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Abstract 

 

 A method to predict in-use diesel engine emissions is developed based on engine dynamometer 

and in-use data acquired at the West Virginia University Center for Alternative Fuels, Engines, 

and Emissions. (WVU CAFEE).  The model accounts for the effects of road grade on generated 

emissions; a need for this model is evident in literature. Current modeling methods do not 

account for the effects of road grade, and have been shown to under-predict NOx by as much as 

57%.   It is determined through present research and a review of relevant literature that an 

artificial neural network (ANN) was the most applicable modeling method.  

A modular ANN was developed to predict the heavy duty diesel engine emissions.  The two 

modules were trained independently, the first module was trained with data acquired through in-

use testing, and the second module was trained with data acquired via engine dynamometer 

testing.   The first module predicted the engine speed and torque associated with the inputs of 

road grade and vehicle speed, while the second ANN employed the first ANN's outputs, and 

predicts the emitted quantities of NOx, CO2, HC, and CO.  A series of training and verification 

runs are conducted in order to determine the optimum ANN characteristics.  Once the ANN was 

finalized, it was trained with and employed to predict the emissions associated with a variety of 

routes.  

When the ANN was trained with a combination of in-use and engine dynamometer data, the 

ANN is able to predict NOx emissions associated with that same route within 6% of the 

measured values.  The average difference between the measured and predicted CO2 values for 

the same training and verification scenario mentioned above was less than 15%.  It was also 

demonstrated that the ANN was able to predict emissions that are associated with routes that 

differ from those by which it is trained.  When the ANN was trained with in-use data from a 

specific route, it was able to predict the NOx and CO2 emissions associated with a different route 

with percent differences from the measured values of 20% or less.   

Development of an Artificial Neural Network to Predict In-Use Engine Emissions 

Melissa L. Morris 
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1. Introduction, Objectives, and Contributions 

1.1 Introduction 

Since the early 1960's regulations have been implemented concerning exhaust emissions from 

heavy duty trucks and buses, specifically with diesel engines.  The regulations are concerned 

with limiting the quantities of gaseous and particulate emissions from heavy duty diesel vehicles.  

In 1973, the first regulations were implemented to limit the quantity of oxides of nitrogen (NOx), 

carbon monoxide (CO), and hydrocarbons (HC), it was not until 1988 that a regulation included 

limits on the amount of particulate matter (PM) emitted [1].  As researchers became more aware 

of the health and environmental effects of diesel engine emissions, more strict emission 

regulations have been implemented.   

 

Carbon monoxide is an odorless, invisible gas that is a result of incomplete combustion. Carbon 

monoxide can cause nausea, headache, and in high enough doses, death.  Hydrocarbons are the 

result of unburned or partially burned fuel.  Since diesel fuel is a compound consisting mainly of 

hydrogen and carbon, the unburned carbon and hydrogen atoms are free to form hydrocarbons 

[2].  PM is often visible to the human eye as smoke; however it is more frequently present as fine 

particles which are not visible.  It is the small particles that have the greatest negative impact on 

individuals who are exposed to diesel engine exhaust.  Particulate matter is not only an esthetic 

nuisance, it is also responsible for health issues.  The American Lung Association and California 

Air Resource Board (CARB) have stated that 15,000 premature deaths annually can be attributed 

to particulate matter produced from diesel engines [3].  Also it has been shown that children who 

are exposed to PM have reduced lung function and a higher occurrence of asthma related issues.  

The fine particles pass through the membranes of human lungs, resulting in them becoming 

imbedded in deep pockets of the lungs, which can hinder biological processes [3].  Other health 

issues that have been attributed to PM exposure include coughing, decreased lung function, 

weakening of the heart, breathing difficulty, and aggravated pre-existing conditions.  Individuals 

who already suffer from asthma, bronchitis, and emphysema are more susceptible to experience 

the effects of PM [2].    NOx is the term given to combinations of oxygen and nitrogen atoms, 

and is of concern to the environment due to its contribution to ground-level ozone when it reacts 

with hydrocarbons and sunlight.  Ozone is the main constituent in smog, which results in limited 

visibility and negative health effects.  Increased permeability of lung tissue is one of the known 
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effects of ozone exposure.  When lung tissue is more permeable, toxins and bacteria are more 

likely to enter and remain in the lungs [4].  Individuals who are already plagued by allergies 

become more susceptible to allergens due to this increased permeability [5].  Aside from the 

above mentioned health effects, diesel engine emissions also contribute to the occurrence of acid 

rain and the greenhouse gas inventory.  In order to understand the breadth of the negative 

impacts of diesel engine emissions, the quantity of these particular constituents attributed to 

diesel engine emissions must be determined. 

 

The EPA has estimated that heavy-duty diesel vehicles contribute sixty percent of the on-road 

particulate matter emissions and twenty-seven percent of the on-road NOx emissions [6].  Other 

sources have estimated that heavy duty diesel engines are responsible for between thirty and 

sixty percent of on-road NOx emissions [7].  These high percentages are particularly important 

because heavy-duty diesel vehicles only make up two percent of the on-road traffic [6].  The 

uncertainty in the quantity of emissions contributed by heavy duty diesel engines is due to a 

limited understanding of the effects of test cycle, deterioration, and engine programming on in-

use emission rates [9].  In order to reduce the health and environmental impact of diesel engine 

emissions, the allowable levels of emission constituents have been reduced. 

   
The current, more stringent emission regulations only apply to newly manufactured engines. 

Engines that are already in service are not required to conform to new emission standards.  Since 

older engines are still in use, it is necessary to have a means by which to predict their emissions 

in order to accurately arrive at an emission inventory value.  According to the EPA, engines 

currently in operation, which are not required to meet new standards, may still be in operation for 

the next 25 to 30 years [4].  Table 1 displays the emission regulations from 1988 to the present.  

Between 1988 and 1998 the allowable emission values were regulated differently for trucks and 

buses, since 2002 both trucks and buses must meet the same standards.  It is shown that over the 

years acceptable emissions levels have decreased, by one to two orders of magnitude.   
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Table 1.1.1: Emissions Regulations [10] 
 

Trucks 

  Emission Constituent (g/bhp-hr) 

Year HC CO NOx PM 

1988 1.3 15.5 10.7 0.6 

1990 1.3 15.5 6 0.6 

1991 1.3 15.5 5 0.25 

1994 1.3 15.5 5 0.1 

1998 1.3 15.5 4 0.1 

Urban Buses 

  Emission Constituent (g/bhp-hr) 

Year HC CO NOx PM 

1991 1.3 15.5 5 0.25 

1993 1.3 15.5 5 0.1 

1994 1.3 15.5 5 0.07 

1996 1.3 15.5 5 0.05 

1998 1.3 15.5 4 0.05 

Both Trucks and Buses  

  Emission Constituent (g/bhp-hr) 

Year NMHC CO NMHC+NOx PM 

2002 Option 1 NA 15.5 2.4 0.1 

2002 Option 2 0.5 15.5 2.5 0.1 

  Emission Constituent (g/bhp-hr) 

Year NMHC CO NOx PM 

2007/2010 0.14 15.5 0.2 0.01 

 
 
Currently, multiple methods exist for modeling and predicting emissions data.  The simplest 

emissions estimation method employs look-up tables of previously obtained emissions data.  

Two of the most commonly used methods rely on continuous axle power, speed and torque data. 

The method of using vehicle speed to predict exhaust emissions employs an average schedule 

speed and what are known as speed correction factors (SCFs).  It is common practice for the 

value of the SCF to be one at the average schedule speed.  The SCFs are determined by 

examining the relationship between speed and the emission constituent of concern.  Once the 

correction factors are determined, emissions from a test schedule with a different average speed 

can be predicted based on the emissions from the modeled test schedule.  It has been shown that 

this modeling method does not produce consistently accurate results.  Error is introduced when 
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two test schedules have similar average speeds, but different variations in the speed levels during 

the schedule [11]. 

   

The method of using vehicle power to predict exhaust emissions requires continuous emissions 

data and axle power data.  This method relies on a curve fit between the instantaneous emissions 

and power at the axle.  The function associated with the curve fit is then used to predict 

emissions based on the axle power of other test schedules.  Using axle power to predict NOx 

emissions does not provide accurate results, and should only be used in cases where rough 

estimates are sufficient [11].  Ramamurthy et al. also researched predicting diesel engine 

emissions by correlating axle power to emissions.  CO, NOx, and CO2 were plotted as functions 

of axle power, and curves were fitted to the data.  Once correlations were formed, the functions 

were used to predict emissions data associated with various test cycles.  It was determined by 

these researchers that axle power is a sufficient predictor of CO2 and NOx emissions; however, 

the prediction of CO emissions based on axle power was inaccurate.  Discrepancies between the 

predicted and experimentally obtained emission values can result if the cycle used to establish 

the correlation between the emission constituent and axle power does not span the full range of 

power for the specific vehicle being examined [12].    

 

Joumard et al. addressed the possible errors and issues encountered when modeling in-use 

emissions.  Many models rely on average speed to predict emissions over a driving cycle, 

however this can introduce error in predicted emissions because it has been shown that 

significant changes in speed can impact instantaneous emissions by two to three times.  Errors 

are also incorporated into emissions modeling via measurement errors and modeling errors.  

When data is recorded, it is important to be sure measurement and recording instrumentation is 

functioning as expected.  It is also important to document environmental conditions, due to their 

impact on emissions levels.  Modeling errors may occur if inadequate parameters are employed 

by the model, resulting in the model not accurately predicting emissions from the applied 

database.  The researchers recommend in order to accurately predict emissions, both 

instantaneous operating conditions and an operating condition history should be considered [13]. 
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1.2 Objectives 

The global objective of this dissertation work was to develop a model that can accurately predict 

in-use heavy duty diesel engine emissions by employing engine dynamometer data available 

through the previous work of the West Virginia University, CAFEE.   The major objectives that 

led to the accomplishment of the global objective are listed below. 

 Identify most applicable and effective modeling method. 

 Develop an emissions model that can predict in-use emissions from engine dynamometer 

data. 

 Verify the model by comparing results with experimental data and EPA regulations. 

 Present a final working model to accurately predict in-use emissions 

 

1.3 Technical Approach 

The work required to achieve the above mentioned objectives was divided into the tasks 
explained below. 

A. Literature Review 

Conducted a review of literature pertaining to heavy duty diesel engine emissions 

research, standards, modeling, and prediction methods.  

B. Data Survey 

Located and determined availability of engine dynamometer data for heavy duty diesel 

engines employed in trucks and buses.  Determined the availability of in-use data for 

model verification. 

C. Model Development 

Determined the optimum modeling method and developed a model that accurately 

predicts in-use heavy duty diesel emissions from engine dynamometer data, taking into 

account grade effects. 

 Problem Definition and Formulation 

o Defined desired output and determined required inputs 

 System Design 

o Determined structure for ANN 

o Determined most applicable learning algorithm 
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o Collected and pre-processed data 

 System Realization 

o Trained ANN with specified data 

o Evaluated initial outputs and errors 

D. Model Optimization 

Varied model characteristics in order to reach the most accurate predictions of in-use 

emissions data. 

 

E. Model Verification 

Compared model output results to actual in-use data in order to determine the model’s 

accuracy. 
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2. Literature Review 

2.1 Current Models 

Currently, few widely used computer models exist for predicting emission inventories and in-use 

emissions from heavy duty diesel vehicles.  The Environmental Protection Agency (EPA) and 

the California Air Resource Board (CARB) are the agencies most concerned with emissions 

modeling in the United States.  The most commonly used models are EPA's MOBILE, CARB's 

EMFAC, and EPA's MOVES. The EPA also employs particulate matter estimation models 

known as PART5 and PART6. CARB’s prediction methods are based on engine certification 

data and a limited number of chassis dynamometer tests [14].  The EPA also developed the 

Mobile Emission Assessment System for Urban and Regional Evaluation, known as MEASURE.  

MEASURE was developed in the late 1990s, in order to predict the effect of suburban sprawl 

and commuting to metropolitan areas on emissions.  The purpose of the program was to aid 

transportation designers in analyzing the impacts of actions such as signal timing and adding 

lanes [15].   The most recently released emission model developed by the EPA is MOVES2010, 

which replaced MOBILE6.2.   

 

2.1.1 MOBILE 

The EPA developed the first version of its MOBILE software in the 1970s, it was denoted as 

MOBILE1.  Since its inception, the MOBILE model has been updated with releases MOBILE2, 

MOBILE3, MOBILE4, MOBILE 4.1, MOBILE5, MOBILE5a, MOBILE5b, MOBILE6 and 

MOBILE6.2.  The Clean Air Act (CAA) requires the EPA to update the emissions estimation 

programs, and release currently applicable versions. With each release, the models have included 

more in-use data, have been updated to be compatible with new technologies, and have 

accounted for more factors when estimating engine emissions. MOBILE1 was released in 1978, 

and used age and mileage of vehicles in order to arrive at estimated emission values.  MOBILE2 

and MOBILE3, released in 1981 and 1984, respectively, took into account newer vehicle 

technologies including catalytic converters and the effect of tampering.  New in-use data and 

more user control options were incorporated into MOBILE4, released in 1989. MOBILE4.1 was 

released in 1991 and incorporated the effects of operation and maintenance programs, as well as 

the impact of the newest emissions regulations.  Due to state implemented test programs, a larger 

data set was available and new equations were derived to predict emissions for the 1993 release 
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of MOBILE5 and MOBILE5a.  The impacts of oxygenated and reformulated fuels on emissions 

were also examined in the MOBILE5 series.  In 1996 MOBILE5b was released which was 

updated to include the newest emission regulations, and the ability to estimate idle emission 

factors was included.  The release of MOBILE6.0 occurred in 2002, and the new program was 

equipped with more in-use deterioration data, and updated for newer engine and fuel 

technologies.  The ability to model air toxins such as benzene and formaldehyde and improved 

carbon monoxide prediction values were features of the MOBILE6.2 program, released in 2004 

[16]. 

 

2.1.2 Powertrain System Analysis Toolkit 

The United States Department of Energy has contributed to the development of modeling 

software based in MATLAB, which is called Powertrain System Analysis Toolkit (PSAT).  

PSAT is a vehicle simulation toolkit that estimates vehicle performance from a calculated 

component torque response to realistic commands.  This software is widely used in the 

automotive industry for vehicle simulations and modeling.  Inputs such as engine throttle, clutch 

displacement, and transmissions gear number are employed in the software.  PSAT is capable of 

modeling a variety of vehicle technologies including conventional, electric, fuel cell, and hybrid.  

PSAT is capable of accurately predicting emissions for heavy duty diesel engines over various 

cycles, however it requires extensive input information, some of which may not be known for 

vehicles that need to be modeled.  For example, a vehicle may be equipped with a specific 

engine, but information about the transmission could be unavailable [55].  

      

2.1.3 MOVES 

As mentioned above, the EPA plans to replace the MOBILE series of emission prediction 

programs with a newly developed program called Motor Vehicle Emissions Simulator, also 

known as MOVES.  MOVES2010 includes more in-use data than the previous MOBILE series 

and is also able to predict the emission levels of more Volatile Organic Compounds (VOCs).  

Initial comparisons of MOVES2010 to MOBILE6.2 show that MOVES2010 predicts lower 

values for emitted VOCs in urban areas, higher values for NOx emitted, and higher quantities of 

particulate matter emitted [17].  These differences in the two models show that there is still room 

for improvement and uncertainty in the emissions predictions modeling realm.   
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2.1.4 IBIS 

Wayne et al. have developed a modeling tool to predict the emissions associated with fleets of 

transit vehicles, this model titled, Integrated Bus Information System (IBIS), allows a user to 

determine the emissions associated with a particular fleet of vehicles.  The use must enter 

information about the vehicles in the fleet being examined such as type of fuel, model year, curb 

weight, powertrain type, engine rated power, aftertreatment equipment, transmission type, 

heating and air-conditioning capacity, and displacement.  For the route being examined, 

information such as the average speed, percentage idle, number of stops per mile, standard 

deviation of speed, and the kinetic intensity must be known.  The model predicts the fuel 

economy, and emissions of NOx, CO2, CO, PM, and HC. The data employed to develop this 

model was obtained from chassis dynamometer testing, and then polynomial fits and linear 

regressions were applied to the data.  In cases where data were not available for a particular 

scenario, genetic algorithms were employed to predict the emissions for that situation.  The 

purpose of this modeling tool is to allow fleet owners to compare and contrast the emissions 

associated with fleets of different characteristics, in order aid in planning and procurement 

decisions [66].   

 

2.1.5 Accuracy of MOBILE Models 

It has been determined through prior work that actual measured emissions data from heavy-duty 

diesel vehicles differ from the results that are predicted through the use of models such as 

MOBILE5 and PART5.  The measured emissions values also differ from the data that has 

resulted from engine certification tests.  One of the reasons it is important to accurately estimate 

the emissions from vehicles is to determine if the regulations that have been put into effect are 

making a difference.  Also, in order to examine, monitor, and plan air quality, pollutant 

inventories are developed, which are based on the estimated emissions.  In-use emissions are 

functions of driving cycle, inertial weight, and drive trains.  Plots of NOx versus power were 

constructed and examined as part of the research of Yanowitz et al., and it was determined that it 

is possible to employ chassis testing and a transmission model to determined if in-use NOx 

emissions agree with the engine certification results.  This work also concluded that emitted 

carbon monoxide (CO) values on a brake-specific mass basis agree between chassis and engine 

dynamometer tests.  Particulate matter emissions were determined to be underestimated by 
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engine certification tests, when compared to chassis data on brake-specific mass basis [18].  

Singh et al. also noted that current emissions prediction programs such as those discussed 

previously are only capable of predicting emission inventories at a county-size scale.  It was the 

recommendation of the researchers that a program be developed that is able to predict PM 

emissions on a smaller scale, therefore the impact on humans and the environment at specific 

sites can be examined [19]. 

 
Studies have shown that PART5, the EPA's PM emission factor model, estimates PM production 

to be much less than what is actually emitted during in-use conditions. The PART5 program was 

revised to better estimate PM emissions, by examining the data produced by four test vehicles, 

two trucks and two buses.  In order to make revisions to the PART5 model, the assumptions that 

the model employs were examined.  It was shown that the PART5 model assumes that PM 

emissions from a vehicle will not ever exceed the level at which it was certified.  This 

assumption introduces error by assuming that the technologies used to meet the new, more 

stringent emission standards will not deteriorate with time or fail.  As the technologies get more 

complicated, resulting in a greater reduction of emissions, there is also the fact that if they fail to 

operate optimally, greater emissions than expected will result.  A study by Whitney determined 

that the PART5 estimated PM emissions were three to 11 times lower than those actually emitted 

by light-duty vehicles, most specifically seen in vehicles with an excess of 100,000 miles [20].   

 

It is suspected by researchers that the portion of NOx in emissions inventories attributed to 

heavy-duty diesel vehicles is under representing the actual contributions of these vehicles.  The 

under-estimation is in part due to the fact that many emission inventories are estimated using 

data acquired during engine certification testing.  One emission prediction model, MOBILE, 

employs engine certification data and has been shown to predict less NOx emissions than what 

tunnel and on-road testing have shown.  One reason for this discrepancy is that engine producers 

were programming the engines to operate differently when they were noticeably running the FTP 

cycle for certification.  When these engines were put into vehicles, they produced more 

emissions than they did during the certification testing.  Since the MOBILE model and other 

emissions prediction models employ engine certification data, some of their predictions have 

been based on unrealistic data that was acquired during certification testing of these engines.  
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Engine manufacturers have since signed consent decrees, in which the manufacturers agreed to 

retrofit such engines during maintenance, pay fines, and comply to 2004 emissions standards 

earlier than was originally expected.  As part of the consent decrees it was determined that a 

program would be developed to correlate in-use testing with engine certification data.  A division 

of the EPA developed the On-Road Diesel Emissions Characterization (ODEC) facility, which 

has the goal of compiling in-use emissions data for a variety of road conditions and vehicles 

[22].  

 

2.1.6 Accuracy of EMFAC Model 

Shah et al. compared the measured NOx emissions associated with various driving schedules to 

those that are estimated by EMFAC.  The emissions were measured for eleven vehicles 

employing engines ranging from 1996 to 2000.  It was determined that the EMFAC predictions 

underestimated the quantity of NOx emitted by five to fifty-seven percent, based on the test cycle 

being examined [21].   

 

2.1.7 Accuracy of Emission Factor Models 

McCormick et al. researched comparing data obtained from an engine dynamometer to data 

obtained from a chassis dynamometer, and evaluated the correlation.  For this research two buses 

and a truck were tested on a chassis dynamometer and then the engines were removed from the 

vehicles and tested on engine dynamometers.  The two transit buses were equipped with 1993 

DDC Series 50 engines, while a truck was powered by a Navistar DTA-466 engine.  The chassis 

dynamometer tests employed the CBD and HDT cycles.  When the emissions data from the two 

cycles were compared, it was determined that when compared on a fuel volume basis the HDT 

and the CBD agreed closely, but when compared on a distance basis a significant disagreement 

in data was seen.  This can be explained due to the effect of inertial weight on all emissions 

constituents when compared on a distance basis, but when the emissions values are compared on 

a volume basis, only PM is effected by the inertial weight.  Emissions prediction factors in work 

per distance were then estimated by using the data obtained from these tests.  These factors were 

used to convert engine dynamometer data to distance specific values and then these values were 

used to estimate emissions inventories.  The factors that were determined from this research were 

then compared to the factors that are currently employed by the EPA in inventory estimation 
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methods, and it was found that the factors were substantially different.  Accurate estimations of 

pollution inventories are necessary for air quality planning and determining the effectiveness of 

regulations.  The discrepancy between the EPA estimated emissions factors and the ones 

determined in this work could be due to the fact that the EPA based its emission factors on the 

data acquired from engine certification testing.  During engine certification testing, new engines 

are tested on engine dynamometers.  In order to estimate the emissions produced by the engine 

over its lifetime (435,000 miles) a deterioration factor is employed.  Engines are still in service 

that have accrued more than 435,000 miles, therefore assuming that engines are no longer 

operating after their lifetime is an error inducing assumption.   Also, it has not been proven that 

the EPA's deterioration factor contributes to accurately predicting in-use emissions for all types 

of engines over their lifetimes.  The current EPA factors are based on a comparison of engine 

and chassis dynamometer testing for a transit bus and three trucks.  The emission factor is a ratio 

of the chassis dynamometer results to the engine dynamometer results [8].  Using engine 

certification data may also skew data in cases where the engines being tested are equipped with 

defeat devices.  It is unclear if the deterioration factor accounts for lack of maintenance of 

turbochargers and fuel injectors, which leads to increased PM, HC, and CO emissions.  Also it 

should be noted that an increase in NOx emissions can be attributed to improperly timed fuel 

injection or poor air cooler performance [23].  The above mentioned deterioration and 

maintenance issues are not measured during engine certification data and may not be properly 

accounted for in the deterioration factors used by the EPA, therefore further examination is 

needed. 

 

Research has resulted in the development of a table of emissions factors that aid in the prediction 

of in-use emissions.  The emission factors are based on instantaneous engine power.  The model 

predicts emissions by employing a series of matrices for the exhaust constituents including NOx, 

CO, CO2, and HC, using the inputs of speed and acceleration.  The PM emissions were estimated 

by using a ratio of the known PM emission values over a speed and acceleration range, based on 

CO emissions.  Data acquired via testing by the WVU Mobile laboratory were used to compile 

the matrices employed by the model.  Multiple methods exist to estimate emission inventories, 

some include using engine certification data, data acquired by chassis dynamometer testing, and 

ratios of NOx and CO2.  MOBILE5 and MOBILE6, the EPA's emission prediction models, and 



 
 

13 
 

EMFAC, CARB's model, are based on data used for engine certification.  The FTP cycle does 

not adequately represent present day driving conditions such as stop-and-go city and freeway 

conditions, and therefore fails to accurately model the emissions of current vehicles.  Using the 

engine certification data to model engine emissions also does not account for the deterioration, 

maintenance, and any alterations experienced by the engines.  When chassis dynamometer data 

is used to predict emissions, inaccuracies result from that fact that specific cycles are used to 

analyze the emissions, and none of the cycles have the ability to model the multitude of driving 

conditions that a given vehicles will experience.  Emission factors based on power allow the 

emissions to be predicted for a cycle other than the cycle which was used to acquire the data.  

Issues arise when using this method, because for it to be accurate, time alignment must occur that 

relates the instantaneous rear-axle power and the emissions.  It is possible to measure the 

instantaneous power easily; however there is a delay between when the power event occurs and 

when the exhaust gas reaches the measuring instruments.  For NOx and CO2 this prediction 

method has been shown to be successful, however results have not been as promising for the 

prediction of CO and HC.  Another downfall of predicting emissions based on rear-axle power is 

that the effect of "off-cycle" injection timing cannot be incorporated.  In some cases speed and 

acceleration are used to predict emissions rather than instantaneous power.  The speed is 

employed to determine losses due to road-load, and the acceleration coupled with the speed can 

predict the instantaneous inertial power demand.  When a vehicle experiences a change in road 

grade, the effect on emissions is not well documented due to the lack of grade simulation in 

chassis dynamometer testing.  The uncertainty in emissions associated with road-grade changes 

induces problems into the method of predicting emissions based on speed and acceleration data. 

When climbing an incline acceleration is low, however significant rear-axle power is required 

and when travelling in a descending direction acceleration can be high, while limited power is 

required.  This results in the model over estimating emissions for descending terrains, and under 

estimating emissions when vehicles ascend hills.  Along with speed and acceleration, weight also 

plays a key role in emissions prediction.  It is important to account for the weight of a vehicle 

because the higher the load, generally the higher the emissions for a given speed and 

acceleration.  When examining buses in particular this is a concern since the load of the bus can 

change with each stop, in the case of tractor-trailers, the load is typically constant over the length 

of a trip [24].   
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2.1.8 Emissions Inventory Estimation 

It has been shown that emissions inventory estimation techniques do not account for every factor 

that impacts emission, and as shown in the reviewed literature, are not as accurate predictors of 

diesel engine emissions as they could be.  Research has shown that emissions inventory 

estimations are based on data obtained from FTP tests, when engines are new and undergoing 

certification.  In order to test older engines on engine dynamometers the engines must be 

removed from the vehicle, which requires the vehicle to be out of service during testing, and then 

time and money must be expended to reinstall the engine into the vehicle.  The time involved and 

financial expense of dynamometer testing is the main reason that data for the emission inventory 

is limited.  Concerns have also been raised, stating that the FTP is over 25 years old, and has not 

been updated to accurately assess the engines that are equipped with newer technologies.  It is 

thought that data acquired by chassis dynamometer testing would better represent in-use 

emissions, when compared to the FTP data [25].    

