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ABSTRACT 
 

Expanding the Applications of Ion Mobility Spectrometry and Mass 
Spectrometry in Integrative ‘Omics Analyses 

 
Gregory C. Donohoe 

 

 Over the past few decades, biomolecular analyses ranging from the study of 
complex mixtures to protein structural interrogation have increased significantly. These 
studies range from small molecule separations[1, 2] to observing structural trends in 
large proteins and protein sub-complexes.[3, 4] Traditionally, the use of liquid 
chromatography mass spectrometry (LC-MS), electrophoresis and nuclear magnetic 
resonance (NMR) spectroscopy have been at the forefront of these respective studies. 
Because complex mixtures can contain a variety of components over a wide dynamic 
range and proteins and their complexes can contain a diverse array of structures, few 
analytical techniques are capable of providing information across all experimental areas 
(e.g. small molecule mixtures to large individual proteins). In contrast, the use of Ion 
Mobility Spectrometry-Mass Spectrometry (IMS-MS) has emerged as a powerful tool for 
measuring ion(s) structural heterogeneity. While IMS-MS is a relatively newer method, 
workflows are becoming more common as the commercialization of IMS instruments 
has created a larger user base. Such workflows now include metabolomic,[1, 5, 6] 
lipidomic,[7] proteomics and protein structural analyses[8, 9]. Taken collectively, these 
areas encompass the field of ‘omics’ analysis. While each field has its respective 
difficulties, IMS-MS is well poised to enhance and even expand the repertoire of 
analytical platforms for omics analyses. 

Much of the current bottlenecks in traditional techniques suffer from an inability to 
sample measureable species rapidly in a reproducible manner over a wide dynamic 
range. For example, Anderson and coworkers have proposed that the plasma proteome 
includes 106-107 species that span a concentration range of 1011.[10]  In many cases, 
IMS has shown improved resolution of isomeric species compared to either LC or Gas 
Chromatography (GC) analyses.[11, 12] The utility of IMS-MS in profiling is largely 
attributed to its rapid ability to resolve low-abundance species from spectral regions 
containing high-abundance species, thereby increasing measurement sensitivity, 
dynamic range and peak capacity.[13-17] Additionally, IMS is capable of separating 
isobaric species that cannot be resolved by MS alone. In 'omic profiling directed toward 
biomarker discovery, it is imperative to identify compounds of interest.  The identification 
is complicated by compound diversity (class and structural variation).  

Traditionally, as well as all commercially available, IMS-MS instruments use 
Time-of-Flight (ToF) mass analyzers for determining an ion’s mass-to-charge ratio 
(m/z). The obvious advantage is the ability to nest the m/z measurement (µs) within the 
drift measurement (ms). This creates an orthogonal separation where many m/z 
measurements are made during the drift separation. Although this combination creates 
a rapid, multidimensional analysis, ToF mass analyzers are not capable of multistage 



tandem mass spectrometry (MSn) or nonergodic dissociation methods such as electron 
transfer dissociation (ETD). These MS fragmentation methods are often used as 
standalone techniques in applications ranging from small molecule identification within 
complex mixtures to identifying high order structure in proteins using Hydrogen 
Deuterium exchange (HDX) MS. To this end, new applications of IMS-MS that leverage 
the use of ion trapping MS are useful for supplementing these limitations of ToF 
analyzers. Trapping mass analyzers add the capability to perform ion-neutral or ion-ion 
reactions on drift-selected ions. In such experiments, fragment ions are generated and 
are structurally useful in identifying and quantifying individual components or those that 
compose protein structures or post translational modifications (PTMs). To date, very 
few, if any, experiments have attempted to combine the unique capabilities of IMS-MS 
with MSn or ETD-MS for uncovering ion structural information or heterogeneity. As will 
be shown in the coming chapters, coupling IMS to trapping mass analyzers expands the 
capabilities into new areas of ‘omics analysis and enhances the information that can be 
obtained from either technique alone. 
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1. Expanding the Applications of IMS-MS for Complex Mixture Separations 

1. Introduction: Expanding the Applications of Ion Mobility Spectrometry-Mass 

Spectrometry (IMS-MS) for Complex Mixtures Separations and Protein Structural 

Insights. 

 Reprinted in part with permission from Analyst: Advances in Ion Mobility-Mass 
Spectrometry instrumentation and Techniques for Characterizing Structural 
Heterogeneity. Gregory C. Donohoe, Megan M. Maurer and Stephen J. Valentine, 
Analyst, 2015. 140(20):p.6782-6798 
 

1.1 Ion Mobility Spectrometry and Linear Ion Trap Mass Spectrometry 

Fundamentals  

Several new applications have attempted to expand the utility of IMS-MS by 

implementing a new IMS-linear ion trap (LIT) mass spectrometer. The IMS separation is 

used in four specific and different fashions: 1) a traditional separation device for small 

molecule mixtures, 2) a fragmentation cell for high-throughput, data-independent 

analysis that requires no spectral alignment 3;) a structural gas phase deuterium 

labeling cell aimed at understanding protein anion structures; and, 4) as a traditional 

drift cell for calculating an ion’s collision cross section (CCS). These four areas are then 

combined with the ion trapping capabilities of the LIT to perform MSn and ETD on drift-

selected ions.   

In experiments reported here, the IMS-MS (Figure 1.1) consists of an ion 

desolvation region that incorporates a dual ion funnel/ ion gate design coupled to a LTQ 

Velos (Thermo Electron, San Jose, CA, USA) mass spectrometer.[1, 2]  A continuous 

beam of ions, produced via electrospray ionization (ESI), enters into a desolvation 

region and become focused through an hour-glass funnel (F1).[3, 4] The funnel is 

composed of a stacked ring ion guide (SRIG) composed for ring electrodes having 
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different inner diameters. The inner diameter of each electrode changes sequentially 

such that the cross-sectional view would appear as an hour-glass.   Ions entering F1 are 

desolvated and emerge as a focused beam of ions before becoming trapped at an 

electrically biased gate (G1). Ion trapping is performed with the use of both RF and DC 

voltages applied across the ion funnel as well as a repulsive voltage at G1. Using an 

attractive field applied at the G1, ions are periodically pulsed into the drift tube.  The drift 

tube is constructed of ring electrodes separated by electricial insulators. A resistor chain 

is connected to each electrode, where the application of voltage produces in a potential 

drop across the length of the drift tube (~1 meter) resulting in a homogenous electric 

field (~10 V·cm-1).  

 

 

 

 

 Ions that enter into the drift region undergo collisions with He gas (~2.50 Torr at 

300 K) and separate based on differences in their three dimensional, rotationally 

averaged structures and overall charge. Upon reaching a selection gate (G2), ions are 

defined by their mobility (K) as a function of ion drift velocity (vd) at a defined electric 

field strength (E) according to:[5]  

 

ESI 
Source

Desolvation
Region

F1/IA1/G1

Drift Tube

LTQ Velos ETD

F2/IA2/G2 quadrupole LIT

octopole

Figure 1.1.  Schematic locations of the IMS-MS instrument showing the front and rear funnels (F) 

and the locations of both gates (G). The boxed portion of the schematic shows the LTQ Velos 

(ThermoScientific) mass spectrometer consisting of RF focusing devices, the linear ion trap (LIT) 

mass analyzer and the ETD source. 
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              1.1) 

 

Here, vd can also be calculated by subtracting the time between a measureable ion 

signal at the selection gate and the introductory ion pulse. This defines the drift time (tD), 

or the transit time, for an ion population that traversed the drift tube.  With this, the 

velocity of an ion is dependent on the pressure within the drift tube. Since L and tD can 

be determined precisely determined as: 

 

    
 

  
          1.2) 

 

 Combining Equation 2 with Equation 1 yields the follow relationship: 

 

   
 

   
         1.3) 

   

Here, K is inversely proportional to E and proportional to vd. From Equation 3 it can be 

seen the terminal velocity that the same ions attain as they tumble through the buffer 

gas under the influence of a homogenous electrostatic field is dictated by K. It is 

important to note that these equations reference ion motion under low-field 

considerations. That is, an ion’s internal energy is greater than the energy gained 

through translational collisions with the buffer gas. Comparatively, under high-field 

conditions, ion internal energy would significantly increase, such that perturbations in 

ion shape may alter the vd measurement or the ions would not project their shape 
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during the drift measurement. Field limits can be approximated semi-quantitatively at 

conditions at standard temperature:[5] 

 

 

 
   

 

    
 

 

   

 
        1.4) 

 

where N is the number density of the buffer gas at STP, m and Mb are masses of the 

ion and buffer gas respectively, d is the sum of the radii between the ion and neutral 

buffer gas (angstrom) and z is the charge of the ion. Equation 4, is denoted in units of 

Townsend (1 Td = 10-16 V·cm2), where traditional measurements, as well as the ones 

used in the thesis, are ~1 Td. Ions are generalized to move through the drift tube such 

that their surface area is rotationally averaged through successive and multiple 

collisions (>106) with the buffer gas. Ion motion is also influenced by factors such as 

like-charge proximity, slight pressure gradients and slight differences in velocities or 

energies. Here, ion diffusion (D) is a measure of ion spread due to Brownian motion, as 

expressed in the Nernst-Townsend-Einstein relation:[5] 

 

   
   

   
         1.5) 

 

Where, q and kB, are the elemental charge and the Boltzmann distribution constant, 

respectively. Notabely, K is inversely related to T and proportional to q. This equation 

gives insight into why ions are not discrete peaks, but broaden to some degree. 

Although simple, Equation 5 explains that ion motions will result in a distribution of 

velocities and, to some degree, the peak-shape of a drifted ion species (see below). As 
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will been seen in coming chapters, the drift profile of an ion becomes a “fingerprint” and 

is useful for structural considerations and interrupting heterogeneity in complex 

mixtures.  

 Ultimately K depends on collisions between particles. It is important to note that 

these collisions are influenced by E and thus the forces between the ions and the buffer 

gas are important. Revercomb and Mason proposed this dependence in the form of a 

diffusion collision integral assuming ions were hard spheres and that K depends on 

momentum transfer.[6]   

 

   
 

  

  

 
 

 

 
 

 

  
 

 

 
 

  

   
 

 

  

 
       1.6) 

 

Here, z and e (q = z·e) are the unit charge of the ion and the elemental charge of an 

electron respectively. The term Ω is the collision cross section (CCS) of an ion. Since 

the drift measurement can be performed using different parameters, it becomes 

instructive to report a reduced mobility (Ko). Ko allows comparisons across instrumental 

platforms, between laboratories or can be used once instrument performance has been 

optimized for a specific method. The reduced mobility is derived from scaling, calibrating 

or correcting to standard temperature and pressure according to: 

 

      
      

 
  

 

   
         1.7) 

 

Equation 6 can be rearranged to give a CCS calculation based on the ion’s tD. The 

equation below has been normalized to standard pressure and temperature as:[7]  
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    1.8) 

 

 Calculating CCS values for ions allows a direct measure of a physical property. From 

Equation 8, the CCS calculation is dependent on the charge of the ion and the 

parameters T, L and P of the drift tube. One consideration for enhancing CCS 

determinations is that higher resolving power in the mobility dimension significantly 

enhances structural both small molecule and protein structural studies.  An example is 

the need to adequately resolve the structural heterogeneity associated with complex 

mixtures such as those encountered in ‘omics investigations.[8, 9]  This is also true for 

distinguishing co-existing solution- and gas-phase structures for biomolecular ions. 

Resolving such fine details affords greater structural insights and more accurate CCS 

determinations.  

 The IMS resolving power (R), where (R=tD/ΔtD) represents the ratio of the ion’s tD 

to the width of the peak at half-maximum height is described by Equation 1.9.[6] 

 

   
    

           
 
   

        1.9) 

 

In Equation 9, R is dependent on L, E, and T.  Shortly after the application of 

IMS-MS techniques for the characterization of biomolecular ion structure, researchers 

began to explore the development of instrumentation that would exploit parameters in 

Equation 9 to achieve high-resolution measurements for biological ions.[10, 11] 

Maximizing R by changing instrument geometry often reaches a point of diminishing 
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returns resulting from unmanageable operational conditions and spatial requirements. 

This is largely attributed to the square-root dependence in Equation 9. 

One parameter not shown in Equation 9 is the pressure of the buffer gas. It is 

noteworthy to mention that changing the pressure of the drift cell can support higher E 

values. The limit, as given by Paschen’s Curve for various gases, defines the maximum 

voltage a gas can maintain at a pressure and distance before gaseous breakdown 

occurs. For high-resolution IMS, 300 V·cm-1 is possible.[12] As stated above, as long as 

the drift tube is maintained under low-field conditions (E/N < 3 Td), the above equations 

are applicable for characterizing ion structures and heterogeneity. 

The IMS separation is based on an ion’s size-to-charge ratio. Ions exhibiting 

larger mobilities reach the detector before ions that have smaller mobilities. Often in 

protein structural studies, ions with similar shapes can exist over several charge states. 

These structures can be resolved since K is proportional on the charge of an ion 

(Equation 6). This charge dependence allows similar structures to be resolved if ion 

charge is different. However in the case of isomeric structures, where K is not 

dominated by charge, structural resolution becomes harder to predict. For a single 

isomer, the theoretical shape of the ion packet exiting the drift tube aperture is 

determined by the ion flux[13] according to: 

 

       
 

    
 
 

    
 

 
        

   

   
      

         

   
            1.10) 

 

where r is the radius of the drift tube’s entrance aperture, C is a constant and P(tp)dtp is 

the time-dependent shape of the ion packet that is pulsed into the drift tube. Equation 
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1.10 only describes a single ion conformation contributing to the overall peak shape. It 

is important to note that the calculated peak shape may be broader if an ion contains 

more than one structure or interconverts between ion structures on the time scale of the 

measurement. Often the former, is most instructive in observing both solution and gas 

phase structures without the presence of bulk solution.  

1.2. Fundamentals of Mass Spectrometry (MS) – Linear Ion Traps 

 Ions that traverse the drift tube reach a selection gate and pass into a second 

electrodynamic funnel (F2) used to radially focus the ion cloud.[3, 4, 14] The ions 

subsequently exit the drift tube through a conductance-limiting aperture and are focused 

in the IMS-MS interface region by quadrupole and octopole RF guides before entering 

into the higher pressure linear ion trap followed by subsequent mass analysis in the 

lower pressure-linear ion trap. 

 In linear ion traps, ions are confined two-dimensionally (2D) by an RF field for 

radial confinement and DC stopping potentials applied to end electrodes for axial 

confinement.[15] The motion of ions in a 2D multipole field can be expressed by 

Newton’s Laws of motion according to: 

 

     
  

  
                       1.11) 

 

where F is the force on the ion v and t are the velocity of the ion and time respectively. 

The F experienced by an ion in a quadrupole potential is[15] 

 

                                      1.12) 
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where Φ2(x,y,t) is the quadrupolar potential if applied from alternate electrodes to 

ground according to:[15]  

                                  
       

   
                  1.13) 

 

In Equation 13, U and V are the applications of DC and RF potentials applied to 

symmetric rods, respectively. The term Ωa is the angular frequency of the applied RF. 

For linear ion traps in a quadrupolar geometry, 2 pairs of parabolic rods are positioned 

adjacently one to another. This creates a well a defined inner radius ro associated with 

ion trapping. In quadrupole trapping devices, ion acceleration in the x and y dimensions 

are not coupled and ion motion in these directions are orthogonal to the central axis[15] 

according to: 

 

                  
   

         
          

  
         

1.14) 

        
   

   
      

          

  
         

 

here A2 is constant with respect to the order of the multipoles.  These equations show 

that ion motion in the x direction does not depend on that of the y direction. This 

relationship is at the basis for why most 2D trapping devices are quadrupolar, as ion 

oscillation can be more easily manipulated.  

In other arrangements, such as hexopoles or octopoles, x and y motions are coupled.  
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 The motion of ions in a quadrupole field as described by the dimensionless  

stability parameters a and q are:[16]  

         
   

   
   

          

      1.15)    

         
     

   
   

          

 

in Equation 1.15, term m is the mass of the ion and is inversely related to both a and q. 

The equations of motion in  Equation 13 can be expressed as the Mathieu equations[15] 

 

        
   

                             

1.16) 

                             
   

                             

where am and qm are Mathieu parameters and ξ = Ωat/2. These equations give the 

stability of an ion whose motion is defined as either stable or unstable within the 

confines of the trapping instrument. Ion trapping can be visualized by a parabolic 

potential well that oscillates the ions at frequency (⍵):[15] 

 

                     ⍵          
  

 
 ; 0 ≤ β ≤ 1 and n = 0, ±1, ±2,. . .   

 1.17) 

 

the term β is dependent on both am and qm parameters. When am is 0 and qm 

approaches 0, β can be approximated: 
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         1.18) 

 

when qm is small and n = 0, ion motion becomes harmonic with ⍵ and can be expressed 

as follows:[15] 

 

                          ⍵   
    

   
          1.19) 

 

Under these conditions the stability region of the ion trap becomes defined and 

ion confinement behaves as a function of the effective electric potential Veff(r) as defined 

by:[15] 

 

                                 
    

  
  

 
          1.20) 

 

where rd is the radial distance and Dx,y is the depth of the potential well that traps the 

ions within a defined oscillation.[15] 

 

                             
     

 
         1.21) 

 

 At the center of this well ions are trapped in a specific oscillation across the x and 

y directions and are harmonic with the periodicity of the potential well. By scanning the 

effective potential of the trap, ions are preferentially destabilized and ejected from the 
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trap and detected. In this manner, ions become characterized by their m/z ratio that is 

dependent on the stability parameters a and q.  

 Ion traps are well suited for ‘omics analysis, offering high efficiency ion trapping 

and the ability to couple easily with either front-end techniques such as LC or GC, or for 

proton transfer reactions[17], ultraviolet photodissoication[18] and chemical ionization 

sources for ETD reactions[19] (typically interfaced at the rear of the instrument). As 

standalone instruments, they are considered proteomics-grade mass analyzers that 

operate at relatively high pressure (~ 10-5 torr). This makes them ideal candidates for 

interfacing to low pressure IMS instruments (1 -4 torr) and eliminates the need for 

multiple conductance limiting apertures for differential pumping stages. Ion traps also 

have the advantage of isolating and confining specific m/z ratios for MS/MS or MSn 

analyses. Isolation is also useful for reducing space charge effects caused from ion 

trapping. In some cases, sensitivity can even be increased since the ejection of other 

ions does not destabilize the oscillation of selected ions.   

In isolation experiments, all ions of measurable signal are directed into the trap 

and confined for mass analysis. This stage is known as the MS scan, which measures 

the m/z of the precursor ions. Mass selection can be performed by using the trapping 

RF to resonantly excite undesired ions for ejection. In this method, multiple are 

frequencies are scanned sequentially. For broadband waveform isolation, all 

frequencies are applied except for the frequency that matches the oscillation of the 

intended ion for isolation.[15] Ions with oscillations that are resonant with all other 

frequencies are excited and subsequently ejected from the trap. This type of selection is 

particularly useful, because ion ejection is performed quickly. However, as will be 
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discussed in the following sections, special attention needs to be given to ion isolation, 

because waveforms close to the oscillation frequency of the isolated ion can cause 

unwanted vibrational excitation. 

1.3. Collision Induced Dissociation (CID)  

Once an ion has been selected within a user-defined m/z isolation window, ions 

are excited with an RF frequency that is resonant with the oscillation of the ion.[16] In 

this manner, selected ions achieve extended oscillations, but are still confined by the ion 

trap. The periphery of ion traps contain He(g) used for ion confinement and cooling, but 

this gas can also activate the ions that have been translationally excited. The total 

energy available for transfer of kinetic energy into internal energy is given by the center 

of mass energy (Ecm) and is dependent on the mass of the ion, the mass of the buffer 

gas and the laboratory frame kinetic energy. Ions increase their kinetic energies from 

the applied RF and collide with the buffer gas. A portion of the translational energy is 

transferred and redistributed statistically throughout all internal modes of motions (e.g. 

vibrational and rational).[20] As described by the Rice-Ramsperger-Kassel-Marcus 

(RRKM) theory, the rate of dissociation is slow compared to the redistribution of energy. 

Unimolecular dissociation follows at a higher rate once the ion has achieved sufficient 

internal energy. Fragmentation in ion trapping MS results from the gradual heating of 

precursor ions that produce fragment ions and is termed tandem-in-time CID.  

1.3.1. CID of Peptides and Proteins: b – and y – ions  

One of the greatest utilities of CID has been found in proteomics analysis for 

sequencing peptides and proteins. Wysocki and coworker suggest that the CID of 

peptides promotes the mobilization of protons for cationic ions.[21] In the mobile proton 
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model, protons are transferred intramolecularly from basic and acidic residues to 

heteroatoms found along the backbone.[21] Proton transfer from basic residues is 

thought to occur at the carbonyl that facilitates nucleophilic attack of the electropositive 

carbon from another carbonyl. This results in a protonated oxazolone b-ion and the 

corresponding y-ion fragments.  It is noteworthy to mention that fragmentation appears 

enhanced at aspartic acid residues, presumably due to solvation effects of the 

backbone carbonyl by the carbocylic acid. In general the N-CO bond is dissociated 

resulting in b- and y-ions that are sequenced from the N-terminal and C-terminal ends 

respectively.[22] The use of such information can be used in de novo sequencing 

methods for protein primary sequence identification.[23] Newer techniques allow in-

silico methods, such as Sequest[24] and Mascot, to be employed for bottom-up 

proteomic sequencing.[25] This is particularly useful since 1000s of peptides are 

fragmented over the course of a chromatographic separation.  

1.3.2. CID of Small Molecules: Understanding Fragmentation 

Dissociation of complex organic molecules can be inherently more difficult than 

sequencing peptides. Small molecules span a diverse array of structures, classes and 

convalent bonding arrangements (e.g. alkene). A molecule that has obtained sufficient 

energy for dissociation must be reconstructed according to valence rules.[20] Structural 

MS of small molecules depends on the internal energy of the molecular ion and the time 

scale (10-6 s) of observation. In CID processes, fragmentation should be performed 

quickly. If the rate of dissociation is slow, ions may fragment in transit to the detector 

and are observerable as metastable ions.  Fragment ions of complex small molecules 

are complicated by competing fragmentation pathways that are dependent on the 
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achieved internal energy of the precursor ion. That is, high energy CID (above 100 eV) 

can yield different spectra than low energy CID.  

1.4. IMS-MS Metabolomics and Small Molecule Studies  

 Shortly after the first protein ion collision cross section measurements, IMS-MS 

was demonstrated as a means for separating ions within complex mixtures.[26, 27]  

Here, the mobility measurement was shown to distinguish isobaric ions of similar type 

based on differences in CCS as well as overall ion charge.  Early on it was recognized 

that, for peptides, factors such as intramolecular interactions, side-chain packing, and 

overall side-chain length could affect the overall ion CCS leading to efforts aimed at 

predicting cross sections based on primary sequence.[28]  McLean and coworkers 

demonstrated that many classes of small molecules could be distinguished using IMS-

MS techniques.[29]  These early efforts laid the ground work for recent developments in 

small-molecule ion structure characterization/utilization using IMS-MS techniques. 

Recent experiments conducted on an IMS-MS instrument that utilizes a linear, 

high-resolution drift tube, have yielded the most extensive database to date of CCS 

valuesfor small biomolecules including quaternary ammonium salts, lipids, peptides and 

carbohydrates.[30]  The study demonstrates the potential for observing low-abundance 

species in the presence of higher-abundance isobaric species including isomers using 

IMS-MS analysis.  Paglia and coworkers have demonstrated the utility of incorporating 

such mobility information into comparative metabolomics workflows and describe a 

searchable CCS database for ion identification.[31]  Hill and coworkers have utilized 

high-resolution mobility separations to identify a new dopamine isomer obtained from 

striatal metabolomic extracts from genetically modified rats.[32]  Similarly, experiments 



16 
1. Expanding the Applications of IMS-MS for Complex Mixture Separations 

have shown that mobility measurements can be used with other analytical information 

(LC retention time and precursor and fragment ion masses) to distinguish isomeric 

species in complex mixtures obtained from natural products [33] as well as to identify 

potential biomarkers in comparative metabolomics analyses[34].   

1.5. An Overview of the Metabolome and Traditional Techniques 

Recent research has shown that the analysis of the plasma metabolome 

provides insight into fundamental metabolic processes, functions, and biomarkers 

associated with age, disease, and exposure to environmental influences.[35-40] Studies 

have revealed changes in metabolite profiles that are associated with cardiovascular 

disease, cancer and neurological disorders. [32, 40-44] Of particular interest, is the fact 

that metabolites act as signaling entities that influence cellular activity and biofunctions 

that include changes in protein profiles and gene expression.[37, 45] Because 

metabolite signaling is often involved in the initial steps of biological activity, 

characterization of the metabolome may serve as an important discovery tool for 

determining biopathways associated with transitions from healthy to disease states.[46] 

With this in mind, the ability to profile and identify metabolites using analytical 

techniques offers an opportunity for indirectly observing cellular changes associated 

with disease onset and progression. 

 According to the Human Metabolome Database, human plasma contains 

approximately 42,000 metabolites that mainly encompass organic acids, carbohydrates, 

lipids and peptides.[47, 48] Because the matrices that contain metabolites are extremely 

complex, analysis of the metabolome has traditionally required the use of extraction and 

separation techniques. Currently, most untargeted metabolomic analyses are performed 
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using liquid chromatography mass spectrometry (LC-MS) because the technique 

routinely enables high detection numbers.[35, 49]  A particular limitation of LC-MS is the 

data-dependent acquisition most commonly employed. Here, the mass analyzer selects 

the 10 most abundant ions per defined elution window. These mass-selected precursor 

ions are then fragmented, generating retention time information, a precursor ion m/z 

measurement and fragment ion m/z ratios. While this combination is a powerful 

technique, data dependent acquisition limits the amount of ions that are selected for 

MS/MS analysis, leading to under sampling of often important ions. While some 

methods employ data-independent LC-MS acquisition, it is noted that these techniques 

require multiple runs of the same sample (as to generate an exclusion list) that greatly 

increases analysis and data processing times.  

One limitation regarding metabolomic analysis employing LC-MS is the time 

required for adequate ion identification. Even with mass spectrometers capable of high 

mass accuracy determinations, m/z database matching can yield numerous isobars 

associated with a single spectral feature.  Added to this difficulty is the identification of 

isomeric species that may only differ in structural arrangement (e.g., alkene positioning).  

Tandem mass spectrometry (MS/MS) has proven an indispensible tool for the 

elucidation of compound structure and thus identification.[50]  As explained above, 

often, MS/MS is not sufficient to identify compounds of interest requiring the use of 

MSn.[51, 52]  It is noted that MSn is difficult to perform on a chromatographic time scale, 

because these operations require ~50 ms/MS scan to complete.  

One advantage of the dual gate IMS design is the ability to filter ions of select 

mobilities. Since the timing of the selection gate is delayed relative to the introductory 
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pulse, a well-defined distribution of mobitiles can be transferred into the LIT. This not 

only reduces spectral congestion, but also concentrates ion signal prior to MSn. 

Because MS ion trapping can be performed up to 1000 ms, >50 IMS-pulses, containing 

mobility-selected ions, can be accumulated during the precursor MS scan. This is 

advantageous for increasing the signal of low-intensity ions that may be missed by LC-

MS methodologies. The combination of the mobility filtering and accumulation can be 

followed by MS/MS, or if signal is sufficient, MSn.  As will be discussed in Chapter 2, 

IMS-MSn was performed on metabolite ions and allowed for high confidence 

identifications.   

1.5.1. Parallel Dissociation Combined with IMS-MS for Data Independent Analysis of 

Small Molecules 

 The ability to rapidly profile complex mixtures using MS/MS and MSn techniques 

is particularly useful for identifying high numbers of molecular ions. Here, parallel 

dissociation stands at the forefront of high throughput methodologies. Other techniques 

known as data-independent or SWATH[53, 54] (AB Sciex), identify E (Waters) and all 

ion fragmentation (Thermo) acquisition use the mass spectrometer to fragment all 

observable precursor ions at each chromatographic elution window. In this manner the 

fragment ions are matched back to precursor ions containing similar elution profiles or 

retention times. However, this method is complicated by run-to-run variability caused by 

differences during the LC separation (e.g. mobile phase composition, pressure 

fluctuations, temperature, etc.). In these cases even slight changes in chromotrographic 

trace requires sophisticated algorithms for spectral alignment. This is further 
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complicated when attempting to align fragment ions back to precursor ions based on 

elution profiles.  

Parallel dissociation within a drift tube, (IMS-CID-MS, IMSn-MS) has been 

previously described and demonstrated for ‘omics applications using ToF[55, 56] and 

ion trapping mass analyzers.[57] As discussed, nested experiments record ion drift 

times as they are pulsed into the ToF flight tube. It is noteworthy to mention that IMS-

CID-ToF instruments perform parallel dissociation at the end of the mobility separation. 

While the technique has been successful, performing CID directly after the mobility 

separation can perturb the drift profile due to differences in transit times of fragment and 

precursor ions.  

For the studies reported here, a dual gate IMS-MS is employed and is well suited 

for IMS-CID-MS techniques. One difference is that the pulse delay applied to the 

selection gate allows ion filtering, where only a specific mobility is selected. Once 

selected, the ions contain drift information prior to mass analysis.  Fragmentation is 

performed at the second ion activation region (IA2 in Figure 1.1)  after ion selection has 

been made. Ion acitivation is achieved by increasing the voltage difference across two 

adjacent electrodes. This results in energizing collisions with the buffer gas leading to 

fragmentation. In this manner the region immediately following the drift tube is used as a 

collision cell. Since the precursor ions were previously selected, they transfer drift 

information to the fragment ions. All ions are then transferred to the mass analyzer for 

m/z analysis. Although this process increases the complexity of the sample, fragment 

ions can be matched back to their respective precursor ions based on extracted ion drift 

time distributions (XIDTDs). Coupling XIDTDs with the high reproducibility of the IMS 
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separation, requires no dataset alignment in comparative analyses and enhances 

spectral deconvolution.  As will be described in Chapter 2, fragment XIDTDs that have 

similar spectral features are capable of being matched back to their respective 

precursor ion drift traces. This high level of specificity is required for such high 

throughput data independent workflows. 

