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                                                             ABSTRACT 
 
               Metallothionein Isoform 3 Expression in human Bladder Urothelium 
 
                                                           Seongmi Park  
 
The third isoform of methallothionein, MT-3 is shown to have a restricted pattern of 
tissue distribution with expression confined to the neural tissue. Previous work done by 
this laboratory has been shown that MT-3 is not expression in the normal bladder but is 
over-expressed in bladder cacer with levels correlating to the type and grade of tumor. 
Recently, a new bladder epithelial cell line UROtsa has been characterized that does not 
express the MT-3 gene and may serve as a useful in vitro model system of the normal 
human urothelium. The goal of this study was to see the effect of MT-3 over expression 
in the normal human bladder epithelial cell line. The MT-3 transfected cells expressed the 
mRNA for the MT-3 gene but expressed very little MT-3 protein. Treatment with 
cadmium or zinc did not increased the level of MT-3 protein in MT-3 transfected clones. 
Otherwise MT-1E transfected UROtsa cells showed increased both mRNA and protein 
by exposure to cadmium. These data suggests that the MT-1/2 and MT-3 are regulated 
different ways.  In vitro transformation model systems are very useful tools in the  
understanding of fundamental differences between normal cells and tumor cells if both  
have been derived from a common source. We showed the malignant transformation of  
normal human urothelial cell line by chronic exposure to cadmium or arsenic in vitro.  
The malignant transformation of these exposed cells was confirmed by increased growth  
rate, anchorage independent growth, and tumor development in nude mouse. The  
malignant transformation of normal human urothelial cells is compelling evidence that  
arsenic and cadmium have the potential to be human bladder. 
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METALLOTHIONEIN  

Metallothionein (MT) was discovered in 1957 as a cadmium–binding protein  

from equine kidney cortex (1). The metallothioneins are present in a broad range of  

organisms from a few prokaryotes to all eukaryotic species from yeasts, flies, plants  

and vertebrates. The definition of metallothioneins is cysteine rich low molecular  

weight (6 to 7kDa) nonenzymatic metalloproteins or metallopeptides with a high  

affinity for heavy metals (2). The metallothioneins are divided into three classes  

based on structural criteria. Class I metallothioneins are metalloproteins with the  

cysteine residues arranged as Cys-X-Cys and their nucleotide sequences are highly  

conserved. Class I includes all MTs found in vertebrates including mammals and  

some invertebrates such as crustaceans and mollusks. Class II metalloproteins are  

found in unicellular eukaryotes such as yeasts, and their primary structure has no Cys-  

X-Cys structures like class I. Class III, present in plants, is a nontranslationally  

synthesized metal thiolate polypeptide and known as phytochelatin with atypical  

gamma-glutamylcysteinly units.  

Based on small differences in sequence and charge characteristics, mammalian  

MTs can be divided into four groups from MT-1 to MT-4. The structures of all four  

isoforms are highly conserved at the amino acid sequence level and are consisted of  

three exons and two introns. The mammalian MTs are 61-68 amino acid peptides  

containing 20 cysteines, 6-8 lysines, 7-10 serines, and a single acetylated methionine  

at the amino terminus (3). The most unique characteristic of MT is the recurrence of  

Cys-X-Cys tripeptide sequences where X is for any amino acid residue except  
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cysteine and aromatic amino acids. The sulfur atoms of 9 cysteines from N- terminal  

beta domain and 11 cysteines from C-terminal alpha domain provide cooperative  

binding sites for various transitional metals including zinc and cadmium (2).  

Therefore, each MT protein binds 7-10 g atoms of metal/mol MT, up to three metals  

in alpha domain and four metals in beta domain. Because metals stabilize the  

secondary structure of protein, loss of metal causes structural changes. It makes them  

susceptible to proteolysis.  

In the mouse, there are four MT genes that reside in a 50-kb region on  

chromosome 8 without any pseudogenes. In contrast, the human MT genes are more  

complicated. The human MT-1 and MT-2 genes are encoded by a multigene family  

that likely doubled as a result of a gene duplication event that occurred between the  

time of divergence of rodents and humans. The human MT genes are clustered at a  

single locus on chromosome 16(16q13) and consist of 10 functional isoform (MT-1A,  

MT-1B, MT-1E, MT-1F, MT-1G, MT-IH, MT-X, MT-2A, MT-3 and MT-4) and 7  

nonfunctional isoforms( MT-1C, MT-1D, MT-1I, MT-1J, MT-1K, and MT2-B) (4-6).  

The existence of multiple MT-1 and MT-2 isoform genes raises the possibility that  

isoforms may have different roles and be regulated differently in humans. For  

example, metals induce all MT-1 and MT-2 isoforms whereas glucocorticoids only  

induce MT-2A and MT-1E in human (7). Whether there are distinct functions for  

each of the human MT isoforms or whether they merely represent a duplication of  

function has not yet been established.  