 

Data were obtained by the WVU Mobile Laboratories for emissions from buses and heavy duty 

trucks.  Data for buses were determined by employing the Central Business District (CBD) cycle, 

while heavy duty trucks were examined with the truck CBD and the WVU 5-peak test cycle.  

Throughout the duration of the chassis dynamometer tests, the drag on the vehicle and rolling 

friction of tires were incorporated by taking into account the air density, the frontal area of the 

vehicle, the drag coefficient, and the friction coefficient.  It was determined that the NOx 

measurements from the chassis tests were within the range of certification provided by FTP data, 

however the ratio of NOx to CO2 was found to be widely variable, which supports the opinion 

that the FTP cycle is not always accurate in estimating in-use emissions [25].   

 

2.1.9 Modal Modeling Methods 

Barth et al. believe that modeling emissions using a modal method will prove to be more 

accurate than the current methods used by the programs available through the EPA and CARB.  

Currently the modeling methods assume that it is accurate to use emissions measured from a 

specific driving cycle in cooperation with a speed correction factor to predict in use vehicle 

emissions.  The authors of this work have shown the need for a model that considers events such 

as acceleration/deceleration, idle, and steady-state cruise.  Currently emissions modeling 
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techniques do not account for realistic driving conditions; most models rely on data derived from 

the FTP cycle.  The FTP cycle mimics behavior associated with driving in urban conditions from 

over twenty-five years ago.  Since the development of the FTP cycle in-use urban operations 

have changed, making it an antiquated tool for predicting current day in-use behavior.  The 

commonly used emission prediction models also rely on average speed to determine speed 

correction and emission factors.  Error is introduced with this method because only the average 

speed is considered, and not acceleration, deceleration, and idle events.  Two driving cycles can 

share an average speed, and produce dissimilar emissions based on differences in modal 

operations.  It has been shown that a greater quantity of CO can be produced in a single 

acceleration event than is produced in an entire four mile trip [47].  The current models also do 

not consider road grade when predicting in-use emissions, the impact of which will be discussed 

in a following portion of this document [26].    

 

Jost et al. have developed a multi-layer diesel emissions modeling technique that employs 

steady-state engine maps, driving curves, and vehicle data to obtain emission factors.  It has been 

shown previously that emissions are a function of engine power, and that relationship is 

employed in this model.  In this work the instantaneous engine power is separated into two 

segments, steady-state and transient.  The power delegated to steady-state applications is 

consumed to overcome the resistance experienced due to wind, rolling friction, and road grade.  

Overcoming inertia associated with the vehicle mass during acceleration is defined as the 

transient consumer of power.  The steady-state engine maps were used to predict emissions 

associated with the power applied to steady-state parameters, and driving curves and transient 

emissions data were used to predict emissions associated with the power consumed as a result of 

transient variables. The model varies the steady-state power/transient power ratio based on 

driving patterns.  To predict the emissions associated with a specific vehicle under specific 

conditions the sum of the results from the steady-state portion and the transient portion is 

determined.  It has been shown that this modeling tactic produces an estimate for NOx, HC, and 

CO emissions.  CO2 emissions are predicted more accurately than NOx, HC, and CO using this 

method [27]. 
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2.2 Influencing Factors 

2.2.1 Deterioration Factor 

It has been determined that system deterioration has an impact on emission values in heavy duty 

diesel engines.  Deterioration can be attributed to multiple factors associated with both 

manufacturer defects and malfunctions.  Common malfunctions that impact emissions values 

include worn turbochargers, fuel injector malfunctions, smoke limiting device failures, 

mechanical failure of the engine, electronic control failures, and excess oil consumption.  Other 

factors that are classified as deterioration can be attributed to lack of maintenance or human 

involvement.  Neglected maintenance issues such as clogged air filters and clogged intercoolers 

can affect emission values.  Human interference can also attribute to altered emissions, such as 

tampering with electronic controllers, equipping engines with improper turbochargers, and 

altering timing [28].   

 

Deterioration of vehicle engine and equipment affect the emissions, therefore a method of 

predicting a deterioration factor was examined.  After examining a sampling of vehicles, it was 

noticed that newer technology vehicles have a tendency to exceed their certification PM 

emission levels in a shorter period of time than older technology vehicles.  It was concluded that 

the revised version of PART5 predicted higher PM emissions over the life of a vehicle, then the 

unedited PART5 model.  The authors recommended that future work be performed along the 

same lines with a larger data set [20].  

 

The effects of system deterioration on in-use diesel engine PM emissions have been examined by 

Yanowitz et al.  In this study twenty-one vehicles were evaluated and it was concluded that a 

correlation between odometer mileage and PM emissions exists.  The same study was conducted 

with chassis dynamometer testing, and a correlation between the PM emissions and odometer 

reading could not be established.  The researchers attributed this lack of correlation to difference 

in measuring methods and test conditions at the different chassis dynamometer facilities where 

the data were acquired [30].      

 

The effects of deterioration on other emission constituents have also been examined.  It has been 

determined that any deterioration that reduces the efficiency of diesel engine combustion, 
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increases the quantities of HC and CO emitted from the engine.  A manner in which to account 

for deterioration is required in order to obtain an accurate emission inventory [30].  Zachariadis 

et al. examined FOREMORE (Forecast of Emissions from Motor Vehicles), a software program 

that has been developed to estimate future levels of engine emissions. It was determined that the 

examined software did not accurately account for deterioration of engine systems and the 

associated impact on emission values.  FOREMORE relied on a linear function to estimate the 

effects of deterioration; the function was based on in-use emission values associated with 

specific mileages, not vehicle ages. Three specific aspects of deterioration should be considered 

when examining the impact of vehicle emissions, average age of vehicle fleet, decrease of 

average specific mileage with vehicle age, and the deterioration of emissions control systems 

with age.  The FOREMORE software produced unrealistic results by assuming that vehicle miles 

travelled was independent of vehicle age, and that the emission factors are independent of age.  It 

should be noted that age of a vehicle and the associated technological alterations have a 

significant impact on engine emissions [31].   

 

McDonald has researched developing a deterioration factor by comparing the average emissions 

of vehicles with 50,000 miles to the average emissions of vehicles with 4,000 miles, and 

employing a linear regression technique.  NOx and CO were examined, and it was determined 

that the correlation between mileage, NOx, and CO was not accurately represented linearly 

during the examined mileage range [12].  Ntziachristos et al., however, feel that deterioration can 

be accurately accounted for by employing a linear function based on mileage, up to the point 

where 74,565 miles is reached [33]. 

 

2.2.2 Road Grade 

Along with deterioration, road grade has an impact on in-use exhaust emissions.  The current 

emission prediction software released by the EPA does not include road grade in its emissions 

prediction analysis.  The EPA has stated that not enough data and time were available to address 

the road grade factor in MOVES, however they acknowledge that road grade, and the coupling 

of road grade and deterioration may have a significant impact on actual in-use emission values.  

Road grade has been shown to have a measurable effect on NOx, CO, and CO2 emissions, most 

specifically when the road grade is greater than two percent [34].   
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Khan examined the impact of road grade on emissions and fuel consumption of buses that 

employed a diesel engine.  A model was developed that predicted the fuel consumption as a 

function of speed, weight, and road grade.  This model simply used a sinusoidal input to model 

road grade [35].  The influence of road grade on emissions factors was examined and discussed 

by Antonacci et al. These researchers studied the effect of road grade on emissions in mountain 

areas near the Alps.  It has been shown that when the average road grade is greater than two 

percent, the increase in emissions experienced by ascending vehicles is not negated by the 

decrease in emissions experienced by descending vehicles.  A case study which examined a 

transit route between Italy and Austria found that for a route with an average road grade of 3.5 

percent, NOx emissions were 16 percent higher than they would be if the terrain was flat [29].   

 

2.3 Defeat Devices and Consent Decrees 

Engines produced by the six leading heavy duty diesel engine manufacturers in the 1990's were 

determined to be equipped with technology that altered their injection timing during certification 

testing.  This altered injection timing resulted in a reduction in emissions production during 

certification testing, which meant the engines produced higher levels of certain emissions when 

they were put into real world driving conditions than they had during engine dynamometer 

testing with the FTP cycle.  Such devices were declared to be defeat devices and were 

determined to be illegal by the United States government.  The United States and each engine 

manufacturer entered into an agreement known as a Consent Decree.  The Consent Decrees 

required that the engine manufacturers cease the employment of defeat devices, and altered the 

method by which engines were certified to meet emissions standards [70].  

    

2.4 Artificial Intelligence Modeling Techniques 

Multiple artificial intelligence modeling methods exist, including expert systems, case based 

reasoning, bayesian networks, genetic algorithms, fuzzy logic, and neural networks. 

2.4.1 Expert Systems  

Expert systems are generally employed in situations where mathematical algorithms are not 

applicable.  The expert system is programmed with a series of rules based on knowledge from an 

expert in the applicable field, and then these rules are applied to the input information.  The 
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output of the expert system is a result of the cause and effect relationship between the 

programmed rules and the inputted information.  A special type of expert system is known as 

case based reasoning, which relies on the solutions to similar, previously solved problems to 

arrive at a solution to the current problem.   

 

2.4.2 Bayesian Networks 

Bayesian networks are graphically based, and incorporate events and probabilities.  It is most 

applicable in situations where one is concerned with the likelihood of an event occurring or the 

dependency of one event on another.  When parameter optimization is the objective of a model, 

genetic algorithms are applicable.   

 

2.4.3 Genetic Algorithms 

Genetic algorithms search a defined solution space for a set of data that can serve as a solution to 

the problem being examined.  Each set of data examined is referred to as an individual and the 

algorithm operates analogous to Charles Darwin's theory of evolution.  Only the individuals 

which meet predefined criteria are permitted to combine with other individuals to create new 

individuals.  As in the evolution of a species, only the most fit survive to produce more 

individuals.  The process continues until a preset number of generations of individuals have been 

evaluated or a certain individual meets a performance criterion [36]. The basic logic followed in 

any genetic algorithm is shown below in Table 3-2.   
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Table 2.4.3.1: Genetic Algorithm Approach [37] 

Genetic Algorithm Approach 
Step # Action 

1 Initialize population with random numbers within each parameter's range 
2 Computer output values for each population set 
3 Calculate fitness level of each member based on pre-determined standards  
4 For members whose values exceed required value, set fitness value to zero 
5 Select remaining members of the population based on probability selection for crossover 
6 Generate new members, forming next generation of the population 

7 
Re-visit Step 2 and continue process until desired number of generations is reached or the 
stopping criteria is met 

 

 

2.4.4 Artificial Neural Networks 

Artificial neural networks, like genetic algorithms, are modeled after biological phenomena.  

Artificial neural networks are modeled after the nervous system and the function of the brain.  

The brain is composed of neurons that interact via connections, each neuron can be linked to up 

to 200,000 other neurons.  The neurons in the human brain are made up of three main 

components, somas, dendrites, and axons.  The dendrites are branchlike extensions that serve as 

the entry point for information.  The soma serves as the main body of the neuron and acts as a 

gathering point for all of the information that enters via the dendrites.  The outputs of the neurons 

exit through the axon.  Neurons have multiple dendrites or input points, but only a single axon or 

output point.  Figure 2.4.4.1 depicts the basic architecture of a human neuron. 
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Figure 2.4.4.1: Schematic of Human Neuron [38] 

 

The structure of the brain’s neurons lends itself to mathematical modeling based on the multiple 

inputs, single output operation.  Figure 2.4.4.2 below depicts a schematic of the basic artificial 

neuron, the inputs are represented by the letter “x” and the output is represented by the letter “y”.  

It is shown that multiple inputs are summed or evaluated together in order to produce a single 

output.  This output is commonly referred to as the activation, and is derived by applying weights 

to all inputs and using their values in a specified activation function.  This function is commonly 

referred to as the transfer function, and it typically exhibits non-linear behavior for a sub-set of 

real numbers [39].   

 

 

 

 

 

 

 

 

 

 

Figure 2.4.4.2: Schematic of Artificial Neuron [39] 
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Artificial neurons can be divided into three specific types, input neurons, output neurons, and 

hidden neurons.  Input neurons serve as receptors to acquire information from outside the actual 

network, while output neurons send information outside of the network or inside the network via 

feedback paths.  Unlike the input and output neurons, hidden neurons can only send or receive 

information from inside the network.  These types of neurons are combined in different manners 

to make-up the structures of the neural networks.  Neural networks always have multiple inputs, 

but can have differing numbers of outputs, layers, and hidden layers.  The networks can also be 

designed to have information flow in a single direction or multiple directions.  Networks that 

allow information to only flow in one direction are referred to as static or feed-forward networks.  

If information flows backwards as well as forwards, the network is referred to as a feedback or 

recurrent network.  An example of this would be if a neuron’s output was employed as the input 

by a neuron in a previous layer [40]. 

 

One of the defining factors of a neural network is its ability to learn.  Learning describes the 

process by which the weights of internal parameters or connections between nodes are altered.  

Learning is said to occur when the weights are altered until the target output value is obtained 

using a specified data set as inputs.  Three different learning types exists, supervised or error 

based, unsupervised or output-based, and reinforcement or performance index-based.  

Supervised learning requires data sets have input and output data.  The weight alterations occur 

based on the error between the calculated output and the expected output value.  The weights are 

adjusted until the error between the calculated output value and the expected output value 

reaches a value deemed acceptable.  Unsupervised learning does not require outputs as part of 

the training data.  In this method the synaptic weights are adjusted based on the relationship 

between the neurons on either side of the synapse.  The weights are increased based on the 

activity of the synapse; more active synapses have higher weights, while less active ones receive 

a decrease in weight.  Eventually, the neuron that is active the most remains, while all other 

neurons become inconsequential due to the low weighting of their adjacent synapses.  The 

performance index learning method does not require pairs of inputs and outputs.  Rather than 

employing the input and output training data directly, a performance index is designed to 

evaluate the data.  The synaptic weights are altered based on the effect they have on the 

performance index.  The weighting is increased if a positive effect on the performance index 
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occurs, and a decrease in weight is experienced if a negative effect on the performance index 

occurs [40].   

  

The artificial neural network model does not require details about the exact construction of the 

system being modeled; rather it arrives at its outputs based on a learned relationship between 

input data and controlled and uncontrolled variables.  This relationship is learned from data sets 

that are obtained previously, and employed by the model.  The accuracy of a neural network is 

impacted by the activation or transfer function and the number of hidden neurons.  It is important 

for the program developer to select an appropriate transfer function and number of neurons.  

Various transfer functions are employed in artificial neural network applications such as 

Gaussian, Gaussian Complement, Sigmoid Logistic, and Symmetric Logistic.  Each of these 

transfer functions are most applicable to certain types of data.  For example, the Gaussian 

transfer function is most applicable when the important characteristics of the data are not the 

extreme values, this function transforms the extreme values of the data to low values, and 

average values in high values, while normalizing the outputs to values between 0 and 1.  If the 

extreme data points have the most impact on the data characteristics then the Gaussian 

complement transfer function should be employed.  The most commonly used transfer function 

is the Sigmoid Logistic function, this function transforms the input data to values that range from 

0 to 1.  In contrast, the Symmetric Logistic Function transforms input data to values between -1 

and 1.  Table 2.4.4.1 displays each type of transfer function addressed, and the associated 

mathematical function [58].  In this table n represents the input into the neural network. 
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Table 2.4.4.1 Commonly Used Transfer Function in ANN [58] 

Transfer Function Type Mathematical Function 

Gaussian                

Gaussian Complement                 

Sigmoid Logistic      
 

         
 

Symmetric Logistic      
 

         
   

 

Weighting factors are incorporated into the program, and are altered based on rules which results 

in an input and output relationship that accomplishes the desired result.  It is also necessary that a 

sufficiently large, yet not exceedingly large range of data is used to train the algorithm.  If too 

small of a training set is employed the algorithm will not be accurate when dealing with data 

outside the range, if the training set is too large an understanding of realistic conditions may be 

lost.    

 

2.4.5 ANN Applied to Emissions Modeling  

Artificial neural networks have been successfully applied to model emissions from natural gas 

combustion engines.  The input variables for this work were charge pressure, charge temperature, 

start and duration of combustion, and equivalence ratio.  The outputs of the neural network were 

NOx emissions and engine efficiency.  It was determined that both the genetic algorithm and the 

neural network approaches are appropriate to predict engine efficiency and NOx emissions of 

engines. 

 

Further research has focused solely on predicting NOx emissions by employing an ANN.  One 

work in particular focused on predicting NOx emissions in order to determine the quantity of 

reductant to add via an emission reduction system.  In current NOx reduction techniques, either 

data acquired by a NOx analyzer or predicted based on an engine map dictate the quantity of 

reductant to be injected.  This work considered replacing the NOx analyzer with an ANN due to 
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the reduced financial, maintenance, and space demands of the neural network compared to the 

current NOx analyzers.  The accuracy of the neural network was determined by comparing its 

outputs to the NOx predicted by an engine map and a linear fit.  The researchers designed a 

supervised, multilayer perceptron neural network, which was tested with varying quantities of 

nodes.  The number of hidden layers was varied between zero and two, and the number of nodes 

was varied between eight and 40.  The inputs were engine speed, both at current time and one 

time step previous, rack position, both at current time and one through four time steps previous, 

charge air pressure, at current time, one time step and two time steps previous, and also charge 

air temperature, at the current time only.  After running multiple variations with hidden layers 

and node numbers, it was determined that the most accurate results were achieved with one 

hidden layer and between 20 and 40 nodes.  With 30 nodes the average absolute error between 

the measured and calculated NOx emissions was determined to be 5.2%.  It was determined that 

the neural network is a feasible and accurate method to predict NOx emissions from a heavy duty 

diesel engine [11].  Obodeh et al. also researched the applicability of neural networks to NOx 

emission prediction for heavy duty diesel engines.  The inputs for the neural network were 

engine speed and load, and the outputs were NOx, power, and specific fuel consumption.  It was 

determined that these inputs were able to accurately predict the desired output, and that ANNs 

are applicable to predicting NOx emissions [42].  

 

Previously mentioned works required a minimum five inputs to predict emissions by employing 

an ANN.  Arcaklioglu et al. have designed an artificial neural network that predicts exhaust 

emissions from a diesel engine by employing three inputs.  The three required inputs are engine 

speed, accelerator pedal request, and injection pressure.  This research focused on four-cylinder, 

four-stroke diesel engines, equipped with a turbocharger and indirect injection.  The testing 

included both full and partially loaded scenarios and different injection pressure and throttle 

positions.  The ANN was trained with results for engine speed, injection pressure, and throttle 

position that were obtained experimentally.  The method of back-propagation learning was used, 

employing a single layer and two hidden layers.  During the testing and design of the algorithm, 

results obtained with differing numbers of neurons and layers were examined.  This work 

showed that an ANN can be used to successfully predict exhaust emissions, with limited inputs, 
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from a diesel engine, most specifically when steady results can be produced from the same 

experiment [43].    

 

The development of a neural network model of a four-cylinder diesel engine was also examined 

by Obodeh et al.  The objective of this work was to employ an ANN to reduce emissions from 

diesel engines.  The artificial neural network was trained with experimentally obtained data and 

used to predict diesel emissions at a variety of operating scenarios.  The backwards propagation 

learning algorithm was used to train the neural network, which was constructed with the 

multiplayer preceptron structure.  Three outputs were desired for this research, CO, NOx, and 

PM emissions.  An individual multilayer perceptron neural network was constructed for each 

desired output, this allows for better accuracy since each neural network is focused on its specific 

output.  Data sets were available for 33 different operation scenarios, 23 of these data sets were 

used for training, and the remainders were employed for validation.  It was determined that the 

neural network produced acceptable results, in agreement with standard emissions levels, and 

therefore showing that neural networks are applicable in predicting engine emissions [44].   

 

Neural networks have also been applied to predicting failures and reliability of vehicle engines.  

Neural networks are selected for this application because they have the ability to learn based on 

past reliability indices and failure that will likely occur in the future based on this history.  For 

this application it was determined that the radial basis function structure of the neural network 

was optimum, due to its employment of a local network, not global networks as used in the 

multilayer perceptron method.  Using the local network rather than the global networks allows 

the program to use single sets of processing units, which are individually applicable to a 

specified region of the input space.  This structure allows the program to determine if a given 

input is within or outside of the trained set of data, which distinguishes it from the multilayer 

perceptron method.  The analysis and testing determined that neural networks are applicable to 

predicting failure in engine systems.  The neural networks resulted in more accurate outputs than 

that of the currently employed linear models.  This research also showed that the radial basis 

function method produced more reliable data compared to the feed-forward multilayer 

perceptron method [46]. 
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A Study by Clark et al. determined if diesel engine emissions could accurately be predicted by a 

model that was developed using data and information from a different test schedule.  Two 

modeling methods were evaluated, an artificial neural network method and a method that 

employed a model derived from continuous power data.  The model based on continuous power 

data is a conventional approach to emissions modeling.  In this conventional model it was 

common practice to model NOx and CO2 emissions as steady-state, this approach may become 

problematic as newer technologies such as exhaust gas recirculation (EGR) become more 

prevalent.  It is not accurate to model CO and PM emissions with a steady-state model since 

transient effects are introduced as a result of the turbocharger.  In this research only NOx and 

CO2 emissions were modeled with the conventional continuous data based method.  The 

conventional means of modeling exhaust emissions was either based on continuous speed or 

power data. It was determined that the artificial neural network provided more accurate results 

when compared with the conventional modeling methods.  The neural network was trained with 

data acquired from a specific test schedule, and then the model was used to predict emissions 

resulting from a different test schedule.  The inputs for this model were axle speed, the first 

derivative of axle speed, the second derivative of axle speed, torque, and the first derivative of 

torque, and the second derivative of torque.  The output of the model was the emission value of 

NOx.  Through analysis it was determined that it is possible to accurately predict NOx emissions 

associated with a certain test cycle, with a neural network that has been trained with a different 

test cycle [11]. 

 

Researchers at an university in Spain have examined the feasibility of applying artificial neural 

networks to optimize engine parameters with the objective of reducing exhaust emissions to meet 

the more strict standards set to come in the future.  To acquire the necessary training data, 

stationary tests were conducted on a single cylinder, diesel engine.  For the neural network seven 

inputs were measured, including engine speed, air mass intake, fuel injection pressure, fuel mass 

injected, initial injection angle, EGR percentage, and nozzle diameter.  NOx emissions, PM 

emissions, and fuel consumption were the three desired outputs of the neural network.  The 

structure of the model in the research consisted of three separate neural networks, rather than one 

inclusive network.  A network was constructed to predict each desired output, this method allows 

for the networks to learn and adapt to specifically predict each output.  If a single neural network 
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was employed, the variable with the least accuracy would hinder the accuracy of the prediction 

values for all outputs.  It was determined that neural networks were applicable to engine 

parameter optimization as a function of engine emissions.  The comparison of the outputs of the 

neural networks to measured values show that neural networks can accurately predict NOx 

emissions and fuel consumption, however a different set of inputs is necessary to better predict 

PM emissions [47].     

 

Hashemi et al. have researched predicting heavy duty diesel engine emissions by employing an 

ANN.  Six tractor trailer vehicles, equipped with varying engines, were tested on a chassis 

dynamometer and the recorded data were employed as training data for an ANN.  The ANN 

predicted the quantities of CO2, CO, HC, and NOx emitted by heavy duty diesel engines.  The 

neural network initially relied on 20 inputs, made up of engine parameters and their derivatives, 

however it was determined that similar results could be produced in less computational time with 

14 inputs.  While optimizing the model, the number of inputs was decreased and test 

compilations were completed in order to determine which input had the greatest impact on the 

outputs.  It was determined that the predicted emission values were most strongly a function of 

the dispersed speed.  The first and second derivatives of torque were also key factors in the 

emission values that were obtained as outputs.   

 

In this research the neural network was trained with data that was acquired during testing of the 

Highway cycle, and was applied to predict emissions resulting from the CSHVR and UDDS 

cycles.  Further research used the CSHVR and the UDDS cycle to train the network, and then 

used that network to predict emission values for other cycles.  It was determined that the network 

trained with the Highway cycle, produced the most accurate results when predicting emissions 

expected from other cycles.  This differing level of accuracy was attributed to the fact that the 

Highway cycle included acceleration, deceleration, and highway speed events.  This research 

determined that when training an ANN it is best to use data that has been acquired over a range 

of driving conditions.  It has also been shown that neural networks are applicable in estimating 

CO2 and NOx emissions.  The HC emission predictions were not accurate due to the selection of 

parameters for this network.  This network was based on power, speed, and torque, while it has 

been shown that HC emissions are dependent on operating temperature and transient behavior.  
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This particular neural network also proved to be a poor predictor of CO emissions [50].  Traver 

et al. also documented difficulty in accurately predicting HC and CO emissions using neural 

networks [51].  This was attributed to the fact that CO is reliant on transient events and rapid 

acceleration events.  The model was able to predict positive spikes in CO emissions at expected 

times; however the actual predicted values were not accurate.  Brace was able to produce a 

neural network model that accurately accounted for rapid changes in engine operating 

conditions, which resulted in more accurately predicted values of CO emissions [52].  The 

research determined that artificial neural networks show potential for being employed in 

predicting emission inventories; however appropriate training data and input parameters must be 

employed [50]. 

 

Thompson et al. have shown that an artificial neural network is applicable to predicting torque 

and exhaust emissions for heavy duty diesel engines on the FTP and two random cycles.  This 

neural network system consists of pre-processing and post processing.  Before the data is applied 

to the neural network it is normalized and filtered.  This pre-processing results in a more stable 

model, and a reduction in data noise.  The outputs of the neural network are then filtered and de-

normalized.  It was determined that NOx and CO2 were most accurately modeled by the network.  

Error was introduced when NOx prediction is required during idle conditions, under these 

conditions the model under predicted the NOx emitted.  The quantities of CO and HC were not 

accurately predicted by the neural network; however for CO the model was able to predict when 

major CO production events occurred [53]. 

 

2.4.6 ANN Applied to Engine Optimization and Modeling 

Neural networks have been successfully applied to diesel engine related areas other than 

emissions prediction.  Delagrammatikas et al. developed a neural network to simulate a heavy 

duty diesel engine with the objective of reducing in-vehicle engine design time.  In this work the 

ability of a neural network to model a heavy duty diesel engine for optimization purposes was 

compared to commonly used high-fidelity models.  It was determined that the neural network 

possessed greater stability than the current high-fidelity model, and produced results with less 

than six percent error compared to the high-fidelity baseline model.  Through this research it was 



 
 

30 
 

determined that neural networks are applicable in engine optimization and modeling situations 

and are comparable in accuracy and computational time to current high fidelity models [49]. 

