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ABSTRACT

Preliminary Investigation Of
Energy Dissipation At Culvert Outlets

Using A Riprap Step

Belinda M. Weikle

One method used to attenuate high-energy flow at culvert outlets is the construction of a riprap energy
dissipator. The current riprap design used by the WVDOH experiences problems with excessive sedimentation and
is only applicable at culvert outlets where the flow velocity is low.  The purpose of this investigation was to
construct a testing device to allow for the testing of physical models and produce a preliminary riprap step design
that would perform more effectively than the current design.  The new design proposed meets the following criteria.
It is:

•  Easily constructed on site using available materials
•  Economically efficient
•  Applicable to various culvert sizes and flowrates
•  Self cleaning and requires low maintenance
•  Able to re-establish natural flow conditions downstream of the outlet

Several model steps were constructed and tested.  This thesis reviews the construction of all experimental equipment
and the development of a preliminary design.
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Chapter 1

Introduction

1.1 Problem Statement

Energy dissipation is a prime concern at culvert outlets.  The methods of attenuating the energy depend on the

flow parameters at the culvert outlet, such as velocity, etc.  The West Virginia Division of Highways (WVDOH)

uses several types of energy dissipators.  Their methods of energy dissipation include various baffle block designs

and riprap basin designs.

The baffle block designs are generally constructed at culvert outlets with high velocity flows.  The baffle blocks

consist of reinforced concrete and are expensive and difficult to build.  Maintenance costs can be high due to debris

and sedimentation occurring on the apron of the dissipator.

Riprap basins, whether grouted or not, are generally placed by the WVDOH at culvert outlets where there is low

velocity flow, usually with Froude numbers less than 3 and/or flowrates less than 50 cfs.  Riprap is very economical

compared to the baffle block designs, but can only be effectively placed at culvert outlets with low velocity flows.  It

may also require frequent maintenance due to debris and sedimentation on the apron or on the riprap itself.  There is

a need for an alternative method of energy dissipation at culvert outlets that can withstand higher velocity flows than

riprap, yet is more economical than the baffle block design.

The term “riprap”, as used here, refers to rock riprap.  In 1989, Hydraulic Engineering Circular 11 (HEC-11)

defines riprap as a flexible channel or bank lining or facing consisting of a well graded mixture of rock, broken

concrete, or other material, usually dumped or hand-placed, which provides protection from erosion.  Dumped riprap

is graded stone dumped on a prepared slope in such a manner that segregation will not take place.  Hand-placed

riprap is stone laid carefully by hand or by derrick following a definite pattern, with the voids between the larger

stones filled with smaller stones and surface kept relatively even.

This Thesis will examine the effectiveness of the non-grouted rock riprap energy dissipator used by the

WVDOH.  The current riprap design problems will be investigated and possible solutions discussed.  An alternative

riprap step design with adequate energy dissipation, low maintenance and economical feasibility will be presented.
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1.2  Setting

West Virginia is a densely vegetated, mountainous state, having steep terrain that is drained by channels,

streams, and rivers into the low-lying valleys.  The natural drainage process involves the balancing of the physical

and erosive properties of the drainage channel, stream, or river with the needed energy dissipation of the flow.

Whenever a man-made structure is placed in a natural setting, this balance, or equilibrium, is disrupted due to

changes in channel roughness, slope, rate of energy dissipation, cross-section and direction of flow.  Measures must

then be taken to re-establish the balance to avoid damage to the surrounding structures or the downstream channel.

When the rate of energy dissipation is changed, whether it is increased or decreased, the degree of erosion and

sedimentation also changes, affecting the channel equilibrium.  Culvert placement usually decreases energy

attenuation, and as a result erosion problems can occur.

The West Virginia Department of Highways (WVDOH) Drainage Manual (1984) specifies the design

procedures for the construction of riprap energy dissipators for culvert outlets.  Additional guidance for riprap

energy dissipators may be found in the Federal Highway Administration (FHWA) HEC-14 (Hydraulic Design of

Energy Dissipators for Culverts and Channels, 1983).

1.3  Current Design

As previously mentioned, schematics of the current riprap energy dissipator design may be obtained from the

WVDOH Drainage Manual or HEC-14.  The criteria for design directives of new energy dissipators must provide

for sufficient energy dissipation, characterized by simplicity of design, effectiveness of energy dissipation and low

construction cost.

The current WVDOH riprap flowchart, schematic, and construction details are shown in Figures 1.1, 1.2, and

1.3.
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Figure 1.1  Riprap Design Procedure Flow Chart (HEC-11, 1989)
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Figure 1.2  (Continued) Riprap Design Procedure Flow Chart (HEC-11, 1989)
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The research project’s experimental test runs will be conducted on a scale model.  In order to construct a scale

model of the wingwall and apron used in conjunction with the current riprap energy dissipator design, the various

dimensions were taken from the appropriate WVDOH drawings, and placed in Microstation for ease of

interpretation and manipulation.  The dimensions of the wingwall and apron are all a function of pipe diameter with

the exception of thickness, T, and cutoff wall height, W, which are determined by the standard construction

specifications.  A schematic of the WVDOH wingwall and apron is shown in Figures 1.4, 1.5, and 1.6.  The

dimensions are shown as a multiple of culvert diameter in Table 1.1.

Table 1.1  Design Dimensions as Multiple of Culvert Diameter

Dimension Multiple of
Diameter

L 1.2
M 0.6
N 1.2
O 1.3
P 3.9
Q 1.8

Figure 1.4  Plan of Current WVDOH Headwall, Wingwall and Apron
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Figure 1.5  Front View of Current WVDOH Headwall, Wingwall and Apron

Figure 1.6  Profile of Current WVDOH Headwall, Wingwall and Apron
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As with current WVDOH riprap designs, the proposed alternative riprap step energy dissipator design will be

preceded by the same wingwall and apron geometry design as shown in Figures 1.4, 1.5, and 1.6.

1.4 Field Experiences With the Current Riprap Energy Dissipator

Current riprap design used by the WVDOH has both advantages and disadvantages.  The advantages were ease

of placement, whether hand placed or dropped, without a need for skilled laborers, and low cost.  The disadvantages

of the current design were scouring, either local or gully, ineffective attenuation of energy at high flow velocities,

and sediment accumulation resulting in low to no energy dissipation.  A new riprap design must be developed and

implemented as an alternative design to the current riprap design, that will eliminate or reduce existing problems.
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Chapter 2

Background and Literature Review

Considerable effort and time was initially spent in exploring a variety of riprap designs that held promise of

providing an acceptable solution to the energy dissipation problem.  Once an acceptable design approach was

developed, time constraints imposed on the project limited the number of additional alternatives that could be

explored.  Because no riprap step design could be found in the literature, there was no related research data

available that could provide direct support to this investigation.

2.1  Riprap

The definition of riprap varies according to the source.  The simplest definition of riprap is a natural rock

dumped or hand-placed to prevent erosion (Streambank Protection Guidelines, 1983).  Generally, riprap is used to

minimize erosion at the toe of a soil bank, to prevent erosion by placing a riprap blanket over a slope of a bank, to

prevent erosion by piling riprap in windrows at the top or within an eroding bank, or to dissipate energy at culvert

outlets.  Riprap is one of the most common and economical methods of dealing with the problem of scouring at the

end of culverts or pipe outlets (Shafai-Bajestan and Albertson, 1993).  Some advantages of using riprap are:  it is a

speedy method of construction, skilled labor is not required, and usually, local sources of rock may be used

(Streambank Protection Guidelines, 1983).   Graded riprap is cheaper and more stable while uniform riprap has more

voids and is less stable.  The use of graded riprap is advantageous due to its healing process; one rock tumbling

downstream due to erosion activity may fill a void further downstream, thus promoting stabilization.

2.2  Hydraulic Jumps

Hydraulic jumps are usually an inherent part of energy dissipator design.  There are two different types of

hydraulic jumps, a natural hydraulic jump and a forced hydraulic jump (HEC-14, 1983).  The natural hydraulic jump

occurs when there is a change from supercritical (Fr>1) to subcritical (Fr<1) flow conditions on a uniform bed (no
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local blockage or artificial roughness).  The forced hydraulic jump is a tool utilized by energy dissipators, and is

forced by blocks, sills, and riprap, or other artificial roughness elements.  The roughness elements can be used inside

culvert barrels, at culvert exits, or in the open channels downstream of the exit (HEC-14, 1983).

2.2.1  Hydraulic Jump Forms

Hydraulic jumps are usually referenced to the approach Froude number in order to categorize them

appropriately.  The physical characteristics of the hydraulic jump change with increasing Froude number.  Energy

absorption characteristics vary for each of the hydraulic jump forms, as seen below in Figure 2.1.

Figure 2.1  Hydraulic Jump Forms (Peterka, 1958)
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Weak Jump (1<Fr1<2.5) For 1<Fr1<1.7, y1 and y2 are approximately equal to each other, and only a
slight ruffle is formed on the surface.  This undulation results in very little
energy dissipation.  As Fr1 approaches 1.7, a number of small rollers are
formed on the water surface, although the downstream water surface remains
smooth.  The energy loss is low in this jump.

Oscillating Jump (2.5<Fr1<4.5) The jet at the entrance to the jump oscillates from the bottom to the top at an
irregular period.  Turbulence may be near the channel bottom at one instant and
at the water surface the next.  These oscillations result in the formation of
irregular waves, which may persist for long distances downstream of the jump.
These waves may cause considerable damage to the channel banks.  This range
of Fr1 should be avoided when designing an energy dissipator.

Steady Jump (4.5<Fr1<9) The jump forms steadily at the same location, and the position of the jump is
least sensitive to the downstream flow conditions.  The jump is well balanced
and energy dissipation is considerable.  The jump is stable with the fluid
turbulence confined to the jump.  The water surface downstream will usually
appear to be smooth and an energy loss ranging from 45 to 70 percent can be
expected.

Strong Jump (Fr1>9) The difference between the conjugate depths is large, slugs of water roll down
the front of the jump face into the high velocity jet and generates additional
waves.  The jump action is very rough and the dissipation rate is high, but the
turbulence can cause downstream erosion.

(Chaudhry, 1993, and HEC-14, 1983)

2.2.2  Governing Equations

Past studies of similar nature utilize the principles of momentum, energy, and Froude number equations.

The momentum equation is the sum of the forces equal to the change in the momentum flux, or

( ) ( )[ ]ρρ 12 VVQQVF −∆=∆=Σ (2.1)

Where:

F = Force

V = Average flow velocity

V1 = Upstream average flow velocity

V2 = Downstream average flow velocity

Q = Flowrate

ρ  = Density of water
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the energy, and head loss for a horizontal, rectangular channel, through the jump equations are listed below,

Lhy
g

Vy
g

V ++=+ 2

2
2

1

2
1

22
(2.2)

( )
21

3
21

4 yy
yyhL

−= (2.3)

Where:

y1  =  Upstream water depth

y2 = Downstream water depth

g = Acceleration due to gravity

V1 = Upstream velocity

V2 = Downstream velocity

Fr1 = Upstream Froude number

The Froude number, Fr, is a dimensionless parameter and is important in establishing similitude between the model

prototype (Roberson et al, 1995).  Froude number is given by:

gy
VFr =  (2.4)

Where:

Fr = Froude number

V = Flow velocity

y = hydraulic depth

The Froude number is proportional to the inertial force and the body force (Peterka, 1958).

BodyForce
rceInertialFo

gy
yV

gy
VFr ≅== 2

222
2

ρ
ρ

(2.5) 



13

The Federal Highway Administration, in 1987, produced a video, Hydraulics of Energy Dissipators

outlining the procedure for analyzing the hydraulic jump in stilling basins.  Since density is unchanging in open

channels and culverts, the term can be eliminated from the continuity equation, leaving the volume rate of flow, or

discharge, equal to the area times the volume or Q = A1V1 = A2V2.  The momentum flux at one end of the hydraulic

jump does not equal the momentum flux at the other end of the hydraulic jump.  The momentum equation relates

change in momentum flux across the control volume to the forces produced by hydrostatic pressure and boundary,

or shear forces.  The shear forces or boundary forces are small and considered insignificant, therefore neglected.

The hydrostatic forces on the control volume are balanced by a change in the momentum across the control volume.

The hydraulic jump equation combines the momentum equation with the continuity equation and introduces the

Froude number defined above.  This yielding,

( )181
2
1 2

1
1

2 −+= Fr
y
y

(2.6)

which can be used to give the tailwater depth that is necessary to produce a hydraulic jump assuming that the depth

and velocity of the flow upstream of the jump for a rectangular channel is known (HEC-14, 1983).

2.2.3 Specific Head and Energy Loss

Using the governing equations presented above one can calculate the energy lost in the jump on a level bed

by taking he difference between the specific head upstream and downstream.  This difference is the loss of energy,

expressed in units of head, due to the dissipation of energy in the jump.  The upstream depth, y1, and the

downstream depth, y2, are called conjugate depths and y2 is said to be sequent to y2 (Gray, 2000).  Figure 2.2 shows

the relationship between specific head and depth of the hydraulic jump It is essential to know the magnitude of

energy loss produced by the jump so that efficiencies of the dissipator design can be fully evaluated.
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Figure 2.2  Specific Head.  NOTE:  H’ represents specific head and H1’ and H2’ are specific heads
upstream and downstream

Figure 2.3  Energy Dissipation in Jump (Chaudhry, 1993)
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2.2.4 Jump Length

It is difficult to determine the length of the hydraulic jump due to its complex and random flow patterns.

The formation of rollers, eddies, air entrainment, and a highly turbulent flow surface make the beginning and end of

the jump more difficult to locate.  If the jump is controlled by an abrupt rise, the jump is formed at a distance x

upstream of the rise.

( )35 yhx += (2.7)

Where:

x = Horizontal distance in channel preceding the abrupt rise

h = Abrupt rise (step) height

y3 = Downstream water depth

See Figure 2.4 below.

Figure 2.4  Jump Controlled by Abrupt Rise (Chaudhry, 1993)



16

2.2.5 Shortcomings of the Hydraulic Jump

A free hydraulic jump is a jump without the aid of objects or obstructions in the path of flow.  The free

hydraulic jump is a desirable means of dissipating energy at high velocity flows.  However, the free hydraulic jump

is normally considered impractical and economically undesirable where design and economic considerations are

concerned.  As seen with the oscillating hydraulic jump form discussed in Section 2.2.1, the hydraulic jump was

destructive to the downstream channel as well as the hydraulic structure itself.  The main drawback of the free

hydraulic jump is the length of structure needed to contain the jump to prevent the channel from being degraded and

soil being carried downstream (Peterka, 1978).  In order to produce the most stable and economical energy

dissipator, or stilling basin, it is necessary to alter the hydraulic jump characteristics.

Reinforcement of these ideas was supported by two groups of researchers, Roberson et al. and Peterka.   In

1978, Peterka stated that stilling basins are seldom designed to confine the entire length of the hydraulic jump, first,

for economic reasons, and second, because there are means for modifying the jump characteristics to obtain

comparable or better performance characteristics in shorter lengths.  In 1995, Roberson et al. believed that a

carefully designed stilling basin not only improved the dissipation characteristics of a hydraulic jump, it would also

shorten its length and stabilize the position of the jump so that it was not sensitive to fluctuations in tailwater level.

This latter attribute made the design safer.

These ideas can be accomplished by the introduction of the forced hydraulic jump.   A forced hydraulic

jump is caused by the introduction of additional resistive forces to the flow produced by the placement of objects in

the flow path, which increases the conjugate depth.  According to Chaudhry, the location of a hydraulic jump may

be controlled by adding a variety of structures to the channel bottom, such as baffle blocks, sills, and drops or rises.
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Chapter 3

Initial Investigations

Following a literature review to determine the history of riprap steps, it was discovered that there was

insufficient information available to initiate the project.  Additional information was needed regarding common

drainage pipe sizes used by the WVDOH in designs where the new riprap step design was to be used and the

gradation of stone that was to be supplied by local quarries.

3.1  Drainage Pipe

The investigation focused on circular drainage pipes, disregarding all other non-circular drainage pipe

geometries such as square, rectangular, arch and elliptical.  Documentation of circular drainage pipe quantities

placed for 1992-1997 was obtained from by the WVDOH’s main office in Charleston, WV.  After an extensive

screening and summation of the data, frequency of application based on total length for each diameter, is listed in

Table 3.1.  It will be noted that 95% of all pipe placed into service is 4.25-feet diameter or less.  Equivalent graphic

plots are shown in Figures 3.1 and 3.2.

Table 3.1 Average Yearly Circular Pipe Diameter Quantities for 1992-1997  
Diameter Sum Avg.   Diameter Sum Avg.   

(ft) (Linear ft.) % Cumulative % (ft) (Linear ft.) % Cumulative %
0.25 0.0 0.00 0.00 6.25 0.0 0.00 98.35
0.50 13740.1 12.17 12.17 6.50 82.9 0.07 98.43
0.75 3.8 0.00 12.17 6.75 0.0 0.00 98.43
1.00 806.5 0.71 12.89 7.00 927.4 0.82 99.25
1.25 6456.1 5.72 18.60 7.25 35.0 0.03 99.28
1.50 45260.7 40.08 58.69 7.50 0.0 0.00 99.28
1.75 32.2 0.03 58.72 7.75 0.0 0.00 99.28
2.00 21849.2 19.35 78.07 8.00 280.4 0.25 99.53
2.25 0.0 0.00 78.07 8.25 0.0 0.00 99.53
2.50 6380.8 5.65 83.72 8.50 0.0 0.00 99.53
2.75 1230.9 1.09 84.81 8.75 155.9 0.14 99.66
3.00 5212.0 4.62 89.43 9.00 52.9 0.05 99.71
3.25 203.0 0.18 89.60 9.25 0.0 0.00 99.71
3.50 2078.8 1.84 91.45 9.50 0.0 0.00 99.71
3.75 0.0 0.00 91.45 9.75 142.6 0.13 99.84
4.00 3491.4 3.09 94.54 10.00 78.5 0.07 99.91
4.25 0.0 0.00 94.54 10.25 0.0 0.00 99.91
4.50 1175.7 1.04 95.58 10.50 0.0 0.00 99.91
4.75 0.0 0.00 95.58 10.75 0.0 0.00 99.91
5.00 1764.0 1.56 97.14 11.00 22.3 0.02 99.93
5.25 225.2 0.20 97.34 11.25 0.0 0.00 99.93
5.50 219.0 0.19 97.54 11.50 0.0 0.00 99.93
5.75 0.0 0.00 97.54 11.75 15.3 0.01 99.94
6.00 923.0 0.82 98.35 12.00 67.0 0.06 100.00
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Circular Pipe Diameters-WVDOH Placement
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Figure 3.1  Circular Pipe Diameters – WVDOH Placement

Cumulative Percentage Circular Pipe Diameters - WVDOH Placement
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Figure 3.2  Cumulative Circular Pipe Diameters – WVDOH Placement

3.2 Rock Gradations for West Virginia Quarries

An important aspect of this project was to determine the rock gradations supplied to the WVDOH.  The rock

supplied by local quarries would potentially be used in the construction of the riprap step energy dissipator.  At this

early stage of development, the gradation required for the project was unknown.  The necessity for investigating

current rock gradations supplied to the WVDOH by rock quarries was evident.  All ten district engineers were
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contacted and requested to report a list of information on the quarries within their district that supplied rock for state

funded projects.  The lists of rock quarries supplying state funded projects with rock were compiled and analyzed.  It

was discovered that two rock quarries, Greer, and Martin Marietta, supplied in part, 44 of the 55 counties, 75 percent

of West Virginia.  The quarries were contacted and representative rock gradation samples obtained.  Since rock

gradation samples from Greer were from one representative mine near Morgantown, the samples were averaged and

shown in Table 3.2.  Martin Marietta’s rock gradation samples were from four mine sites; Cave-In-Rock at Cave-In-

Rock, IL (MM-A); Three Rivers Quarry at Smithland, KY (MM-B); Manheim Mine at Rowlesburg, WV (MM-C);

and Snowflake Quarry at Fort Springs, WV (MM-D), and shown in Tables 3.3, 3.4, 3.5, and 3.6, respectively.  The

four quarries representative samples were averaged and shown in Table 3.2.