The common MT isoforms, MT-1 and MT-2, differ by only one single negative  
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charge and have been studied extensively. They consist of 61-62 amino acids and  

exhibit a ubiquitous pattern of tissue distribution, show high levels in the liver and  

kidney, and are highly inducible by various stimuli including metals, hormones,  

cytokines and physical and chemical stresses (8). When cells are exposed to heavy  

metals such as cadmium, the amount of MT-1 and MT-2 proteins are elevated from  

several to hundreds times higher due to increased rates of transcription. The dramatic  

inducibility of metallothioneins by heavy metals makes promoters of MT-1 and MT-2  

genes excellent candidates to be used to control expression of a fusion gene via an  

exogenous metal supply (9). The MT-3 and MT-4 isoforms were only recently  

discovered and are subjects of more limited studies. MT-4, the most recently  

identified isoform, with 62 amino acids, is present in the stratified squamous  

epithelium of skin, tongue, and intestinal lining and may be involved in the  

differentiation of these tissues (10). MT-3, a brain-specific MT isoform, was isolated  

from the normal human brain extract but was deficient in brains of patients with  

Alzheimer (11, 12). Decreased MT-3 protein in Alzheimer’s patients suggested that  

MT-3 may suppress brain neurotropic activity. MT-3 is predominantly expressed in  

neurons of the central nerve system, although recently published papers demonstrate  

that it is also detected in reproductive organ tissues, tongue, stomach, heart and  

kidney (13, 14). The human MT-3 contains 68 amino acids and shows around 64 %  

identity with human MT-1 and MT-2. The growth inhibitory activity of the MT-3 is  

abolished by a double mutation within the beta domain resulting in the conversion of  

the C-P-C-P sequence to either C-S-C-A or C-T-C-T. This proline-rich region in the  
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N-terminal beta domain of MT-3 may have growth inhibitory activity that other  

metallothionein isoforms do not have (15). When transfected into baby hamster  

kidney cells, MT-3 gene but not MT-1 gene showed inhibition of cellular  

proliferation under conditions of zinc deficiency. The discovery of growth inhibitory  

activity of MT-3 was the first indication that different MT isoforms may have  

different functions. MT-3 knockout mice show reduced zinc content in brain and are  

more sensitive to seizure-induced injury, whereas mice overexpressing MT-3 are  

resistant to this damage and kainic acid toxicity (16).  

The biosynthesis of metallothionein is controlled by complex processes. Studies  

of MT gene structure and regulation have been focused on mouse MT genes because  

of their simplicity. Several studies demonstrate that MT genes are inactive in some  

cells as a consequence of DNA methylation (17). In cells or plants selected for  

resistance to cadmium, enhanced expression of MT protein can also be achieved  

through amplified copies of MT gene (18, 19). The MT genes in most cells are  

mainly controlled at the transcriptional level by various inducers (20). In general, MT  

genes have several cis-acting response elements, including metal response elements  

(MREs), a TPA-responsive element, a cyclic AMP responsive element, and an  

interferon responsive element. Two proteins were identified from nuclear extracts of  

HeLa cells as trans-acting elements for metal-mediated MT gene transcription. The  

MRE-binding protein (MREBP) binds MREs of the human MT-2A for inhibiting MT  

gene transcription. The MRE-binding transcription factor (MTF-1) is a constitutively  

active zinc-sensitive transcription factor. MTF-1 may bind to multiple copies of metal  
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response elements (MREs) in the promoter region of an MT gene and elevate MT  

gene transcription rates (21). However, MT-3 and MT-4 are less or not responsive to  

inducers and have a more restricted pattern of expression. The MT protein level is  

also regulated by protein degradation. Several studies showed that half–life of MT  

protein also depends on the age of the animals and the type of metal bound to MT  

(22). The degradation of MT occurs in both cytoplasm and lysosomes. A in vitro  

study demonstrated that low pH increased the rate of metal release from MT. For  

example, zinc is fully released from MT at pH 4. The lysosomes are acidic with a pH  

range of between 3.6 and 5, resulting in zinc dissociation from MT. Several proteases  

including serine protease and trypsin digest MT partially in vitro. Some proteases  

including acidic proteases and cathepsin B are involved with MT degradation in  

lysosomes (23). The degradation rate of MT increases when MT binds less than five  

atoms of metal (24). The degradation of MT protein is primarily regulated by cellular  

zinc content, and apo-MT is more susceptible to degradation than metal-occupied MT  

(25).  

Even though amino acid sequences of MT proteins are highly conserved and  

expressed from prokaryotic to eukaryotic organisms, biological functions of the MTs  

are still controversial (26). The large number of factors that stimulate the biosynthesis  

of MT makes it difficult to pinpoint a specific biological role. The understanding of  

the functions of MTs has been focused on their roles in heavy metal detoxification  

because of their metal binding ability. Numerous in vivo and in vitro studies have  

confirmed the protective function of MTs against heavy metal toxicity (27). The MTnull  
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mice showed an increased sensitivity to cadmium–induced renal injury and  

hepatotoxicity after chronical exposure to cadmium (28). In contrast, transgenic mice  

that carry 56 copies of the MT-1 gene showed resistance against cadmium lethality  

and hepatotoxicity (29).  