1.6. Electron Transfer Dissociation (ETD) of Peptides and Proteins 

Perhaps the first demonstration of radically fragmenting peptides and proteins 

with low energy electrons was performed by McLafferty and coworkers in the form of 

electron capture dissociation (ECD).[58] These experiments used a Fourier transform 

ion cyclotron resonance mass spectrometer (FT-ICR-MS) equipped with an emission 

cathode and a grid. A voltage applied across the cathode resulted in the emission of 

thermal electrons (~1 eV) that could be trapped in the ICR cell and reacted with peptide 

cations in the gas phase. Capture of the electron by the peptide cations resulted in the 

dissociation of the peptide cations into fragment components. Unlike CID, that produces 

b and y ions through vibrational activation, ECD causes radical-directed dissociation of 

the N-Cα bond and produces even electron c- and odd electron z- ions.  

Such ECD experiments let to the advent of ETD for peptide/protein fragmentation 

shortly later. Although ECD must be performed within the low pressure environment of 

an ICR cell (10-10 torr), ETD can be performed in higher pressure mass analyzers, such 

as the LIT. The process of fragmentation with ETD is much different than that reported 

for ECD; however the two techniques both produce c- and z-ions via the same 

mechanism. Electron transfer dissociation was first reported by Hunt and coworkers 

using a LIT interfaced to a chemical ionization (CI) tower at the rear of an LIT 
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instrument.[19] This tower contains a heated cell for the sublimation of fluoranthene that 

is swept into the negative CI chamber by a flow of N2(g). The excess flow of N2(g) into 

the CI chamber produces free electrons that are captured by sublimated fluroanthene. 

In turn, the fluranthene anions become charged, and their trajectories can be 

manipulated in the gas phase. Reagent anions are transfered from the ionization 

chamber to the rear of the LIT via ion guides.   It is important to note that the 

commercial LIT, used in the studies for this thesis, is segmented into high and low 

pressure regions and is highly suitable for ETD. Here, fluoranthene radicals transferred 

into the low pressure trap are subsequently isolated, purified and accumulated prior to 

ion-ion reactions. At the same time, the high pressure trap is accumulating 

peptide/protein cations. Ions of opposite charge are held in oscillation within their 

respective trapping regions. Once enough fluoranthene radicals have been generated, 

ETD is performed by adjusting the RF potential applied to the end lenses or the 

matching rod sets. This provides charge-sign independent trapping (CSIT), which axially 

confines both positive and negative ions simultaneously. The ETD reaction generally 

proceeds for ~100 ms, after which, the LIT scans and detects fragment ions.  

1.6.1. ETD Mechanism: c – and z – ions  

The collision between anions and cations causes the transfer of an electron from 

the fluoranthene radical to the peptide. Electron transfer is thought to occur at a 

protonated basic side chain such as lysine, arginine or histidine, forming a hypervalent 

radical species.[58] The electron occupies an excited Rydberg state that upon 

relaxation transfers a hydrogen from the basic sidechain to the backbone carbonyl.[59] 

This process produces a carbon radical aminoketyl intermediate. This is followed by 
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radical rearrangement and cleavage, where half of the electron density of the N-Cα 

bond, combines with the carbon radical and the other half is retained on the Cα carbon. 

The rearrangement is radically driven and produces -c and z- fragment ions. Unlike CID, 

ETD proceeds through a nonergodic mechanism and dissociation occurs before the 

redistribution of energy (~10-12 s). This mechanism is an important consideration, 

because unlike CID, ETD can preserve post translational modifications (e.g. 

phosphorylation and glycosylation) and is necessary for per-residue hydrogen 

deuterium exchange (HDX) measurements. Both subjects are discussed below. 

1.6.2. IMS – ETD – MS Techniques 

 While biomolecular applications of CID combined with IMS occurred almost 

concurrently, IMS coupled with ETD is a relatively newer concept. Experiments by de 

Pauw  and coworkers use ETD of cysteine containing peptides prior to the mobility 

separation.[60] Peptide ions involved with charge reduction were shown to have more 

extended conformations compared to the same ion that was not subjected to ETD 

reagent. Post mobility the reduced ions were collisionally activated  and the site of 

disulfide bonding was elucidated. Other early studies used ETD followed by traveling 

wave ion mobility (TWIM) to locate cis-platin interactions with methionine containing 

peptides.[61] After ETD, the fragments were mobility separated and easily identified 

based on differences in arrival time distributions. Other studies have used the ETD-

TWIM instrument for other peptide and protein workflows.[61-63] While these works are 

interesting, it is also noted that the ETD cell is located before the mobility region,[64, 65] 

meaning that the mobility separation is not utilized to distinguish precursor ion 

conformers. To the best of my knowledge, ETD on a mobility separated ion has only 
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been performed on a field asymmetric ion mobility spectrometry instrument 

(FAIMS).[66] However FAIMS operates above the low-field limit and cannot be used to 

determine CCS values. With this in mind, the ability to perform seminal studies using a 

linear field drift tube coupled with ETD-MS expands the applications of ‘Omics analyses 

into new frontiers.  

1.7. Phosphoproteomics and MS Techniques 

 Protein phosphorylation is a reversible covalent post-translational modification 

occurring at tyrosine, serine, and threionine residues.[67, 68] This modification is added 

or removed by kinases and phosphtases, respectively, making phosphorylation a 

temporally dynamic process. Phsophorylation is the most common PTM for eukaryotic 

organisms and implies a specific importance in regulating protein activity, cellular 

function and signaling pathways.[68, 69]  A particular challenge of phosphoproteomics 

is first detecting and then identifying the site of phosphorylation. Simply measuring 

protein abundance does not correlate with the stiocheometric amount of 

phosphorylation. That is, residues that are modified are often low abundance, making 

enrichment and multidimensional separations necessary.  

 Mass spectrometry has become a powerful tool for identifying and determining 

the site of phosphorylation. Identification of the phosphate moiety is complicated due to 

the phosphodisester bond. That is, under CID conditions, the bond is labile and 

energizing collisions cause the neutral loss of the phosphate moiety.[70, 71] This can be 

used advantageously for neutral loss scanning approaches employing triple quadrupole 

(QqQ) mass filters. Here the first quarupole (Q1) scans precursor ions which undergo 

CID in the middle quadruple (q). The last quadrupole (Q2) scans for the neutral loss of 
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H3PO4. An important consideration of this technique is the observable charge state of 

the precursor ion, as this influences the fragmentation energy and accessible 

dissociation pathways resulting in observable fragments. Collision induced dissociation 

of the precursor ion containing the phosphate moiety can induce several neutral losses. 

These include m/z 79 (PO3
-), 80 (HPO3) 98 (H3PO4; HPO3+H2O), 63 (PO2

-) and 97 

(H2PO4). Because the backbone amide bond dissociation energy is ~40kcal/mol and the 

phosphodiester linkage is ~20kcal/mol, the collision energy can be tuned such that 

fragmentation does not produce a significant amount of b- or y- ions. Here, neutral loss 

fragment ions can then be scanned by Q2 to detect the presence of 

phosphorylation.[71] While this technique excels at detecting the presence of 

phosphorylation, locating the site of phosphorylation requires the use of CID-MSn or 

ETD-MS.  

 More recent experiments involve phosphopeptide enrichment using TiO2 affinity 

columns, followed by reverse-phase LC-MS. This technique is capable of observing > 

36,000 phosphopetides using a bottom-up approach from a tryptic digest of HeLA 

cells.[72] Other techniques use strong cation exchange (SCX),[73] and antibody 

enrichment strategies.[74] With the advent of high resolution ion trap mass analyzers 

(such as the Orbitrap), targeted MS/MS techniques coupled with in-silico database 

searching can identify the site of phosphorylation using CID or high-energy collision 

induced dissociation (HCD).[75] The use of powerful software for necessary in 

predicting and identifying the neutral loss of the phosphate moiety. This information is 

then related back to the specific residue that contained the modification.   
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Other fragmentation methods such as ETD have also been used to identify 

phsophorylation. Compared to CID, ETD can result in extensive backbone cleavage 

without losing the phosphate moiety.[71, 76, 77] As discussed above, ETD is a 

nonergodic mechanism that proceeds without excessive virbational heating. This 

application makes sequencing much easier than CID, because the spectra are not 

dominated by neutral loss events. One limitation regarding ETD is that precursor ions 

must have high charge densities (≥+2) for complete fragmentation. If this requirement is 

not met, the ion-ion reaction often proceeds through electron transfer without 

dissociation (ETnoD).[78, 79] Some studies have combined the use of CID with MS-

ETD. Here, the CID (in-source dissociation) event results in the neutral loss of the 

phosphate moiety. The intact neutral loss fragment is then transferred to MS for MSn or 

MS-ETD. These experiments are referred to as CID triggered MS/MS. In this manner 

the presence and identify of the phosphopeptide is obtained. As described above, one 

limitation is identifying the neutral loss event since many combinations of phosphate 

dissociation are possible.  

1.7.1. Coupling IMS-CID-ETD-MS for Determining the Presence and Location of 

Phosphorylation for Peptides Within Complex Mixtures. 

Neutral loss scanning and ETD-MS techniques have their limitations and merits. 

The neutral loss scanning approach can easily identify the presence of phosphorylation 

events within complex mixtures, but can be limited by its ability to identify modified 

residues. On the other hand, ETD stands as a capable approach of easily identifying 

residues that have been post translationally modified. It therefore becomes desirable to 

create methods that can separate complex mixtures quickly, while detecting 
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phosphorylation and identifying modified residues. Ion mobility has been used in the 

past to observe structural aspects of phosphorylation on protein and peptide structure. 

Additionally, parallel dissociation techniques combined with IMS-MS have been used for 

observing differences in fragmentation behavior of phosphorylated peptides. In Chapter 

2 of this thesis, the capability to rapidly identify phosphorylated peptides in tryptic 

digests that would be encountered in post-translational modification (PTM) experiments 

is demonstrated. For these studies, IMS-CID methods show that targets for PTM 

analysis can rapidly be ascertainedand subsequently subjected to ETD to identify 

phosphorylation sites. To some degree, the approach is similar to proteomics 

techniques that used triggered CID followed by ETD-MS. A difference is that XIDTD 

helps to confirm and isolate ions for subsequent tandem MS experiments.   

1.8. Solution Hydrogen Deuterium Exchange: Fundamentals 

 Protein hydrogen deuterium exchange-mass spectrometry (HDX-MS) is an 

isotopic labeling strategy involving the exchange of heteroatom hydrogens with 

deuterium over a defined period of time.[80-82] The main focus of HDX-MS 

methodology is to elucidate protein structural regions[83, 84], folding dynamics[80, 85-

91] and protein interactions[92-96] via mass shifts caused by the incorporation of 

deuterium after the exchange event. Most commonly, these exchange reactions involve 

the incubation of protein within a buffered solution containing deuterium oxide. The 

overall exchange mechanism can be described by:[80] 
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where Nbk is a backbone amide along the proteins primary sequence. Due to random 

vibrations and motions of the protein, temporary conformations allow the protein to open 

at a rate kop and close back to the initial conformation at a rate of kcl. If kop is such that 

solvent D2O is capable of interacting, then  N-H→N-D exchange occurs at a rate kch. 

The term kch is the intrinsic rate constant and is determined by the flanking side chains, 

as well as the temperature and pD of the solution. If all rates are favorable, then 

deuterium is incorporated into the protein before the region closes and is no longer 

solvent accessible.  

 The exchange mechanism is base catalyzed, and occurs with hydroxide 

abstracting a hydrogen from a solvent-accessible hetero-atomic site.[80] Deutration 

follows and is driven by the free amount of D+ in the solution. It is easy to see that kop, 

kcl and kch can give several combinations of exchange rates. In general exchange has 

been divided into two separate regimes referred to as EX1 and EX2. In EX1, kch >> kcl 

and suggests that HDX occurs during the initial opening transition.[97, 98]  

Comparatively, under the EX2 regime, kch << kcl and implies that exchange occurs over 

many opening and closing cycles before N-H→N-D exchange occurs.[99] EX2 suggests 

that bonding networks found in secondary, tertiary and quaternary scaffolds are less 

frequented by intermolecular interactions with the aqueous solution, thereby resulting in 

slower exchange kinetics for structured regions. As is often the case, most systems 

exhibit EX2 kinetics. 

 While the above equations reference the exchange from H→D, it is noted that in 

the coming chapters D→H exchange was used. This is commonly called deuterium 

hydrogen exchange or backexchange.[80] Here, the protein is first incubated in D2O to 
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a level of ~100 % deuterium incorporation. The rate constants and mechanism of action 

are the same as described above; however, the deuterated protein is exposed to a 

hydrogen source. In this manner the representation of secondary structure is indicated 

by regions that will retain deuterium. Comparatively, unstructured regions will 

backexchange to hydrogen. In this manner, mass shifts directly suggest areas of 

secondary structure.   

1.8.1. Bottom – up Hydrogen Deuterium Exchange – Mass Spectrometry (HDX – MS) 

Most common HDX-MS workflows employ a bottom-up technique. Here, the 

protein is placed into a D2O rich buffer and exchange occurs over a defined period of 

time. Kinetic studies can be performed to determine both EX1 and EX2 regimes  based 

on exchange profiles after varying the incubation time. The exchange also gives an idea 

of the relative protection of a particular area, since unstructured areas will exchange at 

higher rates (up to some maximum) than structured regions. Exchange events are 

quenched at low pH (~2.5) and temperatures approaching 0 oC. Under these conditions 

the protein is digested with pepsin, because the enzyme displays high activity under 

quench conditions. These conditions are used to limit backexchange, which is a major 

concern for bottom-up approaches. Because the protein has been digested, the native 

structure is lost and any further exchange may change the true deuterium content level 

of the peptide sequence. Many HDX-MS experiments use LC systems consisting of an 

immobilized pepsin column for online digestion followed by trapping  and reverse-phase 

separation of peptic fragments that are subsequently mass analyzed.[100, 101]  Using 

this "bottom-up" approach, deuterium incorporation at backbone amide locations can be 

evaluated on a per-peptide basis. 
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 Despite much success,[86, 102, 103] bottom-up HDX-MS is limited by spatial 

resolution that is dependent upon the number of overlapping peptide fragments. That is, 

per-residue analysis of deuterium incorporation must contain two peptides that differ by 

one residue in length. Since many proteolytic peptides increase the overall overlap, and 

thus spatial resolution, multiple catalytic enzymes have been used; however, this 

creates a highly complex dataset.[104, 105]Due to the incorporation of deuterium, mass 

measurements can be made and structural insights can be ascertained based on 

uptake profiles across a particular identified sequence. 

1.8.2. Top – down HDX – MS  

Top-down approaches using non-ergodic fragmentation techniques such as 

electron capture dissociation (ECD) and electron transfer dissociation (ETD) have 

shown improved spatial resolution without deuterium scrambling (see below).[106-109] 

These workflows are similar to that described above. That is, the protein is incubated in 

D2O over several periods of time. The protein is electrosprayed in positive polarity 

mode. Here, the low pH environment of the quench solution is highly suitable for 

positive ESI and mass analysis. Also noteworthy is that under these conditions the 

protein is denatured and higher charge states can be achieved. In turn, these high 

charge states are highly suitable for electron-based fragmentation methods, as the 

reaction cross sections are larger and ECD or ETD can proceed at higher efficiencies 

(greater sequence coverage). Once fragmented in the gas phase, Top down 

approaches can determine deuterium incorporation at a per-residue level. This is 

different than the bottom up approaches that observe the global view based on peptide 

sequence.  However, larger proteins (>20 kDa)[110] and inadequate charge states 



30 
1. Expanding the Applications of IMS-MS for Complex Mixture Separations 

remain problematic for electron-based fragmentation. Other groups have coupled LC-

MS/MS based techniques for fragmentation of deuterated proteolytic peptides, using a 

bottom-up workflow.[107, 111]  

1.8.2.1. Per – residue Deuterium Measurements  

  Tandem mass spectrometry (MS/MS) presents a technique that is well suited to 

site-specific (per-residue) deuterium retention using both top-down[106, 107, 109] and 

bottom-up[112, 113] approaches. Early HDX-MS/MS studies employed collision-

induced dissociation (CID) to elucidate per-residue deuterium incorporation.[114, 115] 

In general, CID relies on the conversion of translational energy to internal energy via 

inelastic collisions of selected ions with an inert buffer gas such as helium. Through 

multiple collisions, the internal energy of the molecular ion increases and fragmentation 

occurs at the oscillator with the lowest bond dissociation energy. For proteins and 

peptides, CID predominantly produces b- and y-type fragment ions.[20]  

 Although CID combined with HDX has shown some success,[115, 116] one 

limitation is hydrogen/deuterium (HD)-scrambling. Because CID is an ergodic process, 

energy is redistributed and CID is accompanied by the mobilization of protons (see 

above).[21] These mobile protons, found on both acidic and basic residues, are 

transferred throughout the molecule and participate in the fragmentation process.[21] 

Because proton mobilization occurs before dissociation in CID, the final location of the 

proton on the product ion is typically different than the initial location on the precursor 

ion. Mobilization is obviously problematic when using HDX-MS/MS to target structural 

areas because redistribution occurs as readily for mobile deuteriums as it does for 

mobile hydrogens. That is, structured regions expected to contain higher levels of 
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deuterium will appear lower than the “true” deuterium content value. Conversely, 

unstructured regions are artificially enriched. In such cases, per-residue measurements 

provide ambiguous or erroneous data for structural information.  

 More recently, electron capture dissociation (ECD) and electron transfer 

dissociation (ETD) have been shown to fragment deuterated precursor ions without HD-

scrambling[108, 111, 113, 117-119]. In contrast to CID, electron-based fragmentation of 

biomoleuclar ions proceeds through a high energy mechanism. In ECD and ETD, the 

capture or transfer of a near thermal electron to the biomolecular ion results in short-

lived, odd electron intermediates. Fragmentation is radical-driven and occurs rapidly 

before proton mobilization throughout the molecular ion. ECD and ETD primarily 

produces c- and z-ion series with significantly less contribution of b- and y-ions. 

Although ECD and ETD can involve the transfer of a proton from a basic side chain to a 

c-ion,[120] such observations can be accounted for and are more predicable than 

proton mobilization associated with CID. Importantly, because electron excitation occurs 

before proton randomization, per-residue HDX studies typically proceed without the loss 

of the initial deuterium label.  

1.8.3. Solution HDX Coupled with IMS – ETD – MS  

Ion mobility spectrometry-mass spectrometry has emerged as a powerful tool for 

separating complex mixtures containing biomolecules.[26, 27, 121-126]  The gas phase 

separation is rapid (milliseconds), affording increased peak capacity at no cost to MS 

analysis times.[127, 128] A particular advantage of IMS is its ability to decrease the 

lower-detection limit by removing highly-abundant ions from spectral regions containing 

interfering ions.[47, 125, 129, 130] Thus, by extracting a specific mobility distribution 
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within the 2D IMS-MS dataset, a better evaluation of precursor ions that may be 

suppressed during ionization is obtained. It is noteworthy to mention that the IMS 

separation occurs in the gas phase. This eliminates the process of solution 

backexchange found in condensed-phase separations.  

To date, few studies have explored the potential in coupling ion mobility with 

solution phase HDX. However, some studies have used commercial TWIM devices 

coupled with Time-of-flight mass analyzers for bottom-up peptide studies.[131, 132] 

These studies showed that that incorporation of deuterium did not change the arrival 

time distributions of deuterated peptides, relative to the corresponding undeuterated 

peptides. Also noted is the ability of the mobility measurement to separate overlapping 

deuterated peptides. This is particularly advantageous since deuterium incorporation 

broadens the isotopic distribution and results in reduced peak capacity. Moreover, 

isotopic overlap between neighboring ions interferes with deuterium calculations. This is 

problematic for accurately determining deuterium content for both overlapping species. 

1.9. Gas Phase Hydrogen Deuterium Exchange Coupled with IMS-MS 

In 2009, Engen and coworkers showed that mobility measurements could be 

combined with gas-phase HDX using ND3 as a deuterating reagent.[63]  Different 

conformer types of ubiquitin ions could be distinguished by their unique mobilities and 

HDX levels.  Rand and coworkers later showed that HDX could be accomplished for 

protein ions in a TWIM instrument with site-specific determination of the label 

incorporation.[62]  Later the research group demonstrated different operational modes 

for performing gas-phase HDX measurements with IMS-MS techniques using a TWIM 

instrument.[133]  Ashcroft and coworkers monitored changes in protein ion structure 
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resulting from solution perturbations using gas-phase HDX-MS techniques.[134]  The 

resulting data was shown to correlate to mobility information obtained from IMS-MS 

measurements.  Valentine and coworkers demonstrated the first determination of site-

specific deuterium incorporation for mobility-selected biomolecular ion conformations 

using a drift tube coupled to a linear ion trap outfitted with ETD capabilities.[135]  The 

researchers then showed that the contributions by individual amino acid residues to 

conformer type exchange rate could be determined.[136]  Using the experimental 

results and a kinetics model, the authors were able to show that multiple ion conformers 

are likely to comprise many mobility selections. 

Early theoretical studies resulted in proposed mechanisms for HDX of protonated 

peptide ions by a number of deuterating agents.[137, 138] The use of ND3 and D2O are 

the most common deuterating reagents for gas phase HDX employing IMS. In the 

studies reported here, D2O is exclusively used for gas phase labeling experiments. For 

gas phase HDX using D2O, a relay mechanism has been computationally determined 

and supported by and experimental results.[139] In this model, biomolecular ions 

collided with D2O vapour and form a long-lived complex. Upon complexation the free 

energy of the system is lowered due to hydrogen bonding. Exchange commences as a 

proton is shuttled from a heteroatomic charge site of the ion to D2O. A second hydrogen 

bond results in simultaneous transfer of deuterium to a distant, less basic site or to the 

site of interaction. Dissociation of the complex results with no net gain or loss to the free 

energy of the system. 

 Initial IMS-HDX-MS studies reported the maximum HDX levels as well as rates 

of exchange for a number of cytochrome c ion conformers.[140]  These early studies 
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demonstrated that compact cytochrome c ion conformers exhibited decreased levels of 

HDX compared with more elongated ions at room temperature.  Additionally, the overall 

HDX levels were compared with those reported for the same ion charge states as 

measured in a Fourier transform ion cyclotron resonance mass spectrometer.  In 

general the HDX levels recorded for the mobility-resolved conformers was determined 

to be smaller than those recorded for ions in the FTICR.  This was explained as possibly 

arising from the longer timescale of the latter measurement rendering the observed 

exchange subject to longer timescale structural fluctuations. 

Although the gas-phase HDX characteristics of negatively charged 

oligonucleotides and small molecules including amino acids have been studied,[141-

146] HDX of protein and peptide anions has received considerably less attention.[147] 

As a consequence, no experiments describing HDX characterization of peptide and 

protein anions exists.  Because many proteins contain a large number of acidic 

residues, it is useful to develop a sound understanding of the conformational information 

afforded by gas-phase HDX measurements for select conformers from negatively-

charged protein ions.  Moreover, the degree of HDX scrambling occurring for activated, 

negatively-charged peptide ions has recently been reported.[148]  Such information 

begins to lay the foundation for an understanding of intramolecular deuterium migration 

which can further clarify the structural information obtained from HDX experiments.  

Finally, it should be noted that with the rapid development of novel ion fragmentation 

techniques,[19, 58, 149-154]  the experiments described here are timely; that is, this 

work leads to future studies allowing the determination of residue-specific deuterium 

uptake for select anion conformers. 
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1.10. Helium Charge Transfer Dissociation  

Electron based fragmentation processes like ECD and ETD are dependent on 

the charge state of the precursor ion. Given that many bottom up workflows produce 

highly digested peptides of low charge state, per-residue measurements without HD-

scrambling can therefore be difficult to obtain. Both ECD and ETD techniques can 

fragment peptides exhibiting charge states ≥ 2; however, complete sequence 

information is often limited because ETnoD  becomes the dominant product ion 

pathway. With this in mind, it would be highly desirable to have access to a 

fragmentation technique that could proceed via odd electron or radical-induced 

pathways for low charge state precursors without proton mobilization 

 Recently, a new MS/MS technique known as Helium charge transfer dissociation 

(He-CTD) of peptide and protein ions has been demonstrated using either helium 

cations[155] or cations from an air plasma.[156] Gaseous ions emitted from a fast atom 

bombardment (FAB) gun achieve kinetic energies sufficient to overcome the Coulomibic 

barrier with biomolecular cations. These cationic species are directed into an ion 

trapping instrument, where peptide cations have been previously mass-selected. He-

CTD product ions are seen to result from both vibrationally- and radically-driven 

dissociation pathways that resemble those formed from both CID and ECD/ETD and 

ultraviolet photodissociation (UVPD) processes.[155, 156] In other cases, ion-ion 

reactions result in both non-dissociative charge reduction and increase (gas-phase 

supercharging).[156] Of particular interest is the ability of He-CTD to produce radical 

fragmentation regardless of precursor ion charge state. Although the processes that 

influence these observations are currently difficult to pinpoint, the capability of 
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fragmenting low charge state precursor ions may offer an improvement over traditional 

techniques (i.e. ETD). 

 Because of the short interaction times,He- CTD is presumed to follow vertical 

activation (not adiabatic), and has been shown to fragment neutral molecules with 

appearance potentials on the order of 30 eV.[155] He-CTD therefore activates precursor 

ions through electronic and vibration modes. Fragment ions y, b, c and z ions were 

identified. In chapter 5, experiments consider the c ion series after He-CTD MS 

measurements. CTD is performed with He+ cations emitted with high kinetic energy (6 

KeV) from the saddle field source. The main purpose of kiloectronvolt energies is to 

overcome the Coulombic barrier of cation/cation reactions. Perhaps because of inelastic 

transfer of energy during charge transfer, the activation energy obtained through He+ 

CTD exceeds the electron affinity of the He+ cation and is on the order of 30 eV.[155] 

The formation of c ions can result from proximal reagent He+ ions abstracting an 

electron (EA ~24.6 eV) and creating a hole in the precursor ions. In turn, the electron 

deficient ion undergoes radical fragmentation. 
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2. A New Ion Mobility – Linear Ion Trap Instrument for Complex Mixture Analysis1 

 
1
Reprinted in part with permission from Analytical Chemistry: A New Ion Mobility – Linear Ion Trap for 

Complex Mixture Analysis. Gregory C. Donohoe, Hossein Maleki, James R. Arndt, Mahdiar Khakinejad, 
Jinghai Yi, Carroll McBride, Timothy Nurkiewicz, and Stephen J. Valentine. Anal. Chem., 2014, 86 (16), 
pp 8121–8128. 
 

2.1. Introduction: Complex Mixture Separations Using IMS-MS 

 Over the last two decades, the use of ion mobility spectrometry (IMS) coupled 

with mass spectrometry (MS) as a means for biomolecular ion separation has grown 

dramatically.[1-13]  The added peak capacity afforded by the gas-phase separation 

(IMS) enhances the detection of lower-signal species by removing them from spectral 

regions containing interfering features from higher-signal ions.[7, 14-16]  This 

advantage has driven technological development in the private sector as an increasing 

number of MS-based instrument platforms are adopting/developing IMS separation 

steps.[17-19] 

 Much of the IMS-MS instrumentation demonstrated for complex mixture analysis 

has employed the use of time-of-flight (TOF) mass analyzers.[1, 2, 20]  The advantage 

of coupling IMS with TOFMS is that individual TOF spectra can be “nested” within the 

drift time (tD) measurement.[21]  Although this instrument configuration allows the mass 

determination of all mobility-dispersed ions, the inability to trap ions precludes the use of 

multi-stage tandem mass spectrometry (MSn) as a means for identifying complex 

mixture components.  This is problematic for identifying intractable molecules for which 

MS/MS analysis is insufficient.[22-25] 

 IMS-MS instrumentation development has also yielded instruments combining 

drift tubes with mass spectrometers that employ ion trapping.[26-28][29, 30]  Featured 

designs include those utilizing high-resolution drift tubes operated at atmospheric 
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pressure and elevated drift voltages.[27, 28] Two challenges became evident with this 

type of instrument design that relate to the overall measurement sensitivity. The first 

challenge was associated with the low duty cycle of the measurement.  The second was 

that the addition of the required mobility-selection ion gate essentially resulted in a 

scanning/filtering operational mode.  That is, only ions of select mobilities were 

transferred into the mass spectrometer.  These problems may be addressed in the 

future using ideas presented in seminal studies demonstrating the use of Fourier 

Transform and Hadamard Transform IMS.[31-33] 

 One problem that persists with instruments coupling high-pressure IMS and ion 

trap mass spectrometers is the decrease in ion transmission across the drift tube-mass 

spectrometer interface region.  That is, ions can be lost in conductance-limiting regions 

as there are no means currently available to focus diffuse ion clouds at elevated 

pressures.  The ability to compress ion packets in low-pressure drift tubes[34, 35] was 

one of the motivating factors for pursuing the instrumentation design described here.  

Additionally, the low-pressure drift tube can not only serve as the device to achieve gas-

phase separation but also as an ion fragmentation cell employing collision-induced 

dissociation (CID).[36]  Indeed, the higher-pressure fragmentation process (hereafter 

referred to as IMS-CID) has been demonstrated to be efficient and highly tunable.[7, 36-

38]  The combination of the IMS-CID capabilities of the drift tube with the MSn 

capabilities of the linear ion trap further distinguish the instrument described here. 

 The new analytical capabilities of the instrument are here demonstrated with the 

analysis of two model mixture samples.  The first sample analysis represents the 

capability to rapidly identify phosphorylated peptides in tryptic digests such as would be 
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encountered in post-translational modification (PTM) experiments.  For these studies, 

IMS-CID methods show that targets for PTM analysis can rapidly be ascertained and 

subsequently subjected to electron transfer dissociation (ETD)[39] to identify 

phosphorylation sites.  To some degree, the approach is similar to proteomics 

techniques that scan for neutral loss of H3PO4 and subject target ions to further tandem 

MS experiments.[40, 41]  A difference is that extracted ion drift time distributions 

(XIDTD)[42] help to confirm and isolate ions for subsequent tandem MS experiments.  