Table 3.2 Rock Gradations for Greer Quarry at Morgantown, WV   
 Sieve   Percent Finer By Weight  

Sieve Dimensions          Aggregate Type   
(in) (mm) R-7 R-6 R-4 #4 #57 #8

30.00 762.00 100      
24.00 609.60 12 100     
18.00 457.20 9 66     
12.00 304.80 6 32 100    
6.00 152.40  2 9    
3.00 76.20   25 100   
2.00 50.80    100 100  
1.50 38.10    95 100  
1.00 25.40    45 99  
0.75 19.05    8 87  
0.50 12.70    4 38 100
0.38 9.53    2 13 96
#4 4.75     3 28
#8 2.36     2 4
#16 1.18     1 3
Pan 0.00 0 0 0 0 0 0
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Table 3.3 Rock Gradations for Cave-In-Rock Quarry at Cave-In-Rock, IL    
 Sieve                  Percent Finer By Weight   

Sieve Dimensions     Aggregate Type     
(in) (mm) #1 #3 #4 #467 #5 #57 #67 #78 #7 #8 #9
4.00 101.60 100           
3.50 88.90 100           
3.00 76.20 88           
2.50 63.50 54 100          
2.00 50.80 - 95 100 100        
1.50 38.10 12 55 100 100 100 100      
1.00 25.40 - 9 22 75 90 96 100     
0.75 19.05 2 - 3 39 29 78 92 100 100   
0.50 12.70  2 - 15 3 38 47 92 92 100  
0.38 9.53   2 14 1 15 26 58 60 94 100
#4 4.75    2  2 2 11 11 22 86
#8 2.36      1 1 3 3 4 26
#16 1.18        2 2 1 2
Pan 0.00 0 0 0 0 0 0 0 0 0 0 0

Table 3.4 Rock Gradations for Three Rivers Quarry at Smithland, KY    
 Sieve              Percent Finer By Weight   

Sieve Dimensions     Aggregate Type    
(in) (mm) #1 #3 #357 #4 #467 #57 #67 #78 #7 #8
4.00 101.60 100          
3.50 88.90 95          
3.00 76.20 91          
2.50 63.50 40 100 100        
2.00 50.80 - 96 98 100 100      
1.50 38.10 10 60 - 96 96 100     
1.00 25.40 - 10 40 24 68 96 100    
0.75 19.05 1 - - 4 46 72 91 100 100  
0.50 12.70  1 12 - 24 34 39 91 91 100
0.38 9.53   - 1 14 14 23 60 60 98
#4 4.75   1  3 3 6 10 10 18
#8 2.36      2 3 3 3 2
#16 1.18        2 2 1
Pan 0.00 0 0 0 0 0 0 0 0 0 0
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Table 3.5 Rock Gradations for Manheim Mine at Rowlesburg, WV
 Sieve  Percent Finer By Weight  

Sieve Dimensions           Aggregate Type  
(in) (mm) #1 #4 #467 #57 #8
4.00 101.60 100     
3.50 88.90 95     
3.00 76.20 -     
2.50 63.50 50     
2.00 50.80 - 100 100   
1.50 38.10 9 100 97 100  
1.00 25.40 - 58 86 100  
0.75 19.05 1 9 57 81  
0.50 12.70  - 36 28 100
0.38 9.53  1 21 8 88
#4 4.75   5 3 19
#8 2.36    2 5
#16 1.18     3
Pan 0.00 0 0 0 0 0

Table 3.6 Rock Gradations for Snowflake Quarry at Fort Springs, WV
 Sieve                Percent Finer By Weight  

Sieve Dimensions   Aggregate Type   
(in) (mm) #3 #4 #57 #67 #8 #9
4.00 101.60       
3.50 88.90       
3.00 76.20       
2.50 63.50 100      
2.00 50.80 98 100     
1.50 38.10 55 98 100    
1.00 25.40 7 43 96 100   
0.75 19.05 - 7 - 91   
0.50 12.70 1 - 40 - 100  
0.38 9.53  2 15 34 87 100
#4 4.75   3 6 17 87
#8 2.36   1 1 6 19
#16 1.18     3 6
Pan 0.00 0 0 0 0 0 0
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Table 3.7 Averaged Rock Gradations for Martin Marietta Quarries     
 Sieve                  Percent Finer By Weight   

Sieve Dimensions     Aggregate Type     
(in) (mm) #1 #3 #4 #467 #5 #57 #67 #78 #7 #8 #9
4.00 101.60 100           
3.50 88.90 97           
3.00 76.20 90           
2.50 63.50 48 100          
2.00 50.80  96 100 100        
1.50 38.10 10 57 99 98 100 100      
1.00 25.40  9 37 76 90 97 100     
0.75 19.05 1  6 47 29 77 51 100 100   
0.50 12.70  1  25 3 35 14 92 92 100  
0.38 9.53   2 16 1 13 10 59 60 92 100
#4 4.75    3  3 2 11 11 19 87
#8 2.36      2 1 3 3 4 23
#16 1.18        2 2 2 4
Pan 0.00 0 0 0 0 0 0 0 0 0 0 0

Another important aspect of this investigation was determining the similarities and differences between the

gradations for supposed equivalent rock types.  Sample rock gradations were compared from the five locations for

rock/stone sizes #4, #57, and #8 shown in Figures 3.3, 3.4, and 3.5.  An averaged aggregate gradation curves plot for

West Virginia quarries is shown in Figure 3.6.

Material Gradation Curves For #4 Stone
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Figure 3.3  Sample Gradation Curves for #4 Stone
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Material Gradation Curves For #57 Stone
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Figure 3.4  Sample Gradation Curves for #57 Stone

Material Gradation Curves For #8 Stone
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Figure 3.5  Sample Gradation Curves for #8 Stone
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WV Quarries' Average Aggregate Gradation Curves
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Figure 3.6  Averaged Aggregate Gradation Curves

After the data for the samples was compared, the differences between the five rock samples in Figures 3.3,

3.4, and 3.5 were considered negligible.  The sample gradation data was combined in Figure 3.6 that shows ten

commonly used rock size gradation curves.  Once the range of rock gradations available for state funded projects

was obtained, the selection of appropriate rock sizes for the model rock pallets was completed.  The results from the

quarry investigation provided information that may be used in furthering research of sizing rock for riprap step

energy dissipator in the field.  Scale model rock pallet (step) construction is discussed in more detail in Chapter 4.

3.3 Potential Computer Models

The investigation into the feasibility of an alternative riprap step design delved into the possibility of computer

modeling the new design by using HEC-RAS, Version 2.0/2.1 and Riprap Design System, Version 2.0 software

packages.  After applying the software to several trial runs, it was determined that the software packages could not

produce the type of results thought to be pertinent to the project.  Therefore, the possibility of utilizing HEC-RAS

and Riprap Design System software was dismissed.
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Chapter 4

Procedure

4.1 Development of Experimental Equipment

At the beginning of the research project the decision was made to construct a flume at WVU to support the

testing of physical scale models rather than use an existing facility.  The construction of a “custom-built” flume

would permit modifications that would likely be necessary over the life of the project.  The flume consisted of two

tanks to allow for re-circulation of water, necessary piping, and various measuring devices.  The flume was designed

to accommodate a range of slopes and be within the economic constraints of the project budget, and was to be

housed in the Civil Engineering Hydraulics Lab at West Virginia University.

4.2 Pump Selection

A centrifugal pump was selected to provide the re-circulation of water necessary for the experiments.  The

pump was to operate at low head and would need to accommodate a range of flowrates.  Preliminary calculations

were performed using standard culvert capacity relationships to assure that the flume would properly model flow

conditions that are expected in the field.  The selection of a 4.25-inch diameter culvert model required that the

maximum flow be approximately 200 gpm under inlet control conditions.  This flowrate was used in determining the

specifications needed for the pump.  For a submerged culvert at the inlet the following equation applies (FHWA

HDS #5, 1985):

HW
D

c
Q

AD
Y Si = � � + −0 5

205. . (4.1)

Where:

HWi = Headwater depth above inlet control section invert (ft)

D = Interior height of culvert Barrel (ft)

Q = Discharge (cfs)

A = Full cross sectional area of culvert barrel (ft2)

S = Culvert Barrel Slope (ft/ft)

Y, c = Constants from inlet control design equations
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With the test culvert diameter at 4.25-inches and assuming 1-foot of headwater and 10% slope, Q was found to be

approximately 200 gpm.  The pump selected was purchased from the Interstate Pump Company, and provided

slightly over 200 gpm, at 25 feet of head, which provided some excess capacity.  The pump setup is shown in Figure

4.1.

Figure 4.1 Centrifugal Pump Setup

4.3 Tank Selection

In order for the flume to properly re-circulate an adequate supply of water, two tanks were needed.  The

upstream tank needed to be tall, to supply sufficient head, while the downstream tank needed to be short in height so

that flow could exit the culvert and be collected by gravity.  It also needed to meet the volume requirements on the

intake side of the pump.  It was determined that the necessary volume for the operation of the flume was

approximately 500 gallons.  The downstream tank, a 150-gallon oval agricultural tank, was obtained from an

agricultural supply store, and is shown in Figure 4.2.  Due to the unusual dimensional requirements of the upstream

tank, it was impossible to obtain the tank through commercial providers. Therefore, the decision was made to

construct a custom designed upstream tank.  The upstream tank was constructed from ¾-inch pressure treated

plywood reinforced with 2 x 4 framing.  The tank dimensions were 3’ x 3’ x 5’ with an approximate volume of 340

gallons.  A square opening, 1.5’x 1.5’, was cut in the front of the upstream tank in
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Figure 4.2  Downstream Tank

preparation for the addition of the inlet culvert box.  The inlet box will be described in greater detail in another

section.  The completed blue and yellow upstream tank is shown in Figure 4.3.  In the initial design stage of the

upstream tank, a pond liner was to be used as a bladder for water containment.  This proved difficult to install since

the seams could not be easily fused to prevent water leakage.  This problem was rectified by the removal of the pond

liner and application of a waterproof coating on the inside surface of the plywood.  The coating chosen was an

elastomeric polymer, originally intended for sealing roofs.  After several applications of the polymer, the tank was

sufficiently waterproofed.  It was found to be necessary to reinforce the outside of the upstream tank with 2 x 4

framing due to hydrostatic forces.

Figure 4.3  Upstream Tank
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The outside of the upstream tank was painted for aesthetic purposes as well as mold prevention due to the constant

high humidity in the hydraulics lab.

4.4 Frame Development

In order to provide a structure to accommodate piping, piezometer bank, flowmeter, slope adjustment,

testing channel, and to keep tanks in a fixed position, a support frame was constructed.  The frame consisted of

perforated, galvanized 1.25-inch angle iron, which provided an easy means of construction.  The framing was

simply cut to size and bolted together with 5/16-inch bolts.  Trapezoidal braces were constructed on the top of the

frame to provide a cradle for the return flow piping.  The frame also allows for slope adjustment, which will be

discussed in greater detail in a later section.

4.5 Inlet and Outlet Boxes

Two cast acrylic boxes were constructed to allow for visual examination of physical flow phenomenon

present at this inlet and outlet of the culvert.  The inlet box dimensions were 1.5’ x 1.5’ x 1.5’ and it was constructed

from 0.5-inch cast acrylic.  The inlet box was constructed to create uniform and steady flow conditions approaching

the inlet of the model culvert.  The inlet box is shown below in Figure 4.4.

Figure 4.4 Inlet Box
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The outlet box dimensions were 2’ x 4’ x 1.04’ and was also constructed from 0.5-inch cast acrylic.

Twenty, 2-inch holes and eight, 1.5-inch holes were drilled out on the downstream end of the outlet box to provide

adequate drainage exiting through the floor of the outlet box.  A screen was constructed from 0.25-inch hardware

cloth and placed over the drilled out holes to prevent debris from entering the downstream tank.  A coiled section of

hardware cloth was suspended from an angle iron brace, directly below the drilled holes in the outlet box, into the

Figure 4.5 Outlet Box

upper portion of the downstream tank.  The coiled hardware cloth prevented air bubbles created by descending,

splashing flow into the tank from being pumped throughout the system and producing erroneous flowrate readings.

The purpose of the outlet box construction was to serve as a container for the hydraulic models.  A testing channel

constructed from the same 0.5-inch cast acrylic was placed within the outlet box.  This testing channel will be

discussed in greater detail in another section.  The outlet box is shown in Figure 4.5.

4.6 Piping Assembly

The water supply piping network for the testing flume consisted of 3-inch PVC sewer pipe.  Clear acrylic

pipe was selected for the model culvert.  The PVC pipe proved easy to work with as all fittings could be glued

together and cutting the pipe to size could be accomplished with simple tools.  Two, 3-inch gate valves provided the

flow adjustments needed for experimental runs.  One gate valve was located at the upstream tank, near the end of

the supply line from the pump, and the flow could be reduced or increased by the valve.  The second gate valve was

placed at the outlet tank and served as a bypass valve.  To provide a low flow capability, the bypass valve was

opened to allow some of the supply line flow to re-circulate back into the outlet tank.  This bypass was necessary in
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order to maintain a minimum required pump flowrate during low discharge testing, about 50 gpm.  The supply line

was extended vertically downward into the upstream tank so that the submerged jet would dissipate excess turbulent

energy in the flow prior to reaching the culvert inlet.  The test culvert was constructed of 4.25-inch inside diameter

transparent acrylic pipe.  One major problem with the test culvert was keeping it sealed at the inlet and outlet boxes,

while still allowing for slope adjustment.  Sealing was accomplished by the use of two rubber grommets attached to

the inlet and outlet boxes with custom washers machined from standard plastic stock.  The grommets were attached

to the pipe with pipe clamps and proved extremely effective at sealing the test culvert and allowing for slope

adjustment.  The test culvert is shown in Figure 4.6.

Figure 4.6 Test Culvert

4.7 Measuring Devices

To provide data crucial for hydraulic calculations, several measuring devices were used.  The devices

implemented in the experimental procedures are as follows:

•  Flowmeter
•  Piezometer Board
•  Three-Point Depth Gage
•  Pitot Tube Device
•  Slope Adjustment Devices

The measuring devices are discussed in further detail in this section, along with associated problems, corrections,

and construction considerations where appropriate.
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4.7.1 Flowmeter

A flowmeter was purchased that reads flowrate in gallons per minute over a range of 40-450 gpm with ±

2.0% full-scale linearity and ± 1.0% full-scale repeatability.  The flowmeter is shown in Figure 4.7.

Figure 4.7 Flowmeter

Initially, the supply line, from the downstream to upstream tank, contained a double elbow bend upstream of the

flowmeter.  This location produced erroneous flowmeter readings with high fluctuations.  It was determined that the

double bend was producing vortices that were causing the incorrect readings.  It was also suspected that air was

being trapped at certain locations in the supply line.  To correct these problems, three modifications were made.

First, the double elbow bend was removed and replaced with a single elbow. Second, the overhead supply line was

replaced with translucent 3-inch PVC pipe to allow for visual inspection of the flow entering and exiting the

flowmeter.  Third, several air bleeds were placed along the overhead supply line to remove any trapped air from the

line.  These corrections eliminated the problems mentioned, and provided greater assurance of accurate

measurements.



32

4.7.2 Piezometer Board

In order to measure the water surface elevation at various locations in the test culvert, a piezometer board

was constructed.  The board consisted of nineteen, ¼-inch Plexiglas tubes attached to a ¼-inch plywood board.

Scales were mounted next to the tubes with bolts and wing nuts that could slide vertically, in a milled slot, to allow

for the establishment of a zero reading.  The tubes were attached to tygon tubing at the bottom, and connected to the

test culvert at various points through brass fittings.  First, 1/32-inch diameter holes were drilled in the test culvert

invert to serve as the piezometer tap.  The brass fittings were threaded into small rectangular blocks of Plexiglas that

were glued to the test culvert around the previously drilled holes.  This produced a row of piezometer tap

measurements along the invert of the test culvert from which uniform flow depth could be established.  The

piezometer setup is shown in Figure 4.8.

Figure 4.8 Piezometer Board

4.7.3 Three-point Depth Gage

To obtain water depths, a point gage was borrowed from an existing flume and modified by adding two

lateral points (prongs).  The modified three-point depth gage was to provide a more accurate representation of the

average flow depth along any cross section in the test channel.  The point gage had a verneir scale that was accurate

to 0.001-foot.  The scale is shown in Figure 4.9.  First, the center point was lowered to the water surface and a

reading was taken.  Next the lateral points were lowered and another reading was taken.  The average of the “inside”

and “outside” depth reading is the average flow depth for that cross section.  A track was constructed of 1 ½-inch
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aluminum angle that allowed the point gage to travel along the testing channel so depth reading could be taken at

various points.  To provide longitudinal measurement along the testing channel, a scale was bolted on the outside of

the outlet box and a pointer was attached to the side of the gage.  The three-point depth gage is shown in Figure

4.10.

Figure 4.9 Point Gage Scale

Figure 4.10 Three-Point Depth Gage

Table 4.1 shows the distance from the culvert outlet to the point where each of the water surface elevation readings

were taken.  Figure 4.11 shows the positions of the cross-section where each of the water surface elevation readings

along the horizontal length of the testing channel were obtained.
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Table 4.1 Water Surface Elevation
 Readings

Test
Channel
Cross-
Section

Horizontal Distance From
Culvert (mm)

AA 139.5
A 269.5
B 434.5
C 624.5
D 779.5

DD 879.5
E 931.5

Figure 4.11  Position of Water Surface Elevation Readings

4.7.4  Pitot Tube Device

In order to more accurately compute the energy grade line for various model tests, it was decided that the

velocity profile for the rectangular test section needed to be established.  A Pitot tube was constructed using 5mm-

glass tubing.  When this tube was first tested there were many oscillations present, so a 3-milimeter-glass tube was

inserted inside the horizontal section of the existing tube to produce a damping effect.  Next the Pitot tube was
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clamped into a Plexiglas cradle and then fitted to a Plexiglas slide and track to allow for vertical and lateral

adjustments.  A metric scale and pointer were then fixed to the apparatus to allow for depth and total head

measurements.  The rectangular channel cross section was then divided into 15 evenly spaced subsections and tic

marks were placed on the surface of the Plexiglas track.  The completed apparatus can be seen in Figures 4.12 and

4.13.

Figure 4.12 Pitot Device (side view)

Figure 4.13 Pitot Device (front view)
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In applying the Pitot tube for establishing the velocity profile the Energy equation was used:

eDatumrementAbovPitotMeasuz
g

Vp =++
2

2

γ
(4.2)

Where:

 p = Pressure

γ = Specific weight of water

V = Velocity

g = Acceleration due to gravity

z = Height above zero datum

The first term, 
γ
p , represents local pressure head, is assumed to be the depth of water above the centerline of the

Pitot tube, a hydrostatic assumption.  The second term, 
g

V
2

2
 which represents the velocity head, was computed in

mm/s with the value for acceleration due to gravity being 9807 mm/s2.  The last term, z, represents the datum

elevation that was taken as the elevation of the false floor in the rectangular channel.  The datum was established by

placing the center of the Pitot tube at the surface of the false floor and recording the depth from the scale attached to

the Pitot apparatus.

