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Abstract 

Analysis of LiDAR Point Data and Derived Elevation Models for 

Mapping and Characterizing Bouldery Landforms 

 

Aaron Edward Maxwell 

 

 

This thesis assessed the viability of using LiDAR-derived 

elevation data in accurately mapping and characterizing bouldery 

geomorphic features in a study area in the Allegheny Mountains. 

This study showed that the ground returns classification process 

conducted by the Canaan Valley Institute (CVI) for their 

property using the TerraScan software generally removed 5 to 10 

m scale local topographic variability and bouldery landforms in 

creating the CVI classified ground returns data. In open areas, 

last returns elevation and intensity data were successfully used 

in this study to map bouldery landforms in the study area. 

Identifying and describing boulders under a tree canopy required 

a relatively reliable ground classification of LiDAR points. 

This study’s classifications conducted within Prologic LiDAR 

Explorer provided a more useful representation than the CVI 

classified ground data for mapping bouldery landforms and 

generalized rugged topography. Index overlay for likelihood of 

presence of bouldery landforms using supervised classified 

aerial imagery and LiDAR-derived parameters in a raster 

environment was explored as an alternative means of detecting 

bouldery landforms because hillshade imagery derived from CVI 

classified ground data were inadequate for mapping bouldery 

landforms. 
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Introduction 

 Digital elevation models (DEMs) have applications in many 

fields including geomorphology. In the past, elevation models 

were created by interpolation of digitized contour lines from 

topographic maps, which traditionally were created from aerial 

photographs. DEMs at a spatial resolution of 10 to 90 m were 

commonly produced; however, greater resolution is required for 

research investigating finer-scale features and stream 

morphology. Light detection and ranging (LiDAR) instruments can 

provide an effective resolution of 0.5 m or finer. The advances 

in DEM resolution provided by LiDAR (Figure 1) are transforming 

researchers’ ability to quantify and visualize landscapes and 

the processes that shape them (Snyder, 2009).   

This thesis is an investigation of how LiDAR point data and 

products derived from these data can be used to study bouldery 

terrains in a study area in the Allegheny Mountains and how 

rough topography influences the production of bare-earth surface 

models derived from such data. This thesis utilizes LiDAR-

derived elevation point data for geomorphological research and 

explores issues associated with DEM production. Analyzing the 

ability to map bouldery geomorphic units with LiDAR is a means 

of understanding the uses and limitations of LiDAR for surficial 

mapping and characterization of complex landscapes. 
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Figure 1: Comparison of the visual effects of DEM resolution. 

Elevation data sets were provided by the West Virginia GIS 

Technical Center and the Canaan Valley Institute. Note that 

LiDAR usually provides much higher spatial resolution elevation 

data in comparison to traditional techniques. 

Hillshade from 30 m 

photogrammetrically-derived 

DEM 

Hillshade from 10 m 

photogrammetrically-derived 

DEM 

Hillshade from 3 m 

photogrammetrically-

derived DEM 

Hillshade from 0.69 m 

LiDAR-derived DEM 

Comparison of DEM Resolutions 
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Purpose 

 

     The purpose of this thesis is to assess the viability of 

using LiDAR-derived elevation data for mapping and 

characterizing bouldery geomorphic features, such as block 

talus, boulder fields, and other very coarse-textured landforms, 

features that are considered 9
th
 order scale or medium scale 

geomorphic process units in Bloom’s (2004) classification system 

of terrestrial geomorphic features. Other 9
th
 order features 

include pools and riffles, river bars, and solution pits (Bloom, 

2004). It is hypothesized that ground returns classification 

algorithms utilized by the Canaan Valley Institute (CVI) to 

create the CVI classified ground data utilized in this research 

removed local topographic variability due to rugged topography 

and that ground data classified by CVI are insufficient for the 

purpose of mapping bouldery landforms.  
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Study Area and Data 

The study area is located in Tucker County, West Virginia 

(Figure 2), where the rugged topography and forest-dominated 

land cover provides an optimal location to study bouldery 

landforms. CVI provided LiDAR data collected in 2008 covering 

their property near Davis, West Virginia, and the metadata are 

summarized in Table 1. The following data were obtained for use 

in this project: 

1. All returns data for CVI property 2008 (From CVI as LAS 

(binary) files) 

2. Ground returns data classified by CVI using the TerraScan 

software for CVI Property 2008 (from CVI as LAS (binary) 

files) 

3. Metadata for 2008 CVI property data (from CVI as a text 

file) 

4. Hillshade raster grid of CVI property created from LiDAR 

data collected in 2003 (from CVI as an ESRI GRID file) 

5. A 2 ft (0.6 m) pixel 2003 Statewide Addressing and 

Mapping Board (SAMB) red-green-blue (natural color) 

aerial photograph mosaic of the study area (MrSID 

compressed file) 

6. A 1 m pixel 2007 National Agriculture Imagery Program 

(NAIP) color infrared (CIR) photograph mosaic of the 

study area (MrSID compressed file) 

7. Canaan Valley bedrock maps at 1:24,000 scale (retrieved 

from the West Virginia GIS Technical Center and original 

data by Matchen et al. (1999))  

8. West Virginia geology shapefile at 1:250,000 scale 

(retrieved from the West Virginia GIS Technical Center 

and original data by Cardwell et al. (1968)) 
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Figure 2: County map of West Virginia: study area in Tucker 

County, West Virginia (Source data: West Virginia GIS Technical 

Center). 
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Metadata for CVI Property LiDAR Data Collection 2008 Flight 

 

Table 1: Metadata for CVI property LiDAR data collection 2008 

flight. These data were provided by CVI. 

Data Source Canaan Valley Institute 

LiDAR Collection Date July 28, 2008 

Aircraft 
Piper Navajo Twin Engine 

Aircraft 

Approximate Collection 

Height 

2500 feet Above Ground Level 

(AGL) 

(760 m AGL) 

Average Speed 135 Knots 

Sensor ALTM 3100 

Pulse Rate/Beam 

Divergence 
100 kHz/0.26 mrad 

Scan Frequency 35 Hz 

Scan Angle 20° (Half) 

Number of Recorded 

Returns from One Pulse 
Up to 4 

Estimated Vertical 

Accuracy 
15 cm 

Average Ground Sample 

Distance 
0.69 m 

Horizontal Datum and 

Vertical Datum 

Horizontal: North American 

Datum of 1983 

Ellipsoid: Geodetic Reference 

System 80 

Vertical: North American 

Vertical Datum of 1988 

Extent 

Zone 17 

Top: 4334884.75N 

Bottom: 4329669.56N 

Left: 633233.22E 

Right: 637762.59E 
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The LiDAR point cloud coverage for the CVI property near 

Davis, West Virginia, is outlined in Figure 3. The bedrock 

geology of the Canaan Valley area (Matchen et al., 1999) is 

shown in Figure 4. Within the property, the Pottsville Group is 

exposed on the northwestern limb of the plunging Blackwater 

anticline (Matchen et al., 1999). Anderson and Kite (2007) and 

Anderson (2008) have shown that large Pottsville boulders are 

abundant in isolated locations in this landscape. 
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Figure 3: LiDAR coverage of CVI property. Base image is the 2003 

SAMB imagery. 
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Figure 4: Bedrock geology map of Canaan Valley study area. 

Bedrock geology layer provided by the West Virginia GIS 

Technical Center from original geologic mapping by Matchen et 

al. (1999). Base image is a Unites States Geologic Survey 

1:100,000 scale topography map. 
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Defining Geomorphic Features of Interest 

 

 The sizes of large particles on the surface of the 

geomorphic landscape were classified using the Blair and 

McPherson (1949) adaption of the Udden-Wentworth grain-size 

scale (Table 2). The researcher measured exposed intermediate 

axial length in the field to classify the bouldery landforms.  

 

 

Boulder 

   Fine: 0.25 m to 0.5 m 

   Medium: 0.5 m to 1 m 

   Coarse: 1 m to 2 m 

   Very Coarse: 2 m to 4.1 m 

Block 

   Fine: 4.1 m to 8.2 m 

   Medium: 8.2 m to 16.4 m 

   Coarse: 16.4 m to 32.8 m 

   Very Coarse: 32.8 m to 65.5 m 

 

Table 2: Boulder and block classifications.  

 

Geomorphic features examined in the field range from coarse 

boulders to medium blocks based on a physical measure of exposed 

intermediate axial length performed in the field (Figure 5). 

 

Boulder and Block Classifications 
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Figure 5: Photographs of bouldery features of interest. 

Photographs taken by researcher on March 20, 2010. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5a: Fine Block Figure 5b: Fine Block 

Figure 5c: Fine Block Figure 5d: Fine Block 
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Previous Works on LiDAR 

 

Geodesy is the science of measuring physical attributes of 

the Earth, such as elevation. Very accurate elevation and 

location data are collected using global positioning systems 

(GPS). Differential and kinematic GPS offer vertical accuracies 

of 4 to 8 cm, while being even more accurate horizontally 

(Carter et al., 2007). However, collecting a large number of 

measurements with such a method is time consuming. As a result, 

laser scanning instruments, such as LiDAR, offer alternative 

means of collecting highly accurate x, y, z data when a large 

number of measurements are required (Carter et al., 2007). 

     Aerial LiDAR collection systems have three major 

components: laser rangefinder, inertial measurement unit (IMU), 

and GPS. First, a laser capable of pulsing provides the energy 

source. As a result, LiDAR is an active, as opposed to passive, 

remote sensing technique. The laser operates at a specific 

frequency in the infrared range. Normally, the laser wavelength 

is between 0.8 and 1.6 m at a high pulse rate, up to 250 or 

higher kHz (Liu et al., 2007a). Second, an IMU is used to 

correct the point data with respect to the motion of the 

aircraft. Third, an extremely accurate GPS device records the 

location of the return. Additional devices include a clock, 

additional computer hardware, digital storage devices, and, 



 

13 

potentially, a digital camera to record images that are of use 

when the data are later processed (Lillesand et al., 2008).  

     Once a laser pulse has been transmitted, after it strikes 

an object, it is potentially reflected back to the sensor. The 

time required for the signal to return is directly related to 

the two-way travel distance from the sensor to the surface. An 

elevation measurement is calculated by combining this 

information with the directional orientation of the sensor (Liu 

et al., 2007a). The ground x, y, z coordinates of the laser 

strike are derived from the ground coordinate system, inertial 

measurement unit body frame coordinates, laser unit coordinate 

system, and laser beam coordinate system. Appropriate rotation 

values also must be applied. The coordinates are achieved 

through vector, geometric relationships (Habib et al., 2008). 

Most modern LiDAR systems are capable of recording multiple 

returns for each pulse, and this capability allows 

characterization of multiple features or surfaces. For example, 

the top of a vegetation canopy can be mapped and also the ground 

surface. The intensity of the returned pulse may also be 

recorded. Different surfaces will absorb or reflect the laser 

differently, resulting in differences in return strength. This 

variation in reflectance allows better understanding of the 

surface feature (Lillesand et al., 2008); however, intensity is 

influenced by many variables including footprint size, scan 
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angle, and range distance. It is difficult to use intensity 

quantitatively (Lin and Mills, 2010). 

     Not all raw LiDAR points represent ground returns, or data 

points that represent the ground surface, so extensive post-

processing of the data is required. Data processing time greatly 

exceeds collection time (Liu et al., 2007a). Computer algorithms 

are applied to make ground returns classifications of the 

points. Identifying ground points is a complex process, 

especially in areas containing vegetation and variable terrain. 