Although several instruments demonstrating fragmentation of mobility-selected ions 

have been described,[7, 36, 37, 43, 44] this work presents the first combination of IMS-

CID[36, 38] and ETD-MS.  The second experimental example using the IM-MS to profile 

the plasma metabolome of rats exposed to engineered nanomaterials (ENM) via 

inhalation.  For these studies organisms are exposed to TiO2 nanoparticles (NP).  Here 

NP can be described as species exhibiting less than 100 nm in length in any dimension.  

Two-dimensional (2D) IMS-MS datasets are generated for samples from organisms for 

different post exposure times (directly after and 24 hours post exposure).  Comparisons 

of the 2D datasets show the enhancement provided by the IMS separation for 

distinguishing samples.   Instrumental aspects facilitating ion identification and relative 

quantitation including IMS coupled with MSn and IM-collision-induced dissociation 

(CID)-MS[36, 43] are discussed  This study is unique in that it presents the first 

demonstration of IMS-MSn to putatively identify plasma metabolites in comparative 

analyses. Both ‘omic analyses demonstrate the ability of the IM-MS separation compare 

all spectra without dataset alignment.   
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 The described instrument is similar to that coupling IMS-LIT analysis with 

photodissocation capabilities;[29, 42] however, this work describes unique ion 

fragmentation techniques such as the combination of two different methods (IMS-CID 

and ETD-MS) as well as MS4 of mobility-selected ions.  The direction of future 

instrumentation development is discussed while considering improvements for complex 

mixture analysis. 

2.2. Materials and Methods 

Cytochrome c (Equine, 95%) was purchased from Sigma Aldrich (St. Louis, MO) and 

used without further purification.  Phosphorylated peptide standards (95% purity) with 

sequences of KRPsQRHGSKY-NH2 and SFVLNPTNIGMsKSSQGHVTK were 

purchased from AnaSpec (Fenton CA) and used without further purification.  The 

peptide, KKDDDDDIIKIIK (~90%)was purchased from Genscript. Ultra-pure 

(chromatography grade) deionized water, methanol, and formic acid (Fisher Scientific, 

Fair Lawn, NJ, USA) were used to generate stock and ESI solutions of the peptide and 

proteins. 

2.2.1. Phosphoproteomic Samples 

 Cytochrome c (1.0 mg) was diluted in 1.0 mL of deionized water.  Urea was 

added to a final concentration of 1.5 M.  TPCK-treated trypsin was added at a ratio of 

1:20 (trypsin:cytochrome c) and the sample was incubated overnight.  The tryptic digest 

(100 μL) was diluted 10 fold in ESI solution (1:1 water:methanol and 1% formic acid) 

and 10 µg (0.01 µg· µL-1) of the phosphorylated peptide standard (KRPsQRHGSKY-

NH2) was added to the solution. 

2.2.2. Rat Exposure to TiO2 Nanoparticles  
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 Rat plasma samples were obtained from the West Virginia University Center for 

Cardiovascular and Respiratory Sciences, School of Medicine, Morgantown, WV. The 

ENM exposure apparatus and organism handling were described in detail 

previously.[45, 46] Briefly, Male Sprague Dawley rats (175 - 250 g) were purchased 

from Hilltop Laboratories (Scottsdale, PA), and housed in laminar flow cages under 

controlled temperature and humidity conditions and a 12 hr light/12 hr dark cycle at the 

West Virginia University Health Sciences Center vivarium. Food and water were 

provided ad libitum. All animals were acclimated for 72-hours before nanomaterial 

inhalation exposure. To ensure that all methods were performed humanely and with 

regard to alleviation of suffering, all procedures were approved by the Institutional 

Animal Care and Use Committee of West Virginia University.  

 To profile the metabolomes at different post-exposure times, blood was collected 

directly after exposure to TiO2 nanoparticles and 24 hours post exposure for control 

(filtered air) and exposed animals. During exposure, rats were placed into a home-built 

chamber specifically designed to deliver the nanoparticles. An aerosolized stream of 

TiO2 was introduced into the chamber for three hours to deliver an estimated pulmonary 

load of 30 µg per animal. Blood samples were immediately centrifuged for 10 minutes at 

2500 g to produce plasma. The plasma was stored at -80 °C until preparation. 

Hereafter, plasma samples generated directly after exposure and 24 hours post 

exposure is referred to as EXP0 and EXP24, respectively.  For control animals, the 

same time point samples are referred to as CNTRL0 and CNTRL24.  

2.2.2.1. Metabolite Extraction 
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 Pooled plasma samples were prepared from the 40 individual samples by 

combining 25-µL aliquots. Using a temperature-controlled micro-centrifuge digital dry 

bath (Lanbnet International, Inc, Edison, NJ, USA), 400 µL of 80oC methanol is added to 

100 µL of pooled sample.  The samples were vortexed and incubated first at 80 oC (5 

mintues) and immediately transferred to ice (5 minutes). Proteins were pelleted using 

centrifugation (ThermoScientific, San Jose, CA, USA) at 13,000 g for 20 minutes at 4 

oC. The supernantuant (~375 µL) was combined with 300 µL 18 MΩ H2O:5% formic 

acid. Samples were delivered by a syringe pump (KD scientific Holliston, MA, USA) 

using a 500-µL syringe (Hamilton, Reno, NV, USA) to a pulled-tip nano-electrospray 

emitter (350 μm o.d.×75 μm i.d.).  The sample flow was maintained at 300 nL·min-1 and 

a bias of 2.2 kV was used to perform electrospray ionization (ESI)[47] of the metabolite 

mixture. 

2.2.3. IMS-MS: Instrumental Operation 

 IMS theory,[48-51] instrumentation[32, 52-58] and techniques[43, 59-62] are 

described elsewhere in great detail. For these experiments, the IMS-MS instrument 

consists of a dual ion funnel/ ion gate design coupled to a LTQ Velos (Thermo Electron, 

San Jose, CA, USA) mass spectrometer similar to that reported previously.[29, 42]  

Figure 1.1 shows the instrument schematic designating the locations of the ion funnels, 

ion gates and ion activation regions within the drift tube. The mass spectrometer has 

been modified by replacing the ion source and s-lens assembly with a stacked-ring ion 

drift region (Figure 1.1). Briefly, electrosprayed ions enter into a desolvation region and 

are focused through an hour-glass ion funnel (F1 in Figure 1.1).[13, 63] Ions are trapped 

in F1 and periodically pulsed into the drift tube.  The drift tube is filled with He buffer gas 
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(~2.5 Torr at 300 K). Ions traverse the drift tube under the influence of a uniform electric 

field (~11 V·cm-1) and separate based on differences in their mobilities. Upon reaching a 

selection gate (G2 in Figure 1.1) ions pass into a second ion funnel (F2) used to radially 

focus the ion cloud.[34, 35] The ions subsequently exit the drift tube through a 

conductance-limiting aperture and are focused by quadrupole and octopole rf guides 

before entering into the higher pressure linear ion trap followed by subsequent mass 

analysis in the lower pressure trap. 

2.2.3.1. Recording Two-Dimensional (2D) tD(m/z) Distributions.   

 Ion gates (Figure 1.1) are constructed using Ni gridded lens (90% transmittance 

mesh; Precision Eforming, Cortland, NY, USA). A single, gridded lens located 

immediately after the first funnel (F1 in Figure 1.1) serves as the first ion gate (G1 in 

Figure 1). Ions are pulsed into the drift region at G1 (-40 V) for 150 µs every 20 to 30 

ms. Data used to construct ion tD distributions are collected using a time-delayed 

voltage drop (-3 V) applied to G2.  The time delay for opening G2 relative to the 

initiation pulse at G1 using a step resolution of 0.15 ms (tryptic digest sample) and 0.2 

ms (metabolite extract sample) was scanned across the mobility distribution range.  For 

the tryptic digest this range was 4 ms to 12 ms resulting in 41 mobility-resolved mass 

spector.  For the metabolite sample, the range was 3.4 ms to 15 ms yielding 59 mobility-

resolved mass spectra.  The mass spectra are combined to create 2D tD(m/z) datasets 

(see below). The introduction pulse at G1 and variable delay settings at G2 are 

controlled by 2 four-channel digital pulse generators (Standford Research Systems, 

Sunnyvale, CA, USA). 

2.2.3.2. Parallel Dissociation Methods.  
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  Parallel dissociation within a drift tube, (IMS-CID-MS, IMSn-MS) has been 

previously described in detail[36, 38] and demonstrated for ‘omics applications[7]. 

Briefly, mobility separated ions are subjected to energizing collisions at the second ion 

activation region (IA2 in Figure 1.1). For dissociation, the voltage between the last two 

electrodes of the F2/IA2/G2 assembly (Figure 1.1) is elevated to ~220 V over a length of 

~0.3 cm.  This produces a field of ~700 V·cm-1 to induce ion fragmentation prior to 

entering the mass analyzer.  Thus low-field settings (~11 V·cm-1) and high-field settings 

(~700 V·cm-1) are employed to transmit precursor and fragment ions, respectively. For 

neutral loss experiments (see below), more gentle activation conditions (~453 V·cm-1) 

are employed in the collisional activation region. 

2.2.4. Mass Spectrometry Measurements  

 Mass spectra are generated for all ions by deactivating the dual drift tube gates 

and setting the mass analyzer scan parameters over a m/z range of 80 to 2000 while 

enabling the automatic gain control (AGC).  The AGC threshold is 1×106 ions.  In this 

operational mode, the drift tube acts to transmit all ions into the mass analyzer. During 

tD distribution generation, the gates are activated to transmit a specific mobility into the 

linear trap. For these analyses, the AGC is disabled and sample injection times of 400 

ms (4 microscans) for the tryptic digest and 100 ms (1 microscan) for the metabolites 

are employed. 

 MSn analysis is conducted by mobility-selecting and isolating (m/z) a precursor 

ion. For experiments employing CID in the ion trap, a m/z isolation window of ±1.0 Da 

relative to the centroid m/z value results in the ejection of all other ions within the tD 

window. Selected ions are collisionally activated by a resonant rf excitation waveform 
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for 10 ms using a normalized activation energy of 35.0%. Fragment ions displaying 

sufficient signal-to-noise (S/N) levels are isolated in the linear ion trap and subsequently 

fragmented.  For experiments employing ETD, a m/z isolation window of ±1.0 Da 

relative to the centroid m/z value was utilized.  The acquisition time was set at 100 ms.  

All precursor and fragment ion spectra were recorded using the XCalibur 2.2 software 

suite (ThermoScientific, San Jose, CA). 

2.2.5. Generating IMS-MS Datasets 

 Two-dimensional IMS-MS datasets are generated by converting each tD-selected 

mass spectrum (.RAW file) to a separate text file.  Using software developed in house, 

the m/z values  and intensities from all of the text files are then associated with the 

respective tD selection time generating a three-column array text file containing (tD, m/z, 

and intensity values).  Intensity filters are applied to generate three-column array files of 

manageable sizes.  To generate tD distributions for specific ions (including fragment 

ions from parallel dissociation), a separate program (in house) integrates all intensities 

within a user-defined m/z range for each tD window.  As mentioned above, this is termed 

a XIDTD.[42]   

2.2.5.1. Comparing of IMS-MS Datasets.   

 IMS-MS [tD(m/z)] datasets (triplicate measurements) were compared across the 

four metabolite samples using intensity integration for user-defined pixels over a 

designated range in the tD(m/z) distribution.  For these comparisons, each pixel 

represented m/z and tD windows of 2 m/z units and 500 µs, respectively.  Data 

normalization is performed by dividing all integrated pixels in the IMS-MS dataset by the 
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total ion intensity. Because of the high-reproducibility of the IMS measurements, 

alignment of dataset pixels was not performed. 

2.2.6. Detection Limit Sample Preparation 

 A model peptide of sequence KKDDDDIIKIIK (Genscript, ~90%) was prepared in 

1:1 18 MΩ H2O:methanol containing 1% formic acid at a stock concentration of 

1mg·mL-1. Using a serial dilution method, a working sample (0.1 µg·mL-1) was prepared 

for sensitivity studies. The working sample was delivered by a syringe pump (KD 

scientific Holliston, MA, USA) using a 500-µL syringe (Hamilton, Reno, NV, USA) to a 

pulled-tip nano-electrospray emitter (350 µm o.d.×75 µm i.d.). The sample flow was 

maintained at 60 nL·min-1 and a bias of 1.7 kV was used during direct infusion of the 

sample solution. 

2.3.1.2. Dynamic Range Studies 

 A phosphopeptide standard (Anaspec, Fenton , CA) having a sequence of 

SFVLNPTNIGMsKSSQGHVTK (M.W. 2316.6) was added to the trypic digest solution at 

a concentration of 0.01 µg·µL-1. The standard was chosen due to efficient ionization 

properties. During IMS-MS dataset generation of the tryptic digest, the 

[SFVLNPTNIGMsKSSQGHVTK +3]3+ ion (m/z 771.9) was evaluated (XIDTD) for 

maximum intensity because it produced the largest signal. In addition to this ion, the 

signal level for the low-intensity [KYIPGTK+1H]1+ peptide ion from the cytochrome c 

digest was also evaluated from a XIDTD.  

2.2.8. Principal Component Analysis (PCA) 

 Using the JMP statistical software package (JMP, Version 7. SAS Institute Inc., 

Cary, NC, 1989-2007) PCA has been performed for the triplicate analyses of each 
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cohort.  For PCA, inputs included the normalized pixel intensities (see above).  A 

comparison of dataset features providing the greatest contribution to distinguishing the 

datasets by PCA is performed using the loadings matrix (LM) values for all pixel inputs.  

High LM scores (≥ 0.90 in absolute value) along principal component one (PC 1) result 

in the determination of pixels for which dataset features exhibit large differences in 

intensity. 

2.2.9.Exact Mass Measurements.  

 A Q-Exactive Orbitrap mass spectrometer (Thermo Scientific, San Jose, CA, 

USA) has been used for exact mass measurements. Briefly, the EXP24 sample is 

introduced by direct infusion through a heated electrospary source inlet (HESI) using a 

2.5 kV spray voltage bias relative to the entrance orifice and a capillary temperature of 

250 oC. The generated ions pass through the S-lens ion guide (60.0 V) and are 

subsequently transferred into an Orbitrap mass analyzer. The Orbitrap is scanned from 

m/z 100.0 to 1000.0 with a resolving power of 140,000. A target AGC of 1.0x106 with a 

200 ms injection time has been used for the analysis. 

2.3. Results and Discussion 

2.3.1. Instrument Figures of Merit 

 Instrument figures of merit. A number of the measurement capabilities of the 

instrument are here reported to provide context for its utility in complex mixture analysis. 

The resolving power (tD/∆tD FWHM) capabilities of the instrument can be provided from 

the XIDTDs of a number of singly-charged peptide ions. The singly-charged ions are 

used because they are observed in a less congested area of the two-dimensional (2D) 

IMS-MS dataset and therefore are less influenced by overlapping ions. For the peptides 
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[MIFAGIK+H]+ , [YIPGTK+H]+ , and [GITWK+H]+ resolving power values of 36, 46, and 

40 have been computed. It is noted that for this 1-m long drift tube, the resolving power 

is somewhat limited by the gate width of the second ion gate (G2 in Figure 1.1)Because 

of the finite distance (3 mm) of the Tyndall gate, a relatively large “open” time is required 

to transmit the ions of interest. This will limit the achievable resolving power. Increasing 

the drift tube length to 2 m and 3 m would lessen the effect of this drift time (tD) bin size.  

2.3.1.1. Detection Limit Studies 

 The detection limits of the instrument have been determined for individual 

peptide ions. This is accomplished by serial dilution of a given peptide in ESI solution 

until ion signals are just perceptible for mobility-selected species. Figure 2.1 shows the 

mass spectral peak for mobility-selected [M+3H]3+ ions of the model peptide 

KKDDDDDIIKIIK. Here, the concentration of the peptide was 0.1 µg·mL-1. The 

spectrum represents a 1.0 second signal averaging from a 6 second data acquisition. 

The signal-to-noise ratio (S/N) of 31 suggests that detection limits (S/N = 3) for this 

peptide are 64 attomoles. Based on signal levels for other peptides, it is estimated that 

the detection limits for mobility-selected ions (dominant charge states) are generally 

tens of attomoles. 
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2.3.1.2. Dynamic Range Studies 

 The dynamic range of the instrument can be estimated by comparisons of peak 

intensities from IMS-MS datasets. An example comparison of XIDTDs for two different 

ions is shown in Figure 2.2. Only peptides having a m/z that could be used for 

identification were used for dynamic range determination. Figure 2.2A shows the XIDTD 

for the cytochrome c tryptic peptide, [KYIPGTK+1H]+ having m/z 806.5. The low-

intensity feature at tD ~11.2 ms is observed to fall within the singly-charged trend line 

shown in Figure 2.3A (see below). The integrated intensity for m/z 806.5 is ~37. Figure 

2.2B shows data for a phosphorylated peptide standard having a m/z 771.9. The XIDTD 

shows a dominant conformation at 7.4 ms followed by unresolved larger conformations. 

Here, the integrated area is 43764. These numbers demonstrate at dynamic range of 

>1.0x103. Here we note that a higher dynamic range is observed when using lower-

signal species (integrated intensities of ~5 counts – above the S/N threshold of 3). Such 

Figure 2.1. Mass spectrum showing the [M+3H]
3+

 ions of the KKDDDDDIIKIIK 

model peptide. Parameters for spectrum collection included a 1000 ms trap 

injection time. The ion current was averaged over 1 second. 
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ions cannot be identified as cytochrome c digest ions however, and therefore the 

dynamic range is presented as >104. 

 

 

  

 

2.3.2. Phosphopeptide Analysis 

Figure 2.3A shows a heat plot of the 2D tD(m/z) dataset of the cytochrome c digest 

containing the phosphorylated peptide standards. Tryptic peptide ions are observed to 

exist predominately as [M+2H]2+ and [M+3H]3+ ions exhibiting similar tD(m/z) trends as 

reported previously.[1]  Most spectral features appear between ~5 ms to ~ 9 ms and are 

observed within the 400 to 1000 m/z range. The data in Figure 2.3A represents a 

number of ions exhibiting an intensity range of 103.  

 The highly-tunable nature of the IMS-CID process[36, 37] can be combined with 

the efficient mobility separations[64, 65] to characterize phosphorylated peptides in 

tryptic digests.  Because the bond dissociation energy of the phosphate modification is 

lower than that of backbone amide fragmentation, an IMS-CID approach that employs 

gentle activation (~450 V·cm-1) can be utilized.  Here a goal is to increase the activation 

Figure 2.2. (A) XIDTD of the cyochrome c tryptic peptide ion, [KYPIGTK+H]
+
, of m/z 806.5. 

That dataset feature corresponding to these ions is centered at tD = 11.2 ms. (B) XIDTD of 

the [SFVLNPTNIGMsKSSQGHVTK+3H]
3+

 ions of m/z 771.9. The entire tD distribution 

corresponds to these ions 
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voltage in IA2 (Figure 1.1) until neutral loss (H3PO4) is observed while preserving much 

of the other tryptic digest peptide ions. This allows for a more straightforward analysis of 

precursor and product ions similar to ion trap experiments described previously.[40, 41]  

2.3.2.1. Aligning Extracted Ion Drift Time Distributions (XIDTDs) 

 For matching the precursor and neutral loss fragment ions, it is useful to evaluate 

the XIDTDs.  Figure 2.3A shows the XIDTD of the [KRPsQRHGSKY-NH2 + 3H]3+(m/z 

475.2) ions as an inset. This peptide exhibits a broad mobility profile containing more 

compact (tD= 5.2 ms) and more elongated (tD = 6.4 ms) species.  Figure 2.3B shows 

tD(m/z) data generated from IMS-CID of the digest mixture. The m/z difference between 

the precursor ion and the neutral loss product ion is 32.6, which is consistent with the 

loss of H3PO4 for the triply-charged ion. The XIDTD of the neutral loss product ion is 

shown as an inset in Figure 2.3B revealing a slightly broader distribution with 

conformational maxima matching the precursor XIDTD profile (5.2 ms and 6.4 ms).  A 

difference in the distributions is the higher intensities observed for more elongated 

species in the IMS-CID dataset.  That said, the tD matching of the dominant features in 

the XIDTDs helps confirm the origin for much of the ions.  The differences in the 

distributions may arise from the presence of overlapping lower-intensity fragment ions. 

2.3.2.2. IMS – CID – ETD – MS of Precursor and Fragment ions 

Both the intact precursor and neutral loss ions are present in the same tD(m/z) 

distribution (Figure 2.3) and either can be mobility-selected and m/z isolated for further 

characterization by ETD. Figure 2.4A and B show the ETD spectra for the intact 

precursor and neutral loss fragment ions, respectively. Here the z-ion series is most 

informative for observing the site of phosphorylation. That is, for the precursor ETD  
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m
/z

m
/z

drift time (tD)

Figure 2.3 (A) Two-dimensional (2D) tD(m/z) heat-plot of a cytochrome c tryptic digest containing 

the phosphorylated peptide standard [KRPsQRHGSKY-NH2 (m/z 475.2)]. The color map for the 

plot is shown on a logarithmic scale ranging from -2 to 3 in order to show the low-intensity [M+H]
+
 

ions.  (B) Expanded region of a 2D tD(m/z) heat-plot for the same digest sample upon performing 

IMS-CID.  The same color scale is used. The XIDTDs of the precursor and neutral loss product 

ions are shown as insets on the respective 2D plots. An asterisk denotes the location of the 

precursor ion both 2D plots. 



63 
2. A New Ion Mobility – Linear Ion Trap for Complex Mixture Analysis 

 fragments, the z8 ion at m/z 1025.4 reveals residue-specific phosphorylation. 

Comparatively, in the neutral loss product ion spectrum, the same z8 ion has a m/z 

value of 946.4. As expected, lower z-series ions for both the precursor and neutral loss 

ions demonstrate the same m/z values. For larger ions (> z8 ion), those originating from 

the precursor species are higher in m/z due to the addition of the phosphate moiety. 

Also noticeable in the spectra are the ETD charge-reduced species that further confirm 

the neutral loss product ion. In the case of the [M+3H]2+• ions, the precursor m/z is 

712.4, while the product ion m/z is 663.4. The m/z difference (49) is consistent with the 

neutral loss of H3PO4 for the doubly-charged ion.   

 

 

 

 

 

 

[KRPsQRHGSKY-NH2 + 3H]3+(m/z 475.2)

[KRPSQRHGSKY-NH2 + 3H]3+(m/z 442.6)

A.

B.

Figure 2.4 (A) and (B) Mobility-selected ETD spectra of the precursor and neutral loss ions, 

respectively. Identified fragment ions are labeled. Several identified c- and z-ions are are labeled 

as well as the charged reduced molecular species. The z8
*
 fragment ion denotes the neutral loss 

of H3PO4 by IMS-CID. This fragment ion corresponds with the S
4
 residue for the model 

phosphopeptide.  
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The use of ion trapping instruments without ETD capabilities often requires at 

least MS3 to determine the site of phosphorylation.[66, 67]  As a result, the technique 

requires relatively higher ion signal levels for informative higher-order MSn results. The 

use of IMS-CID-ETD-MS for PTM peptide precursor scans is unique in that neutral loss 

ions can be uniquely matched back to the precursor based on XIDTDs; this can be 

followed by ETD-MS of the intact precursor for site specific PTM determination.  Such a 

technique also represents an enhanced scanning approach compared to that employing 

CID and ETD in an ion trap[40, 41] as the mobility matching and selection would help to 

identify precursor ions and improve their isolation for PTM site determination.  

 It is also noted that the IMS-CID technique is data independent. That, is 

fragmentation of the precursor ions are signal dependent to trigger CID. Instead, IA2 is 

used to preferentially fragment the phosphodiester bond. In turn any produced fragment 

ions are matched based on XIDTDs for ETD-MS analysis.  This further differentiates the 

technique from other MS/MS methods. 

2.3.3. A Comparative IMS – MS Analysis of Metabolimic Samples 

 2D IMS-MS datasets have been recorded in triplicate for the four metabolite 

extract samples.  Figure 2.5, shows the tD(m/z) heat plot of metabolites obtained from a 

single IMS-MS analysis of the EXP24 pooled sample.  For all datasets, spectral features 

are first observed at ~3.4 ms and extend to ~15.0 ms; the highest intensity metabolite 

features exist between ~8.0 ms to ~9.0 ms.  In general, dataset features are observed 

over a wide m/z range from ~80 to ~1200 with the ions exhibiting the greatest intensity 

being observed over a m/z range of ~500 to ~650. Using the pixel integration sizes 
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mentioned above, dataset pixel intensities for 19,000 separate tD(m/z) regions range 

from 0 to >104. 

 

 

 

2.3.3.1. PCA of Sample Cohorts 

 The two-dimensional PCA plot obtained from triplicate measurements of the 

samples is shown in Figure 2B.  Overall PC 1 contributes the greatest to the 

differentiation of all samples, with only a small degree of variation along PC 2. Data 

Exposed 24 hr

Figure 2.5 (A) 2D tD(m/z) heat-plot of one replicate analysis of the EXP24 metabolite sample.  

The color map for the plot is shown on a logarithmic scale ranging from -2 to 3 in order to show 

low-intensity features. 
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points for triplicate measurements for both CNTRL0 and CNTRL24 are observed to 

cluster more toward the center of the PCA plot (Figure 2.6A).  Comparatively, points for 

the EXP24 and EXP0 samples show a slightly higher degree of variation associated 

with PC 1.  Therefore, the separation along PC 1, to a greater degree, is related to 

differences in dataset features associated with organism post exposure time.  PC 1 then 

becomes a factor for focusing the analysis to a select number of spectral features (see 

below). It is worth noting that, compared to triplicate LC-MS experiments (data not 

shown), replicate dataset similarity is increased for the IMS-MS datasets. 

 Dataset features with the greatest contributions to distinguishing the pooled 

samples via PCA can be identified from the loadings matrix (LM) as shown in Figure 

2.6B. Comparing data recorded for the EXP24 and EXP0 samples, LM values that 

exhibit high positive x-values correspond to a direct correlation for the EXP0 sample; 

that is, these tD(m/z) regions exhibit higher intensities, in general, for this sample.  

Conversely, the pixel intensities associated with the largest negative LM values 

correspond to an inverse correlation for the EXP0 samples.  The absolute value of LM 

scores for dataset features exhibiting m/z values of 542.3 (tD = 7.4 ms) and 518.3 (tD = 

7.4 ms) are 0.98 

and 0.97 respectively, representing the greatest contributions to the PCA.  These 

dataset features as well as those for several other metabolites having LM values ≥ 0.90 

in magnitude are considered for further analysis and tentative metabolite identification.  

Although somewhat arbitrary, this threshold provides a stringent filter for focusing the 

analysis on a select few dataset features (35) from hundreds of potential candidates.  
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The dataset features along with tentative assignments obtained from accurate mass 

matching and precursor ion fragmentation are listed in Table 2.1. 

 

 

 

 

2.3.3.2. Comparing Extraction Ion Drift Time Distributions (XIDTDs)  

 Rapid comparisons of percent differences in pixel intensity across multiple 

datasets can reveal features that are significantly different even when they are of much 

lower intensity. Figure 2.7A and B shows the XIDTDs of ions of m/z 518.3 for the 

EXP24 and CNTRL24samples. Dataset replicates of the EXP24 sample show the  

 

A. B.

Figure 2.6(A) PCA of the triplicate measurements for all sample cohorts including, Blue: CNTRL24; 

Red: CNTRL0; Yellow: EXP24; Green: EXP24.  The PCA plot was generating using normalized 

intensities for tD(m/z) pixels from the IMS-MS datasets. (B) Loadings matrix (LM) values showing the 

degree of contribution to PCA separation by specific pixels across all sample cohorts along PC 1 and 

2.  Shaded areas represent those having |LM value| ≥ 0.90. 
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presence of a higher abundance feature at ~7.2 ms.  The average normalized pixel 

intensities for this region in the EXP24 replicates is 0.64 ± 0.02 compared to 0.11 ± 0.01 

for the CNTRL24 replicates.  Similar spectral comparisons can be made for other ions. 

Figure 2.7C and D show that for m/z 732.2, several differences are observed. For 

example the peak intensities for ions with tD ~7.4 ms and ~7.6 ms are greater for EXP   
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 Figure 2.7 (A) Extracted ion drift time distribution (XIDTD) of the ion of m/z 518.3 for the 

CNTRL24 sample (single replicate). (B) XIDTD of the ion of m/z 518.3 for the EXP24 sample 

(single replicate). The XIDTD is obtained by integrating all intensities over m/z range of 6 

(centered about the average m/z of the ion) across all drift times.  (C) XIDTD for m/z 732.2 for 

EXP24 and (D) CNTRL 24, respectively. Each distribution is normalized such that the total area 

under the curve is unity.  The arrow indicates a difference in spectral features between the two 

samples that have been recognized originally in the pixel-by-pixel intensity comparison of the 

2D IMS-MS datasets. 
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24 relative to the CNTRL 24 sample cohorts. Although the features in the XIDTD cannot 

be ascribed to different gas-phase conformers or isobaric ions, Figure 2.7 shows the 

ability to rapidly compare distinguishing dataset features that may otherwise not be 

considered to be significantly different between samples by MS analysis alone.  

Additionally, the comparison reveals the high-reproducibility of the measurement.  

Without having to employ peak (pixel) alignment techniques, the coefficients of variation 

for the low-intensity m/z 518.3 feature are ~3% (EXP24 replicates) and ~9% (CNTRL24 

replicates). 