To determine the value for the velocity correction factor, alpha, the following expression was used:

α =
u dA

V A

3

1

15

3 (4.3)

Where α is the value for the velocity correction factor.  The point velocity found from the Pitot tube is represented

by u.  The term dA is each incremental area in which a corresponding measurement was taken.  The values in the

numerator are then summed from 1 to 15, as there were 15 sections of measurement.  In the denominator, V

represents the average velocity and A is the total cross-sectional area of the flow.

4.7.5 Slope Adjustment Devices

Slopes of 2, 4, 6 and 8% were selected for testing in the experimental runs.  Therefore it was crucial that

the flume could be adjusted accordingly.  To allow for slope variation, the outlet box rested on adjustable supports at

the front and back of the box.  The supports could be bolted at incremental heights on the vertical columns on either
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side of the box. Two pieces of all-thread steel rod were attached to the support on the left and right of the box, along

with another piece of steel angle.  This piece of steel angle was adjusted by lifting up the box and turning nuts on the

threaded rod to achieve the desired setting.  Next, a datum was established by attaching five scales to the frame,

using surveying equipment, and then all slope adjustments were calculated based on that elevation.  One scale was

placed at the test culvert inlet and the other four scales around the outlet box so it could easily be leveled.  The slope

adjustment setup is shown in Figure 4.14.  A close-up of the support adjustment is shown in Figure 4.15.

Figure 4.14 Outlet Box Slope Adjustment

Figure 4.15 Support Adjustment
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4.8  Model Construction

Four principal components were required to perform the planned hydraulic model tests of riprap step:  1) a

culvert outlet configuration consisting of headwall, wingwall, and apron, 2) a testing channel, 3) the cast acrylic

pallets, and 4) the rock pallets to be tested.  Since plans were available for the existing culvert apron design, the

scale model was easily constructed of 0.5-inch thick cast acrylic.  All dimensions were expressed as a function of

culvert diameter and the scale model was constructed based on this non-dimensionality.  A rectangular testing

channel was used to contain the flow within lateral boundaries.  To produce the rectangular channel, two vertical

walls were attached to the model apron, and two concrete pallets were built to simulate downstream channel

conditions.  The pallet, either the smooth cast acrylic or the rock that was closest to the apron was referred to as the

Zone 1 pallet, and the farthest downstream pallet as the Zone 2 pallet.  The Zone 2 pallet was raised as required to

simulate a smooth or riprap step as desired.  Two vertical cast acrylic extensions were added to the wingwalls to

prevent flows from short-circuiting over the wingwalls due to splashing, etc.  The testing channel is shown in Figure

4.16.

Figure 4.16 Testing Channel

Zone 1 pallets, either smooth cast acrylic or rough rock, were constructed so that an averaged flow depth remained

at zero datum.  Twelve Zone 2 pallets, shown in Table 4.2, were constructed, six cast acrylic and six rock.
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Table 4.2 Zone 2 Pallets  
 Nominal Step Heights  

Cast Acrylic
(Actual Height)

Rock Height
(Area Averaged)

SI Units
(mm)

0.0 0.0 0.00
0.5 0.5 12.7
1.0 1.0 25.4
1.5 1.5 38.1
2.0 2.0 50.8
2.5 2.5 63.5

The smooth cast acrylic pallets were to be used as a smooth step reference model for the rough rock pallets

(riprap step).  The pallets are discussed in the following sections.  For simplicity purposes, the steps will be

referenced by inches and not SI values.

4.8.1 Cast Acrylic Pallets

The 0.5-inch cast acrylic pallets, referred to as smooth pallets, were constructed for both Zones 1and 2.  A

single pallet, 352mm x 413mm x 12.7mm, was constructed for Zone 1.  The Zone 1 pallet was cemented in place at

a location where the upper surface would be at zero datum.  Six Zone 2 pallets, 300mm long and 413mm wide.  The

pallets were precisely cut and constructed to obtain the desired range of step heights as listed in Table 4.2.  All

construction joints for the smooth pallets in Zone 2 were sealed with Silicon cement.  At the base of each step, with

exception of the 0.0-inch step, a section of rubber weather door stripping was attached with Silicon cement to the

inner portion of the step’s flow impact panel as well as the inner portion of the step’s back panel.  Glue strips

prevented an unaccountable loss of flow under the step.  Given the very careful construction of the steps, a very tight

fit was achieved between the test channel wall and the wall of the step preventing significant bypassing of flow.

Realizing a need for ease of step removal and placement, one hole was drilled through both sides of the test channel

into the in-place step.  Metal pins were inserted into the holes to hold the steps in place.  This process was repeated

for each of the six steps.   The removal and replacement process involved: 1) removing pins, 2) removing step, 3)

placing new step, 4) inserting pins, and 5) taking measurements for the next step height.   Photographs of the smooth

step assembly are shown in Figures 4.17 and 4.18.
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Figure 4.17  Sample Cast Acrylic Assembly Profile

Figure 4.18  Sample Cast Acrylic Assembly
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4.8.2 Rock Pallets

Rock samples, ranging from 6-inch stone to #8 stone, were obtained from Greer quarry.  The stone was

thoroughly cleaned and dried.  After representative stone samples were inspected, dimensions and characteristics

were recorded and shown in Table 4.3 below.

Table 4.3 Stone Sample Characteristics and Dimensions (Greer Quarry)
Stone Type Number of Sides Length Width Height Circumference

(Size)  (mm) (mm) (mm) (mm)
6" 6 160 110 90 353
6" 6 140 70 65 310
6" 4 140 103 90 305
6" 6 115 100 86 242
6" 5 120 100 74 338
6" 5 140 90 80 290
1 7 50 45 38 135
1 5 60 47 30 138
1 5 80 47 42 145
1 4 85 80 72 200
1 7 57 37 33 150
1 3 112 60 48 165
1 5 70 50 43 150
1 6 55 50 38 155
1 6 105 65 60 225
1 5 60 36 29 125
4 4 70 37 35 140
4 4 46 35 32 118
4 4 37 29 31 95
4 5 55 31 27 120
4 5 53 45 30 110
4 5 36 35 22 96
4 4 75 61 20 130
4 4 45 36 20 105
4 6 49 18 12 75
4 3 41 20 25 72
4 5 28 22 17 82
4 5 42 33 25 95
57 5 32 15 19 85
57 4 38 22 19 72
57 5 22 14 13 60
57 6 28 20 13 63
57 5 27 25 16 80
57 4 29 23 14 64
57 5 28 11 12 43
57 4 33 17 11 55
57 4 17 15 10 40
57 4 19 14 14 52
57 5 30 28 8 61
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Table 4.3
(Cont.) Stone Sample Characteristics and Dimensions (Greer Quarry)

Stone Type Number of Sides Length Width Height Circumference
(Size)  (mm) (mm) (mm) (mm)

67 5 20 13 20 57
67 6 17 16 13 51
67 4 19 17 16 55
67 6 21 19 18 62
67 4 22 16 17 55
67 5 23 12 14 50
67 4 13 10 11 35
67 4 16 12 8 40
67 5 15 9 8 31
67 5 15 12 10 38
67 4 20 13 10 36
8 4 16 11 8 29
8 4 15 10 8 27
8 4 18 8 12 35
8 5 20 10 8 35
8 4 14 10 8 30

Six rock gradations were randomly selected to construct the Zone 2 rock pallets listed in Section 4.8.  Table 4.4

shows the relationship between step equivalent, pallet number and rock type.

Table 4.4
Rock Step Equivalent, Pallet Number & Rock
Type

Step Pallet Rock
Equivalent Number Type

(in)   
0.0 Matching Zone 1 # 57
 and Zone 2 #67

0.5 2 #1
 #57
  #67

1.0 5 #1
  #57

1.5 3 6-inch
 #4

  #67
2.0 8 6-inch
 #1
  #57

2.5 7 6-inch
  #1

Forms, constructed from 2x4 lumber, and connected using 2-inch wood screws, served as molds for the

rock pallets.  Plastic florescent light cover grids, providing support for the vinyl cement used, were cut into 352mm
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x 413mm and 300mm x 413mm sections for Zones 1 and 2, respectively, and placed in the forms.  Vinyl cement

was mixed and poured into the wooden forms and evenly screeded with a flat edge.  The specific equivalent step

height rock gradation was lightly inserted into the cement progressing from the largest to the smallest rock type.   A

single layer of the largest rock type was placed such that every rock contacted with the next.  Voids between the

rocks occur when uniformly graded rock is clustered together.  In order to fill the voids, the second largest rock type

was inserted into the cement.  This process was repeated until the smallest of the rock types in the specific

equivalent step height rock gradation was used.  The rock pallets constructed are shown in Figures 4.19, 4.20, 4.21,

4.22, 4.23 and 4.24.

Figure 4.19  0.0-inch Equivalent Step Height
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Figure 4.20  0.5-inch Equivalent Step Height

Figure 4.21  1.0-inch Equivalent Step Height
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Figure 4.22  1.5-inch Equivalent Step Height

Figure 4.23  2.0-inch Equivalent Step Height
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Figure 4.24  2.5-inch Equivalent Step Height

The cement rock pallets were moistened during the 48-hour curing period and then removed form the wooden

forms.  At various flowrates, the water surface would not flow over the highest rock in the pallet.  Since the

equivalent step height calculations were based on the assumption that the water height would be greater than the

highest rock in the pallet, it was necessary to perform volumetric displacement tests on each of the rock pallets.

Incremental water and rock volume data was recorded for future application in the energy calculations in the testing

channel.  Volumetric displacement testing boxes, 352mm x 413mm x 254mm, and 300mm x 413mm x 254mm,

were constructed from ¾-inch plywood, 1”x10” lumber, and 2-inch wood screws.   Two, 3-inch holes were drilled

into the bottom section of the plywood allowing a space for hand removal of the pallet after the volumetric test was

completed.  The plastic grids were then removed and the pallet was positioned into the tightly fitting volumetric

testing box.  In order to reduce surface tension affects, the surface of the rock pallet was moistened and the water

level in the box was increased until the water surface was in the same horizontal plane as the cement surface

containing the protruding rock.  Incremental volumes of water were added and corresponding water surface

elevations noted shown in Figure 4.25.
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Water Volume Displacement Tests - All Equivalent Step Heights
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Figure 4.25  Water Volume Displacement Tests

To prevent chipping and disfigurement of the pallets, a 0.5-inch plexiglas section with pallet dimensions was

cemented onto the bottom of each cement pallet base.  After the completion of the volumetric displacement tests,

calculations were performed to determine the necessary shim heights to achieve the nominal step height desired.

To prevent confusion in later sections, a diagram of a sample riprap step cross-section with flow is shown in

Figure 4.26.

Figure 4.26  Sample Riprap Step Cross-section With Flow
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Where:

1 = Cement base thickness

2 = Equivalent (nominal) riprap step height

3 = Depth of water

4 = Actual (melted) rock height

5 = Water surface elevation

6 = Zero datum
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Chapter 5

Analysis

Following the completion of the testing flume, hypotheses were developed for the investigation of the

riprap steps.  In order for the riprap steps to meet the goals of the project the following criteria had to be satisfied.

The design must be:

•  Reasonably easy to construct on site

•  Economically feasible

•  Applicable to various culvert sizes and flowrates

•  Self cleaning and require low maintenance (not directly addressed by experimentation)

•  Capable of re-establishing natural flow conditions downstream of the outlet

The riprap steps constructed were intended for culvert diameters equal to or less than 4.25 feet.

5.1 Data Collection

Following the completion of the testing flume, several riprap step heights and/or gradations were tested.

The purpose was to observe which riprap steps forced a hydraulic jump and provided the best energy attenuation.

The twelve riprap steps, each having a unique height and/or configuration were tested.  Each experimental run

required the measurement of five main parameters:

•  Flowrate

•  Three point depth data

•  Headwater at inlet

•  Slope

•  Piezometer readings

A data sheet was developed to accommodate the various data taken.  Culvert slopes tested were 2, 4, 6, and 8

percent. Headwater was read at the beginning of each test, measured from the invert of the test culvert.  Piezometer

readings were taken before the pump was turned on to establish a tare reading (zero depth).  The depth reading was

computed as an average of the middle point and the reading from the two lateral points of the three-point gage.

Along with the three-point depth measurements, the flow behavior at the culvert outlet, interactions with the

wingwalls, and any adverse effects or flow anomalies were noted based on visual observations.  Flowrates of 50, 75,
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100, 125, and 150 gpm were applied to each step height, both smooth cast acrylic and rock riprap, at each of the four

slopes.

5.2  Equivalent or ‘Melted’ Riprap Step Height

Further explanation is needed in order to fully understand what is meant by equivalent riprap step height.

When using the ‘smooth’ cast acrylic steps, the flow in the test channel impacted each step at its given height, either

0.5, 1.0, 1.5, 2.0 or 2.5-inches.  A simple subtraction operation provided the necessary flow depth measurement.  A

more complicated approach was needed to obtain the equivalent step height with the rock steps.  As mentioned

earlier, the equivalent step heights were calculated based on the assumption that the flow would completely cover

the rock in the step.  Rarely was this the case with the riprap steps.  With the use of the volumetric displacement test

data, the volume and actual effective (‘melted’) height of the rock impacted by the flow was calculated.  The

comparison between the equivalent riprap step height and the effective ‘melted’ riprap step height is presented in

Table 5.1.  Note:  The riprap step height given is for reference purposes only, and is not the actual step height based

on wetted rock volume (referenced to as the ‘melted’ height).  Calculations were performed on the ‘melted’ height.

Table 5.1 Effective Rock Height Affecting Zone 2 Flow in Test Channel
Slope Flowrate 0.5-inch 1.0-inch 1.5-inch 2.0-inch 2.5-inch
(%) (gpm)   (in)   
2 50 0.347 0.894 1.22 1.81 1.95
2 75 0.382 0.944 1.26 1.82 1.96
2 100 0.414 0.931 1.27 1.81 1.97
2 125 0.465 0.933 1.29 1.82 1.97
2 150 0.474 0.945 1.30 1.83 1.96
4 50 0.360 0.917 1.26 1.81 1.95
4 75 0.386 0.927 1.28 1.82 1.96
4 100 0.442 0.928 1.27 1.82 1.96
4 125 0.478 0.933 1.37 1.82 1.97
4 150 0.503 0.949 1.29 1.83 1.98
6 50 0.350 0.881 1.26 1.81 1.95
6 75 0.375 0.903 1.27 1.81 1.96
6 100 0.411 0.931 1.26 1.82 1.97
6 125 0.456 0.926 1.27 1.80 1.97
6 150 0.433 0.925 1.29 1.82 2.01
8 50 0.353 0.921 1.23 1.81 1.95
8 75 0.368 0.891 1.24 1.81 1.95
8 100 0.405 0.905 1.25 1.81 1.96
8 125 0.400 0.929 1.28 1.82 1.96
8 150 0.348 0.928 1.27 1.82 1.41
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5.3 Water Surface Elevation Data Influences

Many types of flow influenced the experimenter’s ability to obtain accurate water surface elevation

readings.  Some of the influences are: 1) reverse flow, 2) not fully expanded jet, 3) spurting flow, 4) swirling flow,

5) splashing flow, 6) pooling, and 7) hydraulic jump.  Note:  The letter or abbreviation in parenthesis by each of the

flow influences is a representative symbol referenced in Section 5.20.

5.3.1  Reverse Flow (R)

One influence on the water surface elevation readings was the presence of reverse flow of the test channel.

Reverse flow is common with expanding jets into open channel flow in channels, especially rectangular channels.

Figure 5.1 shows an example of reverse flow experienced in the test channel.  A boundary could be seen

Figure 5.1  Reverse Flow in Test Channel

 between the reverse flow, characterized by vortices, and the expanding jet exiting the test culvert and flowing

across Zone 1.  Two different water surface elevations, inside and outside the boundary between the two types of

flow, caused great difficulty in obtaining accurate water surface elevation readings.
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5.3.2  Not Fully Expanded Jet (X)

Before initializing the project, based on previous research, it was believed that the dimensions of the test

channel would be adequate for all the experimental runs.  After initializing the experimental runs, it was discovered

that high flowrates produced a jet in the test channel that could not fully expand before impacting against the step in

Zone 2.  Refer to Figure 5.2.  As a result, two different water surface elevations, inside and outside the boundary

between the un-expanded jet and the more uniform flow, caused difficulty in obtaining accurate readings.

Figure 5.2  Not Fully Expanded Jet

 5.3.3  Spurting Flow (P)

 A characteristic of flowing water impacting an object is a spurting flow.  As the flow in the test channel

impacted against the step in Zone 2, often a spurting flow would occur as seen in Figure 5.3.  The spurting flow is

sometimes referred to as a “rooster tail”.  Due to the impossibility of collecting water surface elevation readings at

particular areas in Zone 2 caused by the spurting flow, averaging values with the three-point gage was not possible

and a single reading had to be applied for the entire cross-section.
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Figure 5.3  Spurting Flow

5.3.4  Swirling Flow (W)

A rarely observed phenomenon occurred in a couple experimental runs.  A flow instability, or the Coanda

effect, was believed to have been present.  The Coanda effect is primarily a resulting problem of turbulent flow and

turbulent mixing.  When the flow proceeds down the center of a channel with vortices on either side, an unstable

situation is formed.  With circulating water, a momentary pressure change is experienced resulting in a higher

pressure on one wall of the testing channel than the other.  Since water flows from high pressure to low pressure, the

flow goes in the direction of the wall with the lower pressure.  The jet is most stable attached to the wall.  A balance

is reached between the momentum component toward the wall and the pressure.  When the balance is reached, the

jet moves away from the wall and tries to attach itself to the other wall as a pressure change takes place (Fluid

Amplifiers, 1966).

Most often a balance between momentum and pressure is reached with no such effects occurring.  Only on

rare occasions was this effect seen, as in Figure 5.4.  Instead of impacting the step at the center, the impact would

occur at one side.  The water surface elevation readings were difficult to obtain due to the oscillating flow with

varied elevations.
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Figure 5.4  Swirling Flow

5.3.5  Splashing Flow (S)

Splashing flow occurred primarily with riprap steps.  Unlike the smooth cast acrylic steps, riprap steps have

a rough, angular surface consisting of many obstacles and voids.  As the flow impacts the rock in the step, flow

splashes and becomes more turbulent, increasing energy dissipation.  As a result of the splashing against the rock,

especially larger rock in the 2.0-inch and 2.5-inch equivalent riprap steps, accurate water surface elevations readings

were difficult to obtain.  See Figure 5.5.



55

Figure 5.5  Splashing Flow

5.3.6  Hydraulic Jump

Hydraulic jumps were discussed in Section 2.2.1.  Froude numbers of the jumps in the test channel were

less than 4.5.  Types of flows will be classified as the following:

•  J0 = No Jump (Fr < 1)

•  J1 = Weak Jump (1 < Fr < 2.5)

•  J2 = Oscillating Jump (2.5 < Fr < 4.5)

•  ^ = Jump Located in Test Channel

•  * = Jump Located in Test Culvert

Example:  J2* Representing Oscillating Jump in Test Culvert

5.3.7 Pooling (L)

Pooling, accumulation of water in Zone 1 due to the increase step height in Zone 2, of the flow occurred at

higher step heights.  Pooling effects raised the energy grade lines, EGL, giving the appearance that the increase in

step height was not an effective means of dissipating energy in Zone 2 of the test channel.  Pooling and EGLs are

discussed further in later sections.



