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Chebyshev Pseudospectral Methods for Conservation
Laws with Source Terms and Applications to Multiphase

Flow

Scott Sarra

ABSTRACT

Pseudospectral methods are well know to produce superior re-
sults for the solution of partial differential equations whose solutions
have a certain amount of regularity. Recent advances have made
possible the use of spectral methods for the solution of conserva-
tion laws whose solutions may contain shocks. We use a recently
described Super Spectral Viscosity method to obtain stable approx-
imations of Systems of Nonlinear Hyperbolic Conservation Laws.
A recently developed postprocessing method, which is theoretically
capable of completely removing the Gibbs phenomenon from the
Super Spectral Viscosity approximation, is examined. The postpro-
cessing method has shown great promise when applied in some sim-
ple cases. We discuss its application to more complicated problems
and examine the possibility of the method being used as a ”black
box” postprocessing method. Applications to multiphase fluid flow
are made.
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Introduction

In this work we are interested in the initial boundary value prob-
lem for systems of nonlinear conservation laws with source terms in
one and two space dimensions. The model problem in one space
dimension is of the form

ut + f(u)x = b(u),
u(x, 0) = h(x)

(1)

with boundary data prescribed as appropriate.
The superiority of spectral methods for the solution of partial

differential equations for problems whose solutions have a certain
amount of inherent regularity has been well established, see for ex-
ample [7, 21, 31]. Until recently, spectral methods were deemed in-
appropriate for the solution of many hyperbolic problems, in partic-
ular nonlinear conservation laws whose solutions may develop shock
waves. Spectral methods do not converge to the entropy solution
in this case [61]. This non-convergence can be overcome by spectral
viscosity methods without sacrificing spectral accuracy. The surge
in interest in spectral methods for conservation laws could possibly
be attributed to a paper of Lax [43] in 1978 in which he concludes
the following about numerical methods for Partial Differential Equa-
tions:

...a method with low resolution can not be very accurate;
the converse does not follow, i.e., a method with high
resolution need not be highly accurate. But at least it
furnishes approximations that contain enough information
from which a better approximation may be extracted by a
postprocessing...even if that is not so, a method with high
resolution is more likely to preserve qualitative features of
solutions...

ix
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In fact, the stable spectral viscosity approximations will be re-
duced to first order accuracy and will contain oscillations in the
neighborhoods of shocks due to the Gibbs-Wilbraham phenomenon.
The problem is reduced to one of signal processing in order to re-
cover spectral accuracy.

In this work, the only postprocessing technique that we will dis-
cuss is the Gegenbauer Reconstruction Procedure (GRP). One of
our goals is to examine if the GRP, which has shown great promise
on some simple examples, can be used to successfully postprocess
PDE solutions containing a complex and varying structure. The
GRP will need to know the exact location of all discontinuities in
the solution and in all order derivatives of the solution in order to be
successful. The GRP is theoretically capable of recovering spectral
accuracy over the entire interval, even at the location of discontinu-
ities.

It should be noted that other, more robust postprocessing meth-
ods (see Appendix C) exist which are able to recover spectral accu-
racy up to within a neighborhood of a discontinuity. Some of the
methods may by used without knowing the location of the disconti-
nuities.

The previous applications of the GRP postprocessing method
in the literature have been to relatively simple problems: inviscid
Burgers Equation [25], the Euler Equations [25], and Shallow Water
Equations [23], with Riemann initial conditions. In these simple
examples, the parameters in the postprocessing method could be
chosen globally with a successful result. With more complicated
solutions, this approach fails. Additionally, in previous applications
of the GRP postprocessing method, only approximations on the
standard pseudospectral grid were used, even when a different grid
distribution appeared more appropriate. It will be shown that
the postprocessing technique can be applied successfully when the
approximations are taken from a grid in which the standard set of
collocation points has been mapped to a different distribution. This
is an important issue, as the standard Chebyshev grid is rarely the
correct choice in applications.

A final topic that is of interest is the presence of significant so-
lution features near computational boundaries. It has been noted
that the spectral viscosity operator that we are using is spatially
varying and goes to zero on the boundaries [5], but no reports of the
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consequences or resolutions of this fact appear in the literature.
Part I of this thesis will briefly review the Chebyshev pseudospec-

tral methods. Readers familiar with spectral methods may wish to
skip this section. Part II will examine the modification, a spectral
vanishing viscosity, which must be added to the standard Chebyshev
pseudospectral method in order to obtain a numerical approxima-
tion which converges to the entropy solution of a system of conserva-
tion laws. The approximate solution may still contain non-physical
Gibbs oscillations and a postprocessing procedure to recover spec-
tral accuracy will be discussed in part III. Additionally, a method
to locate the position of discontinuities in the approximate solution
with be discussed in part III. In part IV , numerical examples will
be presented.



Part I

Numerical Method

1



Chapter 1

Chebyshev Pseudospectral
Method

The standard collocation points for a Chebyshev Pseudospectral
method are usually defined by

xj = −cos(
πj

N
), j = 0, 1, ..., N. (1.1)

These points are extrema of the N th order Chebyshev polynomial,

Tk (x) = cos(k arccos (x)). (1.2)

The points are often labelled the Chebyshev-Gauss-Lobatto (CGL)
points, a name which alludes to the points role in certain quadra-
ture formulas. The CGL points cluster quadratically around the
endpoints and are less densely distributed in the interior of the do-
main.

The Chebyshev Collocation method is based on assuming that
an unknown PDE solution, u, can be represented by a global, inter-
polating, Chebyshev partial sum,

uN(x) =
N∑

n=0

anTn(x). (1.3)

The discrete Chebyshev coefficients, an, are defined by

2
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an =
2

N

1

cn

N∑

n=0

u(xj)Tn(xj)

cj
where cj =

{
2 when j = 0, N
1 otherwise.

(1.4)
Derivatives of u at the collocation points are approximated by

the derivative of the interpolating polynomial evaluated at the col-
location points. The first derivative, for example, is defined by,

du

dx
=

N∑

n=0

a(1)n Tn(x). (1.5)

Since a
(1)
N+1 = 0 and a

(1)
N = 0, the non-zero derivative coefficients can

be computed in decreasing order by the recurrence relation:

cna
(1)
n = a

(1)
n+2 + 2(n+ 1)an+1, n = N − 1, ..., 1, 0. (1.6)

The transform pair given by equations (1.3) or (1.5) and (1.4) can
be efficiently computed by a fast cosine transform (FCT). Equiva-
lently, the interpolating polynomial and its derivatives can be com-
puted in physical space using matrix multiplication [7]. Special
properties of the Chebyshev basis allow for differentiation via par-
ity matrix multiplication [6] (even-odd decomposition [57]), which
can be performed by using slightly more than half as many floating
point operations as standard matrix multiplication.

1.1 Derivative Matrix

Rather than expressing the unknown solution in terms of a basis as
in (1.3), we could choose to introduce a grid and assume that the
solution can be expressed as a global interpolation polynomial

INu(x, t) =
N∑

j=0

uN(xj, t)lj(x) (1.7)

where lj represents the Lagrange interpolation polynomial base on
the grid, xj. Then, spatial derivatives are approximated by
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∂u(x, t)

∂x
∼= ∂INu(x, t)

∂x
=

N∑

j=0

uN(xj, t)
dlj(x)

dx
. (1.8)

The Lagrange interpolation polynomials, lj(x), are of the form

lj(x) =
q(x)

(x− xj)q′(x)
, q(x) =

N∏

j=0

(x− xj). (1.9)

Since we are using a collocation approach, we are restricting our
attention to the approximation of the derivative of u(x, t), at the
grid points xj, and we have

du

dx

∣∣∣∣
xi

∼= dIuN
dx

∣∣∣∣
xi

=
N∑

j=0

uN(xj)
dlj(x)

dx

∣∣∣∣∣
xi

=
N∑

j=0

u (xj)Dij, (1.10)

where D is referred to as the differentiation matrix. Unlike differ-
entiation matrices which result from finite difference methods, the
spectral differentiation matrix is full. This is a consequence of the
fact that a global interpolation polynomial has been used. It is well
known that high order polynomial interpolation on a finite interval
is not feasible on an equidistant grid due to Runge phenomenon [15].
When smooth functions are interpolated by polynomials in N + 1
equally spaced points, the approximations not only fail to converge
in general as N →∞, but they get worse at a rate that may be as
great as 2N . In order to avoid Runge phenomenon, it is necessary
to choose a grid that clusters quadratically around the endpoints.
The simplest set of points that satisfies this requirement is the CGL
grid. If the grid is chosen to be the CGL grid (1.1), whose nodes are
the zeros of (1 − x2) d

dx
Tk(x) = 0, the polynomial that interpolates

the spatial derivative in (1.8) becomes

INu(x, t) =
N∑

j=0

u(xj)hj(x) =
N∑

j=0

u(xj)
(−1)N+1+j(1−x2)T

′

N (x)

cj (x− xj)
.

(1.11)
The Chebyshev Differentiation Matrix on the Chebyshev grid can
then be expressed as the following antisymmetric matrix with ele-
ments
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Dij =





−2N2+1
6

i = j = 0
ci
cj

(−1)i+j

xi−xj
i 6= j

− xi
2(1−x2

1)
0 < i = j < N

2N2+1
6

i = j = N

(1.12)

where cj is defined in (1.4). For large N , forming D is susceptible
to round off error due to the term 1

xi−xj
which is hard to evaluate

accurately. The smallest distance between points on the CGL grid
is O (N−2), and taking the reciprocal amplifies the error by a large
factor. Trigonometric identities can be used to eliminate the sub-
traction of similar numbers. A form of D more suited to numerical
representation is the matrix with elements

Dij =





−2N2+1
6

i = j = 0

−1
2
ci
cj

(−1)i+j

sin[ π
2N

(i+j)] sin[ π
2N

(i−j)]
i 6= j

− xi
2 sin2( πi

2N )
0 < i = j < N

2N2+1
6

i = j = N

(1.13)

Since

Dij = −DN−i,N−j i =
N

2
+ 1, ..., N (1.14)

the bottom half of the matrix can be calculated by using the top
half of the matrix without using the formula for the bottom half
explicitly. Sin(x) and sin(π − x) are the same number, but when
x is small, sin(x) can be calculated within machine precision but
sin(π − x) can not [18]. By forming the bottom half of the matrix
with the flipping procedure, the matrix is formed more accurately
and with less floating point operations.

When using matrix multiplication to calculate spectral deriva-
tives, all operations take place in physical space. The floating point
operation count is of O(N 2) which can be severe for large N .

1.1.1 Parity Matrix Multiplication

If the elements of the basis set are all either symmetric or all an-
tisymmetric with respect to x = 0, a spectral derivative may be
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evaluated in only half as many floating point operations as a stan-
dard matrix multiplication. The Chebyshev Differentiation Matrix
is such that Dij = −DN−i,N−j which indicates that multiplication
via a Parity Matrix Multiplication (PMM) is possible [57]. The
algorithm consists of three stages and is different for an even and
odd number of grid points. The following description is for an even
number of grid points (thus N is odd). In the first stage, the vector
ui is decomposed into its even ei and odd oi parts:

ei = ui + uN−i
oi = ui − uN−i

(1.15)

for i = 0, ..., (N − 1)/2. Next, the derivative of the even and odd
parts is computed as

e
′

i = Dee
o
′

i = Doo
(1.16)

where the elements of De and Do are given by

(De)
ij
= 1

2
(Dij +Di,N−j)

(Do)
ij
= 1

2
(Dij −Di,N−j)

(1.17)

for i = 0, ..., (N − 1)/2. In the final step, u
′

is reconstructed from
e
′

and o
′

:
u
′

i = o
′

i + e
′

i

u
′

N−i = o
′

i − e
′

i

(1.18)

for i = 0, ..., (N−1)/2. The algorithm is very similar to the first step
in the Fast Fourier Transform (FFT) where the problem is broken
into smaller parts. However, unlike the FFT, it is not possible to
continue the decomposition beyond the first step.

1.2 Speed Considerations

The number m for which the FCT becomes faster than matrix mul-
tiplication and parity matrix multiplication is both platform and li-
brary dependent. The following results are from using the jSpecLib
[53] library on a Pentium 550 running Windows 98 SE. The bench-
mark performs 10, 000 spectral differentiations on a randomly gen-
erated vector of length m with the results report in seconds.

For the specified library and platform, the FCT is faster than
parity matrix multiplication for m ≥ 64.
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m MM PMM FCT

16 0.16 0.11 0.28
32 0.49 0.33 0.44
64 2.04 1.15 0.88
128 7.31 3.96 1.82
256 43.12 15.77 3.68
512 217.34 108.64 7.75

Table 1.1: spectral differentiation speed

1.3 Spectral Accuracy

100 101 102 103 104
10−15

10−10

10−5

100

N

er
ro

r

Convergence of fourth−order finite differences

N−4

Figure 1.1: convergence rate, fourth-order finite difference

Spectral methods are said to have spectral accuracy, or are said
to display exponential convergence, or are even said to have an in-
finite order of accuracy. Each one of these labels refers to the fact
that when f ∈ C∞ the error between f and its N th order truncated
series decays faster than any power of 1

N
. This is unlike the error in

finite difference or finite element methods which typically decrease
like O(N−m) for some some constant m. Figures 1.1 and 1.2 offer
a comparison of the convergence rates of a fourth-order finite dif-
ference method and a spectral method for differentiating a smooth
function. Notice that the spectral errors decrease very rapidly until
such high precision is achieved that rounding errors on the computer
prevent any further improvement.

In most practical applications the benefit of the spectral method
is not the extraordinary accuracy available for large N , but rather
the small size of N necessary for a moderately accurate solution.
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100 101 102
10−15

10−10

10−5

100

N

er
ro

r

Convergence of spectral differentiation

Figure 1.2: convergence rate, spectral

In fact, as will be discussed in a later section, the use of coordinate
maps, which may be necessary to reduce the restriction on the stable
time step and/or to redistribute the collocation points, may in some
cases degrade the accuracy of the spectral method. Even though
technically, spectral accuracy is not achieved, the numerical approx-
imation remains much more accurate than alternative methods.

The Gegenbauer reconstruction procedure (chapter 6) recovers
pointwise exponential accuracy at all points including the disconti-
nuities themselves of piecewise analytic functions provided that the
reconstruction parameters fall within certain bounds. However, it
appears that these bounds can be violated, and in fact sometimes
must be violated to obtain good results, even though spectral accu-
racy is not theoretically guaranteed.



Chapter 2

Implementation Issues

2.1 Time Integration

When the spatial discretization is done by spectral methods, the
following system of Ordinary Differential Equations (ODEs) results
which must be solved to advance the solution in time:

dU

dt
= F (U, t), (2.1)

where U is the vector containing the unknown PDE solution at the
collocation points. Any standard method [7] for evaluating systems
of ODEs may be used, however, explicit Runge-Kutta (RK) methods
are a popular choice and have been used in our numerical examples.
In this section, the second, third, and fourth order accurate in time
explicit Runge-Kutta methods that we have used are stated with a
summary of their properties. The variable ∆t represents the fixed
time step, tn is the time level after n steps, and Un is the solution
at time tn.