In geomorphology, ground data are normally required. Raw ASCII 

(text) or LAS (binary) point data can be used in research. LAS 

data provide smaller files than ASCII.  Digital elevation models 

(DEMs) can be produced by converting the point data to a raster 

format. The finest effective resolution of the derived DEM 

depends on the density of the point data; as a result, the 

attainable resolution varies with the LiDAR systems used, 

vegetation density, and terrain characteristics of the study 

area (Liu et al., 2007b). Triangular Irregular Networks (TINs) 

can also be created from the raw point data within ArcGIS using 

the 3D Analyst Extension. DEMs can be created from TIN files to 

convert the data to a raster format (Hinke and Wittkop, 2007). 

There is a wide range of algorithms for ground returns 

classification (Sithole and Vosselman, 2004). Some algorithms 

process raw returns data while others require points to be 
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resampled into an image grid. Some algorithms are iterative 

while others are a single step process. Returns are processed 

point-to-point, point-to-points, or points-to-points. Point-to-

point classification is a comparison of two points at a time, in 

which one point will be considered ground and the other an 

object if the elevation difference is above a defined threshold. 

Point-to-points classification classifies one point at a time 

using elevation relationships to multiple neighboring points. 

Points-to-points classification classifies multiple points at 

once. All of these processes use discriminate functions and 

classify the points based on some measure of discontinuity. The 

filtering concept can be slope-based, block-minimum, surface–

based, or cluster/segmentation. Each model makes certain 

assumptions about the bare-earth surface. For example, 

clustering/segmentation algorithms assume that a cluster of 

points must represent an object if they are above neighboring 

points, while slope-based algorithms assume that the slope 

between two neighboring ground points cannot exceed a defined 

threshold. Block-minimum algorithms compare points to a 

horizontal plane, and, in order for a point to be included in 

the ground surface, it must be within a defined vertical 

distance from the plane. Surface-based algorithms are similar to 

block-minimum algorithms; however, a parabolic surface is used 

instead of a flat, horizontal surface. Advanced algorithms take 
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into account return number and intensity of returns (Sithole and 

Vosselman, 2004). 

Two types of ground-returns classification error exist. 

Type I error is a rejection of ground returns while Type II 

error is the inclusion of object returns, or data points that 

are not ground surface, in the category of ground returns. Most 

filters are designed to minimize Type II error, or reduce the 

number of object points classified as ground. Steep slopes, 

discontinuities, vegetation, low ground return density, and 

terrain complexity can induce error in the classification of 

ground returns (Sithole and Vosselman, 2004). 

Adequate surface representation requires accurate 

algorithms; if ground data points cannot be selected from other 

returns, adequate DEMs and bare-earth surface models cannot be 

created. Representing natural systems with abrupt and variable 

elevation changes can be complex. Ground classification 

algorithms are known to induce error (Weed et al., 2002). 

Reusser and Bierman (2007) studied strath terraces in Holtwood 

Gorge and found that bedrock outcrop points were not included in 

the DEM, and areas with dense vegetation and variability were 

not accurately modeled. Webster (2005) found that ground 

classification algorithms inappropriately flatten cliff faces. 

Some non-ground points, such as rooftops, were included in the 
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ground surface. Webster (2005) stresses validation if LiDAR data 

are intended for research purposes.  

Previous West Virginia University (WVU) Geology and 

Geography students have analyzed LiDAR data in geomorphology 

research. Konsoer (2008) used a 0.5 m DEM of the Horseshoe Run 

Watershed of Preston and Tucker counties, West Virginia, derived 

from LiDAR data collected in 2006 to create a surficial geologic 

map of the area and a landslide inventory. Konsoer performed 

statistical analysis and created a landslide susceptibility map. 

The influence of slope failure on channel instability and 

colluvium availability within the watershed was analyzed. 

Downing (2008) used the same data to investigate fluvial 

geomorphology in the watershed. Cross-sectional and longitudinal 

profiles were created for Maxwell and Drift runs. The variables 

were then compared to ground survey data, and the results showed 

a systematic underestimation of channel depth and overestimation 

of channel width. Anderson and Kite (2008) used a hillshade 

image of the CVI property created from LiDAR data collected in 

2003 to create a surficial geologic map, including areas of 

boulder accumulation that were not previously mapped by Kite et 

al. (2004). 
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Goal and Objectives 

     The goal of this thesis is to assess the viability of using 

LiDAR-derived elevation data in accurately mapping and 

characterizing bouldery geomorphic features in a study area in 

the Allegheny Mountains. The following objectives are intended 

to fulfill this goal: 

1. To create bedrock geology maps of the study area using 
the Matchen et al. (1999) and Cardwell et al. (1968) 

data. 

 

2. To create a supervised classification of the study area 
that represents bouldery landforms using a 0.6 m (2 ft.) 

pixel natural color aerial image. 

 

3. To describe how CVI classified ground returns and what 
algorithms they used. 

 

4. To visually and statistically compare last returns data 
to ground returns data classified by CVI for usefulness 

in mapping and characterizing bouldery landforms. 

 

5. To reclassify the LiDAR returns and create DEMs that more 
accurately characterize bouldery landforms in comparison 

to the CVI classified ground data. 

 

6. To develop an approach to detect boulders remotely using 
index overlay for likelihood of presence of bouldery 

landforms, LiDAR-derived parameters, and aerial imagery. 
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Methods 

 

Preparation: 

  

  Five sites within the CVI property (Figure 6) were 

purposefully selected for a detailed analysis. Sites containing 

boulders and blocks of varying size were selected under the tree 

canopy, in open areas, and under a partial canopy. These 

features are described in the Appendix. Additionally, eight 

LiDAR data tiles, a 5.4 km
2
 subset of the property (Figure 7), 

were used in an index overlay analysis. 

 

 

 

Figure 6: The five 

study sites. Base 

image is the 2003 

SAMB imagery. 
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Within each of the five study sites, bouldery landforms 

were described. Features were measured and classified, 

differentially post-processed GPS data were collected using a 

Magellan Mobilemapper 6 unit with ArcPad, and photographs were 

obtained. Polygons were produced outlining the features using 

the field data and aerial photograph interpretation.  

Bedrock Geology Maps: 

 

A bedrock geology map was produced from Matchen et al. 

(1999) data and a 2003 SAMB base image. The Canaan Valley 

bedrock geology shapefile was downloaded from the West Virginia 

GIS Technical center and clipped to extract the rock units of 

interest. The geologic map was produced within ArcMap 9.3. A 

geologic map was also created from the coarser scale Cardwell et 

al. (1968) data for comparison. 

Figure 7: Subset of 

CVI property used 

in index overlay 

analysis. Base 

image is the 2003 

SAMB imagery. 
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Supervised Classifications: 

The Erdas Imagine software was used to conduct a supervised 

classification of the 0.6 m pixel 2003 SAMB image using maximum 

likelihood classification. The imagery was collected during 

leaf-off conditions. An attempt was made to highlight bouldery 

landforms based on the image digital numbers (DNs). This 

technique was investigated so that results could be compared to 

the LiDAR-based analysis. Bouldery landforms in this study area 

could be identified in the imagery, so grid cells that 

represented bouldery landforms were selected as training pixels 

and used for the classification. The classification was used in 

the index overlay for likelihood of presence of bouldery 

landforms analysis. Table 3 describes the type and number of 

training areas digitized. 

Bouldery Landforms 16 Training Areas 

Forest 8 Training Areas 

Field 6 Training Areas 

Water 9 Training Areas 

Road 8 Training Areas 

 

Table 3: Natural color supervised classification training areas. 

Data were collected using aerial photograph interpretation.  

 

A NAIP 1 m pixel CIR aerial image collected during leaf-on 

conditions in 2007 by the Unites States Department of 

Agriculture was also classified for comparison using the same 
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process. Table 4 describes the type and number of training areas 

digitized. 

Bouldery Landforms 10 Training Areas 

Forest 6 Training Areas 

Field 4 Training Areas 

Water 4 Training Areas 

Road 5 Training Areas 

 

Table 4: CIR supervised classification training areas. Data were 

collected using aerial photograph interpretation.  

 

The accuracy of each classification was evaluated by 

comparison to one hundred ground reference data points. An error 

matrix was produced. Based on Jensen (2005), sampling one 

hundred points from a binomial distribution with a confidence of 

85% will have an expected 7.2% error in the accuracy estimation. 

The data points were randomly sampled in an accessible area of 

the property. Using the natural color classification results, 

fifty bouldery and fifty non-bouldery points were sampled. 

HawthsTools was used to create the random points. A Magellan 

Mobilemapper 6 GPS unit was used to find and document the 

reference ground points. It should be noted that GPS error was a 

problem in the ground sampling method due to the size of grid 

cells being sampled. 

CVI Classified Ground Returns Processing:  

The procedure used by CVI to classify LiDAR returns as 

ground data was provided and explained by employees at CVI. The 
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TerraScan software manual was referenced to understand how 

ground returns classification is conducted within this software 

package. 

Last Returns and CVI Classified Ground Returns Comparison: 

CVI classified ground returns data were compared to the 

last returns data, and how these different data represent 

bouldery landforms were investigated. Last returns were used for 

comparison to this classified ground data instead of all returns 

because bouldery landforms were of interest, and such landforms 

would usually be the lowest surface that could return a laser 

pulse (Lillesand et al., 2008). As a result, only first-and-only 

or last-of-many returns were regarded as being potentially from 

bouldery landforms. Prologic LiDAR Explorer Data Management 

Edition (DME) software was used to extract the last returns data 

and export those points as a separate file. Comparison of last 

returns and CVI classified ground returns was achieved through 

visual and statistical GIS-based analysis of multiple variables 

including the following: 

1. Return Density and Distribution 

2. Elevation Comparison of LiDAR Last Returns and CVI 

Classified Ground Returns Data 

3. LiDAR Last Returns Intensity 

4. Return Number of Last Returns 

 



 

24 

Return Density and Distribution: 

The shapefiles of LiDAR returns were displayed over the 

2003 SAMB base imagery. Polygons that showed bouldery landforms 

of interest were digitized by interpretation of aerial 

photography so that distribution of LiDAR returns over such 

features could be visualized. Where this was not possible due to 

canopy cover in forested areas, polygons were digitized in the 

field using a Magellan Mobilemapper 6 GPS unit with differential 

post-processing correction. Due to the size of the features of 

interest, it was difficult to outline bouldery features 

accurately. Polygons were meant for visual identification and 

not quantitative measures. Polygons provided a visual 

representation of how the LiDAR point distribution relates to 

the terrain. The point distribution was also compared to 

hillshade raster grids created from the CVI classified point 

data using the 3D Analyst Extension in ArcMap 9.3. An attempt 

was made to relate the point density to rough hillshade texture. 

ArcScene was used to create 3D models of LiDAR point data 

distribution using the CVI classified ground returns point data, 

last returns point data, and a TIN vector model of the CVI 

classified ground point data.  This 3D visualization provided an 

illustration of how returns were distributed and how last 

returns related to the CVI classified ground returns. 
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Mean distance from one return to its nearest neighbor, 

calculated by averaging the distance from one point to its 

nearest neighbor within thirteen sample areas, was calculated 

using the “Distance between Points within Layer” command within 

HawthsTools, an extension for ArcMap 9.3. Mean distance between 

nearest neighbors was estimated to evaluate the average point 

spacing value provided by CVI. 

A raster point count process within ArcToolbox was used to 

create a raster grid displaying number of returns in a given 

area using the “Point to Raster” command and using “Count” as 

the cell assignment. A 1.0 m cell size was used for the analysis 

because, after experimentation with different cell sizes, that 

resolution provided an appropriate representation of point 

density for this research. This process provided an illustration 

of how the CVI classified ground returns were clustered and 

where data were absent. Also, the point count process provided a 

description of changes in data density in comparison to last 

returns and CVI classified ground returns. Comparisons of the 

mean point spacing and the point count 1.0 m rasters were 

performed. 