The MTs also are considered as cellular storage sites for homeostasis of essential  

metals such as zinc and copper during growth and development. Although MTs are  

well known for their protection against cadmium, yet when they were isolated from  

liver tissue, MTs were predominantly zinc-containing proteins (30). These results  

demonstrated that MT binds to zinc and copper under physiological conditions  

therefore it might be involved in the metabolism of nutrient metals. Zinc is an  

essential participant in many DNA and RNA polymerases and serves as a structural  

component of the zinc finger domains in over 300 DNA–binding proteins (8).  

Therefore, MT may control function of zinc-dependent proteins by acting as both zinc  

donor and an acceptor. MTs may function as potent scavengers of free radicals  

because of their high cysteine content. The role of MTs as antioxidants was suggested  

in MT-1 and MT-2 knock out cell studies. It was shown by Lazo and coworkers that  

MT null cells were more sensitive to tert-butyl hydroperoxide-induced oxidative  

stresses (31).  

The experiment with MT-1/2 double knockout mice was disappointing because  

these MT–null mice were normal under the standard laboratory condition except for  

their higher susceptibility to heavy metal toxicity and UV-irradiation, and higher  

sensitivity to changes in dietary zinc content during development, indicating that MT  
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is not essential for life. The MTs are also not essential for protection from oxidative  

stress except under extreme conditions. Glutathione and other gamma-glutamyl  

compounds are the major cellular non-protein thiol-containing reductants that protect  

cells against oxidative stress and detoxification of xenobiotics and may represent an  

integral part of the toxic response of some heavy metals (32). The glutathione appears  

to be the first line of defense against cadmium toxicity preceding MT induction.  

Although glutathione and MT show similar detoxification and anti-oxidation  

functions in vivo, mice can survive without MT but not without glutathione.  

If the function of MTs is limited to protection from cellular toxicity, it would be  

expressed to be expressed only after exposure to toxic heavy metals and other  

environmental stresses but in fact the basal level of MT proteins is relatively high.  

MTs are also induced not only by a variety of metals but also several hormones,  

cytokines, growth factors, and tumor promoters, implying their involvement in  

diverse cellular processes (33). Due to overexpression of MT protein in proliferating  

cells, various tumors, and developing tissues, it has been suggested that MT takes part  

in the control of cellular proliferation and differentiation. The involvement of MT  

with zinc metabolism, the requirement of zinc during G1 to S phase and transient  

translocation of MT protein from cytoplasm into nucleus during cell proliferations  

lead to possible link between MT and cancer (34). The levels of MT expression have  

been investigated in a wide variety of tumors. Although MTs appear in various  

human tumors, the expression of MT is not universal to all tumors. The presence of  

MT may depend on the type of tumor, the cellular origin, the morphological  

                                                                      8 



heterogeneity, or the stage of growth (35). The MTs could be found at high levels in  

the nucleus and in the cytoplasm in both benign and malignant tumors. It has been  

shown that the incidence of apoptosis decreases with increasing immunoreactivity of  

MT staining (36). However, in some tumor types such as colonic carcinoma, a  

correlation between MT overexpression and better prognosis has been found (37).  

Otherwise MT-1 and MT-2 overexpression appears to be associated predominantly  

with more malignant, higher – grade tumors in ductal breast cancer (38), prostate  

cancer (39), skin carcinoma, melanomas (40), cervical cancer (41), acute  

lymphoblastic leukemia (42), and pancreatic carcinomas (43). Several studies  

demonstrated that MT-1 and MT-2 also are overexpressed in bladder cancer (44). The  

intensity of MT-1 and MT-2 staining is correlated with bladder tumor grade, with the  

highest–grade tumors having the more intense MT protein.  

The resistance of certain tumors to anticancer drugs is one of the major problems  

in cancer chemotherapy. Various defense mechanisms against anticancer drugs by  

cancer cells include increased expression of multidrug resistance gene, decreased  

drug accumulation or increased DNA repair activity. Another suggested mechanism  

is the protection of targeted macromolecules by increased cellular thiols such as  

glutathione or MT. MT was considered as one of the anticancer drug-resistance  

molecules because of high cysteine content and alkylating agent binding ability and  

induced MT synthesis by alkylating agents (45). The acquisition of drug resistance  

has been recognized after exposure to anticancer drugs. The increased expression of MT  
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in certain tumors is associated with resistance to chemotherapeutic agents. Many  

clinically used anticancer agents are electrophilic, and generate DNA inter- and 

intrastrand cross-links. Cisplatin–based chemotherapy has been widely used to treat  

patients with metastatic and locally advanced carcinoma of the bladder for more than  

two decades (46). Cisplatin is one of the most potent cytotoxic drugs in chemotherapy  

and ameliorates numerous tumors. Cistplatin also is a common chemotherapeutic  

agent for solid tumors, including testicular carcinomas, ovarian cancer, cancer of the  

head and neck and small cell lung carcinomas (47). Cisplatin causes intrastrand DNA  

crosslinking, thereby disrupting DNA and RNA synthesis (48). Nevertheless,  

resistance to cisplatin is a problem that is encountered in the chemotherapy of  

urologic tumors, especially transitional cell carcinomas. The overexpression of MT in  

bladder tumors was found in several studies that had failed cisplatin chemotherapy  

(49, 50).  