Among the many possible fourth order explicit Runge-Kutta meth-
ods, the method (2.2), is often known at the standard fourth order
formula.

k1 = ∆tF (Un, tn)
k2 = ∆tF (Un + 0.5k1, t

n + 0.5∆t)
k3 = ∆tF (Un + 0.5k2, t

n + 0.5∆t)
k4 = ∆tF (Un + k3, t

n +∆t)
Un+1 = Un + 1

6
(k1 + 2k2 + 2k3 + k4)

(2.2)

9
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The RK4 scheme requires four levels of storage and four evaluations
of F at each time level.

When storage or speed are issues, as is sometimes the case when
dealing with systems of PDEs in more than one space dimension,
an order of accuracy can be sacrificed to get a less computationally
intensive time integration. The low storage, third order Runge-
Kutta scheme (2.3) of [56] requires three evaluations of F per time
level but only two levels of storage.




U1 = Un +∆tF (Un, tn)
U2 = 1

4
(3Un +U1 +∆tF (U1, tn +∆t))

Un+1 = 1
3
(Un + 2U2 + 2∆tF (U2, tn + 0.5∆t))

(2.3)

When Strang Splitting [59] is used and the source term is dealt
with in a step separate from the homogeneous conservation law,
the Runge-Kutta (RK2) formula (2.4) is used as the second order
accurate time stepping routine:

k1 = ∆tF (Un, tn)
k2 = ∆tF (Un + k1, t

n +∆t)
Un+1 = Un + 1

2
(k1 + k2)

(2.4)

Time integration routines above order two are not used with Strang
splitting, since the splitting involves a second order splitting error in
time which would cause the accuracy of higher order RK methods
to be degraded to second order.

The three time integration methods are stable for ∆t ≈ O(N−2)
when the collocation points are chosen as the CGL points. A coor-
dinate transformation, or change of variable, is commonly used to
lessen the restriction on the stable time step (see 2.7).

2.2 Boundary Conditions

The global nature of spectral methods makes them more sensitive
to local treatments, such as boundary conditions. The importance
of the treatment of boundary conditions is even more crucial than
in local methods such as finite differences or finite elements. In-
correct boundary treatment can create strong instabilities and non-
periodic hyperbolic problems present the greatest difficulty. This
is in contrast to finite difference methods in which instabilities due
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to boundary conditions usually appear as relatively weak oscilla-
tions. On the other hand, as opposed to high order finite difference
methods, spectral methods do not require numerical boundary con-
ditions in addition to physical boundary conditions required by the
PDE, as the spectral stencil does not extend beyond the computa-
tional domain. Inflow-outflow boundaries need to be applied via
characteristic variables. For details see [7].

2.3 Coordinate Transformations

A change of variable is an important tool in the application of spec-
tral methods. A coordinate transformation may be necessary either
to map a computational interval to [a, b] from the interval [−1, 1]
or to redistribute the collocation points within an interval for the
purpose of giving high resolution to regions of very rapid change.
There is a great deal of computational evidence that an appropri-
ately chosen mapping can significantly enhance the accuracy (see,
[4], [2], [58], [3]) of spectral approximations, particularly those in-
volving regions of localized rapid variation. Additionally, for large
N , the stable time step restriction for explicit time stepping algo-
rithms is very severe for Chebyshev spectral methods. Coordinate
transformations can greatly reduce this restriction. The mappings
that have been used in the numerical examples which follow are de-
scribed below. The proper choice of a coordinate mapping will be
seen to be an important factor in the ability of a spectral method to
resolve a solution with a minimum number of degrees of freedom.

The Kosloff/Tal-Ezer (KT) map is the most widely used map in
conjunction with Chebyshev spectral methods due to its ability to
produce a nearly uniform grid and its ability to allow for a stable
explicit time step many times larger than if the standard grid (1.1)
were to be used. The properties, both pros and cons, of the KT
map are well documented in the literature ([18], [6], [47]). The
properties of the final two maps used, referred to here as the Center
Map and Tangent Map, seem to be less well known.

Let ξ denote the original variable and x = g(ξ) the new variable.
Then differentiation of a function f(x) is accomplished by making
use of the chain rule,
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df

dx
=
dξ

dx

df

dξ
=

1

g′(ξ)

df

dξ
. (2.5)

As a result, equation (1) becomes

ut +

[
1

g′(ξ)

]
f(u)x = b (u) (2.6)

after a change of variable has been made.
In implementing the spectral method using the coordinate map-

ping, the first order differentiation matrix D (1.13) is replaced by
the matrix Ď = AD, where A is a diagonal matrix with entries
Aii = 1/g′(ξ).

2.3.1 Interval [-1,1] to interval [a,b]

The standard computational interval for Chebyshev Collocation meth-
ods is [−1, 1]. Computations on other domains may be achieved via
the mapping x(ξ) = εξ + δ, where ε = (b− a)/2 and δ = (b + a)/2,
which maps ξ ∈ [−1, 1] to the interval [a, b].

2.3.2 Kosloff/Tal-Ezer Mapping

In order to relax theO(N−2) time-stepping restriction that is present
when advancing Chebyshev methods with explicit time-stepping al-
gorithms using the standard gird (1.1), the use of the grid mapping
proposed in [42] has become standard practice. The mapping is

x = g(ξ, γ) =
arcsin(γξ)

arcsin(γ)
(2.7)

where ξj = cos(πj/N) are the original CGL collocation points and
xj is a new set of interpolation points depending on the parameter
γ ∈ (0, 1). As γ approaches one, the grid points become nearly
evenly spaced. As γ approaches zero, the CGL grid is approached.
It was shown in [42] that if γ is chosen as

γ = γ(N, ε) = sech(
| ln ε|
N

) (2.8)

then the approximation error is roughly ε. By choosing ε to be
machine zero (on a 32-bit machine using double precision floating
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N γ(N, ε)
32 0.5867
64 0.8600
128 0.9602
256 0.9901
512 0.9975

Table 2.1: map (2.7) parameter ranges

point operations, ε = 2−52), it is argued in [42] that the error of
the coordinate transformation is essentially guaranteed to be small.
However, even though spectral accuracy may theoretically be sac-
rificed, good results may be obtained by violating the parameter
limits listed in table 2.1.

A result of using the mapping is that the spectral radius of the
mapped differentiation matrix is asymptotically O(N) as opposed
to O(N 2) for the unmapped case. Thus, the implementation of
the mapping (2.7) can change the necessary condition for stability
from ∆t ∝ N−2 to ∆t ∝ N−1 in the explicit Runge-Kutta methods
described in section (2.1).

It was pointed out in [6] that the argument presented in [42], that
the KT map allows the Chebyshev collocation method to maintain
spectral accuracy, is flawed. Under certain conditions, even if γ is
chosen as (2.8), using the KT map sacrifices spectral accuracy. In
[47] and [39], two ways are suggested for choosing γ if spectral accu-
racy is to be maintained. However, these arguments were seemingly
made under the assumption that the solution being approximated
was smooth and could be resolved with a small number of basis
functions, e.g. N = 32, and not considering solutions with rapid
variations or shocks.

2.3.3 Center Map

The center map [3] is

x = g(ξ, γ) = (1.0− γ)ξ3 + γξ (2.9)

with γ ∈ (0, 1). Smaller values of γ cluster grid points around
the center of the computational interval while still maintaining a
dense grid point density near boundary points. As γ → 1 the grid
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approaches the Chebyshev grid. The map can be used to resolve
regions of rapid variation in the center of a computational domain.

2.3.4 Tangent Map

The tangent map [4] is

x = g(ξ, γ, β) = x0 +
tan(δξ + ω)

γ
, (2.10)

where κ = arctan(γ(1− β)), µ = arctan(γ(1 + β)), δ = 0.5(κ + µ),
ω = 0.5(κ + µ), and x0 = −1 + 2(β − a)/(b − a). The map can
be used to resolve solutions with either a region of rapid variation
in the interior or at boundaries. The map can be used to cluster
grid points around the point β in the interval [a, b]. The parameter
γ > 0 determines the degree to which the clustering takes place.

Figure 2.1 shows grids which result from using the above maps.
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Kosloff/Tal−Ezer, alpha=0.999
Center Map, alpha=0.2

Figure 2.1: grid point distribution

2.4 Problem Formulation

The theoretical results for the spectral viscosity methods are for ho-
mogeneous systems of conservation laws. To extend the methods to
systems of conservation laws with source terms, operator splitting
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can be used to separate the system into two parts, consisting of a
homogeneous system of conservation laws and a system of ordinary
differential equations. However, from our experience, the spectral
viscosity method can be implemented successfully in both an un-
split formulation and a split formulation with handles the source
term separately. In two dimensions, dimensional splitting may be
used to reduce the two dimensional problem to a sequence of one-
dimensional problems.

The splitting method used was Strang splitting [59], which al-
lows for second order accuracy in time. The second order accurate
Runge-Kutta formula (2.4) was used as the time integration method
with the split formulations. The split formulation of the problem
is especially convenient when the split steps involving the source
term can be evaluated exactly, as is the case in the fluidized bed
examples.

By implementing the un-split formulation of the problem, ac-
curacy of order greater than two can be achieved in time, at the
expense of a higher operation count. In one dimensional problems,
we have used the fourth order Runge-Kutta method (2.2) with the
un-split formulation. In two dimensions, a low storage, third order
Runge-Kutta (2.3) method has been used.

For a suitably chosen time step, the results of the different prob-
lem formulations did not vary significantly in the numerical exam-
ples. However, slightly less spectral viscosity was necessary to ob-
tain a stable approximation with the split formulation than with the
unsplit formulation. It is speculated that the incremental way in
which the spectral viscosity is applied in the split formulation makes
this possible.

2.4.1 One-dimensional unsplit

The unsplit formulation of the one-dimensional spectral viscosity
approximation (see section 4) of problem (1) is

wt + f(w)x = b(w) + SSV (β,C,N). (2.11)

This formulation is implemented as

wt + f(w)x = b(w)

wt = SSV (β,C,N). (2.12)
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The conservation law is advanced in time with a Runge-Kutta method
and the SSV equation is evaluated exactly as in (4.5).

2.4.2 One-dimensional Strang split

The Strang split formulation of the one-dimensional spectral viscos-
ity method is

wt = b(w) (2.13)

wt + f(w)x = 0 (2.14)

wt = SSV (s, C,N) (2.15)

wt = b(w). (2.16)

For t > 0, the starting value for each equation (2.13) to (2.16) is
provided by the solution of the previous equation. Equations (2.14)
and (2.15) are solved with a time step ∆t while equations (2.13)
and (2.16) are solved with a time step of ∆t/2 . The second order
Runge-Kutta formula (2.4) is used to advance (2.14) in time while
the SSV equation is solved exactly as in (4.5). In some cases, it may
be possible to evaluate the fractional step involving the source term
exactly. Otherwise, it may be advanced with the RK2 formula.

A typical implementation of Strang splitting would have evalu-
ated (2.15) over a time step of size ∆t/2 before and after (2.14).
However, the SSV term is just a filter of the same strength and order
(assuming a constant ∆t) being applied at every time level and the
exact location at which it is applied in time is irrelevant and the
splitting maintains second order accuracy in time.

2.4.3 Two-dimensional unsplit

The two-dimensional un-split formation is implemented as

wt + f(w)x + g(w)y = b(w) (2.17)

wt = SSV (β,C,N). (2.18)

If a third order, three stage Runge-Kutta formula is used for the
time stepping, g(w)y is evaluated 3 times, f(w)x 3 times, SSVx is
applied once, and SSVy is applied once, per time step.
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2.4.4 Two-dimensional Strang split

wt = b(w) (2.19)

wt + g(w)y = 0 (2.20)

wt = SSV (β,C,N)y (2.21)

wt + f(w)x = 0 (2.22)

wt = SSV (β,C,N)x (2.23)

wt + g(w)y = 0 (2.24)

wt = SSV (β,C,N)y (2.25)

wt = b(w) (2.26)

Equation (2.22) and (2.23) are solved over a full time step while
the other 6 equations are evaluated over a time step of size ∆t/2.
The fractional steps involving the source terms, (2.19) and (2.26),
may possibly be evaluated in closed form. Otherwise, they may
be advanced in time with the Runge-Kutta formula. The SSV
split steps (2.21), (2.25), and (2.23) can be evaluated exactly as in
(4.5). The remaining equations are advanced in time with the
second order Runge-Kutta method (2.4). In this formulation of the
problem, g(w)y is evaluated 4 times, f(w)x 2 times, the source term
2 times, SSVx is applied once, and SSVy is applied twice, per time
step.



Part II

Spectral Filters and
Spectral Viscosity
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The use of unaltered spectral methods on constant coefficient
linear hyperbolic problems with discontinuous solutions produces
oscillatory numerical results. While stable, these solutions exhibit
Gibbs-like oscillations arising directly from the discontinuities. Vari-
able coefficient and nonlinear hyperbolic problems have a mechanism
for spreading the discontinuity-induced high frequency oscillations
over the entire frequency spectrum as the solution evolves. Some
additional dissipative or filtering mechanism may be needed to sta-
bilize the calculation. The spectral approximations to nonlinear
hyperbolic conservation laws are known not to converge to the en-
tropy solution [61]. Modifications to the standard spectral method
must be made to insure stability and to insure convergence to en-
tropy solutions. Postprocessing methods must be used to remove
Gibbs oscillations and recover spectral accuracy.



Chapter 3

Spectral Filters

Before examining spectral vanishing viscosity methods, it is neces-
sary to discuss spectral filters. Spectral space filters can be used
to enhance the decay rate of the Chebyshev coefficients without re-
ducing the accuracy. The following is a review of results which first
appeared in [63]. The filtered Chebyshev approximation is defined
as

FNu (x) =
N∑

n=0

σ(
n

N
)anTn(x) (3.1)

where σ is a pth order (p > 1) filter function defined as a C∞[−1, 1]
satisfying

σ(0) = 1

σ(±1) = 0

σ(j)(0) = 0 j ≤ p

σ(p)(±1) = 0 j ≤ p. (3.2)

The filtering can be implemented through the Fast Cosine algorithm
or as a matrix multiplication with a filter matrix, F , containing
elements defined as

Fij =
2

Ncj

N∑

n=0

1

cn
σ(
n

N
)Tn(xi)Tn(xj).

The convergence rate of the filtered approximation is determined
solely by the order of the filter, σ, and the regularity of the func-

20



CHAPTER 3. SPECTRAL FILTERS 21

tion, u(x), away from the point of discontinuity. In particular, if
the function, u(x), is piecewise analytic and the order of the filter
increases with N , one recovers an exponentially accurate approxi-
mation to the unfiltered function everywhere except very close to
the discontinuity.