2.3.3.3. IMS – MSn Experiments for Metabolomic  Analysis 

 The low-pressure drift tube allows trapping of electrosprayed ions increasing the 

overall sensitivity and enabling MSn experiments for mobility-selected ions. To 

demonstrate this capability, metabolite ions exhibiting a tD of ~8.2 ms and having m/z 

518.3 have been selected for MSn analysis.  A precursor mass search of the Human 

Metabolome Database (HMDB)[68] presented the sodiated lysophosphatidylcholines 

LysoPC(16:0) as the top match.  MS2 of this ion yields essentially one fragment ion at 

m/z 459.2 as shown in Figure 2.8A.  This ion could indicate the loss of a methylated 

ammonium head group (m/z 59) that is characteristic to many LysoPC.[69, 70]  

Fragments that displayed the highest S/N ratios have been used in subsequent 

fragmentation experiments.  For example, activation of the m/z 459.2 ion produced from 

the mobility-selected m/z 518.3 precursor yields several peaks including those at m/z 



71 
2. A New Ion Mobility – Linear Ion Trap for Complex Mixture Analysis 

 

 

 

 

 

 

313.2, 335.2, and 415.2.  Isolation of m/z 313.2 ions allows for MS4 analysis that 

produces several features. Although not possible to assign all fragment ions, the peak 

at m/z 257.2 is consistent with the alkyl chain and ester region of a LysoPC molecule.  

When compared to the feature at m/z 257.2, the product ion with m/z 239.2 indicates a 

loss of water.  Additionally, a number of low m/z fragments differing by 14 Da is 

consistent with fragmentation of the aliphatic chain of a LysoPC molecule.  The inset in 

Figure 2.8A shows a schematic representation of the sodiated LysoPC(16:0) molecule 

and the observed fragments that are consistent with those obtained from the precursor 

ion of m/z 518.3.   

m/z 542.3
m/z 518.3

m/z 439

m/z 147

m/z 337

m/z 147

m/z 313

m/z 415

m/z 459

m/z 257
m/z 337 + Na+

Figure 2.8 (A) Multistage tandem mass spectrometry (MS
n
) of the drift selected (tD 8.2 ms) 

precursor ion of m/z 518.3. The top spectrum shows the MS
3
 spectrum obtained upon activation 

of the major product ion (m/z 459.2) generated during MS/MS (spectrum not shown). The bottom 

spectrum shows MS
4
 fragments produced by selecting the ion of m/z 313.2 from MS

3
 

experiments. (B) MS
n
 of the drift selected (tD 8.2 ms) precursor ion m/z 542.3. The top panel 

shows the MS/MS spectrum resulting in the dominate fragment ion m/z 483.2. The bottom 

spectrum shows the MS
3
 upon collsionally activated of m/z 483.2. Several identified fragment 

ions are labeled in each respective panel and referenced back to the tentative structures (below 

respective spetrum. The peak marked with an asterisk indicates the m/z selected for subsequent 

MS analysis. 
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 Similar fragmentation is also observed for the mobility selected ion of m/z  

542.3. Figure 2.8B shows the MS2 spectrum from m/z 542.3 where a dominate ion of 

m/z 483.2 was observed. This fragment ion is indicative of the choline head region (m/z 

~59). For the MS3 scan, the fragment ion of m/z 483.2 was selected and collisionally 

activated. Several fragments ions are observed and are consistent with a LysoPC. For 

example, m/z 125.3 is consistent with the loss of the phosphate region minus to the MS2 

loss of the choline. The fragment ion m/z 337.1 may indicate that the alkyl chain may 

contain two alkene regions. However, the exact locations of these regions were not 

capable of being identified do to signal restraints.    

 The tentative molecular assignment obtained from the MS4 and MS3 spectra from 

both ion experiments is further supported by accurate mass matches (± 0.5 ppm) 

obtained by direct electrospray of the sample into a Q-Exactive Orbitrap 

(ThermoScientific) mass spectrometer. Such assignments are presented as tentative as 

biomarker discovery efforts would require exact mass and ion fragmentation matches to 

molecular standards.  That said, the IMS-MS instrumental approach is presented here 

as a means to rapidly provide candidate molecules for which confirmatory experiments 

can be conducted.  

2.3.3.4. IMS – CID – MS Measurements  

 Not requiring user defined isolation and fragmentation of each individual ion, 

shotgun proteomics experiments have demonstrated that parallel dissociation[43] of 

ions in a drift tube offers significant advantages in terms of speed.[7, 71]  Such a speed 

increase using the current IMS-MS instrument can be advantageous for rapid 

comparative metabolomics analyses as well.  Figure 2.9A shows a 2D IMS-CID-MS  
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dataset for the EXP24 metabolite extract sample.  Here, increased ion intensity is 

observed in high- and low-m/z regions indicating ion dissociation. A comparison of the 

mass spectra extracted at tD~8.2 ms is shown in Figure 2.9B and C. The top panel in 

Figure 2.9B shows that the extracted mass spectrum (tD ~ 8.2 ms) is mostly void of 

detectable spectral features below m/z ~ 350. Because of the mobility separation, 

increase analytical space is afforded and is advantageous during IMS-CID experiments. 

For example, IMS-CID-MS of the EXP24 sample resulted in new spectral features 

observed in the lower mass spectrum (Figure 2.9C), which are free of spectral 

interferences at tD ~ 8.2 ms. It therefore becomes instructive to identify the fragment 

ions and their origin.  
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Figure 2.9 (A) Two-dimensional (2D) tD(m/z) heat-plot of the EXP24 sample obtained from an 

IMS-CID-MS experiment.  The color map for the plot is shown on the same scale as described in 

Figure 1. (B) Comparison of the mass spectra produced after IMS-MS (top) and IMS-CID-MS 

(bottom). The white dashed line in panel A denotes the mass spectra extracted in the bottom 

panel B. the starred peaks indicate new spectral features not observed in IMS-MS experiments of 

thsame sample. Several new spectral features have been identified. 
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 A particular advantage of IMS is the ability to separate ions based on molecular 

class. McLean and coworks showed that lipid classes share similar functionality and 

thus intrinsic gas phase conformations.[72] With this in mind, Figure 2.9C shows that 

several spectral features are consistent with LysoPC molecules at tD ~8.2 ms. Here, m/z 

values consistent with dissociation of the choline head region and phosphodiester bond 

are observed in Figure 2.9. Notably, these ions also observed during MSn experiments 

(see above) on mobility selected (tD ~8.2 ms) and tentatively identified LysoPC 

molecules (Table 2.1). Taken collective, these results suggest that the IMS-CID-MS 

approach can be utilized to aid in identifying molecular classes not only on intrinsic 

structural packing, but also through fragmentation characteristics using IMS-CID.  

 

  

 

 For complex mixtures, the data in Figure 2.9A show the challenge in associating 

fragment and precursor ions by IMS-CID due to increased spectral complexity. While 
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Figure 2.10 (A) XIDTD for the fragment ion m/z 459.3 (top) and precursor ion m/z 518.3 (bottom). 

(B) XIDTD for the fragment ion m/z  483.3 and precursor ion m/z 542.3 for top and bottom panels 

respectively. All XIDTDs were collected during from IMS-CID-MS of a single EXP24replicate  
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some ions can be identified as unique to a particular lipid class, assigning the origin of 

fragment ions is more difficult.  One method that may help alleviate this problem is 

comparison of XIDTDs. The utility of this approach for distinguishing precursor ions with 

overlapping mobilities has been shown previously in IMS-photodissociation (PD)-MS 

experiments.[42]  Figure 2.10A shows an example comparison of the XIDTD for the 

precursor ion of m/z 518.3 (bottom panel) and the XIDTD for the fragment ion of m/z 

459.3 (top panel).  Overall the two distributions are very similar.  Each exhibits a major 

peak maximum at a tD value of ~8.2 ms.  In each XIDTD a second peak a tD of ~10.0 ms 

is also observed.  Differences are observed in that the XIDTD of the precursor ion 

exhibits a small feature at a tD ~6.8 ms. Another example of XIDTD matching is shown 

in Figure 2.10 B. Here, the XIDTD for the fragment ion m/z 483.3 is matched with the 

precursor XIDTD for m/z 542.2. Overall, the XIDTDs for m/z 483.3 and m/z 542.3 are 

also very similar. For example, the maximum peak intensity is observed at tD ~8.2 ms, 

followed by a smaller spectral feature at tD ~10.0 ms. Also noted is the slightly broader 

distribution observed for these XIDTDs (Figure 2.10B).  

 It is instructive to compare panels A and B in Figure 2.10 since both precursor 

ions display similar spectral features (tD values ~8.2 ms and ~10.0 ms). Here, both 

fragment ions are show similar features; however, the overall XIDTDs for each fragment 

ion appears to correctly reflect the drift profile of the corresponding precursor ion. This is 

largely attributed to the dual gate design, where mobility information is passed from the 

precursor ion to the fragment ion before mass analysis. Using the IMS-CID-MS in a high 

throughput fashion, the method appears specific. That is, XIDTDs between precursor 

and fragment ion are capable of being match base on coincidence in drift time. It is also 
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noted that no spectral alignment was made between these datasets (Figure 2.10A and 

B). Another observation is that for each panel in Figure 2.10A and B, the same fragment 

ions were generated during MS/MS (Figure 2.8A and 2.8B) of the respective precursors 

ions. This adds a layer of confidence in the XIDTD assignments.  

 

  

 

 A semi-quantitative assessment can be performed to rank the comparison of two 

XIDTDs.  As a proof-of-principle study, Figure 2.11A shows the fragment ion of m/z 

475.2 that has been matched to m/z 534.2 precursor ions in a similar manner as 

described above. Figure 2.11B shows the percent difference in XIDTDs for two different 

precursor ions (m/z 496.3 and 534.2) relative to the XIDTD of the fragment ion (m/z 

475.2). The percent difference in Figure 2.11B for m/z 534.2 (solid trace) has a smaller 

integrated intensity (~3 times) relative to m/z 496.3 (dashed trace).  Accurate mass 

matching in Table 2.1 show the precursor ion of m/z 534.2 is consistent with potassiated 

A. B.

5 10 150 5 10 150

n
o
rm

a
liz

e
d
 i
n
te

n
s
it
y

p
e
rc

e
n
t 

d
if
fe

re
n
c
e

0

5

10

15

20

25

drift time (ms) drift time (ms)
Figure 2.11 (A) XIDTD (top trace) and XIDTD (bottom trace) for the precursor and fragment 

ions of m/z 534.2 and 475.0, respectively.  (B) Percent difference plots obtained upon 

comparison of the XIDTD for the fragment ion of m/z 475.0 and the XIDTDs of the precursor 

ions of m/z 534.2 (solid trace) and 496.3 (dashed-line trace).  Each distribution is normalized 

such that the total area under the curve is unity. 
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LysoPC(16:0). The IMS-CID-MS product ion of m/z 475.2 suggests the loss of the 

methylated ammonium in the choline head group for this tentative assignment. 

2.2.4. Instrumental Implication for Comparative Analsyses 

 Although the data provided here present a proof-of-principle demonstration of 

instrumentation capabilities, several improvements are envisioned to yield more 

effective comparative analyses.  Increased IMS resolving power would better disperse 

the overlapping (tD dimension) precursor ions (Figure 2.10) and allow for higher 

accuracy association of fragment ions to precursor ions in parallel dissociation 

experiments.  Additionally, adaptations in drift tube design would allow for fragmentation 

of mobility-selected precursor ions followed by parallel dissociation and mobility 

resolution of fragment ions as demonstrated previously.[30, 38]  An additional 

enhancement can be obtained by coupling off-line LC fractionation with the IMS-MS 

analysis.  Because the IMS separation occurs after the ionization step, ion suppression 

contributes to the observation of the very high-signal LysoPC species observed in the 

middle range of the mass spectrum (Figure 2.5) along with the observation of much 

lower intensity species in other spectral regions.   
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3. Negative Ion IMS-HDX-MS1  

 
1Reprinted with permission from the Journal of the American Society for Mass 
Spectrometry: Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass 
Spectrometry of Anions: Part 1 Peptides to Proteins. Gregory C. Donohoe, Mahdiar 
Khakinejad, Stephen J. Valentine, J. Am. Soc. Mass Spectrom., 2015, 26 (4), 564-576. 
 

3.1. Introduction: A Base for Studying Anionic Proteins  

 The development of soft ionization methods such as electrospary ionization 

(ESI)[1] and matrix-assisted laser desorption (MALDI)[2, 3] presented the unique 

opportunity to study the gas-phase conformations of large biomolecular ions.  Within a 

short time a variety of mass spectrometry (MS)-based techniques were developed for 

the structural characterization of these ions as well as to relate gas-phase conformers to 

antecedent solution structures.[4-20]  One early technique determined the gas-phase 

hydrogen-deuterium exchange (HDX) reactivities of ions comprising different charge 

states of proteins.[6, 21-24]  The observation of different HDX rates and maximum HDX 

levels indicated the presence of coexisting gas-phase conformations.  Early theoretical 

studies resulted in proposed mechanisms for HDX of protonated peptide ions by a 

number of deuterating agents.[8, 22] 

Concurrent to the development of HDX techniques, experimental efforts were 

directed at utilizing ion mobility spectrometry (IMS) coupled with MS for the 

determination of collision cross sections for peptide and protein ions.[9, 19, 20, 25]  

Shortly later, IMS-MS was combined with HDX in order to determine the reactivities of 

specific gas-phase conformers of protein ions. These early IMS-HDX-MS experiments 

provided information about the degree of protection afforded by the protein fold 
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associated with elongated and compact conformations for positively charged 

biomolecules.   

Relative to positive ions, anionic peptides and proteins have received 

considerably less attention.[26] As a consequence, very few studies have been 

performed on negation ions. Because many proteins contain a large number of acidic 

residues, it is useful to develop a sound understanding of the conformational information 

afforded by gas-phase HDX measurements for select conformers from negatively-

charged protein ions.    Similarly the combined IMS-HDX-MS studies described here 

present the first conformer specific analysis of peptide and protein anions.  That said, 

the methods utilized in these studies are similar to those employed previously for the 

characterization of conformers of positively-charged protein ions.[27, 28]  

3.2. Method and Materials 

3.2.1. Sample Preparation 

Samples were selected to allow comparisons of a variety of gas-phase ion 

conformers including those formed from a conformationally-restricted protein (disulfide 

bonds) and globular proteins of increasing size.  The proteins bovine insulin (90%), 

ubiquitin (95%), and equine cytochrome c (95%) were purchased (Sigma Aldrich, St. 

Louis, MO, USA) and used without further purification.  Ultra-pure (chromatography 

grade) deionized water, acetonitrile, and ammonium hydroxide (Fisher Scientific, Fair 

Lawn, NJ, USA) were used to generate stock and ESI solutions of the peptide and 

proteins. The stock solutions were prepared by dissolving 1.0 mg of analyte in 1.0 mL of 

ultra-pure water and were capped in glass vials while being maintained in a refrigerator 

(4 °C); no stock solution was used a week after preparation.  ESI solutions (0.1 mg·mL-
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1) were prepared fresh by diluting 0.1 mL of stock solution with the addition of 0.4 mL of 

ammonium hydroxide and 0.5 mL of acetonitrile. Samples were infused through a 

pulled-tip capillary using a flow rate of 300 nL·min-1.  

3.2.2. IMS-MS: Instrumental Operation 

The use of ion mobility spectrometry for the characterization of biomolecules has 

an extensive history; the development of IMS instrumentation,[19, 25, 29-45] theory[46-

57] and applications[58-62] have been discussed in detail. The IMS-MS instrument used 

in these studies has also been described previously.[63]  A brief description of the 

instrument and data collection and analysis is presented here.  Figure 1.1 shows a 

schematic diagram of the drift tube, linear ion trap instrument used to conduct these 

experiments.  Peptide/Protein ions are generated by electrospraying the ESI solution 

through a pulled-tip capillary.  The capillary is biased at ~-2200 V above the entrance 

aperture of the desolvation region (Figure 1.1).  Here ions are desolvated and focused 

into an “hour-glass” ion funnel [64] (F1/IA1/G1 in Figure 1.1).  Ions are trapped near the 

exit region of the ion funnel and periodically (typically 50 Hz) pulsed into the drift tube.  

The drift tube is filled with He buffer gas (300 K) and supports a drift field of ~10 V·cm-1.   

Ions separate in the drift tube based on differences in their mobilities through the buffer 

gas.  The second ion gate (G2 in Figure 1.1) is employed to select ions of specific 

mobilities for transmission into the LTQ Velos linear ion trap (ThermoScientific, San 

Jose, CA, USA) for mass analysis. 

3.2.2.1. Recording Two – Dimensional (2D) tD(m/z) Distributions 

Delay times between the high-voltage pulse applied to the drift tube entrance 

gate (G1) and the mobility selection gate (G2) are scanned in order to generate IMS-MS 
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datasets. In the current instrument G1 is a single gridded lens and G2 is a Tyndall gate 

located directly in front of the second ion funnel.   G1 prevents ions from entering the 

drift tube using an ~40 V bias relative to first ion funnel exit.  Periodically, a 150 µs-long 

voltage pulse is applied to G1 to allow ions to enter the drift tube.  The Tyndall gate, 

with a bias of ~10 V, neutralizes all ions with the exception of those selected for 

transmission by the time delay of the voltage pulse applied to G2 relative to G1.  The 

timing of G1 and G2 is synchronized by two four channel digital/delay pulse generators 

(Stanford Research Systems, Sunnyvale, CA, USA).  Drift time (tD) delays are scanned 

from ~3 ms to ~15 ms (200 µs increments) to encompass the entire tD range of all ions 

produced by ESI. 

3.2.3. Mass Spectrometry Measurements  

Total ion mass spectra are generated by setting the drift tube gates to pass all 

ions.  In this operational mode, all ions pass into the mass analyzer.  The mass analyzer 

scan parameters include a m/z range of 80 to 2000 as well as automatic gain control 

(AGC) with a threshold of 1×106 ions.  For these analyses, sample injection times of 200 

ms (5 microscans) have been utilized. During tD distribution generation, the ion gates in 

the drift tube are activated as mentioned above to transmit ions of a specific mobility 

into the linear trap.  Data acquisition is accomplished by collecting a mass spectrum 

(0.5 min) for each tD selection setting. For IMS data generation, the AGC is disabled 

and a sample injection time of 200 ms (5 microscans) is also employed. 

3.2.4. Generating IMS-MS Datasets 

To generate the two-dimensional IMS-MS dataset, each tD selected mass 

spectrum (.RAW file) is converted to a separate text file.  All x and y data points (m/z 
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values and intensities) are then associated with the respective mobility selection time 

(tD) using software developed in house.  This process creates a three-column array text 

file containing tD, m/z, and intensity values.  Intensity filters can be applied to control the 

size of the three-column array file.  To generate tD distributions for ions of specific m/z 

values, a separate program developed in house integrates all intensities within a user-

defined m/z range for each tD.  In accordance with previous studies, this is called an 

extracted ion drift time distribution (XIDTD).[65] 

3.2.5. Gas Phase HDX Experiment Design  

Gas-phase HDX is accomplished by introducing D2O (>99%, Sigma Aldrich, St. 

Louis, MO, USA) into the drift tube buffer gas system.  First, the D2O was purified by 

several freezing and melting cycles under vacuum.  The pressures of D2O and helium 

are adjusted with two separate leak valves , (Granville Philips, Longmont, CO, USA) 

and monitored using a Baratron capacitance manometer (MKS, Andover, MA, USA).  

For these experiments, the helium pressure is set at 2.50 ± 0.01 Torr.  The partial 

pressure of D2O is varied from ~0.05 Torr to ~0.20 Torr.  tD distributions are first 

recorded in pure He to allow the determination of accurate collision cross sections.  To 

ensure no conformational transitions occur, the tD distributions are monitored upon 

adding D2O as demonstrated previously [23].  Additionally, the D2O uptake for the 

different ions is recorded at different D2O pressures.  The partial pressures of the 

components of the buffer gas system are stable differing by less than ± 0.01 Torr during 

the course of the mass spectral characterization as well and upon removal of the D2O, 

the total pressure quickly re-equilibrates to 2.50 Torr. 

3.2.5.1. HDX Levels and Rate Constants 
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 The number of deuteriums incorporated into specific ion conformers is 

determined by subtracting their average m/z value after passing through the pure He 

buffer gas from their average m/z value after passing through a He/D2O mixture.  

Average values are determined using a simple algorithm developed in house that 

weights each m/z point in the isotopic distribution by its intensity. 

 HDX rate constants have been determined for a number of different ion 

conformers assuming pseudo first order kinetics as described previously.[6, 21, 27, 28]  

Briefly, the partial pressure of D2O is adjusted in small increments (as little as 0.01 Torr) 

from 0 to 0.20 Torr and the tDs and HDX levels of different ion conformers are 

determined.  A semi-log plot of the number of remaining exchangeable hydrogens as a 

function of the product of the D2O pressure and tD provides a means for determining the 

rate constant; the slopes of best linear fits to the data on the semi-log plot are used for 

this determination. 

 

3.3. Results and Discussion 

3.3.1. Protein Anion Collision Cross Sections 

 Figure 3.1 shows the two-dimensional tD,m/z distribution obtained for negatively-

charged ubiquitin ions.  Ions produced from the ubiquitin sample range from the [M-

5H]5- to the [M-9H]9- species.  The drift times for these same ions range from ~7.5 to 13 

ms.  The data indicate a transition from a more elongated structural conformation type 

to a more compact structural type for the [M-7H]7- and [M-6]6- ions, respectively.  This is 

evidenced by the higher mobility of the dominate conformer type for the latter ions 
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 (shorter tD in Figure 3.1).  Ion elongation resulting from increased coulomb repulsion 

has been described for a number of protonated and deprotonated protein ions.[59, 66-

68]  Figure 3.1 also shows the tD,m/z distribution obtained for negatively-charged 

ubiquitin ions upon addition of ~0.04 Torr of D2O into the drift tube buffer gas.  In 

general the m/z peaks become broader due to the incorporation of detueriums at 

heteroatom exchange sites.  On average, the tD values of ion conformers increase by 

~0.5 ms.  At this D2O pressure it is expected that the more highly accessible exchange 

sites have incorporated deuteriums (see HDX kinetics discussion below).  Although the 

addition of D2O does not appear to alter the conformations of the observed ions as 

evidenced by the similar tD distributions, at higher D2O pressures, the overall ion signal 

level decreases and maximum HDX levels and rate constants cannot be determined for 

some ion conformers of lower abundance (see below). 

Figure 3.1  Two-dimensional, tD(m/z) dot plot of electrosprayed ubiquitin ions.  The intensity is 

represented with a color scale using logarithmic cutoff thresholds.  The maximum intensity 

cutoff is 10
2
.  The ions of different charge are labeled on the two-dimensional plot. 
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Figure 3.2A shows that collision cross section distributions indicate that several 

[M-nH]n- ions yield two conformations (i.e., two dominant features are observed in the tD 

distribution).  These collision cross sections are also summarized in Table 3.1. The 

collision cross sections of ions produced from bovine insulin are listed in Table 3.1 and 

shown in Figure 3.2B.  For illustrative purposes the collision cross sections of ions from 

bovine insulin are depicted separately from those formed by the larger proteins 

(ubiquitin and cytochrome c).  Insulin is observed to produce a single dimer, [2M-7H]7-, 

having a cross section of 1260 Å2. It is likely that the largest contributing factor to the 

relatively decreased size of the insulin ions is the presence of the four disulfide bonds 

which serve to tether the molecule in more compact conformations even at higher 

charge states.  This phenomenon has been described previously.[68] 

 The collision cross sections for the ions formed from the larger proteins are 

shown in Figure 3.2A. For these ions, cross sections range in size from 862 Å2 to 2615 

Å2 corresponding to [M-5H]5- ubiquitin and [M-13H]13- cytochrome c ions, respectively. 

Ubiquitin ions show both compact and more elongated conformations across the 

observed charge state distribution.  A transition from the dominant species being 

comprised of more compact ions to more elongrated ions is observed from the [M-6H]6- 

to the [M-7H]7- species as evidenced in Figure 3.1 (see discussion above).  The dataset 

features observed for cytochrome c show only single conformer types across the charge 

state range (from the [M-7H]7- to the [M-12H]12- ions).  The overlapping charge states for 

cytochrome c and ubiquitin reflect the difference in size of the two proteins. That is, 
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cytochrome c contains ~37% more amino acid residues than ubiquitin.  Additionally, no 

more compact ions are observed for these charge states of cytochrome c.  The collision 

cross sections of the elongated cytochrome c protein ions have been compared to 

values reported in an online database obtained from separate IMS measurements and 

the average percent difference is determined to be 1.7±0.3 Å2. 

3.3.2. Gas – Phase Deuterium Uptake as a Function of D2O Pressure 

 The addition of D2O to the drift tube, results in shifts of the m/z values of the 

various ions to higher values indicating the incorporation of deuterium.  Figure 3.3A 

shows the increase in m/z of the more compact conformer of [M-5H]5- ubiquitin ions as a  
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Figure 3.2. Collision cross sections for protein (panel A) and insulin (panel B) conformers.  

Triangle, circle and square symbols represent negatively-charged ions of the model peptide, 

bovine insulin, ubiquitin, and equine cytochrome c, respectively. Solid and open symbols 

represent monomeric and multimeric species, respectively.  The number of individual 

monomers within multimeric species precedes the symbol. 
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function of the product of ion tD and pressure of D2O.  Initially, small increases in D2O 

pressure are associated with large increases in HDX levels while at higher D2O 

pressures the HDX level reaches a near maximum value corresponding to uptake of 

~28 deuteriums.  Using this deuterium uptake data it is possible to generate a semilog 

plot of the remaining hydrogens as a function of the product of pressure and ion 

residence time in the drift tube as shown in Figure 3.3B.  A linear relation for the first 3 

to 4 datapoints is observed; however, beyond this point, the data deviate from linearity.  

The observation of a linear region for the uptake of the first deuteriums has been 

observed in studies of positively-charged protein ions and has been ascribed to fast-

exchanging sites near the charge sites.[27, 28]  Using a linear fit to the first data points  

A. B.

Figure 3.3.( A) Plot of deuterium uptake as a function of the partial pressure of D2O multiplied 

by tD.  This data was recorded for [M-5H]
5-

 ubiquitin ions.  (B) Plot of the natural log of the 

number of remaining exchangeable hydrogens as a function of the product of D2O partial 

pressure and tD.  Linear fits of fast- and slow-exchanging hydrogens are shown. 
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(Figure 3.3B) allows the determination of an HDX rate constant for the fast-exchanging 

sites.  For the [M-5H]5- ions, this rate constant is determined to be 1.3×10-13 cm3·s-

1·molecule-1.  The data in Figure 3.3B also suggest that some hydrogens exchange at a 

slower rate.  Using the remaining data points up to those representing complete 

exchange, a second linear correlation provides a slower rate constant of 6.5×10-14 

cm3·s-1·molecule-1. 

The maximum HDX levels and rate constants for all dominant ion conformations 

are listed in Table 3.1.  For many conformations, both faster- and slower-exchanging 

hydrogens can be determined and therefore both rate constants are reported in Table 

3.1.  Comparatively, the reported rate constants are similar to those reported previously 

for positively-charged protein ions exposed to D2O in a drift tube.[27, 28]  This 

determination is of interest indicating that a similar charge-mediated exchange process 

(see below) could account for the observed HDX. 

3.3.2.1. Anion HDX levels 

 Figure 3.4 shows the maximum HDX levels of the predominant ion conformers 

(Table 3.1) from bovine insulin, globular proteins ubiquitin and cytochrome c.  

Interestingly, insulin exchange appear similar across the charge state distribution (-3 to -

5). As mentioned above, this may be attributed to the 4 disulfide bonds that act to 

restrict the protein for forming extended conformation. Insulin CCS values are similar 

across the proteins charge state distribution (Table 3.1). This may account for similar 

HDX uptake values shown in Figure 3.4. For ubiquitin, the HDX levels for the [M-5H]5- 

and [M-6H]6- ions increase only slightly.  Notably, the two ions have similar collision  
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cross sections (1010 Å2 and 1035 Å2, respectively).  The HDX level of the [M-7H]7- ions 

increases by nearly ~40% relative to that of the [M-6H]-6 ions.  Similarly, the collision 

cross section for these ions is observed to be ~37% larger than that of the more 

compact [M-6H]6- ions representing the largest conformational change between any 

ions observed in the charge state distribution for ubiquitin.  An increase in HDX level 
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Figure 3.4.  Plots of the maximum HDX levels for the dominant protein conformers.  Diamond, 

circle and square symbols represent negatively-charged ions of the model peptide, bovine 

insulin, ubiquitin, and equine cytochrome c, respectively. Solid and open symbols represent 

monomeric and multimeric species, respectively.  The number of individual monomers within 

multimeric species precedes the symbol. 
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(~20%) is also observed for the [M-8H]8- ions relative to that of  the [M-7H]7- ions while 

the change in collision cross section is smaller (~12%).  The HDX levels of the [M-8H]8- 

and [M-9H]9- ions are similar and the latter ions exhibit only a slightly larger collision 

cross section (~6%).  In general, the collision cross section data show a transition for 

dominant dataset features going from compact conformations for the [M-6H]6- ions to 

more elongated conformations for the [M-8H]8- ions.  The HDX levels reflect this 

transition as well; the more elongated species are observed to have greater deuterium 

incorporation. 

  Cytochrome c is the largest biomolecule examined in this study. Figure 3.4 

shows the HDX levels for the ion conformations of cytochrome c. Overall, higher charge 

states are associated with increased HDX levels across the distribution and deuterium 

exchange proceeds in a nearly linear relationship with respect to increasing charge 

state. For example, exchange levels increase in a uniform manner from the [M-8H]8- 

ions to the [M-12H]12- ions and correspond to an overall increase of ~50% (~57 to ~85). 

Collision cross sections increase by a nearly identical 53% (1599 Å2 to 2459 Å2) across 

this charge state range.  