The immunohistochemical staining demonstrates that overexpresssion of the MT-  

1 and MT-2 protein is correlated with cisplatin resistance in transitional cell  

carcinoma of the urinary tract (51). The cells with acquired resistance to heavy metals  

overexpress MT and are cross resistant to the alkylating agents. The suggested  

mechanism of cisplatin resistance by MT is that a nucleophilic protein, MT, interacts  

with electrophilic anticancer drugs such as cisplatimum and cyclophosphamide. MT  

binds to cisplatin in the cytoplasm and this complex decreases the intranuclear drug  

concentration, thus preventing cisplatin from forming DNA intrastrand adducts (52).  

There also is considerable evidence that some cisplatin-resistant cell lines do not  
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show increased MT levels (53). Therefore, MTs may play an important role in  

decreased cisplatin toxicity but not critical.  

The finding of altered metallothionein expression in bladder cancer is particularly  

significant because bladder cancer has a strong association with the environment  

pollution. Epidemiological studies dating back to the 19th century showed that bladder  

cancer was one of the first cancers recognized as being caused by carcinogens present  

in the industrial setting and factory workers (54).  

BLADDER CANCER  

Bladder cancer is the fourth common cancer among men and eighth among  

women (55). In the United States, approximately 54,000 new cases of bladder cancer  

and around 12,000 bladder cancer related deaths are reported each year (56).  

Although which chemical in smoke is responsible for carcinogenesis is uncertain, a  

major factor in the causation of bladder cancer is tobacco usage, with 40-85% of all  

bladder cancer cases attributable to smoking cigarettes. Moreover, smokers have a 2  

to 10-fold increased risk over nonsmokers for developing bladder tumors (57). A  

strong association between cigarette smoking and bladder cancer has also been  

defined (58). Smoking is estimated to cause two to fourfold increased risk for bladder  

cancer, and estimates maintain that 50 % of bladder cancers would not occur in the  

absence of cigarette smoking, with the majority of the remaining bladder cancers  

being caused by industrial or agricultural carcinogens.  

The mammalian urinary bladder, a dynamic reservoir for urine, expands and  

contracts depending on the volume contained within. The mammalian bladder wall is  

                                                                     11 



composed of serous layer, muscular wall and transitional epithelium. The transitional  

epithelium, urothelium, exhibits unique structural characteristics associated with its  

specialized role as a permeability barrier and accommodating tissue structure. The  

urothelia are subdivided into basal cells, intermediate cells and squamous cells.  

Clinical bladder cancers are heterogeneous in their growth behavior and  

histopathological subtypes, which include transitional cell carcinoma (TCC),  

squamous cell carcinoma, and adenocarcinoma. TCC, which makes up 90 % of all  

bladder cancer cases, is associated with cigarette smoking and occupational and  

environmental chemical exposures. Squamous cell carcinomas are observed in 5-  

10 % of all bladder cancer cases and are associated with chronic irritation of the  

bladder mucosa. Adenocarcinoma is seen around 1-2 % of bladder cancer cases. The  

definition of tumor stage and grade is how far the tumor has progressed. The higher  

the grade or stage means the worse the cancer. Upon microscopic examination  

bladder cancers are divided into the superficial bladder cancer and invasive bladder  

cancer based on metastasis. The most common TCC is superficial bladder tumor as a  

low grade papillary tumor with relatively benign behavior but high recurrence rate.  

Superficial transitional cell carcinoma bladder tumors do not invade lamina propria, a  

thin membrane that separates the mucosa of the bladder from the muscle layer. The  

muscle invasive carcinoma in situ (CIS) is frequently metastasized and marked as  

high grade. Around 10 % of patients with benign tumor eventually develop malignant  

disease (59). Over the last 15 years, the annual incidence of bladder cancer has  

increased by nearly a third. The incidence of bladder cancer is increasing, and despite  
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advances in chemotherapy, survival rates for invasive bladders have not significantly  

improved.  

The development of human bladder cancer is a long complex process including  

activation and inactivation of cellular genes. Studies with karyotypic analyses in  

human bladder cancer tissues and cells showed partial deletion of several  

chromosomes and mutations. The cytogenetic and allelic deletion analyses of clinical  

samples of human bladder cancers indicate that loss of genes on chromosomes 3p, 6q,  

8p, 9q, 11p, 13q, 17p, and 18q may contribute to tumorigenic transformation of  

human urothelial cells (13, 60).  