Many different filter functions are available, but perhaps the most
versatile and widely used filter is the exponential filter

σ(ω) = exp(−α|ω|β). (3.3)

The parameter α is taken α = − ln ε where ε is defined as machine
zero. The parameter β is the order of the filter. The order of
the filter is changed simply by specifying a different β. Formally,
(3.3) does not satisfy all the conditions necessary for it to be a
pth order filter, as σ(1) = exp(−α). However, by specifying that
α = − ln ε we get that σ(1) = exp(ln ε) = ε so that σ(1) = 0 as
far as a computer is concerned. On a 32-bit machine using double
precision floating point operations, ε = 2−52 and ln(ε) ' −36.0437.
A smaller value of α indicates a weaker filter as fewer modes are
altered and less damping is done on the modes that are altered.

Figure (3.1) compares the exponential filters with three different
settings of the parameters α and β. For α = 0.032 and β = 4,
σ(1) 6= 0 and the filter is not a 4th order filter as defined above.
However, this is a typical configuration of the filter when it is used
to implement the Super Spectral Viscosity method (see section 4)
which is used to stabilize spectral approximations to conservation
laws. Compared to the strength of an exponential filter, the damp-
ing of high order modes is nearly non-existent in the Super Spectral
Viscosity method. This type of filtering is what allows the spectral
method to retain a high order accuracy in the presence of shocks.

While the use of filters can have a dramatic impact on the qual-
ity of the convergence of a global approximation to a discontinuous
function, filters fail to improve the quality of the approximation in
the neighborhoods of discontinuities and fail to alleviate the non-
linear mixing of modes (aliasing). Even more disturbing, filtering
generally treats the Gibbs oscillations as a source of noise and at-
tempts to remove them. It has been speculated in the past [43], and
recently shown rigorously [36], that the Gibbs oscillations are not
noise. Rather, they contain sufficient information from which to ex-
tract a global exponentially convergent approximation. The proper
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Figure 3.1: exponential filter comparison

use of filtering in the setting of spectral methods is as a stabilization
mechanism rather than as a post-processing or reconstruction tool.
Exponential filtering has been used, for example in [16], to stabilize
spectral approximations. However, the relatively strong filtering
applied by a spectral exponential filter provides more damping than
is necessary for stability and for guaranteeing convergence to en-
tropy solutions. The use of a strong spectral exponential filter may
require the use of a much larger N than necessary to get a desired
accuracy.



Chapter 4

Super Spectral Viscosity

When spectral methods are applied to nonlinear hyperbolic equa-
tions in conservation form, the problem of an obtaining an entropy
satisfying solution arises. Unmodified spectral methods do not con-
verge to the correct entropy solution if the solution contains shocks
[61]. In fact, there is no artificial dissipation inherent in the method
to indicate that it is a limit of a dissipative process. It is clear that
some artificial dissipation needs to be added. This added dissi-
pation should be as small as possible, just enough to stabilize the
solution and to ensure convergence to the unique entropy satisfying
solution, in order not to affect the overall spectral accuracy of the
method.

Spectral calculations have been successfully stabilized simply by
the application of the exponential filter (3.3) on the conserved vari-
ables and/or the flux derivatives at each time step ([16], [17]). How-
ever, the straight application of an exponential filter can dampen the
high modes more than is necessary for stability, and in the process
sacrifice accuracy. A more sophisticated approach is a spectral vis-
cosity (SV) method. A SV method ([61], [10]) applies a second
order spectral viscosity, the size of which is kept small by a param-
eter ε, to all modes k > kN , where kN is a threshold frequency such
that 1 ≤ kN ≤ N. By letting kN and ε vary with N , spectral accu-
racy can be maintained. An application of a Chebyshev SV method
is given in [1]. A SV method converges to the correct entropy sat-
isfying solution while maintaining spectral accuracy provided that
the solution is uniformly bounded, i.e. |uN |L∞ ≤ C where C is
a constant. An improved SV method is the Super Spectral Vis-

23
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N C s

32 5.6 3.47
64 8 4.16
128 11.3 4.85
256 16 5.55
512 22.6 6.24
1024 32 6.93

Table 4.1: SSV parameter limits

cosity (SSV) method [45] which guarantees the convergence of the
bounded solution of the Chebyshev collocation method while ap-
plying less viscosity, and thus preserving more accuracy. The SSV
formulation, which is the stabilization method used in our work,
will be examined below. The theoretical work justifying the use to
the method is complete, but applications of the method have not
previously appeared in the literature.

To stabilize the numerical scheme, the PDE is regularized by an
additional term,

∂

∂t
uN +

∂

∂x
f(uN) = ε(−1)s+1Q2suN = SSV (s, C,N) (4.1)

where

Q =
√
1− x2

∂

∂x
(4.2)

is a viscosity operator (Chebyshev Differential Operator). The pa-
rameter ε is defined as ε = CN 1−2s where C is a constant cho-
sen large enough to ensure stability and such that 0 ≤ C ≤ N 1/2.
The parameter s may grow with N and should be chosen such that
s ≤ ln(N). The parameter s is problem dependent, with its choice
being influenced by the strength of the shocks involved. For such
s and C, the bounded solutions of (4.1) converge to the correct
entropy solution. Table 4.1 lists maximum parameter values for
commonly used N .

Unlike the SV method in which the viscosity is only applied to
high frequencies, the filtering is applied to all modes (although in
reality the viscosity is so weak that the lower modes are not altered
within machine precision) and is weaker with its application being
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more gradual. It can be seen that ε ↓ 0 as N → ∞, thus the term
vanishing viscosity is justified.

A direct implementation of (4.1) amounts to adding 2s spatial
derivatives to the equation. This would introduce additional stiff-
ness which would severely limit the stable time step and increase
the computational work involved by requiring the computation of
higher order derivatives. Hence, the practical implementation of the
SSV method is an important issue. In order to derive an efficient
implementation of the SSV method, it is necessary to first exam-
ine the viscosity operator Q2 applied to the Chebyshev polynomial
(1.2), Tk(x).

Q2Tk (x) =
√
1− x2

∂

∂x

[√
1− x2

∂

∂x
Tk (x)

]

=
√
1− x2

∂

∂x

[√
1− x2

k sin(k arccos(x))√
1− x2

]

=
√
1− x2

[
−k

2 cos(k arccos(x))√
1− x2

]

= −k2Tk (x) .

As a result of applying the viscosity operator to the Chebyshev
polynomials, it can be noticed that the Chebyshev polynomials are
the eigenfunctions of the operator Q2 with eigenvalues k2. Expand-
ing the viscosity term, which is the right side of (4.1), we notice
that

ε(−1)s+1Q2suN = ε(−1)s+1Q2s

N∑

k=0

ak(t)Tk(x)

= −CN 1−2s

N∑

k=0

k2sak(t)Tk(x)

=
−CN
N2s

N∑

k=0

k2sak(t)Tk(x)

= −CN
N∑

k=0

(
k

N
)2sak(t)Tk(x).
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If we implement the SSV method via time splitting where in the
first step we solve

∂

∂t
uN +

∂

∂x
f(uN) = 0 (4.3)

and in the second step we solve

∂

∂t
uN = ε(−1)s+1Q2suN , (4.4)

the second equation, (4.4), in the split step can be written as

∂

∂t

[
N∑

k=0

ak(t)Tk(x)

]
= −CN

N∑

k=0

(
k

N
)2sak(t)Tk(x).

For every k we have the ODE

d

dt
[ak(t)] = −CN(

k

N
)2sak(t)

which can be solved analytically over one time step as

ak(t+∆t) = ak(t) exp(−CN∆t(k/N)2s).

Thus, the exact solution of the SSV split step can be written as the
filtered partial sum

uN(x) =
N∑

k=0

σ(
k

N
)ak(t)Tk(x) (4.5)

and applying the Chebyshev SSV method is seen to be equivalent
to applying the exponential filter (3.3) with β = 2s, α = CN∆t.
The method and can be implemented with little additional cost. It
should be stressed that while the SSV is being implemented via the
exponential filtering framework, that it is not a β th order filter as
defined in (3.2). The amount of damping of the high modes is far
smaller with the SSV method than with the application of a β th

order exponential filter (see figure 3.1).
After the spectral vanishing viscosity has been added in order

to stabilize the computation, the numerical solution may still have
strong oscillations near shock fronts and other discontinuities. A
postprocessing step which is able to recover spectral accuracy can
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now be applied. It should be emphasized that while the spectral
viscosity is applied at each time step, that it is only necessary to
apply a postprocessing method at the time levels in which a ”clean”
solution is desired.

4.1 Spatially varying viscosity

The presence of
√
1− x2 in the viscosity term (4.2) causes the fil-

tering to be spatially varying. It provides less stabilization near the
boundaries and is zero at the boundary of the domain. In compu-
tations with moving discontinuities or with discontinuities located
close to boundaries, this may be a source of problems. The spatially
varying viscosity seems to be the major obstacle in implementing a
domain decomposition or spectral element method as it is difficult
to pass strong shocks through element boundaries.

However, if the viscosity operator did not vanish at the bound-
aries, it would introduce spurious boundary layers and require ad-
ditional non-physical boundary conditions [5].
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Postprocessing
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The truncation error decays exponentially as N increases when
spectral methods are used to approximate smooth functions. How-
ever, the situation changes when the function is discontinuous as the
spectral approximation no longer converges in the maximum norm.
This is known as the Gibbs phenomenon. In the figure 4.1, a step
function is approximated by a Chebyshev partial sum (1.3) and the
approximation is degraded by the oscillations which characterize the
Gibbs phenomenon.
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Figure 4.1: step function and Chebyshev approximation

Several methods exist for postprocessing Gibbs polluted spectral
approximations (see Appendix C). Most however, such as spectral
mollification [30, 62], only recover spectral accuracy up to within a
neighborhood of each discontinuity.

To date, the most powerful processing method seems to be the
Gegenbauer Reconstruction Procedure (GRP) which is capable of
recovering spectral accuracy up to and including at the location
of discontinuities. Although the GRP has been shown to produce
remarkable results on some simple problem, the method lacks ro-
bustness due to the fact that two parameters, for which an optimal
choice for is currently not known, must be specified. In this work,
the GRP is the only postprocessing technique used. One of our
goals is to examine if the GRP can be used to successfully postpro-
cess more complex PDE solutions.

The GRP [32, 36, 35, 33, 34] was developed for the purpose of
recovering exponential accuracy at all points, including at the dis-
continuities themselves, from the knowledge of a spectral partial
sum of a discontinuous, but piecewise analytic function. While
the SSV solution serves as a highly accurate approximation to the
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exact spectral partial sum, only partial theoretical justification can
be found concerning using the GRP as a postprocessing method for
the SSV solution. However, numerical results indicate that spectral
accuracy can be achieved by applying the GRP to the SSV solution
of homogeneous systems of conservation laws [23, 25]. The same
can be said about the edge detection method described in section
5, as the theoretical results are limited to locating the jump discon-
tinuities of a piecewise smooth function u(x). However, numerical
evidence also advocates applying the edge detection method to the
SSV solution.



Chapter 5

Edge Detection

The Gegenbauer Reconstruction Procedure recovers spectral accu-
racy up to the discontinuity points in each smooth subinterval of a
piecewise analytic function. Thus, the GRP needs the exact loca-
tion of discontinuities, or edges, in the function. If a PDE solution
is being postprocessed and the solution contains rarefaction waves,
discontinuities in the first derivative of the function will exist and
need to be located as well. The method used to find the edges orig-
inated in [26] for periodic and non-periodic functions. The method
is specialized to approximations of functions by Chebyshev methods
and is summarized below.

Denote the location of discontinuities as αj. Let

[f ](x) := f(x+)− f(x−)

denote a local jump in the function and define

ue(x) =
π
√
1− x2

N

N∑

k=0

ak
d

dx
Tk(x) (5.1)

where

d

dx
Tk(x) =

k sin(k arccos(x))√
1− x2

.

Essentially, we are looking at the derivative of the spectral pro-
jection of the numerical solution to determine the location of the
discontinuities. The series ue(x) has the convergence properties

31
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ue(x)→
{
O
(
1
N

)
when x 6= αj

[f ] (αj) when x = αj.

The series converges to both the height and direction of the jump at
the location of a discontinuity. However, for the GRP, we only need
the magnitude of the jumps. While a graphical examination of the
series ue(x) verifies that the series does have the desired convergence
properties, an additional step is need to numerically pinpoint the
location of the discontinuities. For that purpose, make a non-linear
enhancement to the edge series as

un(x) = N
Q
2 [ue(x)]Q (5.2)

The values, un(x), will serve to amplify the separation of scales
which has taken place in (5.1). The series has the convergence prop-
erties

un(x)→
{
O
(
N

−Q
2

)
when x 6= αj

N
Q
2 [[f ] (αj)]

Q when x = αj.

By choosing Q > 1 we enhance the separation between the O([ 1
N
]
Q
2 )

points of smoothness and the O(N
Q
2 ) points of discontinuity. The

parameter J , whose value will be problem dependent, is a critical
threshold value. Finally, redefine ue(x) as

ue(x) =

{
ue(x) if un(x) > J
0 otherwise.

WithQ large enough, one ends up with and edge detector ue(x) =
0 at all x except at the discontinuities x = αj. Only those edges

with amplitude larger than J1/Q
√

1/N will be detected.
Often the series ue is slow to converge in the area of a disconti-

nuity and the nonlinear enhancement has difficulty pinpointing the
exact location of the edge. If an additional parameter, η, is added
to the procedure this problem can be overcome in a simple manner.
The parameter specifies that only one edge may be located in the
interval (x[i − η], x[i + η]), i = 0, ..., N , with appropriate one sided
intervals being considered near boundaries. The correct edge will be
the maximum of ue in this subinterval. The value of η is problem
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dependent and is best chosen after the edge detection procedure has
been applied once.

The edge detection parameters J , Q, and η, are all problem de-
pendent. Various combinations of the parameters may be used to
successfully locate edges represented by jumps of a magnitude in a
certain range.

5.1 Edge detection in the first derivative

If rarefaction waves are present, the first derivative of the solution
will also have discontinuities. In this case, the edge detection pro-
cedure will have to be used to examine the first derivative of the
solution in each piecewise smooth subinterval. After the shock
locations are determined, uN is differentiated in each C0 smooth in-
terval. Then the shock locations and the rarefaction locations are
arranged in increasing order.