Elevation Comparison of LiDAR Last Returns and CVI Classified 

Ground Returns Data: 

Raster grids at 0.69 m cell size were created because CVI 

reported this distance to be the average ground sample distance 
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(Table 1). The LAS files were converted to shapefiles using 

GeoCue LAS Reader. The shapefiles were then converted to TINs 

using the 3D Analyst Extension. Raster grids were produced from 

the TIN surfaces. 

The following raster math was performed: 

[0.69 m Raster Grid of Elevation Data from Last Returns - 0.69 m 

Raster Grid of Elevation Data from CVI Classified Ground 

Returns] 

This process created a raster grid of elevation difference 

between the last returns and CVI classified ground returns that 

was used for visual and statistical comparison of the data sets. 

Areas containing a greater elevation difference indicated 

locations where last returns were not classified as ground.  

Elevation profiles were created using the profiling tool 

within the 3D Analyst Extension, which provided a comparison of 

the last returns data and CVI classified ground data. Data were 

exported to Microsoft Excel to construct graphs. In order to use 

such tools, the point data were converted to TINs and elevation 

raster grids using the 3D Analyst Extension. 

Intensity of LiDAR Last Returns Data:  

The LiDAR data available also provided a return intensity 

measurement for each data point. Raster grids were created from 

the last returns intensity values using the 3D Analyst 

Extension, and statistics were collected. Changes in intensity 
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values were compared between the last returns and CVI classified 

ground returns data. This intensity information and elevation 

difference information were used in the index overlay for 

likelihood of presence of bouldery landforms analysis.  

Return Number of LiDAR Last Returns Data:  

Return number for the last returns data were displayed, and 

return number was related to the intensity values. Box and 

whisker plots were produced at two sample locations under the 

forest canopy to compare how intensity varies with return 

number. 

Prologic LiDAR Explorer Classifications:  

Ground classifications of the available LiDAR data were 

attempted in this study that serve a geomorphic analysis purpose 

without inducing considerable error, such as incorporating 

vegetation in the ground elevation data. Prologic LiDAR Explorer 

Feature Class Edition (FCE) allows reclassification of points as 

ground using a raster trend-surface analysis in which points are 

compared to a raster grid surface created from minimum elevation 

values within a defined kernel size. This function allows the 

user to adjust the size of the kernel and the elevation (Z) 

tolerance (Prologic, 2008). This function was used to classify 

points from the last returns data as ground in an attempt to 

create classifications that captured bouldery landforms and the 

variable terrain. Table 5 describes the parameters used. The 
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resulting classifications using different parameters were 

compared using topographic profiles, 3D surfaces, and hillshade 

imagery.  

 

Test Number Kernel Size Z Tolerance 

1 3x3 0 

2 3x3 1 

3 3x3 2 

4 3x3 5 

5 5x5 0 

6 5x5 1 

7 5x5 2 

8 5x5 5 

 

Table 5: Prologic LiDAR Explorer ground classification 

parameters. 

 

Index Overlay for Likelihood of Presence of Bouldery Landforms 

Analysis: 

 Multiple criteria as raster data layers were used to 

classify bouldery landforms including the following: natural 

color aerial imagery, elevation difference between last returns 

and CVI classified ground returns elevation raster grids, point 

count of CVI classified ground returns, and LiDAR last returns 

intensity. An index overlay analysis was conducted in ArcMap. 

The natural color supervised classified raster grid produced 

previously was used here. The elevation difference, point count, 

and intensity raster grids were also used. Polygons were 

digitized at known bouldery areas, non-bouldery forested areas, 
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and non-bouldery open areas to extract desired grid cells, and 

zonal statistical data (Table 6) were collected within ArcGIS to 

determine an adequate elevation difference range and last 

returns intensity range for bouldery landforms. Bouldery 

landforms had a higher mean elevation difference value than non-

bouldery open areas, 3.67 m compared to 0.05 m. Also, mean 

intensity values were lower for bouldery landforms than non-

bouldery areas, 77.4 as compared to 134.2. Separating bouldery 

landforms and non-bouldery forest areas based on these two 

variables was complex due to a wide range of values in forested 

areas. The standard deviation for non-bouldery forest areas was 

larger in comparison to the other classifications for elevation 

difference, 3.78 m, and last returns intensity, 32.3. Also, the 

mean values were similar to those for bouldery landforms. Lower 

values for the CVI classified ground point count raster grid 

were considered preferable for bouldery landforms based on 

previous research results. Road and water classification were 

weighted higher than field and forest because, based on visual 

interpretation of the classification results, bouldery areas 

would more likely be misclassified into one of these groups.  
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Table 6: Statistics for elevation difference between last 

returns and CVI classified ground returns raster grids and last 

returns intensity collected by zonal statistics with ArcGIS. 

These data were used to determine likelihood of presence of 

bouldery landforms reclassifications for the index overlay 

analysis. 

 

 

 

Table 6a: Bouldery Landforms 

Statistics 

Elevation Difference 

between last returns 

and CVI Classified 

Ground Returns (m) 

Last Returns 

Intensity 

Minimum 0.12 20.2 

Maximum 6.61 117.5 

Range 6.49 97.3 

Mean 3.67 77.4 

Standard 

Deviation 
1.38 21.7 

Table 6b: Non-Bouldery Forest 

Statistics 

Elevation Difference 

between last returns 

and CVI Classified 

Ground Returns (m) 

Last Returns 

Intensity 

Minimum -0.05 1.9 

Maximum 17.4 154.2 

Range 17.45 152.4 

Mean 6.68 70.1 

Standard 

Deviation 
3.78 32.3 

Table 6c: Non-bouldery Open 

Statistics 

Elevation Difference 

between last returns 

and CVI Classified 

Ground Returns (m) 

Last Returns 

Intensity 

Minimum -0.11 60.4 

Maximum 0.61 179.1 

Range 0.72 118.7 

Mean 0.05 134.2 

Standard 

Deviation 
0.06 12.6 
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Reclassifications were performed, and new raster grids were 

produced using an index overlay for likelihood of presence of 

bouldery landforms procedure within ArcGIS. Three models were 

produced, and the varying parameters used are outlined in Table 

7. The scores ranged from zero to five with five indicating most 

likely and zero indicating not likely to be bouldery landforms. 

Scoring allowed for likelihood of presence of bouldery landforms 

ranges to be produced. The three models were averaged to produce 

a final likelihood of presence model using the raster 

calculator: 

([Model 1] + [Model 2] + Model 3])/3 = Averaged Model 

Larger values indicated increased likelihood of presence of 

bouldery landforms. Cells were classified as does not meet 

criteria, least likely, moderately likely, and most likely based 

on parameters described in Table 8. The ranges were decided upon 

based on natural breaks in the data. 
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Table 7: Reclassification scores for criteria. Three different 

models were produced. 

 

  

 

 

 

 

 

 

Table 8: Likelihood of presence of bouldery landforms ranges for 

averaged index overlay model. Likelihood of presence ranges were 

selected based on natural breaks in the data set. 

Table 7b: 

Intensity 

Ranges 

Reclassification 

Score (Model 1, 

Model 2, Model 

3) 

< 15 0,4,4 

15 - 20 1,4,4 

20 - 34 3,4,4 

34 - 115 5,5,5 

115 -118 3,3,3 

118 - 120 2,2,2 

> 120 0,0,0 

Table 7a: 

Elevation 

Difference 

Ranges 

Reclassification 

Score (Model 1, 

Model 2, Model 

3) 

< 0.1 m 0,0,0 

0.1 m - 

0.12 m 
1,1,2 

0.12 m - 

0.5 m 
3,3,4 

0.5 m - 

6.0 m 
5,5,5 

6.0 m- 6.5 

m 
3,3,4 

6.5 m - 7. 

0 m 
1,1,2 

> 7.0 m 0,0,0 

Table 7c: 

CVI Ground 

Point 

Count 

Reclassification 

Score (Model 1, 

Model 2, Model 

3) 

0 5,5,5 

1 3,3,3 

2 1,1,1 

> 2 0,0,0 

Table 7d: 

Natural Color 

Classification 

Reclassification 

Score (Model 1, 

Model 2, Model 3) 

Bouldery 

Landform 
5,5,5 

Road 3,3,3 

Water 3,3,3 

Forest 0,2,2 

Field 0,2,2 

Likelihood Raster Values 

Does Not Meet 

Criteria 
0-48 

Least Likely 48-138 

Moderately Likely 138-318 

Most Likely 318-625 

Reclassification Scores for Criteria 

(Model 1, Model 2, Model 3) 

Likelihood of Presence of Bouldery Landforms Ranges 
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The results of the three models were tested using a spatial 

compromise programming statistical analysis in which test areas, 

as polygons, were compared. Test data were obtained from the 

following contexts: 

1. Bouldery landforms in open areas identified by aerial 

imagery interpretation (9 test areas) 

2. Bouldery landforms under tree canopy identified from 

field-based differential GPS data (6 test areas) 

3. Non-bouldery forested areas identified from field-based 

differential GPS data (10 test areas) 

4. Non-bouldery open areas identified by aerial imagery 

interpretation (10 test areas) 

Polygons in bouldery areas should meet the criteria and be 

ranked higher than the non-bouldery field and forested areas if 

the models are adequate. The results were also compared to the 

natural color supervised classification. The one hundred 

randomly sampled ground reference locations were compared to the 

model, an error matrix was produced, and accuracy was assessed.  
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Results and Discussion 

Bedrock Geology Maps: 

 Bedrock geology maps were produced from the 1:24,000 scale 

Matchen et al. (1999) data (Figure 8) and the 1:250,000 scale 

Cardwell et al. (1968) data. The larger-scale data are more 

appropriate for describing the geology of a study area of this 

extent. Contacts are better defined based on topography, and the 

rule of Vs is observed. Based on these geologic data, sandstone 

of the Pottsville Group underlies this study area and forms the 

bouldery landforms of interest (Matchen et al., 1999).  
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Figure 8: CVI property bedrock geology map from Matchen et al. 

(1999) data. Base image is a United States Geologic Survey 

1:100,000 scale topography map. 
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Supervised Classifications: 

 

The 0.6 m pixel natural color SAMB supervised 

classification identified 10.9% of the 5.4 km
2
 area as bouldery 

landforms. The 1 m pixel CIR NAIP supervised classification 

identified 3.1% of the area as bouldery landform (Table 9). 

Figure 9 demonstrates that the natural color classification 

detects bouldery landforms throughout the area; Figure 10 

demonstrates that the CIR classification detects bouldery 

landforms primarily in open areas and locations where bouldery 

features disrupt the tree canopy. This pattern is a result of 

data collection when a vegetated canopy was present. Accurate 

detection of bouldery landforms using this technique requires 

leaf-off data, such as the natural color data, because features 

under the tree canopy are of interest. However, leaf-off 

conditions induce variability in the classification because 

forest structure influences the DN values. Areas with canopy 

cover are not easily classified due the irregularity of their DN 

values; as a result, detecting bouldery landforms under a tree 

canopy was inadequate. Areas on slopes are often classified as 

water due to shadowing; also, features under conifers are not 

detected due to the year-round canopy cover. It is difficult to 

separate road or gravel surfaces from bouldery landforms based 

on natural color DN values alone. Overall, the leaf-off, natural 

color imagery provides a better classification for detecting 
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bouldery landforms throughout the study area, but bouldery 

features are not separated from road surfaces and detection in 

forested areas is hindered due to reflectivity variability. 

Supervised classification of natural color imagery for bouldery 

landform detection is effective in open areas. 