 

Researchers have also worked on determining the viability of employing genetic algorithms and 

neural networks to aide in the optimization of diesel engine operations.  Diesel engines were 

modeled and simulated with artificial neural networks, which could predict engine emissions and 

fuel consumption based on input engine operation characteristics [37].  The specific exhaust 

constituents that were modeled were HC, CO, PM, and NOx.  The fuel consumption was 

evaluated on a brake-specific scale.  A secondary objective was to arrive at an optimal 

combination of engine input parameters that would reduce the fuel consumption, while still 

complying with emission standards.  Attempts at optimizing engine parameters via numerical 

modeling and techniques have been widely documented and have been determined to be 

applicable in limited scenarios.  Numerical optimization algorithms can be affected by local 

extrema, and discontinuities in the models functions.  This work examined artificial neural 

networks for optimization of the engine parameters, due to their relative immunity to functional 

discontinuities such as non-linear behavior and local minima and maxima.  Table 2.4.6.1 shows 

each of the input variables associated with the artificial neural network (ANN).  These 

parameters were varied independently in order to construct 440 test cases that were evaluated by 

the ANN.  This study determined that ANN and genetic algorithms can be effectively employed 

to model engine operations and emissions, and be used to optimize engine operations to meet 

emissions and fuel consumption targets [37].   

 

Table 2.4.6.1: Engine Operating Parameters Used as Inputs to Genetic Algorithm [37]. 
 

Operating Parameters Variable 
Engine Speed N 

Fuel Mass Injected Mf 
Air Mass Ma 

Exhaust Gas Recirculation EGR 
Injection Pressure IP 

Start of Pilot Injection SOIP 
Start of Main Injection SOIM 

Intake Temperature Tint 
Water Temperature Tw 
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Tutuncu et al. also determined through research that artificial neural networks were applicable to 

diesel and gasoline engine modeling. The objective of this work was to model exhaust emissions 

and performance of gasoline and diesel fueled internal combustion engines via an artificial 

neural network.  Since the diesel engine model is most relevant to the current research topic, only 

it will be addressed here.  The ANN model required five inputs to produce six outputs.  R-

Squared values for each of the modeled characteristics were over 0.99 when the artificial neural 

network results were compared to experimental data [41].   

 

Other research has been directed towards simulating the rate of combustion in diesel engines 

during transient operation with an empirical model.  An artificial neural network was selected for 

the model due to its speed of computation and application to nonlinear phenomena.  To verify 

the results of the model, the model outputs were compared to experimentally obtained results. 

The neural network modeled the rate of heat released from a turbocharged diesel engine during 

transient conditions, and required the following inputs: in-cylinder pressure, air and fuel mass 

flow, EGR rate, boost pressure, exhaust manifold pressure, and intake and exhaust gas 

temperatures.  The output of the model was the rate of heat released based on the time segment 

that the valves were closed and the heat lost through the engine walls.  In the training of the 

artificial neural network, the input and output data was normalized so that the neural network 

learned about differences and not actual values.  This normalization helped the neural network 

learn to predict more accurately.  The learning method employed for the neural network was 

back propagation, and the model was structured in a multilayer perceptron manner.  The 

multilayer peceptron structure consisted of one hidden layer and between one and eight neurons.  

After comparing the outputs of the neural network model to experimental results it was 

determined that neural networks are applicable to any engine transient operation situation [45].   

 

An artificial neural network has also been designed to predict specific fuel consumption and 

exhaust temperature associated with a heavy duty diesel engine.  The neural network developed 

for this task consisted of three inputs and two outputs.  The inputs employed by the network were 

engine speed, brake mean effective pressure, and injection timing.  The outputs were the desired 

objectives discussed above, brake specific fuel consumption, and exhaust temperature.  When the 

neural network outputs were compared to experimental data, a difference of less than two 
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percent was achieved.  This work shows that with few inputs, neural networks can accurately 

predict exhaust temperature and fuel consumption [48]. 
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3. Vehicle Testing and Data Collection 

It should be noted that the data employed in this research was acquired through previous research 

efforts of CAFEE.  Acknowledgement and appreciation is given to the engineers, staff, faculty, 

and graduate students that were associated with the mobile emissions measurement system 

research, and data acquisition which occurred at the engine and emissions research laboratory. 

 

3.1 In-use Data Acquisition 

The in-use data employed in the training and validation of the ANN developed in this research 

was obtained with WVU's Mobile Emission Measurement System (MEMS).  The system was 

installed on multiple vehicles equipped with various engines in order to record in-use emission 

data for different routes.  The vehicles being examined were equipped with ambient sensors in 

order to measure ambient temperature, ambient pressure, and relative humidity.  The vehicles 

were also equipped with a global positioning system (GPS) to record the vehicle speed and 

location.  Exhaust gas analyzers were used to measure the quantities of NOx and CO2 which 

were being emitted.  Data acquisition systems were interfaced with the engine control module 

(ECM) in order to record engine speed and torque values.  Figure 3.1.1 shows a schematic of the 

MEMS setup [62].   
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Figure 3.1.1: Schematic of MEMS [62] 

 

3.2 Test Engines 

A variety of engines from different manufacturers were tested with the WVU's Mobile Emissions 

Measurement System.  For this research data, a 400 hp engine from Manufacturer A was 

employed.  Table 3.2.1 displays the specifications for this engine.  The Manufacturer A was 

subjected to both in-use and engine dynamometer emissions testing.  The engine torque and 

speed plots associated with the routes shown in the following sections of this chapter were 

constructed based on Manufacturer A 400 hp engine data.  Tables 3.2.2 and 3.2.3 display the 

specification associated with the engines and vehicles employed from Manufacturer B and 

Manufacturer C. 
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Table 3.2.1: Manufacturer A Engine and Vehicle Specifications 

Manufacturer Manufacturer A 
Power Rating 400 hp 

Year 1995 
Engine Configuration Inline -6  

Transmission Manual  

Test Weight Range 78,320-78,480 lbs 

 

Table 3.2.2: Manufacturer B Engine and Vehicle Specifications 

Manufacturer Manufacturer B 

Power Rating 525 hp 

Year 2002 

Engine Configuration Inline -6  

Transmission Manual 

Test Weight  66,240 lbs 

 

Table 3.2.3: Manufacturer C Engine and Vehicle Specifications 

Manufacturer Manufacturer C 

Power Rating 345 hp 

Year 2002 

Engine Configuration Inline -6  

Transmission Manual 

Test Weight  58,140 lbs 

 

3.3 Vehicle Routes 

Vehicles equipped with the MEMS travelled specified routes, and data were recorded for the 

duration of the travel.  For this research data obtained on the Bruceton Mills, WV route and the 

Washington, PA route were used. 

 

3.3.1 Bruceton Mills, WV Route 

 The Bruceton Mills, WV route began and ended in the Sabraton area of Morgantown, WV. The 

vehicle turned around at a designated location, Bruceton Mills, WV, on Interstate 68.  The 

majority of the travel occurred on Interstate 68, where the posted speed limit is 70 mph, however 

the return trip includes required speed reductions to 50 mph for descending hills and a required 
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brake check stop.  The travel from Sabraton, WV to Bruceton, Mills, WV and back to Sabraton, 

WV was 39.7 miles in its entirety [63]. Figure 3.3.1.1 depicts the Bruceton Mills, WV route [65].  

The travel was split into two routes, the route from Sabraton, WV to Bruceton Mills, WV, and 

the return route from Bruceton Mills, WV to Sabraton, WV. 

 

 
Figure 3.3.1.1: Map of Bruceton Mills, WV Route [65] 

 

Figures 3.3.1.2 and 3.3.1.3 show the engine speed and torque, respectively, associated with the 

route from Sabraton, WV to Bruceton Mills, WV.  The engine speed and torque associated with 

the return route from Bruceton Mills, WV to Sabraton, WV are shown in Figures 3.3.1.5 and 

3.3.1.6, respectively.  
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Figure 3.3.1.2: Engine Speed for the Sabraton, WV to Bruceton Mills, WV Route with 

Manufacturer A Engine 

 

 
Figure 3.3.1.3: Engine Torque for the Sabraton, WV to Bruceton Mills, WV Route with 

Manufacturer A Engine 
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Figure 3.3.1.4 displays the road grade associated with the route from Sabraton, WV to Bruceton 

Mills, WV.  It is shown that the road grade ranges from -15% to 7%.  The travel which occurred 

between 800 and 1300 seconds was the longest continual incline travel that occurred in any of 

the routes which were examined.  The road grade determined to be -15% was due to a missing 

data point or measurement error in the pressure data, therefore the spike shown at 2050 seconds 

was due to the application of a moving average including the inaccurate data point. 

 

 
Figure 3.3.1.4 Road Grade from Sabraton, WV to Bruceton Mills, WV with Manufacturer A 

Engine 
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Figure 3.3.1.5: Engine Torque for Bruceton Mills, WV to Sabraton, WV Route with 

Manufacturer A Engine 

 

 
Figure 3.3.1.6: Engine Torque for Bruceton Mills, WV to Sabraton, WV Route with 

Manufacturer A Engine 
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The road grade associated with the travel from Bruceton Mills, WV to Sabraton, WV is shown in 

Figure 3.3.1.7.  The road grade ranged from -14% to 14%.  The portions of the route between 

400 and 800 seconds, and 1000 and 1300 seconds represent periods of ascent and descent, 

respectively. 

 

 
Figure 3.3.1.7 Road Grade From Bruceton Mills, WV to Sabraton, WV with Manufacturer A 

Engine 

 

3.3.2 Washington, PA Route 

The second route, designated the Washington, PA route, began in Washington, PA and 

concluded at the first rest area in West Virginia.  This route was a combination of suburban and 

interstate driving scenarios.  The speed limits on this route varied from 25-45 mph in the 

suburban areas to 55-65 mph on the highway portions of the route.  From Washington, PA the 

vehicle traveled on United States Route 19 north, which incorporated suburban driving 

conditions.  The vehicle then traveled on Pennsylvania State Route 51 to Interstate 279 south, 

and then proceeded on Interstate 79 south until the West Virginia rest stop was reached [63].   
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The Washington, PA route was split into three sections, Washington, PA 1, Washington, PA 2, 

and Washington, PA 3. Figures 3.3.2.2 and 3.3.2.3 show the engine speed and torque, 

respectively, associated with the Washington, PA 1 route.  This route was a total of 12.1 miles, 

starting at Exit 19B on Interstate 79, and ending at the pull-over on Route 19, outside of Upper 

St. Claire, PA [65].  Figure 3.3.2.1 shows a map of the Washington, PA 1 portion of the 

Washington, PA route. 

 

 

 
Figure 3.3.2.1: Washington, PA 1 Route [65] 
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Figure 3.3.2.2: Engine Speed for Washington, PA 1 Route with Manufacturer A Engine 

 
 

 
 

Figure 3.3.2.3: Engine Torque for Washington, PA 1 Route 
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Figure 3.3.2.4 displays the road grade associated with the Washington, PA 1 route.  It is shown 

that for the majority of the route the road grade is between 6% and -6%.   

 

 
 

Figure 3.3.2.4: Road Grade for Washington, PA 1 Route with Manufacturer A Engine 

 
 

The second portion of the Washington, PA route began where the Washington, PA 1 portion 

ended, at the pull-over area outside of Upper St. Clair, PA.  The route then followed Route 19 to 

Interstate 279, passing through Mt. Lebanon, PA.  The route then followed Interstate 279 to 

Interstate 79 South, until the rest area at Bridgeville, PA.  The Washington, PA 2 portion of the 

Washington, PA route ended at the rest area at Bridgeville, PA.  The total length of the 

Washington, PA 2 portion of the Washington, PA route was 23.1 miles [65].  Figure 3.3.2.5 

shows a map of the Washington, PA 2 route.  Figures 3.3.2.6 and 3.3.2.7 show the engine speed 

and torque, respectively, associated with the Washington, PA 2 route.   
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Figure 3.3.2.5: Washington, PA 2 Route [65] 
 

 
Figure 3.3.2.6: Engine Speed for Washington, PA 2 Route with Manufacturer A Engine 
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Figure 3.3.2.7: Engine Torque for Washington, PA 2 Route with Manufacturer A Engine 

 
 

The road grade associated with the Washington, PA 2 route is shown in Figure 3.3.2.8.  It is 

shown that the periods of incline and decline in this route are shorter than those experienced in 

the Bruceton Mills, WV routes. 
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Figure 3.3.2.8: Road Grade for Washington, PA 2 Route with Manufacturer A Engine 

 
 

The third portion of the Washington, PA route began where the Washington, PA 2 route ended, 

at the Bridgeville, PA rest stop.  The Washington, PA 3 portion of the route followed Interstate 

79 South until the first rest stop in West Virginia, which served as the ending location.  The total 

distance traveled for the Washington, PA 3 route was 51.8 miles.  The map shown in Figure 

3.3.2.8 shows the Washington, PA 3 route, and then shows the route continuing until the vehicle 

returned to Sabraton, WV [65]. The engine speed and torque associated with the Washington, PA 

3 route are shown in Figures 3.3.2.9 and 3.3.2.10, respectively.      

 



 
 

47 
 

 
 

Figure 3.3.2.8: Washington, PA 3 Route [65] 
 

 
 

Figure 3.3.2.9: Engine Speed for Washington, PA 3 Route with Manufacturer B Engine 
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Figure 3.3.2.10: Engine Torque for Washington, PA 3 Route with Manufacturer B Engine 
 

The torque values displayed in the previous figure at 3820 seconds and 3930 seconds were not 

representative of values experienced during the vehicle operation on the examined route.  These 

two points were determined to be post-processing errors.  The torque values plotted in the figure 

were calculated from the percentage load recorded by the ECU and the maximum torque.  At 

these two data points the engine speed and torque recorded by the ECU were of the same order 

as the data points preceding and proceding the data points being examined. Figure 3.3.2.11 

displays the road grade associated with the Washington, PA 3 route.    The road grade ranged 

from -14.5% to 13%.   
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Figure 3.3.2.11: Road Grade for Washington, PA 3 Route 

 

3.3.3 In-Use Data Set Designations 

Throughout the remainder of this document the data sets that were used for training and 

verification are referred to using designated titles.  Table 3.3.3.1 displays the data set titles and 

the routes they are associated with for the 400 hp engine by Manufacturer A.  The data sets titled 

Sab2Bruceton 1 and Sab2Bruceton 2 were acquired from a vehicle traveling from Sabraton, WV 

to Bruceton Mills, WV, while data sets Bruceton2Sab 1 and Bruceton2Sab 2 correspond to 

specific data sets that were taken during the return route from Bruceton Mills, WV to Sabraton, 

WV.  The numbers after to data set designation title denote the repeated runs of the specific 

route. Each of the route in the table were run twice, the first run designated with a 1, and the 

second designated with a 2.   
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Table 3.3.3.1 Data Set Designations  
 

Data Set Designation Route 

Sab2Bruceton 1 Sabraton, WV to Bruceton Mills, WV 

Bruceton2Sab 1 Bruceton Mills, WV to Sabraton, WV 

Sab2Bruceton 2 Sabraton, WV to Bruceton Mills, WV 

Bruceton2Sab 2 Bruceton Mills, WV to Sabraton, WV 

Wash PA1 1 Washington PA 1 

Wash PA1 2 Washington PA 1 

Wash PA2 1 Washington PA 2 

Wash PA2 2 Washington PA 2 

 

3.4 Engine Dynamometer Data Acquisition 

In addition to the data obtained by the MEMS projects, data obtained at the EERC at WVU was 

also employed in the development and verification of the ANN developed for this research.  This 

facility was build in 1993 in compliance with the standards of the Code of Federal Regulations 

(CFR) part 86, subpart N.  The facility is equipped with an engine dynamometer, a dilution 

tunnel, and a constant volume sampling system. The purpose of the engine dynamometer was to 

absorb and supply loads from and to the engine.  The dynamometer was equipped with a digital 

encoder to measure the engine speed and the engine torque was measured by employing a load 

cell.  The purpose of the dilution tunnel was to dilute raw emissions with ambient air, to simulate 

the dilution of the tail pipe exhaust in the atmosphere.  Constant volume sampling ensures that 

each analyzer receives the same volume of gas to assess [57].  A schematic of the EERC test 

setup is shown in Figure 3.4.1 [57]. 
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Figure 3.4.1: Schematic of Test Setup at EERC [57] 

 

Initially data obtained by examining the Federal Test Procedure (FTP) cycle was employed as 

training data for the emissions module of the ANN.  The FTP cycle is made up of four portions, 

the New York Non Freeway (NYNF), the Los Angeles Non Freeway (LANF), Los Angeles 

Freeway (LAFY), and the forth portion repeats the NYNF portion.  The NYNF portion mimics 

light urban traffic by incorporating frequent starts and stops, the LANF portion models crowded 

urban traffic with limited stops, and the LAFY portion mimics a crowded expressway in Los 

Angeles [10].  The FTP cycle is used during certification to verify that newly produced engines 

meet the current EPA regulations.     

 

3.4.1 FTP Data  

The Federal Test Procedure cycle that was employed by the engine dynamometer at the WVU 

EERL to test the 1995 Manufacturer A 400 hp engine is shown in Figures 3.4.1.1 and 3.4.1.2.  It 

is shown that the engine speed does not exceed 2000 RPM, and the maximum torque 

experienced by the engine does not exceed 1500 ft lbs.   

 



 
 

52 
 

 

 

Figure 3.4.1.1: Manufacturer A Engine Speed During a FTP Test 

 

Figure 3.4.1.2: Manufacturer A Engine Torque During a FTP Test 
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When data acquired during FTP cycle testing was used to train the emissions module of the 

ANN, the ANN was determined to under predict the quantity of NOx, and over predict the 

quantity of CO2 produced during the on-road route being examined.  Figure 3.4.1.3 compares the 

actual and the predicted NOx values when the ANN was trained with emissions data from an 

FTP cycle and vehicle data from the Wash PA2 1 data set, and then used to predict emissions 

associated with the Bruceton Mills, WV to Sabraton, WV route.  The comparison of measured to 

predicted CO2 for the training and verification scenario discussed above is shown in Figure 

3.4.1.4.  The figures show that the trends of the NOx emissions produced along the duration of 

the route are closely modeled, however the magnitude of the NOx emissions predicted was in 

some cases half of the measured values.    

 

 

Figure 3.4.1.3: NOx Comparison When Emissions Module was Trained with FTP Data for 
Bruceton2Sab 2 
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Figure 3.4.1.4: CO2 Comparison When Emissions Module was Trained with FTP Data for 
Bruceton2Sab2 

Due to the model year of the engine, it was determined that a defeat device could have been 

incorporated into the Manufacturer A 400 hp engine ECU.  The defeat device would recognize 

the FTP cycle and alter the injection timing in order to meet the EPA standards, meaning the 

engine would operate differently in-use and produce different emissions.  In order to determine if 

the FTP data obtained from testing the Manufacturer A 400 hp engine was the result of a defeat 

device, data from a different engine dynamometer cycle was examined.    

 

An engine dynamometer test cycle had previously been developed to simulate a vehicle traveling 

on the Bruceton Mills, WV route, and data was available from testing of the 1995 Manufacturer 

A 400 hp engine on this cycle.  Figure 3.4.1.5 shows the NOx emissions produced as a function 

of power.  It is shown that when the Bruceton Mills, WV cycle was compared to the FTP cycle, 

the NOx emissions were nearly 40% higher at the maximum horsepower.  Also, at various other 

powers the NOx emissions were higher than those measured during the FTP cycle.  This 

comparison showed that the engine ECU was operating differently during the FTP cycle than the 

Bruceton Mills, WV cycle.  It was determined that data obtained from FTP cycle testing for 

model years prior to the consent decrees may not accurately represent the in-use emissions.  Due 
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to the inability of the FTP cycle data to accurately predict in-use emissions, it was determined 

that other engine dynamometer cycles should be examined for training the ANN.  

 

 

Figure 3.4.1.5: NOx Emissions versus Power for Bruceton Mills, WV and FTP Engine 
Dynamometer Data 

 

3.4.2 Bruceton Mills, WV Cycle  

In addition to the Federal Test Procedure Cycle, three other cycles had been generated by 

previous research efforts and were employed in the research discussed in this dissertation.  A 

cycle was developed to simulate the route from Bruceton Mills, WV to Sabraton, WV, the engine 

speed and torque associated with this cycle for the Manufacturer A 400 hp engine are shown in 

Figure 3.4.2.1 and 3.4.2.2, respectively.  
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Figure 3.4.2.1 Engine Speed for Sabraton, WV to Bruceton Mills, WV Engine Dynamometer 

Testing 

 
Figure 3.4.2.2: Engine Torque for Sabraton, WV to Bruceton Mills, WV Engine Dynamometer 

Testing 
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3.4.3 Washington, PA Cycle 

A cycle was developed to simulate the Washington, PA route, for which the engine speed and 

torque associated with the Manufacturer A 400 hp engine are shown in Figure 3.4.3.1 and 

3.4.3.2, respectively.  

 

 
Figure 3.4.3.1: Engine Speed for Washington, PA Engine Dynamometer Testing 
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Figure 3.4.3.2: Engine Torque for Washington, PA Engine Dynamometer Testing 

 

Another engine dynamometer cycle was developed to simulate the route from Bruceton Mills, 

WV to Sabraton, WV.  The engine speed and torque associated with this route when the 

Manufacturer A 400 hp engine was analyzed are show in Figures 3.4.3.3 and 3.4.3.4, 

respectively. 

. 
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Figure 3.4.3.3: Engine Speed for Bruceton Mills, WV to Sabraton, WV Engine Dynamometer 

Testing 

 

 
Figure 3.4.3.4: Engine Torque for Bruceton Mills, WV to Sabraton, WV Engine Dynamometer 

Testing 
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4. Repeatability of Measured Emissions Data 

4.1 Introduction 

A summary of MEMS data was examined in order to determine the variation in measured 

emissions values between tests.  In order to determine this variation, the integrated emissions 

values for multiple runs of a particular route were averaged.  The standard deviation of the 

averaged integrated values was determined, and then a coefficient of variation (COV) associated 

with two standard deviations was calculated. It was important to determine the variation between 

measured data sets in order to understand the achievable accuracy of the model.  Since the ANN 

model was trained with data that was acquired through in-use testing and the predicted emissions 

of the model were compared to emissions measured through in-use testing, the determined model 

accuracy was impacted by the variability in measurement between in-use tests.   

 

4.2 Repeatability of an Engine 

Table 4.2.1 displays the average integrated values and standard deviations for NOx and CO2 

emissions associated with a 1995 Manufacturer A 400 hp engine.  The test weights for the 

vehicle equipped with this engine ranged from 78,320 lbs to 78,480 lbs.  The COV represents the 

variation between the measured emissions values of runs on the same route, which occurred at 

different times.  Each route was run three times.  It was determined that for the Manufacturer A 

400 hp engine traveling the Washington, PA route a COV of up to 11.1% occurred.  In order to 

obtain the average values displayed in the table, multiple data sets from the same route were 

evaluated to determine the integrated emissions values, and then the average of these integrated 

emission values was calculated.  The standard deviation of the average integrated values was 

also determined. 
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Table 4.2.1 Statistical Analysis of MEMS Data Summary for Manufacturer A 400 hp Engine 

Route 

Average of 
Integrated 

CO2          

(g/bhp-hr) 

Standard 
Deviation 

of 
Integrated 

CO2 

(g/bhp-hr) 

COV 
(%) 

Average of 
Integrated 

NOx 
(g/bhp-hr) 

Standard 
Deviation 

of 
Integrated 

NOx 
(g/bhp-hr) 

COV 
(%) 

Bruceton Mills to 
Sabraton 

425.3 4.45 2.1 6.02 0.14 4.8 

Sabraton to 
Bruceton Mills 

444.4 10.20 4.6 6.35 0.20 6.4 

Washington PA 1 424.1 4.55 2.1 5.32 0.21 8.0 
Washington PA 2 426.5 7.16 3.4 5.13 0.28 11.1 
Washington PA 3 405.1 1.02 0.5 6.08 0.10 3.4 

Average 425.1 5.48 2.6 5.78 0.19 6.6 

 

Table 4.2.2 displays the average integrated values and standard deviations of the integrated 

values for an engine from Manufacturer D.  The average standard deviation of measured CO2 for 

the five routes considered was 28.39.  The COV for the measured CO2 values ranged from 3.1% 

to 33.1%, while the COV values for the measured NOx ranged from 14% to 75%.  The statistics 

associated with the Washington, PA 3 run were examined further due to the significant 

difference between the standard deviations associated with it and other runs.  It was determined 

that two data sets were averaged, and compared for the Washington, PA 3 route.  The average 

inferred torque achieved on the two runs differed by 203.14 ft-lbs, between 700.28 ft-lbs and 

497.14 ft-lbs.  The average power also differed between the two runs by over 50 hp.  These 

differences in torque and power account for the differences in emissions between the two runs.  

It was determined that a different driver drove each of the runs of the Washington, PA 3 route, 

therefore driver behavior could be responsible for the differences in torque and power.  Also, the 

ambient temperature during testing reached 84oF during one run, while an ambient temperature 

of only 63oF was experienced during the second run.  During the run that occurred at a higher 

temperature, a higher average power was recorded, and can be accounted for by auxiliary devices 

such as the radiator fan or air-conditioning system.   
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Table 4.2.2 Statistical Analysis of MEMS Data for Manufacturer D Engine 

Route 
Average of 

Integrated CO2 

(g/bhp-hr) 

Standard 
Deviation of 
Integrated 

CO2
 (g/bhp-hr) 

COV 
(%) 

Average of 
Integrated 

NOx 
(g/bhp-hr) 

Standard 
Deviation of 

Integrated NOx 
(g/bhp-hr) 

COV 
(%) 

Bruceton Mills to 
Sabraton 

499.6 18.64 7.5 5.08 0.49 19.3 

Sabraton to 
Bruceton Mills 

477.6 7.44 3.1 4.95 0.34 13.8 

Washington PA 1 507.5 17.29 6.8 5.14 0.79 30.6 
Washington PA 2 501.1 13.12 5.2 5.34 0.89 33.5 
Washington PA 3 516.1 85.45 33.1 6.52 2.46 75.4 

Average 500.4 28.39 11.4 5.41 0.99 36.8 

 
Table 4.2.3 displays the average values for average integrated emissions, the standard deviation 

of integrated emissions, and the COV for each emission constituent measured.  These average 

values were calculated by considering all engines and all routes that were examined with the 

MEMS.   It was determined that the average COV for the integrated measured CO2 values was 

2.5%, and the average COV for the integrated measured NOx values was 4.8%. 