5.2 Two Dimensions

Edge detection may be applied in two dimensions by fixing the vari-
able in one dimension and detecting the edges in the other dimension
as a function of the fixed variable. Thus, the discontinuities of the
function f(x, y) may be found for each fixed x and y by considering

π
√

1− x(y)2

N

N∑

k=0

N∑

l=0

ak,l
d

dx
Tk(x(y))Tl(y)→ [f ](x(y)) (5.3)

to find the edges in the x direction. Likewise, to find the edges in
the y direction consider

π
√

1− y(x)2

N

N∑

k=0

N∑

l=0

ak,lTk(x)
d

dy
Tl(y(x))→ [f ](y(x)). (5.4)



Chapter 6

Gegenbauer Reconstruction
Procedure

6.1 Gegenbauer Reconstruction

The Gegenbauer Reconstruction procedure works by expanding the
function in another basis, the Gibbs complementary basis, via knowl-
edge of the known Chebyshev coefficients and the location of dis-
continuities. The Chebyshev partial sums are projected onto a
space spanned by the Gegenbauer polynomials. The associated
weight functions increasingly emphasize information away from the
discontinuities as the number of included modes grow. The ap-
proximation converges exponentially in the new basis even though
it only converged very slowly in the original basis due to the Gibbs
phenomenon. The choice of a Gibbs complementary basis is the
Ultraspherical or Gegenbauer polynomials, Cλ

l (See Appendix B).
Whether the Gegenbauer basis is the optimal choice as the Gibbs
complementary basis for the Chebyshev basis remains an open ques-
tion. It is shown in [36] that the Gegenbauer basis is a Gibbs
complementary basis for the Chebyshev basis.

If a Gibbs complementary basis exists, it is possible to construct
a piecewise exponentially convergent approximation to a piecewise
analytic function from the information contained in the original very
slowly converging global approximation. In order for a Gibbs com-
plementary basis, ψλ

n(ξ), to exist we need knowledge of the intervals
[a, b] ⊂ [−1, 1] in which f(x) is analytic and we need that the orig-
inal spectral approximation is pointwise convergent in all of [−1, 1]

34
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except for at a finite number of points. A local variable ξ is defined
as ξ(x) = −1.0 + 2(x−a

b−a
) such that ξ : [a, b] → [−1, 1]. In order for

ψλ
n(ξ) to be a Gibbs complementary basis we require that:

• ψλ
n(ξ) is orthogonal in the weighted inner product, (., .)λw, where

the weight w(x) may depend on λ

(ψλ
k , ψ

λ
n)

λ
w =

∣∣∣∣ψλ
n

∣∣∣∣2
L2
w[−1,1]

δkn = γλnδkn

• Pλf(ξ) =
∑λ

n=0
1
γλn
(f, ψλ

n)
λ
wψ

λ
n(ξ) is pointwise exponentially con-

vergent as λ increases

|f − Pλf |L∞[−1,1] ≤ Ce−cλ c > 0

• ψλ
n(ξ) satisfies the Gibbs condition, i.e. there exists β < 1 such

that for λ = βN we have

∣∣∣∣
1

γλn
(Tk(x(ξ)), ψ

λ
n(ξ))

λ
w

∣∣∣∣
∣∣∣∣ψλ

n

∣∣∣∣
L∞[−1,1]

≤ (
αN

k
)λ

for k > N , n ≤ λ, and α < 1. The Gibbs condition guarantees
that the projection of the high modes of Tk onto the basis ψλ

n

is exponentially small.

The Gegenbauer expansion of a function f(x), x ∈ [−1, 1] is de-
fined as

f(x) =
∞∑

l=0

f̂λl C
λ
l (x)

where f̂λl are the Gegenbauer coefficients of f(x) defined as

f̂λl =
1

ĥλl

∫ 1

−1

(1− x2)λ−1/2Cλ
l (x)f(x)dx, (6.1)

with

ĥλl =
√
πCλ

l (1)
Γ(λ+ 1/2)

Γ(λ)Γ(l + λ)
.

Since we don’t know the function f(x), implementing the Gegen-
bauer Reconstruction procedure requires obtaining an exponentially
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accurate approximation, ĝλl , to the first m coefficients f̂λl in the
Gegenbauer expansion from the first N + 1 Chebyshev coefficients
of f(x). The approximate coefficients are defined as the integral

ĝλl =
1

ĥλl

∫ 1

−1

(1− x2)λ−1/2Cλ
l (x)fN(x)dx, (6.2)

where

fN(x) =
N∑

n=0

anTn(x)

is a Chebyshev partial sum. The integral should be evaluated
by Gauss-Lobatto quadrature in order to insure sufficient accuracy.
The coefficients ĝλl are now used in the partial Gegenbauer sum to
approximate the original function as

f(x) ≈ fλm(x) =
m∑

l=0

ĝλl C
λ
l (x) (6.3)

6.1.1 Reconstruction on a subinterval

In practice, there will be discontinuities in the interval [−1, 1] and
the reconstruction must be done on each subinterval [a, b] in which
the solution remains smooth. To accomplish the reconstruction
on each subinterval, define a local variable for each subinterval as
x(ξ) = εξ+δ where ε = (b−a)/2, δ = (b+a)/2 and ξj = cos(πj/N).
The reconstruction in each subinterval is then accomplished by

fλ,εm (x) =
m∑

l=0

ĝλε (l)C
λ
l (ξ) (6.4)

where

ĝλε (l) =
1

ĥλl

∫ 1

−1

(1− ξ2)λ−1/2Cλ
l (ξ)fN(εξ + δ)dξ (6.5)

Notice that we have used collocation points on the entire interval
[−1, 1] to build the approximation in [a, b]. This is referred to as a
global-local approach [34]. The global-local approach seems to be
best when postprocessing PDE solutions where fN is obtained from
the time evolution. The point values f(xi) may not be accurate,
but the global interpolating polynomial fN(x) is accurate. The
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alternative is a local-local approach, in which only the collocation
points within [a, b], with suitable scaling to expand [a, b] to [−1, 1],
are used.

6.1.2 Truncation and Regularization Errors

Two types of errors occur in the reconstruction process. The er-
ror between the exact Gegenbauer coefficients and the approximate
coefficients obtained from the Chebyshev coefficients is called the
truncation error (6.6),

TE(λ,m,N, ε) = max
−1≤ξ≤1

∣∣∣∣∣

λ∑

l=0

(
f̂λε (l)− ĝλε (l)

)
Cλ
l (ξ)

∣∣∣∣∣ . (6.6)

The error between the Gegenbauer expansion of f(x) and its ap-
proximated partial sum is known as the regularization error,

RE(λ,m, ε) = max
−1≤ξ≤1

∣∣∣∣∣f(εξ + δ)−
m∑

l=0

f̂λε (l)Cλ
l (ξ)

∣∣∣∣∣ . (6.7)

If there are more terms in the series to approximate (i.e., larger m)
the truncation error will increase, but the regularization error will
be smaller. In practice, m needs to be chosen to maintain some
balance between the two errors.

6.1.3 Convergence Theorem

Here we will basically quote the main theorems, without proofs,
from [33] except that we have specialized it to use a Chebyshev
partial sum rather than a more general Gegenbauer partial sum.
The theorems guarantee that an exponentially accurate approxima-
tion may be obtained at all points (including at the discontinuities
themselves), from the knowledge of a spectral partial sum of a dis-
continuous but piecewise analytic function. Thus, the same order
of accuracy as in the smooth case can be recovered.

The assumption that the function we are considering is analytic
is used in the regularization error theorem. The assumption allows
us to assume that there exists constants ρ > 1 and C(ρ) such that,
for every k > 0,
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max
a≤x≤b

∣∣∣∣
dkf

dxk
(x)

∣∣∣∣ ≤ C(ρ)
k!

pk
(6.8)

If f(x) is not analytic, but only Ck, we would only be able to get
an O(m−k) estimate for the regularization error.

Theorem 1 (Truncation Error) Let the truncation error be defined
as in (6.6). Let λ = αεN and m = βεN with 0 < α, β < 1, then

TE(λ,m,N, ε) < A

(
(β + 2α)β+2α

2αααββ

)εN

where A grows at most as N . In particular, if α = β < 2/27, then

TE(λ,m,N, ε) < AqεN

where

q =

(
27α

2

)α

< 1.

Theorem 2 (Regularization Error) Assume λ = γm where γ is a
positive constant. If f (x) is analytic in [a, b] ⊂ [−1, 1] satisfying
assumption (6.8), then the regularization error (6.7) can be bounded
by

RE(λ,m, ε) ≤ Aqm

where q is given by

q =
ε (1 + 2γ)1+2γ

ρ21+2γγγ (1 + γ)1+γ

which is always less than 1. In particular, if γ = 1 and m = βεN
where β is a positive constant, then

RE(λ,m, ε) ≤ AqεN

with

q =

(
27ε

32p

)β

.

By combining the previous two theorems, we can state:
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Theorem 3 (Removal of the Gibbs Phenomenon) Consider a L1

function f(x) on [−1, 1], which is analytic in a sub-interval [a, b] ⊂
[−1, 1] and satisfies assumption 6.8. Assume that the first N + 1

Gegenbauer coefficients, f̂λε , defined in (6.1) are known. Let ĝλε ,
0 ≤ l ≤ m , be the approximate Gegenbauer expansion coefficients,
defined in (6.2), based on the subinterval [a, b], of the Gegenbauer
partial sum fλε in (6.4). Then for λ = m = βεN with β < 2/27,
we have

max
−1≤ξ≤1

∣∣∣∣∣f(εξ + δ)−
m∑

l=0

ĝλε (l)C
λ
l (ξ)

∣∣∣∣∣ ≤ A
(
qεNT + qεNR

)

where

qT =

(
27β

2

)β

< 1, qR =

(
27ε

32p

)β

< 1

and A grows at most as a fixed-degree polynomial of N.

The above results from [33] apply in the case of Galerkin approx-
imations. In [34], a nearly identical result is stated for collocation
approximations. However, the authors were unable to show that
the truncation error is exponentially small for the standard collo-
cation approach, and had to collocate the product of f(x) with a
weight function, (1− ξ(x)2)λ−1/2, to achieve the result. Experimen-
tally, they were able to show that the standard collocation approach,
which we have used, produced similar errors.

6.1.4 Choice of Reconstruction Parameters

As is stated in the theorems of the previous section, if λ and m
are chosen as λ = m = βεN, where β < 2/27 in each subinterval
where the function being reconstructed is assumed to be analytic,
the reconstruction will be spectrally accurate. It is not necessary,
and usually not advisable, to choose λ = m. In practice, we are
often more concerned with obtaining results for a fixed N , rather
than achieving an exponential convergence rate.

If the function to be postprocessed consists of homogeneous fea-
tures throughout the computational domain, the reconstruction pa-
rameters can be successfully chosen as λ = kλεN and m = kmεN for
each subinterval where kλ and km are user chosen, globally applied
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parameters. We refer to this strategy to selecting reconstruction
parameters as the global approach. In all previous applications of
the GRP in the literature, the method was applied to functions with
homogeneous structure and it was possible to chose the parameters
in this way.

However, in problems with solutions that vary in structure through-
out the computational domain, the reconstruction parameters may
need to be chosen independently in each subinterval. We refer to
this strategy as the local approach. For example, this is the case
for the function shown with its Chebyshev approximation in figure
(6.1). It is not possible to use globally chosen reconstruction pa-
rameters, kλ and km, and obtain a successful postprocessing. In
the regions of piecewise constant data, reconstruction parameters of
λ = 2 and m = 2 provide good results. In the region [0, 1] which
consists of a narrow exponential spike, the data contains small scale
structures which will require a large value of m and small value of
λ. In the region [−1,−0.7] the function is of moderate detail and
reconstruction can be accomplished with moderate values of m and
λ.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

Figure 6.1: Function and Chebyshev partial sum approximation

To date there is no known method to choose optimal values of
the reconstruction parameters m and λ. The parameters remain
very problem dependent and the best advice that can be offered at
this point is the knowledge of the parameters that produced good
results in the numerical examples which will follow. Work is under
way on choosing optimal parameters and results will be reported in
a future paper.
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6.1.5 The collocation grid

In previous applications of the GRP in the literature, the method
has only been applied to functions known on the CGL grid. For ap-
proximations produced by collocation schemes, it was shown in [34]
that spectral accuracy could be recovered from point values known
at the Chebyshev points. However, numerical evidence indicates
the method may also be applied successfully on grids arising from
mappings of the CGL grid. The determining factor in the accu-
racy of the reconstruction is how well the chosen grid can capture
the function. For example, consider the piecewise analytic function
shown in the figure 6.2 with its discrete Chebyshev approximation.
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Figure 6.2: Square wave and Chebyshev approximation

The errors of the postprocessed functions in log scale are shown
in figure 6.3 for three different resolutions, N = 80, N = 160, and
N = 320. In the figure on the left, the grid is formed with map
(2.7) with γ = 0.9999 which results in a near uniform grid. On
the right is the function known on the Chebyshev grid (1.1). The
reconstruction parameters were taken as λ = 0.2εN andm = 0.1εN .
The errors decay at similar rates on both grids but the mapped grid
which places more grid points in the center of the domain produces
a better approximation in that region than the CGL grid.

The fact that the GRP may be applied on mapped grids is im-
portant, as in applications, the CGL grid is seldom the proper grid
to use.
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Figure 6.3: Mapped grid error vs. CGL grid error

6.1.6 Computational Expense

Chebyshev Gauss-Lobatto quadrature is used to approximate (6.5)
which leads to the Gegenbauer approximation

fλm (x (ξ)) =
m∑

l=0

[
1

ĥλl

π

N

N∑

j=0

1

cj

(
1− ξ2j

)λ
Cλ
l (ξj)

N∑

n=0

anTn (εξj + δ)

]
Cλ
l (ξ) .

(6.9)
The approximation at each grid point, xj, involves a triple sum-
mation which is very computationally expensive as N and m grow.
In an effort to reduce the computation required, (6.9) can first be
written as

fλm (x (ξ)) =
π

N

N∑

j=0

1

cj

(
1− ξ2j

)λ
fN (εξj + δ)

m∑

l=0

Cλ
l (ξ)C

λ
l (ξj)

ĥλl
.

(6.10)
The Christoffel-Darboux formula [15], can be used to get

m∑

l=0

Cλ
l (ξ)C

λ
l (ξj)

ĥλl
=

km

km+1ĥλl

Cλ
m+1 (ξj)C

λ
m (ξ)− Cλ

m (ξj)C
λ
m+1 (ξ)

ξj − ξ

(6.11)
where

km =
2mΓ (λ+m)

m!Γ (λ)
(6.12)
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to eliminate one of the summations. Thus

fλm(x(ξ)) =
π

N

km

km+1ĥλl

N∑

j=0

1

cj
(1− ξ2j )

λfN(εξj + δ)

Cλ
m+1(ξj)C

λ
m(ξ)− Cλ

m(ξj)C
λ
m+1(ξ)

ξj − ξ
. (6.13)

When ξj = ξ, L’Hospital’s rule can be used as well as the equality
2λCλ+1

m−1 (ξ) =
d
dξ
Cλ
m (ξ) , to rewrite (6.13) as

fλm (x (ξj)) =
π

N

km

km+1ĥλl

N∑

j=0

1

cj

(
1− ξ2j

)λ
fN (εξj + δ) 2λ

(
Cλ+1
m (ξj)C

λ
m (ξj)− Cλ

m+1 (ξj)C
λ+1
m+1 (ξj)

)
.

fN(x) =
N∑

n=0

anTn(x) (6.14)

is most efficiently evaluated using Clenshaw’s recurrence formula
[51].