CARCINOGENECITY OF ARSENIC AND CADMIUM  

Arsenic is a common environmental chemical. In biological systems, inorganic  

arsenic exists as either arsenate (As5+) or arsenite (As3+). Arsenic in drinking water is  

predominantly inorganic and highly toxic. Inorganic arsenic is detoxified through  

methylation and then methylated arsenicals are eliminated via the urine (61). The  

primary concern for chronic exposure of human populations to arsenic by inhalation  

exposure and contaminated drinking water is its carcinogenic potential. Although  

animal studies do not provide any evidence of carcinogenesis of arsenic, there is  

considerable evidence that arsenic causes cancer in humans. Arsenic is a human  

carcinogen and a leading top priority hazard in the United States (62). Although  

arsenic is associated with various tumors, including lung, skin, bladder and liver, the  

mechanism of arsenic carcinogenesis is still unclear (63). Cadmium is a common  

environmental toxic material. Acute exposure to cadmium produces hepatic,  
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pulmonary, and testicular injury, whereas chronic exposure results in renal and bone  

injury and cancer, as well as toxicity to other organs. Even though cadmium is  

officially classified as a carcinogen by International Agency for research on Cancer  

(IARC) based on animal studies, the molecular mechanism of cadmium-induced  

carcinogenesis remains controversial (64). Recent reports have demonstrated the  

malignant transformation of immortalized cell lines by continuous exposure to heavy  

metals (65, 66). These trials are useful for better understanding of heavy metalinduced  

transformational mechanisms.  

OBJECTIVES OF THIS STUDY  

This laboratory’s interest in MT-3 originated from recent observations that MT-3  

was overexpressed in all human bladder cancers, but was not expressed in normal  

urothelial cells (67). The level of MT-3 expression correlated to the grade of the  

bladder cancer and was elevated in dysplastic lesions. These features suggested that  

MT-3 might be developed as a biomarker for human bladder cancer. Recently, a new  

cell culture model of human urothelium was developed by this laboratory through  

altering the growth medium formulation of the previously isolated UROtsa cell line  

from a serum-containing to a serum-free medium (68, 69). UROtsa cells maintained  

in serum-free medium have several morphological features of transitional epithelium  

of the urinary bladder including a multilayered appearance and apical location of  

umbrella-like cells which exhibit tight junctions. These cells also have a basal  

expression pattern of MT similar to that observed in in situ urothelium. The UROtsa  

cell line does not express the MT-3 gene and may serve as a useful in vitro system for  
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the normal human urothelium for this study.  

The first aim of these studies was to determine if there is a functional  

consequence of forcing MT-3 overexpression onto the MT-3 null background known  

to exist in the normal urothelial cell. In chapter three, the UROtsa cell line was stably  

transfected with MT-3 cDNA under control of the cytomegalovirus (CMV) promoter  

and the effect of MT-3 overexpression in the UROtsa cell line was demonstrated.  

Heavy metal exposure was chosen for induction of MT gene expression and two  

metals having diverse exposure patterns in human were studied: cadmium, an  

environmental pollutant, and zinc, a nontoxic essential trace element.  

The second goal of the study was to determine transformational ability of  

cadmium or arsenic on the UROtsa cell line. Recently the carcinogenic effect of  

cadmium and arsenic was reported, but the molecular mechanism of carcinogenesis is  

not clear (70, 71). In chapter four, UROtsa cells were cultured with cadmium or  

arsenic for up to 10 months. The possibility of transformation of these UROtsa cells  

was tested by measurements of growth rate, a soft agar assay, and tumor formation  

after injection into nude mice. The protein samples also were collected during this  

period and MT protein levels were measured.  

The final goal of these studies was to assess the role of MT in cadmium or arsenic  

induced carcinogenesis. Even though MT was overexpressed in several human  

tumors, the functional role of MT in protection of tumor cell growth is poorly  

understood. In chapter five, histological observations of nude mice that were injected  

by transformed UROtsa cells were performed. The expression of MT was also tested  
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by immunohistochemistry. 
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Cell Culture  

The UROtsa cells were cultured as previously described (1). Stock cultures of  

UROtsa cells were grown in T 75 flasks (Corning, Cat No.430720) in 15 ml of regular  

medium or serum-free medium. The regular medium is Dulbecco’s modified Eagles’  

medium (DMEM, Gibco-BRL Cat No 31600-75) with 5 % serum (Hyclone Laboratories,  

Cat No SH30070-03). The serum-free medium is composed of a 1:1 mixture of DMEM  

and Ham’s F-12 (Gibco-BRL Cat No 21700-109) supplemented with selenium  

(Collaborative Biomed Cat No 40201, 5 ng/ml), insulin (Collaborative Biomed Cat No  

40310, 5 µg/ml), transferrin (Collaborative Biomed Cat No 40204, 5 µg/ml),  

hydrocortisone (Sigma Cat No H0135, 36.4 ng/ml), triiodothyronine (Sigma Cat No  

T5516, 4  pg/ml) and epidermal growth factor (Gibco-BRL Cat No 13247-051, 10 ng/ml).  

The medium was filtered and kept at 4OC. The serum-free medium was kept for only one  

week at 4OC .  UROtsa cells were fed fresh growth medium every three days, and at  

confluence (normally 6-12 days post subculture), the cells were subcultured at a 1:4 ratio  

using 0.05 % trypsin-0.02 % EDTA (Gibco-BRL Cat No 25300-062). To subculture  

UROtsa cells, cells were washed with PBS. After removal of PBS, 5 ml Typsin-EDTA  

was added to the cells. The T75 flask was incubated on 37 OC warm plate until cells were 

detached. The cell suspension was collected into 50 ml tube and centrifuged at 1000x 

RPM for 5 minutes at room temperature. The cell pellet was resuspended with 4 ml cell  

culture medium and transferred 1ml of cell suspension to a new T75 flask.  