56

5.4  Velocity Profile Investigation

To determine the value for alpha, the velocity head correction factor, the following expression was used:

AV

dAu

3

15

1

3

=α (5.1)

Where:

 α = Velocity correction factor

  u = Point velocity found from the Pitot tube

  dA  = Incremental area at which measurements were taken

  V = Average velocity

  A = Total cross-sectional area of flow

The values in the numerator are then summed from 1 to 15, as there were 15 sections of measurement.  Initial

calculations were performed at 50 gpm at 8 % slope, since the flow appearance at 8% slope appeared the most non-

uniform.  The first method used values obtained solely from the Pitot tube.  Table 5.2 lists the data measurements

and results of the computations.

Table 5.2 Calculations for Velocity Profile Correction Factor     
1 2 3 4 5 6 7 8 9 10

Width
Increments

Depth
From

Bottom of
Tube

Pitot
Reading

Pitot
Depth

Depth From
Center of

Tube
p/gamma Point Velocity

@ section
Area @
section (u3)dA Incremental

Flowrate

(Section) (mm) (mm) (mm) (mm) (mm) (mm/s) (mm2)  (mm3/s)
1 241 45.0 250 244 6.50 869 317 2.078E+11 275150
2 241 60.0 247 244 3.50 1053 317 3.694E+11 333322
3 241 85.0 248 244 4.50 1257 317 6.282E+11 397867
4 242 125 249 245 4.50 1537 289 1.050E+12 444452
5 248 135 253 251 2.50 1612 124 5.191E+11 199739
6 248 140 253 251 2.50 1642 124 5.488E+11 203473
7 248 150 253 251 2.50 1701 124 6.097E+11 210742
8 248 153 253 251 2.50 1715 124 6.253E+11 212520
9 248 160 253 251 2.50 1758 124 6.727E+11 217768
10 248 155 253 251 2.50 1729 124 6.410E+11 214284
11 248 145 253 251 2.50 1672 124 5.790E+11 207139
12 248 140 253 251 2.50 1642 124 5.488E+11 203473
13 241 140 247 244 3.50 1636 317 1.387E+12 518091
14 241 90.0 246 244 2.50 1310 317 7.119E+11 414805
15 241 75.0 246 244 2.50 1192 317 5.369E+11 377580

SUMS:      22326 3180 9.636E+12 4430403

 The first column, width increments, is the section number assigned to each location of measurement.  The second

column, depth from bottom of tube, is the location of the water surface found by locating the point at which the Pitot

tube first contacts the surface of the flow.  The third column, Pitot reading, is the value obtained by recording the
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height of water that appeared in the Pitot tube.  Note that due to oscillations, the Pitot reading was an average based

on visual inspection.  The fourth column, Pitot depth, is the location of the Pitot tube when it was placed into the

flow to obtain a Pitot reading.  The fifth column, depth from center of tube, is an adjustment of column two.  In

order to produce more accurate results, the initial water surface measurement was taken from the bottom of the tube

and then half diameter adjustment was applied to give the water surface elevation from the center of the tube.

Column six, ρ /gamma, is the height of the column of water from the center of the Pitot tube to the surface of the

flow, (column 4) minus (column 5).  Column seven, point velocity @ section, is the value for u as determined from

the energy equation solving for V.  Column eight, area @ section, is the value of the incremental cross sectional area

at the corresponding width increment.  The value for width is found by dividing the total width of the channel,

413mm, by the number of width increments, 15.  The height for the incremental cross-sectional area is found by

subtracting the datum elevation from the depth of water from the center of the tube.  Column nine, (u3)dA is the

product of the cube of the point velocity and the incremental area, (column 7)3*(column 8).  Column ten is the

incremental flowrate found by the product of columns seven and eight.  Note that columns eight, nine, and ten are

summed, with the total given for each at the bottom of the table.

For the first method of determining alpha by the Pitot data alone, the value for the numerator is the sum of

column nine.  The value for the average velocity, V, is found by dividing the total of the incremental flowrates by

the total of the incremental areas.  The value for A is the sum of the incremental areas.

A second method of determining alpha was by the use of data obtained by experiments performed using the

three-point gage and flowmeter.  The average velocity, total area, and alpha values were obtained by the use of the

three point data.  Alpha was calculated by using the same numerator values as in the first method, however the

denominator values were obtained from the three point gage data.  The values obtained from the two methods are

shown in Table 5.3

Table 5.3 Alpha Values Obtained by Methods 1 and 2
 (50 gpm at 8% Slope)  

Results Based on Pitot Data Results from Three-Point Data

Average Velocity
(mm/s)

1390
Average Velocity (mm/s)

1150
Area (mm^2) 3180 Area (mm^2) 2760

Alpha 1.12 Alpha 2.32
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The same procedure was performed at 100 gpm at 8% slope and the velocity correction factor obtained by

the two methods at this setting is displayed in Table 5.4.

Table 5.4 Alpha Values Obtained by Methods 1 and 2
 (100 gpm at 8% Slope)  

Results Based on Pitot Data Results from Three-Point Data

Average Velocity
(mm/s)

1800
Average Velocity (mm/s)

1630
Area (mm^2) 4670 Area (mm^2) 3880

Alpha 1.05 Alpha 1.70

The values obtained from the three-point gage were presumed to be less accurate than the Pitot data and were not

adopted.  Since the value for the velocity correction factor was nearly equal to unity in the Pitot tube analysis and

based on past research, it was not considered in the energy calculations and alpha was considered to equal unity.

5.5  Test Culvert Analysis

Since the flow was observed to be almost uniform near the culvert outlet, uniform flow depth was assumed

at the test culvert outlet for a given flowrate and slope.  To obtain the best representative value of uniform flow

depth at the outlet of the test culvert, Piezometer data for each slope and flowrate for the six configurations was

compiled in Microsoft Excel.  The spreadsheet, titled Test Culvert Analysis, contained the depth data for all 19

piezometers for each configuration.  Since the reading obtained from the Piezometer is the pressure head at the

culvert invert, a conversion was necessary to give the depth of flow perpendicular to the culvert invert.  The

equation is simply a trigonometric operation and was performed as follows:

( )
( )Θ

−=
COS

RRy ta
n (5.2)

Where:

Ra = Actual reading from piezometer (pressure head)

Rt = Tare reading for piezometer (zero depth and pressure head)

yn = Uniform depth perpendicular to the test culvert

Θ = Slope of test culvert (degrees)
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The 19 piezometer tap values were examined and it was concluded that the values had reached uniform flow

conditions from taps 10-19 in most instances.  Where wave action was pronounced or presence of a jump was

detected (due to backwater effects at the outlet, those tap readings were not included in the calculations.  The taps

that most accurately depicted uniform flow depth were then averaged and recorded for each slope and flowrate.  The

values were then summarized in a table for each riprap step and averaged again over the six experimental

configurations.  The result is the value used for uniform flow depth at the test culvert outlet for a given slope and

flowrate, as shown in red in Table 5.5.

 Table 5.5 Test Culvert Analysis       
  Uniform Flow Depth in Test Culvert (m)    

Culvert
Slope (%)

Flowrate
(gpm) 0.0-inch 0.5-inch 1.0-inch 1.5-inch 2.0-inch 2.5-inch

Average
Uniform

Flow Depth
Over Runs

(m)
2 50 0.0360 0.0360 0.0360 0.0360 0.0360 0.0370 0.0362
2 75 0.0437 0.0445 0.0438 0.0440 0.0438 0.0440 0.0439
2 100 0.0510 0.0510 0.0510 0.0510 0.0510 0.0510 0.0510
2 125 0.0560 0.0560 0.0560 0.0570 0.0570 0.0570 0.0565
2 150 0.0610 0.0610 0.0620 0.0610 0.0610 0.0600 0.0610
4 50 0.0314 0.0316 0.0313 0.0313 0.0317 0.0330 0.0315
4 75 0.0388 0.0388 0.0390 0.0392 0.0392 0.0390 0.0390
4 100 0.0450 0.0455 0.0450 0.0450 0.0450 0.0450 0.0451
4 125 0.0505 0.0505 0.0505 0.0505 0.0505 0.0507 0.0505
4 150 0.0557 0.0553 0.0557 0.0557 0.0568 0.0553 0.0558
6 50 0.0287 0.0284 0.0287 0.0282 0.0280 0.0278 0.0284
6 75 0.0345 0.0345 0.0345 0.0345 0.0345 0.0345 0.0345
6 100 0.0405 0.0405 0.0405 0.0405 0.0405 0.0400 0.0405
6 125 0.0455 0.0465 0.0460 0.0455 0.0455 0.0455 0.0458
6 150 0.0504 0.0504 0.0500 0.0500 0.0500 0.0500 0.0502
8 50 0.0273 0.0272 0.0272 0.0273 0.0273 0.0282 0.0273
8 75 0.0336 0.0334 0.0331 0.0330 0.0330 0.0330 0.0332
8 100 0.0387 0.0387 0.0387 0.0387 0.0387 0.0385 0.0387
8 125 0.0441 0.0441 0.0442 0.0444 0.0446 0.0446 0.0443
8 150 0.0488 0.0493 0.0493 0.0490 0.0490 0.0485 0.0491
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5.6 Equivalent Rectangular Froude Number

In the early stages of channel data analysis, it became apparent that the calculated culvert outlet Froude

number was misleading.  The Froude number was calculated based on hydraulic depth for the circular cross-section

of the test culvert.  This resulted in the Froude number approaching zero as the culvert fills.  A transformation from

circular to rectangular cross-section was found in the development of the Contra Costa energy dissipator, reviewed

in HEC-14 (1983).  The circular to rectangular transform eliminates the decrease in hydraulic depth with the

increase of flow depth in a circular cross-section.  HEC-14 stated that for oval, circular, elliptical or shapes other

than rectangular or square, the flow at the culvert must be converted to an equivalent rectangular cross-section with

a width equal to twice the depth of flow.  The equivalent rectangular flow depth, ye, is determined from the

following relationship:

5.0

2
�

�
�

�= Aye (5.3)

Where:

ye = Equivalent rectangular flow depth

A = Area of the flow cross-section

Following the transform of the flow depth, the equivalent rectangular Froude number can be determined from using

ye rather than the actual hydraulic depth at the culvert outlet.  So, the relationship for the Froude number becomes:

egy
VFr = (5.4)

The introduction of the transformed rectangular cross-section produced Froude numbers that were better suited for

non-dimensional reference use.  Values obtained for the uniform flow depth, from Section 5.5, were converted to the

equivalent rectangular flow depth and calculations proceeded further.

5.7 Energy Calculations

Based on the uniform flow depth established in Section 5.5, the following parameters were

calculated using a spreadsheet:
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•  Velocity at test culvert outlet

•  Flow area

•  Equivalent rectangular flow depth at culvert outlet, ye

•  Culvert Φ

Culvert Φ was the sector angle used to calculate the circular cross-sectional area of the flow at a given flow depth.

Culvert Φ is depicted below in Figure 5.6.

Figure 5.6  Culvert Φ

Given a value for the depth of flow in the test culvert, Φ  was determined from the following equation:

�
�
�

� −=Φ −

D
yCOS 212 1 (5.5)

The flow area of the culvert was found from an equation relating the diameter of the test culvert and culvert Φ ,

shown below.

( )Φ−Φ= SINDA
8

2

(5.6)

Since the cross-sectional area of the flow and the flowrate were both known, the velocity could be determined by

dividing the flowrate by the cross-sectional area.  The adopted values of uniform flow depth from Section 5.5, for

the test culvert at fixed slopes and flowrates are shown in Table 5.6.
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Table 5.6 Test Culvert Data     

Culvert
Slope Flowrate

Average
Uniform

Flow Depth
Over Runs

Test
Culvert

Phi

Average
Flow Area

Velocity
@ Test
Culvert
Outlet

Equivalent
Rectangular
Flow Depth

@ Test
Culvert
Outlet

(%) (gpm) (m) (rad) (m2) (m/s) (m)
2 50 0.0362 2.47 0.00269 1.17 0.0367
2 75 0.0439 2.77 0.00350 1.35 0.0418
2 100 0.0510 3.03 0.00426 1.48 0.0461
2 125 0.0565 3.24 0.00485 1.63 0.0492
2 150 0.0610 3.40 0.00533 1.78 0.0516
4 50 0.0315 2.29 0.00224 1.41 0.0335
4 75 0.0390 2.58 0.00298 1.59 0.0386
4 100 0.0451 2.81 0.00362 1.74 0.0426
4 125 0.0505 3.01 0.00420 1.88 0.0459
4 150 0.0558 3.21 0.00477 1.99 0.0488
6 50 0.0284 2.15 0.00191 1.65 0.0309
6 75 0.0345 2.40 0.00252 1.88 0.0355
6 100 0.0405 2.63 0.00313 2.02 0.0396
6 125 0.0458 2.84 0.00369 2.14 0.0430
6 150 0.0502 3.00 0.00416 2.28 0.0456
8 50 0.0273 2.11 0.00183 1.73 0.0302
8 75 0.0332 2.35 0.00239 1.98 0.0346
8 100 0.0387 2.57 0.00294 2.15 0.0384
8 125 0.0443 2.78 0.00354 2.23 0.0421
8 150 0.0491 2.96 0.00404 2.35 0.0449

Since the uniform flow depth was constant at a given slope and flowrate, the remainder of the calculations

dealt with comparing the conditions at the culvert outlet with those downstream in the testing channel.  The

parameters obtained from the rectangular test channel are as follows:

•  Average flow depth

•  Flow area

•  Velocity

The average flow depth was obtained by examining the values for flow depth from the three-point gage

measurements along the designated seven channel positions shown in Figure 4.11.  Plots of the water surface

elevation for a given run were then examined to identify any values that were outliers due to wave action or

experimental error.  The points that were termed acceptable, as best displaying the observed flow depth in the testing

channel, were then averaged to produce the mean flow depth in the testing channel.  The flow area of the given run
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was determined from the product of the average flow depth with the width of the testing channel.  The velocity was

found by simply dividing the flowrate by the cross-sectional area of the flow.  Next, the Froude number at the

culvert outlet was calculated as described in Section 5.6.  The Froude number was also calculated in the testing

channel.  The Froude number at the culvert outlet and testing channel were calculated to provide a non-dimensional

reference to flow conditions.  The energy at the culvert outlet was calculated from the following expression:

zy
g

VletEnergyCulvertOut ++=
2

2

(5.7)

Where:

V = Average velocity at culvert outlet

g = Acceleration due to gravity

y = Uniform flow depth at culvert outlet (actual depth)

z = Step height above zero datum

The energy in the testing channel and the EGL were calculated using Equation 5.7, except that velocity and uniform

flow depth were those of the testing channel.  The energy at the culvert outlet and testing channel are then compared

in the form of a non-dimensional energy difference of the following form:

gyOutletEner
rgyChannelEnegyOutletEnerferencelEnergyDifDimensionaNon −=− (5.8)

An example of the spreadsheet format used for the energy calculations is shown in Table 5.7.  In following sections,

each type of step, either cast acrylic or riprap, and step height will be presented and discussed with the results

presented in this latter format.

Table 5.7 Example of Energy Calculations Performed     
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50         
75         
100         
125         
150         
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After observing the flow characteristics in the test channel for the 0.0-inch smooth, cast acrylic step for

several flowrates, it was determined that there was an extreme amount of wave action, making accurate

measurements of depth impossible.  Therefore, it was considered that analysis could not be completed due to

excessive measurement error.  Several sample calculations using data from these runs were completed.  The sample

calculations confirmed that there was too much wave action to obtain useful information.  Since the riprap pallet

with the equivalent step height and the matching ‘smooth’ cast acrylic step were to have been compared, it was

decided that the calculations for the 0.0-inch riprap step would only be used as a reference for the five, riprap steps,

0.5-inch, 1.0-inch, 1.5-inch, 2.0-inch, and 2.5-inch.  The 0.0-inch riprap step calculations in their entirety will be

presented in a later section.
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5.8  0.5-inch Cast Acrylic Step

Graphs of the water surface elevation for tests conducted at 2, 4, 6, and 8% slopes are shown in Figures 5.7,

5.8, 5.9, and 5.10.  After the water surface elevation was established, average flow depth was determined.  From the

flow depth and the results from Section 5.5, the aforementioned energy calculations were conducted.  The results for

the energy calculations for the 0.5-inch cast acrylic step are shown in Tables 5.8, 5.9, 5.10, and 5.11.

Smooth - Water Surface Elevation for 0.5" Step @ 2% Slope
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Figure 5.7  Plot of Water Surface Elevation for 0.5-inch Cast Acrylic Step at 2% Culvert Slope
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Smooth - Water Surface Elevation for 0.5" Step @ 4% Slope
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Figure 5.8  Plot of Water Surface Elevation for 0.5-inch Cast Acrylic Step at 4% Culvert Slope

Smooth - Water Surface Elevation for 0.5" Step @ 6% Slope

0
20
40
60
80

100
120
140
160
180

0 200 400 600 800 1000

Distance From Culvert Outlet (mm)

W
at

er
 S

ur
fa

ce
 E

le
va

tio
n 

(m
m

)

50 gpm
75 gpm
100 gpm
125 gpm
150 gpm
Channel Bottom
0.5" Step

Figure 5.9  Plot of Water Surface Elevation for 0.5-inch Cast Acrylic Step at 6% Culvert Slope
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Smooth - Water Surface Elevation for 0.5 " Step @ 8% Slope
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Figure 5.10  Plot of Water Surface Elevation for 0.5-inch Cast Acrylic Step at 8% Culvert Slope

Table 5.8 Energy Calculations for 0.5-inch Cast Acrylic Step @ 2% Slope   
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0136 0.00563 0.560 2.31 1.53 107 41.5 0.612
75 0.0203 0.00837 0.566 2.38 1.27 135 48.5 0.640
100 0.0256 0.0106 0.597 2.38 1.19 163 55.7 0.659
125 0.0254 0.0105 0.753 2.45 1.51 194 66.2 0.659
150 0.0277 0.0114 0.829 2.54 1.59 222 74.6 0.664
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Table 5.9 Energy Calculations for 0.5-inch Cast Acrylic Step @ 4% Slope   
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.00983 0.00406 0.777 2.97 2.51 134 52.6 0.607
75 0.0224 0.00925 0.512 3.00 1.09 170 47.7 0.719
100 0.0232 0.00957 0.660 3.02 1.38 197 57.3 0.709
125 0.0219 0.00903 0.874 3.03 1.89 230 72.7 0.685
150 0.0775 0.0320 0.296 3.02 0.340 260 93.8 0.640

Table 5.10 Energy Calculations for 0.5-inch Cast Acrylic Step @ 6% Slope   
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0247 0.0102 0.309 3.71 0.629 166 41.5 0.750
75 0.0333 0.0138 0.344 3.79 0.603 214 51.2 0.761
100 0.0507 0.0209 0.302 3.73 0.428 247 67.2 0.728
125 0.0604 0.0249 0.317 3.67 0.412 270 77.4 0.713
150 0.0919 0.0380 0.250 3.70 0.263 311 107 0.656

Table 5.11 Energy Calculations for 0.5-inch Cast Acrylic Step @ 8% Slope   
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0436 0.0180 0.175 3.95 0.268 183 57.0 0.688
75 0.0735 0.0303 0.156 4.09 0.184 230 86.6 0.623
100 0.0786 0.0325 0.194 4.06 0.221 273 92.5 0.661
125 0.0908 0.0375 0.210 3.90 0.223 301 105 0.651
150 0.1291 0.0533 0.178 3.87 0.158 326 143 0.562
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5.9 1.0-inch Cast Acrylic Step

Graphs of the water surface elevation for tests conducted at 2, 4, 6, and 8% slopes are shown in Figures

5.11, 5.12, 5.13, and 5.14.  After the water surface elevation was established, average flow depth was determined.