 

 

 

 

  

 

 

 

 

 

Table 9: Summary of supervised classifications of the study 

area. These values were collected within the 5.4 km
2
 area using 

zonal statistics within ArcMap’s Spatial Analyst Extension.  

Natural Color 0.6 m Imagery (Figure 9) 

Bouldery Landform 10.9% 

Forest 60.6% 

Field 11.6% 

Water 11.7% 

Road 5.3% 

  

CIR 1 m Imagery (Figure 10) 

Bouldery Landform 3.1% 

Forest 69.0% 

Field 26.5% 

Water 0.9% 

Road 0.5% 
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Figure 9: SAMB natural color supervised classification using 

Erdas Imagine.  
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Figure 10: CIR NAIP supervised classification using Erdas 

Imagine.  
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Tables 10 and 11 summarize the accuracy of the 

classifications based on the ground reference data. The natural 

color classification is more accurate because bouldery landforms 

under a tree canopy are more often correctly identified in the 

model. These features are generally not correctly identified in 

the CIR classification due to the canopy cover at the time of 

acquisition. It should be noted the GPS error was a problem in 

the ground sampling method because grid cells were only 0.6 m in 

size in the natural color model. Identifying the true location 

of the pixel in the field was difficult. The researcher 

attempted to collect the best ground data that were obtainable 

with the equipment available. Due to the number of ground 

reference points used to conduct the analysis, the accuracy 

estimate is estimated to +/- 7.2%. The natural color supervised 

classification overall accuracy was estimated as 82%. 

 

  Ground Reference Data  

  Bouldery 
Non-

Bouldery 

User's 

Accuracy 

Natural Color 

Supervised 

Classification 

Data 

Bouldery 39 11 78% 

Non-bouldery 7 43 86% 

 
Producer's 

Accuracy 
85% 77%  

 
Overall 

Accuracy 
82%  

Table 10: SAMB natural color supervised classification error 

matrix (accuracy estimated as +/- 7.2%). 
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  Ground Reference Data  

  Bouldery 
Non-

Bouldery 

User's 

Accuracy 

CIR Supervised 

Classification 

Data 

Bouldery 3 42 7% 

Non-bouldery 2 53 11% 

 
Producer's 

Accuracy 
60% 44%  

 
Overall 

Accuracy 
56%  

Table 11: NAIP CIR supervised classification error matrix 

(accuracy estimated as +/- 7.2%). 

 

CVI Classified Ground Returns Processing: 

  

The processes used to create the CVI classified ground 

returns data made available for this project were explored by 

speaking with CVI employees. CVI utilized POSPac, a LiDAR 

processing tool, to convert the raw data to LiDAR data as LAS 

files. Pospac allows for GPS, IMU, and LiDAR rangefinding data 

to be processed to x, y, z points as LAS files (J. McNeer, 

Personal Communication, December 11, 2009). CVI processed the 

LAS all returns data to classified ground returns using the 

ground classification tool within the TerraScan software, an 

extension for Microstation. First, CVI removed points that were 

farther than 5 m from any other return in x, y, z space as 

outliers. They performed an initial ground classification on all 

remaining returns using parameters described in Table 12. CVI 

processed the classified ground returns a second time using 

parameters described in Table 13, and this processing created 
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the CVI classified ground returns used in this research (A. 

Riley, Personal Communication, January 28, 2010). 

 

 

Parameter Value 

Maximum Building Size 60.0 m 

Terrain Angle 88.00° 

Iteration Angle 10.00° 

Iteration Distance 1.00 m 

 

 

 

 

 

The ground classification routine within TerraScan 

classifies points by iteratively building a triangulated surface 

model. The maximum building size, initially set at 60.0 m, 

determines the initial point selection. The algorithm assumes 

that at least one return within the maximum building size area 

is ground and that the lowest point is a ground return. The 

routine builds an initial model from these selected points. The 

process adds points iteratively to model the ground surface. 

Iteration parameters determine how close a point has to be to a 

triangular plane so that the point is accepted to the model. The 

iteration angle is the maximum allowed angle in the elevation 

(z) direction between a point and the triangulated surface that 

Parameter Value 

Maximum Building Size 60.0 m 

Terrain Angle 88.00° 

Iteration Angle 5.00° 

Iteration Distance 1.00 m 

Table 12: First 

ground 

classification 

parameters, 

provided by CVI. 

Table 13: Second 

ground 

classification 

parameters, 

provided by CVI. 

First Ground Classification 

Parameters 

Second Ground Classification 

Parameters 
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is iteratively created. The iteration distance controls the size 

of triangulated surfaces. Fewer points are added to the ground 

model when the angle is smaller; a smaller angle, such as 4.0°, 

is commonly used in flat terrain, and a larger angle, such as 

10°, is commonly used in hilly terrain. An additional parameter, 

the terrain angle, specifies the steepest allowed slope on the 

ground. The value for this parameter depends on the terrain 

characteristics of the landscape being modeled (Terrasolid, 

1998).  

The spot size is the average diameter that a LiDAR pulse 

has when it reaches the ground. The LiDAR footprint size was 

calculated from the beam divergence and flight height using the 

following equation (Kukko and Hyyppa, 2007): 

D = 2ztan(∆Ѳ/2) 

Where 

D = Spot Size or Diameter in meters 

Z =  Height of Plane (AGL) = 760 m 

(∆Ѳ) = Beam Divergence = 0.26 mrad = 1.49E-2° 

Based on the parameters provided in the metadata (Table 1), the 

spot size for this flight was approximately 0.20 m (20 cm).  

 This background information shows that the ground returns 

classification process conducted by CVI within TerraScan was 

designed to reduce Type II error, or the inclusion of object 

returns in the ground model because two classification routines 
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were performed to remove topographic variability. First, ground 

points were classified from all returns, then a second 

processing was performed on the ground-labeled points from the 

1
st
 iteration with a smaller iteration angle. Ground returns 

classification within Terrascan is a slope-based, point-to-

points process in which one point is compared to multiple, 

additional returns (Sithole and Vosselman, 2004). How this 

classification influences the modeling of local topographic 

variability was explored by comparison of the last returns data 

and CVI classified ground returns data. 

Last Returns and Classified Ground Returns Data Comparison: 

Return Density and Distribution: 

 

 Comparison of the last returns and CVI classified ground 

returns to 0.6 m pixel SAMB imagery allows for a representation 

of return distribution over bouldery features. Generally, 

returns from bouldery landforms were not classified as ground in 

the CVI ground classification. Even bouldery features not under 

a tree canopy, such as the two fine blocks at Site 1 (Figures 

11a, 11b, 11c, and 11d), were commonly excluded from the ground 

surface. At Site 4 (Figures 12a and 12b), a fine block partially 

under a tree canopy, returns were also not classified as ground. 

Under a tree canopy, such as Site 2 (Figures 12c and 12d), there 

is a general reduction in ground return density due to 
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vegetation, and bouldery classification and detection are 

further hindered. 

 Models created in three dimensions (Figure 13) using 

ArcScene further demonstrate that LiDAR returns from bouldery 

landforms were not classified as ground returns. Two fine blocks 

at Site 1 (Figure 13a) were not included in the ground surface 

TIN produced from the CVI classified ground data. The model at 

Site 4 (figure 13b) shows that detecting boulders under a 

partial canopy is very complex due to the variability in return 

elevation. Detecting a boulder as an object at such a location 

is difficult. 

 These data support the conclusion that CVI classified 

ground data provide a smoothed surface model; local topographic 

variability induced by bouldery landforms is commonly lost. 

Ground point classification algorithms within TerraScan removed 

these measurements from the CVI ground model. 
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Figure 11: Comparison of last returns and CVI classified ground 

returns over 0.6 m pixel natural color imagery at Site 1. The 

base image is the 2003 SAMB imagery. Note how bouldery landforms 

are commonly associated with gaps in the CVI classified ground 

returns data. 

 

Figure 11a: Site 1a 

Last Returns 

Figure 11b: Site 1a CVI 

Classified Ground 

Returns 

Figure 11c: Site 1b 

Last Returns  

Figure 11d: Site 1b CVI 

Classified Ground Returns 
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Figure 12: Comparison of last returns and CVI classified ground 

returns over 0.6 m pixel natural color imagery at Sites 2 and 4. 

The base image is the 2003 SAMB imagery. Note how bouldery 

landforms are commonly associated with gaps in the CVI 

classified ground returns data. 

 

 

 

 

 

 

Figure 12a: Site 4 

Last Returns 

Figure 12c: Site 2 

Last Returns 

Figure 12d: Site 2 CVI 

Classified Ground 

Returns 

Figure 12b: Site 4 CVI 

Classified Ground Returns 
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Figure 13: 3D point distribution at Sites 1 and 4. Note that 

bouldery landforms are positive topographic features up to 6 m 

above the CVI classified ground data TIN surface. 

Figure 13a: Site 1 

Figure 13b: Site 4 
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Comparison of the CVI classified ground returns density and 

distribution to the hillshade imagery shows that lack of data can 

give the misleading appearance of a rough ground texture in 

hillshade imagery. Figure 14 demonstrates a large bouldery 

feature in an area of rough texture; however, this texture is 

induced by a lack of point elevation data, not rough topography. 

Although rough topography may cause a reduction in ground 

returns density, the resulting rough texture must be interpreted 

cautiously. As a result, rough texture in hillshade imagery 

should not be interpreted automatically to mean rough 

topography. Figure 15 demonstrates an additional large bouldery 

feature in an area of rough texture, and this texture is induced 

by a lack of ground returns data. 
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Figure 14: CVI classified ground returns compared to hillshade 

imagery in power line clearing. The base image is the 2003 SAMB 

imagery. Note that rough texture in hillshade imagery is caused 

by a reduction of ground data due to removal during processing. 

Rugged, bouldery areas are difficult to map based on hillshade 

texture. 

Figure 

14a 

Figure 

14b 
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Figure 15: CVI classified ground returns compared to hillshade 

imagery of bouldery features in forest. The base image is the 

2003 SAMB imagery. Note that rough texture in hillshade imagery 

is caused by a reduction of ground data due to removal during 

processing. The rock city is difficult to map based on hillshade 

texture. 

Figure 

15a 

Figure 

15b 
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 Although bouldery features commonly were not classified as 

ground in the CVI ground returns data set, some features were 

included as ground classified points, such as the bouldery area 

in Figure 16. A coniferous canopy may have caused this area to 

be classified as ground due to a lack of ground returns for 

comparison to the surrounding area. The morphology of the 

feature may also have had an influence. A more continuous 

surface may be classified as ground, whereas disconnected 

boulders and blocks may not be classified as ground. 
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Figure 16: CVI classified ground returns compared to hillshade 

imagery at site classified as ground. The base image is the 2003 

SAMB imagery. Note that not all bouldery landforms were removed 

from the ground model. The relatively intact boulder and block 

field is included in the CVI ground classification. 