6.1.7 Roundoff error

The Gegenbauer polynomials grow very rapidly with λ and m which
leads to a round off error that may completely ruin the approxima-
tion. While the use of the Christoffel-Darboux formula reduces the
computational effort, it adds to the round off error problem as two
Gegenbauer polynomials are multiplied together. To counteract
this [23], the π

N
km

km+1ĥλl
portion of (6.13) can be rearranged and used

to our advantage. In each product of two Gegenbauer polynomials,
multiply one by 1

N
and the other by πkm

km+1ĥλl
. Both quantities are

small and decreasing values with respect to m, λ, and N, and offset
the relative large size of the polynomial product and help prevent
round off error. The approximation (6.13) now reads

fλm (x (ξ)) =
N∑

j=0

1

cj

(
1− ξ2j

)λ
fN (εξj + δ)
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(
1
N
Cλ
m+1 (ξj)

) (
πkm

km+1ĥλl
Cλ
m (ξ)

)
−
(
1
N
Cλ
m (ξj)

) (
πkm

km+1ĥλl
Cλ
m+1 (ξ)

)

ξj − ξ
.(6.15)

6.1.8 A Hybrid Approach

Even with the computational savings made above via the Christoffel-
Darboux formula, Gegenbauer Reconstruction may still be very com-
putationally expensive in higher dimensions for large values of N .
A hybrid approach was suggested in [23] which uses an exponen-
tial filter in smooth regions and the GRP in the neighborhood of
discontinuities.

6.1.9 Two Dimensions

The GRP extends in an obvious way to higher dimensions. The two
dimensional Gegenbauer approximation is

fλ1,λ2
m1,m2

(x(ξx), y(ξy)) =

m1∑

l1=0

m2∑

l2=0

ĝλ1,λ2

l1,l2
Cλ1

l1
(ξx)C

λ2

l2
(ξy)

with

ĝλ1,λ2

l1,l2
(x(ξx), y(ξy)) =

1

ĥλ1

l1

1

ĥλ2

l2

∫ −1

1

∫ −1

1

(1− ξ2x)
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The examples have been chosen with the idea of examining the
effect of a source term as well as examining the consequences of a
viscosity operator that is spatially varying and which vanishes on
the boundary. Additionally, some of the solutions have homoge-
neous features throughout their domain, while other solutions have
subintervals of varying detail. This will allow for a discussion of
strategies to select the GRP parameters in each case.

First, the equations of Hyperbolic Heat Transfer will be solved.
The problem is linear, solvable without spectral viscosity, and has
an exact solution available which consists of homogeneous features.
The GRP is easy to apply to the solutions of this problem and
spectacular results are achieved.

The next example is the Reactive Euler Equations, a nonlinear
system of conservation laws with a source term. Spectral Viscosity
will be needed, but there will not be any significant solution features
close to boundaries. Thus the solution will not be affected by the
lack of viscosity near the boundaries and the effect of the source
term can be isolated.

Next, the numerical solution of a one-dimensional fluidized bed
model will be examined. Strong shocks will have to pass through
a region of diminished spectral viscosity near the boundary at the
bottom of the bed. The solutions consist of varying subintervals of
detail. An exact solution exists for the Riemann problem for the
one-dimensional fluidized bed model without the source term and
will provide another accuracy check on the method.

The final application will be a two-dimensional fluidized bed
model. The governing equations are a nonlinear system of hyper-
bolic conservation laws with a source term coupled with an elliptic
equation for determining a stream function. The problem inherits
all the difficulties associated with the one-dimensional case, and the
additional complications of the coupled elliptic equation and higher
dimensionality. However, the shocks are not as strong in the two-
dimensional fluidized bed when compared to the one-dimensional
model. A high quality solution is produced by the SSV method
without postprocessing.



Chapter 7

Hyperbolic Heat Transfer

In situations when the elapsed time during a transient is very small
or when temperatures near absolute zero are involved, the classical
diffusion (parabolic) theory of heat transfer breaks down since the
wave nature of thermal energy transport becomes dominant. The
hyperbolic heat equation models this process and results in energy
propagating through a medium as a wave with sharp discontinuities
at the wave front.

The dimensionless governing equations of Hyperbolic Heat Trans-
fer are

Tt +Qx = S/2 (7.1)

Qt + Tx = −2Q (7.2)

where T (x, t) is the temperature, Q(x, t) is the heat flux, and S(x, t)
is the energy generation rate.

Previously in the literature, the numerical solutions of hyperbolic
heat transfer problems have been obtained using the Finite Element
Method in [8], and by MacCormack’s method in [28], and [27]. In
previous numerical investigations, typically 1000 grids points were
used and numerical oscillations still remained in the solution. Non-
oscillatory finite difference methods [52, 44] which suppress oscilla-
tions by using a flux or slope limiter are available. However, the
methods are also know to smear the solution at sharp fronts. The
spectral method with postprocessing will resolve all fronts sharply.

The first attempt to apply spectral methods to the problem was
in [38] where conservative smoothing was used to obtain results with
significantly fewer grid points than MacCormack’s method while
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Figure 7.1: spectral approximation

eliminating most of the spurious oscillations. Conservative smooth-
ing amounts to an artificial viscosity, which can be applied selec-
tively in both space and time. However, the global nature of spectral
methods causes a spatially localized viscosity to be felt throughout
the computational domain and the locally applied viscosity degrades
the accuracy of the entire solution, not just around discontinuities.
Additionally, conservative smoothing had difficulty controlling oscil-
lations located close to boundaries. The approach used here will al-
low the problem to be solved with spectral methods without adding
any artificial viscosity.

Both examples used the initial conditions T (x, 0) = 0 andQ(x, t) =
0 for x ∈ [0, 1]. The first example uses boundary conditions of
Q(0, t) = 1, Q(1, t) = 0, Tt(0, t) = −Qx(0, t), and Tx(1, t) = 0
with the energy generation rate, S, set to zero. Exact solutions for
problem 1 may be found in [38] and the exact solution to problem
2 is stated in [50]. Two problems with analytical solutions were
chosen in order to test the accuracy of the numerical method, how-
ever, there are many other cases for which the problem can not be
handled analytically.
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7.1 Problem 1

In the figure 7.1, the temperature solution, T , is shown at time
t = 0.5 with N = 33 CGL grid points (1.1). The solution was
advanced in time with a fourth order Runge-Kutta method and a
time step of ∆t = 0.001. Strong oscillations are noticeable at the
boundary x = 0, due to the jump in the heat flux, Q ,which is felt
by the temperature.

An edge is found to be at x = 0.476 with the parameters J = 200,
Q = 4, and η = 2. This choice of edge detection parameters results
in jumps of 0.65 and larger being located. The exact jump is 0.65
in magnitude. By specifying η = 2, the oscillation near x = 0 is
not falsely determined to be a jump in the function. With only 33
grid points, the convergence of the edge series in figure 7.2 is not
yet readily apparent. However, if the edge detection parameters are
chosen appropriately, the correct edge locations will be found.

After the edges have been located, the GRP is applied in each
smooth subinterval with by using global parameters chosen as kλ =
0.3 and km = 0.1 which results in m = 2 and λ = 4.7 in subinterval
(0, 0.476) and m = 2 and λ = 5.2 in subinterval (0.476, 1).

After postprocessing (figure 7.3) the numerical and exact solu-
tions are virtually identical. The pointwise error between the exact
and postprocessed solution is shown in figure 7.4 where the max-
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Figure 7.3: postprocessed vs. exact

imum pointwise error is less than 0.00045. Only 1/30 of the grid
points are necessary to obtain results superior to those obtained in
[28] with MacCormack’s method. Figure 7.5 displays the MacCor-
mack’s method solution of the first example with N = 1000 and a
small time step. Despite using substantially more grid points the so-
lution is still oscillatory around the steep front due mainly to phase
speed errors. Spectral methods give accurate phase speeds for all
modes, while second order finite difference methods typically only
resolve first few modes accurately [46]. Unlike the spectral solu-
tion, there is no known postprocessing technique which is capable
of recovering second order accuracy over the entire computational
domain of the finite difference approximation.

7.2 Problem 2

The second example uses boundary conditions ofQ(0, t) = 0, Q(1, t) =
0, Tx(0, t) = 0, and Tx(1, t) = 0, with the energy generation rate
specified as S(x, t) = 1

dn
if 0 ≤ x ≤ dn and zero otherwise. The en-

ergy generation rate, S, represents a pulsed energy source released
instantaneously at time t = 0. Such an energy source could model
the application of a strong laser pulse at the boundary of an absorb-
ing medium encountered in the annealing of semiconductors.
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Figure 7.4: pointwise error, postprocessed vs. exact

The temperature solution with dn = 0.05 is shown in figure 7.6 at
time t = 0.5 with N = 99 grid points distributed with the map (2.7)
with γ = 0.96. By taking the map parameter as γ = 0.96, the grid
becomes closer to evenly spaced and better resolution is realized in
the center of the domain. The solution was advanced in time in an
unsplit formulation with a fourth order Runge-Kutta method and a
time step of ∆t = 0.0005.

Edges, figure 7.7, are found to be at x = 0.447 and x = 0.541
with the parameters J = 5000, Q = 3, and NE = 1. With these
choices of the edge detection parameters, only jumps of magnitude
greater than 1.72 are found. Other combinations of J and Q could
work equally as well.

After the edges have been located, the GRP is applied in each
smooth subinterval by using the global parameters kλ = 0.2 and
km = 0.02. The results are shown in figure 7.8.



CHAPTER 7. HYPERBOLIC HEAT TRANSFER 52

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

T

MacCormack’s, N=1000
exact

Figure 7.5: Problem 1: MacCormack’s vs. exact

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

T

exact
numerical

Figure 7.6: spectral approximation



CHAPTER 7. HYPERBOLIC HEAT TRANSFER 53

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−3

−2

−1

0

1

2

3

4
edge data
nonlinear enhancement

Figure 7.7: edge locations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

T

exact
post−processed

Figure 7.8: postprocessed vs. exact



Chapter 8

Reactive Euler Equations
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Figure 8.1: SSV approximation (left), postprocessed (right)

The Reactive Euler Equations will be our first test of the method
on a nonlinear system of conservation laws with a source term. The
boundary conditions are inflow/outflow conditions specified on the
characteristic variables. The problem does not have shocks located
close to computational boundaries as will be the case in the fluidized
bed problems which follow.

The reactive Euler Equations can be expressed in the form of a
nonlinear system of hyperbolic conservation laws with a source term
as

ρt + (ρv)x = 0

(ρv)t + (ρv2 + P )x = 0

Et + Ex = 0

(ρZ)t + (ρvZ)x = ρZ −K(P/ρ)ρZ
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The gas density is ρ(x, t), v(x, t) is the velocity, E(x, t) the total
Energy, P (x, t) the pressure of the gas, and Z(x, t) the mass fraction
of unburnt gas. The total energy is calculated via the equation of
state

E =
P

γ − 1
+

1

2
ρv2 + q0ρZ

where q0 is the heat release and γ is the ratio of specific heats taken
to be 1.4. In the source term, K(P/ρ) represents the reaction rate
of the burning process

K(P/ρ) =

{
1/τ if P/ρ ≥ T0
0 if P/ρ < T0

where T0 is the ignition temperature and τ is time scale of the chem-
ical reaction.

In our example, we take T0 = 0.22, τ = 0.025, q0 = 1. The
Riemann initial conditions are given as ρ = 1.5, v = 0, P = 1.0, and
Z = 0 for x < 0 and ρ = 0.9, v = −0.5, P = 0.15, and Z = 1.0 for
x ≥ 0. The computational domain is the interval [−1, 1].

The SSV method was applied with C = 3, s = 2, and N = 512
on a grid formed with map (2.7) with γ = 0.9999. The solution
was advanced in time in an unsplit formulation (section 2.4.1) with
a fourth order Runge-Kutta formula (2.2). The results at t = 0.5
are shown in figure 8.1. The edge detection procedure with J = 10,
Q = 1, and η = 1 finds edges in the solution at x = 0.4571. With
J = 50, Q = 1, and η = 4, edges in the first derivative of the
solution in the interval (−1,−0.4) are found at x = −0.40595 and
x = −0.49266. The solution contains subintervals of varying struc-
ture which necessitates that the reconstruction parameters must be
chosen using the local approach. Table 8.1 lists the locally specified
reconstruction parameters that were used to produce the postpro-
cessed solution shown in figure 8.1.

The postprocessed spectral data is compared (see figure 8.2) with
the solution by the second order Nessayhu-Tadmor [49] scheme on a
very fine grid of 4000 grid points. There is very good agreement be-
tween the two solutions. The Spectral SSV method gives a slightly
sharper resolution of the shock at x = 0.5471 with about one eighth
of the grid points than the finite difference method used.

The numerical evidence indicates that the spectral viscosity meth-
ods and postprocessing methods developed for systems of homo-
geneous conservation laws are also applicable in the presence of a
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subinterval m λ

(−1,−0.40595) 2 2
(−0.40595,−0.49266) 5 7
(−0.49266, 0.4571) 15 2

(0.4571, 1) 2 2

Table 8.1: local reconstruction parameters
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Figure 8.2: spectral postprocessed (solid) vs. NT

source term and that they may be applied on grids other than the
standard Chebyshev grid. The unsplit formulation of the problem
seems to perform well and there is no need to use a split method
which solves a separate equation involving the source term.



Chapter 9

One-Dimensional Fluidized
Bed Equations

Fluidized beds are used in the chemical and fossil fuel processing
industries to mix particulate solids and fluids (gases or liquids). A
typical fluidized bed consists of a vertically oriented chamber, a bed
of particulate solids, and a fluid flow distributor at the bottom the
chamber. The fluid flows upward through the particles creating a
force that counteracts gravity at which time a state of minimum
fluidization is reached. Stronger gas inflows (more than is necessary
to maintain minimum fluidization) lead to pockets of gas, or equiv-
alently low particle concentrations, resembling bubbles in a liquid
travelling upward through the particles. Each rising bubble pushes
a large amount of mass in front of it. Particles move downward
through and around the rising bubble until it reaches the top of the
bed. A settled bed is reestablished, and the cycle repeats. Each set
of upward moving particles is referred to as a slug.