 

Table 4.2.3: Statistical Analysis of MEMS Data For All Engines 

All Routes and All 
Engines 

Average of 
Integrated 

CO2(g/bhp-hr) 

Standard 
Deviation 

of 
Integrated 

CO2 
(g/bhp-hr) 

COV 
(%) 

Average of 
Integrated 

NOx 
(g/bhp-hr) 

Standard 
Deviation of 
Integrated 

NOx 
(g/bhp-hr) 

COV 
(%) 

Average 483.0 11.93 4.9 6.05 0.28 4.8 

 

The data presented in the above tables demonstrates the variation between emissions data 

measured during different testing periods on the same route.  This difference could be due to 

various factors such as ambient weather conditions, traffic conditions, and different driving 

styles.  The emissions testing statistics for these two engines were selected for discussion 

because the Manufacturer A 400 hp engine represented an engine with relatively low variance 

from test to test, while the engine from Manufacturer D represented an engine with relatively 

high variance from test to test.   
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4.3 Repeatability of A Vehicle 

Table 4.3.1 displays the average integrated emissions, the standard deviation of the average 

integrated emissions, and the COV of the average integrated emissions for the similar vehicle 

engine combinations.  This COV depicts the variation in emissions from different engines of the 

same model, employed in the same type of vehicle.  Three 2001 trucks of the same manufacturer, 

each equipped with a 2001 Manufacturer B, 525 hp, engine were tested multiple times, at 

different test weights, on the various routes discussed earlier in this document.  The data for the 

statistical analysis performed in the table below was measured during testing on the Sabraton, 

WV to Bruceton Mills, WV route. It should be noted that these engines are the same year and the 

same model, with differing serial numbers.  The test weights were divided into two bins, weight 

A includes vehicles tested with weights ranging from 75,000 lbs to 81000 lbs.  Vehicles ranging 

in tested weights from 55,000 lbs to 63,000 lbs were designated with the test weight B. The 

average values of integrated CO2 and integrated NOx emissions were calculated, as well as the 

standard deviation of the averages of each engine, for both test weights.  It was determined that 

different engines of the same model and year, traveling the same route, can vary up to 7.2% in 

their measured emissions. 

 

Table 4.3.1: Comparison of Different Engines of the Same Engine Model on the Same Route 

Sabraton to Washington  
Year: 2001  Engine Model: Manufacturer B 525 hp (3 Serial Numbers)  

Average of Integrated 
CO2 (g/bhp-hr) 

Standard 
Deviation of 

Average 
Integrated 

CO2
 (g/bhp-hr) 

Average 
Integrated 

CO2  

COV (%) 

Average of 
Integrated 

NOx 
(g/bhp-hr) 

Standard 
Deviation of 

Average 
Integrated 

NOx  (g/bhp-
hr) 

Average 
Integrated 

NOx 
COV (%) 

Weight A 
545.58 8.58 3.2 5.89 0.01 0.4 

Weight B 
532.09 19.15 7.2 5.91 0.43 14.7 

 

4.4 Summary of Repeatability 

Both the repeatability of a route and the repeatability of an engine were examined.  Through 

statistical analysis of the in-use measured CO2 data it was determined that an average COV of 

2.6% existed, when all of the routes that were examined with the 400 hp Manufacturer A engine 
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were averaged.  The COV for CO2 emissions for each route ranged from 0.5% for the 

Washington, PA 3 route to 4.6% for the Sabraton, WV to Bruceton Mills, WV route.  This means 

that if the same vehicle and engine setup traveled from Sabraton, WV to Bruceton Mills, WV 

twice, the measured emissions for each trip could vary by 4.6%.  The variation in measured NOx 

emissions was greater than the COV associated with CO2, ranging from 3.4% to 11.1% for the 

routes examined with the 400 hp Manufacturer A engine.   

 

It was observed that the COV of both measured NOx and CO2 emissions was greater for the 

lower weight classification when multiple vehicles with the same engine were compared.  The 

average COV between the vehicles for NOx emissions was 14.7%. 

 

The purpose of this statistical analysis was to determine what an achievable accuracy of the 

ANN model should be.  It has been shown from run to run of the same route, and between engine 

to engine, variations of over 10% have occurred.  Since the ANN was trained with in-use data 

from the data sets examined above, and the predicted emissions were compared to those data sets 

that the ANN accuracy could not be expected to be better than variations between measured data 

sets.     

 

It should also be noted that research conducted by Thompson et al. has shown that employing 

different fuels during heavy duty diesel emissions testing has resulted in variations in CO and 

hydrocarbon production of 40% and 17%, respectively.  The quantity of NOx produced has been 

shown to vary up to 12% when fuels obtained from different commercial suppliers were used 

[71].  
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5. Model Development 

5.1 Overview 

The model architecture consisted of multiple modules.  The first module employed road grade 

and vehicle speed to predict the speed and torque experienced by the engine during the route. 

The second module modeled the emissions produced by the engine, and used the engine speed 

and torque that were outputs of the first module as inputs.  Once the emissions were predicted by 

the engine model module, a third module of the model would be incorporated to correct the 

emissions for factors such as deterioration and ambient conditions. 

 

 

  

 

 

 

 

 

Figure 5.2.1: Basic Structure of Model 

 
5.2 Model Architecture 

The ANN model developed for this research consisted of two neural networks.  One network 

predicted the engine speed and torque associated with the road grade and vehicle speed of the 

route being examined, while the other network predicted the emissions associated with the 

predicted engine speed and torque.  In the figure above, ANN 1 represents the engine operation 

model and ANN 2 represents the emissions prediction model.  It is shown that the outputs from 

the first neural network serve as inputs to the second neural network.      

 

5.3 Road grade 

 
Road grade is an input for the ANN, and therefore must either be a known value or calculated. 

During the training process road grade was calculated for the particular routes being employed.  

The atmospheric pressure is a function of elevation, therefore from the measured pressure data, 

an elevation was calculated, and related to that, a change in elevation with time, resulting in the 
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I 

d 
h 

traveled road grade. The pressure was measured by the ambient pressure sensor on the MEMS. 

The equation used to determine the altitude change as a function of the measured ambient 

pressure is shown as Equation 5.3.1. 

 

   
  

 
 

  
 
 
    
   

 
   

  

  
          Equation 5.3.1 [61] 

 
In the above equation Tb represents the standard temperature, R is the universal gas constant for 

air, Lb is the standard temperature lapse rate, M is the molar mass of air, Pb is the standard 

pressure, g represents gravitational acceleration, and hb is the initial height.  The assumption was 

made that the vehicles would not travel above an altitude of 11,000 m, therefore the standard 

conditions for elevations less than 11,000 meters were used.  The standard temperature was  

288.15 K, 29.92 in Hg was used as the standard pressure, and a temperature lapse of -0.0065 

K/m was used [61]. The temperature lapse rate accounts for the reduction of temperature 

associated with elevation increase.  

 

The geometric relationship between the distance traveled and the change in altitude is shown in 

Figure 5.3.1.  The hypotenuse of the triangle represents the actual traveled distance, while h is 

the change in elevation which is calculated based on the measured pressure.  The traveled 

distance is determined by employing Equation 5.3.2, which is the product of vehicle speed and 

the time interval.  The side of the triangle labeled d is calculated by the relationship shown in 

Equation 5.3.3.  The road grade is then the slope of the distance traveled, whose calculation is 

shown as Equation 5.3.4. 

   

 

 

 

 

 

 
 
 
 
 

Figure 5.3.1: Diagram of Relationship Between Distance Traveled and Altitude Change 
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                Equation 5.3.2 
 

 

                          Equation 5.3.3 
 
 

               
     

 
      Equation 5.3.4 

 

Figure 5.3.2 shows the calculated height associated with the Bruceton Mills, WV route.  The 

maximum height was less than 650 meters, and the minimum height was 200 meters.  Figure 

5.3.3 displays the road grade that was calculated as a function of the height.  The road grade 

ranged from +14% to -14%.  It should be noted that the height was not found to change relative 

to the spikes in road grade that occurred at 800 seconds and 1800 seconds, this indicated that the 

spikes were the results of measurement or other errors in the pressure data. 

 

 

Figure 5.3.2: Height for Bruceton Mills, WV Route 
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Figure 5.3.3: Road Grade for Bruceton Mills, WV Route 

 

 

5.4 Dispersion 

When evaluating engine emissions one must be concerned with the dispersion that occurs 

between an emission producing engine event and the measured response of the emission 

constituent analyzers.  The engine event is instantaneous, however the output of the analyzers are 

not, and therefore there is a time alignment issue that arises between the emissions that were 

actually generated by specific engine operating conditions.  It has been shown that amplitude 

reductions are experienced by the measured responses, this means that measured peak amplitude 

is less than the amplitude associated with the actual engine event.  Various methods of correcting 

the measured emissions for this dispersion phenomenon have been discussed in the literature.  

The sequential inversion technique employs the dispersion characteristics of the particular 

analyzer which was used in testing.  In order to use the sequential inversion technique, prior to 

conducting the emission data acquisition, dispersion characteristics of the analyzer must be 

determined by injecting 100 ppm of NOx in to the dilution tunnel for a 1 second interval.  

Readings should then be recorded from the analyzer at 1, 2, 3, and 4 seconds after the injection.  

The measurements at these time intervals define the dispersion function, which must sum to 
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unity.  This dispersion function would then be applied to relate the input into the analyzer and the 

actual output of the analyzer.  The following equations are employed in the sequential inversion 

technique.  Equation 5.4.1 represents the dispersion function, where C1 through C4 are the 

readings of the analyzer after the one second sample injection.  In Equation 5.4.2, j ranges from 1 

to the number of seconds of output data considered, and k denotes the number of terms in the 

dispersion function.  Y(tj) represents the output of the analyzer and U(tj) represents the input to 

the analyzer [60]. 

 

                     Equation 5.4.1 

 

                                                 Equation 5.4.2 

 

Another method of reconstructing the actual transient emission from the measured value is the 

differential coefficients method.  It is assumed in this method that the input to the analyzer can 

be represented as a linear combination of the first and second order derivatives of the output and 

the actual output.  Equation 5.4.3 shows this linear combination, in this equations Y(t) denotes 

the output of the analyzer, and U(t) denotes the input to the analyzer.  The differential 

coefficients method assumes that all data was accounted for by the analyzer, therefore the 

integrated value of the inputs is equivalent to the integrated value of the outputs.   

 

             
        

          Equation 5.4.3 

 

A dispersion function was generated by exposing the analyzer to a 1 second pulse of input.  The 

unit impulse input and the derivatives were mapped and then the time sequence was fitted over 

the dispersion period. An error was calculated as the difference between the input to the analyzer 

and the output, the first derivative of the output multiplied by a constant, and the second 

derivative multiplied by a constant.  The values of these constants were then obtained by 

calculating the least-squared error at each point, and minimizing this error for the best fit.  Once 

the constants were determined, the input to the analyzer for any output can be determined [56].   
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Another method of compensating for the dispersion associated with emission measurement is to 

disperse the axle power.  This methods results in power values that lack physical significance, 

however reflect what the axle power would be if it were dispersed through the tunnel similar to 

the emissions.  The equation employed to model the dispersion of power for this method is 

shown below in Equation 5.4.4.  This equation is used to determine Ci, the concentration of the 

dispersion model at an instant in time.  In this equation theta represents the ratio of the one 

second increment that was centered about the mean time shift between the power peaks to the 

mean time shift between power peaks.  The dimensionless vessel dispersion number is related to 

the extent of axial dispersion, and is represented by the value D/uL.   

 

   
 

      
 

    

     
      

 

    
 

    
     Equation 5.4.4 

After determining the Ci values, they are normalized, and a curve is generated.  This curve is then 

employed in conjunction with the axle power data to produce the dispersed axle power [57, 59].   

For this research effort was made to backwards transform the measured emissions to what their 

values would have been at the exhaust manifold.  A method was developed that employed 

Equation 5.4.3 and attempted to fit a polynomial to the function in order to obtain the constants 

a1 and a2.  An attempt was made to align the measured emissions with the measured power in 

order to facilitate the backwards transformation.  After analyzing the results it was determined 

that this was not an accurate way to backwards transform the emissions and actual analyzer 

characteristics would be needed to accurately backwards transform the emissions data.  Since the 

data being used to verify this model was acquired over a number of years, and with analyzers 

that have been serviced and recalibrated, it would not be feasible or accurate to examine the 

analyzer characteristics and then employ them to backwards transform the measured emissions.  

The ANN accounts for the dispersion effects by using inputs that have been pre-processed by 

applying moving averages.  The moving average of no fewer than 20 points was calculated at 

each data point.  For the engine dynamometer data this was a moving average over 20 seconds, 

which will limit the effects of dispersion on the model.  The emissions predicted and measured 

emissions were also compared on an integrated, rather than continuous basis, therefore error due 

to any dispersion effects were minimized. 
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5.5 Vehicle Weight 

The weight of a vehicle affects the power requirements, and therefore impacts the emissions 

produced by an engine.  The ANN model was trained with engine speed and torque data that 

were associated with a specific vehicle test weight.  In order for the model to be applied to a 

wider range of in-use scenarios, a correction factor was developed to compensate for a difference 

in vehicle weight.  The correction factor was applied to the outputs of ANN1, prior to the outputs 

being employed as inputs to ANN2.  The correction is applied to the power, which is a function 

of engine speed and engine torque.  It was assumed that the engine speed was constant between 

the two vehicles of different weights and the torque was scaled based on the following equations. 

The road load equation is shown as Equation 5.5.1 and was employed to develop one possible 

method of compensating for weight differences when modeling.  In the displayed equation, P 

stands for the power required to maintain a steady speed, the density of air is denoted with ρ, CD 

is the aerodynamic drag coefficient of the specific vehicle, V is the vehicle velocity, A is the 

frontal area of the vehicle, μ is the rolling resistance coefficient, m is the mass of the vehicle, and 

the angle of inclination of the road grade is represented by θ [68].   

 

  
 

 
     

                            Equation 5.5.1 [68] 

In order to determine a method of correction for applying the ANN to similar vehicle with 

different weights, assumptions were made.  It was assumed that density, velocity, and 

acceleration were constant.  It was also assumed that the vehicles being examined would have 

the same frontal area, rolling resistance coefficient, and aerodynamic drag coefficient.  If the 

specific values for frontal area, rolling resistance coefficient, and aerodynamic drag coefficient 

are not available for the actual vehicle being modeled, average values for that type of vehicle 

could be assumed.   

 

The road load equation should be written for the vehicle at each test weight, as shown in 

Equations 5.5.2 and 5.5.3.  In these equations the subscript 1 represents the weight at which the 

model was trained, and subscript 2 represents the weight of the vehicle to be modeled.  The 

terms without subscripts are common to both equations.       

 



 
 

72 
 

   
 

 
     

                         Equation 5.5.2 

   
 

 
     

                          Equation 5.5.3 

 

For ease of calculation the products of the constants in the above equations were relabeled as 

single constants.  Equations 5.5.4 and 5.5.5 show the simplified equations and Equations 5.5.6-

5.5.9 show the constant substitutions.  

 

                       Equation 5.5.4 

                        Equation 5.5.5 

 

   
 

 
     

     Equation 5.5.6 

          Equation 5.5.7 

             Equation 5.5.8 

        Equation 5.5.9 

 

The common mass terms were then grouped in Equations 5.5.4 and 5.5.5, and a new constant, K, 

was defined to represent the sum of the constants C2, C3, and C4.  The simplified versions of 

these equations are shown as Equations 5.5.10 and 5.5.11.   

 

              Equation 5.5.10 

             Equation 5.5.11 

 

Equation 5.5.10 was then rearranged in order to solve for the constant K, this allowed the 

substitution for K into Equation 5.5.11.  Equation 5.5.12 shows the resulting equation which 

determines the power associated with the vehicle being modeled at a different test weight. 

 

         
     

  
   Equation 5.5.12 

 

An example of accounting for the weight of the vehicle is shown below.  For this example a drag 

coefficient of 0.69 was used, and it was assumed that the frontal area of the vehicle was 115.2 ft2.  
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The density of air was assumed to be constant at 3.373x10-3
 slugs/ft3, which is the density of air 

at standard pressure and 60oF. This temperature was selected because it was determined to be in 

the mid-range of temperatures at which testing occurred.  These values were used as estimations 

because they are representative of average values and could be applied to a variety of vehicles.  

In future application of the ANN model this information should be determined for the specific 

vehicle or vehicle type being examined.  Equation 5.5.13 depicts the power correction equation 

for the values discussed above. 

 

                  
              

  
     Equation 5.5.13 

 

In order to demonstrate the correction for vehicle weight, test runs were conducted employing 

data obtained from testing of a 525 hp Manufacturer B Engine.  The engine was tested at two test 

weights, 62,360 lbs and 77,980 lbs.  During the modeling process the ANN was trained with the 

data corresponding to the higher weight, and then used to predict emissions corresponding to the 

lower weight, and then the ANN was trained with the data corresponding to the lighter weight, 

and used to predict emissions associated with the heavier weight.  The following figures depict 

predicted values for the lighter weight set-up when the ANN was trained with data acquired from 

testing the vehicle at the heavier weight.  Figure 5.5.1 displays the difference between the actual 

and the predicted engine speed for the lighter weight set-up. 
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Figure 5.5.1: Comparison of Predicted and Measured Engine Speed for Manufacturer B Engine 

 

Figure 5.5.2 displays the predicted and the measured engine torque for the lighter weight set-up.  

It is shown that the ANN over and under-predicts the torque for the route being examined.  In 

order to compensate for the weight difference between the training and verification vehicle set-

ups, the scaling factor developed in the previous equations was employed, and the results are 

shown in Figure 5.5.3.  In Figure 5.5.3 it is shown that the scaled engine torque is lower than the 

predicted engine torque. 
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Figure 5.5.2: Comparison of Predicted and Measured Engine Torque for Manufacturer B Engine 

without Correcting for Weight Difference Between Training and Verification Vehicles 

 

 
Figure 5.5.3: Comparison of Scaled and Predicted Engine Torque for Manufacturer B Engine 

when Correcting for Weight Difference Between Training and Verification Vehicles 



 
 

76 
 

A series of training and verification runs were conducted to investigate the accuracy of the 

scaling factor.  Table 5.5.1 displays the difference between the predicted and measured emissions 

when the ANN was trained with data from the heavier vehicle set-up traveling the route from 

Bruceton Mills, WV to Sabraton, WV.  Data from the lighter weight set-up traveling two 

different routes was used to verify the ANN's accuracy.  Three runs were conducted for each 

verification weight, where the ANN weights were reinitialized for each run.  

 

It was determined that the average percent differences between measured and predicted 

emissions for both routes which were examined were lower when the correction for weight was 

included.  When the correction for weight was not included the average percent differences for 

NOx and CO2 on the route from Sabraton, WV to Bruceton Mills, WV were 53.1% and 53.6%, 

respectively.  When the correction for weight was included, the ANN was able to predict both 

NOx and CO2 within 18% of the measured values for the Sabraton, WV to Bruceton Mills, WV 

route.  The differences in accuracy between the predicted and measured emissions when weight 

was accounted for and not accounted for were not as large for the route from Washington, PA 3 

to Sabraton, WV; however when weight was considered the emissions were predicted more 

accurately. 

 

Table 5.5.1: Comparison of Measured and Predicted Emissions Values for Lighter Weight when 

Weight Difference is Considered and Not Considered 

  
Including Corrected Power for 

Vehicle Weight 
Without Correction for 

Vehicle Weight 
ANN  Trained with Bruceton Mills, WV to Sabraton, WV  (77,980 lbs) Data 

Verification Data Run  
% Diff. 

NOx 
% Diff. 

CO2 
Run  

% Diff. 
NOx 

% Diff. 
CO2 

Sabraton, WV to Washington, PA 
(62,360 lbs) 

1 14.1 10.7 1 38.1 24.6 
2 18.3 12.0 2 60.4 74.9 
3 20.5 13.0 3 60.8 61.4 

Average 17.6 11.9 Average 53.1 53.6 

Verification Data Run  
% Diff. 

NOx 
% Diff 

CO2 
Run  

% Diff. 
NOx 

% Diff 
CO2 

Washington, PA 3 to Sabraton, 
WV   (62,360 lbs) 

1 14.4 31.6 1 45.5 53.8 
2 21.2 17.9 2 29.2 19.6 
3 31.1 21.1 3 102.5 28.4 

Average 22.2 23.5 Average 59.1 33.9 
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The data discussed in the previous table was acquired when the ANN was trained with data 

acquired for a vehicle set-up with a heavier weight than the vehicle employed for verification.  

Analysis was also conducted when the ANN was trained with data acquired for a lighter weight 

vehicle set-up and then used to predict emissions associated with a heavier vehicle set-up. It was 

determined that the weight correction method was not accurate when the ANN was used to 

predict emissions associated with a heavier weight vehicle than which it was trained.  It was 

recommended that data be obtained for training for loaded vehicles, and then it would be capable 

of predicting emissions for loaded or unloaded conditions.  Percent errors between measured and 

predicted emissions exceeded 100% for both NOx and CO2.  It was recommended that the ANN 

be trained with data that was obtained at vehicle weights equal to or heavier than those vehicle 

weights for which emissions would be predicted.  

 

5.6 Deterioration 

As mentioned in the literature review of this document, the emissions produced by an engine are 

affected by deterioration.  The available data was examined in order to determine if a 

relationship between vehicle odometer reading and produced emissions could be established.  In 

order to establish this relationship, data for a 2002 Manufacturer B engine was examined.  This 

engine was tested in a 2002 tractor at approximately 60,000 lbs and 80,000 lbs.  In-use emissions 

data was collected when the engine had been operational for approximately 244,000 miles, and 

then again when the engine had been in operation for approximately 462,000 miles.  In-use 

testing occurred at 60,000 lbs and 80,000 lbs for three routes, Washington, PA 1, Washington, 

PA 2, and Washington, PA 3.  In order to examine a trend, ratios of emissions at each tested 

odometer reading to the emissions at the lowest tested odometer reading were plotted versus the 

ratio of each tested odometer reading to the lowest tested odometer reading.  Figure 5.6.1 shows 

the relationship between these two ratios for NOx.  The NOx values employed in this analysis 

are integrated values for the route being traveled.  This data shows a reduction in NOx with 

increased odometer mileage.  Figure 5.6.2 shows the relationship between CO2 emissions and 

odometer reading.   The data available at the time of the research to establish a deterioration 

factor was in-use data.  The concern with employing in-use data in this application was the 

number of variables could not be isolated to only odometer reading; therefore it cannot be 

determine conclusively that the trends shown in Figure 5.6.1 and 5.6.2 are due to deterioration.  
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Since the data was obtained from in-use testing, ambient temperature, pressure, and humidity 

conditions were not controlled, and affected the emissions at the different test times.  Also, 

driver-to-driver variability, traffic conditions, and instrumentation setup could have resulted in 

difference in measured emissions values, in addition to deterioration.  It is recommended that 

data resulting from engine laboratory testing be employed to determine deterioration effects.  

This way the variables other than odometer reading can be controlled, and the relationship 

between odometer reading and emissions produced can be established.    

 

Once a deterioration factor was developed it would be incorporated into the third module of the 

model.  The emissions predicted by ANN2 would be scaled by the developed emissions factor. A 

deterioration factor was not included in the model due to the inability to isolate the impact of 

deterioration from ambient affects in the data. 

         

 

 
Figure 5.6.1: NOx Emissions versus Odometer Reading 
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Figure 5.6.2: CO2 Emissions versus Odometer Reading 

 

5.7 Ambient Condition Effects 

Ambient conditions such as temperature, pressure, and humidity affect the amount of emissions 

produced by an engine.  Temperature and humidity can affect the emissions production at the in-

cylinder level, but also impacts the power consumed by the radiator fan.  It should be noted that 

when examining emissions for inventory modeling purposes the impact of ambient conditions on 

in-cylinder emissions is negligible compared to radiator fan power consumption.  The 

relationship between ambient temperature and integrated emissions values was examined.  In 

order to establish this relationship, data for a 2002 Manufacturer B engine were examined.  This 

engine was tested in a 2002 tractor at approximately 60,000 lbs and 80,000 lbs.  In-use testing for 

this engine was performed at temperatures ranging from 43oF to 68oF.  Ratios of the integrated 

emissions at each temperature to the average integrated emissions were plotted versus the ratio of 

the testing temperature to the average temperature.  Figure 5.7.1 shows the ratio of NOx 

produced as a function of temperature ratio.  The ratio of CO2 produced as a function of 

temperature ratio is shown in Figure 5.7.2.  It is important to note that deterioration effects are 
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also present in this data, since significant mileage occurred between the testing that occurred at 

low temperature and the testing that occurred at high temperatures.    It should also be noted that 

the power consumption of auxiliary units such as air conditioning systems was also responsible 

for differences in emissions production for routes run at different ambient conditions. 

   

 

Figure 5.7.1: NOx Emissions versus Temperature 
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Figure 5.7.2: CO2 Emissions versus Temperature 

5.8 Optimization 

5.8.1 ANN1 

In order to determine the optimum architecture for the ANNs, a review of literature was 

conducted, and then a series of test cases were analyzed.  The most cited disadvantage of 

artificial neural networks is the inability to determine if the optimum model has been achieved, 

and the difficulty in determining which factors affect the accuracy of a model due to the "black 

box" nature of the operations of an ANN [69].  This section describes a summary of the 

optimization trials that were conducted.   

 

Table 5.8.1.1 shows the effects of varying input pre-processing techniques, such as smoothing 

and differentiating on the accuracy of the ANN.  The values in this table were determined by 

altering the inputs to ANN1, while keeping ANN2 unchanged. Various structures for the 

network were also examined, including differing numbers of layers, and differing numbers of 

neurons associated with each of those layers.  The data shown in the table was acquired when the 

vehicle module of the ANN was trained with data set Wash PA2 1, and the emissions module of 
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the ANN was trained with engine dynamometer data from a cycle designed to simulate the 

Sabraton, WV to Bruceton Mills, WV route.  The data set Wash PA1 1was then employed for 

model verification.  For each change to the network, three test runs were conducted.  This 

method was used, because each time the ANNs were trained, the weights associated with each 

input and neuron in the layers were re-initialized, which resulted in the trained model reaching a 

different solution, which would result in different output values.  The average percent difference 

between predicted and measured emissions for the three simulation runs was calculated and used 

to determine the accuracy of the model.  The bottom segment of the table shows that the 

optimum configuration achieved a percent difference between predicted and measured emissions 

of less than 8% for both NOx and CO2.   
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Table 5.8.1.1 Optimization of ANN1 

ANN 1 Trained with Wash PA2 1 Data 

ANN 2 Trained with Manufacturer A Sabraton to Bruceton Data 

Verification Data Run  % Diff. NOx % Diff. CO2 

No Smoothing Applied 

Wash PA1 1 

1 39.2 12.0 

2 41.9 13.1 

3 24.6 10.6 

Average 35.2 11.9 
No Derivatives Applied, Smoothing Applied 

Wash PA1 1 

1 59.5 53.6 

2 57.3 48.4 

3 93.0 60.4 

Average 69.9 54.1 
One Layer of 25 Neurons, Derivatives and Smoothing Applied 

Wash PA1 1 

1 28.2 30.3 

2 25.3 31.1 

3 20.4 36.0 

Average 24.6 32.4 
Two Hidden Layers (Derivatives and Smoothing Applied) 

Wash PA1 1 

1 38.1 12.2 

2 39.7 13.4 

3 37.0 15.7 

Average 38.3 13.8 
Optimum Configuration (Derivatives, Smoothing, Three Hidden 

Layers) 

Wash PA2 1 

1 6.5 8.0 

2 1.5 8.4 

3 11.1 7.2 

Average 6.4 7.9 

 

 

Initially the inputs were not pre-processed with the moving average smoothing technique.  Using 

the unsmoothed inputs resulted in an average percent difference of 35.2% for NOx and 11.9% 

for CO2 emissions when the predicted values were compared with values measured during in-use 

testing.   It was determined that the moving average smoothing technique could reduce the affect 

of errors due to dispersion, as well as allow the ANN1 to learn the input to output relationship 

trends by reducing the number of local extrema.  Once it was determined that ANN1 would 
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benefit from smoothing, a study was conducted to determine the optimum number of points to 

average during the smoothing process.  Initially the inputs of road grade and vehicle speed were 

both smoothed once with a set number of points.  Through experimentation it was determined 

that applying moving averages over two different ranges of points resulted in the ANN learning 

the relationships between the input and the outputs more accurately, therein producing a more 

accurate prediction of the in-use emissions.   