Stable Transfection of UROtsa Cells  

The coding sequence of the human MT-3 gene was obtained from human  
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proximal tubule cell RNA by RT-PCR using MT-3 specific primers (2). The RT-PCR  

products were blunt-end ligated into the EcoRV site of pcDNA3.1/hygro (+) (Invitrogen,  

Carlsbad, CA). The human MT-1E containing pcDNA3.1/hygro (+) plasmid was made  

by the same strategy (2). This vector has a cytomegalovirus immediate-early promoter  

upstream of the multiple cloning site and a hygromycin B resistance gene driven by an  

SV40 early promoter. Fsp I restriction endonuclease which cuts the vector once at the  

bacterial amphicillin resistance gene was used to linearize the vector construct before  

transfection. The construct was transfected into UROtsa cells using Effectine transfection  

reagent (Qiagen, Valencia, CA). The day before transfection, cells were fed with fresh  

5 % FBS- Dulbecco’s modified Eagles’ (DME) medium. The parameters of the  

transfection were 1:10 plasmid to Effectine and 2 µg DNA per 9.6 cm2 well. Cells (6 µl  

of 0.1 µg/µl linearized plasmid, 4.8 µl of enhancer, 6 µl of effectine) were incubated with  

the lipid-DNA complexes for 24 hours followed by normal growth medium for 24 hours  

at which time the cells were trypsinized and seeded at 10 % confluence for selection in 30  

µg/ml hygromycin B. Clones were isolated using cloning rings (Sigma, St. Louis MO)  

and propagated in 30 µg/ml of hygromycin B. The stably transfected clones were  

identified by MT isoform specific RT-PCR and cultured with serum-free medium for  

further investigation.  

Exposure to cadmium and zinc  

The confluent cells in T75 flasks were fed with fresh serum-free medium 24 hours  

prior to subculture. The cells were seeded to 1:4 ratios into six-well plates and fed with 3  

ml of fresh media every three days until 80 % confluence. When cells had reached 80 %  
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of confluence, they were exposed to cadmium or zinc. The zinc and cadmium were  

dissolved in water at a concentration of 0.1 mg/ml, filtered, divided into 1 ml of aliquots  

and kept at room temperature. The concentrations of CdCl2 utilized were 1, 5, 9 µM and  

those of ZnSO4 were 50 and 100 µM. The cells were fed with fresh growth medium  

containing the metals every 72 hours for 16 days. Protein and RNA were collected at the  

time points of 6, 12, 24, 36, 48, 72, and 96 hours after exposure to metals. MTT assay  

was performed at the same times.  

MTT Assay  

The MTT assay was performed to assess the cytotoxic effect of cadmium or zinc  

on UROtsa cells (3). The cellular viability was determined by measuring the production  

of formazan from MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide;  

Sigma, Cat No M-5655).  MTT was dissolved in DMEM media (5 mg/ml), filtered  

through a 0.2 µm Acrodisk filter (Gelman Laboratory, Ref 4192), and kept at -20 OC as 1  

ml aliquots. The cells were cultured in six-well plates and 40 µl of 5 mg/ml of MTT  

solution was added to each of the six-well plates. After 3.5 hours later in a CO2 incubator,  

the cells were rinsed with PBS buffer once and 1ml of acidic propanol (416 µl of abs HCl  

in 50 ml isopropanol) was added to each well. After 5 minutes, 200 µl aliquots were  

applied in triplicate from each six-well plate and placed in a 96-well plate. The first two  

wells of 96-well plate contained 200 µl of acidic propanol as a blank, and the absorbance  

of converted dye was measured by a Dynatech MR5000 plate reader (Dynatech Inc.,  

Guernsey Channel Islands) at a wavelength of 570 nm with background subtraction of  

630 nm.  
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Isolation of RNA  

Cells were cultured in six-well plates and fed the day before harvesting RNA.  

Total RNA was isolated according to the protocol supplied with TRI REAGENT TM  

 (Molecular Research Center, Inc. Cincinnati, OH). After removal of media, cells were  

incubated with 1 ml TRI reagent for 10 minutes at room temperature. All cell lysates  

were kept at -70 OC before further investigation. The cell lysates were thawed at room  

temperature and added to 0.1 ml BCI reagent. After vortexing for 20 seconds, cell lysates  

were kept at room temperature for 15 minutes. After centrifugation at 4 OC for 15 

minutes at 12,000xg, the upper aqueous phase was transferred into a new tube. After 

adding 0.5 volume of isopropanol, mixtures were incubated at -20 OC overnight. 