 

Figure 

16a 

Figure 

16b 



 

54 

 Mean distance from one point to its nearest neighbor, 

calculated using HawthsTools, is summarized in Table 11. As 

reported in Table 1, CVI stated 0.69 m to be the average ground 

sampling distance, and Table 14 shows a higher CVI classified 

ground point density calculated here than reported by CVI. The 

mean CVI classified ground sampling distance within thirteen 

sample sites, selected throughout the 5.4 km
2
 study area in areas 

of varying canopy cover, is 0.62 m with a standard deviation of 

0.39 m. The mean last returns sampling distance is 0.30 m with a 

standard deviation of 0.12 m. As suggested by the standard 

deviation, there is more variability in point spacing for the 

CVI classified ground returns than the last returns. The last 

returns are more evenly spaced because of the uniform LiDAR 

sensor scanning pattern. This uniform pattern is less evident 

after the ground point classification process.  
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Last 

Returns 

Mean 

Last 

Returns 

Standard 

Deviation 

CVI 

Classified 

Ground 

Returns 

Mean 

CVI Classified 

Ground Returns 

Standard 

Deviation 

Sample 1 0.38 m 0.06 m 0.65 m 0.31 m 

Sample 2 0.28 m 0.15 m 0.50 m 0.23 m 

Sample 3 0.35 m 0.12 m 0.57 m 0.24 m 

Sample 4 0.23 m 0.12 m 0.67 m 0.49 m 

Sample 5 0.39 m 0.10 m 0.76 m 0.51 m 

Sample 6 0.40 m 0.10 m 0.78 m 0.44 m 

Sample 7 0.34 m 0.12 m 0.83 m 0.48 m 

Sample 8 0.36 m 0.11 m 0.78 m 0.45 m 

Sample 9 0.26 m 0.11 m 0.48 m 0.24 m 

Sample 10 0.21 m 0.21 m 0.38 m 0.53 m 

Sample 11 0.35 m 0.12 m 0.68 m 0.41 m 

Sample 12 0.23 m 0.11 m 0.73 m 0.49 m 

Sample 13 0.12 m 0.19  m 0.21 m 0.30 m 

Mean 0.30 m 0.12 m 0.62 m 0.39 m 

 
Table 14: Mean distance between nearest last returns and ground 

returns comparison for thirteen samples. These data show a 

higher ground point density of 0.62 m than reported by CVI, 0.69 

m. 

 

 Although the CVI classified ground data are shown to have a 

density higher than that reported by CVI, this density is not 

evenly distributed. There are large gaps and clusters within the 

data, and bouldery landforms often exist within the data gaps. 

Figures 17, 18, and 19 provide examples of areas where bouldery 

landforms are associated with data gaps in the classified ground 

data. As a result, the data density is much lower in these 

areas. Figure 20 demonstrates an area where returns from 

bouldery landforms were classified as ground by CVI, the same 

location as Figure 16, made evident by a higher return density 

over these features than other bouldery landforms. Figure 21 
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represents a conifer area where data density is reduced compared 

to open areas. As a result, there are many reasons for lack of 

data density besides bouldery landforms. Figure 22 provides a 

comparison of last returns and classified ground returns point 

density at Sites 1 and 4. Bouldery features occur in data gaps.  

 This raster-based point count procedure provides a 

visualization of clustering and dispersion relating to bouldery 

features. This technique shows that 57.2% of the 1 m grid cells 

in the 5.4 km
2 
area have no returns within them classified as 

ground by CVI. Generally, bouldery landforms exist in data gaps, 

supporting the conclusion that returns over bouldery landforms 

were not included in the CVI classified ground data. 

 
Figure 17: Examples of LiDAR data density reduction over 

bouldery landforms in power line clearing 1. Base image is the 

2003 SAMB imagery. 

Figure 

17a 
Figure 

17b 
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Figure 18: Examples of LiDAR data density reduction over 

bouldery landforms in power line clearing 2. Base image is the 

2003 SAMB imagery. 

 
Figure 19: Examples of LiDAR data density reduction over 

bouldery landforms at bouldery features in forest. Base image is 

the 2003 SAMB imagery. 

Figure 

18a 

Figure 

18b 

Figure 19a 
Figure 19b 



 

58 

 
Figure 20: Examples of bouldery landforms included in ground 

model. Base image is the 2003 SAMB imagery. 

 
Figure 21: Examples of LiDAR data density reduction in area with 

coniferous canopy. The base image is the 2003 SAMB imagery. 

 

 

 

Figure 

20a 

Figure 

20b 

Figure 

21a 

Figure 

21b 
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Figure 22: Data density reduction over bouldery features at 

Sites 1 and 4. The base image is the 2003 SAMB imagery. 

Figure 22a: Site 1 Number of Returns in Site 1 m Cell 

Figure 22b: Site 4 Number of Returns in Site 1 m Cell 
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Elevation Comparison of LiDAR Last Returns and CVI Classified 

Ground Returns Data: 

 

 Elevation values were compared between elevations raster 

grids produced from the last returns data and the CVI classified 

ground returns data. The two raster grids were subtracted to 

produce an elevation difference raster grid (Figure 23). Local 

elevation difference between last returns and CVI classified 

ground returns was used to highlight where last returns points 

were not included as ground in the CVI model. Figure 24 at Site 

1 shows that the two fine blocks were not classified as ground 

as indicated by the positive elevation difference. In open 

areas, where bouldery landforms were not classified as ground, 

this deviation from the ground surface can be used to show where 

bouldery features may reside.  

The elevation difference is more complex under a tree 

canopy such as Site 4 (Figure 25) and Site 2 (Figure 26). 

Because not all last returns were reaching the ground surface, 

vegetation is a problem in this model. Vegetation induced 

variability is evident at Site 2 where elevation difference 

values are erratic and the medium block present there cannot be 

easily outlined based on elevation difference between last 

returns and CVI classified ground returns. An area of 

predominantly coarse boulders under a tree canopy at Site 5 

(Figure 27) also cannot be mapped using this method. 
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Figure 23: Elevation difference between last returns and CVI 

classified ground returns raster grid. Raster grid is grouped 

into quantiles. 

Elevation Difference (Last Returns 0.69 m Raster Grid - CVI 

Classified Ground Returns 0.69 m Raster Grid) 
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Figure 24: Elevation difference between last returns and CVI 

classified ground returns at Site 1. Base image is the 2003 SAMB 

imagery. The elevation difference raster grid is grouped into 

quantiles. Note that the two fine blocks can be mapped using 

elevation difference between last returns and CVI classified 

ground returns data at this location. 

 

 

 

Elevation 

Difference (Last 

Returns- CVI 

Classified Ground 

Returns) (m) 
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Figure 25: Elevation difference between last returns and CVI 

classified ground returns at Site 4. Base image is the 2003 SAMB 

imagery. The elevation difference raster grid is grouped into 

quantiles. Note that the fine block cannot be mapped using 

elevation difference between last returns and CVI classified 

ground returns at this location. 

 

 

 

 

 

Elevation 

Difference (Last 

Returns- CVI 
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Returns) (m) 
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Figure 26: Elevation difference between last returns and CVI 

classified ground returns at Site 2. Base image is the 2003 SAMB 

imagery. The elevation difference raster grid is grouped into 

quantiles. Note that the medium block cannot be mapped using 

elevation difference between last returns and CVI classified 

ground returns at this location under a tree canopy. 
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Figure 27: Elevation difference between last returns and CVI 

classified ground returns at Site 5. Base image is the 2003 SAMB 

imagery. The raster grid was grouped into quantiles. Note that 

the boulder field cannot be mapped using elevation difference 

between last returns and CVI classified ground returns at this 

location under a tree canopy. 
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On the CVI property, the influence of slope and vegetation 

on ground returns classification was explored. Elevation 

difference between last returns and CVI classified ground 

returns and ground point density were used as surrogates for 

ground classification. The box and whisker plot (Figure 28) 

shows that the median value for areas classified as field in the 

natural color supervised classification is lower than the median 

value for other classifications. In other words, open areas were 

more likely classified as ground, and vegetation influences 

ground classification. Grid cells classified as water had a 

large range of values because many cells were misclassified into 

that group due to shadows.  

The ordinary least squares regression results (Table 15) 

show that elevation difference and CVI classified ground point 

density are not strongly correlated with slope, ground returns 

intensity, and normalized difference vegetation index (NDVI). 

Ground intensity and NDVI were used as surrogates for 

vegetation. The AIC value shows that elevation difference 

between last returns and CVI classified ground returns and CVI 

classified ground point density are more correlated with NDVI 

and ground returns intensity than slope. This value shows that 

ground returns classification was more influenced by vegetation 

than slope. All of the adjusted R
2 
values are less than 0.3, but 

T-tests, F-tests, and Wald-tests calculated in ArcMap show that 
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the adjusted R
2
 values are statistically significant. Ordinary 

least squares regression was used and not geographically 

weighted regression because the global pattern is of interest. 

Sithole and Vosselman (2004) found that slopes, discontinuities, 

vegetation, low ground return density, and terrain complexity 

can induce error in classification of ground points. 

 

 
Figure 28: Elevation difference between last returns and CVI 

classified ground returns and natural color supervised 

classification comparison. Note that the median value is lower 

for fields (open areas) than the other classifications; 

therefore, vegetation has an influence on ground return 

classification. 
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CVI Classified Ground Return Density 

 Slope CVI Ground Intensity NDVI 

R
2
 0.0098 0.0417 0.0121 

R
2 
 Adjusted 0.0091 0.0410 0.0117 

AIC 3389.1 3342.6 3385.3 

T-Test -3.74 7.85 -4.22 

T-Test Statistical 

Probability (p-value) 
0.000202 0 0.000031 

F-Test 14 61.7 17.8 

F-Test Statistical 

Probability (p-value) 
0.00019 0 0.000026 

Wald-Test 12.9 48.5 14.82 

Wald-Test Statistical 

Probability (p-value) 
0.000328 0 0.000118 

Elevation Difference (Last Returns - CVI Classified Ground 

Returns) 

 Slope CVI Ground Intensity NDVI 

R
2
 0.0120 0.2596 0.0911 

R
2 
 Adjusted 0.0011 0.2590 0.0904 

AIC 8000.9 7591.3 7882.4 

T-Test 4.15 -22.3 11.9 

T-Test Statistical 

Probability (p-value) 
0.00004 0 0 

F-Test 17.2 497.1 188.2 

F-Test Statistical 

Probability (p-value) 
0.000035 0 0 

Wald-Test 15.2 763.5 188.2 

Wald-Test Statistical 

Probability (p-value) 
0.000097 0 0 

NDVI Normalized Difference Vegetation Index 

Statistical 

Probability (p-value) 

If p-value is less than 0.05 the variable 

is statistically significant. 

R
2
 

Coefficient of Determination: The 

proportion of variation in the dependent 

variable that is explained by the model 

R
2 
 Adjusted 

R-Squared adjusted for model complexity 

(number of variables) as it relates to the 

data 

AICc 

Akaike's Information Criterion: A relative 

measure of performance to compare models; 

smaller AIC indicates the superior model 

Table 15: Ordinary least squares regression results. Note that 

vegetation and slope are not strongly correlated with elevation 

difference between last returns and CVI classified ground data.  
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Local topographic change and variability were described 

using the profiling tool within the 3D Analyst Extension. Last 

returns data and CVI classified ground returns data, as TINs and 

0.69 m raster grids, were compared (Figures 29-32). At Site 1 

(Figure 29) the two fine blocks are characterized well using the 

raster grid and TIN last returns data. The height and 

orientation of the feature can be determined; however, the CVI 

classified ground data do not portray the features because the 

returns striking the objects were not included in the ground 

classification. As a result, the CVI classified ground data 

analyzed here cannot be used to study local topographic 

variation because of the smoothing that occurred due to ground 

returns classification; raster grid cells or TIN surfaces at the 

boulder locations were interpolated from neighboring data points 

that were included in the ground surface. This conclusion is 

further supported in Figure 30 where a fine block at Site 1 is 

not completely portrayed in the ground data. A fine block under 

a partial tree canopy, Site 4 (Figure 31), is also not portrayed 

in the CVI ground classified points. The last returns show this 

topographic feature; however, some vegetation is also included 

as part of the texture. Figure 32 is a topographic profile over 

a medium block under a tree canopy at Site 2. Because not all 

last returns reflected from the ground surface, vegetation is a 

problem in mapping bouldery landforms using last returns data.  
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 Modeling bouldery landforms in open areas can be 

accomplished using the last returns data: the features at Site 1 

exist in the last returns data. Modeling bouldery landforms 

under a tree canopy requires ground classifications: vegetation 

returns are a problem at Site 2. 
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Figure 29: Topographic profile at Site 1a. Base image is the 

2003 SAMB imagery. Note that processing removed bouldery 

landforms from the CVI classified ground data. 