From the flow depth and the results from Section 5.5, the aforementioned energy calculations were conducted.  The

results for the energy calculations for the 1.0-inch cast acrylic step are shown in Tables 5.12, 5.13, 5.14 and 5.15.

Smooth - Water Surface Elevation  for 1.0" Step @ 2% Slope
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Figure 5.11  Plot of Water Surface Elevation for 1.0-inch Cast Acrylic Step at 2% Culvert Slope
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Smooth - Water Surface Elevation for 1.0" Step @ 4% Slope
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Figure 5.12  Plot of Water Surface Elevation for 1.0-inch Cast Acrylic Step at 4% Culvert Slope

Smooth - Water Surface Elevation for 1.0" Step @ 6% Slope
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Figure 5.13  Plot of Water Surface Elevation for 1.0-inch Cast Acrylic Step at 6% Culvert Slope
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Smooth - Water Surface Elevation for 1.0" Step @ 8% Slope
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Figure 5.14  Plot of Water Surface Elevation for 1.0-inch Cast Acrylic Step at 8% Culvert Slope

Table 5.12 Energy Calculations for 1.0-inch Cast Acrylic Step @ 2% Slope   
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0144 0.00595 0.530 2.31 1.41 107 53.2 0.504
75 0.0199 0.00821 0.577 2.38 1.31 138 61.2 0.557
100 0.0203 0.00840 0.752 2.38 1.68 163 73.5 0.550
125 0.0269 0.0111 0.711 2.45 1.38 194 77.0 0.603
150 0.0292 0.0121 0.786 2.54 1.47 217 85.1 0.607
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Table 5.13 Energy Calculations for 1.0-inch Cast Acrylic Step @ 4% Slope   
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0148 0.00611 0.517 2.97 1.36 136 52.8 0.611
75 0.0214 0.00884 0.536 3.00 1.17 168 60.4 0.640
100 0.0251 0.0104 0.608 3.02 1.22 201 68.4 0.659
125 0.0271 0.0112 0.707 3.03 1.37 230 76.9 0.666
150 0.0642 0.0265 0.357 3.02 0.450 258 95.1 0.631

Table 5.14 Energy Calculations for 1.0-inch Cast Acrylic Step @ 6% Slope   
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0242 0.0100 0.315 3.71 0.647 162 53.7 0.669
75 0.0257 0.0106 0.447 3.79 0.890 214 60.2 0.719
100 0.0338 0.0140 0.452 3.73 0.785 247 68.6 0.722
125 0.0424 0.0175 0.451 3.67 0.700 276 77.1 0.720
150 0.0651 0.0269 0.352 3.70 0.441 316 95.8 0.697

Table 5.15 Energy Calculations for 1.0-inch Cast Acrylic Step @ 8% Slope   
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0282 0.0116 0.271 3.95 0.516 183 56.3 0.692
75 0.0500 0.0206 0.229 4.09 0.328 234 77.1 0.671
100 0.0638 0.0263 0.240 4.06 0.303 273 91.1 0.666
125 0.0806 0.0333 0.237 3.90 0.267 299 108 0.640
150 0.0941 0.0389 0.244 3.87 0.254 326 122 0.627
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5.10   1.5-inch Cast Acrylic Step

Graphs of the water surface elevation for tests conducted at 2, 4, 6, and 8% slopes are shown in Figures

5.15, 5.16, 5.17, and 5.18.  After the water surface elevation was established, average flow depth was determined.

From the flow depth and the results from Section 5.5, the aforementioned energy calculations were conducted.  The

results for the energy calculations for the 1.5-inch cast acrylic step are shown in Tables 5.16, 5.17, 5.18 and 5.19.

Smooth - Water Surface Elevation for 1.5" Step @ 2% Slope

0
20
40
60
80

100
120
140
160
180

0 200 400 600 800 1000

Distance From Culvert Outlet (mm)

W
at

er
 S

ur
fa

ce
 E

le
va

tio
n 

(m
m

)

50 gpm
75 gpm
100 gpm
125 gpm
150 gpm
Channel Bottom
1.5" Step

Figure 5.15  Plot of Water Surface Elevation for 1.5-inch Cast Acrylic Step at 2% Culvert Slope
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Smooth - Water Surface Elevation for 1.5" Step @ 4% Slope
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Figure 5.16  Plot of Water Surface Elevation for 1.5-inch Cast Acrylic Step at 4% Culvert Slope

Smooth - Water Surface Elevation for 1.5" Step @ 6% Slope
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Figure 5.17  Plot of Water Surface Elevation for 1.5-inch Cast Acrylic Step at 6% Culvert Slope
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Smooth - Water Surface Elevation for 1.5" Step @ 8% Slope
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Figure 5.18  Plot of Water Surface Elevation for 1.5-inch Cast Acrylic Step at 8% Culvert Slope

Table 5.16 Energy Calculations for 1.5-inch Cast Acrylic Step @ 2% Slope   
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0152 0.00629 0.501 2.31 1.30 107 61.3 0.428
75 0.0172 0.00711 0.666 2.38 1.62 137 73.1 0.467
100 0.0233 0.00963 0.656 2.38 1.37 163 78.5 0.519
125 0.0261 0.0108 0.731 2.45 1.44 189 86.6 0.542
150 0.0278 0.0115 0.825 2.54 1.58 222 95.7 0.569
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Table 5.17 Energy Calculations for 1.5-inch Cast Acrylic Step @ 4% Slope   
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0155 0.00639 0.494 2.97 1.27 136 61.1 0.550
75 0.0174 0.00718 0.660 3.00 1.60 166 72.8 0.562
100 0.0229 0.00944 0.669 3.02 1.41 201 78.9 0.607
125 0.0287 0.0119 0.665 3.03 1.25 230 84.5 0.633
150 0.0458 0.0189 0.501 3.02 0.747 258 91.8 0.644

Table 5.18 Energy Calculations for 1.5-inch Cast Acrylic Step @ 6% Slope   
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0125 0.00516 0.611 3.71 1.75 168 64.8 0.615
75 0.0206 0.00850 0.557 3.79 1.24 214 69.6 0.675
100 0.0326 0.0135 0.469 3.73 0.829 247 77.0 0.688
125 0.0418 0.0173 0.457 3.67 0.713 282 85.7 0.696
150 0.0674 0.0278 0.341 3.70 0.419 316 106 0.663

Table 5.19 Energy Calculations for 1.5-inch Cast Acrylic Step @ 8% Slope   
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0136 0.0056 0.560 3.95 1.53 181 62.9 0.653
75 0.0315 0.0130 0.364 4.09 0.656 237 71.5 0.698
100 0.0437 0.0180 0.350 4.06 0.535 273 83.1 0.695
125 0.0677 0.0279 0.282 3.90 0.347 296 105 0.646
150 0.0794 0.0328 0.289 3.87 0.327 329 117 0.645
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5.11  2.0-inch Cast Acrylic Step

Graphs of the water surface elevation for tests conducted at 2, 4, 6, and 8% slopes are shown in Figures

5.19, 5.20, 5.21, and 5.22.  After the water surface elevation was established, average flow depth was determined.

From the flow depth and the results from Section 5.5, the aforementioned energy calculations were conducted.  The

results for the energy calculations for the 2.0-inch cast acrylic step are shown in Tables 5.20, 5.21, 5.22 and 5.23.

Smooth - Water Surface Elevation for 2.0" Step @ 2% Slope
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Figure 5.19  Plot of Water Surface Elevation for 2.0-inch Cast Acrylic Step at 2% Culvert Slope
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Smooth - Water Surface Elevation for 2.0" Step @ 4% Slope
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Figure 5.20  Plot of Water Surface Elevation for 2.0-inch Cast Acrylic Step at 4% Culvert Slope

Smooth - Water Surface Elevation for 2.0" Step @ 6% Slope
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Figure 5.21  Plot of Water Surface Elevation for 2.0-inch Cast Acrylic Step at 6% Culvert Slope
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Smooth - Water Surface Elevation for 2.0" Step @ 8% Slope
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Figure 5.22  Plot of Water Surface Elevation for 2.0-inch Cast Acrylic Step at 8% Culvert Slope

Table 5.20 Energy Calculations for 2.0-inch Cast Acrylic Step @ 2% Slope   
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0148 0.00611 0.517 2.31 1.36 107 75.7 0.294
75 0.0172 0.00711 0.666 2.38 1.62 137 98.5 0.281
100 0.0219 0.00906 0.697 2.38 1.50 163 93.9 0.425
125 0.0245 0.0101 0.781 2.45 1.60 189 103 0.456
150 0.0286 0.0118 0.803 2.54 1.52 222 109 0.510
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Table 5.21 Energy Calculations for 2.0-inch Cast Acrylic Step @ 4% Slope   
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0136 0.00563 0.560 2.97 1.53 133 76.9 0.422
75 0.0156 0.00645 0.734 3.00 1.88 168 98.0 0.416
100 0.0209 0.00862 0.732 3.02 1.62 201 95.5 0.525
125 0.0195 0.00806 0.980 3.03 2.24 230 116 0.498
150 0.0207 0.00853 1.111 3.02 2.47 249 131 0.475

Table 5.22 Energy Calculations for 2.0-inch Cast Acrylic Step @ 6% Slope   
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0110 0.00453 0.696 3.71 2.12 171 83.0 0.515
75 0.0154 0.00636 0.745 3.79 1.92 214 103 0.519
100 0.0169 0.00699 0.904 3.73 2.22 247 106 0.572
125 0.0235 0.00969 0.814 3.67 1.70 282 105 0.629
150 0.0293 0.0121 0.782 3.70 1.46 316 108 0.659

Table 5.23 Energy Calculations for 2.0-inch Cast Acrylic Step @ 8% Slope   
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0126 0.00522 0.604 3.95 1.72 181 78.5 0.567
75 0.0148 0.00611 0.776 4.09 2.04 237 104 0.559
100 0.0235 0.00972 0.649 4.06 1.35 273 92.3 0.662
125 0.0325 0.0134 0.589 3.90 1.04 295 97.4 0.669
150 0.0521 0.0215 0.440 3.87 0.616 329 109 0.668
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5.12   2.5-inch Cast Acrylic Step

Graphs of the water surface elevation for tests conducted at 2, 4, 6, and 8% slopes are shown in Figures

5.23, 5.24, 5.25, and 5.26.  After the water surface elevation was established, average flow depth was determined.

From the flow depth and the results from Section 5.5 the aforementioned energy calculations were conducted.  The

results for the energy calculations for the 2.5-inch cast acrylic step are shown in Tables 5.24, 5.25, 5.26 and 5.27.

Smooth - Water Surface Elevation for 2.5" Step @ 2% Slope
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Figure 5.23  Plot of Water Surface Elevation for 2.5-inch Cast Acrylic Step at 2% Culvert Slope
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Smooth - Water Surface Elevation for 2.5" Step @ 4% Slope
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Figure 5.24  Plot of Water Surface Elevation for 2.5-inch Cast Acrylic Step at 4% Culvert Slope

Smooth - Water Surface Elevation for 2.5" Step @ 6% Slope
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Figure 5.25  Plot of Water Surface Elevation for 2.5-inch Cast Acrylic Step at 6% Culvert Slope
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Smooth - Water Surface Elevation for 2.5" Step @ 8% Slope
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Figure 5.26  Plot of Water Surface Elevation for 2.5-inch Cast Acrylic Step at 8% Culvert Slope

Table 5.24 Energy Calculations for 2.5-inch Cast Acrylic Step @ 2% Slope   
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0143 0.00592 0.533 2.31 1.42 103 88.9 0.137
75 0.0182 0.00752 0.630 2.38 1.49 137 98.5 0.281
100 0.0212 0.00875 0.722 2.38 1.58 163 108 0.340
125 0.0253 0.0104 0.756 2.45 1.52 189 114 0.395
150 0.0279 0.0115 0.822 2.54 1.57 228 122 0.462
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Table 5.25 Energy Calculations for 2.5-inch Cast Acrylic Step @ 4% Slope   
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0149 0.00617 0.511 2.97 1.34 123 88.3 0.284
75 0.0187 0.00771 0.614 3.00 1.44 168 98.0 0.416
100 0.0178 0.00733 0.861 3.02 2.06 201 116 0.424
125 0.0186 0.00768 1.028 3.03 2.41 229 133 0.422
150 0.0228 0.00941 1.007 3.02 2.13 260 135 0.483

Table 5.26 Energy Calculations for 2.5-inch Cast Acrylic Step @ 6% Slope   
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0140 0.00579 0.545 3.71 1.47 174 89.2 0.487
75 0.0156 0.00645 0.734 3.79 1.88 214 103 0.519
100 0.0191 0.00787 0.803 3.73 1.86 254 112 0.559
125 0.0214 0.00884 0.893 3.67 1.95 282 122 0.567
150 0.0297 0.0123 0.772 3.70 1.43 316 120 0.620

Table 5.27 Energy Calculations for 2.5-inch Cast Acrylic Step @ 8% Slope   
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0155 0.00639 0.494 3.95 1.27 169 88.0 0.479
75 0.0152 0.00626 0.756 4.09 1.96 237 104 0.559
100 0.0171 0.00708 0.892 4.06 2.18 275 118 0.573
125 0.0206 0.00850 0.929 3.90 2.07 295 125 0.577
150 0.0263 0.0109 0.872 3.87 1.72 336 125 0.628
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5.13  0.0-inch Equivalent Riprap Step

Graphs of the water surface elevation for tests conducted at 2, 4, 6, and 8% slopes are shown in Figures

5.27, 5.28, 5.29, and 5.30.  After the water surface elevation was established, average flow depth was determined.

From the flow depth and the results from Section 5.5, the aforementioned volumetric displacement tests and energy

calculations were conducted.  The results for the energy calculations for the 0.0-inch equivalent riprap step are

shown in Tables 5.28, 5.29, 5.30, and 5.31.

Rough - Water Surface Elevation for 0.0" Step @ 2% Slope
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Figure 5.27  Plot of Water Surface Elevation for 0.0-inch Equivalent Riprap Step at 2% Culvert Slope
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Rough - Water Surface Elevation for 0.0" Step @ 4% Slope
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Figure 5.28  Plot of Water Surface Elevation for 0.0-inch Equivalent Riprap Step at 4% Culvert Slope

Rough - Water Surface Elevation for 0.0" Step @ 6% Slope
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Figure 5.29  Plot of Water Surface Elevation for 0.0-inch Equivalent Riprap Step at 6% Culvert Slope
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Rough - Water Surface Elevation for 0.0" Step @ 8% Slope
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Figure 5.30  Plot of Water Surface Elevation for 0.0-inch Equivalent Riprap Step at 8% Culvert Slope

Table 5.28 Energy Calculations for 0.0-inch Equivalent Riprap Step @ 2% Slope  
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0240 0.00991 0.319 2.31 0.657 107 29.2 0.728
75 0.0274 0.0113 0.418 2.38 0.806 139 36.3 0.738
100 0.0287 0.0119 0.532 2.38 1.00 163 43.2 0.736
125 0.0328 0.0136 0.582 2.45 1.03 194 50.1 0.742
150 0.0365 0.0151 0.628 2.54 1.05 222 56.6 0.745
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Table 5.29 Energy Calculations for 0.0-inch Equivalent Riprap Step @ 4% Slope  
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0239 0.00988 0.320 2.97 0.660 134 29.1 0.785
75 0.0264 0.0109 0.434 3.00 0.852 170 36.0 0.788
100 0.0301 0.0124 0.508 3.02 0.935 197 43.3 0.785
125 0.0328 0.0135 0.583 3.03 1.03 230 50.1 0.783
150 0.0344 0.0142 0.666 3.02 1.15 260 57.1 0.779

Table 5.30 Energy Calculations for 0.0-inch Equivalent Riprap Step @ 6% Slope  
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0229 0.00944 0.334 3.71 0.706 166 28.6 0.824
75 0.0239 0.00988 0.479 3.79 0.989 214 35.6 0.834
100 0.0277 0.0115 0.551 3.73 1.06 247 43.2 0.825
125 0.0305 0.0126 0.627 3.67 1.15 270 50.5 0.821
150 0.0332 0.0137 0.690 3.70 1.21 311 57.5 0.815

Table 5.31 Energy Calculations for 0.0-inch Equivalent Riprap Step @ 8% Slope  
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0219 0.00903 0.350 3.95 0.755 183 28.1 0.844
75 0.0249 0.0103 0.460 4.09 0.931 230 35.7 0.843
100 0.0261 0.0108 0.585 4.06 1.16 273 43.6 0.840
125 0.0262 0.0108 0.729 3.90 1.44 301 53.3 0.823
150 0.0266 0.0110 0.862 3.87 1.69 326 64.5 0.806
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5.14   0.5-inch Equivalent Riprap Step

Graphs of the water surface elevation for tests conducted at 2, 4, 6, and 8% slopes are shown in Figures

5.31, 5.32, 5.33, and 5.34.  After the water surface elevation was established, average flow depth was determined.

From the flow depth and the results from Section 5.5, the aforementioned volumetric displacement tests and energy

calculations were conducted.  The results for the energy calculations for the 0.5-inch equivalent riprap step are

shown in Tables 5.32, 5.33, 5.34, and 5.35.

Rough - Water Surface Elevation for 0.5" Step @ 2% Slope
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Figure 5.31  Plot of Water Surface Elevation for 0.5-inch Equivalent Riprap Step at 2% Culvert Slope
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Rough - Water Surface Elevation for 0.5" Step @ 4% Slope
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Figure 5.32  Plot of Water Surface Elevation for 0.5-inch Equivalent Riprap Step at 4% Culvert Slope

Rough - Water Surface Elevation for 0.5" Step @ 6% Slope
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Figure 5.33  Plot of Water Surface Elevation for 0.5-inch Equivalent Riprap Step at 6% Culvert Slope
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Rough - Water Surface Elevation for 0.5" Step @ 8% Slope

0

50

100

150

200

250

300

0 200 400 600 800 1000

Distance From Culvert Outlet (mm)

W
at

er
 S

ur
fa

ce
 E

le
va

tio
n 

(m
m

)

50 gpm
75 gpm
100 gpm
125 gpm
150 gpm
Channel Bottom
0.5" Step
Top of Rock

Figure 5.34  Plot of Water Surface Elevation for 0.5-inch Equivalent Riprap Step at 8% Culvert Slope

Table 5.32 Energy Calculations for 0.5-inch Equivalent Riprap Step @ 2% Slope  
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0233 0.00964 0.327 2.31 0.684 107 37.6 0.649
75 0.0291 0.0120 0.394 2.38 0.739 139 46.7 0.653
100 0.0314 0.0130 0.487 2.38 0.878 163 54.0 0.669
125 0.0347 0.0143 0.552 2.45 0.946 194 62.0 0.681
150 0.0357 0.0147 0.643 2.54 1.09 222 68.8 0.690
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Table 5.33 Energy Calculations for 0.5-inch Equivalent Riprap Step @ 4% Slope  
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0258 0.0106 0.297 2.97 0.590 134 39.4 0.705
75 0.0294 0.0121 0.391 3.00 0.728 170 46.9 0.723
100 0.0334 0.0138 0.458 3.02 0.801 197 55.3 0.719
125 0.0360 0.0149 0.531 3.03 0.893 230 62.5 0.729
150 0.0378 0.0156 0.607 3.02 1.00 260 69.4 0.734

Table 5.34 Energy Calculations for 0.5-inch Equivalent Riprap Step @ 6% Slope  
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0249 0.0103 0.307 3.71 0.622 166 38.6 0.767
75 0.0283 0.0117 0.406 3.79 0.771 214 46.2 0.785
100 0.0311 0.0128 0.492 3.73 0.890 247 53.9 0.782
125 0.0344 0.0142 0.556 3.67 0.958 270 61.7 0.771
150 0.0327 0.0135 0.701 3.70 1.24 311 68.8 0.779

Table 5.35 Energy Calculations for 0.5-inch Equivalent Riprap Step @ 8% Slope  
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0246 0.0102 0.310 3.95 0.631 183 38.5 0.790
75 0.0280 0.0116 0.410 4.09 0.782 230 45.9 0.800
100 0.0307 0.0127 0.498 4.06 0.907 273 53.6 0.803
125 0.0303 0.0125 0.631 3.90 1.16 301 60.7 0.798
150 0.0262 0.0108 0.875 3.87 1.73 326 74.1 0.773
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5.15   1.0-inch Equivalent Riprap Step

Graphs of the water surface elevation for tests conducted at 2, 4, 6, and 8% slopes are shown in Figures

5.35, 5.36, 5.37, and 5.38.  After the water surface elevation was established, average flow depth was determined.