Mixtures were centrifuge at 4 OC for 15 minutes. The pellets were washed with 70 % 

ethanol twice and dried for 10 minutes. Cell pellets were resuspended in 25 µl of RNA-

free water and stored at -70 OC.  For RNA quantitation, 2 µl RNA solution and 98 µl Tris 

buffer (1 mM Tris-HCl, pH 8.0) were mixed thoroughly and read at 260 and 280 nm with 

a spectrophotometer. The total RNA was diluted to 0.5 µg RNA / 3 µl dH2O. Before 

being used for RT-PCR, RNA solutions were kept at -70 OC.  

RT-PCR  

Total RNA was diluted to 0.5 µg/ 3 µl with water. Total RNA was reverse  

transcribed with random hexanucleotide primers and subjected to PCR using the  

Gene/Amp RT-PCR core kit (Applied Biosystems, Forster City, CA) according to the  

manufacturer’s protocol. The composition of reverse transcription master mix was 5 mM  

MgCl2, 1x PCR Buffer II (50 mM KCl and 10 mM Tris-HCl, pH 8.3), 1 mM dATP, 1  
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mM dCTP, 1 mM dTTP, 1 mM dGTP, 2.5 mM random hexamers, 1 U/µl RNase 

inhibitor and 2.5 U/µl MuLV reverse transcriptase. Aliquots of 1.5 µl of RNA samples 

(0.5 µg/ 3 µl) were placed in sterile PCR reaction tubes on ice. After adding 8.5 µl of 

master mix reagents, each reaction tube was gently mixed. The thermocycler (GeneAmp 

PCR system 9700, Applied Biosystems) ran for a single cycle of 25 OC for 10 minutes, 

42 OC for 20 minutes, 99 OC for 5 minutes. The reverse transcribed product was either 

used for PCR or kept at -20OC.  

PCR master mix was composed of 2 mM MgCl2, 1x PCR Buffer II, specific upper 

and lower PCR primers, and 1.25 U AmliTag DNA polymerase with total 40 µl of 

volume with water. Primers for MT-1E were 5’ GCTTGTTCGTCTCACTGGTG 3’, and 

5’ CAGGTTGTGCAGGTTGTTCTA 3’ (product size, 284 bp); for MT-1X, 5’  

TCTCCTTGCCTCGAAATGGAC 3’, and 5’ GGGCACACTTGGCACAGC 3’ (product  

size, 151 bp); for MT-2A, 5’ CCGACTCTAGCCGCCTCTT 3’, and 5’  

GTGGAAGTCGCGTTCTTTACA 3’ (product size, 259 bp). The primers for MT-3 were,  

upper 5’ CCGTTCACCGCCTCCAG 3’, and lower 5’  

CACCAGCCACACTTCACCACA 3’ (product size, 325 bp). The primers for the  

determination of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were (upper and  

lower, respectively), 5’ TGAAGGTCGGAGTCAACGGATTTGGT 3’ and 5’  

CATGTGGGCCATGAGGTCCACCAC 3’ (product size, 983bp. Clonetech Cat No  

5406). The primers for the pcDNA3.1hygro(+) vector were  

5’CGGATCCACTAGTCCAGTGTG3’ and 5’ACGGGCCCTCTAGACTCG 3’. All MT  

primers were obtained from Gibco-BRL. Final concentration of primers for PCR was 0.1  
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µM except MT-1X primers. The final concentration of MT-1X primers for PCR was 0.4  

µM. After adding 40 µl of master mix into reverse transcribed product, tubes were mixed  

gently. All PCR reactions were started with a 95 OC hot start for 2 minutes immediately  

prior to cycling. For all PCR reactions the thermocylcer was programmed to cycle at  

99 OC for 5 minutes, 68 OC for 30 seconds using GeneAmp PCR System 9700 machine.  

Aliquots of 15 µl of PCR products were taken at 25, 30, 35 or 40 PCR cycles 

from each reaction tube and combined with 1.5 µl of 10 x gel loading buffer. Controls for 

each PCR included a no-template control where water was added instead of the RNA and 

a noreverse transcriptase control where water was added instead of the enzyme. For gel  

analysis, 2 % agarose (Perkin-Elmer, Cat No 930-2774) was mixed with 0.5x TBE buffer  

(Gibco-BRL, Cat No 15546-013) and heated in a microwave until the agarose was  

dissolved completely. After cooling at 60 OC, ethidium bromide (0.5 µg/ml) was added to  

TBE buffer and poured into a gel mold. Ten µl of RT-PCR product in loading dye was  

loaded into each well and 10 µl of Hi-Lo TM DNA marker was used for size marker. The  

gels were run at 120 mV for approximately 1-2 hours. The RT-PCR products were  

visualized on a UV transilluminator. Digital images of the gels were obtained by  

KODAK Professional DCS 420 digital camera interfaced with Adobe Photoshop TM  

software, and the intensity of the RT-PCR product bands were quantitated as integral  

optical densities (IODs) by Kontron KS 400 image analysis software (Carl Zeiss Vision).  