A---------------------------------------------B 
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Figure 30: Topographic profile at Site 1b. Base image is the 

2003 SAMB imagery. Note that processing resulted in a partial 

representation of the bouldery landforms in the CVI classified 

ground data. 

A-------------------------------------B 



 

73 

 

 
 

 

Figure 31: Topographic profile at Site 4. Base image is the 2003 

SAMB imagery. Note that processing removed bouldery landforms 

from the CVI classified ground data. 

 

A------------------------------------B 
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Figure 32: Topographic Profile at Site 2. Base image is the 2003 

SAMB imagery. Note that not all last returns reached the ground 

surface. The LiDAR energy may be dissipated in the tree canopy. 

A-------------------------------------------B 
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Intensity of LiDAR Last Returns Data: 

 

 Intensity of LiDAR last returns was used to create images 

from LiDAR data (Figure 33). Return intensity is lower for 

bouldery features than the surrounding vegetation in open areas. 

This relationship is described in Table 6 and shown in Figure 

34. Bouldery features can be identified in open areas, such as 

Site 1, using LiDAR last returns intensity. However, this 

approach under a tree canopy is not adequate; it is not possible 

to map bouldery features at Sites 2 and 4 using this method. 

Intensity values in forested areas vary greatly, highlighting 

the problem induced by vegetation. Furthermore, vegetation 

growing on top of bouldery features increases the return 

intensity values; as a result, intensity measurements are not 

reliable under such circumstances. 

Figure 35 compares the intensity of last returns data to 

CVI classified ground returns data. Because returns over 

bouldery landforms were generally not classified as ground by 

CVI’s processing, the bouldery features cannot be mapped based 

on intensity using the classified ground data. The point data 

that provided the lower intensities were generally removed from 

the CVI ground classified data.  

Prior research by Lin and Mills (2010) has shown that last 

returns intensity is influenced by many variables including 

footprint size, scan angle, return number, and range distance. 
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It is difficult to use the intensity variable quantitatively 

(Lin and Mills, 2010). As a result, it is difficult to compare 

intensity values over large areas or between data sets. Also, it 

is necessary to take return number into account when using this 

data (Lin and Mills, 2010). This research supports these 

previous findings. 
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Figure 33: Last returns intensity raster grid. Raster grid is 

grouped into quantiles.  
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Figure 34: Intensity value within 0.69 m raster grids at 

selected study sites. Raster grids are grouped into quantiles. 

Note that intensity is a useful variable in open areas; mapping 

bouldery landforms in forested areas using this variable is not 

effective. 

Figure 34a: 

Intensity Raster at Site 1a 

Figure 34b 

Intensity Raster at Site 1b 

Figure 34c 

Intensity Raster at Site 4 

Figure 34d 

Intensity Raster at Site 2 
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Figure 35: Intensity comparison in power line clearing. Raster 

grids grouped into quantiles. Note that dark grid cells within 

the highlighted areas, or relatively low LiDAR returns 

intensity, in the power line clearing indicate bouldery 

features. These intensity data are not portrayed in the CVI 

classified ground model. 

 

 

 

 

 

 

 

Bouldery 

landforms not 

portrayed in 
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Bouldery landforms 
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Figure 35a: Last Returns 

Intensity in Power Line 

Clearing 

Figure 35b: CVI Classified 

Ground Returns Intensity in 

Power Line Clearing 
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Return Number of LiDAR Last Returns Data: 

The ALTM 3100 LiDAR sensor is capable of recording up to 

four returns for each transmitted laser pulse. Return number for 

the last returns tends to be higher under a tree canopy (Figure 

36) than in open areas because canopy cover causes multiple 

returns, and each subsequent return by definition has less 

illuminating radiation. Reflection of multiple returns has an 

influence on return intensity; the last returns intensities are 

generally lower under a tree canopy than returns in open areas. 

The recording of multiple returns for each laser pulse hinders 

the usefulness of last returns intensity to be used 

quantitatively.  

 Return intensity of last returns generally decreases with 

increasing return number; however, there is a wide intensity 

range as shown by the box and whisker plots, created at two 

sample locations under the tree canopy (Figure 37). As a result, 

correcting intensity values with respect to return number is 

necessary. Although last return intensity values are correlated 

with the surface material, such as bouldery landforms, intensity 

values are also correlated with return number. Corrections with 

respect to return number cannot be applied because methods of 

doing so are not available, making return intensity values 

difficult to use quantitatively (Lin and Mills, 2010). 
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Figure 36: Return number of last returns. Note that return 

number of last returns generally increases in forested areas. 
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Last Returns Intensity Box and Whisker Plots 

 

 
Figure 37a: Forest Sample 1 

 
 

Figure 37b: Forest Sample 2 

 
 
Figure 37: Last returns intensity box and whisker plots. Samples 

were collected in two forested locations in the study area, and 

no 4
th
 returns were recorded at the first location. Note that 

last returns intensity values are correlated with return number.   
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Prologic LiDAR Explorer Ground Classifications: 

Ground classifications were conducted for this research 

within Prologic LiDAR Explorer using different parameters for 

kernel size and elevation (Z) tolerance. These classifications 

were compared to the last returns and CVI classified ground 

returns data. In open areas, such as Site 1 (Figures 38 through 

43), last returns portray the two fine blocks better than 

Prologic LiDAR Explorer ground classifications. Prologic LiDAR 

Explorer classifications reduce the horizontal extent of the 

feature and change either bouldery shape or morphology. Figure 

44 shows similar results to Figures 38 through 43: last returns 

portray the fine block better than Prologic LiDAR Explorer 

ground classifications in open areas. Some classifications are 

effective in open areas; for example, classifications using 

Kernel Size = 5x5 and Z Tolerance = 1 remove vegetation returns 

while portraying the bouldery landforms at Site 1.  

Under a canopy, Prologic LiDAR Explorer ground 

classifications are more effective at portraying bouldery 

landforms than last returns because not all last returns reached 

the ground. The laser energy may be dissipated in the canopy. At 

Site 4 (Figures 45 through 50) Prologic LiDAR Explorer ground 

classifications remove canopy returns but maintain the fine 

block. At Site 2 (Figure 51 through 56) and Site 3 (Figure 57) 

the bouldery features under a tree canopy are maintained; 
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however, not all vegetation returns are removed. The boulders 

are represented as a positive topographic feature, but detailed 

morphology is not maintained. Perhaps fewer returns reflecting 

from the boulder and decreased return density due to vegetation 

will not allow complete characterization of the landform under a 

tree canopy. Accurately mapping and characterizing bouldery 

landforms under a tree canopy on the CVI property requires a 

ground classification process using this LiDAR data. Last 

returns are not effective at portraying rugged topography and 

representing bouldery landforms under the tree canopy because 

some last returns did not reach the ground. The best 

classifications for maintaining topographic variability under a 

tree canopy used Kernel Size = 5x5/Z Tolerance = 2 and Kernel 

Size = 5x5/Z Tolerance = 5 based on visual and graphic 

comparison. 
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Figure 38: Prologic LiDAR Explorer ground classifications at 

Site 1a. Note that the height and horizontal extent of the two 

fine blocks are reduced when Prologic LiDAR Explorer ground 

classifications are performed. Last Returns are best at 

portraying topographic variability in open area. 

A---------------------------------------------B 
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Figure 39: 3D point distribution of last returns at Site 1a. 

Note that the two fine blocks remain in the classification, but 

vegetation is also included. 

 

 
 

 

Figure 40: 3D point distribution of CVI classified ground 

returns at Site 1a. Note that the two fine blocks are not 

included in this classification. 
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Figure 41: 3D point distribution of Prologic LiDAR Explorer 

classification Kernel Size = 5 and Z Tolerance = 0 at Site 1a. 

Note that the two fine blocks are not included in this 

classification. 

 

 
Figure 42: 3D point distribution of Prologic LiDAR Explorer 

classification Kernel Size = 5 and Z Tolerance = 1 at Site 1a. 

Note that the two fine blocks are portrayed, but the morphology 

is altered. 

 

 

 
Figure 43: 3D point distribution of Prologic LiDAR Explorer 

classification Kernel Size = 5 and Z Tolerance = 2 at Site 1a. 

Note that the two fine blocks are portrayed, but vegetation is 

maintained in the classification. 

Vegetation returns 

included in 

classification 
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Figure 44: Prologic LiDAR Explorer ground classifications at 

Site 1b. Note that the height and horizontal extent of the fine 

block are reduced when Prologic LiDAR Explorer classifications 

are performed. Last returns are best at portraying topographic 

variability in open areas. 

 

   A----------------------------------------B 
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Figure 45: Prologic LiDAR Explorer ground classifications at 

Site 4. Note that Prologic LiDAR Explorer classifications 

generally remove vegetation while portraying the fine block. 

 

A---------------------------------------------B 
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Figure 46: 3D point distribution of last returns at Site 4. Note 

that the fine block is portrayed, but vegetation is also 

included. 

 

 
Figure 47: 3D point distribution of CVI classified ground 

returns at Site 4. Note that the fine block is not represented. 
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Figure 48: 3D point distribution of Prologic LiDAR Explorer 

classification Kernel Size = 5 and Z Tolerance = 1 at Site 4. 

Note that the fine block is portrayed, but the morphology is 

altered. 

 

 

 
 

 

Figure 49: 3D point distribution of Prologic LiDAR Explorer 

classification Kernel Size = 5 and Z Tolerance = 2 at Site 4. 

Note that the spatial extent of the fine block is portrayed in 

the classification. 
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Figure 50: 3D point distribution of Prologic LiDAR Explorer 

classification Kernel Size = 5 and Z Tolerance = 5 at Site 4. 

Note that the spatial extent of the fine block is portrayed, but 

vegetation is also included. 
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Figure 51: Prologic LiDAR Explorer ground classifications at 

Site 2. Note that identifying bouldery landforms under a tree 

canopy at this location using this data requires ground 

classification.  

A---------------------------------------------B 
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Figure 52: 3D point distribution of last returns at Site 2. 

Vegetation was not removed. Note that last returns include 

vegetation because the energy was dissipated in the tree canopy. 

 

 
Figure 53: 3D point distribution of CVI classified ground 

returns at Site 2. Note that bouldery landforms are not included 

in the classification. 
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Figure 54: 3D point distribution of Prologic LiDAR Explorer 

classification Kernel Size = 5 and Z Tolerance = 0 at Site 2. 

Note that bouldery landforms are generally not included in the 

classification. 

 

 

 

 
Figure 55: 3D point distribution of Prologic LiDAR Explorer 

classification Kernel Size = 5 and Z Tolerance = 2 at Site 2. 

Note that bouldery landforms are generally portrayed, but 

vegetation is also included in the classification. 
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Figure 56: 3D point distribution of Prologic LiDAR Explorer 

classification Kernel Size = 5 and Z Tolerance = 5 at Site 2. 

Note that bouldery landforms are generally portrayed, but 

vegetation is not completely removed. 
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Figure 57: Prologic LiDAR Explorer ground classifications at 

site 3. Note that Prologic LiDAR Explorer classifications 

portray the very coarse boulder and fine block while removing 

vegetation returns better than last returns data under a tree 

canopy. 