3.3.2.2. HDX Kinetics of Deprotonated Peptides and Proteins 

Table 3.1 lists fast- and slow-exchanging rate constants for the various ion 

conformers.  As mentioned above, for many ions, two rate constants have been 

determined.  On average, the larger rate constants are ~6 times larger than the smaller 

rate constants.  Of the larger rate constants, the fastest (k = 6.4×10-13 cm3·s-1·molecule-

1) and slowest (k = 3.9×10-13 cm3·s-1·molecule-1) exchanging hydrogens are observed 

for [M-11H]11- ions from cytochrome c and bovine insulin, respectively.  For the smaller 
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rate constants the fastest (k = 6.5×10-14 cm3·s-1·molecule-1) and slowest (k = 1.8×10-14 

cm3·s-1·molecule-1) exchanging hydrogens are observed for [M-5H]5- ubiquitin and [M-

4H]4- insulin ions, respectively. 

3.3.3. Structural Implications of the HDX Results 

To discuss the IMS and HDX information with regard to ion structure, it is useful 

to consider the process of HDX for negative ions.  Although a mechanism for HDX with 

peptide anions and D2O has not been presented in the literature, studies with other 

anion systems suggest the possibility of a relay mechanism.[26, 69, 70]  For peptides, 

the exchange would occur via a long-lived reaction intermediate involving interaction of 

the D2O molecule at the deprotonated site as well as a less acidic site (e.g., the neutral 

carboxylic acid moiety of a neighboring acidic amino acid residue).  Exchange would 

proceed with deuterium transfer to the charge site and abstraction of the proton from the 

less acidic site.  In this regard, the accessibility of a given hetero-atom site could be 

described with regard to its accessibility or proximity to a charge site as described 

previously for positively charged ions.[23, 27]  An additional factor would be the 

conformational flexibility of the specific ions;[70, 71] that is, molecular motions that can 

position charge sites within an accessible range of exchange sites should also be 

considered.  Finally, accessibility of exchange sites to collision events is also required.  

Further discussion of structural interpretation of the data is presented with respect to 

such processes. 

The insulin ions exhibit the smallest HDX levels and the slowest exchange rates.  

The observation of decreased HDX levels for ions formed from proteins with disulfide 

bonds has been reported previously for positively charged ions.[71]  As before, it is 
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proposed that conformational rigidity of insulin ions results in the decreased exchange.  

That is, limitations in molecular motion result in decreased access to exchange sites by 

charge sites. For ubiquitin ions, conformational rigidity and accessibility to D2O can 

explain the observed HDX levels.  For example, the compact nature of the [M-5H]5- and 

[M-6H]6- ions may prevent access of specific exchange hydrogens to D2O; protection by 

compact structures for positively-charged cytochrome c ions has been presented 

previously.[28]  It is also noted that the compact nature can also provide conformational 

rigidity as demonstrated in previous molecular modeling studies.[27]  For the more 

elongated, higher charge states of ubiquitin, the increased accessibility of exchange 

sites to D2O and increased conformational flexibility could account for the increased 

HDX levels.  Finally, for the multiply-charged cytochrome c ions, the relatively elongated 

nature of the ions would also expose more exchange sites to the D2O and the charge 

sites.  The exposure to charge sites would increase with increasing charge and result in 

the observed higher HDX levels of these ions.   

3.3.4.1. Exchange Efficiency and the Protein Fold – Ubiquitin 

The discussion above of the maximum HDX levels for ubiquitin ion conformers 

demonstrates that HDX levels correlate to a conformational transformation occurring for 

the [M-6H]6- and [M-7H]7- ions.  However, these maximum HDX levels do not reveal the 

degree to which increased exchange can be ascribed to protein fold versus an increase 

in the number of charge sites.  To investigate this issue, HDX levels were recorded for 

compact and more elongated species for ions of both charge states at reduced D2O 

pressures (0.04 Torr).  The lower pressure was utilized to ensure sufficient signal of 

lower abundance conformers while at the same time determining differences in the  
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levels of rapidly exchanging hydrogens (see Figure 3.3).  Figure 3.5 shows an 

expanded region of a tD,m/z distribution for ubiquitin ions centered on compact and 

more elongated states of [M-6H]6- conformers.  On average, for the rapidly exchanging 

hydrogens, the more elongated conformer exhibits a m/z value that is ~1.0 unit higher 

than the more compact conformer indicating an increased level of exchange 

corresponding to ~6 deuteriums.  This same increase is also observed for more 

Figure 3.5.. Two-dimensional, tD(m/z) heat plot of the [M-6H]6- charge state of 

ubiquitin after gas phase HDX with D2O at a partial pressure of 0.04 torr. Compact 

and partially folded anionic species are observed and are observed to exchange 

different amounts of deuterium (see text for details).  
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elongated [M-7H]7- ions when compared with more compact species of the same 

charge.  These observations suggest that roughly half of the increase in deuterium 

incorporation (~11 deuteriums) from the compact [M-6H]6- ions to the [M-7H]7- ions can 

be attributed to the protein fold while the remaining difference can be accounted for by 

the addition of a charge site. 

A more subtle contribution of exchange site protection provided by protein fold 

(i.e., locating exchange sites in interior regions) may be explained upon examining 

exchange efficiency.  Exchange efficiency can be represented as the ratio of ion 

collision cross section to maximum HDX level.  Figure 3.6 shows these ratios for all ions 

for which maximum HDX levels could be determined.  A comparison of values 

determined for ubiquitin ions with those of cytochrome c ions suggests that the former 

ions exhibit slightly increased protection due to protein fold.  That is, lower exchange 

efficiency is observed for the ubiquitin ions even though, on average, they exhibit a 

higher (~14%) charge site density. This lower exchange efficiency could result from less 

accessibility to buried exchange sites. Insulin ions yield an exchange efficiency that is 

similar to the monomeric insulin ions suggesting that the conformational rigidity afforded 

by the disulfide bonds, also affects the maximum exchange level that can be achieved 

by these ions. 

Having described the HDX levels and rates with regard to protein fold and 

conformational flexibility, it is instructive to present an alternative explanation for the 

experimental results.  Over the last two decades, seminal research has indicated a 

propensity for gas-phase peptide and protein ions as well as ion complexes to form salt 

bridges in the gas-phase.  Arguably, such salt-bridge structures impose a degree of  
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conformational inflexibility which could prevent exchange even at sites more proximal to 

charge sites.  Here the argument of the necessity of charge site and exchange site 

proximity has been advanced based on the explanations provided for the observed 

maximum exchange levels and exchange efficiencies.   The uniform increase in 

exchange levels for extended conformations of cytochrome c with additional charge as 
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Figure 3.6.  Plots of cross section/maximum HDX levels for the dominant protein conformers.  

Diamond, circle and square symbols represent negatively-charged ions of the model peptide, 

bovine insulin, ubiquitin, and equine cytochrome c, respectively. Solid and open symbols 

represent monomeric and multimeric species, respectively.  The number of individual 

monomers within multimeric species precedes the symbol. 
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well as the differences in efficiencies between ubiquitin and cytochrome c suggest 

deuterium uptake near charge sites.  This occurs even though acidic and basic residues 

are observed in flanking regions of the peptide; that is, even with the possibility of 

forming ion conformers with salt-bridges, increased exchange is observed.  That said, 

other factors associated with the fast- and slow-exchanging sites cannot be ruled out.  

Indeed the work presented here lays the foundation for testing different exchange 

models as initiated in recent peptide ion conformer studies. 

3.3.4. Experimental limitations.  

 The combination of IMS with HDX-MS demonstrates a powerful approach for 

characterizing the ion structures of negatively-charged biomolecular ions.  The use of 

non-ergodic ion fragmentation techniques with MS analysis has proven useful in the 

localization of HDX sites.[72, 73]  More recently, IMS-HDX experiments have been 

coupled with ETD-MS to determine deuterium uptake sites for specific conformations of 

positively-charged ions for the model peptide described here.[74] The addition of a 

suitable, non-ergodic ion fragmentation technique with IMS-HDX characterization of 

specific peptide and protein anions would allow similar determinations for the specific 

peptide and protein ions presented here.  The development of new ion fragmentation 

methods offers promise for these experiments.[75-79] 

Previously, molecular dynamics simulations have been used with IMS-HDX-MS 

results to help explain the HDX levels observed for positively-charged peptide and 

protein ions.[23, 27]  The recent experiments combining IMS-HDX and ETD-MS with 

molecular dynamics simulations suggest a need for a refinement of the previous models 

for deuterium incorporation (i.e., those considering only the distance between exchange 
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sites and charge sites).  The observation that many of exchangeable hydrogens on 

charge sites do not undergo exchange necessitated the consideration of other models 

to be explored by molecular dynamics simulations.  Indeed a model that incorporated 

distances to the charge site as well as to less basic sites using computer-generated 

peptide ion structures provide a better fit to experimentally determined deuterium uptake 

by individual amino acid residues.[74]  Extending the experimental capabilities to allow 

determination of deuterium uptake at individual residues and the development of 

models from molecular dynamics simulations to explain these uptake levels will be 

pursued in future studies. 

3.3.5. Conclusions 

 The HDX characteristics of negatively-charged ion conformers for peptides and 

proteins have been studied with IMS-MS techniques.  Electrosprayed insulin ions exhibit 

the lowest HDX levels which can be attributed to decreased conformational flexibility 

resulting from the restraining disulfide bonds.  This is further supported by the 

observation of the low exchange rates for these ions.  HDX levels of larger proteins are 

observed to increase with charge state and ion size consistent with a charge-mediated 

exchange process.  Of note, the HDX levels for ubiquitin ions scale with a 

conformational transition from more compact species to more elongated species.  

Based on comparisons to exchange protection for compact and elongated ion 

conformers, it is proposed that the exchange level transition results in part from protein 

fold exchange site protection and decreased access to charge sites for these ubiquitin 

ions.  Finally, exchange efficiency comparisons suggest that ubiquitin ion conformers 

provide increased protection of interior sites relative to cytochrome c ions.  Together the 
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results demonstrate the utility of the combined IMS and HDX conformational probes for 

obtaining structural information.  Moreover, these studies lay the groundwork for 

powerful new approaches where additional tools including the incorporation of novel ion 

fragmentation techniques and the use of molecular dynamics simulations can be used 

to refine the structural information afforded by IMS-HDX measurements. 
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4. Online Deuterium Hydrogen Exchange and Protein Digestion Coupled with Ion 

Mobility Spectrometry and Tandem Mass Spectrometry1 

1Reprinted in part with permission from Analytical Chemistry: Online Deuterium 
Hydrogen Exchange and Protein Digestion Coupled with Ion Mobility Spectrometry and 
Tandem Mass Spectrometry. Gregory C.  Donohoe, James R. Arndt, Stephen J. 
Valentine.. Anal. Chem., 2015, 87 (10), 5247-5254. 

 

4.1. Introduction: Deuterium Hydrogen Exchange and IMS – MS  

Hydrogen deuterium exchange-mass spectrometry (HDX-MS) is an isotopic 

labeling strategy used for the evaluation of protein structure,[1-3]  folding dynamics[1, 2, 

4-11] and as a method to characterize protein-protein and protein-drug interactions in 

the biopharmaceutical sector.[3, 9, 12] Many HDX-MS experiments use high 

performance liquid chromatography (LC) consisting of an immobilized pepsin column for 

online digestion followed by trapping  and reversed phase separation of peptic 

fragments that are subsequently mass analyzed.[13, 14]  Using this "bottom-up" 

approach, deuterium incorporation at backbone amide locations can be evaluated on a 

per-peptide basis. Despite much success,[1, 4, 15] bottom-up HDX-MS is limited by 

spatial resolution that is dependent upon the number of overlapping peptide fragments. 

  Although the techniques have been commonly accepted and highly 

successfully, the remaining difficulty regarding HDX-LC-MS and MS/MS experiments is 

mitigating backexchange before MS analysis. HDX-LC-MS methods require specialized 

cooling apparatuses (0 C), low pH (~2.5) mobile phases, high flow rates and fast 

gradients (~10 minutes or less) to minimize backexcahnge.[16] Because peptide 

separation is generally based on hydrophobicitiy, a particular problem arises in the 

higher rate of backexchange as certain peptides adopt altered solution conformations 

as they partition into the C18 stationary phase.[17] Other studies have shown that the 
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solid support contained within immobilized pepsin columns can promote significantly 

high backexchange.[18] The relatively fast gradients can also create differences in 

retention times requiring data alignment algorithms for quantitative and qualitative 

comparisons between datasets.[19]  Additionally, because the LC step must be 

performed quickly, co-eluting peptides can reduce ionization efficiency. This is 

particularly problematic with data dependant MS/MS which only samples the highest 

intensity precursor ions (top 5) for fragmentation per-elution-window. Peptide ion 

sensitivity is further reduced using non-activating ion transfer parameters to mitigate 

hydrogen/deuterium scrambling in the gas phase. For LC-MS/MS analysis, the 

compilation of these inherent difficulties may result in inadequate isotopic distributions 

of product ions from the analysis.  

 HDX studies have used commercial traveling wave ion mobility (TWIM) devices 

coupled with Time-of-flight mass analyzers for bottom-up peptide studies.[20, 21] In the 

work provided here, a low-pressure drift tube coupled to an LTQ Velos mass 

spectrometer (Thermo Scientific, CA) is used for per-residue deuterium analysis by 

ETD. It is further noted that TWIM instruments contain an ETD cell located before the 

mobility region,[22-24] meaning that the mobility separation is not utilized to distinguish 

precursor ion conformers. Thus, an advantage demonstrated in this work is the ability of 

drift tube IMS (DTIMS) to mobility separate ions before ETD without being subject to ion 

heating that would promote deuterium scrambling. That is, ions that traverse the low 

pressure drift tubes are thermolized, while TWIM instruments are shown to promote ion 

heating of mobility transferred ions exhibiting temperatures from ~400 K to ~7000 K.[25-

27] Although these temperatures are dependent on the TWIM wave speed and wave 
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height as well as the trapping partial pressure compositions, other studies have shown 

that heating processes promote deuterium scrambling.[28, 29]  

  A goal of this proof-of-principle work is to demonstrate the replacement of the LC 

with a DTIMS instrumental platform for the evaluation of protein secondary structures.  

A continuous online deuterium hydrogen exchange (DHX) and pepsin digestion (PD) 

method preformed prior to the IMS separation is demonstrated. DHX proceeds under 

exchange-out conditions,[30] where fully deuterated protein is exposed to H2O. The 

protein exchanges deuteriums in unstructured regions faster than sites held in H-

bonding networks.[30] The DHX-PD process takes ~60 seconds and only requires 

micro-cross assemblies and fused silica capillary, similarly fashioned to a design 

described for the characterization of the iron-saturated N-lobe of human serum 

transferrin.[31] The rapid DHX time (~32 seconds) in this study is used to backwash fast 

exchanging heteroatoms for a qualitative view of secondary structural elements. 

 The mobility measurement provides the capability to match, via extracted ion drift 

time distributions (XIDTDs)[32], labeled peptic peptide ions with the unlabeled peptide 

ions. Because the unlabeled ions were first identified using collision induced 

dissociation (CID), the technique transfers identification to deuterated peptides, allowing 

a straightforward deuterium retention evaluation. Due to the high reproducibility of the 

gas phase separation, XIDTD matching is performed without the need for dataset 

alignment. Another advantage of the online method is the ability to select a specific 

mobility range for MS and MS/MS analysis. Because the online system is continuous 

and is neither elution window nor intensity limited (as with data-dependent LC-MS/MS 

analysis), ETD can be performed on precursor ions over several minutes to produce 
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statistically adequate isotopic distributions of product ions. Lastly, this work presents the 

first solution-based deuterium exchange study using a low-pressure, linear-field IMS 

coupled with ion trapping MS-ETD. 

4.2. Methods and Materials 

4.2.1. Sample Preparation 

 Ubiquitin (bovine erythrocytes, 98%) and lyophilized pepsin (porcine, 3200-4500 

units/mg protein) were purchased from Sigma-Aldrich (St. Louis, MO) and used without 

further purification. Deuterium oxide (99.9%), formic acid (99 %) and ammonium acetate 

were purchased from Sigma-Aldrich (St. Louis, MO). The peptide KKDDDDDIIKIIK 

(90.6%) was purchased from Genscript (Piscataway, NJ, USA) and used without further 

purification. This peptide was used as a HDX or deuterium scrambling control (see 

below). 

4.2.2. On – Line DHX – PD – IMS System 

.  Ubiqutin Studies. Ubiquitin (0.5 mg) was added to 1.0 mL of D2O (99.9 %) 

containing ammonium acetate (10 mM). The solution was incubated ~40 hours at room 

temperature.  Note the 40 hour time period was utilized for the first of three replicate 

measurements.  Subsequent replicate measurements were performed on successive 

days. Pepsin solutions were prepared by adding lyophilized powder (0.75 mg) to 1.0 mL 

18 MΩ H2O (6% formic acid v:v) pH ~2.0. A schematic of the online system is presented 

in Figure 1.1 in the Supplementary Information section (Figure S1). Briefly, the DHX 

reaction and subsequent quenching with simultaneous digestion was performed using 

three micro-cross assemblies (Upchurch Scientific Inc, Oak Harbor, Wa) connected with 

fused-silica capillary (360 μm o.d. × 50 μm i.d). Separate 500-μL syringes (Hamilton, 
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Reno, NV, USA) containing the deuterated ubiquitin solution and 18 MΩ H2O were 

delivered to the first micro-cross assembly using high precision syringe pumps (KD 

scientific Holliston, MA,USA) at flow rates of 0.20 μL·min-1 and 0.87 μL·min-1 

 

 

 

 

respectively. DHX of deuterated ubiquitin proceeded for ~29.6 seconds over a capillary 

length of 26.4 cm. This DHX-setup and exchange time was similar to that reported in 

previous exchange-out experiments for the determination of site specific interactions of 

Huntingtin protein exon 1 aggregates.[33]  A third 500-μL syringe containing ice-cooled 

pepsin solution (pH ~2.0) was introduced by a syringe pump to a second micro-cross 

assembly at a flow rate of 0.20 μL·min-1. DHX quenching and protein digestion was 

preformed over a capillary length of 20.3 cm. Peptic peptides entered into a third micro-

cross assembly connected to a 2.5 cm pulled tip nano-ESI emitter (360 μm o.d. × 50 μm 

i.d) giving a total digestion capillary length of 22.9 cm and a total digest time of ~22.4 

Exchange Solution: 

Structural Studies:
DHX Solution: H2O, 

Flow rate 0.87 μL·min-1

Temperature: 25 °C

Quench Solution/Pepsin Digestion:

0.75 mg ·mL-1 Pepsin, 6% Formic Acid (v:v),
Flow rate: 0.2 μL·min-1

Temperature: ~ 0  C

hV

Sample In:

Structural Studies
Ubiquitin (0.5 mg ·mL-1), 
D2O (structural)0.010M 

NH4OAc
Flow rate: 0.2 μL·min-1

DHX Region: 30 seconds

DHX-Quench/Digestion Region: 

25 seconds

ESI emitter

IMS desolvation region

Figure 4.1.. Schematic representation of the on-line system for DHX-PD-ESI-IMS-MS 

analysis. High precesion syringe pumps were used to advance separate solutions 

simultaneously to mixing-tees (black crosses). At these locations, exchange reactions or 

digestion occurred along different lengths of capillary. The respective times for DHX and 

digestion are also indicated.  
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seconds. Peptides were electrosprayed into the IMS instrument using a bias voltage of 

~+1.9 kV at a combined flow rate of 1.26 μL·min-1. No direct heating of the source or 

desolvation region was applied. For unlabeled ubiquitin studies, the same protein 

concentrations, syringe flow rates and capillary lengths were used; however, ubiquitin 

was incubated in 18 MΩ H2O containing 10 mM ammonium acetate. 

 Here it is noted that no sample cleanup steps were performed.  Although not 

necessary for the purified samples utilized in this study as demonstrated by the results 

presented below, because salt content may hinder ESI, sample cleanup for many 

protein samples may be required in order to take advantage of this direct infusion 

approach.  That said, to some degree, the IMS separation can mitigate problems arising 

from noise produced by isobaric ions.[34] 

4.2.3. Scrambling Control On – Line System 

For the evaluation of scrambling, the peptide KKDDDDDIIKIIK (0.5mg) was 

added to 1.0-mL of D2O (99.9 %) containing 10 mM ammonium acetate (pH ~7.0) and 

allowed to incubate for ~24 hours at 25°C. The peptide contains a fast exchanging 

KKDDDDD sequence and a slow exchanging IIKIIK C-terminal region. For these 

studies, the DHX solution served as the quench solution in that it was cooled with an ice 

pack and acidified to a final pH of ~2.5.  Flow rates for the peptide and DHX solutions 

were 0.20 μL·min-1 and 1.00 μL·min-1 respectively. Capillary lengths for DHX were the 

same as described for ubiquitin studies. It should be noted that the pepsin solution was 

not added to the online system, as the exchanged peptide must retain the intact 

sequence for scrambling determination. Instrumental parameters for ubiquitin 
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deuteration studies were selected based upon the peptide exhibiting a 0 % scrambling 

trend).[28, 29]  

4.2.3.1. Optimized Parameters  

 Instrumental parameters used to mitigate HD-scrambling can be found in 

Appendix 1. These parameters were determined based on the scrambling control 

peptide resulting in 0 % HD-scrambling (see below). 

4.2.3. IMS-MS: Instrumental Operation 

 IMS theory,[35-38]  instrumentation,[39-45]  and techniques[46-55]  are 

described elsewhere in great detail. The IMS instrument contained a drift tube with dual 

ion funnels and two ion gates interfaced to a LTQ Velos (Thermo Electron, San Jose, 

Ca, USA) mass spectrometer that has been described previously.[56, 57] The LTQ 

Velos was outfitted with a commercial ETD source for the generation of fluoranthene 

radicals (Thermo Scientific, San Jose, Ca, USA). Figure 1.1 shows a schematic of the 

IMS-MS instrument with ETD capabilities and the locations of the ion funnels and gates 

within the drift tube. The source of the mass spectrometer was redesigned to 

incorporate a stacked-ring ion drift region by replacing the s-lens assembly (Figure 1.1). 

Briefly, ions were electrosprayed into the desolvation region and were focused through 

an “hourglass” electrodynamic ion funnel (F1 in Figure 1.1).[50, 58] The focused ions 

were periodically trapped at the first ion gate (G1 in Figure 1.1) and periodically pulsed 

into a 1-meter-long drift tube filled with He buffer gas (~2.72 torr at 300 K). Under the 

influence of a uniform electric field (~10 V·cm−1), ions of different mobilities reached the 

second ion gate (G2 in Figure 1.1) at different times. Ions of select drift times (tD) that 

passed through G2 were radially focused at the second ion funnel (F2)[50],  and exited 

through a conductance-limiting aperture. The ion packet was subsequently transferred 
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by quadrupole and octopole rf guides before entering into the high pressure linear ion 

trap followed by mass analysis in the lower pressure trap.  

4.2.3.1. Recording Two – Dimensional (2D) tD(m/z) Distributions. 

  Ion gates were constructed from lenses containing Ni grid (90% transmittance 

mesh; Precision Eforming, Cortland, NY, USA). G1 was composed of a single gridded 

lens located directly behind the outlet of the hour-glass funnel. During ion accumulation, 

G1 was biased ~45 V higher than the last lens of F1. For mobility measurements, an ion 

packet was pulsed into the drift tube by dropping the voltage at G1 for 150 μs every 20 

ms. A tD was collected for mobility separated ions using a time-delayed voltage applied 

to the ion selection gate (G2). G2 consisted of two gridded lenses (Tyndall Geometry) 

spaced ~0.30 cm apart.  An attractive field (2.5 V) pulsed at specific times between the 

lenses enabled ions of a selected mobility to pass for mass analysis. Ions of all other 

mobilities were eliminated with a repulsive field applied between the lenses (10.0 V). 

The gate timing of G2 was initiated relative to the introductory ion pulse at G1. By 

scanning the delay time across the entire tD from 4.0 to 12.0 ms, at a step resolution of 

200 μs, 41 mobility-resolved mass spectra was collected. The introduction pulse at G1 

and variable delay settings at G2 were controlled by 2 four-channel digital pulse 

generators (Stanford Research Systems, Sunnyvale, CA, USA). 

4.2.4. Mass Spectrometry Measurements  

 Full mass spectra were collected for all ions by deactivating the two drift tube 

gates and setting the mass analyzer scan parameters over a m/z range of 75 to 2000 

and enabling the automatic gain control (AGC). In this operation, the drift tube acted to 

transfer all ions into the LTQ. The AGC threshold is set to 3 X 106 ions and a mass 
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spectrum was collected. During tD distribution generation, the AGC was disabled and a 

trap injection time of 400 ms (4 microscans) was selected. All mobility-resolved mass 

spectra were collected and averaged over 0.5 minutes.  

4.2.4.1. CID – MS Experiments 

 Tandem mass spectrometery (MS/MS) using CID was conducted on unlabeled 

ubiquitin peptic peptide ions by isolating a mobility selected ion m/z. For these 

experiments, an isolation window of ± 3 Da relative to the centroid m/z resulted in the 

ejection of all other ions within the ion trap. Selected precursor ions were collisionally 

activated with He gas at a normalized collision energy of 30.0 % and an activation time 

of 10 ms. Product ion spectra were collected for 1.0 minute. 

4.2.4.1.1. Identification of Precursor Ions.   

 For peptic peptide identification, the selected precursor m/z values were 

converted to mass based on charge state. The masses were then derived to determine 

[M+H]+ ions. Using ExPaSY FindPept (http://web.expasy.org/findpept/) the unmodified 

76 amino acid sequence of bovine ubiquitin was uploaded to perform in-silico digestion 

using pepsin at pH >2.0. The program generated [M+H]+ ions at a mass tolerance of ± 

2.0 Da having unique amino acid lengths. The corresponding sequences with 

experimentally matching m/z values were selected and entered into Protein Prospector 

(http://prospector.ucsf.edu/prospector/cgi-bin/msform.cgi?form=msproduct) for in-silico 

MS/MS fragmentation. Product ion spectra from the selected precursors collected from 

IMS-MS/MS experiments were compared to y- and b- fragment ions for identification. 

4.2.4.2. Deuterated Samples and ETD Analysis.   

http://web.expasy.org/findpept/
http://prospector.ucsf.edu/prospector/cgi-bin/msform.cgi?form=msproduct
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 The control peptide (KKDDDDDIIKIIK) served to evaluate the optimal settings 

applied to the source, ion optics, lenses and transfer voltages to mitigate HD 

scrambling. These settings were changed until the control peptide follows a 0 % 

scrambling trend (see Supporting Information for parameters).[28, 29] Briefly, the F1 DC 

voltage (Figure 1.1) was set to 136.8 V, the RF voltage at F2 was set to 136.8 volts 

peak-to-peak, the voltages on the ion guides were set to 300 V peak-to-peak and no 

direct temperature was applied to the ESI source. For ETD studies, a specific precursor 

m/z was selected using a ± 8 Da window relative to the centroid m/z value. This wider 

selection window was used to confine the entire isotopic distribution. Furthermore, 

narrow selection windows have been shown to induce scrambling by resonance 

excitation.[28] ETD of selected [M+3H]3+ precursor ions  proceeded by introduction of 

fluroanthene radicals into the LTQ for 100 ms. To ensure adequate isotopic distribution 

statistics of product ions, the resulting spectra were collected for 1.0 minute.  

4.2.4.3.IMS-MS Data Sets.  

 Two-dimensional IMS-MS datasets were generated by converting each tD 

resolved mass spectrum (.RAW file) to a separate text file (.TXT file). Using software 

developed in-house, the m/z values and intensities contained within this .TXT file at an 

associated tD were converted into a three-column array file containing tD, m/z, and 

intensity information. Intensity filters were applied to the dataset for spectral clarity and 

the output can be used to create a 2D IMS-MS heat plot based on a logarithmic 

intensity scale. Here, each pixel contained a tD width of 200 μs and a height of 0.0833 

Da. 

4.2.4.4.Comparative XIDTDs for Identification.  
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 To generate XIDTDs[32], a separate in-house program was used to process the 

same three column array files (tD, m/z, and intensity) by integrating intensity values 

across all tD windows within a user-defined m/z range. The output comprised an 

integrated mobility distribution for specific m/z values. All data were normalized to the 

most intense spectral feature within each XIDTD. XIDTDs were matched based on a 

pixel tD width of 200 μs and a pixel height of 0.0833 Da. No dataset alignment was 

utilized for XIDTD matching between undeuterated and deuterated digest samples. 

4.2.4.4. Per-Residue Deuterium Measurements.  

 Product ions generated from ETD (triplicate measurements) were signal 

averaged over 1.0 minute. The resulting spectrum was converted in much the same 

manner as described above. Briefly, the .RAW file was converted into a two column 

.TXT file containing m/z and associated intensity values. Using software developed in-

house, deuterium uptake was calculated from average m/z determinations obtained by 

weighting the isotopic peaks according to their intensity values for each product ion. The 

output was a .TXT file containing the average m/z values that were then subtracted from 

the undeuterated product ion average m/z of the same charge state. The mass 

difference was reported as the amount of total deuterium retention for each fragment 

ion.  

4.3 Results and Discussion 

4.3.1 Comparing Peptides from 2D IMS-MS Datasets.   

Figure 4.2A shows the two-dimensional 2D tD(m/z) distribution of undeuterated 

peptic peptides resulting from online PD-IMS-MS.  Spectral features are first observed  
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Figure 4.2 (A) Two-dimensional (2D) tD(m/z) raised-relief plot showing the resulting peptide 

ions generated from DHX-PD-IMS-MS of unlabeled ubiqutin. The dashed-line box represents 

the region from tD ~6 to ~10 ms and a m/z range of 600 to 800. This region is used for 

comparative purposes in Figures B and C. (B) 2D tD(m/z) contour-plot of DHX-PD-IMS-MS 

analysis of unlabeled peptides extracted from the boxed region in Figure A. (C) 2D tD(m/z) 

contour-plot the DHX-PD-IMS-MS analysis of labeled peptides over the same tD(m/z) ranges 

as described above. The color maps for all plots are shown on a logarithmic scale (-2 to 3) in 

order to show the low-intensity ions.  
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at ~4.6 ms and extend to ~11.4 ms with the highest intensity peptide ions existing 

between a m/z range of ~550 to ~800. Spectral intensities for mobility separated ions 

ranged from only a few counts to ~4.2×103. Figure 4.2B and 2C show the 2D tD(m/z) 

contour depicting expanded regions of the dataset (tD 6.0 ms to 10.0 ms over a m/z 

range of 600 to 800) for undeuterated and deuterated peptides, respectively. 