 

A review of literature pertaining to ANNs suggested that employing derivatives of the input data 

as inputs as well as the data itself resulted in a more accurate ANN model.  Based on the findings 

of previous ANN research, derivatives of road grade and ECU speed were taken at two different 

time spans prior to serving as model inputs.  When the derivatives were not included as model 

inputs the average percent difference between the predicted and measured emissions values 

exceeded 50% for both NOx and CO2.  It was determined that including the derivatives of the 

inputs had the greatest affect on the model accuracy.  Through trial and error analysis it was 

determined that for data collected at 10 Hz the model performed the best when derivatives were 

taken over 1 and 10 second intervals.  

 

The structure of the ANN1 was also examined.  Initially, the ANN was constructed of two 

layers, the input layer, and one hidden layer consisting of 25 neurons.  With this configuration, 

the average percent difference between measured and predicted CO2 emissions was 32.4%, while 

the average percent difference was 24.6% for NOx.  In order to improve the performance of the 

ANN, a second hidden layer of neurons was incorporated.  The example data shown in the 

following table was collected when the first hidden layer had 25 neurons and the second hidden 

layer housed 10 neurons, it should be noted that various other combination of neuron numbers in 

the two layers were examined, and resulted in similar accuracy.   The best examined 

configuration for the vehicle ANN was determined to include smoothing the inputs by using two 

different numbers of points in the moving average, the derivatives of the inputs taken over two 

different time spans, and three hidden layers of neurons, with 25, 10, and 5 neurons in each layer, 

respectively.           
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5.8.2 ANN2 

A similar process as discussed above was used to optimize the inputs and structure of the 

emissions module of the ANN.  Table 5.8.2.1 displays the results of some of the optimization 

techniques applied to ANN2.     

 

Table 5.8.2.1: Optimization of ANN2 

ANN 1 Trained with Wash PA2 1 Data 

ANN 2 Trained with Manufacturer A Sabraton to Bruceton Data 

Verification Data Run  % Diff. NOx % Diff CO2 

No Smoothing Applied 

Wash PA1 1 

1 37.5 35.9 

2 52.4 34.1 

3 36.3 37.2 

Average 42.1 35.7 
Derivatives Applied, Smoothing Applied 

Wash PA1 1 

1 8.9 18.3 

2 49.3 24.1 

3 22.1 56.7 

Average 26.8 33.0 
One Layer of 10 Neurons, Smoothing Applied 

Wash PA1 1 

1 35.1 38.1 

2 27.2 32.0 

3 24.9 33.0 

Average 29.1 34.3 
Optimum Configuration (Two layers of Neurons and Smoothing) 

Wash PA2 1 

1 6.5 8.0 

2 1.5 8.4 

3 11.1 7.2 

Average 6.4 7.9 

 

Initially the inputs were not pre-processed with the moving average smoothing technique.  Using 

the unsmoothed inputs resulted in an average percent difference of 42.1% for NOx and 35.7% 

for CO2 emissions when the predicted values were compared with values measured during in-use 

testing.   

 

When the derivatives were included as model inputs the average percent difference between the 

predicted and measured emissions values exceeded 25% for both NOx and CO2.  It was 
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determined that including the derivatives of the inputs had a negative effect on the model 

accuracy, since lower percent differences were determined between the predicted and measured 

emissions when derivatives were not included as inputs.  The structure of ANN2 was also 

examined.  Initially, ANN2 was constructed of two layers, the input layer, and one hidden layer 

consisting of 10 neurons.  With this configuration, the average percent difference between 

measured and predicted CO2 emissions was 34.3%, while the average percent difference was 

29.1% for NOx.  In order to improve the performance of ANN2, a second hidden layer of 

neurons was incorporated.  The best performing configuration for ANN2 was determined to 

include smoothing the inputs by using two different numbers of points in the moving average, 

and two hidden layers of neurons, with 10 and five neurons in each layer, respectively.  It was 

determined that when the best performing configuration of each ANN was employed NOx and 

CO2 emissions were predicted within 8% of the measured values.             

 

5.8.3 Optimal Network 

Figures 5.8.3.1 and 5.8.3.2 display the inputs to each ANN module. Both road grade and vehicle 

speed were filtered using a moving average.  Two different data sets were created from the 

smoothing process, each with a differing number of points incorporated into the moving average.  

The inputs into the ANN1 were smoothed with both a 50 point and 200 point moving average.  

The derivatives of both smoothed versions of road grade and vehicle speed were taken over two 

different time intervals and those derivatives were employed as inputs. The inputs were 

normalized before they entered the ANN.  The outputs from the first neural network were engine 

speed and engine torque.   
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Figure 5.8.3.1: ANN1 Inputs and Outputs 

 

 

 

 

 

 

 

Figure 5.8.3.2: ANN2 Inputs and Outputs 

  

Before serving as inputs to ANN2, the outputs of engine speed and engine torque were 

normalized, which required the values to be scaled from their actual range, to a range spanning 

from 0 to 1.  For the scaling calculation, the maximum engine torque for the specific engine was 

equated to 1, as well as the maximum engine speed.  If a predicted engine speed or engine torque 

exceeded the maximum speed or torque associated with the specific engine being examined, then 

the engine’s maximum value was employed.  This is the maximum speed and torque associated 

with the lug curve of the engine.  Prior to training the target emissions outputs were shifted to 

align with the engine power data.  The target outputs were also normalized before they were 

 
 
 
 
 
 
 
 

ANN1 

Road Grade (50 pt Smoothing) 
Road Grade (200 pt Smoothing) 

1st Derivative of Road Grade 1 Δt=1s 
1st Derivative of Road Grade 1 Δt=10s 
1st Derivative of Road Grade 2 Δt=1s 
1st Derivative of Road Grade 2 Δt=10s 

1st Derivative of Vehicle Speed 2 Δt=10s 

1st Derivative of Vehicle Speed 1 Δt=1s 

1st Derivative of Vehicle Speed 2 Δt=1s 
1st Derivative of Vehicle Speed 1 Δt=10s 

Vehicle Speed (200 pt Smoothing) 
Vehicle Speed (50 pt Smoothing) 

Engine Speed 

Engine Torque 

 
 
 

ANN2 

Engine Speed 1 (20 pt. Smoothing) 

Engine Speed 2 (75 pt. Smoothing) 

Engine Torque 1 (20 pt. Smoothing) 

Engine Torque 2 (75 pt. Smoothing) 

NOx (g/s) 

CO2 (g/s) 

CO (g/s) 

HC (g/s) 
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applied to train the ANN.  The inputs to ANN2 consisted of the normalized engine speed and 

engine torque, which were each smoothed by incorporating two different numbers of points into 

the moving average.  The outputs of ANN2 were predicted emission values for CO, CO2, HC, 

and NOx on a grams per second basis. 

   

Inputs such as injection timing, in-cylinder pressure, and rail pressure were not employed as 

inputs due to the availability of data.  The network was designed to require as few details about 

the engine being modeled as possible so that it would be able to be applied to the widest range of 

applications. 

 

Both the first and second ANNs were structured in a feed-forward back-propagation format.  

During the development of the ANN various structures were evaluated, however the feed-

forward back-propagation network proved to be the most applicable due to its ability to predict 

non-linear relationships.  The back-propagation algorithm learns the weights associated with 

each input and neuron by minimizing the squared error between the output and the training 

targets.  Both ANNs employed the tan-sigmoid transfer function for each hidden layer.  A plot of 

the tan-sigmoid transfer function is shown in Figure 5.8.3.2. 

 

 
Figure 5.8.3.2: Tan-Sigmoid Transfer Function Plot 

 

The vehicle ANN consisted of three hidden layers of neurons, the first hidden layer housed 25 

neurons, the second had 10 neurons, and the final hidden layer consisted of 5 neurons.  The first 

layer of neurons received weights coming from the inputs, and each subsequent layer received 
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weights from both the input layer and each previous layer.  Through analyzing various numbers 

of hidden layers and neuron combinations, this format was determined to be the best examined 

structure for this application.  Figure 5.8.3.3 shows a schematic of the neural network 

architecture employed for the ANN that was responsible for predicting engine speed and torque.  

The schematic shows that the original inputs as well as the output of the previous layer serve as 

inputs to the current layer.  The blocks designated with "w" in the schematic represent weights, 

while the blocks designated with a "b" represent any bias that was incorporated into the inputs.  

For this model no initial biases were employed.   

 

 
Figure 5.8.3.3: Vehicle ANN, ANN1, Neuron Layer Structure 

 

Figure 5.8.3.4 shows the schematic of the neuron architecture used for the ANN that was 

designed to predict the emissions associated with the engine speed and torque. This ANN is 

constructed of three layers, the input layer and two hidden layers made up of 10 and five 

neurons.  It was determined that the emissions ANN did not require more than two hidden layers 

of neurons due to the reduced number of inputs, and the reduced number of data points in the 

input vectors since the training data was 1 Hz, and the emissions did not change as rapidly as 

engine speed and torque.  Incorporating more than two layers of hidden neurons in the second 

ANN resulted in the network over-learning, which decreased its ability to accurately predict 

emissions on a variety of routes.  Over-learning results when the designed network is too 

complex for the problem.  If the network is constructed of too many hidden layers or neurons, it 

will learn the particular data set which it is being trained with very well, however it will not be 

able to predict outputs associated with other data sets as well as a less complex ANN would be 

able to [66].    

Layer 1 
Layer 2 

Layer 3 
Layer 4 

Output Input 
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Figure 5.8.3.4: Emissions ANN, ANN2, Neuron Layer Structure 

 

Once each ANN was trained with the training data, a data set that was previously not introduced 

to the ANN was used as verification data.  The verification of the model and the results 

associated with the finalized version of the ANN are shown in the following chapter of this 

document.    
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Layer1 Layer 2 

Output 

Layer 3 
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6. Model Verification  

In order to verify the accuracy of the ANN model, a variety of training and verification runs were 

conducted.  This section discusses the percent differences between the integrated emissions 

between the measured values from in-use testing and the predicted values from the ANN model.  

It should be noted that the emissions are compared on an integrated basis; therefore the effects of 

dispersion are minimized in the integrated emitted value, but may be apparent in the continuous 

plotted emissions values. 

 

6.1 Repeated Bruceton Mills, WV Route 

In order to show that the ANN model could accurately predict emissions as a function of road 

grade and vehicle speed, a series of verification tests were conducted.  Initially, the vehicle 

module of the ANN model was trained with data from the Bruceton Mills, WV route, and the 

emissions module of the ANN was trained with data from the Bruceton Mills, WV dynamometer 

cycle.  The vehicle ANN was trained with in-use data acquired on the route from Bruceton Mills, 

WV to Sabraton, WV, and the emissions module was trained with engine dynamometer data 

from the cycle that represented the travel from Sabraton, WV to Bruceton Mills, WV.  Separate 

data sets obtained from different runs of the Bruceton Mills, WV group were then used to verify 

the accuracy of the ANN.  Each time each ANN was trained the weights were initialized with 

different initial values; therefore the ability of the combined ANN to accurately predict the 

emissions differed with each training.  Once it was established that a model was optimally 

trained, and predicted the emissions with the highest possible accuracy, the weights and structure 

of that ANN were saved.  The ANN was then applied to other data sets to validate its accuracy.   

 

In order to determine if the ANN could accurately predict the emissions associated with a 

particular route three data sets from the Bruceton Mills, WV route were employed.  Two data 

sets were from the route that began in Sabraton, WV and ended in Bruceton Mills, WV, while 

the third verification data set represented the return route from Bruceton Mills, WV to Sabraton, 

WV.  The inputs to the neural network were taken from these data sets, and the emissions 

predicted by the ANN were compared to the emissions that were measured with the MEMS 

during the on-road testing.   
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Table 6.1.1 displays the results from the three different runs with each verification data set.  The 

network's weights were reinitialized and it was retrained with the training data for each run of the 

ANN.  The table shows the percent difference between the actual measured emissions data and 

the predicted emissions for NOx and CO2, these are the percent differences between the 

integrated emissions values for the entire route.  An average percent difference is displayed in 

the table, as well as the percent difference associated with each run where the weights were 

reinitialized.  It was determined that when both ANN1 and ANN2 were trained with data from 

the Bruceton Mills, WV route and cycle, the emissions for the Bruceton Mills, WV route could 

be predicted with percent differences as low as  0.5% and 7.2% for NOx and CO2, respectively.  

It was determined that when the vehicle ANN was trained with a data set acquired from a 

specific direction of a route, that it did not predict the emissions associated with the same 

direction of the route better than the emissions associated with the route traveled in the opposite 

direction.  For example, the emissions predicted for the route from Sabraton, WV to Bruceton 

Mills, WV were predicted more accurately than the emissions associated with the route from 

Bruceton Mills, WV to Sabraton, WV when the vehicle module of the ANN was trained with 

data from the Bruceton Mills, WV to Sabraton, WV route.   
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Table 6.1.1: Verification of ANN for Training with, and Predicting Bruceton Mills, WV Routes  

ANN 1 Trained with Bruceton2Sab 2 Route Data 

ANN 2 Trained with Manufacturer A Sabraton to Bruceton Cycle Data 

Verification Data Run  % Diff. NOx % Diff. CO2 

Sab2Bruceton 1 

1 7.6 10.8 

2 3.8 13.6 

3 6.0 13.3 

Average 5.8 12.6 

Sab2Bruceton 2 

1 8.1 7.2 

2 0.5 10.7 

3 2.3 12.1 

Average 3.6 10.0 

Bruceton2Sab 1 

1 5.9 20.5 

2 11.3 23.0 

3 6.3 20.6 

Average 7.8 21.4 

*The highlighted values are shown in the following figures 
 

Figure 6.1.1 compares the predicted and the measured engine torque when the same data set was 

used for testing and verification, in this case data set Bruceton2Sab 2. A comparison between 

predicted engine speed and measured engine speed when the data set Bruceton2Sab 2 was used 

for both training and verification is shown in Figure 6.1.2.  It is demonstrated that when the same 

data set is used for both training and verification that the ANN closely models the engine speed 

and torque associated with the route being examined. 
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Figure 6.1.1: Vehicle ANN Predicted and Actual Engine Torque When Training with and 

Predicting Bruceton2Sab 2 Data Set 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1.2: Vehicle ANN Predicted and Actual Engine Torque When Training with and 

Predicting Bruceton2Sab 2 Data Set 
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Figures 6.1.3 through 6.1.6 compare the values predicted by the ANN to the values that were 

measured by the MEMS testing for the first verification run with the data set Sab2Bruceton 2, 

which is highlighted in Table 6.1.1.  Figure 6.1.3 shows the difference between predicted engine 

speed and the measured engine speed, while Figure 6.1.4 shows the difference between the 

predicted engine torque and the measured engine torque.  In the time period between 750 

seconds and 1300 seconds, the predicted speed is noticeably lower than the measured speed, and 

then predicted torque is noticeable higher than the measured torque, this represents the model 

predicting the wrong transmission gear for this portion of the route.  It is also shown that the 

predicted engine torque exceeds the maximum torque associated with the modeled engine, 

therefore was limited to the maximum torque value.   

 

 
Figure 6.1.3: Difference Between Predicted and Measured Engine Speed for Run 1 

Sab2Bruceton 2 Verification Data 
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Figure 6.1.4: Difference Between Predicted and Measured Engine Torque for Run 1 

Sab2Bruceton 2 Verification Data 

 

Figure 6.1.5 shows the difference between the predicted NOx values and the measured NOx 

values, while Figure 6.1.6 shows the difference between the predicted CO2 and the measured 

CO2.  It was determined that when the emissions were integrated over the entire cycle that the 

percent differences for NOx and CO2 were 8.1% and 7.2%, respectively.  It has been shown that 

the trends in emission production are similar between the predicted and measured values; 

however the predicted values over-estimate the quantity of emissions produced, during 

instantaneous power events.  These differences between the predicted and measured were 

attributed partially to the fact that the two modules of the network were trained with data derived 

from different types of testing.  The emissions module was trained with data acquired in a 

laboratory with controlled environmental conditions, while the data used to train the vehicle 

module was obtained in the field, where environmental conditions were not controlled.  The 

mechanisms of measuring the data differed between the in-use and laboratory testing as well, for 

example the delay and dispersion between a power event and emissions measurement due to the 

dilution tunnel did not occur in the in-use testing.  It was determined that the two modules should 
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have the capability of being trained with different data due to the differing availabilities of data 

for varieties of vehicles.  In other words, it increased the flexibility of the model application. 

 

 
Figure 6.1.5: Difference Between Predicted and Measured NOx Emissions for Run 1 

Sab2Bruceton 2 Verification Data 
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Figure 6.1.6: Difference Between Predicted and Measured CO2 Emissions for Run 1 

Sab2Bruceton 2 Verification Data 

 

6.2 Repeated Washington, PA Route 

In order to demonstrate the ANN's ability to predict emissions for a variety of routes, the 

Washington, PA route was examined.   

 

Table 6.2.1 shows the results obtained when the vehicle module of the ANN was trained with the 

Wash PA2 1 data set and the emissions module of the ANN was trained with data obtained from 

the cycle designed to simulate the Washington, PA route.  The trained ANN was then applied to 

three separate sets of data from Washington, PA routes.  One of the verification data sets was 

acquired during testing of the same route as the training set, Washington, PA 2, and the other two 

verification data sets represented conditions associated with the Washington, PA 1 route.  It was 

determined that the percent difference between predicted and measured integrated emissions for 

NOx and CO2 was as low as 1.5% and 0.6%, respectively.  Figures 6.2.1 through 6.2.4 compare 

the predicted and measured values associated with the second verification run with the data set 

Wash PA1 1, which has been highlighted in Table 6.2.1.   

 



 
 

99 
 

Table 6.2.1: Verification of ANN Trained with and Predicting Washington, PA Routes 

ANN 1 Trained with Wash PA2 1 Route Data 

ANN 2 Trained with Manufacturer A Washington, PA1 Cycle Data 

Verification Data Run  % Diff. NOx % Diff. CO2 

Wash PA1 2 

1 17.0 38.6 

2 19.4 24.7 

3 8.0 21.8 

Average 14.8 28.3 

Wash PA2 2 

1 9.6 1.5 

2 8.3 0.6 

3 13.4 3.5 

Average 10.4 1.9 

Wash PA1 1 

1 6.5 8.0 

2 1.5 8.4 

3 11.1 7.2 

Average 6.4 7.9 

*The highlighted values are shown in the following figures 
 

Figure 6.2.1 shows the difference between the predicted and measured engine speed for the 

Washington, PA 1 Route.  Overshoot is apparent at and near idle engine speed of 600 rpm. The 

difference between the predicted and measured engine torque for the Washington, PA1 Route is 

shown in Figure 6.2.2.  The ANN was able to predict the trends in engine speed and torque, 

however the ANN was unable to accurately predict the engine speed and engine torque at idle 

conditions, as shown in the below figures.  Also, in Figure 6.2.2 the ANN was unable to predict 

the increase in torque that occurred at 900 seconds.  The ANN was determined to predict torques 

below the lowest torques measured in the verification data.  The training and verification data 

was examined to determine if the ANN was attempting to predict data outside the range it was 

trained on.  It was determined that the minimum torque recorded in each of the training and 

verification data sets was -111.24 ft-lbs.  The ANN was found to predict torques lower than those 

that it was exposed to in the training data. 
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Figure 6.2.1: Difference Between Predicted and Measured Engine Speed for Washington, PA1 

When ANN was Trained with Washington, PA2 1 

 

 
Figure 6.2.2: Difference Between Predicted and Measured Engine Torque for the Washington, 

PA1 Route When ANN was Trained with Washington, PA2 1  
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The difference between the predicted and measured emissions for the Washington, PA1 route are 

shown in Figures 6.2.3 and 6.2.4.  It is shown that the trends in the measured emissions are 

closely followed by the predicted emissions.  The ANN over-predicted CO2 more frequently that 

NOx, however when the ANN was initialized with different weights, the network was found to 

over-predict NOx more frequently than CO2, therefore variation in predicted value is attributed 

to network initialization factors.  The variation in the weight initialization is a minor impact on 

the accuracy of the emissions prediction when compared to the impact of data training quality.  It 

should be noted that once the ANN is trained with a data set, the weights may be saved, and the 

network can be employed to predict the emissions with an infinite number of data sets.  Once the 

weights are saved and that specific ANN is used to predict emissions the differences in weight 

initialization have no impact on the emissions predicted by the ANN. 

 

 
Figure 6.2.3: Difference Between Predicted and Measured NOx Emissions for the Washington, 

PA1 Route When ANN Was Trained with Washington, PA2 1  
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Figure 6.2.4: Difference Between Predicted and Measured CO2 Emissions for the Washington, 

PA1 Route When ANN Was Trained with Washington, PA2 1  

 

6.3 Same Engine Different Route 

In order to determine if the ANN was capable of predicting emissions for a route other than that 

it was trained with, the ANN was trained with data from the Washington, PA route, and then it 

was employed to predict the emissions associated with the Bruceton Mills, WV route. Table 

6.3.1 displays the percent differences for the integrated emissions values.  The vehicle ANN was 

trained with data from the Washington, PA2 route, and the emissions ANN was trained with data 

from the cycle designed to model the Sabraton, WV to Bruceton Mills, WV route.  The ANN 

was then employed to predict the emissions associated with various runs of the Bruceton Mills, 

WV route.  Two of the verification data sets represent the route traveled from Bruceton Mills, 

WV to Sabraton, WV, while the third verification data set represents the return route, from 

Sabraton, WV to Bruceton Mills, WV.  It was determined that the ANN training combination 

mentioned above was able to most accurately predict the emissions associated with the route 

traveled from Sabraton, WV to Bruceton Mills, WV with an average percent difference between 

measured and predicted values of 12.3% and 14.1% for NOx and CO2, respectively.  In this case 

the training route was representative of urban driving conditions, while the verification routes 
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were representative of rural driving conditions.  This difference in route characteristics is thought 

to contribute to the decrease in accuracy of the ANN to predict emissions. 

 

Table 6.3.1: Verification of ANN Trained with Washington, PA Route, and Used for Prediction 

of Bruceton Mills, WV Routes 

ANN 1 Trained with Wash PA2 1 Route Data 

ANN 2 Trained with Manufacturer A Sabraton to Bruceton Cycle Data 

Verification Data Run  % Diff. NOx % Diff. CO2 

Bruceton2Sab 2 

1 21.7 29.1 

2 22.7 28.2 

3 19.7 27.9 

Average 21.4 28.4 

Sab2Bruceton 1 

1 18.3 16.4 

2 18.2 10.9 

3 0.3 14.9 

Average 12.3 14.1 

Bruceton2Sab 1 

1 25.3 20.5 

2 25.8 23.0 

3 9.0 20.9 

Average 20.0 21.5 

*The highlighted values are shown in the following figures 
 

Figure 6.3.1 shows the difference between predicted engine speed and the measured engine 

speed, while Figure 6.3.2 shows the difference between the predicted engine torque and the 

measured engine torque for run 3 with Sab2Bruceton 1 verification data.  It is demonstrated 

between 800 and 1300 seconds the ANN model predicted a different gear than experienced in the 

measured route data.  The different gear is represented by the lower prediction of speed and 

higher prediction of torque.  This could be due to the fact that driver behavior, and/or traffic 

conditions differed between data sets that were used for training and verification data.  

 

The ANN over-predicted the engine speed between 1400 and 1600 seconds.  It was thought that 

the ANN was extrapolating data outside the boundaries of which it was trained.  It was 

determined that the maximum engine speed for the training route was 2106.6 rpm, and the 

maximum engine speed during the Sab2Bruceton 1 training route was 2046.7 rpm.  It was shown 
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that at engine speeds close to the upper bounds of training data, the ANN would over-estimate 

the engine speed.   

 

   

 
Figure 6.3.1: Difference Between Predicted and Measured Engine Speed for the Sabraton, WV to 

Bruceton Mills, WV Route When ANN was Trained with Washington, PA2 1  

 

Figure 6.3.3 shows the difference between the power calculated from measured values and 

predicted values.  It was shown in the region between 800 and 1300 seconds where the engine 

speed and torque were under and over predicted, respectively, that the predicted power was still 

closely predicted. 
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Figure 6.3.2: Difference Between Predicted and Measured Engine Torque for the Sabraton, WV 

to Bruceton Mills, WV Route When ANN was Trained with Washington, PA2 1  

 

 
Figure 6.3.3: Difference Between Predicted and Measured Power for the Sabraton, WV to 

Bruceton Mills, WV Route When ANN was Trained with Washington, PA2 1  
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Figure 6.3.3 shows the difference between the predicted NOx values and the measured NOx 

values, while Figure 6.3.4 shows the difference between the predicted CO2 and the measured 

CO2.  It was determined that when the emissions were integrated over the entire cycle that 

percent differences for NOx and CO2 were as low as 0.3% and 14.9%, respectively.  It is shown 

that the ANN is least accurate when predicting emissions during periods where the vehicle is 

idling, this is demonstrated between 1400 and 1600 seconds. 

 

 
Figure 6.3.4: Difference Between Predicted and Measured NOx Emissions for the Sabraton, WV 

to Bruceton Mills, WV Route When ANN was Trained with Washington, PA2 1  
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Figure 6.3.5: Difference Between Predicted and Measured CO2 Emissions for the Sabraton, WV 

to Bruceton Mills, WV Route When ANN was Trained with Washington, PA2 1  

 

The data displayed in the above tables were predicted with the ANN with the emissions module 

trained with data from the cycle developed to simulated the Bruceton Mills, WV route.  The 

same verification tests discussed above were also performed with the ANN when the emissions 

module was trained with data from the cycle developed to simulate the Washington, PA route.  