In this chapter we consider only one-dimensional flow. Physically,
this corresponds to flow in a narrow diameter fluidized bed. The
fluidized bed model, which is described by a hyperbolic system of
nonlinear conservation laws with a source term, was originally solved
numerically in [11]. An exact solution to the homogeneous system
with Riemann initial conditions has been developed in [13].
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9.1 Fluidized Bed Equations

The variable x denotes the vertical height in the bed. Let α(x, t)
denote the concentration of particles by volume, v(x, t) the particle
velocity, and m(x, t) = α(x, t)v(x, t) the particle momentum. The
parameter α0 is the concentration of particles at equilibrium (when
v = 0) and αp is the packing concentration which sets an upper
limit for α where α ∈ [0, 1]. The parameter α0u denotes the particle
concentration corresponding to the critical state dividing linearly
stable and unstable states (the particle concentration at minimum
fluidization). The constant s = 3.5(1 − α0u)

2.5(αp − α0u) is related
to the linear stability of the equilibrium solutions which correspond
to states of uniform fluidization.

The model can be put in the form of a system of conservation
laws with a source term as

αt +mx = 0 (9.1)

mt + (m2/α + F (α))x = b(α,m) (9.2)

where

F (α) = s2α +
s2α2

p

α− αp
+ 2s2αp ln(|α− αp|)

The function b(α,m) in the source term is given by

b(α,m) = −α +
αJ −m

(1− α)3.5

where J = (1 − α0)
3.5 represents the total volumetric flux through

the bed. Increasing J (or decreasing α0) corresponds to turning up
the inflowing gas. Values α0 < α0u correspond to large gas fluxes
and have been shown to produce unstable states corresponding to
slug-like solutions. Values α0 > α0u give rise to stable states. From
a mathematical point of view, the non-homogeneous system of con-
servation laws coincides with the Euler equations for an isentropic
gas flow, subject to volumetric forces. The variables α, v, and F (α)
play the role of density, velocity, and pressure respectively, in the
Euler equations.

9.1.1 Vacuums and unphysical particle concentrations

A vacuum is said to exist at a collocation point if the particle con-
centration is zero. Numerically, we will assume that a vacuum exists
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at a grid point if the concentration is either zero or it is very small
(|α| < thres). The system becomes meaningless at vacuum points
as m2/α is either undefined (α = 0) or produces unrealistic values
(|α| < thres). At each vacuum point encountered in the numeri-
cal method, the corresponding values of v, and therefore m, are set
equal to zero at that collocation point rather than using the spurious
value (|α| < thres) or NaN value (α = 0). Values of α such that
|α| < thres are retained and not set to zero. Stable approximations
by the spectral method always produced α < αp. In the spectral
method, α must be allowed to take negative values even though
a negative concentration in not physically meaningful, as this in-
formation is used in the GRP to postprocess the result. When it
was attempted to artificially force the spectral method to work only
with α > 0, the quality of the postprocessed solution was adversely
affected. More importantly, even though the spectral collocation
method is conservative, if for α < 0, α was redefined as α = 0,
the conservative properties of the method were destroyed and the
method started producing mass. If the values of α were allowed to
be negative, the method was conservative and mass was preserved
to as many as six decimal places. In all reported results, the pa-
rameter thres was taken to be thres = 0.001. After postprocessing
the solution, all concentrations are such that α ≥ 0.

9.2 Numerical Results

In the reported results we have used α0u = 0.55 and αp = 0.6.

9.2.1 Homogeneous system

The first two problems solve the homogeneous system with Riemann
initial data so that the Chebyshev SSV method with GRP postpro-
cessing may be validated against an exact solution.

Our first example consists of a left-moving shock wave and a right
moving rarefaction wave. The initial conditions are v(x, 0) = 0 for
all x in a domain of [−0.2, 0.2] and α(x, 0) = 0.3 if x < 0 and
α(x, 0) = 0.55 if x ≥ 0.

Figure 9.1 shows the solution advanced to time t = 0.5 with a
fourth order Runge-Kutta method. The grid consists of 64 points
distributed by map (2.9) with γ = 0.25. The use of the coordinate
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Figure 9.1: SSV approximation vs. exact

map has the effect of placing more points in the center of the domain.
The SSV parameters used were C = 1 and s = 4 which produced a
viscosity parameter of ε = CN 1−2s = 2.27E − 13 (or α = CN∆t =
0.16 and β = 8 in the exponential filter).

The rarefaction wave is characterized by the solution having a
discontinuous first derivative, thus edge detection must be applied
to the first derivative of the solution in addition to the solution
itself. The edge detection procedure with Q = 1 and J = 1 locates
jumps of magnitude greater than 0.125. With these settings, the
edge detection procedure locates edges in the function and the first
derivative of the function at x = −0.0331, x = 0.0331, and x =
0.1374.

We were unable to get good postprocessed results by specifying
the reconstruction parameters globally through the parameters kλ
and km. Global parameter specification failed due to the solution
containing three intervals of piecewise constant values and a fourth
interval, (0.033, 0.1374), consisting of a function requiring different
reconstruction parameters. Good results were obtained by specify-
ing the GRP parameters locally in each smooth subinterval as listed
in table 9.1. The postprocessed solution in figure 9.2.

With such a small viscosity parameter ε used, it is interesting to
note that the numerical calculation is stable up to time t = 0.5 with
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subinterval m λ

(-0.2,-0.033) 1 2
(-0.033,0.033) 1 3
(0.033,0.1374) 4 1
(0.1374,0.2) 1 2

Table 9.1: shock-rarefaction, local reconstruction parameters
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Figure 9.2: postprocessed vs. exact
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ε = 0. The result is shown in figure 9.3. The solution is considerably
more oscillatory than the solution with the small amount of viscosity
added and more significantly, it was impossible to obtain an accurate
postprocessed solution from the approximation, indicating that the
numerical solution is not converging to the entropy solution without
the spectral viscosity being added.
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Figure 9.3: problem 1, without SSV

In our second example, the solution contains both left and right
moving shocks. The initial conditions used were v(x, 0) = 0.1 if
x < 0, v(x, 0) = −0.3 if x ≥ 0 and α(x, 0) = 0.3 if x < 0, and
α(x, 0) = 0.4 if x ≥ 0 in a computational domain of [−0.2, 0.2].

Figure 9.4 shows the computed solution at t = 0.2 on a grid
with 64 collocation points. The collocation points were distributed
with map (2.7) with γ = 0.999 which produces a near uniform grid.
The shocks are stronger than in shock/rarefaction problem, and a
stronger spectral viscosity is required. The SSV parameters used
were C = 25 and s = 2 which produced a viscosity parameter of
ε = CN 1−2s = 9.537E − 5 (or α = CN∆t = 0.8 and β = 4 in the
exponential filter).

The edge detection procedure with J = 1, Q = 1, and η = 1
located edges at x = −0.07711 and x = 0.04499 as shown in figure
9.5.

The homogeneous features of the solution throughout the compu-
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Figure 9.4: SSV approximation vs. exact
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tational domain allowed the reconstruction parameters to be chosen
globally. The parameters were specified by setting kλ = 0.3 and
km = 0.03. The postprocessed solution is shown in figure 9.6.
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Figure 9.6: postprocessed vs. exact, shock/shock

The postprocessed spectral solution, in comparison with the sec-
ond order Godunov methods used in [11] and [13], used less grid
points to produce solutions which contained neither smears nor over-
shoots at shock locations in both examples.

9.2.2 Slugging Problem

Now we consider the numerical solution of the fluidized bed model
and produce numerical solutions which replicate the slugging behav-
ior observed in fluidized beds. To advance the system of conservation
laws with the source term in time, a split method was used to take
advantage of exact evaluation of the fractional steps involving the
source term and the SSV term. The splitting used was

ut = b(u) (9.3)

ut + f(u)x = 0 (9.4)

ut = SV V (s, C,N) (9.5)

ut = b(u). (9.6)



CHAPTER 9. ONE-DIMENSIONAL FLUIDIZED BED EQUATIONS 65

For t > 0, the starting value for each equation (9.3) through (9.6)
is provided by the solution of the previous equation. Equation (9.4)
is solved with a time step ∆t and advanced in time with an explicit
second order Runge-Kutta method. Equation (9.5) is evaluated ex-
actly over a time step of size ∆t according to (4.5). The fractional
steps involving the source terms, (9.3) and (9.6), may be evaluated
exactly over time steps of size ∆t/2 by solving the linear ODE

dm

dt
= b(α,m) = −α +

αJ −m

(1− α)3.5

in closed form. Thus, in the split steps involving the source term,
m can be updated as

m = exp

( −∆t
2(1− α)3.5

)
[a(1− α)3.5 − αJ +m]− a(1− α)3.5 + αJ.

The described fractional steps amount to Strang splitting [59] and
maintains second order accuracy in time. A typical implementation
of Strang splitting would have evaluated (9.5) over a time step of
size ∆t/2 before and after (9.4). However, the SSV term is just a
filter at every time level and the exact location at which it is applied
in time is irrelevant to temporal accuracy. An unsplit formulation
of the problem was also solved. The full system was advanced in
time with an explicit fourth order Runge-Kutta method with no
noticeable differences in the solution being observed.

Boundary conditions are imposed on v which physically corre-
spond to perforated plates preventing the flow of particles. At both
endpoints of the computational interval the value of the velocity is
set to v = 0. All numerical simulations began from a state of uni-
form fluidization, in which α = α(x) is found by letting v = 0 and
α0 = α0u in the system. This results in the ODE (9.7),

[F (α)]x = ψ(α,m) (9.7)

with an initial condition of α(0) = α0u, to determine α. The ODE
(9.7) may be expressed in the form (9.8) which is more suitable for
numerical evaluation by an ODE solver.

αx =
(α− αp)

2

s2α

[
(1− α0)

3.5

(1− α)3.5
− 1

]
. (9.8)
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A typical initial concentration is pictured in figure 9.7. After
the initial condition for α is found, α0 is set equal to 0.4 and a
steady state no longer exists and instabilities in the form of slugs
are expected in the solution.
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Figure 9.7: initial concentration α, slugging problem

Figure 9.8 shows the SSV solution at t = 0.5, at which time
the slugging behavior is becoming evident. We have taken N =
256 and the CGL grid (1.1) was used. The SSV parameters were
C = 5 and s = 2 which produced a viscosity parameter of ε =
CN1−2s = 0.00000012 (or α = CN∆t = 0.0128 and β = 4 in the
exponential filter). After postprocessing, the physically unrealistic
concentrations, α < 0, have all been replaced by α ≥ 0.

The edge detection procedure, figure 9.9, with J = 1, Q = 1,
and η = 2 located shocks at x = 0.01778 and x = 0.19822. The
postprocessed solution (figure 9.8) was obtained by locally specifying
the reconstruction parameters in each smooth subinterval as listed
in table 9.2.

In order to validate the method against a method with that has
a much longer track record in solving nonlinear conservation laws,
the postprocessed solution is compared with a solution by Roe’s
method [52]. In figure 9.10, the Roe’s method solution with N =
1024 is shown with the postprocessed spectral solution from figure
9.8. There is a good agreement between the two solutions. The
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Figure 9.8: SSV vs. postprocessed, t=0.5

subinterval m λ

(0,0.01778) 15 2
(0.01778,0.19822) 14 4
(0.19822,0.25) 1 1

Table 9.2: t = 0.5, local reconstruction parameters

only slight variance is towards the top of the bed where the area of
zero concentration begins. This is largely due to the fact that the
Godunov method is calculated on a uniform grid while the spectral
method uses a nonuniform grid, which led to the height in the bed at
which particles existed at t = 0 being slightly different. The system
of equations exhibits a chaotic-like, sensitive dependence on initial
conditions. The slightest variation of the initial condition results in
a noticeably different concentration profile at later times.

By time t = 4.0, the slugging has become well developed through-
out the bed. The solution is calculated by the spectral method with
N = 256 on a grid formed with map (2.10) with γ = 1 and µ = 0.
The map causes the grid points to cluster densely around the gas
inflow at x = 0 while lessening the density of grid points towards the
other end of the interval where the particle concentration remains
constant at zero. This grid distribution allows the problem to be
resolved on the larger interval [0, 0.4] without increasing the number



CHAPTER 9. ONE-DIMENSIONAL FLUIDIZED BED EQUATIONS 68

0 0.05 0.1 0.15 0.2 0.25
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
edge data
non−linear enhancement

Figure 9.9: edge locations, t=0.5
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subinterval m λ

(0,0.028) 18 1
(0.028,0.037) 10 2
(0.037,0.049) 7 1.5
(0.049,0.081) 6 4
(0.081,0.122) 6 1.7
(0.122,0.169) 6 2.2
(0.169,0.257) 6 3.25
(0.257,0.4) 1 1

Table 9.3: t=4, local reconstruction parameters

of collocation points used. If the grid distribution (1.1) or (2.7) with
γ = 0.995 are used, it is necessary to have N = 512 to get a well re-
solved solution. The SSV solution is shown in figure 9.11. The SSV
parameters used were C = 9 and s = 2 which produced a viscosity
parameter of ε = CN 1−2s = 5.4E − 07 (or α = CN∆t = 0.0576
and β = 4 in the exponential filter). The edge detection parame-
ters J = 2, Q = 1, and η = 2, produces the edge information in
figure 9.12 and located shocks at x = 0.028, x = 0.037, x = 0.049,
x = 0.081, x = 0.122, x = 0.169, and x = 0.257. The postpro-
cessed solution in figure 9.13 was obtained by specifying the GRP
parameters locally in each smooth subinterval as listed in table 9.3.

Chebyshev collocation methods are known to be conservative. It
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was recently shown in [9] that the addition of a spectral vanishing
viscosity term does not affect the conservative properties of Cheby-
shev collocation methods. This fact was confirmed by our numerical
experiments. Additionally, the postprocessing method was observed
to preserve the conservative properties of the approximation. In all
the numerical results presented, the amount of mass present initially
never varied more than 1 percent in either the raw numerical data
or in the post processed solution. For the approximations shown in
figure 9.11 and 9.13, the initial total mass at t = 0 was 0.08303, the
total mass in the SSV approximation at t = 4.0 was 0.08308, and
the total mass of the postprocessed solution was 0.08302.

9.3 Selection of Edge Detection Parameters

The edges series (see section 5) for the spectral approximation repre-
sented in figure 9.8 is shown in figure 9.14. To pinpoint the location
of the shocks represented in the SSV solution as jump discontinuities
of magnitude 0.44 and 0.31, we can choose values of J and Q which
result in E = J1/Q

√
1/N > 0.158. For example, if we set J = 3

and Q = 1, we have E = 0.1875 and the desired edge locations with
be found.
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Figure 9.14: edge series
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9.4 Selection of Postprocessing Parameters
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Figure 9.15: SSV, dashed; PP, solid; FD, dash-dotted

Figure 9.15 zooms in on the shock front in the neighborhood of
x = 0.198 of the approximation from figures 9.8 and 9.10. The
GRP parameters were m = 14 and λ = 4 in this region. The
postprocessed spectral solution (PP) is in good agreement with the
Roe’s method reference solution (FD). The postprocessed spectral
solution provides a sharper resolution of the shock front. The pa-
rameters which produced the good results were chosen by trial and
error. They were adjusted until there was a good agreement with
the reference solution.