A-------------------------------------B 
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Figures 58 (Site 3) and Figure 59 (Site 2) illustrate how 

different point classification parameters portray rugged 

topography in forested areas using hillshade imagery. Last 

returns data (Figures 58a and 59a) provide more variability 

because many last returns did not reach the ground surface, and 

vegetation returns remain in the data. The CVI classified ground 

data (Figures 58b and 59b) provide a smoothed surface model in 

which bouldery landforms are not represented. Under a tree 

canopy, the Prologic LiDAR Explorer ground classification tool 

creates a better representation of rugged topography for mapping 

bouldery landforms (Figures 58c and d and Figures 59c and d). 

Rough topography is portrayed, but it is difficult to determine 

if the positive topographic features are bouldery landforms or 

if vegetation is inducing noise. The shapes of boulders are not 

maintained. The ground classification operation within Prologic 

is meant for crude ground return classification (Prologic, 

2008). For example, elevation (Z) tolerance values have to be 

integer. More sophisticated tools are available for ground 

return classification, such as the more robust TerraScan 

software, but could not be obtained for this research.  

Figure 60 shows a large bouldery outcrop in a power line 

clearing. This large bouldery feature is modeled well in the 

last returns data; although last returns data are useful for 

mapping bouldery features in open areas such as the power line 
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clearing shown in Figure 60, last returns are not as effective 

at portraying topography under a tree canopy also shown in this 

figure. Some ground classification process is required to 

represent rugged topography. Although precise characterization 

of individual features is not possible, adequate terrain surface 

information is provided in order to map generalized rugged 

topography. 
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Figure 58: Prologic LiDAR Explorer ground classifications 

hillshade comparison at Site 3.  Note that Kernel Size = 5x5 and Z 
Tolerance = 2 provide the best classification for mapping 

bouldery landforms. 

Figure 58a Figure 58b 

Figure 58c 

CVI Classified Ground Returns Last Returns 

Figure 58d 

Kernel Size = 5x5 and Z 

Tolerance = 2 

Kernel Size = 5x5 and Z 

Tolerance = 2 
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Figure 59: Prologic LiDAR Explorer ground classifications 

hillshade comparison at Site 2. Note that Kernel Size = 5x5 and 

Z Tolerance = 2 provide the best classification for this for 

mapping bouldery landforms. 

 

Figure 59c 

Figure 59a 

Figure 59d 

Figure 59b 

Last Returns CVI Classified Ground Returns 

Kernel Size = 5x5 and Z 

Tolerance = 2 

Kernel Size = 5x5 and Z 

Tolerance = 2 
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Figure 60: Hillshade comparison of last returns and CVI 

classified ground returns at large bouldery feature in power 

line clearing. Note that the last returns data (Figure 60a) in 

this open area characterize the features well, whereas CVI 

classified ground return data (Figure 60b) are inadequate for 

mapping bouldery landforms. The natural color SAMB image (Figure 

60c) shows the extent of the bouldery feature. 

 

Figure 60a: CVI 

Classified Ground 

Returns Hillshade 

Figure 60b: Last 

Returns Hillshade 

Figure 60a: 

Natural Color 

Imagery 

Hillshade 
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Index Overlay for Likelihood of Presence of Bouldery Landforms 

Analysis: 

 

Fusing LiDAR data with other remotely sensed data is 

becoming common (Luccio, 2010). Natural color, color infrared, 

and hyperspectral imagery are being collected along with LiDAR 

to accompany the intensity and elevation data for increased 

functionality. Methods are being developed to append image DN 

values to each LiDAR data point (Luccio, 2010). This research 

attempted to combine natural color imagery and LiDAR-derived 

information in a raster environment. An attempt was made to 

detect bouldery landforms using an index overlay for likelihood 

of presence of bouldery landforms analysis. Prior research 

results were used to produce these raster models. This analysis 

was explored as an alternative method to detect bouldery 

landforms using natural color imagery and LiDAR-derived 

parameters because hillshade models produced from the CVI 

classified ground data are not adequate for accurate mapping of 

bouldery landforms. Based on the data collected in prior 

objectives, user-based index overlay for likelihood of presence 

of bouldery landforms models were performed within the 5.4 km
2
 

study area. The assumptions in these models are as follows: 

1. Bouldery landforms were not classified as ground by CVI 

and had positive elevation difference values between the 

last returns elevation raster grid and CVI classified 
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ground returns elevation raster grid predominantly 

between 0.5 m and 6.0 m (medium boulder to medium block).  

2. Bouldery landforms produced last returns intensities that 

were lower than surrounding vegetation in open areas 

based on the statistics provided in Table 6. Return 

intensity is less useful under the tree canopy. Because 

it was not possible to normalize intensity values with 

respect to the return number, only high intensity values 

were removed. Low values were maintained. 

3. Bouldery landforms exist in areas of low CVI classified 

ground return density as portrayed by the CVI classified 

ground point count raster. 

4. Bouldery landforms occur in areas classified as boulder 

in the natural color imagery; however, such features were 

commonly misclassified as road or water due to similar 

natural color DN values or shadows, respectively. 

 

Table 16 and Figure 61 show the likelihood of presence of 

bouldery landforms model results produced by averaging the three 

models. Increased likelihood indicates a better fit using the 

model criteria. These grid cells are areas predicted to contain 

bouldery landforms. Within the study area boundaries the results 

are as follows: 

 



 

105 

Classification Score Ranges 

Percentage 

of Study 

Area 

Does Not Meet Criteria for 

Bouldery Landforms 0-48 55.60% 

Least Likely for Bouldery 

Landforms 48-138 21.80% 

Moderately Likely for Bouldery 

Landforms 138-318 16.60% 

Most Likely For Bouldery 

Landforms 318-625 5.90% 

 

Table 16: Percentage of study area classified as likely to be 

bouldery landforms. Ranges were determined based on natural 

breaks in the data set. 
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Figure 61:  Averaged index overlay for likelihood of presence of 

bouldery landforms.  
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Figure 62 shows the likelihood of presence for bouldery 

landforms in the power line area (Site 1). The very coarse 

boulders to fine blocks outlined in this area are classified as 

likely for bouldery landforms. Figures 63 and 64 show two 

additional locations for discussion. The large outcrops at these 

locations are classified as likely for bouldery landforms. At 

these three open locations, this model maps bouldery features 

successfully. 

Figure 65 shows a large, bouldery area, also shown in 

Figure 16, that is not classified as likely for bouldery 

landforms. Classification is hindered because the CVI ground 

classification did not remove bouldery landforms consistently or 

completely. Because the assumptions used to create this model 

are not accurate at this site, it is not considered likely for 

bouldery landforms in this model. 

As shown in Figure 66, forested areas are a problem in this 

classification; the very coarse boulders to fine blocks at Site 

3 are not completely classified as likely for bouldery 

landforms, offering further support for the conclusion that 

ground classification algorithms that maintain boulders are 

necessary for mapping such features under a tree canopy. Because 

of the complexity of last returns intensities under a tree 

canopy, this criterion is not reliable in forested areas, such 

as Site 3. Intensity was used to remove high return values and 
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not low values. Last returns intensity was useful only in open 

areas and had little predictive power in forested areas. 

 

Figure 62: Index overlay for likelihood of presence of bouldery 

landforms at power line clearing (Site 1). Note that very coarse 
boulders to fine blocks outlined within this open area are 

mapped successfully using this model. 
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Figure 63: Index overlay for likelihood of presence of bouldery 

landforms at boulder feature in power line clearing. Note that 

bouldery landforms within this open area are mapped successfully 

using this model. 

 

Figure 63a Figure 63b 
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Figure 64: Index overlay for likelihood of presence of bouldery 

landforms at bouldery feature in forest. Note that large, 

bouldery landforms within this rock city are mapped successfully 

using this model. 

 

Figure 64a Figure 64b 
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Figure 65: Index overlay for likelihood of presence of bouldery 

landforms at bouldery feature included in CVI classified ground 

surface. Note that the intact block and boulder field included 

in CVI’s classified ground surface is not mapped successfully 

using this model. 

Figure 65a Figure 65b 
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Figure 66: Index overlay for likelihood of presence of bouldery 

landforms in forest (Site 3). Note that very coarse boulders to 

fine blocks under a forest canopy are not detected as well as 

open areas in this model. 

 

 

 

 



 

113 

The results of the index overlay for likelihood of presence 

of bouldery landforms models were evaluated using a spatial 

compromise programming technique in which 35 test areas, as 

polygons, were ranked based on how well they meet the user 

defined parameters for natural color supervised classification, 

elevation difference between last returns and CVI classified 

ground returns raster grids, last returns LiDAR intensity, and 

CVI classified ground returns density described in Table 7. Test 

areas were digitized at known bouldery locations, non-bouldery 

forest, and non-bouldery open areas for comparison using 

differential GPS and aerial imagery interpretation. The 

following numbers of sites were ranked using spatial compromise 

programming: bouldery landforms in open areas (9), boulder 

landforms under forest canopy (6), non-bouldery forest areas 

(10), and non-bouldery field areas (10).  

The results are summarized in Table 17. Boulders in open 

areas generally fit the model criteria for detecting bouldery 

landforms best. Some non-bouldery forest locations have a higher 

rank as likely bouldery landforms than did bouldery landform 

locations under a forest canopy. Test areas in non-bouldery 

field areas generally have the lowest ranking. This model is 

effective in open areas. Bouldery features under a tree canopy 

are difficult to detect due to variability of elevation 

difference between last returns and CVI classified ground 
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returns and last returns intensity. Last returns intensity is 

difficult to use under the tree canopy. This further supports 

the conclusion that modeling such features under a tree canopy 

requires ground classification algorithms that maintain 

topographic variability. This test area comparison technique 

supports the index overlay models produced. 
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Rank 
Model 

1 
Model 

2 
Model 

3   

1 D D D   Boulder in Open (A-I) 

2 E E E   Boulder  in Forest (J-O) 

3 I I I   Non-bouldery Forest (P-Y) 

4 H H H   Non-Bouldery Field (Z-II) 

5 G G G   

6 B B B   

7 A A A   

8 M M M   

9 F F F   

10 C C C   

11 L J J   

12 J L L   

13 N N N   

14 O S S   

15 S O O   

16 P K K   

17 K P P   

18 T V V   

19 V T T   

20 W W Q   

21 X Q X   

22 Y X W   

23 Q R R   

24 HH Y Y   

25 R HH HH   

26 AA U AA   

27 II AA U   

28 U Z Z   

29 Z II II   

30 CC CC CC   

31 EE BB BB   

32 BB EE EE   

33 GG GG GG   

34 FF FF FF   

35 DD DD DD   
Table 17: Index overlay for likelihood of presence of bouldery 

landforms polygon ranking using spatial compromise programming 

results. Higher ranking means site agrees with the model 

criteria for detection more completely. 
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The index overlay for likelihood of presence of bouldery 

landform model was compared to the natural color supervised 

classification previously performed. Only moderate and most 

likely raster grid cells were considered due to the large number 

of least suitable cells. Moderate and most likely cells were 

grouped into one class. Table 18 describes the results.  

 

 

 

Table 18: Comparison of index overlay and supervised 

classification results. These data provides a description of how 

well the supervised classification and averaged index overlay 

model agreed. Note that the models do not overlap completely. 

 

The results show that the models do not overlap completely; 

not all areas included in the supervised classification are 

included in the index overlay model. Natural color 

classification was used as a variable in this model, and this 

comparison shows that the LiDAR-derived criteria are also 

important. One source of disagreement is that the natural color 

supervised classification includes road surfaces as well as 

boulders while the index overlay model does not include such 

features. Bouldery surfaces cannot be separated from other 

surfaces based on natural color DN values alone due to similar 

brightness values compared with other surfaces, such as roads. 