The results from this training combination are discussed beginning in Table 6.3.2.  It was 

determined that a percent difference between predicted and measured integrated emissions as 

low as 4.4% for NOx and 12.2% for CO2 was achieved when a Bruceton Mills, WV route and 

the Washington, PA cycle were used for training.   The ANN trained with the above mentioned 

combination, most accurately predicted the emissions for the route from Sabraton, WV to 

Bruceton Mills, WV.  The average difference between the measured and predicted emissions was 

the lowest for the route that started in Sabraton, WV and ended in Bruceton Mills, WV.  The 

ANN was able to predict the emissions for both the route from Sabraton, WV to Bruceton Mills, 

WV and the return route from Bruceton Mills, WV to Sabraton, WV with average percent 

differences for NOx and CO2 of less than 20%.  This demonstrated that the ANN was capable of 

predicts emissions for a route that differed from the route and cycles that were used for training. 
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Table 6.3.2: Verification of ANN Trained with Washington, PA, and Used for Prediction of 

Bruceton Mills, WV Routes 

ANN 1 Trained with Wash PA2 1 Data 

ANN 2 Trained with Manufacturer A PA1 Data 

Verification Data Run  % Diff. NOx % Diff. CO2 

Bruceton2Sab 2 

1 24.6 12.4 

2 8.9 13.4 

3 4.7 18.2 

Average 12.7 14.6 

Sab2Bruceton 1 

1 3.4 16.1 

2 4.4 17.5 

3 8.1 12.2 

Average 5.3 15.3 

Bruceton2Sab 1 

1 17.0 19.4 

2 13.7 14.4 

3 17.6 15.8 

Average 16.1 16.5 

 
*The highlighted values are shown in the following figures 

 

Figures 6.3.5 and 6.3.6 show the predicted and measured speed and torque for the route from 

Bruceton Mills, WV to Sabraton, WV, and correspond to the highlighted row in the above table.  

The largest discrepancy between the predicted and measured torque values occurred at low 

torques, as show between 1100 and 1300 seconds. 
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Figure 6.3.6: Difference Between Predicted and Measured Engine Speed for the Bruceton2Sab 2 

Data Set 

 

 

Figure 6.3.7: Difference Between Predicted and Measured Engine Torque for the Bruceton2Sab 

2 Data Set 
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Figure 6.3.8: Difference Between Predicted and Measured NOx Emissions for the Bruceton2Sab 

2 Data Set 

 

Figure 6.3.9: Difference Between Predicted and Measured CO2 Emissions for the Bruceton2Sab 

2 Data Set 
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6.4 Training and Predicting with Same Route, and Trained with Different Cycle 

In this section the results were obtained when the vehicle ANN was trained with in-use data from 

the Bruceton Mills, WV to Sabraton, WV route and the emissions ANN was trained with engine 

dynamometer data from the Washington, PA 1 cycle.  Two data sets from the Sabraton, WV to 

Bruceton Mills, WV route, and one data set from the Bruceton Mills, WV to Sabraton, WV route 

were used to verify the accuracy of the ANN model.  Table 6.4.1 displays the percent differences 

between the measured and the predicted emissions for the routes examined.  It was determined 

for the above mentioned training scenario that the ANN was able to predict the emissions 

associated with the Sabraton, WV to Bruceton, WV route with average percent differences less 

than 14% for NOx and 16% for CO2.   

 

 

Table 6.4.1: Verification of ANN Trained With Bruceton Mills, WV Data, and Used for 

Prediction of Bruceton Mills, WV Routes 

ANN 1 Trained with Bruceton2Sab 2 Route Data 

ANN 2 Trained with Manufacturer A PA1 Cycle Data 

Verification Data Run  % Diff. NOx % Diff. CO2 

Sab2Bruceton 1 

1 7.7 12.8 

2 15.6 14.3 

3 3.5 19.8 

Average 8.9 15.6 

Sab2Bruceton 2 

1 21.0 4.1 

2 6.7 17.5 

3 13.8 15.0 

Average 13.8 12.2 

Bruceton2Sab 1 

1 5.1 27.0 

2 11.9 29.1 

3 2.9 28.3 

Average 6.6 28.1 

 
*The highlighted values are shown in the following figures 

 

Figures 6.4.1 through 6.4.4 compare the predicted values to the measured values for first 

verification run with the Sab2Bruceton 1 data set, which is highlighted in the above table.  Figure 

6.4.1 compares the predicted engine speed to the measured engine speed, while Figure 6.4.2 



 
 

112 
 

compares the predicted engine torque to the measured engine torque.  As shown previously, 

between 700 and 1300 seconds the ANN predicts the speed lower than the actual value, and the 

torque higher than the actual value, indicating it is predicting the incorrect gear, but similar 

engine power. 

 

 
Figure 6.4.1: Difference Between Predicted and Measured Engine Speed for the Sab2Bruceton 1 

Data Set 
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Figure 6.4.2: Difference Between Predicted and Measured Engine Torque for the Sab2Bruceton 

1 Data Set 

 

Comparisons of the predicted and measured emissions are shown in Figures 6.4.3 for NOx and 

6.4.4 for CO2. The ANN prediction for NOx is below that measured value between 700 and 1000 

seconds, however the integrated percent difference between the measured and predicted NOx 

emissions was 7.7%.  The ANN predicted CO2 emissions with a percent difference from the 

measured values of 12.8%.   
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Figure 6.4.3: Difference Between Predicted and Measured NOx Emissions for the Sab2Bruceton 

1 Data Set 

 

 
Figure 6.4.4: Difference Between Predicted and Measured CO2 Emissions for the Sab2Bruceton 

1 Data Set 
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Table 6.4.2 displays the percent differences between the measured and predicted integrated 

emissions for various runs of the Washington, PA routes.  The previously presented emissions 

predictions for the Washington, PA routes were conducted when the emissions module of the 

ANN was trained with data from the Washington, PA 1 cycle.   The data in the table below was 

acquired for scenarios where the vehicle module of the ANN was trained with in-use data from 

the Washington, PA 2 route, and the emissions module of the ANN was trained with data from 

the Sabraton, WV to Bruceton Mills, WV dynamometer cycle.  The ANN was employed to 

predict emissions associated with two separate runs of the Washington, PA 1 route, and one run 

of the Washington, PA 2 route.   

 

   

Table 6.4.2: Verification of ANN Trained with Washington, PA Data and Used for Prediction of 

Washington, PA Routes 

ANN 1 Trained with Wash PA2 1 Route Data 

ANN 2 Trained with Manufacturer A Sabraton to Bruceton Cycle Data 

Verification Data Run  % Diff. NOx % Diff. CO2 

Wash PA1 2 

1 24.0 13.1 

2 26.8 16.0 

3 16.3 14.0 

Average 22.4 14.3 

Wash PA2 2 

1 16.7 1.9 

2 24.6 1.9 

3 28.9 7.2 

Average 23.4 3.6 

Wash PA1 1 

1 6.54 5.6 

2 10.0 3.4 

3 4.5 4.5 

Average 5.8 3.4 

 
*The highlighted values are shown in the following figures 

 

Figure 6.4.5 shows the difference between predicted engine speed and the measured engine 

speed, while Figure 6.4.6 shows the difference between the predicted engine torque and the 

measured engine torque.  For this verification run, the ANN was trained with data set 

Washington PA2 1 and verification was performed with data set Washington PA1 1.  The ANN 
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was again shown to under-estimate the engine speed during idle conditions and predicted torque 

values below those experienced in both the training and verification data.   

 

 
Figure 6.4.5: Difference Between Predicted and Measured Engine Speed for the Washington, PA 

1 Route When Trained with Washington, PA2 1  
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Figure 6.4.6: Difference Between Predicted and Measured Torque for the Washington, PA 1 

Route When Trained with Washington, PA2 1  

 

Figure 6.4.7 shows the difference between the predicted CO2 values and the measured CO2 

values, while Figure 6.4.8 shows the difference between the predicted NOx and the measured 

NOx.  It was determined that when the emissions were integrated over the entire cycle that the 

percent differences for NOx and CO2 were 4.5% and 4.5%, respectively.  The predicted CO2 

emissions more closely followed the trend of the measured emissions, with less over-shoot than 

the predicted NOx values.   
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Figure 6.4.7: Difference Between Predicted and Measured CO2 for the Washington, PA 1 Route 

When Trained with Washington, PA2 1  

 

 
Figure 6.4.8: Difference Between Predicted and Measured NOx for the Washington, PA 1 Route 

When Trained with Washington, PA2 1  
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6.5 Comparison of Measured and Predicted Emissions to EPA Regulations 

Tables 6.5.1 and 6.5.2 show comparisons between the measured emissions values, predicted 

emissions values, and the EPA regulations associated with the model year of the engine being 

modeled.  This comparison was conducted to relate the predicted and measured emissions to 

accepted standards, in order to demonstrate that the ANN was capable of predicting realistic 

values for NOx emissions.  The EPA does not regulate the quantity of CO2 emitted from 

vehicles, therefore only the NOx emissions were compared to the EPA regulations. The engine 

being modeled was a 1995 Manufacturer A 400 hp engine, for which the EPA limited the NOx 

production to 5.0 g/bhp-hr. It should be noted that the emissions discussed in this section are on a 

brake-specific mass (g/bhp-hr) basis, in previous section the emissions were compared on a mass 

rate (g/s) basis.  The predicted power was used in calculations for the predicted values, and the 

measured power was used for calculations with the measured emissions.  The data in Tables 

6.5.1 and 6.5.2 was obtained when the emissions module of the ANN was trained with data from 

the engine dynamometer cycle designed to simulate the Washington, PA route and the vehicle 

module of the ANN was trained with data for in-use testing on the Bruceton Mills, WV route.  

Emissions for two different runs of the Bruceton Mills, WV route were then predicted with the 

trained model. 

 

It was determined that for the data set Sab2Bruceton 1 the quantities of NOx and CO2 produced 

were 6.6 g/bhp-hr and 465.0 g/bhp-hr, respectively.  The average emissions values associated 

with the three runs of the ANN were 5.5 g/bhp-hr for NOx and 489.3 g/bhp-hr for CO2.  The 

percent differences between the predicted and actual NOx and CO2 were 16.9% and 5.2%.  The 

percent difference between the EPA regulation for NOx and the measured NOx emissions was 

32.2%, while the difference between the predicted NOx emissions and the EPA regulation was 

10.3%. The difference between the predicted emissions, measured emissions, and the EPA 

regulation for NOx for data set Sab2Bruceton 2 are also displayed in the table, and were 

determined to be similar to the values associated with data set Sab2Bruceton 1.   
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Table 6.5.1: Predicted Values, Measured Values, and EPA Regulations for ANN Trained with 

Bruceton2Sab 1 and Washington, PA1 Engine Dynamometer Data 

ANN 1 Trained with Bruceton2Sab 1 Data 

ANN 2 Trained with Manufacturer A PA1 Data 

Verification Data Run  
Measured 
(g/bhp-hr) 

Predicted 
(g/bhp-hr) 

EPA Reg. (g/bhp-hr) 

NOx CO2 NOx CO2 NOx 

Sab2Bruceton 1 

1 6.6 465 5.2 485 5.0 

2 6.6 465 6.1 493 5.0 

3 6.6 465 5.3 490 5.0 

Average 6.6 465 5.5 489 5.0 

Sab2Bruceton 2 

1 6.5 456 4.7 436 5.0 

2 6.5 456 5.6 493 5.0 

3 6.5 456 6.8 482 5.0 

Average 6.5 456 5.7 470 5.0 

 

Table 6.5.2: Comparison of Predicted Values and Measured Values to EPA Regulations for 

ANN Trained with Bruceton2Sab 1 and Washington, PA1 Engine Dynamometer Data 

ANN 1 Trained with Bruceton2Sab 1 Data 

ANN 2 Trained with Manufacturer A PA1 Data 

Verification Data Run 
% Diff. Meas. 
NOx vs. EPA 

% Diff. Pred. 
NOx vs. EPA 

% Diff. Meas. 
NOx vs. Pred. 

NOx 

% Diff. Meas. 
CO2 vs. Pred. 

CO2 

Sab2Bruceton 1 

1 32.8 3.4 22.1 4.3 
2 32.8 21.8 8.3 6.0 

3 32.8 5.8 20.3 5.4 

Average 32.8 10.3 16.9 5.2 

Sab2Bruceton 2 

1 30.2 5.4 27.3 4.3 

2 30.2 11.6 14.3 8.0 

3 30.2 36.4 4.8 5.8 

Average 30.2 17.8 15.5 6.0 

 

Tables 6.5.3 and 6.5.4 show comparisons between the measured emissions values, predicted 

emissions values, and the EPA regulations associated with the model year of the engine being 

modeled.  The data in Tables 6.5.3 and 6.5.4 was obtained when the emissions module of the 

ANN was trained with data from the engine dynamometer cycle designed to simulate the 

Bruceton Mills, WV route and the vehicle module of the ANN was trained with data for in-use 
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testing on the Washington, PA route.  Emissions for two different runs of the Bruceton Mills, 

WV route were then predicted with the trained model. 

 

It was determined that for the data set Sab2Bruceton 1 the quantities of NOx and CO2 produced 

were 6.6 g/bhp-hr and 465.0 g/bhp-hr, respectively.  The average emissions values associated 

with the three runs of the ANN were 5.7 g/bhp-hr for NOx and 461.1 g/bhp-hr for CO2.  The 

percent differences between the predicted and measured NOx and CO2 were 14.7% and 2.1%.  

The percent difference between the EPA regulation for NOx and the measured NOx emissions 

was 32.8%, while the difference between the predicted NOx emissions and the EPA regulation 

was 17.7%. The difference between the predicted emissions, measured emissions, and the EPA 

regulation for NOx for data set Bruceton2Sab 1 are also displayed in the table.  It was 

determined that the brake-specific emissions were most closely predicted for data set 

Bruceton2Sab 1, when the ANN was trained with Washington, PA route in-use data and 

Bruceton Mills, WV cycle engine dynamometer data.  The percent difference between measured 

and predicted NOx and CO2 were 5.9% and 1.1%, respectively. 

 

Table 6.5.3: Predicted Values, Measured Values, and EPA Regulations for ANN Trained with 

Washington, PA2 1 and Sabraton to Bruceton Engine Dynamometer Data 

ANN 1 Trained with Wash PA2 1 Data 

ANN 2 Trained with Manufacturer A Sabraton to Bruceton Data 

Verification Data Run  
Measured 
(g/bhp-hr) 

Predicted 
(g/bhp-hr) 

EPA Reg. (g/bhp-hr) 

NOx CO2 NOx CO2 NOx 

Sab2Bruceton 1 

1 6.6 465 6.5 452 5.0 

2 6.6 465 4.7 457 5.0 

3 6.6 465 5.8 474 5.0 

Average 6.6 465 5.7 461 5.0 

Bruceton2Sab 1 

1 6.4 456 6.7 450 5.0 

2 6.4 456 6.7 460 5.0 

3 6.4 456 5.8 452 5.0 

Average 6.4 456 6.4 454 5.0 
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Table 6.5.4: Comparison of Predicted Values and Measured Values to EPA Regulations for 

ANN Trained with Washington, PA2 1 and Sabraton to Bruceton Engine Dynamometer Data 

ANN 1 Trained with Washington, PA2 1 Data 

ANN 2 Trained with Manufacturer A Sabraton to Bruceton Data 

Verification Data Run 
% Diff. Meas. 
NOx vs. EPA 

% Diff. Pred. 
NOx vs. EPA 

% Diff. Meas. 
NOx vs.Pred. 

NOx 

% Diff. Meas. 
CO2 vs. Pred. 

CO2 

Sab2Bruceton 1 

1 32.8 29.8 2.3 2.7 

2 32.8 6.6 29.7 1.7 

3 32.8 16.8 12.0 1.9 

Average 32.8 17.7 14.7 2.1 

Bruceton2Sab 1 

1 28.8 33.6 3.7 1.3 

2 28.8 34.2 4.2 0.8 

3 28.8 16.2 9.8 0.9 

Average 28.8 28.0 5.9 1.0 

 

 

6.6 HC and CO Predicted Values 

In the previous portions of this document the predicted NOx and CO2 emissions have been 

discussed and compared to measured values.  The HC and CO emissions for each ANN training 

combination and verification set were also predicted, however in-use data was not available for 

measured values of HC and CO, and therefore the differences between predicted values and 

measured values were not discussed.  In order to show the accuracy of the model in predicting 

HC and CO emissions, the integrated predicted emissions values were compared to the integrated 

measured emissions values associated with engine dynamometer testing.  The EPA regulations 

for CO and HC emissions that apply to the engine being examined were 15.5 g/bhp-hr and 1.3 

g/bhp-hr, respectively.  The quantities of HC and CO produced by diesel engines are consistently 

lower than the EPA regulated values, therefore it was determined that comparing the predicted 

HC and CO emissions to other measured values was a more useful metric to analyze the 

accuracy of prediction.    Tables 6.6.1 and 6.6.2 compare the predicted integrated brake-specific 

HC and CO emissions to the values that were measured during engine dynamometer testing 

employing the cycle that simulated the Bruceton Mills, WV route.  The average predicted 

integrated emissions for CO and HC were 0.35 g/bhp-hr and 0.029 g/bhp-hr, respectively.  The 

measured emissions values associated with the engine dynamometer for CO and HC were 0.30 

g/bhp-hr and 0.041 g/bhp-hr, respectively.   
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Table 6.6.1 Predicted and Measured Values for HC and CO for ANN Trained with Washington 

PA2 1 and Sabraton, WV to Bruceton Mills, WV Engine Dynamometer Data 

 
ANN 1 Trained with  Washington,  PA2 1 Data 

ANN 2 Trained with Manufacturer A Sabraton to Bruceton Data 

Verification Data Run  
Predicted (g/bhp-hr) Meas. Engine Dyno (g/bhp-hr) 

CO HC CO HC 

Sab2Bruceton 1 

1 0.29 0.037 0.30 0.041 
2 0.45 0.019 0.30 0.041 
3 0.30 0.032 0.30 0.041 

Average 0.35 0.029 0.30 0.041 

Bruceton2Sab 1 

1 0.29 0.037 0.30 0.041 

2 0.34 0.048 0.30 0.041 

3 0.27 0.027 0.30 0.041 

Average 0.30 0.040 0.30 0.041 

 

It was determined that when the ANN was trained with in-use data from the Washington, PA 

route and engine dynamometer data from the Bruceton Mills, WV cycle, and then used to predict 

emissions associated with Bruceton Mill, WV routes that a percent difference as low as 9.1% 

was achieved for HC.  The average percent difference between measured and predicted CO 

emissions was determined to be 18.2% for the Sab2Bruceton 1 data set, and 9.1% for the 

Bruceton2Sab 1 data set. 
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Table 6.6.2 Comparison of Predicted Values of CO and HC to Measured Values from Engine 

Dynamometer Data for ANN Trained with Washington, PA2 1 and Sabraton, WV to Bruceton 

Mills, WV Engine Dynamometer Data 

ANN 1 Trained with Wash PA2 1 Data 

ANN 2 Trained with Manufacturer A Sabraton to Bruceton Data 

Verification Data Run 
% Diff. Pred. 
CO vs. Meas. 

% Diff. Meas. 
HC vs. Meas. 

Sab2Bruceton 1 

1 2.1 9.1 

2 51.9 53.3 

3 0.6 20.0 

Average 18.2 27.5 

Bruceton2Sab 1 

1 1.9 8.6 

2 14.8 18.3 

3 10.6 32.6 

Average 9.1 19.8 

 
Tables 6.6.3 and 6.6.4 compare the predicted integrated brake-specific HC and CO emissions to 

the values that were measured during engine dynamometer testing employing the cycle that 

simulated the Bruceton Mills, WV route.  The average predicted integrated emissions for CO and 

HC were 0.35 g/bhp-hr and 0.029 g/bhp-hr, respectively.  The measured emissions values 

associated with the engine dynamometer for CO and HC were 0.30 g/bhp-hr and 0.041 g/bhp-hr, 

respectively.  

 

Table 6.6.3 Predicted and Measured Values for HC and CO for ANN Trained with Bruceton2Sab 

1 and Washington, PA1 Engine Dynamometer Data 

ANN 1 Trained with  Bruceton2Sab 1 Data 

ANN 2 Trained with Manufacturer A Washington, PA1 Data 

Verification Data Run  
Predicted (g/bhp-hr) Meas. Engine Dyno (g/bhp-hr) 

CO HC CO HC 

Sab2Bruceton 1 

1 0.40 0.049 0.30 0.041 
2 0.43 0.045 0.30 0.041 
3 0.38 0.046 0.30 0.041 

Average 0.40 0.046 0.30 0.041 

Sab2Bruceton 2 

1 0.36 0.023 0.30 0.041 

2 0.45 0.025 0.30 0.041 

3 0.38 0.047 0.30 0.041 

Average 0.40 0.030 0.30 0.041 
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It was determined that when the ANN was trained with in-use data from the Bruceton Mills, WV 

route and engine dynamometer data from the Washington, PA cycle, and then used to predict 

emissions associated with Bruceton Mill, WV routes that a percent difference as low as 11.1% 

was achieved for HC.  The average percent difference between measured and predicted CO 

emissions was determined to be 34.2% for the Sab2Bruceton 1 data set, and 33.2% for the 

Bruceton2Sab 1 data set. 

 

Table 6.6.7 Comparison of Predicted Values of CO and HC to Measured Values from Engine 

Dynamometer Data for ANN Trained with Bruceton2Sab 1 and Washington, PA1 Engine 

Dynamometer Data 

ANN 1 Trained with Bruceton2Sab 1 Data 

ANN 2 Trained with Manufacturer A PA1 Data 

Verification Data Run 
% Diff. Pred. 
CO vs. Meas. 

% Diff. Meas. 
HC vs. Meas. 

Sab2Bruceton 1 

1 33.6 20.5 

2 43.6 11.1 

3 25.5 12.3 

Average 34.2 14.7 

Sab2Bruceton 2 

1 21.8 44.4 

2 51.8 38.3 

3 26.0 15.6 

Average 33.2 32.8 

 

6.7 2002 Engine Emissions Predictions 

In order to demonstrate that the model was applicable to a range of engine model years, the ANN 

was used to predict emissions associated with a 2002 engines from engine Manufacturer B and 

engine Manufacturer C.  Engine dynamometer testing data was not available for these engines, 

so in-use data was employed to train both the vehicle and the emissions modules of the ANN.    

Table 6.7.1 displays the verification tests conducted for the Manufacturer B engine.  It was 

shown that when the model was trained with in-use data from the Washington, PA 2 route, it was 

able to predict the emissions associated with the Washington, PA 1 route within 17% of the 

measured values.  When the model was trained with data from the Washington, PA 1 route it 

performed best when predicting the emissions associated with the travel from the end of the 
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Washington, PA 3 route to Sabraton, WV.  The ANN was able to predict the emissions 

associated with the travel from the end of Washington, PA 3 to Sabraton, WV with an average 

percent difference of 3.2% for CO2 and 12.0% for NOx, when compared to measured values.  

The ANN was then trained with in-use data acquired from traveling from the end of the 

Washington, PA 3 route to Sabraton, WV, and was used to predict the emissions associated with 

the route from Sabraton, WV to Washington, PA.  It was determined that this training, and 

verification combination resulted in an average percent difference between the predicted and 

measured emissions values of 0.7% for NOx and 1.9% for CO2.   

 

Table 6.7.1 Comparison of Predicted and Measured Values of NOx and CO2 for the ANN trained 

with In-Use Data 

ANN  Trained with Washington PA2 Data 

Verification Data Run  
% Diff. 

NOx 
% Diff. 

CO2 

Washington, PA1 

1 13.0 20.0 

2 14.6 16.1 

3 16.4 15.0 

Average 14.7 17.0 

Sabraton, WV to Washington, PA 

1 17.6 4.8 

2 24.7 11.4 

3 24.4 1.4 

Average 22.2 5.9 

Washington, PA3 to Sabraton, WV 

1 12.2 1.4 

2 7.6 1.1 

3 16.3 7.1 

Average 12.0 3.2 
ANN  Trained with Washington,  PA3 to Sabraton, WV Data 

Verification Data Run  
% Diff. 

NOx 
% Diff. 

CO2 

Sabraton, WV to Washington, PA 

1 0.3 1.8 

2 0.8 1.1 

3 0.9 2.6 

Average 0.7 1.9 

*The highlighted values are shown in the following figures 
 

Figure 6.7.1 shows the comparison of the engine speed predicted for the Washington, PA 1 route 

to the actual measured engine speed recorded during in-use testing.  For this prediction, the ANN 
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was trained with data obtained during in-use testing of the Washington, PA 2 route.  The 

comparison between predicted and measured engine torque is shown in Figure 6.7.2.  The data 

shown in the following figures corresponds to the highlighted run in the above table.  

 

The ANN did not experience the under-prediction issues with engine speed during idle 

conditions, as it had in the previous results discussed, however the minimum predicted engine 

torque was still below the actual torque of the route.  The minimum torque in the training data 

was determined to be -32 ft-lbs, while a minimum torque of -12,750 ft-lbs occurred in the 

verification data.  The torque of -12,750 ft-lbs was determined to be the result of an error in post-

processing the data, and not a realistic torque experienced by the engine.  The data file was 

examined and it was determined at the time of the minimum torque occurrence the torque and 

speed reported by the ECU were not orders of magnitudes different from those experienced in 

the prior to or after the measurement being examined.   It was determined that a post-processing 

error was responsible for the torque of -12,750 ft-lbs because it was a calculated torque value and 

not one recorded by the data acquisition system. 

 

 

Figure 6.7.1: Predicted and Measured Engine Speed for Washington, PA 1 When the ANN Was 

Trained with Data from Washington, PA 2 
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Figure 6.7.2: Predicted and Measured Torque for Washington, PA 1 When the ANN Was 

Trained with Data from Washington, PA 2 

 

Figures 6.7.3 and 6.7.4 compare the measured and predicted values for the emissions associated 

with the Washington, PA 1 route.  It was determined that the average percent difference between 

the predicted and measured values was 14.7% for NOx, and 17.0% for CO2.   
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Figure 6.7.3: Predicted and Measured NOx Emissions for Washington, PA 1 When the ANN 

Was Trained with Data from Washington, PA 2 

 

 

Figure 6.7.4: Predicted and Measured CO2 Emissions for Washington, PA 1 When the ANN Was 

Trained with Data from Washington, PA 2 
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The ANN was also trained with data obtained from in-use testing which occurred on the route 

between the Washington, PA 3 route and Sabraton, WV.  When the ANN was trained with this 

data, and used to predict emissions associated with a vehicle traveling from Sabraton, WV to 

Washington, PA the percent differences between the measured and predicted integrated 

emissions were determined to be as low as 0.3% for NOx.  Figures 6.7.5 and 6.7.6 show the 

differences between the measured and the predicted engine speed and torque.  It is shown that 

that the ANN failed to accurately predict the engine speed when instantaneous spikes were 

present, such as the one that occurred at 2581 seconds.  The data was examined and determined 

that this spike in the figure was the result of the engine speed changing from 1460 rpm to 2070 

rpm in 0.4 seconds.  An equally significant change in torque and power were not present at 2581 

seconds.  Since the engine speed data preceding and proceeding the data at 2581 seconds were 

not shown to vary as greatly as the data at 2581 seconds, this was determined to be an error in 

the data and not representative of the actual engine speed experienced during the route. 