From the flow depth and the results from Section 5.5, the aforementioned volumetric displacement tests and energy

calculations were conducted.  The results for the energy calculations for the 1.0-inch equivalent riprap step are

shown in Tables 5.36, 5.37, 5.38, and 5.39.

Rough - Water Surface Elevation for 1.0" Step @ 2% Slope 
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Figure 5.35  Plot of Water Surface Elevation for 1.0-inch Equivalent Riprap Step at 2% Culvert Slope
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Rough - Water Surface Elevation for 1.0" Step @ 4% Slope
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Figure 5.36  Plot of Water Surface Elevation for 1.0-inch Equivalent Riprap Step at 4% Culvert Slope

Rough - Water Surface Elevation for 1.0" Step @ 6% Slope
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Figure 5.37  Plot of Water Surface Elevation for 1.0-inch Equivalent Riprap Step at 6% Culvert Slope
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Rough - Water Surface Elevation for 1.0" Step @ 8% Slope
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Figure 5.38  Plot of Water Surface Elevation for 1.0-inch Equivalent Riprap Step at 8% Culvert Slope

Table 5.36 Energy Calculations for 1.0-inch Equivalent Riprap Step @ 2% Slope  
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0200 0.00825 0.383 2.31 0.865 107 50.1 0.532
75 0.0237 0.00980 0.484 2.38 1.00 139 59.6 0.569
100 0.0297 0.0123 0.515 2.38 0.954 163 66.9 0.591
125 0.0323 0.0133 0.591 2.45 1.05 194 73.8 0.620
150 0.0371 0.0153 0.618 2.54 1.02 222 80.6 0.628
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Table 5.37 Energy Calculations for 1.0-inch Equivalent Riprap Step @ 4% Slope  
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0185 0.00762 0.414 2.97 0.974 134 50.5 0.628
75 0.0268 0.0111 0.429 3.00 0.837 170 59.7 0.644
100 0.0284 0.0117 0.538 3.02 1.02 197 66.7 0.668
125 0.0344 0.0142 0.555 3.03 0.956 230 73.8 0.680
150 0.0359 0.0148 0.638 3.02 1.08 260 80.8 0.686

Table 5.38 Energy Calculations for 1.0-inch Equivalent Riprap Step @ 6% Slope  
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0150 0.00618 0.511 3.71 1.33 166 50.7 0.687
75 0.0211 0.00872 0.543 3.79 1.19 214 59.1 0.725
100 0.0326 0.0135 0.469 3.73 0.830 247 67.5 0.727
125 0.0273 0.0113 0.700 3.67 1.35 270 75.8 0.725
150 0.0248 0.0102 0.924 3.70 1.87 311 91.9 0.709

Table 5.39 Energy Calculations for 1.0-inch Equivalent Riprap Step @ 8% Slope  
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0219 0.00906 0.349 3.95 0.751 183 51.5 0.718
75 0.0202 0.00835 0.567 4.09 1.27 230 59.3 0.747
100 0.0246 0.0101 0.623 4.06 1.27 273 67.3 0.753
125 0.0298 0.0123 0.642 3.90 1.19 301 74.4 0.751
150 0.0287 0.0119 0.799 3.87 1.51 326 84.8 0.740
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5.16   1.5-inch Equivalent Riprap Step

Graphs of the water surface elevation for tests conducted at 2, 4, 6, and 8% slopes are shown in Figures

5.39, 5.40, 5.41, and 5.42.  After the water surface elevation was established, average flow depth was determined.

From the flow depth and the results from Section 5.5, the aforementioned volumetric displacement tests and energy

calculations were conducted.  The results for the energy calculations for the 1.5-inch equivalent riprap step are

shown in Tables 5.40, 5.41, 5.42, and 5.43.

Rough - Water Surface Elevation for 1.5" Step @ 2% Slope
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Figure 5.39  Plot of Water Surface Elevation for 1.5-inch Equivalent Riprap Step at 2% Culvert Slope
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Rough - Water Surface Elevation for 1.5" Step @ 4% Slope
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Figure 5.40  Plot of Water Surface Elevation for 1.5-inch Equivalent Riprap Step at 4% Culvert Slope

Rough - Water Surface Elevation for 1.5" Step @ 6% Slope
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Figure 5.41  Plot of Water Surface Elevation for 1.5-inch Equivalent Riprap Step at 6% Culvert Slope
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Rough - Water Surface Elevation for 1.5" Step @ 8% Slope
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Figure 5.42  Plot of Water Surface Elevation for 1.5-inch Equivalent Riprap Step at 8% Culvert Slope

Table 5.40 Energy Calculations for 1.5-inch Equivalent Riprap Step @ 2% Slope  
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0312 0.0129 0.245 2.31 0.444 107 65.2 0.392
75 0.0375 0.0155 0.408 2.38 0.557 139 72.4 0.472
100 0.0375 0.0155 0.408 2.38 0.673 163 78.3 0.521
125 0.0404 0.0167 0.474 2.45 0.753 194 84.6 0.553
150 0.0410 0.0169 0.560 2.54 0.883 222 89.9 0.595
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Table 5.41 Energy Calculations for 1.5-inch Equivalent Riprap Step @ 4% Slope  
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0352 0.0145 0.217 2.97 0.369 134 69.5 0.488
75 0.0386 0.0159 0.297 3.00 0.483 170 75.7 0.545
100 0.0366 0.0151 0.417 3.02 0.696 197 77.8 0.613
125 0.0420 0.0173 0.455 3.03 0.709 230 87.3 0.621
150 0.0399 0.0165 0.574 3.02 0.918 260 89.5 0.653

Table 5.42 Energy Calculations for 1.5-inch Equivalent Riprap Step @ 6% Slope  
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0356 0.0147 0.215 3.71 0.363 166 69.9 0.585
75 0.0373 0.0154 0.307 3.79 0.508 214 74.3 0.653
100 0.0358 0.0148 0.427 3.73 0.721 247 77.1 0.688
125 0.0373 0.0154 0.512 3.67 0.847 270 83.0 0.706
150 0.0394 0.0163 0.582 3.70 0.937 311 89.4 0.717

Table 5.43 Energy Calculations for 1.5-inch Equivalent Riprap Step @ 8% Slope  
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0325 0.0134 0.236 3.95 0.418 183 66.5 0.633
75 0.0339 0.0140 0.338 4.09 0.586 230 71.4 0.698
100 0.0351 0.0145 0.435 4.06 0.742 273 76.6 0.719
125 0.0377 0.0156 0.506 3.90 0.833 301 83.3 0.719
150 0.0376 0.0155 0.610 3.87 1.00 326 88.9 0.730
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5.17   2.0-inch Equivalent Riprap Step

Graphs of the water surface elevation for tests conducted at 2, 4, 6, and 8% slopes are shown in Figures

5.43, 5.44, 5.45, and 5.46.  After the water surface elevation was established, average flow depth was determined.

From the flow depth and the results from Section 5.5, the aforementioned volumetric displacement tests and energy

calculations were conducted.  The results for the energy calculations for the 2.0-inch equivalent riprap step are

shown in Tables 5.44, 5.45, 5.46, and 5.47.

Rough - Water Surface Elevation for 2.0" Step @ 2% Slope
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Figure 5.43  Plot of Water Surface Elevation for 2.0-inch Equivalent Riprap Step at 2% Culvert Slope
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Rough - Water Surface Elevation for 2.0" Step @ 4% Slope
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Figure 5.44  Plot of Water Surface Elevation for 2.0-inch Equivalent Riprap Step at 4% Culvert Slope

Rough - Water Surface Elevation for 2.0" Step @ 6% Slope
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Figure 5.45  Plot of Water Surface Elevation for 2.0-inch Equivalent Riprap Step at 6% Culvert Slope



103

Rough - Water Surface Elevation for 2.0" Step @ 8% Slope
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Figure 5.46  Plot of Water Surface Elevation for 2.0-inch Equivalent Riprap Step at 8% Culvert Slope

Table 5.44 Energy Calculations for 2.0-inch Equivalent Riprap Step @ 2% Slope  
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0359 0.0148 0.213 2.31 0.359 107 84.2 0.215
75 0.0428 0.0177 0.268 2.38 0.413 139 92.7 0.329
100 0.0426 0.0176 0.359 2.38 0.555 163 95.2 0.417
125 0.0492 0.0203 0.388 2.45 0.559 194 103 0.454
150 0.0568 0.0235 0.404 2.54 0.541 222 112 0.497
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Table 5.45 Energy Calculations for 2.0-inch Equivalent Riprap Step @ 4% Slope  
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0375 0.0155 0.204 2.97 0.337 134 85.6 0.357
75 0.0438 0.0181 0.262 3.00 0.399 170 93.6 0.438
100 0.0464 0.0192 0.329 3.02 0.488 197 98.3 0.511
125 0.0495 0.0205 0.386 3.03 0.554 230 103 0.551
150 0.0541 0.0223 0.424 3.02 0.583 260 110 0.560

Table 5.46 Energy Calculations for 2.0-inch Equivalent Riprap Step @ 6% Slope  
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0361 0.0149 0.212 3.71 0.356 166 84.4 0.507
75 0.0379 0.0157 0.302 3.79 0.496 214 88.6 0.587
100 0.0439 0.0181 0.349 3.73 0.531 247 96.2 0.611
125 0.0445 0.0184 0.429 3.67 0.650 270 100 0.646
150 0.0499 0.0206 0.460 3.70 0.658 311 107 0.662

Table 5.47 Energy Calculations for 2.0-inch Equivalent Riprap Step @ 8% Slope  
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0355 0.0146 0.216 3.95 0.365 183 83.9 0.537
75 0.0396 0.0164 0.289 4.09 0.464 230 90.0 0.619
100 0.0407 0.0168 0.376 4.06 0.594 273 94.0 0.656
125 0.0488 0.0201 0.392 3.90 0.567 301 103 0.651
150 0.0431 0.0178 0.532 3.87 0.818 326 104 0.685
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5.18   2.5-inch Equivalent Riprap Step

Graphs of the water surface elevation for tests conducted at 2, 4, 6, and 8% slopes are shown in Figures

5.47, 5.48, 5.49, and 5.50.  After the water surface elevation was established, average flow depth was determined.

From the flow depth and the results from Section 5.5, the aforementioned volumetric displacement tests and energy

calculations were conducted.  The results for the energy calculations for the 2.5-inch equivalent riprap step are

shown in Tables 5.48, 5.49, 5.50, and 5.51.

Rough - Water Surface Elevation for 2.5" Step @ 2% Slope
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Figure 5.47  Plot of Water Surface Elevation for 2.5-inch Equivalent Riprap Step at 2% Culvert Slope



106

Rough - Water Surface Elevation for 2.5" Step @ 4% Slope
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Figure 5.48  Plot of Water Surface Elevation for 2.5-inch Equivalent Riprap Step at 4% Culvert Slope

Rough - Water Surface Elevation for 2.5" Step @ 6% Slope
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Figure 5.49  Plot of Water Surface Elevation for 2.5-inch Equivalent Riprap Step at 6% Culvert Slope
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Rough - Water Surface Elevation for 2.5" Step @ 8% Slope
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Figure 5.50  Plot of Water Surface Elevation for 2.5-inch Equivalent Riprap Step at 8% Culvert Slope

Table 5.48 Energy Calculations for 2.5-inch Equivalent Riprap Step @ 2% Slope  
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0509 0.0210 0.150 2.31 0.212 107 102 0.0146
75 0.0576 0.0238 0.199 2.38 0.265 139 109 0.202
100 0.0428 0.0177 0.357 2.38 0.552 163 99.4 0.391
125 0.0644 0.0266 0.297 2.45 0.373 194 119 0.371
150 0.0631 0.0261 0.364 2.54 0.462 222 120 0.474
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Table 5.49 Energy Calculations for 2.5-inch Equivalent Riprap Step @ 4% Slope  
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0518 0.0214 0.148 2.97 0.207 134 102 0.170
75 0.0567 0.0234 0.202 3.00 0.271 170 109 0.353
100 0.0580 0.0239 0.264 3.02 0.350 197 111 0.446
125 0.0614 0.0253 0.311 3.03 0.401 230 116 0.493
150 0.0659 0.0272 0.348 3.02 0.433 260 122 0.530

Table 5.50 Energy Calculations for 2.5-inch Equivalent Riprap Step @ 6% Slope  
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0508 0.0210 0.150 3.71 0.213 166 101 0.416
75 0.0558 0.0231 0.205 3.79 0.277 214 108 0.498
100 0.0601 0.0248 0.255 3.73 0.332 247 113 0.553
125 0.0574 0.0237 0.333 3.67 0.444 270 113 0.599
150 0.0638 0.0263 0.360 3.70 0.455 311 121 0.616

Table 5.51 Energy Calculations for 2.5-inch Equivalent Riprap Step @ 8% Slope  
 Testing Channel Data - Zone 2 Froude # Calculations               Energy Calculations

Flowrate
Average

Flow
Depth

Average
Flow Area

Average
Flow

Velocity

Fr #
Based on
Circular
Cross-
Section

Fr #
Based on
Average
Zone 2
Values

Energy at
Culvert
Outlet

Average
Energy in

Zone 2

Non-
Dimensional

Energy
Difference

(gpm) (m) (m2) (m/s)   (mm) (mm)  
50 0.0499 0.0206 0.153 3.95 0.219 183 101 0.404
75 0.0510 0.0211 0.225 4.09 0.318 230 103 0.564
100 0.0538 0.0222 0.284 4.06 0.391 273 108 0.609
125 0.0478 0.0197 0.400 3.90 0.584 301 106 0.641
150 0.0488 0.0202 0.470 3.87 0.679 326 96.0 0.715
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5.19   Comparison to “Natural” Energy Grade Line

As stated in the beginning of this chapter, one criterion that needed to be met was to re-establish natural

flow conditions downstream of the outlet.  In order for this parameter to be examined, the headwater elevations

above the invert of the culvert inlet, for the tested flowrates, were used to establish the “natural” energy grade line.

The headwater elevation was taken as the location of the energy grade line above the culvert inlet and was extended

parallel to the culvert (at the respective slope setting).  A representation of the physical setting for this calculation is

shown in Figure 5.51.

Figure 5.51  Energy Grade Line Establishment

Notice that the height of the energy grade line above the invert at the culvert inlet, E1, is equal to the height of the

energy grade line above the invert at the culvert outlet, E2.  Since E1 and E2 were equal, the calculations to find the

elevation of the energy grade line at a point in the testing channel could be determined from simple trigonometry.

The point selected to perform the comparison between the natural energy grade line and the total energy grade

calculated from the three-point gage data was the center point of Zone 2.  Following the selection of the point for

comparison, the elevation of the natural energy grade line was calculated based on trigonometric relationships.  The

values for the elevation of the natural energy grade line, shown in red in Tables 5.52 and 5.53, were then compared

to the values for total average energy in Zone 2 of the testing channel.  The values for the elevation of the total

average energy in Zone 2 of the testing channel shown in blue represent those cases where the energy remaining in

the flow over Zone 2 exceeds that estimated for the so-called “natural condition”.  The ‘smooth’ cast acrylic steps

are compared in Table 5.52 and the ‘rough’ riprap steps are compared in Table 5.53.
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Table 5.52 Comparison Between "Natural" and Calculated Energy in Zone 2 for 'Smooth' Steps
   Cast Acrylic Steps    

Slope Flowrate
"Natural"

Energy Grade
Line

0.5-inch 1.0-inch 1.5-inch 2.0-inch 2.5-inch

(%) (gpm) (mm) Total Average Energy In Zone 2 of Testing Channel (mm)
2 50 65.3 41.5 53.2 61.3 75.7 88.9
2 75 84.3 48.5 61.2 73.1 98.5 98.5
2 100 108 55.7 73.5 78.5 93.9 108
2 125 137 66.2 77.0 86.6 103 114
2 150 171 74.6 85.1 95.7 109 122
4 50 65.3 52.6 52.8 61.1 76.9 88.3
4 75 85.3 47.7 60.4 72.8 98.0 98.0
4 100 108 57.3 68.4 78.9 95.5 116
4 125 136 72.7 76.9 84.5 116 133
4 150 172 93.8 95.1 91.8 131 135
6 50 64.3 41.5 53.7 64.8 83.0 89.2
6 75 85.3 51.2 60.2 69.6 103 103
6 100 108 67.2 68.6 77.0 106 112
6 125 136 77.4 77.1 85.7 105 122
6 150 172 107 95.8 106 108 120
8 50 63.3 57.0 56.3 62.9 78.5 88.0
8 75 83.3 86.6 77.1 71.5 104 104
8 100 108 92.5 91.1 83.1 92.3 118
8 125 135 105 108 105 97.4 125
8 150 170 143 122 117 109 125
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Table 5.53 Comparison Between "Natural" and Calculated Energy in Zone 2 for 'Rough' Steps
   Equivalent Riprap Steps    

Slope Flowrate
"Natural"

Energy Grade
Line

0.0-inch 0.5-inch 1.0-inch 1.5-inch 2.0-inch 2.5-inch

(%) (gpm) (mm)        Total  Average Energy In Zone 2 of Testing Channel
2 50 65.3 29.2 37.6 50.1 65.2 84.2 102
2 75 84.3 36.3 46.7 59.6 72.4 92.7 109
2 100 108 43.2 54.0 66.9 78.3 95.2 99.0
2 125 137 50.1 62.0 73.8 84.6 103 119
2 150 171 56.6 68.8 80.6 89.9 112 120
4 50 65.3 29.1 39.4 50.5 69.5 85.6 102
4 75 85.3 36.0 46.9 59.7 75.7 93.6 109
4 100 108 43.3 55.3 66.7 77.8 98.3 111
4 125 136 50.1 62.5 73.8 87.3 103 116
4 150 172 57.1 69.4 80.8 89.5 110 122
6 50 64.3 28.6 38.6 50.7 69.9 84.4 101
6 75 85.3 35.6 46.2 59.1 74.3 88.6 108
6 100 108 43.2 53.9 67.5 77.1 96.2 113
6 125 136 50.5 61.7 76.0 83.0 100 113
6 150 172 57.5 68.8 91.9 89.4 107 121
8 50 63.3 28.1 38.5 51.5 66.5 83.9 101
8 75 83.3 35.7 45.9 59.3 71.4 90.0 103
8 100 108 43.6 53.6 67.3 76.6 94.0 108
8 125 135 53.3 60.7 74.4 83.3 103 106
8 150 170 64.5 74.1 84.8 88.9 104 96.0