The main drawback of the method is that there is no way to
specify the parameters in advance. A method to optimize the pa-
rameters has not been developed. So while we can always select
GRP parameters which result in the postprocessed solution com-
paring favorably with an exact or reference solution, the GRP is not
ready to be used as a ”black box” postprocessing method until a
way to choose the optimal parameters in advance is available.

To illustrate the variations in the postprocessed solution that
could result with a slightly different choice of the GRP parame-
ters, consider the same SSV approximation, but postprocessed us-
ing GRP parameters m = 25 and λ = 4. The result is pictured in
figure 9.16. Compared to the postprocessed solution in figure 9.15,
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Figure 9.16: SSV, dashed; PP, solid; FD, dash-dotted
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Figure 9.17: SSV, dashed; PP, solid; FD, dash-dotted
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the shock front is smeared. However, if we were not comparing to a
reference solution, our experience with the systems of PDEs might
lead us to take this as a good result.

0.19 0.192 0.194 0.196 0.198 0.2 0.202 0.204 0.206 0.208 0.21
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 9.18: SSV, dashed; PP, solid; FD, dash-dotted

A similar result (figure 9.17) is obtained by taking the GRP pa-
rameters as m = 14 and λ = 2. Again, similar results to those
displayed in figure 9.16 are obtained, but the agreement with the
reference solution is not as good.

Finally, the GRP results using m = 18 and λ = 9 are shown in
figure 9.18. The postprocessed results are similar to the those in
figures 9.15, 9.16, and 9.17, but the overshoot at the shock front
would cause us to disregard this result.

9.5 Conclusions

The Chebyshev super spectral viscosity method and Gegenbauer
reconstruction procedure were shown to accurately resolve the solu-
tion of a nonlinear system of conservation laws with a source term.
The problem could be formulated in a split manner in which the
source was evaluated exactly in a separate step or in a more general
unsplit way which achieved higher accuracy in time. The results of
the two formulations are practically identical. Not surprisingly, the
spectral method was able to resolve the numerical examples more
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accurately and with less grid points than the second order Godunov
methods used in [11] and [13].

The solution to the slugging problem has its significant features
located near the bottom of the bed (x = 0). The standard CGL
collocation point distribution (1.1) worked satisfactorily due to its
clustering of grid points around x = 0, but the clustering of grid
points around the boundary at the top of the bed is unnecessary.
A more appropriate grid distribution can be achieved via the map
(2.10) which clusters collocation points around a specified point in
the physical domain.

It is necessary to retain the unphysical, negative particle concen-
trations throughout the calculation. Setting negative concentrations
to zero results in the spectral scheme losing its conservative prop-
erties. When the GRP is used to postprocess the final solution, all
concentrations became positive.

In order to get results for the slugging problems with the GRP,
it was necessary to take a local approach to specifying the recon-
struction parameters and to set different values of the parameters
m and λ in each smooth subinterval depending on the nature of the
solution. This is in contrast to previous applications of the GRP to
non-periodic problems in the literature where the parameters were
able to be specified by a global approach asm = k1εN and λ = k2εN
where k1 and k2 are constants, and ε is the length of the subinterval.
The previous applications of the GRP where the parameters were
chosen in this way were to problems with homogeneous features
throughout the computational domain: Burgers Equation [25], and
the Shallow Water Equations with Riemann initial data [23]. The
solution with the most varying detail in which the GRP had been
applied to previously was the Euler equations with a Mach 3 shock
interacting with an entropy wave. However, the authors did not
state the values of the GRP parameters that were used [29]. The
need to specify different parameters for each subinterval for varying
solutions could make the reconstruction of solutions with varying
subintervals of detail in two-dimensions very difficult. Additionally,
all previous applications of the GRP had been to functions known on
the CGL grid. It was demonstrated that the reconstruction proce-
dure can also be applied to functions known on mapped grids which
are often necessary in applications.



Chapter 10

Two-Dimensional Fluidized
Bed Equations

In this chapter, a two-dimensional fluidized bed model in the form of
a hyperbolic system of conservation laws with a source term (10.1),
coupled with an elliptic equation (10.2) for determining a stream
function, is solved numerically.

wt + f(w)x + g(w)z = b(w,ψx, ψz) (10.1)

−(ψxx + ψzz) + p(x, z)ψx + q(x, z)ψz = r(x, z) (10.2)

The origins of the model can be found in [19] where a general set of
equations modelling dispersed two-phase flow is derived. In [22] a
stream function is introduced into the model which corresponds to
the total volumetric flux. In the paper [12], the authors state the
model for the case of heavy particles dispersed in a gas and with
the gas inertia being neglected. It is in this form that we consider
the model. A distinguishing feature of the model is that it neglects
particle viscosity. Mathematical models of fluidized beds may or
may not include a particle viscosity term in an attempt to model
the property of the fluidized particles that resists the force tend-
ing to cause them to flow. It has been speculated by some authors
[48] that particle viscosity, no matter how small, is essential for the
behavior corresponding to slugging to occur. However, it has been
demonstrated numerically for a one-dimensional model [11, 13] and
for the considered two-dimensional model [12], that a model with-
out particle viscosity is capable of reproducing oscillatory slugging
behavior.

76
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Figure 10.1: 2d fluidized bed

Much of the early numerical work with fluidized bed models pro-
duced results, particularly bubble shape, which did not agree with
experimental observations (see [60] and references within). Often,
the models which were used included particle viscosity. Recently,
the particle viscosity free model, was solved numerically by a sec-
ond order Godunov method which produced a numerical solution
which included the physically observed kidney-shaped bubble [12].

Our interest in using the Chebyshev super spectral viscosity method
is to see if a realistic bubble shape can be realized while using coarser
grids than second order finite difference methods required. Also, it
is of interest to see if the spectral method can reveal any small scale
structures in the flow that the finite difference methods could not.
The standard Chebyshev Collocation method will not converge to
the entropy solution [61] since the solution contains shocks, thus,
the addition of spectral viscosity will necessary.

10.1 Fluidized Bed Model

Let α(x, z, t) denote the particle concentration, m(x, z, t) = αu
the horizontal momentum, n(x, z, t) = αv the vertical momentum,
u(x, z, t) the horizontal velocity, and v(x, z, t) the vertical velocity.
The variable x describes the variation along the distributor plate at
the bottom of the bed and the variable z describes the vertical di-
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Figure 10.2: CGL grid
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Figure 10.3: mapped grid, gamma = 0.86

rection from the bottom to the top of the bed. The two-dimensional
fluidized bed can be described by a system of conservation laws with
a source term as

αt +mx + nz = 0 (10.3)

mt + (mu+ F (α))x + (nu)z = (1− α)−3.5(αψz −m) (10.4)

nt + (mv)x + (nv + F (α))z = −(1− α)−3.5(αψx + n)− α(10.5)

F (α) is specified as

F (α) = s2α +
s2α2

p

α− αp
+ 2s2αp ln(|α− αp|). (10.6)

These equations have been non-dimensionalized using vt, the termi-
nal velocity of an isolated particle as the velocity scale, and v2t /g
and vt/g as the length and time scales, respectively, where g is the
acceleration due to gravity [12].
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Figure 10.4: mapped grid, gamma = 0.9999

The parameter α0 is the concentration of particles at equilib-
rium and αp is the packing concentration which sets an upper limit
for α where 0 < α < 1. The parameter α0u denotes the particle
concentration corresponding the the critical state dividing linearly
stable and unstable states (the particle concentration at minimum
fluidization). The constant s = 3.5(1 − α0u)

2.5(αp − α0u) is related
to the linear stability of the equilibrium solutions which correspond
to states of uniform fluidization. The stream function ψ(x, z, t) is
defined by the elliptic equation of the form (10.2) with the functions
p(x, z), q(x, z), and r(x, z) specified as

p(x, z) = −αx
α
(1 +

3.5α

1− α
)

q(x, z) = −αz
α
(1 +

3.5α

1− α
)

r(x, z) =
1

α
(nx −mz +

3.5

1− α
[αxn− αzm])

The scale for the stream function is v3t /g.
The computational domain is taken as (x, z) ∈ [−xR, xR]×[−zR, zR].

Zero particle momenta in the directions normal to physical bound-
aries for particles colliding with a wall are applied giving u = 0 at
x = −xR and xR and v = 0 at z = −zR. The boundaries for the el-
liptic equation at x = ±xR are streamlines with constant ψ. At the
top of the bed, a somewhat artificial boundary is assumed to exist,
where the total volumetric flux is taken to be evenly dispersed. At
the bottom of the bed (see figure 10.1), a jet of gas of width 2xb is
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centrally located at the point (x = 0, z = −zR) with the background
fluidizing gas entering outside of the jet being jM = (1 − α0u)

3.5.
The flux of gas entering through the jet is j > jM which is specified
through the variable α0 as j = (1−α0)

3.5. The described boundary
conditions on ψ can be written as ψ(−xR, z, t) = 0, ψ(xR, z, t) =
−2xRjM +2xb(jM − j), ψ(x, zR, t) = (−jM +xb(jM − j)/xR)(x+xR)
and

ψ(x,−zR, t) =




−jM(x+ xR) − xR <= x <= −xb
−j(x+ xb)− jM(xR − xb) − xb < x < xb
−jM(x+ xR) + 2xb(jM − j) xb <= x <= xR.

(10.7)
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Figure 10.5: 32 by 32 grid, t = 1.5 to t = 3.0

To extend the Chebyshev SSV method to two-dimensions we
have used Strang’s second-order splitting [59] to reduce the two-
dimensional problem to a sequence of one-dimensional problems.
We have also used Strang splitting to separate the contribution of
the source term. The splitting is as follows:
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Figure 10.6: 32 by 32 grid, t = 3.5 to t = 5.0

wt = b(w,ψx, ψz) (10.8)

wt + g(w)z = 0 (10.9)

wt = SSV (β,C,N)z (10.10)

wt + f(w)x = 0 (10.11)

wt = SSV (β,C,N)x (10.12)

wt + g(w)z = 0 (10.13)

wt = SSV (β,C,N)z (10.14)

wt = b(w,ψx, ψz) (10.15)

Equation (10.11) and (10.12) are solved over a full time step while
the other 6 equations are evaluated over a time step of size ∆t/2.
The fractional steps involving the source terms, (10.8) and (10.15),
may possibly be evaluated in closed form. Otherwise, they may be
advanced in time with an ODE integrator. The SSV split steps
(10.10), (10.14), and (10.12) can be evaluated exactly as in (4.5).
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Figure 10.7: 32 by 32 grid, t = 5.5 to t = 6.0

The remaining equations are advanced in time with a second-order
ODE integrator. We have used an explicit second order Runge-
Kutta method in the numerical examples. In this formulation of the
problem, g(w)z is evaluated 4 times, f(w)x 2 times, the source term
2 times, SSVx is applied once, and SSVz is applied twice, per time
step.

From our experience, the spectral viscosity method can also be
implemented successfully in an unsplit, fully two-dimensional for-
mulation, without source term splitting. For a suitably chosen time
step, the results of the different problem formulations did not notice-
ably vary in the numerical examples. However, slightly less spectral
viscosity was necessary to obtain a stable approximation with the
split formulation than with the unsplit formulation. It is speculated
that the incremental way in which the spectral viscosity is applied
in the split formulation makes this possible.

10.2 Numerical Results

Since the solution of the equation for the stream may be needed
thousands of times during a numerical run, we have not implemented
a spectral solution of the elliptic equation. For efficiency we have
used a finite difference method. The solution of the elliptic equation
for the stream function is based on fitting a parabola to the data at
points, xi−1, xi, and xi+1 and then computing the first and second
derivatives at xi. On a uniform grid, the approximation reduces to
the standard second order central differences approximation. The
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Figure 10.8: 32 by 32 grid velocity field, t = 4.0

resulting system of algebraic equations is solved by Gauss-Seidel it-
eration. The streamfunction ψ appears in terms of its first partial
derivatives only in equations (10.8) and (10.15). Therefore, equa-
tion (10.2) is solved initially and then immediately before and after
solving equation (10.15) at each time step. The derivatives of ψ
required in equations (10.8) and (10.15) are found fitting a parabola
to the data at the points xi−1, xi, and xi+1, and then computing the
first derivative at xi. The approximation is second order accurate
on any grid.

The fractional steps involving the source term may be evaluated
in closed form if the first partial derivatives of the stream function
are assumed to remain constant across the fractional steps. By
evaluating (10.8) and (10.15) exactly, m and n can be updated as

m = αψz(1− E) +mE (10.16)

and

n = α(1− α)
3.5

[1 + (1− α)
3.5

ψx](E − 1) + En (10.17)

where

E = exp

[ −∆t
2(1− α)3.5

]
. (10.18)
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Figure 10.9: 64 by 64 grid, t = 1.25 to t = 2.0

A fluidized bed of height and width 3 (zR = xR = 1.5) units is
considered. The initial concentration of particles is taken as α =
α0u = 0.57 and the initial velocities are u = v = 0. Equation (10.2)
is solved to find the initial value of ψ. At time t > 0, a centered
jet of gas with a total width of 0.2 units (xb = 0.1), enters from the
bottom of the bed.

10.2.1 Choice of Collocation Grid

In the first numerical experiment, the gas inflow is specified by set-
ting α0 = 0.35. A 64 by 64 grid is used and the distribution of
collocation points is specified three different ways. Three different
solutions are obtained, each with a different computational grid.
The contours (α = 0 to α = 0.6) and center line (x = 0) plots are
compared at time t = 3.0. The goal is to determine which grid best
resolves the solution.

The first run uses the CGL grid (1.1) which clusters points densely
around the boundaries and provides poor interior resolution. In or-
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Figure 10.10: 64 by 64 grid, t = 2.25 to t = 3.0

der to obtain stable results with the explicit time stepping, it was
necessary to take ∆t = 0.000025 and take the SSV parameters as
C = 6 and s = 2. The small time step is typical due to the O(N−2)
stable time step restriction imposed by the CGL grid. The lack of
resolution towards the interior of the domain is apparent from the
wide spread contour lines and the center line plot (figure 10.2).