Collectively, Figures 4.2B and 4.2C show similar spectral features that display similar 

drift times, but differ in average m/z due to the incorporation of deuterium. It is also 

noted that deuterium retention broadens the isotopic distribution for given peptides 

(Figure 4.2C) and in some cases the isotopic envelopes are observed to overlap in the 

mass spectrum. For all sample sets, the fast proteolytic step generated larger peptides 

having sequence lengths between ~4 to ~25 residues and exhibit charge states from +1 

to +4. With respect to LC-MS approaches, these larger peptide sequences are 

problematic, as deuterium evaluation at the residue level is based on the number of 

overlapping peptides. Comparatively, the longer sequences contain a larger number of 

basic residues resulting in higher charge states more amenable for ETD fragmentation. 

4.3.2. Generating XIDTDs and Combining Collision Induced Dissociation (CID) for 

Unlabeled Peptides Identification.  

 A particular advantage of the IMS-MS measurement is the ability to generate an 

XIDTD for peptide ion analyzed. Additionally, XIDTDs allow a more exact comparison of 

features in IMS-MS plots (Figures 4.2B and 4.2C). For example, Figure 4.3A shows the  
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Figure 4.3.  (A) XIDTD of the ion having an average m/z of 661.87 from undeuterated ubiqutin (blue trace) and 

the overlayed XIDTD (red trace) of the respective deuterated ion (average m/z of 664.54). All XIDTDs are 

normalized to the most intense spectral feature. (B) CID fragmentation spectrum obtained from the precursor 

ion having an averaged m/z of 661.87. Several b- and y- product ions are labeled that are consistent with the 

[FVKTLTGKTITL+2H]
2+

 peptide ion assignment. (C) Overlays of Isotopic distributions for the peptide ion of 

average m/z 661.87 (blue trace) and the same peptide ion of average m/z 664.54 (red trace) extracted from 

the respective mass spectrum collected at tD ~8.0 ms.  
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XIDTD of an undeuterated ion having an average m/z of 661.87. The XIDTD shows a 

dominate ion conformer type with a maximum intensity at ~8.0 ms for this given 

[M+2H]2+ peptide ion. To some degree, the XIDTD becomes a spectral-fingerprint that is 

unique (tD and intentisty) for each peptide sequence. Isobaric ions are also present 

(e.g., at tD ~7.4 ms); however, their low intensities do not allow an unambiguous 

assignment as separate peptide ions or different gas phase conformers.  

 Because the resulting proteolytic peptide ions are difficult to identify based solely 

on precursor m/z, an initial step in the IMS-MS approach is to separate and then identify 

undeuterated peptides ions using CID. The identification of peptide ions also serves to 

evaluate pepsin sequence coverage for ubiquitin. For example, ions of average m/z 

661.87 are mobility separated and isolated by the LTQ for MS/MS analysis. Figure 4.3B 

shows the CID fragmentation spectrum obtained upon activation of these ions. Several 

b- and y- product ions are shown in the Figure 4.3B. Comparisons of these ions with in-

silico fragments are consistent with an assignment of the precursor ions as 

[FVKTLTGKTITL+2H]2+. This sequence matches the N-terminal end of ubiquitin, 

encompassing residues F4-L15.  Crystal structure[59] comparisons show that residues 

F4-T7 form part of a beta-stranded region followed by a turn (residues L8-K11) and a 

second beta stranded region from G10-L15. Upon sequence identification it is worthwhile 

to note that even though FVKTLTGKTITL spans two separate beta-stranded regions 

separated by a short turn, the XIDTD is indicative of a dominat single gas-phase 

conformation for the +2 charge state.   

4.3.3. Matching XIDTDs Between Undeuterated and Deuterated Datasets.  
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 Once the ions are identified, the high reproducibility of the gas phase separation 

is used to match mobility profiles generated during labeling studies. Because deuterium 

retention does not significantly affect the mobility profile (Figure 4.7, see below), 

XIDTDs of deuterated peptides can be mobility matched to the respective XIDTDs of the 

undeuterated ions. The top trace in Figure 4.3A (red line) shows the XIDTD for ions of 

average m/z 664.54 generated during DHX-PD-IMS-MS of labeled ubiquitin. Figure 

4.3A shows that the labeled ions of average m/z 664.54 have similar XIDTD features as 

ions of m/z 661.87, with a single dominant conformation at tD ~8.0 ms. It is noteworthy 

to mention that no dataset alignment was made for the overlays presented in Figure 

4.3A. Instead, a bin-by-bin comparison (based on a 200 µs tD-bin width) is used for 

spectral matching. Additionally, XIDTDs offer the ability to quickly assess deuterium 

retention by comparing undeuterated and deuterated precursor mass spectra recorded 

at tD ~8.0 ms. Because deuterium incorporation increases the width of the isotopic 

envelope, reduced peak capacity and increased spectral congestion are problematic in 

DHX studies.[60] By changing the delay voltage at G2 (Figure 1.1), only select peptide 

ions having a tD ~8.0 ms are examined for improved isotopic evaluation of deuterated 

peptide ions. Figure 4.3C shows the isotopic distributions for unlabeled and labeled 

[FVKTLTGKTITL+2H]2 + ions selected at tD ~8.0 ms. The top trace shows ions of m/z 

664.54  having a broader isotopic distribution that is shifted in average mass due to 

deuterium retention relative to unlabeled ions. In this straightforward manner, it can be 

observed that [FVKTLTGKTITL+2H]2+ ion retains ~5.3 ± 0.1 deuteriums on average. 

Since the sequence spans structured portions of the protein, the peptide may be 

expected to show a degree of deuterium retention. Although this method requires an 
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initial identification analysis of unlabeled peptide ions prior to deuterium studies, we 

note that LC-DHX-MS/MS studies require the same process.[61] However, the relatively 

higher reproducibility of the IMS separation allows spectral feature matching (XIDTDs) 

between unlabeled and labeled samples without the need for dataset alignment.  

4.3.4. Overall Per-peptide Deuterium Analysis.   

 Ubiquitin contains 144 labile hydrogens, where 72 are amide backbone, 69 are 

found on residue side chains and 3 sites are located on the N- and C-terminus. After 

DHX for ~30 seconds, the resulting deuterium retention was 50 ± 4 deuteriums 

determined from the m/z of undigested [M+6H]6+ ubiquitin ions. Figure 4.4A shows 

secondary structural features for ubiquitin atop the primary sequence. These comprise 

of 5 beta-sheets (residues M1-L7, G10-L15, Q40-F45, G47-L50 and S65-R72), an alpha-helix 

(I23-E34) and a 3/10 helix (L56-Y59). The corresponding deuterium retention for each 

identified peptide (MS/MS) is given in Figure 4.4C. In general, most identified peptide 

ions appear to originate from the terminal ends of ubiquitin. This may be due to 

increased pepsin accessibility to these regions despite the fast digestion time (~22 

seconds). To a certain degree, retention levels appear to map the secondary structural 

elements of ubiquitin. In Figure 4B, residues M1-L15, spanning two beta-sheets 

separated by an unstructured turn retain 7.1 ± 0.3 deuterium after DHX. The next 

peptide F4-L15 spans a similar portion of the N-terminus having a calculated deuterium 

level of 5.3 ± 0.1. Here, F4-L15 differs by 3 residues relative to M1-L15 and suggests ~1.8 

deuteriums are retained across M1-F4. Other Top-down DHX-MS/MS studies have 

shown that residues M1 and Q2 display fast intrinsic exchange rates.[62] With this in 

mind, these results may suggest that deuterium retention is located on I3 and F4.  
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4.3.5. Scrambling Control and Instrumental Studies.  

 The control peptide served to elucidate instrumental parameters to mitigate 

scrambling by optimizing IMS source voltages and tuning the MS transfer voltages 

(parameters given in Appendix 1). It should be noted that the theoretical backbone 

amide uptake for the DIIKIIK region should include 6 deuteriums. In this study, the 

[M+H]+ ions showed a retention of 5.12 ± 0.01 deuteriums, where an additional 

backbone amide backexchanged (possibly at the backbone site I9-K10). With this 

assumption, the theoretical 100 % and 0 % scrambling line calculations were modified 

to include a total uptake of 5.12 and unchanged deuterium retention between c8 and c9 

ions.  
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Figure 4.5. Theoretical scrambling traces showing red and blue traces for 100 % (red 

trace) and 0 % (blue trace) scrambling respectively. The green traces shows c-series ions 

generated from the DHX-IMS-ETD-MS analysis of KDDDDDIIKIIK (n = 3) that matches 

closely to the 0 % scrambling model.  
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deuterium at backbone amide locations. In the occurrence of scrambling, an even 

distribution of deuterium would be observable across all available sites.  Figure 4.5 

shows the theoretical retention plots generated as outlined by Zehl et al.[28] It can be 

seen in Figure 4.5 that the experimental data follow closely to the theoretical 0 % 

scrambling line.   

4.3.6. IMS – ETD –MS of Deuterated Peptides for Per – Residue Analysis – Ubiquitin  

 Labeled [MQIFVKTLTGKTITL+3H]3+ ions generated from DHX-PD-IMS-MS 

measurements were selected for ETD analysis. Deuterium is calculated by subtracting 

the average mass of a given unlabeled c-ion from the average mass of the respective 

labled c-ion. A lack of deuterium retention within a region of primary sequence is 

indicated by similar deuterium content values for adjacent c-ions (Figure 4.6A). 

Evaluation of Figure 4.6A shows deuterium retention beginning at I3 and increases to 

T7. However, deuterium content across residues F4 -K6 does not change by a full 

deuterium. Comparison to NMR[63] and top-down  MS/MS[62] studies have shown 

strong protection across I3-V5. As such, it is instructive to consider the online, bottom up 

approach with respect to tertiary interactions. Notably, the first beta strand, M1-T7, is 

situated between the second and fifth beta-strands collectively forming 12 H-bonding 

networks between M1-T7 (Figure 4.4C).[64] In the case of pepsinolysis yielding the M1-

L15 ion, this H-bonding network is lost in the peptide and hence a degree of deuterium 

label may undesirably backexchange. This may be especially true at the interface of the 

DHX and quenching/digestion region where true quench conditions have not fully 

equilibrated.  In that regard, top-down MS/MS studies appear to map the early N-

terminus of ubiquitin with better accuracy.[62, 65]  
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In contrast to the N-terminal region, other residues appear to correctly map the 

location of secondary structures. For example, no change in deuterium content is 

observed for residues L8-K11, indicating DHX across this region. Here, residues T7-G10 

are consistent with an unstructured turn between the first and second beta-strand 

(Figure 4.4A).  Deuterium content (Figure 4.6A) is seen to increase across residues K11-

L15, which appears to correctly correlate to the location of the second beta-strand 

beginning at G10. The relatively large error associated with K11 and T12 may be 

indicative of residue location. That is, residues that lay on the fringes of secondary 

structures are presumably less protected.[5] Generally, the deuterium content profile is 

consistent with the known crystal structure of ubiquitin (Figure 4.4A and C). Notably, 

these spectral consistencies further indicate that scrambling is largely mitigated, as 

under energizing conditions the deuterium label would be statistically randomized 

throughout the first few residues as well as those contained within the turn.  

The online method was also used to evaluate other known structural regions of ubiquitin 

for comparative purposes. A prominent feature of ubiquitin is an alpha helical region 

across residues I23-E34. Using XIDTD spectral feature matching (see above), 

[NVKAKIQDKEGIPPDQQRLIF+4H]4+ ions spanning residues N25-F45 show a total  

deuterium retention of 13.8 ± 1.9 (Figure 4.4B) between labeled and unlabeled peptide 

ions. ETD analysis of deuterated [NVKAKIQDKEGIPPDQQRLIF+4H]4+ ions permit 

deuterium retention analysis across much of the alpha helical region and into the third 

beta-strand.  Figure 4.6B shows a similar bar plot as described in Figure 4.6A for  
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residues N25-R42. Overall, an increase in deuterium retention is observed across K27-

D32. Residue K33 appears statistically similar to D32 in deuterium content. Other studies 

have shown that this residue has a relatively low protection level.[62] Deuterium content 

is seen to increase toward I36. Interestingly, I36 is located within a turn; however H-

bonding throughout the region could permit a degree of deuterium retention.[63] The bar 

height of I36 is similar in height to D39 suggesting the latter residue exhibits DHX. 

Residue D39 is located on the periphery of the third beta-strand and may be expected to 

have a reduced protection level. Residues Q40-R42 span the third beta strand, where 

Figure 4.6B shows a successive increase in deuterium content. As before, a higher 

error appears to be associated with residues that occupy the fringes of secondary 

structural elements. With respect to the structured regions, these data show similar 

trends to those studies obtained from top-down DHX-ETD-MS analysis of ubiquitin.[62, 

65] 

Although the data correlate to results presented previously, they are presented 

here only as a qualitative comparison.  The results should be treated with caution due to 

some limitations in the DHX experimental setup.  For example, it is noted that 

incubation in D2O for a minimum of 40 hours will not result in complete deuteration of 

backbone amide sites.  Indeed, experiments for compact [M+6H]6+ ions demonstrate 

~90% deuterium incorporation.  Despite the incomplete exchange in, the results shown 

in Figure 4.6 demonstrate that sufficient incorporation has occurred in order to produce 

deuterium retention profiles portending exchange protection.  Another limitation is that 

the deuterium content at the ESI needle tip is ~16%.  Here we note that the flow rates of 

the protein sample and the exchange out solution were optimized based on ion signal 
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levels on our homebuilt instrument which led to these conditions.  That said, deuterium 

uptake simulations (Figure 4.8) demonstrate that any deuterium retention by side-chains 

due to the ESI solvent composition does not affect the qualitative comparison presented 

in this proof-of-principle study.  With this in mind, improvements in HDX methods will 

allow more substantial structural determinations to be made in the future. 

4.3.7. Reproducibility of the On – Line DHX–PD–IMS–MS System  

 The online HDX and digestion set-up was reconstructed at the start of each trial 

(performed on separate days) with fresh back wash and digestion solutions which 

allowed the assessment of the reproducibility of deuterium retention profiles, pepsin 

digestion and the IMS-MS measurement. Table 4.1 shows eight identified peptides that 

were observed within each trial corresponding to 100 % protein sequence coverage.  

That full sequence coverage was observed in every run provides some context as to the 

reproducibility of the pepsin digestion for this proof-of-principle study. With regard to 

peptide deuterium retention between replicates (N = 3), coefficients of variation (CV) 

ranged from 0.3% to 14.0% for deuterated ions having average m/z values of 387.8 and 

613.8, respectively. These respective ions correspond to peptides  

from the C-terminal tail region ([VLRLRGG+2H]2+ ions), and a portion of the alpha-

helical region ([NVKAKIQDKEGIPPDQQRLIF+4H]4+ ions). 

As noted above, a particular advantage of the IMS measurement is the ability to 

match ions based on mobility profiles. Figure 4.7 shows the XIDTDs from eight ions 

observed across all replicates that were highly abundant. The most dominant spectral 

features observed in each XIDTD are reported as a single tD value in Table 4.1. 

Notably, the most intense feature in each XIDTD exhibits the same tD value in all  
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Figure 4.7. tD distributions for the identified peptide ions presented in Table 4.1.  For each 

panel, the bottom trace represents the tD distribution obtained for the analysis of the 

unlabeled protein.  The top three traces represent tD distributions collected on successive 

days for the labeled protein experiments.  The average m/z values of the unlabeled peptide 
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datasets including the unlabeled measurements.  Although the high reproducibility of 

these values does not allow the determination of the error associated with the tD 

measurement, a worst case error can be estimated based on the step size of the tD 

bins.  Therefore, using ±0.2 ms as the tD bin size, a single bin shift would result in an 

estimated maximum error of ~2% to ~4% across the tD range for the observed ions.  As 

evident from Figure 4.7, the true error is smaller and would only be determined with the 

use of much smaller tD bin sizes (significantly greater experimental times). A related 

concern is the reproducibility of tD distributions for the various ions.  In order to 

determine the variation between the replicates with respect to XIDTDs, an average 

normalized root-mean-squared-deviation (NRMSD) and is described by the following 

equation: 

 
         

  

         
               4.1 

In Equation 4.1, y represents the intensity at a given tD value for the respective (first and 

second) tD distributions and Nt is equal to the number of tD values.  It is noted that only 

y-values spanning the tD range over which features are observed are used in this 

calculation. Values obtained from Equation 4.1 are reported as a percentage in Table 

4.1. Average NRMSD values ranged from 1.2 % to 17.2 % for deuterated ions having 

average m/z values of 568.07 and 385.69, respectively. In general, the average 

NRMSD values are quite low (<8%) as shown in Table 4.1.This indicates high 

reproducibility in XIDTD profiles for separate replicate runs.  It is again noted that no 

alignment is performed between datasets. 
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4.3.8. Assessment of the Effects of ESI Solvent Composition.  A challenge of the HDX 

method employed in this demonstration is the relatively high deuterium content (~16%) 

within the ESI solvent.  To model the effect of ESI solvent deuterium contribution,  

simulations for 100 ions were performed in which the side chain HDX sites within a 

peptide exhibit a 0.16 probability of containing a deuterium.  The increase to average 

m/z for each c ion was then determined for the 100 ions.  The deuterium contribution 

from the ESI solvent was then subtracted from the experimental results for the peptides 

shown in Figure 4.6.  Figure 4.8 shows the simulated deuterium retention results for the 

two peptide regions described above.  As evidenced by Figure 4.8, side chain 

deuterium incorporation from the ESI solvent would not significantly alter the overall 

deuterium retention profile (compared to Figure 4.6 above).  That is, the relative 

protection as described in the manuscript is still observed.  It is noted that the HDX 

method was largely determined by optimizing the overall peptide ion signal for this 

proof-of-principle study.  In the future, greater effort will be utilized to optimize the HDX 

method in order to ensure more substantial structural determinations. 

4.3.9. Instrumental Implications and Conclusion  

This study demonstrates the utility of combining online DHX-PD and IMS-MS/MS 

for protein structural analysis without the need for condensed-phase separation. The 

high reproducibility of the linear-field, low-pressure IMS separation allows for XIDTD 

spectral matching of undeuterated and deuterated ions for rapid identification and 

deuterium retention calculations for individual peptides. For deuterium labeling studies, 

the IMS source, drift tube and interface regions are shown to transfer ions without 

excessive ion heating and deuterium scrambling.  When combined with ion trapping and 

ETD capabilities of the LTQ, the method can reveal elements of protein secondary  



137 
4. Online Deuterium Hydrogen Exchange and Protein Digestion Coupled to IMS and Tandem MS 

 

  

0

1

2

3

4

5

6

3 4 5 6 7 8 9 10 11 12 13 14 15

0

2

4

6

8

10

12

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

residue number

th
eo

re
ti

ca
l d

eu
te

ri
u

m
 c

o
n

te
n

t

A.

B.

Figure 4.8. (A) Theoretical amide deuterium content per residue, n, calculated 

from the cn-1 product ions generated by ETD from labeled 

[MQIFVKTLTGKTITL+3H]
3+

 ions. (B) Theoretical amide deuterium content plot 

obtained upon ETD of labeled [NVKAKIQDKEGIPPDQQRLIF+4H]
4+

 ions. 
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structure at a per-residue level. These data are consistent with the known 

secondary structural elements of ubiquitin.  

Although the data provided here represent that obtained from a proof-of-principle 

study, it is noteworthy to mention that several improvements are envisioned to yield 

higher-efficiency structural determinations. Because applying non-activating transfer 

voltages to the IMS and MS devices in order to mitigate deuterium scrambling results in 

decreased sensitivity, changes in gas composition and front ion trapping funnel 

design[66] may improve the signal-to-noise ratio of low intensity ions without causing 

deuterium scrambling. Admittedly, other studies have used rapid mixing devices[67] to 

quickly equilibrate DHX and digestion regions prior to MS/MS analysis. This may further 

prevent the occurrence of undesirable backexchange events. Lastly, the single DHX 

time point is intended to serve as a rapid structural probe and does not capture protein 

dynamics as described by time-dependent DHX strategies. As such, the use of varying 

DHX times with online microfluidic devices[67-69] may yield informative kinetic studies 

that can be coupled to IMS-ETD-MS analysis. 

 

 

  



139 
4. Online Deuterium Hydrogen Exchange and Protein Digestion Coupled to IMS and Tandem MS 

4.4. References 

1. Engen, J.R. and D.L. Smith, Investigating protein structure and dynamics by hydrogen exchange 
MS. Anal Chem, 2001. 73(9): p. 256a-265a. 

2. Engen, J.R., et al., Partial cooperative unfolding in proteins as observed by hydrogen exchange 
mass spectrometry. Int Rev Phys Chem, 2013. 32(1): p. 96-127. 

3. Wei, H., et al., Hydrogen/deuterium exchange mass spectrometry for probing higher order 
structure of protein therapeutics: methodology and applications. Drug Discovery Today, 2014. 
19(1): p. 95-102. 

4. Engen, J.R., Analysis of Protein Conformation and Dynamics by Hydrogen/Deuterium Exchange 
MS. Analytical Chemistry, 2009. 81(19): p. 7870-7875. 

5. Kaltashov, I.A., C.E. Bobst, and R.R. Abzalimov, H/D Exchange and Mass Spectrometry in the 
Studies of Protein Conformation and Dynamics: Is There a Need for a Top-Down Approach? 
Analytical Chemistry, 2009. 81(19): p. 7892-7899. 

6. Kaltashov, I.A., C.E. Bobst, and R.R. Abzalimov, Mass spectrometry-based methods to study 
protein architecture and dynamics. Protein Science, 2013. 22(5): p. 530-544. 

7. Khanal, A., et al., Pulsed hydrogen/deuterium exchange mass spectrometry for time-resolved 
membrane protein folding studies. J Mass Spectrom, 2012. 47(12): p. 1620-6. 

8. Konermann, L., J. Pan, and Y.-H. Liu, Hydrogen exchange mass spectrometry for studying protein 
structure and dynamics. Chemical Society Reviews, 2011. 40(3): p. 1224-1234. 

9. Shi, X., et al., Hydrogen Exchange-Mass Spectrometry Measures Stapled Peptide Conformational 
Dynamics and Predicts Pharmacokinetic Properties. Analytical Chemistry, 2013. 85(23): p. 11185-
11188. 

10. Skinner, J.J., et al., Protein dynamics viewed by hydrogen exchange. Protein Sci, 2012. 21(7): p. 
996-1005. 

11. Keppel, T.R., B.A. Howard, and D.D. Weis, Mapping Unstructured Regions and Synergistic Folding 
in Intrinsically Disordered Proteins with Amide H/D Exchange Mass Spectrometry. Biochemistry, 
2011. 50(40): p. 8722-8732. 

12. Berkowitz, S.A., et al., Analytical tools for characterizing biopharmaceuticals and the implications 
for biosimilars. Nat Rev Drug Discov, 2012. 11(7): p. 527-40. 

13. Mayne, L., et al., Many Overlapping Peptides for Protein Hydrogen Exchange Experiments by the 
Fragment Separation-Mass Spectrometry Method. Journal of The American Society for Mass 
Spectrometry, 2011. 22(11): p. 1898-1905. 

14. Zhang, H.M., et al., Fast reversed-phase liquid chromatography to reduce back exchange and 
increase throughput in H/D exchange monitored by FT-ICR mass spectrometry. J Am Soc Mass 
Spectrom, 2009. 20(3): p. 520-4. 

15. Jones, L.M., et al., Online, High-Pressure Digestion System for Protein Characterization by 
Hydrogen/Deuterium Exchange and Mass Spectrometry. Analytical Chemistry, 2010. 82(4): p. 
1171-1174. 

16. Zhang, H.-M., et al., Fast Reversed-Phase Liquid Chromatography to Reduce Back Exchange and 
Increase Throughput in H/D Exchange Monitored by FT-ICR Mass Spectrometry. Journal of the 
American Society for Mass Spectrometry, 2009. 20(3): p. 520-524. 

17. Sheff, J., M. Rey, and D. Schriemer, Peptide–Column Interactions and Their Influence on Back 
Exchange Rates in Hydrogen/Deuterium Exchange-MS. Journal of The American Society for Mass 
Spectrometry, 2013. 24(7): p. 1006-1015. 

18. Wu, Y., S. Kaveti, and J.R. Engen, Extensive deuterium back-exchange in certain immobilized 
pepsin columns used for H/D exchange mass spectrometry. Analytical Chemistry, 2006. 78(5): p. 
1719-1723. 



140 
4. Online Deuterium Hydrogen Exchange and Protein Digestion Coupled to IMS and Tandem MS 

19. Venable, J.D., W. Scuba, and A. Brock, Feature Based Retention Time Alignment for Improved 
HDX MS Analysis. Journal of the American Society for Mass Spectrometry, 2013. 24(4): p. 642-
645. 

20. Rand, K., et al., ETD in a Traveling Wave Ion Guide at Tuned Z-Spray Ion Source Conditions Allows 
for Site-Specific Hydrogen/Deuterium Exchange Measurements. Journal of The American Society 
for Mass Spectrometry, 2011. 22(10): p. 1784-1793. 

21. Iacob, R.E., J.P. Murphy, and J.R. Engen, Ion mobility adds an additional dimension to mass 
spectrometric analysis of solution-phase hydrogen/deuterium exchange. Rapid Communications 
in Mass Spectrometry, 2008. 22(18): p. 2898-2904. 

22. May, J.C. and J.A. McLean, Ion Mobility-Mass Spectrometry: Time-Dispersive Instrumentation. 
Analytical Chemistry, 2014. 

23. Lermyte, F., et al., ETD Allows for Native Surface Mapping of a 150 kDa Noncovalent Complex on 
a Commercial Q-TWIMS-TOF Instrument. Journal of The American Society for Mass 
Spectrometry, 2014. 25(3): p. 343-350. 

24. Williams, J.P., et al., Identifying drug metallation sites on peptides using electron transfer 
dissociation (ETD), collision induced dissociation (CID) and ion mobility-mass spectrometry (IM-
MS). Chemical Communications, 2010. 46(30): p. 5458-5460. 

25. Merenbloom, S.I., T.G. Flick, and E.R. Williams, How hot are your ions in TWAVE ion mobility 
spectrometry? J Am Soc Mass Spectrom, 2012. 23(3): p. 553-62. 

26. Morsa, D., V.r. Gabelica, and E. De Pauw, Effective Temperature of Ions in Traveling Wave Ion 
Mobility Spectrometry. Analytical Chemistry, 2011. 83(14): p. 5775-5782. 

27. Shvartsburg, A.A. and R.D. Smith, Fundamentals of traveling wave ion mobility spectrometry. 
Anal Chem, 2008. 80(24): p. 9689-99. 

28. Zehl, M., et al., Electron Transfer Dissociation Facilitates the Measurement of Deuterium 
Incorporation into Selectively Labeled Peptides with Single Residue Resolution. Journal of the 
American Chemical Society, 2008. 130(51): p. 17453-17459. 

29. Rand, K.D., M. Zehl, and T.J. Jorgensen, Measuring the hydrogen/deuterium exchange of 
proteins at high spatial resolution by mass spectrometry: overcoming gas-phase 
hydrogen/deuterium scrambling. Acc Chem Res, 2014. 47(10): p. 3018-27. 

30. Pan, J., et al., Structure and dynamics of small soluble Abeta(1-40) oligomers studied by top-
down hydrogen exchange mass spectrometry. Biochemistry, 2012. 51(17): p. 3694-703. 

31. Abzalimov, R.R., C.E. Bobst, and I.A. Kaltashov, A New Approach to Measuring Protein Backbone 
Protection with High Spatial Resolution Using H/D Exchange and Electron Capture Dissociation. 
Analytical Chemistry, 2013. 85(19): p. 9173-9180. 

32. Lee, S., et al., Extracted fragment ion mobility distributions: A new method for complex mixture 
analysis. International Journal of Mass Spectrometry, 2012. 309: p. 154-160. 

33. Arndt, J.R., et al., Lysine residues in the N-terminal huntingtin amphipathic α-helix play a key role 
in peptide aggregation. Journal of Mass Spectrometry, 2015. 50(1): p. 117-126. 

34. Counterman, A.E., et al., Formation of peptide aggregates during ESI: Size, charge, composition, 
and contributions to noise. Journal of the American Society for Mass Spectrometry, 2001. 12(9): 
p. 1020-1035. 

35. Mesleh, M.F., et al., Structural Information from Ion Mobility Measurements:  Effects of the 
Long-Range Potential. The Journal of Physical Chemistry, 1996. 100(40): p. 16082-16086. 

36. Revercomb, H.E. and E.A. Mason, THEORY OF PLASMA CHROMATOGRAPHY GASEOUS 
ELECTROPHORESIS - REVIEW. Analytical Chemistry, 1975. 47(7): p. 970-983. 

37. Shvartsburg, A.A. and M.F. Jarrold, An exact hard-spheres scattering model for the mobilities of 
polyatomic ions. Chemical Physics Letters, 1996. 261(1-2): p. 86-91. 



141 
4. Online Deuterium Hydrogen Exchange and Protein Digestion Coupled to IMS and Tandem MS 

38. Wyttenbach, T., et al., Effect of the long-range potential on ion mobility measurements. Journal 
of the American Society for Mass Spectrometry, 1997. 8(3): p. 275-282. 

39. Blase, R.C., et al., Increased ion transmission in IMS: A high resolution, periodic-focusing DC ion 
guide ion mobility spectrometer. International Journal of Mass Spectrometry, 2011. 301(1-3): p. 
166-173. 