From Tables 5.52 and 5.53, one can see that the effectiveness of the step increases with the increase in flowrate.  It

appears that the low riprap steps are providing better energy dissipation than the higher riprap steps due partially to

the low flow depths.
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5.20  Flow Characteristics

The flow from each experimental test run was characterized in Tables 5.54 and 5.55 as discussed in

Section 5.3

 Where:

R = Reverse flow J0 = No jump

X = Not fully expanded jet J1 = Weak jump

P = Spurting flow J2 = Oscillating jump

W = Swirling flow ^ = Jump in test channel

S = Slashing flow * = Jump in test culvert

L = Pooling

Table 5.54 Flow Characteristics for Cast Acrylic Steps  
Flowrate Slope   Flow Types  

(gpm) (%) 0.5-inch 1.0-inch 1.5-inch 2.0-inch 2.5-inch
50 2 RXJ0 RXJ0 RXJ0 RXLJ0 RXLJ0
75 2 RXJ0 RXJ0 RXJ0 RXLJ0 RXLJ0
100 2 RXPJ0 RXJ0 RXJ0 RXLJ0 RXLJ0
125 2 RXPJ0 RXPJ0 RXJ0 RXLJ0 RXLJ0
150 2 RXJ0 RXPJ0 RXJ0 RXLJ0 RXLJ0
50 4 RXJ0 RXJ0 RXJ0 RXLJ0 RXLJ0
75 4 RXJ0 RXJ0 RXJ0 RXLJ0 RXLJ0
100 4 RXPJ0 RXJ0 RXJ0 RXLJ0 RXLJ0
125 4 RXJ0 RXJ0 RXJ0 RXLJ0 RXLJ0
150 4 RXPJ2^ RXPJ2^ RXJ2^ RXLJ0 RXLJ0
50 6 RXPJ2^ RXJ2^ RXJ0 RXJ0 RXLJ0
75 6 RXPJ2^ RXJ2^ RXJ0 RXLJ0 RXLJ0
100 6 RXPJ2^ RXJ2^ RXJ2^ RXLJ0 RXLJ0
125 6 RXPJ2^ RXPJ2^ RXPJ2^ RXLJ0 RXLJ0
150 6 RXPJ2^ RXPJ2^ RXPJ2^ RXLJ0 RXLJ0
50 8 RXPJ2^ RXPJ2^ RXJ0 RXJ0 RXLJ0
75 8 RXPJ2^ RXPJ2^ RXJ2^ RXJ0 RXLJ0
100 8 RXPJ2^ RXPJ2^ RXPJ2^ RXLJ0 RXLJ0
125 8 RXPJ2^ RXPJ2^ RXPJ2^ RXLJ0 RXLJ0
150 8 RXPJ2^ RXPJ2^ RXPJ2^ RXPLJ0 RXLJ0
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Table 5.55 Flow Characteristics for Riprap Steps    
Flowrate Slope   Flow Types   

(gpm) (%) 0.0-inch 0.5-inch 1.0-inch 1.5-inch 2.0-inch 2.5-inch
50 2 RXJ1^ RXJ1^ RXJ1^ RXSLJ1* RXSLJ1* RXSLJ1*
75 2 RXJ1^ RXJ1^ RXJ1^ RXSLJ1* RXSLJ1* RXSLJ1*
100 2 RXJ0 RXJ1^ RXJ1^ RXSLJ1^ RXSLJ1* RXSLJ1*
125 2 RXJ0 RXJ1^ RXJ0 RXSLJ1^ RXSLJ1* RXSLJ1*
150 2 RXJ0 RXJ0 RXJ0 RXSLJ1^ RXSLJ2* RXSLJ2*
50 4 RXJ2^ RXJ2^ RXJ2^ RXSLJ2* RXSLJ2* RXSLJ2*
75 4 RXJ2^ RXJ2^ RXJ2^ RXSLJ2* RXSLJ2* RXSLJ2*
100 4 RXJ2^ RXJ2^ RXJ0 RXSLJ2^ RXSLJ2* RXSLJ2*
125 4 RXJ0 RXJ2^ RXJ2^ RXSLJ2^ RXSLJ2^ RXSLJ2*
150 4 RXJ0 RXJ2^ RXJ0 RXSLJ2^ RXSLJ2* RXSLJ2*
50 6 RXJ2^ RXJ2^ RXJ0 RXSLJ2* RXSLJ2* RXSLJ2*
75 6 RXJ2^ RXJ2^ RXJ0 RXSLJ2^ RXSLJ2* RXSLJ2*
100 6 RXJ0 RXJ2^ RXJ2^ RXSLJ2^ RXSLJ2* RXSLJ2*
125 6 RXJ0 RXJ2^ RXJ0 RXSLJ2^ RXSLJ2* RXSLJ2*
150 6 RXJ0 RXJ0 RXJ0 RXSLJ2^ RXSLJ2* RXSLJ2*
50 8 RXJ2^ RXJ2^ RXJ2^ RXSJ2* RXSLJ2* RXSLJ2*
75 8 RXJ2^ RXJ2^ RXJ0 RXSJ2* RXSLJ2* RXSLJ2*
100 8 RXJ0 RXJ2^ RXJ0 RXSJ2* RXSLJ2* RXSLJ2*
125 8 RXJ0 RXJ0 RXJ0 RXSJ2* RXSLJ2* RXSLJ2*
150 8 RXJ0 RXJ0 RXJ0 RXSLJ0* RXSLJ2* RXSLJ2*
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5.21   Error Analysis

A unique design for the testing flume was necessary in order to satisfy the requirements of research.

Several modifications were made throughout the process of experimentation; therefore it was difficult to perform an

error analysis.  There were several reasons that made an in-depth error analysis impractical.  The number of

significant changes that occurred in design and in methods of calculation during the course of the research made it

difficult to follow the propagation of error to the final results.  As this research was a preliminary investigation, an

in-depth error analysis should be performed in follow-up research experiments with the testing flume.  The raw

depth measurements taken in the testing channel were influenced by waves, turbulence, and aeration.  These

influences created the greatest source of error in the various experiments.  Also, due to the time restraints of the

project, establishing repeatability in depth measurements for a specific situation was not feasible.  However, trends

in the data can easily be seen and explained.

The primary measuring devices used in experiments performed with the testing flume include the

following:

•  Metric scales

o Headwater depth

o Longitudinal distance along testing channel

o Piezometer depth

o Pitot tube readings

o Slope adjustment

•  Digital Scales

o Flowmeter

•  Vernier Scale

o Depth in testing channel

All of the metric scales were read to the nearest millimeter, based on the convention of best estimate.  The Vernier

scale was accurate to 0.001-ft and measurements were taken accordingly.  Three significant figures applied for all

measures of length.  The flowmeter had a range of 40-450 gpm with a plus or minus of 2.0% full-scale linearity and

a plus or minus of 1.0% full-scale repeatability.  Expected values of uncertainty for several variables measured in

the experiments are shown in Table 5.56.
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Table 5.56 Expected Error For Various
 Calculated Values

Value Expected Error
 (%)

Area (Culvert) 3.40
Area (Channel) 8.40
Depth (Culvert) 3.30

Depth (Channel) 8.30
Energy (Culvert) 9.00
Energy (Channel) 21.3

Froude Number (Culvert) 5.65
Froude Number (Channel) 11.2

Velocity (Culvert) 5.40
Velocity (Channel) 10.4
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Chapter 6

Results

6.1 Non-Dimensional Comparison of Cast Acrylic and Riprap Step

In order to compare the performance of each step type and height, the values of NDED (Equation 5.8) for

each slope and discharge were compiled into two tables.  NDED with respect to total energy will be referred to as

EDT.  Tables 6.1 and 6.2 summarize the data in terms of EDT with respect to cast acrylic steps and riprap steps,

respectively.  By only examining the non-dimensional energy difference in terms of total energy, a possible

misinterpretation could occur.  For example, if a higher riprap step was tested and the energy difference was less

than that of a smaller step, a possible conclusion would be that the higher riprap step was not as effective in

attenuating energy in the test channel as the smaller step.  When a higher riprap step is placed in the channel, not

only does the step height increase, but the ‘pooling’ of water at Zone 2 increases the height of the energy grade line

as well.  A closer examination of the NDED in terms of velocity head, EDV, in Tables 6.3 and 6.4, was necessary.

EDV is defined in Equation 6.1.

OutletyAtCulvertTotalEnerg
g

V
g

V

EDV lTestChanneletCulvertOut
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−��

�
��
�

�

=
22

22

(6.1)

Where:

V = Flow velocity

g = Acceleration due to gravity

zy
g

VOutletyAtCulvertTotalEnerg ++=
2

2

Where:

y = Depth of flow

z = Distance from zero datum
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Table 6.1 Comparison of Values for EDT for Cast Acrylic Steps   
Flowrate Slope   NDED   

(gpm) (%) 0.5-inch 1.0-inch 1.5-inch 2.0-inch 2.5-inch
50 2 0.612 0.504 0.428 0.294 0.137
75 2 0.640 0.557 0.467 0.281 0.281
100 2 0.659 0.550 0.519 0.425 0.340
125 2 0.659 0.603 0.542 0.456 0.395
150 2 0.664 0.607 0.569 0.510 0.462
50 4 0.607 0.611 0.550 0.422 0.284
75 4 0.719 0.640 0.562 0.416 0.416
100 4 0.709 0.659 0.607 0.525 0.424
125 4 0.685 0.666 0.633 0.498 0.422
150 4 0.640 0.631 0.644 0.475 0.483
50 6 0.750 0.669 0.615 0.515 0.487
75 6 0.761 0.719 0.675 0.519 0.519
100 6 0.728 0.722 0.688 0.572 0.559
125 6 0.713 0.720 0.696 0.629 0.567
150 6 0.656 0.697 0.663 0.659 0.620
50 8 0.688 0.692 0.653 0.567 0.479
75 8 0.623 0.671 0.698 0.559 0.559
100 8 0.661 0.666 0.695 0.662 0.573
125 8 0.651 0.640 0.646 0.669 0.577
150 8 0.562 0.627 0.645 0.668 0.628
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Table 6.2 Comparison of Values for EDT for Riprap Steps
Flowrate Slope                     NDED  

(gpm) (%) 0.0-inch 0.5-inch 1.0-inch 1.5-inch 2.0-inch 2.5-inch
50 2 0.728 0.649 0.532 0.392 0.215 0.01463
75 2 0.738 0.653 0.569 0.472 0.329 0.202
100 2 0.736 0.669 0.591 0.521 0.417 0.391
125 2 0.742 0.681 0.620 0.553 0.454 0.371
150 2 0.745 0.690 0.628 0.595 0.497 0.474
50 4 0.785 0.705 0.628 0.488 0.357 0.170
75 4 0.788 0.723 0.644 0.545 0.438 0.353
100 4 0.785 0.719 0.668 0.613 0.511 0.446
125 4 0.783 0.729 0.680 0.621 0.551 0.493
150 4 0.779 0.734 0.686 0.653 0.560 0.530
50 6 0.824 0.767 0.687 0.585 0.507 0.416
75 6 0.834 0.785 0.725 0.653 0.587 0.498
100 6 0.825 0.782 0.727 0.688 0.611 0.553
125 6 0.821 0.771 0.725 0.706 0.646 0.599
150 6 0.815 0.779 0.709 0.717 0.662 0.616
50 8 0.844 0.790 0.718 0.633 0.537 0.404
75 8 0.843 0.800 0.747 0.698 0.619 0.564
100 8 0.840 0.803 0.753 0.719 0.656 0.609
125 8 0.823 0.798 0.751 0.719 0.651 0.641
150 8 0.806 0.773 0.740 0.730 0.685 0.715
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Table 6.3 Comparison of Values for EDV for Cast Acrylic Steps  
Flowrate Slope   NDED   

(gpm) (%) 0.5-inch 1.0-inch 1.5-inch 2.0-inch 2.5-inch
50 2 0.507 0.522 0.536 0.529 0.541
75 2 0.572 0.553 0.516 0.516 0.534
100 2 0.576 0.511 0.553 0.536 0.525
125 2 0.547 0.563 0.570 0.550 0.560
150 2 0.567 0.597 0.569 0.577 0.555
50 4 0.525 0.643 0.652 0.638 0.710
75 4 0.681 0.682 0.641 0.605 0.654
100 4 0.675 0.678 0.659 0.636 0.584
125 4 0.611 0.669 0.682 0.567 0.549
150 4 0.756 0.756 0.732 0.556 0.575
50 6 0.809 0.825 0.711 0.667 0.711
75 6 0.811 0.792 0.765 0.707 0.711
100 6 0.822 0.799 0.795 0.672 0.690
125 6 0.845 0.808 0.789 0.707 0.682
150 6 0.839 0.816 0.817 0.737 0.740
50 8 0.823 0.811 0.751 0.737 0.827
75 8 0.866 0.844 0.818 0.717 0.724
100 8 0.853 0.849 0.837 0.781 0.705
125 8 0.835 0.837 0.842 0.800 0.711
150 8 0.857 0.853 0.840 0.823 0.720
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Table 6.4 Comparison of Values for EDV for Riprap Steps   
Flowrate Slope   NDED    

(gpm) (%) 0.0-inch 0.5-inch 1.0-inch 1.5-inch 2.0-inch 2.5-inch
50 2 0.607 0.605 0.586 0.627 0.634 0.671
75 2 0.609 0.634 0.589 0.619 0.349 0.666
100 2 0.599 0.613 0.605 0.636 0.647 0.648
125 2 0.607 0.616 0.604 0.654 0.674 0.690
150 2 0.634 0.630 0.653 0.653 0.668 0.677
50 4 0.708 0.722 0.679 0.726 0.742 0.809
75 4 0.703 0.714 0.713 0.748 0.754 0.756
100 4 0.707 0.733 0.699 0.728 0.745 0.754
125 4 0.704 0.717 0.711 0.734 0.747 0.763
150 4 0.694 0.701 0.701 0.716 0.771 0.749
50 6 0.821 0.809 0.774 0.810 0.798 0.792
75 6 0.785 0.800 0.769 0.817 0.817 0.829
100 6 0.778 0.791 0.795 0.803 0.816 0.806
125 6 0.755 0.805 0.755 0.779 0.793 0.806
150 6 0.771 0.769 0.698 0.781 0.802 0.815
50 8 0.808 0.804 0.797 0.824 0.826 0.893
75 8 0.832 0.834 0.785 0.822 0.829 0.836
100 8 0.796 0.814 0.788 0.825 0.834 0.837
125 8 0.752 0.775 0.776 0.811 0.833 0.832
150 8 0.730 0.742 0.762 0.795 0.809 0.802

Several conclusions can be drawn from the comparison of these results.  Generally, the value for NDED, both EDT

and EDV, increases with the increase of culvert slope.  This trend seems plausible since the velocity head at the

culvert outlet increases with slope more rapidly than the corresponding value in the testing channel.  The difference

between the energy at the outlet and channel must increase to account for the divergence of the velocity heads.

Examination of the EDV from left to right in the table for all of the tested configurations shows an increase in the

value of non-dimensional energy loss in most cases.  The opposite occurs with the EDT in terms of total energy.

Therefore, progressively increasing the riprap steps heights effectively increased the attenuation of dynamic energy.

By inspecting only the EDT, the ‘pooling’ effect disguised the increase in step height efficiency.  The values for

average flow depths in Zone 2 and at the culvert outlet are displayed in Tables 6.5 and 6.6, cast acrylic steps and

riprap steps, respectively.  The first value for the test culvert was obtained from Section 5.5 and is the depth at the

outlet.  The depths for each configuration are the average depths, established in the testing channel over the stone

bed in Zone 2.  Performance judgments cannot be based solely on the basis of non-dimensional energy difference.

The effect of entire rock bed, including geometry and rock mobility plays a large role in energy attenuation of flows.
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In the field however, the downstream rock would not be held in place rigidly, as in the laboratory model, and

incipient motion and failure of the supporting bed material would likely occur under high velocity flows.  The

mobility of the rock in the field would significantly effect the energy attenuation and maintenance and should be

investigated in future studies.

Table 6.5 Flow Depth at Culvert Outlet and Testing Ch annel - Cast Acrylic Steps
    Average Flow Depth (mm)  
Flowrate Slope Culvert  Zone 2 of Test Channel  

(gpm) (%) Outlet 0.5-inch 1.0-inch 1.5-inch 2.0-inch 2.5-inch
50 2 36.2 13.6 14.4 15.2 14.8 14.3
75 2 43.9 20.3 19.9 17.2 17.2 18.2
100 2 51.0 25.6 20.3 23.3 21.9 21.2
125 2 56.5 25.4 26.9 26.1 24.5 25.3
150 2 61.0 27.7 29.2 27.8 28.6 27.9
50 4 31.5 9.83 14.8 15.5 13.6 14.9
75 4 39.0 22.4 21.4 17.4 15.6 18.7
100 4 45.1 23.2 25.1 22.9 20.9 17.8
125 4 50.5 21.9 27.1 28.7 19.5 18.6
150 4 55.8 77.5 64.2 45.8 20.7 22.8
50 6 28.4 24.7 24.2 12.5 11.0 14.0
75 6 34.5 33.3 25.7 20.6 15.4 15.6
100 6 40.5 50.7 33.8 32.6 16.9 19.1
125 6 45.8 60.4 42.4 41.8 23.5 21.4
150 6 50.2 91.9 65.1 67.4 29.3 29.7
50 8 27.3 43.6 28.2 13.6 12.6 15.5
75 8 33.2 73.5 50.0 31.5 14.8 15.2
100 8 38.7 78.6 63.8 43.7 23.5 17.1
125 8 44.3 90.8 80.6 67.7 32.5 20.6
150 8 49.1 129.1 94.1 79.4 52.1 26.3
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Table 6.6 Flow Depth at Culvert Outlet and  Testing Channel  - Riprap Steps  
    Average Flow Depth (mm)   
Flowrate Slope Culvert   Zone 2 of Test Channel  

(gpm) (%) Outlet 0.0-inch 0.5-inch 1.0-inch 1.5-inch 2.0-inch 2.5-inch
50 2 36.2 24.0 23.3 20.0 31.2 35.9 50.9
75 2 43.9 27.4 29.1 23.7 37.5 42.8 57.6
100 2 51.0 28.7 31.4 29.7 37.5 42.6 42.8
125 2 56.5 32.8 34.7 32.3 40.4 49.2 64.4
150 2 61.0 36.5 35.7 37.1 41.0 56.8 63.1
50 4 31.5 23.9 25.8 18.5 35.2 37.5 51.8
75 4 39.0 26.4 29.4 26.8 38.6 43.8 56.7
100 4 45.1 30.1 33.4 28.4 36.6 46.4 58.0
125 4 50.5 32.8 36.0 34.4 42.0 49.5 61.4
150 4 55.8 34.4 37.8 35.9 39.9 54.1 65.9
50 6 28.4 22.9 24.9 15.0 35.6 36.1 50.8
75 6 34.5 23.9 28.3 21.1 37.3 37.9 55.8
100 6 40.5 27.7 31.1 32.6 35.8 43.9 60.1
125 6 45.8 30.5 34.4 27.3 37.3 44.5 57.4
150 6 50.2 33.2 32.7 24.8 39.4 49.9 63.8
50 8 27.3 21.9 24.6 21.9 32.5 35.5 49.9
75 8 33.2 24.9 28.0 20.2 33.9 39.6 51.0
100 8 38.7 26.1 30.7 24.6 35.1 40.7 53.8
125 8 44.3 26.2 30.3 29.8 37.7 48.8 47.8
150 8 49.1 26.6 26.2 28.7 37.6 43.1 48.8
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6.2 Froude Number and Non-Dimensional Energy Difference

Graphical representation of hydraulic performance measurements were desired to support further

understanding of the test results obtained.  The plots were made non-dimensional to provide the best comparative

presentation of the experiments formed.  Froude number is plotted versus non-dimensional energy difference,

(EDT).  At first, the plots seemed inconclusive but once the data was separated by slope, several interesting

conclusions could be made.  For the following discussion, refer to the Figures listed below:

•  Figure 6.1  Froude Number at Culvert Outlet vs. EDT for 0.5-inch Cast Acrylic Step
•  Figure 6.2  Froude Number at Culvert Outlet vs. EDT for 1.0-inch Cast Acrylic Step
•  Figure 6.3  Froude Number at Culvert Outlet vs. EDT for 1.5-inch Cast Acrylic Step
•  Figure 6.4  Froude Number at Culvert Outlet vs. EDT for 2.0-inch Cast Acrylic Step
•  Figure 6.5  Froude Number at Culvert Outlet vs. EDT for 2.5-inch Cast Acrylic Step
•  Figure 6.6  Froude Number at Culvert Outlet vs. EDT for 0.0-inch Riprap Step
•  Figure 6.7  Froude Number at Culvert Outlet vs. EDT for 0.5-inch Riprap Step
•  Figure 6.8  Froude Number at Culvert Outlet vs. EDT for 1.0-inch Riprap Step
•  Figure 6.9  Froude Number at Culvert Outlet vs. EDT for 1.5-inch Riprap Step
•  Figure 6.10  Froude Number at Culvert Outlet vs. EDT for 2.0-inch Riprap Step
•  Figure 6.11  Froude Number at Culvert Outlet vs. EDT for 2.5-inch Riprap Step

Simply allowing the flowing water to expand and collect, or pool, in an area is one form of energy

dissipation.  The high velocity flow from the culvert outlet enters an area of low velocity flow.  Due to complex flow

characteristics including reversed flow, re-circulation, etc, energy is dissipated and exits at a lower velocity flow.