To relax the O(N−2) time stepping restriction, a mapped grid
specified by the map (2.7) can be used. By taking the map param-
eter to be γ = 0.86 in both the x and z directions we end up with
a grid with less clustering around the boundaries and with better
interior resolution. This setting of the map parameter is theoreti-
cally the upper limit of the parameter range that can be used with
N = 64 in order to maintain a spectral convergence rate [42]. Tak-
ing ∆t = 0.0001, and C = 3 and s = 2, as the SSV parameters,
produces stable results. A marked improvement in results can be
observed (figure 10.3) when compared with the CGL grid results.
Increasing the mapping parameter closer to one produces even bet-
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Figure 10.11: 64 by 64 grid, t = 3.25 to t = 4.0

ter results.
The third run again uses map (2.7) to specify the grid. The

map parameter was chosen as γ = 0.9999 in both the x and z di-
rections. Choosing the map parameter so close to one results in a
near uniform grid. Taking ∆t = 0.0005, and C = 3 and s = 2 as
the SSV parameters produces stable results. Even though taking γ
so large could introduce a mapping error and theoretically sacrifice
the spectral convergence rate of the method, this is not an issue in
this case as we are implementing a mixed spectral/finite difference
method in which the the overall accuracy of the solution will not be
spectral. The increased resolution in the interior provided by the
near uniform grid is evident in figure 10.4. It is concluded that this
is the grid that best resolves the problem. The grid allows for the
largest stable explicit time step and values of the SSV parameters
which result in the smallest amount of spectral viscosity being ap-
plied. Compared with the CGL grid results from the first run, the
third run used a time step 20 times larger and a spectral viscosity
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Figure 10.12: 64 by 64 grid stream function, t = 0.25 and t = 4.0

that was only half as strong.

10.2.2 32 by 32 Grid

The map (2.7) is used to form the grid with γ = 0.9999 in both the x
and z directions. The map produces a near uniform grid and allows
for good resolution in the center of the domain as well as permitting
a relatively large stable time step to be taken. The parameter α0

is set to α0 = 0.2 which corresponds to a strong gas inflow. The
flow is stronger than that which is required to maintain a state of
minimum fluidization and slugging in the bed is expected. In figures
10.5 through 10.7, contour plots show α ranging from 0.05 to 0.4 in
0.05 unit increments from time t = 1.5 to t = 6.0. The setup for this
problem is similar to experiments run in [12] where the numerical
solution was by Roe’s method which required a 100 by 100 or a 150
by 150 grid to resolve the flow.

The spectral method resolves the flow well on this very coarse
grid and a physically correct bubble shape is obtained. The sim-
ulation exhibits other features observed in fluidized beds such as
coalescence, which can be observed in the α plots in figure 10.6
from t = 3.5 to t = 5.0, as a smaller bubble catches up to and is
absorbed by the main bubble. The SSV parameters in both the x
and z directions were s = 2 and C = 1, which applies only a very
weak high pass filter to the spectral solution.

The fact that the flow is well resolved on the 32 by 32 grid in-
dicates that the second order finite difference approximation of the
stream function is adequate. It seems as if the accuracy in which
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the flux derivatives are evaluated in the system of conservation laws
is the most important factor in obtaining a resolved solution.

The 32 by 32 spectral solution produced solutions of similar qual-
ity as the finite difference solutions in [12], but at a fraction of the
computational effort, and used significantly less storage space.

In figure 10.8, counter-rotating convective rolls behind the main
bubble are very evident in the velocity field of the coarse grid SSV
solution.

10.2.3 64 by 64 Grid

The same experiment that was run in the previous section with a 32
by 32 grid is repeated. The results (figures 10.9 through 10.11) on
the finer grid are similar to the results obtained on the coarse grid,
but some small scale details in the flow were revealed that were not
present in the coarse grid spectral solution or in the finite difference
solutions in [12]. The SSV parameters in both the x and z directions
were s = 2 and C = 3.

In figure 10.9, the particle concentration contours at t = 1.25
are pictured when the bubble entered the bed. A smaller distur-
bance below the main bubble is noticeable by t = 1.5 (figure 10.9)
which coalesces with the main bubble by t = 2.5 (figure 10.10) at
which time the formation of two small satellite bubbles is noticeable.
By time t = 3.25 (figure 10.11) the main bubble has shed the two
satellite bubbles.

10.3 Conclusions

A mixed Chebyshev SSV/finite difference method has been imple-
mented for the fluidized bed model. The flux derivatives in the
conservation laws are evaluated with spectral accuracy while the el-
liptic equation for the stream function is solved by a second order
finite difference method. The approximation is second order accu-
rate in time. The SSV method has been shown to produce quality
numerical solutions of a complicated multiphase flow problem. The
method was able to use fewer degrees of freedom and still resolve
fine scale features in the solution better than in previous reported
results in [12] using Roe’s method with a Superbee flux limiter. A
grid which was nearly uniform best resolved the problem, allowed
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the smallest amount of spectral viscosity to be applied, and allowed
the largest stable time step to be used.

Although the development of bubbles in fluidized beds has been
shown to mathematically correspond to the development of shocks,
spurious oscillations are not visibly evident in the numerical solu-
tion. This is in contrast to the Chebyshev SSV solution of the one-
dimensional fluidized bed model where a postprocessing method was
used to remove the effects of the Gibbs phenomenon from the ap-
proximation. The shocks seem much weaker in the two-dimensional
model and the mild filtering of the SSV methods seems to keep any
spurious oscillations under control. If an oscillatory solution was ob-
tained, postprocessing could be attempted using the GRP or other
postprocessing method (see Appendix C). However, theoretically,
the results of their application to the two-dimensional fluidized bed
solution would be less certain due to the second order finite differ-
ence solution of the equation for the stream.



Part V

Summary
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Chapter 11

Conclusions

11.1 Summary of Results

• Functions with homogeneous features in each smooth subin-
terval may be postprocessed by globally specifying the GRP
parameters. Functions with varying subintervals of detail may
require that the GRP parameters be specified locally.

• The main drawback of the Gegenbauer reconstruction proce-
dure is that there is no way to specify the parameters in ad-
vance. A method to optimize the parameters has not been de-
veloped. So while we can always select GRP parameters which
result in the postprocessed solution comparing favorably with
an exact or reference solution, the GRP is not ready to be used
as a ”black box” postprocessing method until a way to choose
the optimal parameters in advance is available. Work is under
way on choosing optimal reconstruction parameters and results
will be reported in a future paper. When this is complete, it
is hoped that the method will be able to be implemented as
a ”black box” postprocessing method for Spectral Collocation
methods for the solution of Partial Differential Equations.

• Numerical Evidence supports using the SSV method and GRP
for solving and postprocessing systems of conservation laws
with source terms. The SSV method may be implemented in
a split or unsplit method. Slightly less spectral viscosity was
need to stabilize problems implemented in split formulations.

• Numerical evidence indicates that the GRP may be applied to
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functions known on mapped CGL grids.

• The spatially varying viscosity term of the Chebyshev SSV
method, which goes to zero at the boundaries, did not prevent
the method from being used on problems with shocks located
near boundaries. However, a slightly stronger viscosity term
was necessary in this case.

• Edge detection and postprocessing software [55] was made pub-
licly available. The algorithms are time consuming to code
and the software may be used as a starting point for other
researchers in the field.

• All numerical examples have been postprocessed using the Gegen-
bauer Reconstruction Procedure. One of our goals was to ex-
amine if the GRP, which has shown great promise on some sim-
ple examples, could be used to successfully postprocess PDE
solutions with varying subintervals of detail. The numerical
examples show that while using the GRP to postprocess such
problems is possible, that it is necessary to use a local approach
to specify the reconstruction parameters m and λ. Even then,
since there is not yet a method for choose optimal reconstruc-
tion parameters, it is possible to choose several different combi-
nations of the GRP parameters which might result in different,
but ”reasonable” postprocessed solutions. The conclusion is
that until there is a way to choose the optimal parameters in
advance, that the GRP will not be a very robust method on
such problems. We can always choose the reconstruction pa-
rameters so that the postprocessed solution compares favorably
with an exact or reference solution, but without such compar-
isons, the results of the postprocessing are less certain.

It should be noted that other, more robust postprocessing meth-
ods (see Appendix C) exist which are able to recover spectral
accuracy up to within a neighborhood of a discontinuity. Some
of the methods may by used without knowing the location of
the discontinuities.
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11.2 Open Questions and Further Work

• Optimal selection of the Gegenbauer reconstruction parame-
ters, λ and m.

• The Gegenbauer basis has been shown to be a Gibbs comple-
mentary basis for the Chebyshev basis [36]. However, it has
not been shown to be the optimal Gibbs complementary basis
in this case. It is possible that the Chebyshev approximations
could be projected onto another Gibbs complementary basis
with optimal postprocessing being the result.

• The Spectral Signal Processing Suite will be updated periodi-
cally to reflect improvements to the algorithms. Implementing
the methods for two-dimensional functions is planned for a fu-
ture release. The implementation of the methods for the edge
detection and reconstruction procedures for periodic functions
approximated by Fourier methods is also planned. Addition-
ally, the Spectral Mollification and Padé-based algorithms will
be implemented so that comparisons among the available post-
processing methods may more easily be made.



Appendix A

Chebyshev Polynomials

The Chebyshev Polynomials, Tk(x), are orthogonal under the weight

function (1− x2)
−1
2 with

∫ 1

−1

Tk(x)Tn(x)√
1− x2

dx = δk,nck
π

2

where

ck =

{
2 k = 0
1 k ≥ 1

.

Three Term Recurrence Formula

T0 (x) = 1
T1 (x) = x

Tk (x) = 2xTk−1 (x)− Tk−2 (x)

Differentiation Formula

d

dx
Tk(x) =

k

1− x2
[Tk−1(x)− xTk(x)]

Christoffel-Darboux Formula

p∑

k=0

Tk(x)Tk(y) =
kp

kp+1hp

Tp+1(x)Tp(y)− Tp(x)Tp+1(y)

x− y

where

kp = 2p−1
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and

h0 = π
hn = π

2

Christoffel-Darboux Formula for x = y

p∑

k=0

Tk(x)Tk(x) =
kp

kp+1hp
[Tp+1(x)

d

dx
Tp(x)− Tp(x)

d

dx
Tp+1(x)]

where

d

dx
Tk(x) =

k sin(k arccos(x))√
1− x2

Relationship to Gegenbauer Polynomials

Tk(x) =
k

2
C0
k(x)



Appendix B

Gegenbauer Polynomials

The Gegenbauer Polynomials, Cλ
n(x), λ ≥ 0, are orthogonal under

the weight function (1− x2)λ−
1
2 with

∫ 1

−1

(1− x2)λ−
1
2Cλ

k (x)C
λ
n(x)dx = δk,nh

λ
n

and

hλn = π
1
2Cλ

n(1)
Γ(λ+ 1

2
)

Γ(λ)(n+ λ)

with

Cλ
n(1) =

Γ(n+ 2λ)

n!Γ(2λ)

Three Term Recurrence formula

Cλ
0 (x) = 1

Cλ
1 (x) = 2λx

Cλ
m(x) =

1
m

[
2 (m− λ− 1)xCλ

m−1(x)− (m+ 2λ− 2)Cλ
m−2(x)

]

The Gegenbauer polynomials achieve their maximum at the bound-
ary

|Cλ
m(x)| ≤ Cλ

m(1)

Christoffel-Darboux Formula
m∑

l=0

Cλ
m(x)C

λ
m(y)

hλl
=

km
km+1hλm

Cλ
m̄1(x)C

λ
m(y)− Cλ

m(x)C
λ
m+1(y)

x− y
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with

km =
2mΓ(λ+m)

m!Γ(λ)

When x = y, use L’Hospital’s rule and the equality 2λCλ+1
m−1(x) =

d
dξ
Cλ
m(x) and the Christoffel-Darboux Formula becomes

m∑

l=0

Cλ
m(x)C

λ
m(x)

hλl
=

km
km+1hλm

2λ(Cλ+1
m (x)Cλ

m(x)− Cλ
m+1(x)C

λ+1
m+1(x))



Appendix C

Other Postprocessing
methods

In this work, all numerical examples have been postprocessed using
the Gegenbauer Reconstruction Procedure. One of our goals was
to examine if the GRP, which has shown great promise on some
simple examples, could be used to successfully postprocess PDE so-
lutions which were more detailed than piecewise linear or solutions
which contained varying subintervals of detail. The numerical exam-
ples show that while using the GRP to postprocess such problems
is possible, that it is necessary to use a local approach to specify
the reconstruction parameters m and λ. Even then, since there
is not yet a method to choose optimal reconstruction parameters,
it is possible to choose several different combinations of the GRP
parameters which might result in different, but ”reasonable” post-
processed solutions. The conclusion is that until there is a way to
choose the optimal parameters in advance, that the GRP will not
be a very robust method on such problems. We can always choose
the reconstruction parameters so that the postprocessed solution
compares favorably with an exact or reference solution, but without
such comparisons, the results of the postprocessing are less certain.

The GRP is capable of recovering spectral accuracy at every
point, even at the locations of the discontinuities. However, more
robust postprocessing methods exist which are able to recover spec-
tral accuracy at every x which is not too close to a discontinuity, but
which can not recover spectral accuracy in the neighborhood of the
discontinuity. Some of the methods may by used without knowing
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the location of the discontinuities, but may produce a more accurate
postprocessing if the locations of the discontinuities are known.

The first class of postprocessing methods consists of variations of
the spectral mollification idea which was originally developed in [37].
Spectral mollification involves applying a two parameter family of
filters. The two parameters are somewhat problem dependent, but
are much easier to select than the GRP parameters. The method
can recover spectral accuracy up to within a neighborhood of each
discontinuity. The Gibbs phenomenon can be removed, but some
smearing at the discontinuity locations will occur. This idea is dis-
cussed in more detail in [41] and examples of using the method to
postprocess PDE solutions are contained in [40].

The method of [37] can improved upon if the locations of the
edges are known [24, 62]. This allows one of the two parameters
to be optimized which leads to increased accuracy away from the
discontinuities and less smearing at the discontinuities. Further op-
timization of the method is considered in [62].

A Padé-based algorithm for removing the Gibbs phenomenon
from Fourier approximations is developed in [20]. The authors
present an example in which the Padé-based algorithm exhibits a
spectral convergence rate, but the GRP does not. This is despite
the fact that theoretically, the GRP should produce a spectral rate
of convergence. However, the authors did not state the values of the
GRP parameters that were used in the example.



Appendix D

Software

Before spectral methods and postprocessing can be implemented,
there is a substantial amount of software, in comparison with finite
difference methods, which must be in place. It is not necessary to
start from scratch as several free open source libraries are available.

D.1 Environments

Simulation Environment for Numerical Ordinary and Partial Equa-
tions, SENOPDE [54], provides both a web based and applica-
tion based object oriented programming environment in the Java
language. SENOPDE contains a large number of standard test
problems which may be extended by the user. Two and three-
dimensional graphics provide both animated and static plots. Sev-
eral numerical libraries exits for use in SENOPDE and more are
under development.

D.2 Spectral

Freely available packages for implementing spectral methods:

• Matlab Differentiation Suite [64]

• Pseudopack 2000 [14].

• JSpecLib [53], a Java library for implementing Spectral Meth-
ods. Designed for use with SENOPDE.
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D.3 Postprocessing

The only available software for edge detection and postprocessing
of spectral data is the Spectral Signal Processing Suite [55]. Many
examples are provided.

D.4 Source Code in print

Source code in print, in FORTRAN, for fast transforms, matrix
differentiation, etc. may be found in [21] and [7].
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