40. Clemmer, D.E., R.R. Hudgins, and M.F. Jarrold, NAKED PROTEIN CONFORMATIONS - 
CYTOCHROME-C IN THE GAS-PHASE. Journal of the American Chemical Society, 1995. 117(40): p. 
10141-10142. 

41. Hoaglund, C.S., et al., Three-dimensional ion mobility TOFMS analysis of electrosprayed 
biomolecules. Analytical Chemistry, 1998. 70(11): p. 2236-2242. 

42. Kurulugama, R.T., et al., Overtone Mobility Spectrometry: Part 1. Experimental Observations. 
Journal of the American Society for Mass Spectrometry, 2009. 20(5): p. 729-737. 

43. Merenbloom, S.I., et al., High-resolution ion cyclotron mobility spectrometry. Anal Chem, 2009. 
81(4): p. 1482-7. 

44. von Helden, G., T. Wyttenbach, and M.T. Bowers, Conformation of macromolecules in the gas 
phase: use of matrix-assisted laser desorption methods in ion chromatography. Science, 1995. 
267(5203): p. 1483-5. 

45. Wittmer, D., et al., ELECTROSPRAY-IONIZATION ION MOBILITY SPECTROMETRY. Analytical 
Chemistry, 1994. 66(14): p. 2348-2355. 

46. Bohrer, B.C., et al., Biomolecule Analysis by Ion Mobility Spectrometry, in Annual Review of 
Analytical Chemistry. 2008. p. 293-327. 

47. Clemmer, D.E. and M.F. Jarrold, Ion mobility measurements and their applications to clusters 
and biomolecules. Journal of Mass Spectrometry, 1997. 32(6): p. 577-592. 

48. Collins, D.C. and M.L. Lee, Developments in ion mobility spectrometry-mass spectrometry. 
Analytical and Bioanalytical Chemistry, 2002. 372(1): p. 66-73. 

49. Kurulugama, R.T., et al., Development of a high-throughput IMS-IMS-MS approach for analyzing 
mixtures of biomolecules. Journal of Proteomics, 2008. 71(3): p. 318-331. 

50. Shaffer, S.A., et al., A novel ion funnel for focusing ions at elevated pressure using electrospray 
ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 1997. 11(16): p. 
1813-1817. 

51. Stlouis, R.H. and H.H. Hill, ION MOBILITY SPECTROMETRY IN ANALYTICAL-CHEMISTRY. Critical 
Reviews in Analytical Chemistry, 1990. 21(5): p. 321-355. 

52. Palumbo, A.M., et al., Tandem mass spectrometry strategies for phosphoproteome analysis. 
Mass Spectrom Rev, 2011. 30(4): p. 600-25. 

53. Palumbo, A.M., J.J. Tepe, and G.E. Reid, Mechanistic insights into the multistage gas-phase 
fragmentation behavior of phosphoserine- and phosphothreonine-containing peptides. J 
Proteome Res, 2008. 7(2): p. 771-9. 

54. Ruotolo, B.T., et al., Analysis of phosphorylated peptides by ion mobility-mass spectrometry. Anal 
Chem, 2004. 76(22): p. 6727-33. 

55. Ruotolo, B.T., et al., Distinguishing between phosphorylated and nonphosphorylated peptides 
with ion mobility-mass spectrometry. J Proteome Res, 2002. 1(4): p. 303-6. 

56. Donohoe, G.C., et al., A New Ion Mobility–Linear Ion Trap Instrument for Complex Mixture 
Analysis. Analytical Chemistry, 2014. 86(16): p. 8121-8128. 

57. Zucker, S.M., et al., An ion mobility/ion trap/photodissociation instrument for characterization of 
ion structure. J Am Soc Mass Spectrom, 2011. 22(9): p. 1477-85. 

58. Baker, E.S., et al., Ion mobility spectrometry-mass spectrometry performance using 
electrodynamic ion funnels and elevated drift gas pressures. J Am Soc Mass Spectrom, 2007. 
18(7): p. 1176-87. 



142 
4. Online Deuterium Hydrogen Exchange and Protein Digestion Coupled to IMS and Tandem MS 

59. Vijay-Kumar, S., C.E. Bugg, and W.J. Cook, Structure of ubiquitin refined at 1.8 A resolution. J Mol 
Biol, 1987. 194(3): p. 531-44. 

60. Bou-Assaf, G.M., et al., Advantages of Isotopic Depletion of Proteins for Hydrogen/Deuterium 
Exchange Experiments Monitored by Mass Spectrometry. Analytical Chemistry, 2010. 82(8): p. 
3293-3299. 

61. Konermann, L., S. Vahidi, and M.A. Sowole, Mass Spectrometry Methods for Studying Structure 
and Dynamics of Biological Macromolecules. Analytical Chemistry, 2013. 86(1): p. 213-232. 

62. Sterling, H.J. and E.R. Williams, Real-Time Hydrogen/Deuterium Exchange Kinetics via 
Supercharged Electrospray Ionization Tandem Mass Spectrometry. Analytical Chemistry, 2010. 
82(21): p. 9050-9057. 

63. Johnson, E.C., et al., Solution structure and dynamics of a designed hydrophobic core variant of 
ubiquitin. Structure, 1999. 7(8): p. 967-976. 

64. Berman, H.M., et al., The Protein Data Bank. Nucleic Acids Research, 2000. 28(1): p. 235-242. 
65. Pan, J., et al., Electron Capture Dissociation of Electrosprayed Protein Ions for Spatially Resolved 

Hydrogen Exchange Measurements. Journal of the American Chemical Society, 2008. 130(35): p. 
11574-11575. 

66. Ibrahim, Y.M., et al., Improving Ion Mobility Measurement Sensitivity by Utilizing Helium in an 
Ion Funnel Trap. Analytical Chemistry, 2014. 86(11): p. 5295-5299. 

67. Keppel, T.R. and D.D. Weis, Analysis of Disordered Proteins Using a Simple Apparatus for 
Millisecond Quench-Flow H/D Exchange. Analytical Chemistry, 2013. 85(10): p. 5161-5168. 

68. Rob, T. and D. Wilson, A versatile microfluidic chip for millisecond time-scale kinetic studies by 
electrospray mass spectrometry. Journal of the American Society for Mass Spectrometry, 2009. 
20(1): p. 124-130. 

69. Wilson, D.J. and L. Konermann, A capillary mixer with adjustable reaction chamber volume for 
millisecond time-resolved studies by electrospray mass spectrometry. Anal Chem, 2003. 75(23): 
p. 6408-14. 

 

 



143 
5. He-CTD Combined with Deuterium Hydrogen Exchange MS 

5. Helium Charge Transfer Dissociation Combined with Deuterium Hydrogen 

Exchange Mass Spectrometry 

5.1 Introduction: Fragmentation Techniques and Hydrogen Deuterium Scrambling 

 Recent advances in tandem mass spectrometry (MS/MS) present techniques 

that are well suited to site-specific (per-residue) deuterium retention using both top-

down[1-3] and bottom-up[4, 5] approaches. One Important aspect of pre-residue 

deuterium measurement is mitigating hydrogen/deuterium (HD)- scrambling. HD-

scrambling occurs from the collisional-heating of peptide or protein ions that result in 

mobile protons.[6] Because protons can be mobilized before bond dissociation, the final 

location of the protons is different than starting location on the precursor ion. This 

becomes problematic during per-residue deuterium measurements attempting to assess 

protein structure. It is also important to note that HD-scrambling can occur as a result of 

‘harsh’ declustering conditions applied to the ion optics of the mass spectrometer and 

ion isolation due to brandband excitation.[7] Therefore special attention most also be 

given to and instrumental parameters to insure ion are not activate prior to 

fragmentation.    

 Electron based fragmentation processes like ECD and ETD have been used for 

per-residue deuterium measurements without HD-scrambling.[5, 8-11] One limitation of 

ECD/ETD is the difficultly in fragmenting peptides exhibiting charge states ≥ +2. With 

this in mind, it would be highly desirable to have access to a fragmentation technique 

that could proceed via odd electron or radical-induced pathways for low charge state 

precursors without proton mobilization.  
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 Recently, a new MS/MS technique known as helium cation-charge transfer 

dissociation (He-CTD ) of peptide and protein ions has been demonstrated using either 

helium cations[12] or cations from an air plasma.[13] Gaseous ions emitted during He-

CTD achieve kinetic energies sufficient to overcome the Columbic barrier with 

biomolecular cations. He-CTD  product ions are seen to result from both vibrationally- 

and radically-driven dissociation pathways that resemble those formed from both CID 

and ECD/ETD processes.[12, 13] Of particular interest is the ability of He-CTD  to 

produce radical fragmentation regardless of precursor ion charge state.  

 In the present study, the combination of DHX with He-CTD-MS is explored. 

Because HD-scrambling is a significant concern, a model peptide specifically designed 

to determine HD-scrambling[7] is used for a theoretical and experimental scrambling 

evaluation. These experiments are directly compared to ETD experiments, which were 

obtained under non-scrambling conditions. Separate experiments used an online and 

continuous DHX system coupled with pepsin digestion (PD) and simultaneous DHX 

quenching for structural elucidation of deuterated ubiquitin. Using the non-scrambling 

conditions found with the model peptide, DHX-He-CTD-MS results are presented in a 

proof-of-concept, per-residue structural evaluation of the N-terminal region (residues 1-

15) in ubiquitin. Since the N-terminal region contains both the fastest and slowest 

exchanging residues in the protein, an exchange-out time of ~50 seconds was sufficient 

to exchange unstructured areas while retaining deuterium on structured areas.   

5.2 Methods and Materials 

 Ubiquitin (bovine erythrocytes, 98%) and lyophilized pepsin (porcine, 3200-4500 

units/mg protein), Deuterium oxide (99.9%) and glacial acetic acid (99 %) were 
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purchased from Sigma-Aldrich (St. Louis, MO). The model peptide (MP) 

KKDDDDDIIKIIK (90.6%) was purchased from Genscript (Piscataway, NJ, USA). 

Proteins and peptides were used without further purification and all other reagents were 

MS grade or the equivalent.  

5.2.1. Sample Preparation 

 Ubiquitin (1.0 mg) was added to 1.0 mL of D2O (99.9 %). The solution was 

incubated at 37 °C for 10 days and left for more than 3 weeks at room temperature. This 

method allowed for ~98 % deuterium incorporation of ubiquitin. Pepsin solutions were 

prepared by adding lyophilized powder (1.0 mg) to 1.0 mL acidified 18 MΩ H2O (8% 

glacial acetic acid v:v) at pH ~ 2.0.  

5.2.2. Modified Instrument 

 A schematic of the online system is presented in Figure 5.1 and has been 

previously described.[14] Briefly, the DHX reaction followed by quenching and 

simultaneous digestion was performed using two micro-Tee assemblies (Upchurch 

Scientific Inc, Oak Harbor, Wa) connected with PEEK capillary (1588 μm o.d. × 152 μm 

i.d). Using a 500-μL syringe (Hamilton, Reno, NV, USA), a high precision syringe pumps 

(KD scientific Holliston, MA,USA) delivered the deuterated ubiquitin solution to the first 

micro-Tee assembly at a flow rate of 0.60 μL·min-1. The instrument-equipped syringe 

pump delivered the room temperature exchange-out solution at a flow rate of 10.0 

μL·min-1. DHX of deuterated ubiquitin proceeded for ~ 47.4 seconds over a capillary 

length of 50.8 cm. A third 500-μL syringe containing ice-cooled pepsin solution (pH 

~2.0) was introduced by a KD scientific syringe pump to a second micro-Tee assembly 

at a flow rate of 0.80 μL·min-1. DHX quenching and simultaneous protein digestion was 
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preformed over a capillary length of 25.4 cm (~ 30 sec digestion time) and interfaced 

directly to the commercial ESI source. Resulting peptic peptides were electrosprayed 

into the MS instrument using a bias voltage of 4.0 kV at a combined flow rate of 11.40 

μL·min-1.  

 

 

 

 

 

5.2.3. HD – Scrambling Peptide 

 For the evaluation of H/D scrambling, the model peptide KKDDDDDIIKIIK (1.0 

mg) was added to 1.0 mL of D2O (99.9 %) and allowed to incubate for ~24 hours at 
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Figure 5.1. Schematic representation showing (A) the microfludic online HDX system used in 

HD-scrambling and structural studies. This system was directly interfaced to the commercial 

Bruker electrospray ionization source. The dashed-boxed region encompassing the syringe 

containing the pepsin solution was removed for HD-scrambling studies (B) Modified quadrupole 

ion trap showing the location of the saddle field ion source for the generation of He
+
 cations. (C) 

The electronic components for pulsed operation during He-CTD-MS experiments. 
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25°C. An online time-resolved system for continuous DHX was used for scrambling 

studies. Briefly, a 500-μL syringe (Hamilton, Reno, NV, USA) containing the deuterated 

peptide solution was delivered to a micro-Tee assembly using a high precision syringe 

pump (KD scientific Holliston, MA,USA) at a flow rate of 0.20 μL·min-1. Using the 

instrument equipped syringe pump, acidified 18 MΩ H2O (6 % acetic acid, pH ~ 2.5) 

was introduced to the second port of micro-Tee at 10.00 μL·min-1. The DHX reaction of 

deuterated peptide occurred over a length of 10.1 cm resulting in an exchange-out time 

of ~ 11 seconds. The source region was heated to 100 oC and the capillary exit potential 

reduced to 50 V. A detailed list of instrumental parameters to mitigate HD-scrambling is 

given in the Supporting Information section. Instrumental parameters for ubiquitin 

deuteration studies were selected based upon the peptide exhibiting a 0 % scrambling 

trend (see Supporting Information) during ETD experiments (see below).  

5.2.4. Mass Spectrometry Measurements and Parameters 

 Full mass spectra were collected for all ions by setting the mass analyzer scan 

parameters over a m/z range of 150 to 2000 and setting the ion charge control (ICC) to 

a target of 2 × 105. Precursor mass spectra were collected over 1.0 minute with 10 

µscans/scan. A full list of instrumental parameters to mitigate HD-scrambling can be 

found in Appendix 2.  

5.2.4.1. ETD Measurements 

ETD analysis was conducted on isolated precursor ions using a selection window 

of ± 10 Da around the selected centroid m/z value. The ICC was disabled and a trap 

injection time of 1.0 ms was used. ETD of precursor ions was enabled by the 

introduction of fluoranthene radicals into the QIT for 40 ms. ETD Fragmentation spectra 
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were collected for 1.0 minute in order to adequately sample the resulting isotopic 

distribution of product ions. 

5.2.4.2. He-CTD Measurements. 

  He-CTD measurements were similar to ETD measurements. Briefly, precursor 

ions were selected using ± 10 Da window around the centroid m/z value. The ICC was 

disabled and a quadrupole ion trap (QIT) injection time of 50 ms was used. A variable 

leak-valve was used to control the flow of He gas (1.40 X 10-5 mbar) through a saddle 

field source (Figure 5.1). He-CTD fragmentation was performed by introducing 6 keV 

helium cations into the QIT in square-wave pulse that was synchronized with the part of 

the scan cycle normally reserved for CID.  The CID amplitude was set to zero to simply 

store the ions at the selected low mass cut-off value (e.g. m/z 150) during exposure to 

the helium cations. For the model peptide and HD-scrambling studies, product ion 

spectra were collected for 2 minutes with the He+ beam enabled followed by 

background collection for 2 minutes with the He+ beam disabled. For ubiquitin studies, 

these respective collections periods were 3 minutes and 2 minutes. Precursor and 

product ion spectra were signal averaged and background subtracted prior to 

processing.  

5.2.5. Per-Residue Deuterium Measurements.  

 Mass spectra from both ETD and He-CTD were exported as ASCII files and 

converted into text files (.TXT). The text files were constructed as two-column arrays of 

m/z and intensity values. Using software developed in-house, deuterium retention was 

calculated from the deconvoluted product ion spectra by weighting c- or a-ion 

isotopologues according to their intensity values. The software creates a text output file 
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containing the average m/z values. Average m/z values for the unlabeled fragment ions 

are subtracted from those of the labeled fragment ions of the same charge state. This 

mass difference is reported as the amount of total deuterium retention for each 

detectable fragment ion. 

5.3 Results and Discussion 

5.3.1. Peptide Control Studies and HD – Scrambling Evaluation 

 To correctly evaluate the ability of He-CTD to retain a deuterium label, studies 

employing the model peptide (KKDDDDDIIKIIK) first used ETD experiments to 

determine non-activating instrumental parameters (i.e., source conditions, transfer 

optics potentials, and rf amplitudes for ion trapping and isolation). Although the model 

peptide may not produce any high-order secondary structure, the peptide was designed 

to contain a fast exchanging N-terminal region and a slow exchanging C-terminal 

portion. That is, under DHX quench conditions, backbone amide residues including D7 

through I12 retain their deuterium label for several minutes.[10] Table 5.1 shows the 

theoretical limits (100% and 0%) for scrambling values calculated for the c-ion series of 

the model peptide as outlined by Zehl, et. al.[7] After online DHX-ETD-MS of [M+3H]3+ 

peptide ions, a comparison of experimental product ions resulting from ETD match 

closely to the theoretical 0% scrambling trend. This trend shows very little deuterium 

retention change across residues K1 through D6, followed by a sharp increase in 

deuteration level with each successive c-ion. Comparatively, under activating conditions 

this trend is not observed and product ions would show higher levels of deuterium 

content.[7] Such a case would resemble that of the 100% scrambling trend (Table 5.1).  

5.3.1.1. He-CTD HD-Scrambling Analysis 
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 Figure 5.2A shows the He-CTD spectrum for the unlabeled [M+3H]3+ peptide 

ions. This spectrum shows that observable c ions sequence much of the model peptide. 

Here, it is noted that sequence coverage spans c5 through c12, which covers a portion of 

the N-terminal region expected to not retain deuterium during DHX experiments. As 

discussed above, DHX-ETD-MS of the [M+3H]3+ ions from the deuterated peptide has 

been used as a control to assess parameters that mitigate deuterium scrambling before 

proceeding with He-CTD and structural analyses. Pertinent parameters included a 

capillary exit of 50 V, Funnel 1 and 2 rf amplitudes (peak-to-peak) of 130 V and a trap 

drive of 40%. A complete list of instrumental parameters can be found in Appendix 2.  

 

 

 

 

 

 

According to the theoretical value, the calculated value for this ion (Table 5.1) 

mirrors the deuterium retention level for 0% scrambling. With each successive c-ion  

  

Residue
a

Residue 

number

Theoretical 100 % 

Scrambling
c

Theoretical 0 % 

scrambling
c

ETD 

Experimental
d

ETD CV
e

CTD 

Experimental 

(c -ion)
d

CTD CV             

(c -ion)
e

K 1 na na nd na na na

K 2 1.32 0.61 nd na nd na

D 3 2.07 0.96 0.92 5.6 nd na

D 4 2.44 1.14 1.22 5.3 nd na

D 5 2.82 1.31 1.33 3.2 nd na

D 6 3.19 1.49 1.51 4.8 1.48 6.4

D 7 3.57 1.66 1.58 6.1 1.81 20.2

I 8 3.95 2.39 2.46 3.3 2.78 4.5

I 9 4.13 3.03 3.18 4.1 3.12 4.9

K 10 4.32 3.67 3.57 2.7 3.75 2.9

I 11 5.07 4.57 4.58 3.2 4.82 3.2

I 12 5.26 5.21 5.57 1.5 5.51 1.2

K 13 5.45 6.00 6.22 0.4 5.97 0.7

a. Primary Sequence from model peptide (KKDDDDDIIKIIK).           
b. Assigned amide backbone number from the model peptide (KKDDDDDIIKIIK).  
    Note the first amide heteroatom begins at residue 2. 
c. Theoretical deuterium content values for c-ions generated from ETD-MS of [KKDDDDDIIKIIK+3H]

3+
  

     precursor ions.   
d. Average experimental deuterium content obtained by subtracting the average m/z of the labeled  
     fragment ion from that of the unlabeled fragment ion. 

e. Coefficient of variation expressed as a percentage.           
f. Average experimental deuterium content obtained by subtracting the average m/z of the labeled 
    fragment ion from that of the unlabeled fragment ion. 

 

Table 5.1. HD-Scrambling analysis of [KKDDDDDIIKIIK+3H]
3+

 c-ions generated from ETD-MS and He-

CTD-MS 
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Figure 5.2. (A) He-CTD-MS spectrum of [KKDDDDDIIKIIK+3H]
3+

 precursor ions. Several product 

ions resulting from various fragmentation pathways are labeled. (B) MS-CTD spectrum of 

[KKDDDDDIIKIIK+2H]
2+

 precursor ions. Identified product ions resulting from CTD are labeled. 

Both Figure panels A and B have been normalized to respective precursor ion intensities and 

displayed as a percentage.  
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produced Table 5.1 gives per-residue deuterium retention for the deuterated model 

peptide observed upon DHX-He-CTD-MS of the [M+3H]3+ peptide ions. Identified c and 

a ions resulting from He-CTD of the precursor ions were selected for direct comparisons 

to the theoretical HD-scrambling values (Table 5.1). Here (Table 5.1), product ions 

generated by He-CTD appear to match the 0% scrambling values established during 

the ETD control analysis. In general, coefficients of variation are less than 20% for 

replicate (N = 3) He-CTD trials. Similar to ETD studies, He-CTD product ions (Table 5.1) 

show that the deuteration content assessment begins at a relatively low level (c5 and a3 

ions).  

5.3.1. He – CTD Mechanistic Insights for c – ions  

 Because of the short interaction times, He-CTD is presumed to follow vertical 

activation (not adiabatic), and has been shown to fragment neutral molecules with 

appearance potentials on the order of 30 eV.[12] He-CTD therefore activates precursor 

ions through electronic and vibration modes. Fragment ions that result from both 

vibrational and radical (electronic) processes. Fragment ions can be seen in Figure 5.2A 

and 5.2B where several y, b, c and z ions were identified. However, it is instructive to 

consider the c ion series from our tandem MS measurements. He-CTD is performed 

with He+ cations emitted with high kinetic energy (6 KeV) from the saddle field source. 

The main purpose of kiloectronvolt energies is to overcome the Coulombic barrier of 

cation/cation reactions. Perhaps because of inelastic transfer of energy during result 

from proximal reagent He+ ions abstracting an electron (EA ~24.6 eV) and creating a 

hole in the precursor ions. In turn, the electron deficient ion undergoes radical 

fragmentation, where the abstraction of an electron at the carbonyl leads to a McLafferty 
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rearrangement of an amide that is radical-driven. A γ-H· transfer from the side chain to 

the carbonyl produces a hydroxyl group and cleavage of the N-Cα bond.  

In contrast to c ions produced by ECD/ETD, this ion carries a positive charge at 

the hydroxyl group that is electron deficient. However, deconvolution of the isotopic 

distributions for He-CTD-generated c ion distributions that are very similar to those 

generated from ETD (Figure 5.3). That is, when considering singly-charged c ions from 

ETD, the charge site is presumably a protonated basic residue and would be 1 Da 

heavier than an oxidized, singly-charge c ion from He-CTD. It is possible that the c ions 

from He-CTD involve a double-hydrogen transfer during the rearrangement process. It 

is noteworthy to mention that several highly charged fragment ions may be observed in  

the He-CTD spectrum (Figure 5.2A and B) and are not clearly distinguishable for 

identification. The formation of c- and z-ions via electron transfer processes formed by 

irradiation of excited species[15, 16] has been previously reported.charge transfer, the 

activation energy obtained through He-CTD exceeds the electron affinity of the He+ 

cation and is on the order of 30 eV.[12] The formation of c ions can  

 Much like other electron based techniques, He-CTD fragmentation appears to 

occur rapidly and reflects a high energy, radical-driven mechanism. That is, dissociation 

occurs without significant proton mobilization or HD-scrambling. Furthermore, the 

modified QIT is operated at a relatively higher pressure (due to the saddle source and 

He gas flow) whereby any vibrationally excited ions are rapidly thermalized. With this in 

mind, the experimental results demonstrate that c ions resulting from He-CTD retain 

solution deuterium uptake levels. 
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 In general, ETD and He-CTD product ions are similar. For example, Figure 5.3 

shows a comparison between several c-ions as well as the charge reduced, singly-

charged ions generated from both fragmentation methods. Both fragmentation 

techniques are very similar with regard to deuterium retention, isotopic distribution and 

relative intensity between isotopologues. This high degree of similarity further indicates, 

at least for these distinguishable ions, that He-CTD fragmentation of a 3+ precursor can 

proceed without HD-scrambling. 
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5.3.2. Ammonia Neutral Loss and N – terminal Scrambling 

 Due to the complexity of He-CTD fragmentation spectra, the wider isotopic 

distribution of deuterated product ions and the relatively low resolution of the QIT, some 

ions are not well resolved and accurate deuterium content determinations were not 

possible. The compilation of these limitations has resulted in reduced sequence 

coverage during DHX-He-CTD studies relative to ETD. This is especially true for the N-
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Figure 5.3. Left and right panels show identified deuterated c-ions resulting from He-

CTD-MS and ETD-MS of KKDDDDDIIKIIK after on-line DHX respectively. These panels 

allow comparisons to be made based on the deuterated isotopic distribution and relative 

abundances of the isotopolgoues. For the respective panels, these ions were used to 

generate values in Table 5.1. All spectra were collected under non-activating instrumental 

parameters. Each panel has resulted from a single replicate from the respective 

fragmentation techniques.  
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terminal region of the model peptide, which is a region that is useful for assessing 

scrambling. Although the larger He-CTD c ions match the 0% scrambling values (Table 

5.1), it should be noted that some studies have indicated a uniform deuterium content 

increases across these peptides.[11] In part, this is due to the higher population of 

heteroatom sites that become populated under energizing processes. With this in mind, 

other studies have shown that ammonia neutral loss of the N-terminal region following 

ETD can be used to assess scrambling in peptides.[10]  Evaluation of the He-CTD 

spectrum for [M+2H]2+ ions form the model peptide (Figure 5.2B) shows a notable 

abundance of intact precursor ions formed via electron transfer or H· transfer resulting 

in charge reduced [M+H]+/[M+2H]+· molecular ions. Similar observations have been 

reported for [M+2H]2+ angiotensin ions irradiated with a beam of high-energy plasma 

cations (air), in which electron transfer appeared to be the predominant mechanism for 

charge reduction.[13] ETD did not produce adequate fragmentation for discussion. 

Evaluation of the isotopic distribution (Figure 5.2B) of the charge-reduced molecular ion 

shows that it has a calculated mass that is ~1.4 Da greater than the average mass of 

the peptide. Also present in the He-CTD spectrum of [M+2H]2+ ions (Figure 5.2B) is the 

presence of ammonia-loss product ions ([M+H-NH3]
+/[M+2H-NH3]

+·). Figure 5.4A and B 

show the these ions and the charge reduced ions after He-CTD of unlabeled [M+2H]2+ 

percursor ions, respectively. The difference between ions is calculated at 16.6 ± 0.1 Da 

and is consistent the loss of ammonia for [M+H-NH3]
+/[M+2H-NH3]

+· ions. The 

comparison of the charge-reduced ion and ammonia neutral loss ions can be used to 

monitor scrambling as performed previously for ETD.[10]  
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 He-CTD studies for the [M+3H]3+ or [M+2H]2+ percursor ions did not result in a 

full series of c ions required to fully evaluate HD-scrambling. Figures 5.4C and 5.4D 

shows the ammonia-loss and charge reduced ions upon DHX-He-CTD of [M+2H]2+ 

precursor ions, respectively. The m/z difference (16.6 ± 0.1 Da) is very similar to that 

determined for the corresponding unlabeled ions. A statistical model[10] that considers 
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Figure 5.4. Isotopic distributions for (A) [M+H-NH3]
+
/[M+2H-NH3]

+·
 ions and (B) 

[M+H]
+
/[M+2H]

+·
ions originating after MS-CTD of unlabeled [M+2H]

2+
 model peptide precursor 

ions. Isotopic distributions for (C) [M+H-NH3]
+
/[M+2H-NH3]

+·
 ions and (D) [M+H]

+
/[M+2H]

+·
ions 

generated from HDX-MS-CTD of [M+2H]
2+

 model peptide precursor ions. The red lines show 

the centroid for each isotopologue used for m/z averaging calculations. Black dashed lines 

represent the average m/z determined from the isotopologues. The difference in the average 

m/z values between adjacent panels (i.e. A-B, C-D) were used for determining HD-scrambling 

(see text for details). In each adjacent panel the mass difference was calculated as the loss of 

ammonia. 
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the overall deuterium content level and all exchangeable sites suggest that, in the case 

of 100% HD-scrambling, the deuterium content of the ammonia-loss ions would 

theoretically retain 5.7 deuteriums. Notably, the deuterium retention between the 

labeled and unlabeled ammonia-loss ions revealed a deuterium retention value of 6.3 ± 

0.1. The same total deuterium retention is also observed for the respective charge 

reduced ions (Figures 5.4B and 5.4D). 

The agreement between the respective labeled and unlabeled product ions 

indicates that scrambling is not observed during the He-CTD fragmentation processes. 

That is, upon neutral ammonia loss from a precursor ion, the total deuterium level would 

be less than that of the intact ion. These results further indicate that HD-scrambling 

during the He-CTD process is largely not observed for the model peptide which has 

been specifically designed for HD-scrambling studies.[7]  

5.3.3. DHX – He – CTD – MS Structural Determinations 

 With complementary scrambling models indicating that He-CTD generates c ions 

without proton mobilization, a proof-of-concept study was used to demonstrate 

structural determinations using ubiquitin as the model protein. Ubiquitin contains 144 

labile hydrogens, where 72 are amide backbone, 69 are found on residue side chains 

and 3 sites are located on the N- and C-terminus. Using a continuous online micro-

fluidic system, as described previously, DHX of labeled ubiquitin proceeded for ~48 

seconds and resulted in the retention of ~46 ± 1 deuteriums. This value was determined 

from the average m/z of undigested [M+6H]6+, [M+7H]6+ and [M+8H]6+ ubiquitin ions. 

