConvNet LSTM (1 layer LSTM) 17.13 9.21 

Right View ConvNet LSTM (1 layer LSTM) 18.08 8.90 

Side View ConvNet LSTM (1 layer LSTM) 17.13 9.21 

Fused Score ConvNet LSTM (1 layer LSTM) 6.92 2.21 

Fused Features ConvNet LSTM (1 layer LSTM) 4.75 1.92 

Left View ConvNet LSTM (2 layer LSTM) 13.01 5.77 

Right View ConvNet LSTM (2 layer LSTM) 15.54 6.34 

Side View ConvNet LSTM (2 layer LSTM) 13.625 7.54 

Fused Score ConvNet LSTM (2 layer LSTM) 5.23 1.51 

Fused Features ConvNet LSTM (2 layer LSTM) 6.41 2.95 

Left view Motion history HOG 35 7.2 

Right view Motion history HOG 35 6.9 

Side view Motion history HOG 50 9.3 

Fused scores Motion history HOG 37.5 8.9 

 

Table 4.3: Comparison of error rates with 1 layer LSTM, 2 layer LSTM and spatio-temporal 
motion history image technique on data from 3 camera driving simulator 

 

accuracy. Score Fusion and Feature Vector fusion strategy was demonstrated in DeepSim- 

Net successfully. I have developed an action recognition system frame that works effectively 

in high vibration environment where the subject isn’t always stable and cooperative. The 

framework can also work as feature vector extractor and this can be (theoretically) combined 

with any other classification strategy such as PCA, LDA, Naive Bayes, Logistic Regression, 

Decision Trees, etc. 

 

Both systems were tested on data collected at 15 Hz (15 frames per second). DeepMineNet 

performs in real-time with 0.016 seconds on an average to process each image. DeepSimNet 

takes 0.015 seconds on an average to process each image. The deep learning framework for 

action recognition system performs in mines and in the simulator with an average perfor- 

mance of over 90%¿ 



 

88 
 
 
 
 
 
 
 

 

Chapter 5 

 
Conclusion and Future work 
 

This section concludes the thesis by providing conclusions and indicates directions for 

future work. 

 

5.1 Conclusion 
 

In the previous chapters, I presented my research work done in the area of action recog- 

nition using multiple cameras. There are many challenges in combining data from multiple 

cameras in a network. I gave a brief introduction to the challenges of action recognition 

using multiple cameras in Chapter 1. Chapter 2 talked about the background work done in 

the area of multiple view action recognition and then compared our work with the rest of the 

work. In chapter 3, I explored application of score fusion framework using a camera network 

with application in action recognition. Chapter 4 briefl explains the issues in a coal-mine 

where deep learning based approaches have an advantage over traditional approaches. It 

also presents a use-case where score fusion strategy can be applied in a deep learning per- 

spective. I have presented a use-case where convolutional neural networks work as a good 

feature extractors and a dimensionality reduction technique while retaining high accuracy 

in a coal-mine environment. 

 

My contributions are briefl summarized as follows and were explored in detail with my 

work in [5] [6] [7]. 
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1. Fusion of information from multiple cameras: Different sampling rates lead to 

issues in combining data from multiple cameras. If diff t sampling rate is an issue, 

one can drop the data and consider equal number of data samples (across diff t 

cameras) and continue with feature vector fusion approach. Other alternative is to 

approach the problem using score fusion approach. This is particularly useful when 

you have transmit data over the network. This way, you can only transmit scores and 

not the complete feature vectors themselves. 

2. Handling arbitrary orientations: I have explored a score fusion framework where 

the classifiers are view-specific. This helps us break the symmetric deployment of 

cameras in training and testing phases. The subject can stand any where in the given 

region between the cameras and perform pre-trained actions facing any camera in the 

network. 

3. Framework to handle arbitrary number of frames: In [6], I have shown a simple 

window based heuristic algorithm (based on action-specific thresholds) that can handle 

arbitrary number of frames when the action is being performed by the subject. This 

is useful in real-world scenarios where the duration of the test action is unknown. 

4. Design of portable camera testbed and evaluation: I have designed a frame- 

work for a camera network which works on portable, embedded hardware with limited 

capabilities. This was constructed using off the shelf components. The framework also 

works when there are camera node failures. The performance of the system was tested 

with camera failures and with presence of all cameras. 

5. Evaluation of deep learning fusion idea: I have tested the information fusion 

framework (using multiple cameras) and tested it with deep learning based approaches 

to action recognition. Fusing data from multiple cameras (score and feature vector 

fusion), has defi shown improvement over single camera based deep learning ap- 

proaches to activity recognition. 

6. Evaluation of deep learning fusion idea: I have tested the information fusion 

framework (using multiple cameras) and tested it with deep learning based approaches 
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to action recognition. Fusing data from multiple cameras (score and feature vector 

fusion), has defi shown improvement over single camera based deep learning ap- 

proaches to activity recognition. 

7. Contribution of datasets: I have also contributed two action recognition datasets. 

They are available for download at [20] and [21]. We are under the process of releasing 

the WVU Simulator Driving activity recognition dataset. 

 

5.2 Future work 
 

One assumption that can be relaxed can be the presence of same subjects in training and 

testing. Currently, the ConvNet LSTM doesn’t seem properly capture the structure in the 

motion. Perhaps a better classification approach is needed. Some researchers have explored 

images with pose information to detect human actions using ConvNets [103]. This seems like 

a good idea where pose information is also available in the dataset. This way the ConvNet 

was able to quickly capture information from the motion and pose at the same time. 
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[79] Théodore Bluche, Hermann Ney, and Christopher Kermorvant, “Feature extraction 
with convolutional neural networks for handwritten word recognition,” in Document 

Analysis and Recognition (ICDAR), 2013 12th International Conference on. IEEE, 
2013, pp. 285–289. 

[80] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in 
2005 IEEE Conference on Computer Vision and Pattern Recognition, June 2005, vol. 1, 
pp. 886–893 vol. 1. 

[81] X. Yang, C. Zhang, and Y. Tian, “Recognizing actions using depth motion maps- 
based histograms of oriented gradients,” in 20th ACM international conference on 

Multimedia, 2012. 

[82] C. Huang, C. Hsieh, K. Lai, and W. Huang, “Human action recognition using his- 
togram of oriented gradient of motion history image,” in First International Conference 



REFERENCES 98 
 

 

on Instrumentation, Measurement, Computer, Communication and Control, 2011, pp. 
353–356. 
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