Under conditions of supercritical flow upstream, a hydraulic jump may be forced by the pooling flow, adding to the

energy dissipation.  By introducing steps, smooth cast acrylic or rough riprap, into the path of the flow, Zone 1

becomes a pooling area.

The majority of the energy attenuation in Figures 6.1 through 6.5 was due to the impact of the flow on the

step, causing turbulence.  After having observed the plotted data pattern for each particular culvert slope and step

height in Figures 6.1 through 6.11, one may or may not have distinguished a defined ‘arc’ shape or trend depending

on the degree of energy dissipation in that instance.  A more defined, compact ‘arc’ pattern indicated less energy.  A

less defined or less compact ‘arc’ indicated more energy dissipation.  In Figures 6.1 and 6.2, four less visible, more

compact, arcs are formed.  The higher cast acrylic step heights, in Figures 6.4 and 6.5, produced more visible and

less compact arcs.  Expansion of the exit jet from the outlet of the culvert onto the apron floor, across Zone 1, and

then impacting against the step of Zone 2 helped reduce the energy in the flow.  As the step height increased,
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pooling disguised the increase in energy dissipation and gave the appearance of the lower steps having the greatest

amount of energy dissipation and the higher steps producing the lowest amount of energy dissipation.

In Figures 6.6 through 6.11, energy attenuation was due to the impact of the flow on the step as well as the

additional turbulence created by the roughened riprap surface.  The flow was greatly affected by the addition of the

roughened test channel surface.  Regarding riprap steps, the greatest energy difference was seen in Figure 6.6 with

the 0.0-inch equivalent riprap step and regressing to the least energy difference as seen in Figure 6.11 with the 2.5-

inch equivalent riprap step.  The effect of pooling in Zone 1 decreased dramatically due to the wave action created

by the roughened test channel surface.  The 0.5-inch equivalent riprap step produced a less visible arc whereas the

2.5-inch equivalent ripraps step produced a more visible arc.

Overall, the riprap steps produced the greatest range of energy difference.
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Figure 6.1  Froude Number at Culvert Outlet vs. EDT for 0.5-inch Cast Acrylic Step
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Froude Number @ Culvert Outlet vs EDT for 1.0" Step
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Figure 6.2  Froude Number at Culvert Outlet vs. EDT for 1.0-inch Cast Acrylic Step
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Figure 6.3  Froude Number at Culvert Outlet vs. EDT for 1.5-inch Cast Acrylic Step
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Froude Number @ Culvert Outlet vs EDT for 2.0" Step
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Figure 6.4  Froude Number at Culvert Outlet vs. EDT for 2.0-inch Cast Acrylic Step
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Figure 6.5  Froude Number at Culvert Outlet vs. EDT for 2.5-inch Cast Acrylic Step
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Figure 6.6  Froude Number at Culvert Outlet vs. EDT for 0.0-inch Riprap Step

Figure 6.7  Froude Number at Culvert Outlet vs. EDT for 0.5-inch Riprap Step
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Figure 6.8  Froude Number at Culvert Outlet vs. EDT for 1.0-inch Riprap Step

Figure 6.9  Froude Number at Culvert Outlet vs. EDT for 1.5-inch Riprap Step
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Figure 6.10  Froude Number at Culvert Outlet vs. EDT for 2.0-inch Riprap Step

Figure 6.11  Froude Number at Culvert Outlet vs. EDT for 2.5-inch Riprap Step
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6.3 Energy Dissipation Performance Parameter

The next conclusion, drawn from the experimental data in evaluation of the various step types and heights

was based on the deviation from the natural energy grade line, established in Section 5.19.  It was decided to present

the data in graphical and tabular form in order to draw conclusions about the performance of each step.  The

difference between the elevation of the natural energy grade line and the total energy, calculated in the testing

channel, was non-dimensionalized and termed the energy difference performance parameter (EDPP).  One variable

used to create this non-dimensional parameter was the magnitude of the natural energy grade line deviation from the

horizontal at the culvert outlet, shown as E3 in Zone 2 in Figure 6.12 (not to scale).  The values for E3 are shown for

each culvert slope in Table 6.7.

Figure 6.12  Schematic of E3, Value for Establishing the Energy Dissipation Performance Parameter

Table 6.7 Values for E3 at Given
 Culvert Slopes

Slope E3
(%) (mm)
2 15.7
4 31.4
6 47.1
8 62.9
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The following expression was used to determine the values for the energy dissipation performance parameter.

3
2
E

EE
EDPP f−

= (6.1)

Where:

EDPP = Energy Dissipation Performance Parameter

E2 = Elevation of the natural energy grade line at the culvert outlet

Ef = Total average energy from the three-point gage at the center of Zone 2 (EGL)

E3 = Values from Table 6.7 calculated for the center of Zone 2

The values of EDPP were then organized for comparison.  Their values are shown in Table 6.8 for cast acrylic and

in Table 6.9 for riprap steps.  Positive values indicate that the energy in the flow has been decreased below the

natural energy grade line assumption established at the culvert inlet.  Negative values, in blue, indicate no effect in

decreasing the energy of the flow below the assumed natural value at the culvert outlet.

Table 6.8 Values for the Energy Dissipation Performance Parameter (EDPP)
           Cast Acrylic Steps   

Slope Flowrate 0.5-inch 1.0-inch 1.5-inch 2.0-inch 2.5-inch

(%) (gpm)   EDPP   
2 50 2.51 1.77 1.25 0.337 -0.507
2 75 3.28 2.47 1.71 0.094 0.094
2 100 4.35 3.22 2.90 1.91 1.03
2 125 5.53 4.84 4.23 3.20 2.46
2 150 7.16 6.50 5.82 4.99 4.11
4 50 0.905 0.897 0.631 0.129 -0.236
4 75 1.70 1.29 0.897 0.095 0.095
4 100 2.13 1.77 1.44 0.908 0.266
4 125 2.53 2.39 2.15 1.16 0.619
4 150 3.00 2.96 3.06 1.82 1.70
6 50 0.817 0.558 0.322 -0.064 -0.197
6 75 1.06 0.865 0.665 -0.047 -0.047
6 100 1.20 1.17 1.00 0.385 0.255
6 125 1.58 1.59 1.41 1.01 0.634
6 150 1.72 1.96 1.73 1.70 1.44
8 50 0.349 0.360 0.256 0.007 -0.144
8 75 0.197 0.348 0.437 -0.086 -0.086
8 100 0.501 0.523 0.649 0.504 0.099
8 125 0.731 0.685 0.732 0.852 0.419
8 150 0.690 1.03 1.10 1.22 0.967
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Table 6.9 Values for the Energy Dissipation Performance Parameter (EDPP)  
         Equivalent Riprap Steps    

Slope Flowrate 0.0-inch 0.5-inch 1.0-inch 1.5-inch 2.0-inch 2.5-inch

(%) (gpm)   EDPP    
2 50 3.30 2.76 1.96 1.007 -0.204 -1.31
2 75 4.06 3.39 2.57 1.76 0.460 -0.603
2 100 5.15 4.46 3.64 2.91 1.83 1.57
2 125 6.56 5.80 5.04 4.36 3.17 2.17
2 150 8.31 7.53 6.78 6.19 4.81 4.29
4 50 1.65 1.32 0.970 0.364 -0.149 -0.684
4 75 2.07 1.72 1.32 0.806 0.235 -0.242
4 100 2.57 2.19 1.82 1.47 0.819 0.402
4 125 3.25 2.85 2.49 2.06 1.55 1.137
4 150 4.17 3.78 3.41 3.14 2.50 2.09
6 50 1.091 0.879 0.622 0.214 -0.094 -0.457
6 75 1.387 1.163 0.889 0.565 0.262 -0.144
6 100 1.714 1.49 1.199 0.996 0.589 0.224
6 125 2.153 1.92 1.62 1.46 1.109 0.828
6 150 2.769 2.53 2.04 2.09 1.72 1.41
8 50 0.809 0.643 0.436 0.198 -0.078 -0.344
8 75 1.006 0.844 0.631 0.439 0.142 -0.066
8 100 1.279 1.119 0.901 0.753 0.477 0.259
8 125 1.553 1.44 1.218 1.077 0.764 0.718
8 150 1.932 1.78 1.61 1.54 1.31 1.43

Plots of the energy dissipation performance parameter were then made for each of the steps shown in Figures 6.13

through 6.23.  Each plot shows the energy dissipation performance parameter versus flowrate.  The effectiveness of

all the steps increased with flowrate and decreased with increasing slope.  In general, energy dissipation ‘appeared’

to decrease with increasing step heights.  Efficiencies of the steps varied greatly with the highest efficiency at 2%

culvert slope, 150 gpm, with a 0.0-inch equivalent riprap step and the lowest efficiency at 2% culvert slope, 50 gpm,

with a 2.5-inch equivalent riprap step.
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Energy Dissipation Performance Parameter vs. Flowrate for 0.5-inch Cast 
Acrylic Step
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Figure 6.13  EDPP versus Flowrate for 0.5-inch Cast Acrylic Step

Energy Dissipation Performance Parameter vs. Flowrate for 1.0-inch Cast 
Acrylic Step
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Figure 6.14  EDPP versus Flowrate for 1.0-inch Cast Acrylic Step
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Energy Dissipation Performance Parameter vs. Flowrate for 1.5-inch Cast 
Acrylic Step
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Figure 6.15  EDPP versus Flowrate for 1.5-inch Cast Acrylic Step

Energy Dissipation Performance Parameter vs. Flowrate for 2.0-inch Cast 
Acrylic Step
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Figure 6.16  EDPP versus Flowrate for 2.0-inch Cast Acrylic Step
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Energy Dissipation Performance Parameter vs. Flowrate for 2.5-inch Cast 
Acrylic Step
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Figure 6.17  EDPP versus Flowrate for 2.5-inch Cast Acrylic Step

Energy Dissipation Performance Parameter vs Flowrate for 0.0-inch 
Equivalent Riprap Step
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Figure 6.18  EDPP versus Flowrate for 0.0-inch Equivalent Riprap Step
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Energy Dissipation Performance Parameter vs. Flowrate for 0.5-inch 
Equivalent Riprap Step
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Figure 6.19  EDPP versus Flowrate for 0.5-inch Equivalent Riprap Step

Energy Dissipation Performance Parameter vs. Flowrate for 0.5-inch 
Equivalent Riprap Step
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Figure 6.20  EDPP versus Flowrate for 1.0-inch Equivalent Riprap Step
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Energy Dissipation Performance Parameter vs. Flowrate for 1.5-inch 
Equivalent Riprap Step
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Figure 6.21  EDPP versus Flowrate for 1.5-inch Equivalent Riprap Step

Energy Dissipation Performance Parameter vs. Flowrate for 2.0-inch 
Equivalent Riprap Step
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Figure 6.22  EDPP versus Flowrate for 2.0-inch Equivalent Riprap Step
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Energy Dissipation Performance Parameter vs. Flowrate for 2.5-inch 
Equivalent Riprap Step
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Figure 6.23  EDPP versus Flowrate for 2.5-inch Equivalent Riprap Step
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6.4 Cast Acrylic and Riprap Step Comparison - EDPP

The purpose of creating two types of steps to be placed in the testing channel was to use the cast acrylic

steps with uniform, even features as the standard and compare the riprap step results to the standard.  In order to

compare the results and prevent confusion, this section will focus on the ‘effective’ riprap step height and not the

referenced ‘equivalent’ step height.  Refer to Table 5.1 in Section 5.2.  It was necessary to compare the energy

attenuating efficiency of the riprap step to the standard cast acrylic step.  First, plots were constructed for EDPP

values for the range of step heights at culvert slopes of 2, 4, 6, and 8 %, at each flowrate in Figures 6.24 through

6.28.  Then, plots were constructed for the percent difference between the riprap EDPP values and the cast acrylic

EDPP values for three step heights, 0.5-inch (12.7-mm), 1.0-inch (25.4-mm), and 1.5-inch (38.1-mm) in Figures

6.29 through 6.33.  As discussed previously in Section 5.2, actual ‘melted’ riprap step heights never actually reached

2.0-inch or 2.5-inch heights.  Therefore, comparisons between the standard, cast acrylic steps, and the riprap steps

were limited to only three step heights.

Energy Dissipation Performance Parameter Comparison for Cast Acrylic 
(CA) and Riprap (RR) Steps at 50 gpm
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Figure 6.24  EDPP for Cast Acrylic and Riprap Steps at 50 gpm
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Energy Dissipation Performance Parameter Comparison for Cast Acrylic 
(CA) and Riprap (RR) Steps at 75 gpm

-2.00
-1.00
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0

Step Height (mm)

ED
PP

2% Slope (CA)
2% Slope (RR)
4% Slope (CA)
4% Slope (RR)
6% Slope (CA)
6% Slope (RR)
8% Slope (CA)
8% Slope (RR)

Figure 6.25  EDPP for Cast Acrylic and Riprap Steps at 75 gpm

Energy Dissipation Performance Parameter Comparison for Cast Acrylic 
(CA) and Riprap (RR) Steps at 100 gpm
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Figure 6.26  EDPP for Cast Acrylic and Riprap Steps at 100 gpm
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Energy Dissipation Performance Parameter Comparison for Cast Acrylic 
(CA) and Riprap (RR) Steps at 125 gpm
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Figure 6.27  EDPP for Cast Acrylic and Riprap Steps at 125 gpm

Energy Dissipation Performance Parameter Comparison for Cast Acrylic 
(CA) and Riprap (RR) Steps at 150 gpm
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Figure 6.28  EDPP for Cast Acrylic and Riprap Steps at 150 gpm
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Riprap Energy Dissipation Performance Parameter % Difference From Cast 
Acrylic at 50 gpm
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Figure 6.29  Riprap EDPP Percent Difference From Cast Acrylic at 50 gpm

Riprap Energy Dissipation Performance Parameter % Difference From Cast 
Acrylic at 75 gpm
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Figure 6.30  Riprap EDPP Percent Difference From Cast Acrylic at 75 gpm
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Riprap Energy Dissipation Performance Parameter % Difference From Cast 
Acrylic at 100 gpm
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Figure 6.31  Riprap EDPP Percent Difference From Cast Acrylic at 100 gpm

Riprap Energy Dissipation Performance Parameter % Difference From Cast 
Acrylic at 125 gpm
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Figure 6.32  Riprap EDPP Percent Difference From Cast Acrylic at 125 gpm
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Riprap Energy Dissipation Performance Parameter % Difference From Cast 
Acrylic at 150 gpm
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Figure 6.33  Riprap EDPP Percent Difference From Cast Acrylic at 150 gpm

In Figures 6.24 through 6.28, several EDPP culvert equivalent slope lines intersected.  The intersection of

these lines indicated a change of the more efficient energy dissipating step, either cast acrylic or riprap, becoming

the least efficient or vice versa.  The 8% culvert slope EDPP lines intersected at every flowrate except for the

flowrate of 150 gpm.  The 2%, 4% and 6% culvert slope EDPP lines intersected at all flowrates.  The intersection

point for the 2%, 4%, 6%, and 8% culvert slope EDPP lines occurred at increasingly higher steps as the flowrate

increased.  Once a flowrate of 150 gpm was obtained, all culvert slope EDPP lines intersected at a step height except

for the 8% culvert slope EDPP.  At the flowrate of 150 gpm, the riprap steps were more efficient energy dissipators

than the cast acrylic steps at all three step heights.  As the flowrate increased, riprap steps became increasingly more

efficient than the standard cast acrylic steps at attenuating energy for a larger range of step heights.  Overall, the

smallest culvert slope promoted the highest energy dissipation efficiency whereas the largest culvert slope promoted

the lowest efficiency.

For Figures 6.29 through 6.33, positive y-axis values indicated riprap steps were more efficient than the

standard cast acrylic steps whereas negative values indicated riprap steps were less efficient.  A greater positive

EDPP percent difference value indicated a greater energy attenuating efficiency and a more negative EDPP percent

difference value indicated a lesser energy attenuating efficiency.  At the lowest flowrate, 50 gpm, the greatest range
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of percent difference between the step heights was observed with the lowest step height being the most efficient at

attenuating energy and the highest step height being the least efficient at attenuating energy.  This trend gradually

changed as the flowrate increased.  Once the flowrate of 150 gpm was obtained, the percent difference between the

step heights remained relatively constant.
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Chapter 7

Conclusions and Recommendations

Based on the results presented in Sections 6.1 through 6.5, the riprap step is an effective method of energy

attenuation.  The riprap step forces a hydraulic jump to take place resulting in energy dissipation.  The greatest

efficiency for energy dissipation was observed with riprap step heights less than 25% of the culvert diameter at

small culvert slopes.  As the culvert slope and step height increased past the 25% culvert diameter, energy

dissipation efficiency of the riprap step decreased.    Construction of a full scale prototype model in the field is

recommended with the following dimensions (D = culvert diameter):

•  0.235 D riprap D90

•  Wingwall and apron configuration as described in the Introduction

  

Figure 7.1  Prototype Model Design – Plan View

Figure 7.2  Prototype Model Design – Profile View
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Since this research was a preliminary investigation of energy dissipation at culvert outlets using a riprap

step, further research is needed to provide a better understanding of riprap steps.  A large portion of the time

available for this project was used to develop the testing flume.  Significant additional time was required to

determine the most effective approach to obtaining an effective riprap step design.  Further investigation of the

riprap step could include:

•  Further analysis of error associated with the testing flume

•  Larger range of culvert slopes

•  Larger range of step heights tested

•  Larger range of material gradations tested

•  Greater accuracy measuring velocities and depths (Laser Doppler Anemometer)

•  Longer testing channel to allow for better establishment of uniform flow

•  Construction of non-rigid downstream bed to examine scour characteristics

•  Test riprap step geometry, and other geometries, for sedimentation characteristics

•  Examination of a full scale prototype in the field
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