Presumably these deuteriums are located in structured regions of the protein rendering  
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them inaccessible to exchange during the time frame of the DHX process. For 

reference, Figure 4.4 (Chapter 4) shows the secondary structural features for ubiquitin 

as a function of the primary sequence. Known structural regions are composed of 5 

beta-sheets (residues M1-L7, G10-L15, Q40-F45, G47-L50 and S65-R72), an alpha-helix (I23-

E34) and a 3/10 helix (L56-Y59). 

  Figure 5.5 shows the spectrum for a single replicate of labeled ubiquitin that has 

undergone the DHX and pepsin digestion (PD) prior to MS analysis. In general, most 

identified peptide ions appear to originate from the terminal ends of ubiquitin. These 

observations are similar to previous analyses using online DHX-PD-MS. This system 

was shown to be highly reproducible with respect to the observed peptide ions, the 

peptide deuterium content and the relative ion abundances.[14] Here, it is noted that the 
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Figure 5.5. Full mass spectrum resulting from a single analysis of DHX-PD-MS of deuterated 

ubiquitin. The precursor ions used for He-CTD-MS and ETD-MS are labeled in the spectrum  
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goal of this work is to perform He-CTD on peptides originating from structured regions 

of labeled ubquitin using an online DHX-PD-MS microfludic system. The analysis is 

therefore limited to two peptide ions of the highest abundance that were present in all 

replicate studies.  

5.3.3.1. Per – Residue ETD – MS Analysis: Control 

 [MQIFVKTLTGKTITL+3H]3+ ions generated from DHX-PD-MS measurements 

were selected for ETD analysis having a total deuterium retention level of 8.7 ± 0.6. As 

before, deuterium content per-residue is calculated by subtracting the average mass of 

a given labeled c-ion from the average mass of the respective unlabeled c-ion. A lack of 

deuterium retention within a region of primary sequence is indicated by similar 

deuterium content levels for adjacent c ions. Evaluation of Figure 5.6A (red bars) shows 

deuterium retention beginning at I3 and increasing to T7. NMR[17, 18] and top-down 

MS/MS[3, 19] studies have shown strong protection across this region. In general, 

deuterium residue levels appear to correctly map the location of secondary structural 

elements. For example, no change in deuterium content is observed for residues L8-K11 

and values for residues T7-G10 are consistent with an unstructured turn between the first 

and second beta-strands. The deuterium content level (Figure 5.6A) is observed to 

increase across residues K11-L15, which correctly correlates with the location of the 

second beta-strand (beginning at G10). Evaluating the deuterim content levels between 

residues G10 and K11 shows a change by ~0.43 deuteriums. This small change suggests 

that residues on the fringe of secondary structural elements are less protected than 

residues that occupy locations within these elements.[20] For the ETD analysis of 

[MQIFVKTLTGKTITL+3H]3+ ions with respect to residue sequence coverage, ion  
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deuterium content levels and qualitative structural trends are very similar to previous 

studies.[14]  

 Also originating from the N-terminal region, [VKTLTGKTITL+3H]3+ ions were 

investigated using DHX-PD-MS of labeled ubiquitin. Although the sequence overlaps 

significantly with [MQIFVKTLTGKTITL+3H]3+ ions, pepsin digestion at the carboxyl side 

of V5 significantly changes the deuterium content level. Figure 5.6B shows the 

deuterium content for c ions originating from [VKTLTGKTITL+3H]3+ precursor ions after 

HDX-ETD-MS of labeled ubiquitin. Evaluation of Figure 5.6B shows a deuterium content 

level of ~1 for residue T7 after HDX. A reduced deuterium level may be expected 

because much of the structured N-terminal region has been cleaved. Enzymatic 

digestion also reacts to form a primary amine from the backbone amide of V5, which can 

exchange (even under quench conditions) and further reduces the deuterium content 

level. Residues T7-G10 show no change in deuterium content, follow by an increase 

across residues K11-L15. This trend is similar to that of [MQIFVKTLTGKTITL+3H]3+ ions 

(see above) and also appears to correctly map structured areas within ubiquitin.  

5.3.3.2. Per – Residue He – CTD – MS Analysis 

 In order to provide direct comparisons between ETD and He-CTD fragment data 

for structural analysis, [MQIFVKTLTGKTITL+3H]3+ ions generated during HDX-MS were 

also selected for He-CTD experiments. Figure 5.6A shows the deuterium content level 

for c ions resulting from HDX-PD-He-CTD-MS. Evaluation of the deuterium content 

appears to begin at residue I3 and sequentially increases to T7. Interestingly, the 

deuterium content levels for these ions appear to be similar to the levels determined 

from ETD experiments. For example, the deuterium content for residues T7 - T9 appears 
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unchanged. This is consistent with the unstructured turn between beta-sheets as 

mentioned above. Although the deuterium content level is slightly lower than that the 

determined by ETD, it is noteworthy that this region could have exchanged out to a 

higher degree before He-CTD studies. The highly structured region between I3-K6 

shows similar deuterium content levels between ETD and He-CTD. A slight increase in 

deuterium content is observed for residue K11 relative to T9. This trend is similar to that 

for the ETD analysis, where a small increase in deuterium content was observed for K11. 

Together, these similarities suggest that He-CTD is capable of qualitatively determining 

areas of structure within labeled proteins and this further indicates that HD-scrambling is 

largely avoided.  

 Figure 5.6B shows the c ions resulting from HDX-He-CTD-MS of labeled 

[VKTLTGKTITL+3H]3+ ions. A very similar trend to that observed for ETD is noted for 

these ions. Residue T7 retains ~1 deuterium, which may be expected given the second 

peptic cleavage event between residues F4 and V5. As mentioned above, digestion 

converts the backbone amide to a primary amine that subsequently allows K6 to be 

accessible to exchange, further reducing the deuterium content. Reduced deuterium 

content has been reported in other peptides using pepsin digestion HDX-MS 

experiments.[21] The deuterium content level is unchanged across the unstructured 

region (T7 - T9) and appears to increase from G10-T12. Residue G10 has a slightly lower 

deuterium content level reported for G10 from [MQIFVKTLTGKTITL+3H]3+ product ion 

determinations. Because this residue is located at the edge of the second beta-sheet, 

decreased protection may be expected.[20] However, other consistencies are noted. 

For example, the deuteration content increases at K11 and is comparable with ETD data 
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(Figure 5.6B) as well as both experiments for [MQIFVKTLTGKTITL+3H]3+ ions (Figure 

5.6A). Another consistency between ETD and He-CTD is the lower deuterium content 

level across the unstructured region, before the second beta-sheet, which was noted in 

Figure 5.6A.  

 Evaluation of both peptide ions reveals that He-CTD results in sequence 

coverage across residues M1-I13 and allows for a qualitative view of secondary structure 

across the N-terminal region. For example, retention for the L8 residue was not 

observed in the He-CTD spectrum for [MQIFVKTLTGKTITL+3H]3+ ions; however, data 

for the L8 residue (Figure 5.6B) shows that deuterium content level is unchanged across 

residues L8-T9. As mentioned above, this observation is consistent with the unstructured 

turn between beta-sheets. Additionally, Figure 5.6B shows that deuterium content 

increases from T11-I12 which was also not observed upon He-CTD of 

[MQIFVKTLTGKTITL+3H]3+ ions. These residues are located within the second beta-

strand and are expected to display a level of protection. Although He-CTD is currently 

not as efficient as ETD, the analysis from both precursor ions gives ~90 % sequence 

coverage across the N-terminal region of ubiqutin. Notably, these data are consistent 

with the known secondary structural elements within ubiquitin. Given the comparison 

between ETD and the resulting spectral consistencies, the compilation of these data 

suggest that HD-scrambling for is largely mitigated upon He-CTD. 

5.4 Conclusion 

  Using ETD as the gold standard technique for per-residue HDX studies and a 

model peptide specifically designed to monitor HD-scrambling, separate experiments 

show that He-CTD generated c ions preserve the solution-phase deuterium label. 
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Generated c ions via ETD were used in a statistical analysis to determine instrumental 

parameters that resulted in 0 % HD-scrambling. Using these determined conditions, 

HDX-He-CTD-MS of [M+3H]3+ labeled MP produced a series of c-ions that were 

compared to c-ions produced during  ETD studies. Fragment c-ions produced by He-

CTD were found to mirror a 0 % HD-scrambling trend based on theoretical ETD 

calculations. Because He-CTD efficiency is relatively low, a homologous series of either 

ion series was not generated. However, a complementary HDX-He-CTD-MS scrambling 

study using deammoniated product ions also revealed that HD-scrambling is mitigated. 

HD preservation was observed via the neutral loss of ammonia that was absent the 

incorporation of deuterium from labeled regions of the peptide. Using the determined 

non-scrambling conditions,  

  As a proof-of-concept study, a system for online HDX and pepsin digestion (PD) 

was combined with He-CTD for structural analysis of deuterium-labeled ubiquitin. Ions 

of highest abudance were selected and analyzed by ETD-MS and He-CTD-MS. 

Deuterium retention calculated from c-ions across residues M1-L15 and V5-L15 are in 

good agreement with structural trends found in pre-residue studies using ubiquitin.[3, 

14, 19] Lastly, ETD-MS and He-CTD-MS deuterium content level for the respective 

residues are highly similar. From these results it appears, at least for c-ions, that He-

CTD may be used as a new technique for DHX structural studies of proteins.   
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6.1. Post Translational Modifications: Phosphorylation 

 The IMS-CID-MS method was capable of determining the presence of 

phosphoserine and subsequently elucidating the site of modification. One advantage 

over traditional techniques was the ability to match product ions to respective 

precursors ions based on XIDTDs. Much of the matching capability is attributed high 

reproducibility of the mobility separation. Although, the experiment presented a proof-of-

concept study, only a single phosphopeptide was considered. Future studies will 

conduct IMS-CID-ETD-MS experiments for a wider range of phosphopeptides. Here, it 

is noted that threonine and tyrosine are also capable of phosphorylation. Some studies 

have indicated that the fragmentation energetics and observed neutral losses are 

different for each phosphorylated residues.[1] This presents some challenges in 

determining a collision energy that is amendable across all phophorylation possibilities. 

However, the ion activation region within the drift tube is highly tunable. Determining 

multiple ion activation voltages that can be stepped according to mobility is necessary 

for high throughput workflows. 

6.1.1. Doubly – Phosphorylated Peptides from Complex Mixtures 

 With these critiques in mind, future experiments should not only address studies 

for a wider range of phophorylated residues, but also residues that are doubley-

modified. Some research has shown that hyper-phosphorylation is important for 

tauopathies.[2] Highly phosphoryalted peptides may present the chance to observe 

unique fragment ions that are difficult to detect with traditional techniques. One difficulty 



169 
6. Future Directions: Applied ‘Omics Using IMS-MS Techniques  

in detecting doubly phosphorylated peptides is that fragmentation may result in the 

neutral loss from both or a single residue. With traditional techniques using QqQ 

instrumentation, the last quad would have to be scanned quickly across several 

potential fragment ions to determine the presence of phosphorylation. Because many 

product ions are possible, selecting the correct fragment ion with high specificity would 

be difficult. As stated previously, one potential benefit may come from the ability to 

perform spectral matching based on XIDTDs where all product ions can be spectrally 

aligned back with the precursor ion. 

6.1.2. Conducting IMS-CID-MS on Glycosylated Proteins  

 As a brief overview, glycosolation is a covalent post-translational modification 

occurring through enzymatic mechanisms often occurring within the golgi apparatus 

after protein synthesis at the ribosome.[3] Glycosylation is important for cellular 

recognition[4] and protein folding.[5] There are two classes of glycosidic bonds formed 

at the amide nitrogen of asparagines having a consensus sequence Asn-Xxx-Ser 

(where x cannot be proline) and at the hydroxyl oxygen of serine, tyrosine, and 

threonine. These respective classes are referred to as N- [6] and O-linked[7] 

glycosolyation. Glycans themselves are complex structures consisting of branched, or 

unbranched, networks of oligosaccharides that are arranged through β1-6 or β1-4 

glycosidic linkages.   

 Glycan structural elucidation is much more difficult than that described for 

peptides or proteins. Common MS/MS methods for glycan structural analysis use CID 

and UVPD to produce glycosidic cleavage ions.[8]  It is noteworthy to mention that 
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GlcNAc and mannose are common moieties in glycan structures that produce fragment 

ion m/z values of 201, 202, 203 and 179 respectively. These fragment ions have been 

reported from [M-H]-, [M+H]+ and [M+Na]+ precursor ions form ESI of non-reduced 

sugars.[8-10] Future experiments could use protein digests to rapidly scan for reporter 

fragment ions common for glycosolation (e.g. m/z 202 or 179). Using XIDTDs, the 

fragment ions can be related back to their respective precursor ion. Once matched, the 

precursor ions could then be mobility selected and isolated in the ion trap for ETD-MS. 

Since ETD retains PTMs, the modified residue could then be determined.  

 As described, the IMS-CID-ETD-MS method could potentially be used to scan for 

the presence of glycosolyation events and identify modified residues. Because glycans 

are structurally diverse, another future experiment could attempt identifying the glycan 

from the modified protein. For these experiments, it is noted that linear ion traps suffer 

from low mass accuracy where high mass accuracy is often necessary for glycan 

identification. Considering this, the IMS-CID-ETD-MS method could offer potential 

targets for data dependent acquisition on mass spectrometers that achieve much higher 

mass accuracies (± 2 ppm). This may allow glycan identification based solely on high 

mass accuracy and library searching against known glycans.[3] Another possibility may 

be to use RNase for deglycosolyation coupled with offline lectin affinity 

chromatography[11] or electrophoresis to isolate and purify glycans prior to MS 

analysis.[12] In this manner, glycans could be subjected to MSn and their structures 

elucidated. Although this type of workflow would be lengthy, it combines the advantages 

of multiple platforms for increased structural detail. 

6.2. Expanding the Usage of IMS-CID-MS in Metabolomic Workflows  
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 The metabolite experiments presented in Chapter 2 were aimed at comparative 

metabolomic analysis. After PCA and MSn the analyses found that lipids could be used 

to differentiate the sample cohorts. This allowed unique parallel CID analyses to be 

performed for rapid data independent workflows and identification. From these data it 

was observed that many ions were identified from lysophosphatidylcholines (LysoPC) 

precursors. In part this may be attributed to ESI bias towards LysoPCs. Across the two-

dimensional tD-m/z plot, it appears that this lipid class is oriented to occupy related 

conformation space. Such observations have also been shown by McLean and 

coworkers using a high-resolution drift tube. In these experiments the  IMS-MS results 

suggested unique intrinsic molecular packing from four separate molecular classes 

(carbohydrates, lipids, quanternary ammonium salts and peptides).[13] Although such 

results represent the start of IMS-MS libraries for more accurate determinations, it is 

noted that these experiments can be extended by adding IMS-CID-MS.  

 McLean’s conformational analysis of >300 lipid standards comprised of 

glucosylceramides, phosphatidylcholines, phosphatidylethanolamines, 

phosphatidylserine and sphingomyelin resulted in He(g) CCS values, which ranged from 

220 – 350 Å2 over a m/z range of 800 – 1000.[13] These results suggest that lipids 

display similar intrinsic conformations in the gas phase. Theoretical metabolomic 

studies could benefit by matching mobility information with conformational libraries for 

qualitative analysis purposes. Given the similar CCS values across lipid classes, it still 

remains difficult to identify a specific lipid class. Even smaller lipids, such as LysoPCs 

(m/z ~500), shown in Chapter 2, demonstrated distinct drift times indicative of similar 

CCS values (although not reported).   
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 Future experiments could be directed towards using similar lipid standards for 

IMS-CID-MS analysis. The goal would be to used the enhanced analytical space 

afforded by the mobility separation for fragment ions. This would allow the apparent 

CCS and m/z correlation between lipid classes to be broken. Similar experiments have 

been successfully applied to peptides. [14, 15] That is, fragment ions would have the 

same mobility as the precursor ion, but a better distinction between lipid classes would 

be made based on the m/z space. Here unique fragmentation patterns would emerge 

across a lipid class, even if two classes overlapped along the mobility separation. One 

important consideration is that the method would scan for the head region of the lipids. 

Not only does the region identify the lipid class, it represents a reporter ion and thus 

offers a spectral ‘fingerprint’ for lipid structure and class. Another important 

consideration is that the head region most often contains the charge site of the 

precursor ion. It is recalled that in Chapter 2, that the most dominant spectral features 

upon IMS-CID or MS/MS of LysoPC ions resulted from dissociation of the head region.  

 The application of IMS-CID-MS methodology for determining fine structural 

variation of lipid classes, expands on the concept of conformational ordering of 

biomolecules through fragment ions. The idea of using IMS-CID-MS to break CCS vs 

m/z correlations has been described for peptides.[16] It is felt, that this methodology 

would also expand mobility libraries for spectral matching and identification. It is noted 

that these libraries are in their infancy and the contributions of such results would be 

timely. These libraries are need for data independent workflows, where high specificity 

and high throughput are at the heart of the technique.   

6.3. Gas Phase HDX of Anionic Proteins 
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6.3.1. Comparing Cationic and Anionic HDX Deuterium Level: Structural Studies 

 Results of Chapter 3 report fundamental studies aimed at understanding protein-

anionic structures in the gas phase. Through complementary studies involving IMS and 

gas phase HDX, insights into different conformers could be ascertained. One interesting 

observation was shown with compact and elegonated conformations of ubiquitin that 

demonstrated different deuterium uptake values. This was attributed to the protein fold 

that allowed a greater exposure of exchangeable sites in elongated conformations that 

were otherwise inaccessible in relatively compact conformers. Other peptides 

contributiing mulitmeric species showed reduced uptake and may be used in the future 

to indicate binding site interactions. 

 Some studies have indicated both similar and dissimilar conformations can be 

observed based on the polarity during native ESI-IMS-MS of smaller proteins.[17]  

Future directions may be able to compare protein cationic and anionic HDX values for 

different gas phase conformations. Here CCS values, exchange profiles and molecular 

dynamics may be able to show where protein conformations are different. This may also 

allow us to understand which residues are important for maintaining protein tertiary 

structures and how protein structure changes in the gas phase. By comparing the 

exchange profiles of both polarities a better picture of protein structure in the gas phase 

may emerge. For example consider a protein that has undergone ESI in negative 

polarity mode. In connection with CCS values and molecular dynamics, the HDX 

profiles may show how a particular portion of the protein becomes unfolded due to 

Coulomb repulsion of charge sites that is not experienced by the native solution 

structure. However, if we compare the complementary structure in positive mode, for 
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example, the HDX profiles and CCS values may not indicate any distruption of protein 

structure. Such results may direct better experimental conditions for determining more 

accurate CCS values and help future experiments determine the optimal polarity mode 

for CCS measurements.  

6.3.2. Binding Faces of Acidic Proteins Involved in Protein Aggregates 

 An interesting area of research has been studying the binding interfaces of 

protein oligomers. Two candidate proteins that display a high number of acidic residues 

are α-synuclien and beta amyloid which form protein aggregates in Parkinson’s and 

Alzheimer’s diseases respectively. Acidic residues, such as aspartic acid and glutamic 

acid have pKas ~ 2.0, giving these residues a negative charge in solution. Given the 

argument that different polarities can induce structural changes, a gas phase HDX 

experiment of anions may be used to ascertain interstitial binding faces of oligomeric 

proteins. Future experiments could incubate α synuclien over a defined period of time to 

induce oligermization followed by native ESI in negative ion mode. The gas phase ions 

could then be labeled using negative gas phase HDX. A recent study by Arndt and 

coworkers showed reduced deuterium uptake for Nt17 heterodimer associated with the 

Huntington’s protein in positive polarity mode (unpublished results). IMS coupled with 

molecular dynamics, the study revealed an anti-parellel arrangement of stacked α-

helicies that were involved into multimerization. A similar negative polarity method could 

benefit acidic protein studies that present oligomeric species.  

6.3.3. Gas Phase HDX and Anionic Glycans: Structural Considerations and Separation 

Techniques 
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 Lastly it is noted that glycans can be analyzed in negative polarity mode. Using 

IMS-MS, some studies have revealed that glycans display diverse structures in the gas 

phase. This is thought to be attritubed to different gas-phase conformers as well as 

isomeric species. A method using negative mode gas phase HDX may be able to help 

differentiate glycans based on drift profiles and HDX uptake. Glycans appear to be 

strong candidates for HDX based on the high numbers of hetero-atomic groups (e.g. 

OH). Given that the HDX process is highly dependent on charge site location and 

proximal hetero-atomic sites, different HDX level could be expected based on glycan 

structure. Exchange distances have been optimized for cytochrome c conformers[18, 

19] and peptide ion species.[20, 21]  That is exchange occurs for species that are within 

threshold distances of charge sites and any accessible heteroatom may undergo 

exchange. For example, a branched moiety that is accessible for exchange based on a 

charge site proximity model, may be expected to undergo HDX. Comparatively, another 

glycan may have alternate branching resulting in decreased accessibility for exchange. 

It is also noted that the IMS is used as the isotopic labeling cell. That is, if glycan 

exchange profiles are different, they are no longer isobaric and can be separated base 

on the deuterated m/z values. Such results may be capable of differentiating glycans in 

the gas phase and further understanding glycan structure. 

6.4. Solution – Based DHX Coupled with IMS-ETD-MS 

6.4.1. Constructing a New Micro-fluidic Chip for On – Line Analysis 

 For DHX-IMS-ETD-MS experiments, the on-line system was constructed using 

high efficiency mixing-Tees and unfused silica capillary interfaced to a hand-pulled ESI 
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emitter tip. Future experiments could aim at constructing a micro-fludic system. Here, a 

three-layer chip could be built. The center layer would be capable of introducing protein 

and exchange solution to a common point where mixing would occur. Over a defined 

length of an inner channel, exchange could proceed over a defined (controlled) period 

of time. Orthogonal to the exchange channel, an inlet for ice-cooled pepsin digestion 

solutionwould tee into the exchange channel and quench the reaction. This would also 

simultaneously cause digestion over a determined length. An outlet for digested sample 

could lead at the ESI source. The bottom layer would act to jacket the second layer from 

the quench solution to the outlet for ESI. This layer would use a continuous flow of 

cooled solution (~0 oC) that would insure the quench/digestion region was maintained at 

~0 oC. Lastly the top layer would act to encase the other two layers. A chip based 

system would be much more controllable and reproducible than the fused silica capillary 

reported in Chapter 3. 

6.4.2. Increasing Sequence Coverage for Per-residue Studies 

 Another future direction would be to increase the per-residue sequence coverage 

afforded by ion fragmentation. In part, many of the peptides observed in Chapter 4 were 

doubly-charged, making efficient fragmentation via ETD difficult. Recently it has been 

shown that nitrobenzyl alcohol can increase the charge states of proteins without 

altering protein solution structure or HDX kinetics.[22] Here, an inlet for the infusion of 

nitrobenzyl alcohol could follow the pepsin digestion region to aid in increasing the 

charge state of peptides. Termed a supercharging agent,[23] such methodolgy may be 

beneficially for ETD per-residue studies employing a bottom-up approach. 
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6.4.3. Evaluating Larger Proteins 

 Chapter 4 studies used the small model protein ubiquitin to provide a proof-of-

concept study aimed at combining drift tube IMS to DHX workflows. It is noted that in 

order to fully test the capabilities of the on-line IMS-ETD-MS system, a larger protein 

would be needed. For example, monoclonal antibodies are composed of two heavy 

(~50 kDa) and two amino acid light chains (~25 kDa) linked together via disulfide-bonds 

around the Fc region. Collectively these proteins are 150 kDa and would offer a much 

larger protein for study. It is also noted that pepsin cannot digest disulfide bonds. This 

may present other potential modifications to the microfludic chip (see above) that could 

include an electrochemical reduction region after the DHX region, or other inlet ports for 

tris(2-carboxyethyl)phosphine (TCEP) or iodoacetamide for disulfide bond reduction 

prior to pepsin digestion.  

6.4.4. Connecting Rapid Solution Structural Changes with Solution DHX and IMS-MS 

 Future experiments may be able to use a chip-based system combined with 

DHX-IMS-ETD-MS to rapidly monitor protein structural transformations. Here a 

deuterated protein could be infused and combined with a denaturant (H2O:methanol) at 

the mixing port. It is important to note that that infusion of methanol would change DHX 

kinetics, thus no kinetic experiments would be conducted. Instead, the goal would be to 

monitor global deuterium levels resulting from different solution conformations at a 

single time-point. Capturing these changes would be dependent on the timescale of the 

structural transition as well as the allowed exchange period. Some studies have used a 

similar device to study structural changes after mixing  ubiquitin with H2O:methanol 



178 
6. Future Directions: Applied ‘Omics Using IMS-MS Techniques  

(40:60) solution. The study indicated 2 dominant separate structures that were present 

for ~5 minutes.[24] After this time, the more native conformation merged into a single 

altered conformation. These structures were monitored using DHX after a 4 minute 

exchange out period. Notably, the separate conformers displayed different deuterium 

retention values. With this in mind, future experiments could perform a similar study 

aimed at connecting solution conformations using DHX with different gas phase 

structures determined by IMS. Such results may be able of linking solution structural 

changes to gas phase structures based on deuterium retention and CCS values.  

6.5. Helium Charge Transfer Dissociation : Insights and Future Outlook 

 The low efficiency of the CTD process, coupled with the low resolution of the QIT 

and the complexity of CTD fragmentation reduced the number of distinguishable c ions 

in both HD-scrambling and structural studies. Future experiments will tailor the gas flow 

and emission energy of the cation beam to influence the efficiency and potentially the 

fragmentation characteristics in a more controlled fashion. Although not fully 

demonstrated in this study, CTD offers the ability to fragment lower charge state ions 

with high energy, radical-driven processes that would otherwise yield charge reduction 

during ETD. With this, future experiments would aim to fragment doubly- and singly- 

charged cations in order to determine deuterium content values. Such a method would 

significantly enhance pe –residue deuterium measurement and sequence coverage.  

6.5.1. Using He – CTD for Anionic Peptides and Proteins 

 Future studies could also use He-CTD to fragment anionic peptides and proteins 

in the gas phase. Similar experiments have been reported for Xe cations irradiated with 
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negatively-charged peptides. The resulting fragmentation mechanism, termed negative 

electron transfer dissociation (nETD), is the reverse of the ETD process. Because He-

CTD was shown to produce fragment ions without HD-scrambling for cationic speices, 

perhaps the fragmentation technique could be used for anionic peptides and proteins. 

Indeed, part of the reason for exploring other fragmentation methodologies was to 

assess the possibility of combining such a technique with gas-phase HDX for per-

residue studies.  

6.5.2. Evaluating Other IIons for HD-Scrambling 

 Lastly, He-CTD produced a series of a-ions that may be beneficial for per-residue 

deuterium determinations. These fragments appear to result from radically driven 

processes similar to those described for ultraviolet photodissoication. That is, a-type 

ions result from homolytic cleavage of the C-Cα bond to form an and an+1 ions. These 

a+1 ions suggest that secondary dissociation of b-ions to form a-ions is not the 

dominant fragmentation pathway; however, such reactions cannot be ruled out. Future 

experiments may be able to determine if a-ions undergo HD-scrambling for use in 

structural studies. 

6.5.3. Other Potential Usages; He – CTD – IMS – MS  

Although, He-CTD results were proof-of-concept and are intended for qualitative 

comparisons, it is instructive to present a potential use of He-CTD for protein structural 

studies in which low charge states are more representative of native solution 

conditions.[25-27] Here, it is noted that much of IMS-MS measurements are directed at 

native-like conformations that may persist in the gas phase. Often, these native 
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conformations are low charge states and difficult to fragment with electron driven 

fragmentation. It has also been shown that for large protein complexes, CID produces 

charge asymmetric dissociation.[28] Considering this, it may be fruitful to develop new 

fragmentation techniques that address these problems. Certainly future experiments 

could leverage the advantages of cationic fragmentation and combine the technique 

with IMS-MS to analyze native protein complexes. Such experiments may open the 

door to new ‘omics’ analyses.  
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Appendix 1 

Optimized Parameters Used for DHX-IMS-ETD-MS 

Nano-ESI Parameters 

Spray voltage (kV): 1.9 

Desolvation Temperature (°C): no direct application 

IMS Parameters 

Source Funnel 1 DC voltage (V): 136.8  

Funnel 2 RF voltage (V): 136.8 

IMS length (meters): 1.00 

Buffer Gas (g): He 

Drift Pressure (torr): 2.72 

Drift Field (V·cm−1): ~10 

Gate 1 Trapping Containment Voltage (V): 25.0 

Gate 2 (V): 7.5 V 

Buffer Gas Temperature (K): ~300 

Mass Spectrometer Parameters (LTQ Velos) 

Ion Optics 

Multipole 00 Offset (V): -2.00 

Lens 0 Voltage (V): -3.00 

Multipole 0 Offset (V): -8.00 

Lens 1 Voltage (V): -10.00 

Gate Lens Voltage 

Multipole 1 Offset (V): -12.00 
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Multipole 1 Amplitude (V p-p): 300 

Front Lens (V): -8.50 
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Appendix 2 

Optimized Parameters Used for DHX-He-CTD-MS 

ESI Parameters 

Spray voltage (kV): 4.5 

Desolvation Temperature (°C): 100 

Instrumental Parameters: Bruker ETD AmaZon Quadrupole Ion Trap 

Capillary Exit (V): 50  

Funnel 1 

RF (V): 130.0  

In (V): 50.0  

Out (V): 50.0  

Lens (V): 15.0  

Funnel 2 

RF (V): 130.0  

In (V): 12.0  

Out (V): 10.0  

Lens (V): 3.3  

Octopole 

RF(V): 75.0  

1 DC (V): 2.3  

Partition (V): 1.7  

2 DC (V): 1.1  

Focus 1 
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L1 (V): 0.5  

L2 (V): -10.0  

L3 (V): -6.0  

L4(V):  -6.0  

Multipole: 

RF(V):  36.7  

DC(V):  -4.0  

Focus 4 

L1(V):  -4.0  

L2(V):  -5.0  

L3(V):  -75.0  

Trap Drive: 40.0 % 
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