 

 
Figure 6.7.5: Predicted and Measured Engine Speed for Sabraton, WV to Washington, PA When 

the ANN Was Trained with Data from Washington, PA 3 to Sabraton, WV Route 
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. 

 Figure 6.7.6: Predicted and Measured Torque for Sabraton, WV to Washington, PA When the 

ANN Was Trained with Data from Washington, PA 3 to Sabraton, WV Route 

 

Figures 6.7.7 and 6.7.8 compare the measured and predicted values for the emissions associated 

with a vehicle traveling form Sabraton, WV to Washington, PA.  It was determined that the 

average percent difference between the predicted and measured values was 0.7% for NOx, and 

1.9% for CO2.  It was evident that the ANN was able to predict emissions with less than 2% 

difference from the measured values, when the predicted engine speed did not account for 

instantaneous magnitude increases in the actual data.  

 

The agreement between the measured and predicted emissions values was better when both 

modules of the ANN were trained with in-use data.  This is attributed to the fact that the same 

measurement equipment was employed in both sets if data, the one used to train the emissions 

module, and the one used to train vehicle module of the ANN.  Also since laboratory data was 

not used, the dispersion and measurement delays due to the dilution tunnel were avoided.   
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Figure 6.7.7: Predicted and Measured NOx Emissions for Sabraton, WV to Washington, PA 

When the ANN Was Trained with Data from Washington, PA 3 to Sabraton, WV Route 

 

 

Figure 6.7.8: Predicted and Measured CO2 Emissions for Sabraton, WV to Washington, PA 

When the ANN Was Trained with Data from Washington, PA 3 to Sabraton, WV Route 
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The ANN was also used to predict emissions associated with a 2002 engine from Manufacturer 

C.  Engine dynamometer testing data was not available for this engine, so in-use data was 

employed to train both the vehicle and the emissions modules of the ANN.  It was shown that 

when the model was trained with in-use data from the route of Washington, PA 3 to Sabraton, 

WV, it was able to predict the emissions associated with route from Sabraton, WV to 

Washington, PA within 4% of the measured values.  The ANN was also trained with in-used data 

from Sabraton, WV to Washington, PA, and was used to predict emissions associated with the 

route from Washington, PA 3 to Sabraton, PA. The ANN was able to predict the emissions 

associated with the travel from the end of Washington, PA 3 to Sabraton, WV with an average 

percent difference of 4.4% for CO2 and 13.5% for NOx, when compared to measured values.   

 

Table 6.7.2 Comparison of Predicted and Measured Values of NOx and CO2 for the ANN trained 

with In-use Data 

ANN  Trained with Washington, PA 3 to Sabraton, WV Data 

Verification Data Run  
% Diff.  

NOx 
% Diff. 

CO2 

Sabraton, WV to Washington, PA 

1 2.2 0.7 

2 3.6 2.0 

3 1.0 0.1 

Average 2.3 0.9 
ANN  Trained with Sabraton, WV to Washington, PA Data 

Verification Data Run  
% Diff.  

NOx 
% Diff. 

CO2 

Washington, PA to Sabraton, WV 

1 10.4 1.4 

2 15.2 5.6 

3 14.8 6.4 

Average 13.5 4.4 

*The highlighted values are shown in the following figures 
 

Figures 6.7.9 and 6.7.10 compare the predicted and actual measured values of NOx and CO2 

associated with the route from Sabraton, WV to Washington, PA.  The percent difference 

between measured and predicted NOx and CO2 emissions for the third verification run were 

1.0% and 0.1%, respectively.    
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Figure 6.7.9: Predicted and Measured NOx Emissions for Sabraton, WV to Washington, PA 

When the ANN Was Trained with Data from Washington, PA 3 to Sabraton, WV Route 

 

 

Figure 6.7.10: Predicted and Measured CO2 Emissions for Sabraton, WV to Washington, PA 

When the ANN Was Trained with Data from Washington, PA 3 to Sabraton, WV Route 
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The ANN was also trained with in-used data from Sabraton, WV to Washington, PA, and was 

used to predict emissions associated with the route from Washington, PA 3 to Sabraton, WV.  

Figures 6.7.11 and 6.7.12 display a comparison between predicted and measured values of NOx 

and CO2 for the route from Washington, PA to Sabraton, WV.  The average integrated percent 

difference between measured values for NOx and CO2 were determined to be 13.5% and 4.4%, 

respectively.   
 

 

Figure 6.7.11: Predicted and Measured NOx Emissions for Washington, PA to Sabraton, WV 

When the ANN Was Trained with Data from Sabraton, WV to Washington, PA Route 
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Figure 6.7.12: Predicted and Measured CO2 Emissions for Washington, PA to Sabraton, WV 

When the ANN Was Trained with Data from Sabraton, WV to Washington, PA Route 

 

6.8 Different Engines for Training and Verification 

A study was also conducted to determine with what accuracy the ANN could predict the 

emissions associated with a specific engine, when the ANN was trained with data from a 

different engine.  For this case the ANN was trained with both in-use and engine dynamometer 

data from a 400 hp engine of Manufacturer A, and then the ANN was used to predict the 

emissions associated with a 350 hp engine produced by Manufacturer A.  These two engines 

were similar models, with differing horsepower ratings. 

 

The normalization ranges of engine speed and torque employed by the ANN were altered for the 

prediction of the different engine.  The normalization bounds that were applied to the ANN were 

scaled by a ratio of maximum torque and the engine speed associated with the maximum torque 

between the training engine and the verification engine.  The maximum torque for the 400 hp 

engine was determined to be 1572 ft-lbs, with a corresponding engine speed of 1258 rpm, while 

the maximum torque for the 350 hp engine was 1350 ft-lbs, with a corresponding engine speed 

of 1230 rpm.  Prior to applying the ANN model to the verification data, the normalization ranges 
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were scaled with the ratios of the torques and speeds discussed above.  The data displayed in 

Table 6.8.1 was obtained when the ANN was trained with in-use data from the Washington, PA 

2 route, and engine dynamometer data from the cycle developed to simulate the Bruceton Mills, 

WV route.  The trained ANN was then used to predict the emissions associated with the 

Bruceton Mills, WV route and the Washington, PA 2 route.  It was determined that the percent 

difference between the measured and predicted integrated emissions values associated with the 

Bruceton Mills, WV route for NOx was on average 17.6%, while the percent difference for CO2 

was 4.4%.  Figure 6.8.1 displays the comparison between predicted and measured NOx values 

for the first run using the Bruceton Data for verification. A comparison of the predicted and 

measured CO2 values is shown in Figure 6.8.2.  A discrepancy between the predicted and 

measured emissions occurred between 900 and 1100 seconds.  These prediction errors occurred 

in all of the verification runs that were conducted; the training and verification data were 

examined to determine the cause of this discrepancy.  It was determined that the maximum 

engine speed for the 400 hp engine was 2110 rpm, while the maximum engine speed for the 350 

hp engine was 2140 rpm.  The 400 hp engine had a maximum torque of 1460 ft-lbs, while the 

maximum torque of the 350 hp engine was 1350 ft-lbs.  The torques and speeds associated with 

the region being examined did not exceed the range of the training data, and did not represent 

any irregularities such as missing data points, or unexpected spikes in values.  It was determined 

that the error prediction in this region was not due to data issues, and was due to the ability of the 

ANN to learn and predict the emissions associated with the specific conditions occurring during 

that time period. 
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Table 6.8.1: Comparison of Measured and Predicted Emissions When the ANN was Trained 

with a 400 hp Engine and Used To Predict a 350 hp Engine 

ANN 1 Trained with Washington, PA2 1 Data 

ANN 2 Trained with Manufacturer A Bruceton Data 

Verification Data Run  % Diff. NOx % Diff. CO2 

Sabraton,WV to 
Bruceton Mills, WV 

1 11.4 2.7 

2 25.8 8.9 

3 15.6 1.8 

Average 17.6 4.4 

Washington PA2 

1 10.1 3.5 

2 5.9 12.0 

3 11.1 3.2 

Average 9.0 6.2 

*The highlighted values are shown in the following figures 
 

 

Figure 6.8.1: Predicted and Measured NOx Emissions for Bruceton Mills, WV route When the 

ANN Was Trained with Data from Washington, PA 2 Route  
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Figure 6.8.2: Predicted and Measured CO2 Emissions for Bruceton Mills, WV route When the 

ANN Was Trained with Data from Washington, PA 2 Route  

 

The prediction of emissions associated with the 350 hp engine also was performed with the ANN 

when it was trained with in-use data from the Washington, PA 2 route, and engine dynamometer 

from the cycle that simulated the Washington, PA route.  The data discussed previously was 

obtained when the emissions module of the ANN was trained with data from the Bruceton Mills, 

WV engine dynamometer cycle.  Table 6.8.2 displays the comparison of the measured and 

predicted integrated emissions for a Bruceton Mills, WV route and the Washington, PA 2 route.  

It was determined that the average percent difference between the measured and predicted NOx 

emissions was 24.4% for the Bruceton Mills, WV route, and 14.5% for the Washington, PA 2 

route.  The average percent difference between the measured and predicted CO2 emissions for 

the Bruceton Mills, WV route was 2.0%, and 6.2% for the Washington, PA 2 route. 
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Table 6.8.2: Comparison of Measured and Predicted Emissions When the ANN was Trained 

with a 400 hp Engine and Used To Predict a 350 hp Engine 

ANN 1 Trained with Washington, PA2 1 Data 

ANN 2 Trained with Manufacturer A Washington, PA1 Data 

Verification Data Run  % Diff. NOx % Diff. CO2 

Sabraton, WV to 
Bruceton Mills, WV 

1 20.7 3.9 

2 25.8 0.02 

3 26.6 2.0 

Average 24.4 2.0 

Washington PA2 

1 11.4 8.0 

2 17.0 8.8 

3 15.1 1.8 

Average 14.5 6.2 

*The highlighted values are shown in the following figures 
 

Figures 6.8.3 and 6.8.4 display a comparison of the predicted and measured values for NOx and 

CO2 emissions. The data in the figures was corresponds to the first run of the ANN predicting the 

emissions associated with the Washington, PA 2 route, indicated by the highlighted row in the 

above table.  The ANN was determined to over-predict both NOx and CO2 emissions for the 

Washington, PA 2 cycle. 
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Figure 6.8.3: Predicted and Measured NOx Emissions for Washington, PA route When the ANN 

Was Trained with Data from Washington, PA 2 Route  

 

 

Figure 6.8.4: Predicted and Measured NOx Emissions for Washington, PA route When the ANN 

Was Trained with Data from Washington, PA 2 Route  
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It was determined that the ANN was able to predict the emissions associated with a different 

engine than which it was trained.  It is suggested that the ANN be trained with data from an 

engine of higher or equivalent power rating, compared to the engine which is sought to be 

modeled.  When the ANN was trained with an engine with a lower power rating than the one 

being modeled, the differences between the predicted and measured values were greater due to 

the ANN extrapolating data beyond that with which it was trained.    

 

6.9 Summary of Model Verification 

In order to demonstrate the accuracy of the artificial neural network model a confidence interval 

analysis was preformed.  The percent difference between the ANN model output and 

experimentally obtained data was analyzed. Equation 6.9.1 was used to determine the maximum 

error, which was a function of the standard deviation (σ), number of samples (n), and confidence 

level (Za/2).  Equation 6.9.2 depicts the confidence interval.  For a 95 percent confidence level the 

value for Za/2 was 1.96 [56].  The confidence interval implied that 95% of the data will occur in 

the calculated range, or in other words there is 95% confidence that the percent difference 

between the emissions predicted by the ANN and the measured emissions will be in the range 

presented.  Table 6.9.1 displays confidence intervals associated with the predictions made by the 

ANN when data associated with the 400 hp engine from Manufacturer A.  The confidence 

intervals for various training and verification combinations are displayed in the table.  It was 

shown that when the emissions module of the ANN is trained with Bruceton cycle data, and the 

vehicle module of the ANN also trained with data from the Bruceton Mills, WV route that the 

95% confidence interval associated with NOx ranged from 3.6% to 7.8%.      

 

    

 

 

  
        Equation 6.9.1 

 

                 Equation 6.9.2 
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Table 6.9.1: Confidence Interval Summary for Manufacturer A 400 hp 

95% Confidence Interval 
1995 Manufacturer A 400 hp 

Training Data 
Prediction Data NOx (%) CO2 (%) 

ANN1 ANN2 
Bruceton In-Use Bruceton Cycle Bruceton 3.6 < μ < 7.8 11.2 < μ < 18.2 

 Washington,  
In-Use 

Bruceton Cycle Bruceton 5.8 < μ < 13.8 13.3 < μ < 24.1 

Washington  
In-Use 

Washington Cycle Bruceton & Wash. 8.1 < μ < 17.3 9.9 < μ < 18.3 

Washington 
 In-Use 

Bruceton Cycle Bruceton & Wash. 13.5 < μ < 21.5 9.9 < μ < 18.5 

 

The confidence intervals associated with the 350 hp engine from Manufacturer A, and the 2002 

engine from Manufacturers B and C are displayed in Table 6.9.2.  These confidence intervals 

represent all routes and training data combinations which were examined.   The data for the 2002 

engines resulted from both modules of the ANN being trained with in-use data from that same 

engine.  It was determined that 95% of the CO2 emissions predicted for the 1995 350 hp engine 

were in the range between 2.6 and 6.8 percent different from the measured emissions values.  

The confidence interval of percent differences for the NOx emissions from the 1995 350 hp 

engine ranged from 13.2% to 19.6%.  The 95% confidence intervals associated with the 

difference between predicted and measured emissions for the 2002 engines are also displayed in 

the table shown below.      

 

Table 6.9.2: Confidence Interval Summary for Manufacturer A 350 hp, Manufacturer B, and 

Manufacturer C 

95% Confidence Interval 
1995 Manufacturer A 350 Hp 2002 Manufacturer B 2002 Manufacturer C 

NOx (%) CO2 (%) NOx (%) CO2 (%) NOx (%) CO2 (%) 
13.2 < μ < 19.6 2.6 < μ < 6.8 7.4 < μ < 17.2 3.1 < μ < 10.9 2.8 < μ < 13.0 0.6 < μ < 4.8 

 

Overall, the percent differences between the measured and predicted emissions displayed in the 

above tables are the same orders of magnitude of the coefficients of variation between measured 

emissions of the some route, discussed earlier in this document.  For example, the COV in 

measured NOx values ranged from 3.4% to 11.1% for the routes examined, and the confidence 

intervals spanned ranges of 4.2% to 9.2% difference for NOx.  This shows that with 95% 
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confidence the emissions for NOx could be predicted within the variation in measured emissions 

between runs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

145 
 

7. Significance 

The research in this document is unique because current emissions models do not account for 

road grade conditions, and previous research has determined them to be inaccurate.  Currently 

there is not a standard means by which to accurately predict in use emissions based on engine 

dynamometer data for a particular heavy duty diesel engine.  It is important to be able to predict 

in-use emissions due to the cost and labor required to test a currently employed engine on an 

engine dynamometer.  Even though newly produced engines must meet stringent EPA emissions 

standards, these standards do not affect engines produced previously.  Since numerous trucks and 

busses operate with engines older than those that the current standards apply, it is important to 

have a method of predicting their emissions in order to obtain an accurate emissions inventory. 

The model developed in this work can be employed as a tool to better the emissions prediction 

ability of current emissions inventory models. By employing the engine dynamometer data to 

develop the model, a result can be reached without any additional testing, which is economically 

beneficial from both a time and financial standpoint. As more in-use data becomes available, the 

model will become more applicable to a wider variety of driving scenarios. 

 

7.1 Impact of Road Grade 

In order to show the importance of the consideration of road grade in the prediction of emissions, 

the ANN model was used to predict emissions without taking into account road grade.  The 

results shown in the following table were determined when road grade was removed as an input 

to the ANN.  The vehicle module of the ANN was retrained with only the inputs relating to 

engine torque and vehicle speed, and when was employed to predict the emissions associated 

with various routes.  Table 7.1.1 shows the percent difference between measured and predicted 

emissions when road grade is not employed as an input into the model.  Various combinations of 

training and verification data were examined.  The emissions were predicted for the Bruceton 

Mills, WV to Sabraton, WV route when ANN1 was trained with Bruceton Mills, WV to 

Sabraton, WV in-use data, and ANN2 was trained both with data from the Bruceton Mills, WV 

Cycle and the Washington, PA Cycle.  The emissions associated with the route from Sabraton, 

WV to Bruceton Mills, WV were also predicted without considering road grade.  The emissions 

for the Sabraton, WV to Bruceton Mills, WV route were predicted twice, in both cases ANN1 

was trained with data from the Washington, PA2 route.  ANN2 was trained for one case with 
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data from the Bruceton Mills, WV cycle, and for another case with data from the Washington, 

PA1 cycle.  The variations in the percent differences between predicted and measured NOx and 

CO2 between runs was due to reinitializing the weights of the ANN.  With each run the initial 

weights associated with the emissions module of the ANN were reinitialized, resulting in 

different starting values, and a different final convergence point. 

 

It was determined that when road grade was not accounted for the percent difference between the 

measured and predicted emissions was greater than the difference when road grade was 

considered as an input to the ANN.  For example, when road grade was not considered the 

average percent difference between the predicted and measured NOx emissions for the Bruceton 

Mills, WV to Sabraton, WV route was 38.2%, and when road grade was considered the 

difference was 5.8%.  The percent difference between measured and predicted CO2 emissions 

when road grade was not considered was 36.4%, while when road grade was considered the 

difference was 12.6%.  Similar differences in the average percent differences with and without 

accounting for road grade were observed for all of the training and verification combinations 

displayed in the table below.  

 

The increase in accuracy when the ANN was provided with road grade data indicated that 

accounting for road grade resulted in a model that is capable of predicting NOx and CO2 

emissions more accurately than a model that does not account for the effects of road grade. 
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Table 7.1.1: Emissions Predicted Without Road Grade as an Input Compared to When Road 

Grade was an Input 

ANN 1 Trained with Bruceton2Sab 2 Data 

ANN 2 Trained with Sabraton to Bruceton Mills Data 

Verification Data Run  % Diff. NOx % Diff. CO2 

Bruceton2Sab 1 

1 40.9 38.4 

2 36.6 35.8 

3 37.1 35.1 

Average 38.2 36.4 
ANN 1 Trained with Bruceton2Sab 2  Data 

ANN 2 Trained with Washington, PA 1 Data 

Verification Data Run  % Diff. NOx % Diff. CO2 

Bruceton2Sab 1 

1 39.2 38.3 

2 34.4 28.4 

3 32.5 30.0 

Average 35.4 32.2 
ANN 1 Trained with Washington, PA2 1 Data 

ANN 2 Trained with Sabraton to Bruceton Mills Data 

Verification Data Run  % Diff. NOx % Diff. CO2 

Sab2Bruceton 1 

1 43.7 31.2 

2 56.2 35.5 

3 42.0 30.0 

Average 47.3 32.2 
ANN 1 Trained with Washington, PA2 1  Data 

ANN 2 Trained with Washington, PA 1 Data 

Verification Data Run  % Diff. NOx % Diff. CO2 

Sab2Bruceton 1 

1 25.6 52.0 

2 35.6 52.1 

3 50.4 38.7 

Average 37.2 47.6 
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8. Recommendations and Conclusions 

8.1 Conclusions 

 

An ANN model was developed to predict heavy duty diesel engine emissions, employing engine 

dynamometer data, data acquired through in-use testing, and took into account the affects of road 

grade.  The ANN employed the unique inputs of data that had been pre-processed with two 

moving averages, each incorporating a different number of points.  

 

Initially data obtained from the FTP engine dynamometer cycles was employed to train the 

ANN, however it was determined that the FTP cycle did not provide adequate information to 

train the emissions module of the ANN.  One of the concerns with data obtained from FTP cycle 

testing was that engines of certain model years were equipped with defeat devices, resulting in 

the emissions produced in-use exceeding the emissions produced during FTP testing. Rather than 

employing the FTP cycle, engine dynamometer cycles that were designed to simulate the 

Bruceton Mills, WV route and the Washington, PA route were used. 

 

It was determined that when the vehicle module of the ANN was trained with in-use data from 

the Bruceton Mills, WV route, and the emissions module of the ANN was trained with engine 

dynamometer data from the cycle designed to simulate the Bruceton Mills, WV route, the ANN 

was able to predict NOx within 6% of the measured values.  The average difference between the 

measured and predicted CO2 values for the same training and verification scenario mentioned 

above was less than 15%.  It was also demonstrated that the ANN was able to predict emissions 

that associated with routes that differ from those by which it was trained.  When the ANN was 

trained with in-use data from the Washington, PA route it was able to predict the NOx and CO2 

emissions with percent differences from the measured values of 20% or less.   

 

It was also shown that the ANN was able to predict emissions associated with a different engine 

than that which it was trained, if the different engine was of a lower horsepower than the engine 

that produced the training data.  The ANN was able to predict emissions with percent differences 

ranging from 13% to 19.6% for NOx and 2.6% to 6.8% for CO2 with 95% confidence.   
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It was also demonstrated that the ANN could predict emissions when both the vehicle and the 

emissions module were trained with in-use data.  The emissions associated with two separate 

2002 engines from different manufacturers were modeled using the ANN.  It was determined 

that when in-use data from the 2002 engines was used to train the ANN it was able to predict the 

NOx emission with an average of less than 2.5% difference from the measured values for certain 

routes.   

 

A variety of routes were used for training and verification of the ANN, and it was determined 

that the ANN was capable of predicting emissions of NOx and CO2 within 20% or less of the 

measured values.  An analysis of the in-use training data showed an average COV in CO2 

measurements of up to 4.6% for certain routes for the 400 hp engine from Manufacturer A.  The 

COV for the NOx emissions associated with the same engine was as high as 11.11% for a certain 

route.  The variance between measured emission values on repeated tests of the same route was 

also examined for an engine from another manufacturer, and it was determined that an average 

COV for all of the routes examined was 28.4% for CO2, and 36.8% for NOx.  Seeing as the data 

from these in-use tests were employed as training and verification data for the ANN, it should be 

noted that the percent differences between that measured and the predicted emissions values are 

on the order of the variance in measured emissions between tests.  

 

It was also shown that a method of compensating for the weight difference between the vehicle 

from which training data was acquired and the vehicle being modeled was developed.  It was 

determined that the training data should be obtained from a vehicle weighing more or equivalent 

to the vehicle being modeled.     

 

In-use emissions data will continue to become more available as it is currently a requirement by 

the US EPA.  It has been shown that the ANN developed in this work is able to better predict 

emissions when trained with in-use emissions data, therefore as more in-use data become 

available the ANN has the potential to be applied to a wider variety of engines. 

 

Rather than replace current emissions inventory estimations models, it was recommended that 

the model presented in this work be employed to aid in the prediction of emissions in the current 
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models.  In order for the work presented in this dissertation to be used to predict emissions 

inventories, additional work would be required, such as acquiring climate data for the regions for 

which inventories would be determined.  Also, route information would be needed for all of the 

routes being included in the emissions inventory.   

 

8.2 Recommendations for Future Work 

 

It is recommended that future work be conducted that would result in data which could be 

employed to determine the affects of deterioration and ambient conditions on the produced 

emissions.  The data available for this analysis was acquired via in-use testing, and therefore 

variation in conditions made it impossible to distinguish between ambient and deterioration 

effects on the emissions.  It is recommended that engines be tested in a test cell environment 

where conditions can be controlled in order to acquire data that would allow the impacts of 

deterioration and ambient conditions to be examined.   

 

The recommendation is also made that as more in-use data becomes available for present 

technology engines that the ANN be trained with that data and employed to predict data 

associated with engines that are currently in production.   
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Appendix 

 
This appendix consists of the code employed to obtain the data presented in this document.  The 

code is presented in four modules. The first module loads the training data into Matlab, and then 

pre-processes that data, creates the vehicle module of the ANN, and then trains the vehicle 

module ANN.  The second module loads data into Matlab, pre-processes that data, and then 

creates the emissions module of the ANN, and then trains the emissions modules of the ANN.  

The third module loads verification data into the Matlab, pre-processes that data, and then 

applies the previously trained vehicle module of the ANN to the verification data.  The forth 

module, employs the outputs of the third module, pre-processes those outputs, and applies the 

previously trained emissions module to the verification data.   

 

The outputs of the forth module are the predicted NOx, CO2, HC, and CO emissions on a mass 

rate (g/s) basis.  The structure of the ANN may be altered by changing variables in the first and 

second modules.  Currently, the code is setup to employ in-use training and verification data that 

was obtained with 10 hz sampling, and engine dynamometer training data that was obtained with 

1 hz sampling.  If data is employed with different sampling rates it is recommended that the 

number of points in the moving average applied to the input data be altered in correlation to the 

sampling frequency.  For example, data sets with a lower sampling frequency require fewer data 

points in the moving average.  