Positive for Both 4.6% 

Positive for Index Overlay Only 17.9% 

Positive for Supervised Classification Only 6.2% 

Negative for Both 71.3% 

Positive for Index Overlay 22.5% 

Positive for Supervised Classification 10.8% 
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Vegetation is a problem in both models. Combining LiDAR-derived 

data with other data sources, such as natural color imagery, 

aids in classification.  

An error matrix (Table 19) was created using the same one 

hundred ground reference points used in the natural color and 

CIR classification. Least, moderately, and most likely grid 

cells were grouped into one class. An overall accuracy of 67% 

(+/- 7.2%) was found. This is a lower accuracy than that 

calculated for the natural color classification alone. The 

reasons for this are not certain. The error may have been higher 

due to an overestimation of bouldery area. Vegetation may have 

caused higher elevation difference between last returns and CVI 

classified ground returns raster grids values that caused grid 

cells to not be classified as likely for bouldery landforms. 

Many of the bouldery features observed in the field at the one 

hundred sample that were not considered likely for bouldery 

landforms in the index overlay model were at locations under a 

forest canopy. Detection of bouldery landforms under a forest 

canopy was inadequate. 
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  Ground Reference Data  

  Bouldery 
Non-

Bouldery 

User's 

Accuracy 

Index Overlay 

Data 

Bouldery 25 14 63 % 

Non-bouldery 9 42 69% 

 
Producer's 

Accuracy 
57% 75%  

 
Overall 

Accuracy 
67%  

Table 19: Index overlay for likelihood of presence of bouldery 

landforms error matrix (accuracy estimated as +/- 7.2%). 
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Conclusions 

The purpose of this thesis project was to assess the 

viability of using LiDAR-derived elevation data in accurately 

mapping and characterizing bouldery geomorphic features. 

Bouldery landforms of the Pottsville Group were investigated 

within a rugged topographic area of the Allegheny Mountains. CVI 

ground classified data poorly represented bouldery landforms. 

The LiDAR ground returns classification process conducted 

by CVI using the TerraScan software removed local topographic 

variability, and a smoothed elevation model was created. 

Bouldery landform representation is not consistent in this data 

set. LiDAR returns reflecting from bouldery features are 

commonly not included in the CVI classified ground data; 

however, some bouldery features are included in this CVI 

classification. Although this research indicated a mean ground 

sampling distance of 0.62 m, and CVI reported 0.69 m, the 

distances between CVI classified ground points are unevenly 

distributed. Clusters and large gaps exit in the CVI ground 

data, and bouldery features often exist in the data gaps. The 

CVI ground classification does not adequately represent the 

topographic surface for mapping bouldery geomorphic features and 

rugged topography. 
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Rough texture in hillshade images is often induced by a 

lack of data, which can be a result of multiple factors 

including the following: vegetation, rough topography, slope, 

and bouldery landforms. Researchers using such models should be 

aware that rough texture in hillshade imagery cannot be 

considered a unique result of rough topography. Researchers 

using hillshade imagery for surficial mapping should interpret 

such features carefully and seek confirmation through multiple 

types of data. 

In open areas, last returns data can be used to map 

bouldery landforms. Research in mapping bouldery features can 

benefit from inclusion of last returns data because of the 

terrain information offered that may be missing from the ground 

classified data. Last returns intensity is very useful in open 

areas because bouldery features tend to yield relatively lower 

intensity returns than surrounding vegetation; however, this may 

be seasonally dependent. The last returns intensity from 

boulders is similar to road or gravel surfaces. It is suggested 

that LiDAR point classification algorithms consider intensity 

during the process of creating a ground classification. It 

should be noted that last returns intensity is variable and 

difficult to use quantitatively (Lin and Mills, 2010). 

Identifying and describing boulders under a tree canopy 

require LiDAR point classifications. In this LiDAR data set, 
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collected during leaf-on conditions, many of the last returns do 

not represent the ground; the LiDAR energy was dissipated 

through reflection by the tree canopy. Classifications conducted 

within Prologic LiDAR Explorer provide a better representation 

of positive topographic features under a tree canopy than last 

returns; however, bouldery landforms cannot be completely 

differentiated from vegetation. Noisy DEMs and hillshade images 

are produced. The morphologies of bouldery features are not well 

maintained due to a reduction in number of returns reflecting 

from the surface of interest. Last returns intensity is highly 

variable under a tree canopy and cannot consistently yield 

quantitative differentiation of boulders. Although precise 

characterization of individual features is not possible, 

adequate terrain surface information is provided in order to map 

generalized rugged topography. 

Index overlay analysis for likelihood of presence of 

bouldery landforms allows multiple criteria to be utilized to 

detect bouldery landforms. Fusion of natural color, aerial data 

with LiDAR data in a raster environment works well in open 

areas; however, classification under a tree canopy is inadequate 

to map bouldery landforms. This index overlay technique was 

supported by spatial compromise programming results and is 

useful for general representation of rugged topography. 
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The LiDAR data utilized here provides adequate spatial 

resolution to map bouldery landforms at this scale; however, 

ground returns classification processes are necessary to extract 

the point data of interest. Future research should attempt to 

determine the potential use of leaf-off ground returns data to 

map bouldery landforms under a tree canopy and how ground data 

density changes in comparison to leaf-on data. Fusing LiDAR data 

with other data sources, such as natural color, CIR, and 

hyperspectral data, should be explored in a vector environment. 

Reflectance data may be useful for point classification. 

Additional ground classification algorithms and processes should 

be explored in regards to suitability in modeling rough 

topography and maintaining local topographic changes while 

removing vegetation. 

LiDAR is a useful tool for geomorphologists, but the 

results of post-processing must be understood in order to 

properly interpret derived elevation models and hillshade 

imagery. 
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Appendix 

 

Field Data: 

 

 The following images and measurements collected on March 

10, 2010 show the bouldery features used as reference and ground 

data during this study. These features are present within the 

five study areas referenced above. Physical measurements were 

collected using a tape measure and measuring rod to the best of 

the researcher’s ability. These features were outlined in the 

imagery by aerial photograph interpretation. If this was not 

possible due to canopy cover, features were outlined using a 

Magellan Mobilemapper 6 GPS unit with differential post-

processing. This research explored how such bouldery features 

can be mapped using the LiDAR data provided by CVI.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

126 

Site 1 

 

 The following photographs depict bouldery features in a 

power line clearing on the CVI property. This site was selected 

to explore features not under a tree canopy. 

Site 1a 

 
 

Site 1a 

 
 

Site 1b 

 
 

 

 

Long Axis: 9.4 m 

Short Axis: 5.3 m 

Intermediate Axis: 6.3 m 

Height: 5.35 m 

Classification: Fine Block 

Long Axis: 7.5 m 

Short Axis: 3.8 m 

Intermediate Axis: 6.9 m 

Height: 3.8 m 

Classification: Fine 

Block 

Long Axis: 5.6 m 

Short Axis: 2.5 m 

Intermediate Axis: 5.5 m 

Height: 2.5 m 

Classification: Fine 

Block 
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Site 1c 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Long Axis: 5.0 m 

Short Axis: 2.05 m 

Intermediate Axis: 3.8 

m 

Height: 2.05 m 

Classification: Very 

Coarse Boulder 
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Site 2 

 

 The following photographs depict boulder features under a 

forest canopy. This site was selected to explore how sub canopy 

bouldery features were portrayed in the CVI LiDAR data. 

 

Site 2a 

 
 

Site 2b 

 
 

 

 

 

 

 

 

 

 

Long Axis: 9.5 m 

Short Axis: 4.3 m 

Intermediate Axis: 9.3 m 

Height: 4.3 m 

Classification: Medium 

Block 

Long Axis: 5.2 m 

Short Axis: 1.9 m 

Intermediate Axis: 3.0 m 

Height: 1.9 m 

Classification: Very 

Coarse Boulder 
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Site 2c 

 
 

Site 2d 

 
 

Site 2f 

 
 

 

 

Long Axis: 4.45 m 

Short Axis: 1.05 m 

Intermediate Axis: 2.6 m 

Height: 1.05 m 

Classification: Very 

Coarse Boulder 

Long Axis: 6.0 m 

Short Axis: 2.2 m 

Intermediate Axis: 4.4 m 

Height: 2.2 m 

Classification: Fine 

Block 

Long Axis: 8.4 m 

Short Axis: 1.7 m 

Intermediate Axis: 3.9 m 

Height: 1.7 m 

Classification: Very 

Coarse Boulder 
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Site 3 

 

The following photographs depict bouldery features under a 

forest canopy. This site was selected to explore how sub canopy 

bouldery features were portrayed in the CVI LiDAR data. 

Site 3a 

 
 

Site 3b 

 
 

 

 

 

 

 

 

 

 

 

 

Long Axis: 7.2 m 

Short Axis: 3.9 m 

Intermediate Axis: 4.4 m 

Height: 3.9 m 

Classification: Fine 

Block 

Long Axis: 6.0 m 

Short Axis: 2.6 m 

Intermediate Axis: 5.2 m 

Height: 2.6 m 

Classification: Fine 

Block 
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Site 3c 

 
 

Site 3d 

 
 

Site 3e 

 
 

 

 

 

Long Axis: 4.4 m 

Short Axis: 2.6 m 

Intermediate Axis: 3.2 m 

Height: 2.6 m 

Classification: Very 

Coarse Boulder 

Long Axis: 4.8 m 

Short Axis: 2.1 m 

Intermediate Axis: 3.1 m 

Height: 2.1 m 

Classification: Very 

Coarse Boulder 

Long Axis: 5.2 m 

Short Axis: 1.8 m 

Intermediate Axis: 5.1 m 

Height: 1.8 m 

Classification: Fine 

Block 
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Site3f 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Long Axis: 4.3 m 

Short Axis: 2.4 m 

Intermediate Axis: 4.1 m 

Height: 2.4 m 

Classification: Fine 

Block 
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Site 4 

 

The following photograph depicts a bouldery feature under a 

partial forest canopy. This site was selected to explore how 

bouldery features under a partial canopy were portrayed in the 

CVI LiDAR data. 

 

Site 4a 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Long Axis: 7.5 m 

Short Axis: 5.2 m 

Intermediate Axis: 5.5 m 

Height: 5.5 m 

Classification: Fine 

Block 
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Site 5: 

 

The following photographs depict bouldery features under a 

forest canopy. This site was selected to explore how smaller sub 

canopy bouldery landforms were portrayed in the CVI LiDAR data. 

These features were generally smaller based on height in 

relation to the feature at the other study sites. 

 

Site 5a 

 
 

Site 5b 

 
 

 

 

 

 

 

 

 

Long Axis: 8.3 m 

Short Axis: 1.7 m 

Intermediate Axis: 3.1 m 

Height: 1.7 m 

Classification: Very 

Coarse Boulder 

Long Axis: 3.0 m 

Short Axis: 1.6 m 

Intermediate Axis: 2.6 m 

Height: 1.6 m 

Classification: Very 

Coarse Boulder 



 

135 

Site 5c 

 
 

Site 5d 

 
 

Site 5f 

 
 

 

 

 

 

 

 

 

Long Axis: 2.4 m 

Short Axis: 0.6 m 

Intermediate Axis: 1.45 m 

Height: 0.6 m 

Classification: Coarse 

Boulder 

Long Axis: 3.5 m 

Short Axis: 1.1 m 

Intermediate Axis: 2.5 m 

Height: 1.1 m 

Classification: Very 

Coarse Boulder 

Long Axis: 4.5 m 

Short Axis: 1.05 m 

Intermediate Axis: 2.7m 

Height: 1.05 m 

Classification: Very 

Coarse Boulder 
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Site 5g 

 
 

Long Axis: 2.3 m 

Short Axis: 0.8 m 

Intermediate Axis: 1.6 m 

Height: 0.8 m 

Classification: Coarse 

Boulder 
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