A-1 
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%Melissa Morris 
%Artifical Neural Network  
%Vehicle Module Training Code 

  
%Clear variable in memory 
clear; 
clc; 

  
%Import Specific Columns and Data Sets  
%Time (Seconds) 
time = xlsread('Bruceton_7.xls', 1, 'A64:A40122'); 

  
%Pressure (in Hg) 
Annubar_P = xlsread('Bruceton_7.xls', 1, 'J64:J40122'); 

  
%Ambient Temp (F) 
Ambient_Temp = xlsread('Bruceton_7.xls', 1, 'B37:B38'); 

  
%Ambient Pressure (in Hg) 
Ambient_Pressure = xlsread('Bruceton_7.xls', 1, 'C37:C38'); 

  
%Ambient RH (%) 
Ambient_RH = xlsread('Bruceton_7.xls', 1, 'D37:D38'); 

  
%Vehicle Speed (mph) 
ECU_Speed = xlsread('Bruceton_7.xls', 1, 'U64:U40122'); 

  
%Engine Speed (RPM) 
Engine_Speed = xlsread('Bruceton_7.xls', 1, 'S64:S40122'); 

  
%Inferred Torque (ft-lb) 
Inferred_Torque = xlsread('Bruceton_7', 1, 'W64:W40122'); 

  

  
%Define number of points used in the moving averages for smoothing 
SMOOTH_POINTS1 = 50; 
SMOOTH_POINTS2 = 200; 

  
%Smooth the Pressure and Vehicle Speed 
Annubar_P = smooth(Annubar_P, SMOOTH_POINTS1); 
ECU_Speed1 = smooth(ECU_Speed, SMOOTH_POINTS1); 
ECU_Speed2 = smooth(ECU_Speed, SMOOTH_POINTS2); 

  
%Derivatives will be taken over two time intervals 1 seconds and 10 
%second, those time intervals are defined as the following variables. 

  
derivative_1 = 10; 
derivative_2 = 100; 

  
for i=1:length(time); 
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    %Apply differentiation 

  
    if (i+derivative_1>=length(time)) 
        dertenth_ECU_Speed1(i,1)= 0; 
        dertenth_ECU_Speed2(i,1)= 0; 
        dertenth_Annubar_P(i,1)= 0; 
    else 
        dertenth_ECU_Speed1(i,1)=(ECU_Speed1(i+derivative_1)-

ECU_Speed1(i))/(time(i+derivative_1)-time(i)); 
        dertenth_Annubar_P(i,1)=(Annubar_P(i+derivative_1)-

Annubar_P(i))/(time(i+derivative_1)-time(i)); 
        dertenth_ECU_Speed2(i,1)=(ECU_Speed2(i+derivative_1)-

ECU_Speed2(i))/(time(i+derivative_1)-time(i)); 
    end 

  
    if (i+derivative_2>=length(time)) 
        derone_ECU_Speed1(i,1)= 0; 
        derone_ECU_Speed2(i,1)= 0; 
        derone_Annubar_P(i,1)= 0; 
    else 
        derone_ECU_Speed1(i,1)=(ECU_Speed1(i+derivative_2)-

ECU_Speed1(i))/(time(i+derivative_2)-time(i)); 
        derone_Annubar_P(i,1)=(Annubar_P(i+derivative_2)-

Annubar_P(i))/(time(i+derivative_2)-time(i)); 
        derone_ECU_Speed2(i,1)=(ECU_Speed2(i+derivative_2)-

ECU_Speed2(i))/(time(i+derivative_2)-time(i)); 
    end 

     

   
end 

  
%Calculate Roadgrade 

  

  
%Standard Temperature 
Tb = 288.15; 
%Standard Pressure 
Pb = 29.92; 
%Temperature Lapse Rate 
Lb = -0.0065; 
%Initial Height 
hb = 0; 
%Universal Gas Constant 
R = 8.314; 
%Gravity 
g = 9.8; 
%Molar Mass 
M = 0.02897; 

  
%Denomenator of Roadgrade Equation 
den=Lb.*(Annubar_P./Pb).^((R.*Lb)./(g.*M)); 
h = (Tb./den)-(Tb./Lb)+hb; 

    
I = ECU_Speed1.*0.44704.*(0.1); 
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for i=2:length (time) 
    if (I(i)^2-(h(i)-h(i-1))^2) <0 
        d(i)=100; 
    else 
     d (i) = sqrt(I(i)^2-(h(i)-h(i-1))^2); 

    

   
    end 
    Roadgrade (i) = 100*(h(i)-h(i-1))/d(i); 
end 

  
%Smooth the Calculated Roadgrade 
Roadgrade1 = smooth(Roadgrade, SMOOTH_POINTS1); 
Roadgrade2 = smooth(Roadgrade, SMOOTH_POINTS2); 

  

  

   
%Apply differentiation to take derivatives of roadgrade 

  
  for i=2:length(time) 

      
    if (i+derivative_1>length(time)) 
        dertenth_Roadgrade1(i,1) = 0; 
        dertenth_Roadgrade2(i,1) = 0; 

  
    else 
        dertenth_Roadgrade1(i,1)=(Roadgrade1(i+derivative_1)-

Roadgrade1(i))/(time(i+derivative_1)-time(i)); 
        dertenth_Roadgrade2(i,1)=(Roadgrade2(i+derivative_1)-

Roadgrade2(i))/(time(i+derivative_1)-time(i)); 

  
    end 

  
    if (i+derivative_2>=length(time)) 
        derone_Roadgrade1(i,1) = 0; 
        derone_Roadgrade2(i,1) = 0; 

  
    else 
        derone_Roadgrade1(i,1)=(Roadgrade1(i+derivative_2)-

Roadgrade1(i))/(time(i+derivative_2)-time(i)); 
        derone_Roadgrade2(i,1)=(Roadgrade2(i+derivative_2)-

Roadgrade2(i))/(time(i+derivative_2)-time(i)); 

  
    end 
end 

  
%Normalize the inputs and outputs 
ECU_Speed1_norm = normvalue(ECU_Speed1', 100, 0, 1, 0); 
dertenth_ECU_Speed1_norm = normvalue(dertenth_ECU_Speed1', 100, -100, 1, -1); 
derone_ECU_Speed1_norm = normvalue(derone_ECU_Speed1', 100, -100, 1, -1); 
ECU_Speed2_norm = normvalue(ECU_Speed2', 100, 0, 1, 0); 
dertenth_ECU_Speed2_norm = normvalue(dertenth_ECU_Speed2', 100, -100, 1, -1); 
derone_ECU_Speed2_norm = normvalue(derone_ECU_Speed2', 100, -100, 1, -1); 
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Inferred_Torque_norm = normvalue(Inferred_Torque',1500, -1500, 1, -1); 
Annubar_P_norm = normvalue(Annubar_P',1000, 0, 1, 0); 
dertenth_Annubar_P_norm = normvalue(dertenth_Annubar_P', 1000, -1000, 1,-1); 
derone_Annubar_P_norm = normvalue(derone_Annubar_P', 1000, -1000, 1,-1); 
Engine_Speed_norm = normvalue(Engine_Speed',3000, 0, 1, 0); 
Roadgrade1_norm = normvalue(Roadgrade1', 10, -10, 1,-1); 
Roadgrade2_norm = normvalue(Roadgrade2', 10, -10, 1,-1); 
dertenth_Roadgrade1_norm = normvalue(dertenth_Roadgrade1', 10, -10, 1,-1); 
derone_Roadgrade1_norm = normvalue(Roadgrade1', 10, -10, 1,-1); 
dertenth_Roadgrade2_norm = normvalue(dertenth_Roadgrade2', 10, -10, 1,-1); 
derone_Roadgrade2_norm = normvalue(Roadgrade2', 10, -10, 1,-1); 

  
%A Matrix must be assembled of the input and output values. 
inputs = [ECU_Speed1_norm; dertenth_ECU_Speed1_norm; derone_ECU_Speed1_norm; 

ECU_Speed2_norm; dertenth_ECU_Speed2_norm; derone_ECU_Speed2_norm; 

Roadgrade1_norm; derone_Roadgrade1_norm; dertenth_Roadgrade1_norm; 

Roadgrade2_norm; derone_Roadgrade2_norm; dertenth_Roadgrade2_norm]; 

  
outputs = [Inferred_Torque_norm; Engine_Speed_norm]; 

  
%Create a back propagation Neural Network 
net_veh = newcf (inputs, outputs, [25, 10, 5]); 

  

  
%Start training the intialized layer 
net_veh = train(net_veh, inputs, outputs); 

  
%simulate network 
Y = sim(net_veh, inputs); 

  
%Un-normalize the outputs 
Inferred_Torque_out = normvalue(Y(1,:), 1, -1, 1500, -1500); 
Engine_Speed_out = normvalue(Y(2,:), 1, 0, 3000, 0); 

  
%limit the torque outputs 
for (i=1:length(time)); 

     
    if (Inferred_Torque_out(i) <-200) 
        Inferred_Torque_out(i) =-200; 
    end 

     
end 

  

  

  
%Plot the  Torque and Engine Speed 

  
plot(time, Inferred_Torque, '-b', time, Inferred_Torque_out, '--r'); 
xlabel('Time (secs)'); 
ylabel('Engine Torque (ft-lbs)'); 
axis([0 max(time) -1000 2000]); 
legend('Actual', 'Fit'); 
figure 
plot(time, Engine_Speed, '-b', time, Engine_Speed_out, '--r'); 
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xlabel('Time (secs)'); 
ylabel('Engine Speed (RPM)'); 
axis([0 max(time) -1000 3000]); 
legend('Actual', 'Fit'); 
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%Melissa Morris 
%Artifical Neural Network  
%Emissions Module Training Code 

  

  

  
%Import Data for Microsoft Excel File 
inputData = xlsread('Mack_4.xls','continuous'); 

  
%Import Specific Columns and Data Sets  
%Time (Seconds) 
time_e = inputData(:,1); 

  
%Engine Speed (RPM) 
engine_speede = inputData(:,2); 

  
%Engine Torque (Ft.lb) 
engine_torquee = inputData(:,3); 

  
%Convert Torque from Nm to Ft.lbs 
engine_torquee = engine_torquee.*0.738; 

  
%NOx (g/s) 
NOx = inputData(:,12); 

  
% CO (g/s) 
CO = inputData(:,10); 

  
% CO2 (g/s) 
CO2 = inputData(:,11); 

  
% HC (g/s) 
HC = inputData(:,9); 

  

  
%Calculate Power 
engine_powere = (engine_speede.*engine_torquee)./5252; 

  
%Shift the measured emissions to align with power 
[yShifted_NOx R2 iShift_NOx] = ShiftDataFillxStay(engine_powere, NOx, 30); 
[yShifted_CO R2 iShift_CO] = ShiftDataFillxStay(engine_powere, CO, 30); 
[yShifted_CO2 R2 iShift_CO2] = ShiftDataFillxStay(engine_powere, CO2, 30); 
[yShifted_HC R2 iShift_HC] = ShiftDataFillxStay(engine_powere, HC, 30); 

  

  

  
%Define number of points use in the moving averages for smoothing. 

  
SMOOTH_POINTS1 = 20; 
SMOOTH_POINTS2 = 75; 

  
%Smooth Engine speed and torque 
engine_speede1 = smooth(engine_speede, SMOOTH_POINTS1); 
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engine_torquee1 = smooth(engine_torquee, SMOOTH_POINTS1); 
engine_speede2 = smooth(engine_speede, SMOOTH_POINTS2); 
engine_torquee2 = smooth(engine_torquee, SMOOTH_POINTS2); 

  

  
%Normalize the inputs  
engine_speede_norm1 = normvalue(engine_speede1', 3000, 0, 1, 0); 

  
engine_torquee_norm1 = normvalue(engine_torquee1',1500, -1500, 1, -1); 

  
engine_speede_norm2 = normvalue(engine_speede2', 3000, 0, 1, 0); 

  
engine_torquee_norm2 = normvalue(engine_torquee2',1500, -1500, 1, -1); 

  
%Normalize Training Targets 
NOx_norm = normvalue(yShifted_NOx', 2, 0, 1, 0); 
CO_norm = normvalue(yShifted_CO', 1, 0, 1, 0); 
CO2_norm = normvalue(yShifted_CO2', 100, 0 , 1, 0); 
HC_norm = normvalue(yShifted_HC', 0.001, 0, 1, 0); 

  

  
%A Matrix must be assembled of the input and output values. 
inputs = [engine_speede_norm1;  engine_torquee_norm1;  engine_speede_norm2;  

engine_torquee_norm2;] ; 
outputs = [NOx_norm; CO_norm; CO2_norm; HC_norm]; 

  
%Create a back propagation Neural Network 
net_emission = newcf (inputs, outputs, [10, 5]); 

  

  
%Start training the intialized layer 
net_emission = train(net_emission, inputs, outputs); 

  
%simulate network 
Y2 = sim(net_emission, inputs); 

  
%un-mormalize the networks outputs 
NOx_out = normvalue(Y2(1,:), 1, 0, 2, 0); 
CO_out = normvalue(Y2(2,:), 1, 0, 1, 0); 
CO2_out = normvalue(Y2(3,:), 1, 0, 100, 0); 
HC_out = normvalue(Y2(4,:), 1, 0, 0.001, 0); 
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%Melissa Morris 
%Artifical Neural Network  
%Vehicle Module 

  
%Clear variable that will be renamed with verification data 
clear Roadgrade1; 
clear dertenth_ECU_Speed1; 
clear derone_ECU_Speed1; 
clear ECU_Speed1; 
clear dertenth_ECU_Speed2; 
clear derone_ECU_Speed2; 
clear ECU_Speed2; 
clear Inferred_Torque_out; 
clear Engine_Speed_out; 
clear dertenth_Roadgrade1; 
clear derone_Roadgrade1; 
clear dertenth_Roadgrade2; 
clear derone_Roadgrade2; 
clear Roadgrade2; 
clear Roadgrade; 

  
%Import Specific Columns and Data Sets  
%Time (Seconds) 
time_ver = xlsread('Bruceton_7.xls', 1, 'A64:A22530'); 

  
%Pressure (in Hg) 
Annubar_P = xlsread('Bruceton_7.xls', 1, 'J64:J22530'); 

  
%Ambient Temp (F) 
Ambient_Temp = xlsread('Bruceton_7.xls', 1, 'B37:B38'); 

  
%Ambient Pressure (in Hg) 
Ambient_Pressure = xlsread('Bruceton_7.xls', 1, 'C37:C38'); 

  
%Ambient RH (%) 
Ambient_RH = xlsread('Bruceton_7.xls', 1, 'D37:D38'); 

  
%Vehicle Speed (mph) 
ECU_Speed = xlsread('Bruceton_7.xls', 1, 'U64:U22530'); 

  
%Engine Speed (RPM) 
Engine_Speed = xlsread('Bruceton_7.xls', 1, 'S64:S22530'); 

  
%Inferred Torque (ft-lb) 
Inferred_Torque = xlsread('Bruceton_7.xls', 1, 'W64:W22530'); 

  
%Define number of points used in the moving averages for smoothing 
SMOOTH_POINTS1 = 50; 
SMOOTH_POINTS2 = 200; 

  
%Smooth the Pressure and vehicle speed 
Annubar_P = smooth(Annubar_P, SMOOTH_POINTS1); 
ECU_Speed1 = smooth(ECU_Speed, SMOOTH_POINTS1); 
ECU_Speed2 = smooth(ECU_Speed, SMOOTH_POINTS2); 
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%Derivatives will be taken over two time intervals 1 seconds and 10 
%second, those time intervals are defined as the following variables. 

  
derivative_1 = 10; 
derivative_2 = 100; 
for i=1:length(time_ver); 

     
    %Apply differentiation 

  
    if (i+derivative_1>=length(time_ver)) 
        dertenth_ECU_Speed1(i,1)= 0; 
        dertenth_ECU_Speed2(i,1)= 0; 
        dertenth_Annubar_P(i,1)= 0; 
    else 
        dertenth_ECU_Speed1(i,1)=(ECU_Speed1(i+derivative_1)-

ECU_Speed1(i))/(time_ver(i+derivative_1)-time_ver(i)); 
        dertenth_Annubar_P(i,1)=(Annubar_P(i+derivative_1)-

Annubar_P(i))/(time_ver(i+derivative_1)-time_ver(i)); 
        dertenth_ECU_Speed2(i,1)=(ECU_Speed2(i+derivative_1)-

ECU_Speed2(i))/(time_ver(i+derivative_1)-time_ver(i)); 
    end 

  
    if (i+derivative_2>=length(time_ver)) 
        derone_ECU_Speed1(i,1)= 0; 
        derone_ECU_Speed2(i,1)= 0; 
        derone_Annubar_P(i,1)= 0; 
    else 
        derone_ECU_Speed1(i,1)=(ECU_Speed1(i+derivative_2)-

ECU_Speed1(i))/(time_ver(i+derivative_2)-time_ver(i)); 
        derone_Annubar_P(i,1)=(Annubar_P(i+derivative_2)-

Annubar_P(i))/(time_ver(i+derivative_2)-time_ver(i)); 
        derone_ECU_Speed2(i,1)=(ECU_Speed2(i+derivative_2)-

ECU_Speed2(i))/(time_ver(i+derivative_2)-time_ver(i)); 
    end 

     

   
end 

  
%Calculate Roadgrade 

  

  
%Standard Temperature 
Tb = 288.15; 
%Standard Pressure 
Pb = 29.92; 
%Temperature Lapse Rate 
Lb = -0.0065; 
%Initial Height 
hb = 0; 
%Universal Gas Constant 
R = 8.314; 
%Gravity 
g = 9.8; 
%Molar Mass 
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M = 0.02897; 

  

  
%Denomenator of Road Grade Equation  
den=Lb.*(Annubar_P./Pb).^((R.*Lb)./(g.*M)); 
h = (Tb./den)-(Tb./Lb)+hb; 

    
I = ECU_Speed.*0.44704.*(0.1); 

  

  
for i=2:length (time_ver) 
    if (I(i)^2-(h(i)-h(i-1))^2) <0 
        d(i)=100; 
    else 
         d(i) = sqrt(I(i)^2-(h(i)-h(i-1))^2); 
    end 
        Roadgrade(i) = 100*(h(i)-h(i-1))/d(i); 
end 

  
%Smooth Calculated Road Grade 
Roadgrade1 = smooth(Roadgrade, SMOOTH_POINTS1); 
Roadgrade2 = smooth(Roadgrade, SMOOTH_POINTS2); 

  
for i=2:length(time_ver) 

     
%Apply differentiation to road grade 

  
    if (i+derivative_1>=length(time_ver)) 
        dertenth_Roadgrade1(i,1) = 0; 
        dertenth_Roadgrade2(i,1) = 0; 
    else 
        dertenth_Roadgrade1(i,1)=(Roadgrade1(i+derivative_1)-

Roadgrade1(i))/(time_ver(i+derivative_1)-time_ver(i)); 
        dertenth_Roadgrade2(i,1)=(Roadgrade2(i+derivative_1)-

Roadgrade2(i))/(time_ver(i+derivative_1)-time_ver(i)); 
    end 

  
    if (i+derivative_2>=length(time_ver)) 
        derone_Roadgrade1(i,1) = 0; 
        derone_Roadgrade2(i,1) = 0; 
    else 
        derone_Roadgrade1(i,1)=(Roadgrade1(i+derivative_2)-

Roadgrade1(i))/(time_ver(i+derivative_2)-time_ver(i)); 
        derone_Roadgrade2(i,1)=(Roadgrade2(i+derivative_2)-

Roadgrade2(i))/(time_ver(i+derivative_2)-time_ver(i)); 

  
    end 
end 

  

  
%Normalize the inputs and outputs 
ECU_Speed1_norm = normvalue(ECU_Speed1', 100, 0, 1, 0); 
dertenth_ECU_Speed1_norm = normvalue(dertenth_ECU_Speed1', 100, -100, 1, -1); 
derone_ECU_Speed1_norm = normvalue(derone_ECU_Speed1', 100, -100, 1, -1); 
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ECU_Speed2_norm = normvalue(ECU_Speed2', 100, 0, 1, 0); 
dertenth_ECU_Speed2_norm = normvalue(dertenth_ECU_Speed2', 100, -100, 1, -1); 
derone_ECU_Speed2_norm = normvalue(derone_ECU_Speed2', 100, -100, 1, -1); 
Inferred_Torque_norm = normvalue(Inferred_Torque',1500, -1500, 1, -1); 
Annubar_P_norm = normvalue(Annubar_P',1000, 0, 1, 0); 
dertenth_Annubar_P_norm = normvalue(dertenth_Annubar_P', 1000, -1000, 1,-1); 
derone_Annubar_P_norm = normvalue(derone_Annubar_P', 1000, -1000, 1,-1); 
Engine_Speed_norm = normvalue(Engine_Speed',3000, 0, 1, 0); 
Roadgrade1_norm = normvalue(Roadgrade1', 10, -10, 1,-1); 
Roadgrade2_norm = normvalue(Roadgrade2', 10, -10, 1,-1); 
dertenth_Roadgrade1_norm = normvalue(dertenth_Roadgrade1', 10, -10, 1,-1); 
derone_Roadgrade1_norm = normvalue(Roadgrade1', 10, -10, 1,-1); 
dertenth_Roadgrade2_norm = normvalue(dertenth_Roadgrade2', 10, -10, 1,-1); 
derone_Roadgrade2_norm = normvalue(Roadgrade2', 10, -10, 1,-1); 

  
%A Matrix must be assembled of the input and output values. 
inputs = [ECU_Speed1_norm; dertenth_ECU_Speed1_norm; derone_ECU_Speed1_norm; 

ECU_Speed2_norm; dertenth_ECU_Speed2_norm; derone_ECU_Speed2_norm; 

Roadgrade1_norm; derone_Roadgrade1_norm; dertenth_Roadgrade1_norm; 

Roadgrade2_norm; derone_Roadgrade2_norm; dertenth_Roadgrade2_norm]; 

  

  

  
%simulate network 
Y = sim(net_veh, inputs); 

  
%Un-normalize the outputs 
Inferred_Torque_out = normvalue(Y(1,:), 1, -1, 1500, -1500); 
Engine_Speed_out = normvalue(Y(2,:), 1, 0, 3000, 0); 

  
%limit the torque 
for (i=1:length(time_ver)); 

     
    if (Inferred_Torque_out(i) <-200) 
        Inferred_Torque_out(i) =-200; 
    else 
        Inferred_Torque_out(i)= Inferred_Torque_out(i); 
    end 
end 

  
for (i=1:length(time_ver)); 

     
    if (Inferred_Torque_out(i) >1500) 
        Inferred_Torque_out(i) =1500; 
    else  
        Inferred_Torque_out(i)= Inferred_Torque_out(i); 
    end 
end 

  

  
%Generate Plots of Torque and Speed 

  
figure 
plot(time_ver, Inferred_Torque, '-b', time_ver, Inferred_Torque_out, '--r'); 
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xlabel('Time (secs)'); 
ylabel('Engine Torque (ft-lbs)'); 
axis([0 max(time) -1000 2000]); 
legend('Actual', 'Predicted'); 

  
figure 
plot(time_ver, Engine_Speed, '-b', time_ver, Engine_Speed_out, '--r'); 
xlabel('Time (secs)'); 
ylabel('Engine Speed (RPM)'); 
axis([0 max(time) -1000 3000]); 
legend('Actual', 'Predicted'); 
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%Melissa Morris 
%Artificial Neural Network 
%Emissions Module 

  
%Import Specific Columns and Data Sets  
%Time (Seconds) 
time_ver2 = xlsread('Bruceton_7.xls', 1, 'A64:A22530'); 

  
%Engine Speed (RPM) Obtained from output of previous module 
Engine_Speed_out_E= Engine_Speed_out; 

  
%Engine Torque (Ft.lb) Obtained from output of previous module 
Inferred_Torque_out_E = Inferred_Torque_out; 

  
%Clear Variable that will be renamed with verification data 
clear ACT_NOx; 
clear ACT_Power;  
clear ACT_CO2;  
clear yShifted_NOx_ACT; 
clear yShifted_CO2_ACT; 
clear PD_CO2; 
clear PD_NOx; 
clear engine_speed_E_norm1;   
clear engine_torque_E_norm1;   
clear dertenth_engine_speed_E_norm1; 
clear dertenth_engine_torque_E_norm1; 
clear derone_engine_speed_E_norm1;  
clear derone_engine_torque_E_norm1;  
clear engine_speed_E_norm2; 
clear engine_torque_E_norm2; 
clear dertenth_engine_speed_E_norm2; 
clear dertenth_engine_torque_E_norm2;   
clear derone_engine_speed_E_norm2;  
clear derone_engine_torque_E_norm2; 

  
%Define number of points used in the moving average for smoothing 
SMOOTH_POINTS1 = 20; 
SMOOTH_POINTS2 = 75; 

  
%Smooth engine speed and torque 
Filtered_Engine_Speed_out_E1 = smooth(Engine_Speed_out_E, SMOOTH_POINTS1); 
Filtered_Inferred_Torque_out_E1 = smooth(Inferred_Torque_out_E, 

SMOOTH_POINTS1); 
Filtered_Engine_Speed_out_E2 = smooth(Engine_Speed_out_E, SMOOTH_POINTS2); 
Filtered_Inferred_Torque_out_E2 = smooth(Inferred_Torque_out_E, 

SMOOTH_POINTS2); 

  
%Normalize the inputs and outputs 
engine_speed_E_norm1 = normvalue(Filtered_Engine_Speed_out_E1', 2754, 0, 1, 

0); 

  
engine_torque_E_norm1 = normvalue(Filtered_Inferred_Torque_out_E1',1438.5, -

1438.5, 1, -1); 

  



 
 

14 
 

engine_speed_E_norm2 = normvalue(Filtered_Engine_Speed_out_E2', 2754, 0, 1, 

0); 

  
engine_torque_E_norm2 = normvalue(Filtered_Inferred_Torque_out_E2',1438.5, -

1438.5, 1, -1); 

  
%A Matrix must be assembled of the input and output values. 
inputs = [engine_speed_E_norm1;  engine_torque_E_norm1;  

engine_speed_E_norm2;  engine_torque_E_norm2;];  

  

  
%simulate network 
Y2 = sim(net_emission, inputs); 

  
%un-normalize the outputs 
NOx_out = normvalue(Y2(1,:), 1, 0, 2, 0); 
CO_out = normvalue(Y2(2,:), 1, 0, 1, 0); 
CO2_out = normvalue(Y2(3,:), 1, 0, 100, 0); 
HC_out = normvalue(Y2(4,:), 1, 0, 0.001, 0); 

  
%limit the emissions generated to positive values 
for (i=1:length(time_ver2)); 

     
    if (NOx_out(i) <0) 
        NOx_out(i) =0; 
    else  
        NOx_out(i) = NOx_out(i); 
    end 
end 

  
for (i=1:length(time_ver2)); 

     
    if (CO2_out(i) <0) 
        CO2_out(i) =0; 
    else  
        CO2_out(i) = CO2_out(i); 
    end 
end 

  

  

  
%Inport verification data 
ACT_NOx = xlsread('Bruceton_7.xls', 1, 'AQ64:AQ22530'); 
ACT_Power = xlsread('Bruceton_7.xls', 1, 'X64:X22530'); 
ACT_CO2 =xlsread('Bruceton_7.xls', 1, 'AO64:AO22530'); 

  
%Shift verification data to align with power 
[yShifted_NOx_ACT R2 iShift_NOx] = ShiftDataFillxStay(ACT_Power, ACT_NOx, 

30); 
[yShifted_CO2_ACT R2 iShift_CO2] = ShiftDataFillxStay(ACT_Power, ACT_CO2, 

30); 

  

  
% Plot Emissions 
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figure; 
plot(time_ver2, yShifted_CO2_ACT, '-b', time_ver2, CO2_out', '--r'); 
xlabel('Time (secs)'); 
ylabel('CO2 (g/s)'); 
legend('Actual', 'Predicted'); 

  
figure; 
plot(time_ver2, yShifted_NOx_ACT, '-b', time_ver2, NOx_out', '--r'); 
xlabel('Time (secs)'); 
ylabel('NOx (g/s)'); 
legend('Actual', 'Predicted'); 
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