Protein Preparation from cultured cells  

The cells were fed with media the day before harvesting proteins. The cells in six-

well plate were rinsed with PBS twice, collected with 500 µl of fresh made cell lysis  
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buffer (10 mM Tris-HCl, pH 8.0, 1 mM DTT) and kept at -70 OC until further  

investigation. The cell lysates were thawed at 37 OC in a water bath and frozen with 

liquid N2. This step was repeated three times. The cell lysates were passed through a 22 

gauge needle for several times. After centrifuging for 5 minutes at 12,000xg, the 

supernatant was transferred into a new tube. Protein was quantitated by the Bradford 

method (BioRad, Ca No 500-0006). The protein was diluted to 1.5 µg/10 µl in cell lysis 

buffer and kept at - 70OC until further investigation.  

Protein Immuno-dot Blot  

An immunoblot procedure was described previously (4, 5). For MT-1 and 2 dot  

blot, 0.75 µg of total protein was used. The protein samples were arranged in triplicate in  

96-well plates, and each sample well contained 10 µl (0.75 µg) of total protein. For the  

MT-1 and MT-2 standards (0, 0.5, 1, 2, 4, 7, 10, and 15 ng MT protein), 1.5 times the  

final concentration of MT-1 standard protein (Sigma) was arranged in two rows, with  

each standard well contained 0.75 µg of protein extract from the MT null cell line. The  

final volume of standard and sample wells was brought up to 75 µl with phosphate buffer.  

The 75 µl of 3 % glutaraldehyde was added into the each well and mixed well. Until  

loaded on dot blot apparatus, 96-well plates were wrapped with saran brand wrap to  

prevent evaporation of samples.  

For MT-3 dot blot, 1.5 µg of total protein was applied. For MT-3 standard protein  

(0, 0.01, 0.02, 0.04, 0.06, 0.1, 0.2, and 0.3 ng protein), was prepared with 1.5 times  

conjugated synthetic peptide (Sigma) and 1.5 µg of BSA protein.  

A Sequi-Blot TM PVDF membrane (Bio-Rad, Cat No 162-0182) was soaked in  
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methanol for 30 seconds. After washing with dH2O, the membrane was soaked in PBS  

until used for the immuno-blot. The dot blot apparatus was assembled and the lower  

chamber of apparatus was filled with approximately 50 ml of PBS buffer with a syringe.  

The syringe remained attached to the drain tube while the PVDF membrane was carefully  

placed over the holes of the plastic adapter without any air bubbles. The top plate was  

secured to the lower chamber and the wells were filled with 600 µl of PBS buffer. The  

plunger of syringe was pulled out until the wells began draining by gravity. The syringe  

was removed and PBS buffer was drained completely. Hundred µl of the samples were  

applied to the membrane. After the samples drained completely, 200 µl of PBS was  

applied to the membrane twice and then drained completely. The membrane was  

removed from the dot blot apparatus, soaked in PBS and kept at 4 OC  for overnight.  

The membrane was incubated in 50 ml of blocking agent (10 % nonfat milk in  

PBS buffer) for 1 hour while shaking a 200 rpm. After washing quickly with 50 ml of  

PBS three times, the membrane was incubated three times in PBS buffer for 15 minutes.  

The membrane was incubated with 50 ml of primary antibody for 1 hour. The antibody  

against MT-1 and MT-2 was E9 antibody (DAKO, Code No M639). This antibody was  

diluted to 1:100 with incubation solution (1 % BSA, 0.02 % NaN3 in PBS). The primary  

antibody solution against MT-3 solution was composed of 0.187 µg/ ml of primary  

antibody with 1 % BSA and 0.02 % NaN3 in PBS buffer. After three times quick washing 

with 50 ml of PBS buffer, the membrane was rinsed three times with PBS for 15 minutes. 

After incubation with the secondary antibody for 1 hour, the membrane was washed as 

above. The secondary antibody for MT-1 and MT-2 was 1:500 dilution of anti- 
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mouse IgG antibody (Promega, Cat No S372B) with incubation solution (0.4 %BSA, 

0.02% NaN3 in PBS buffer). The secondary antibody for MT-3 was 1:500 dilution of 

anti-rabbit antibody (Promega, Cat No S3831) with incubation buffer (0.4 %BSA, 

0.02 %NaN3 in PBS buffer). The membrane was rinsed with alkaline phosphatase buffer 

(10 mM Tris- HCl, pH8.0) for 5 minutes. Colorimetric detection of the alkaline 

phosphatase conjugated secondary antibodies was performed by VectorR Blue alkaline 

phosphatase substrate kit III (Vector Laboratories, Cat No SK-5300). The solutions 1, 2, 

and 3 were added respectively into 25 ml of alkaline phosphatase buffer and mixed gently. 

The detection solution was poured on the membrane. The dot blot was developed until 

the proper color was visible. After the membrane was washed with water, it was left to air 

dry on a piece of paper towel for overnight. After the membrane was scanned as a digital 

image, the intensity of dots was measured by KS400 software. The intensity was 

quantitated by linear regression in Microsoft Excel.  

The antibody against MT-3 protein was generated by immunizing New Zealand  

White rabbits with the dodecapeptide GGEAAEAEAEKC (corresponding to MT-3  

amino acid, 53-64, which contains the MT-3 unique amino acid insert) conjugated  

through the C-terminal cysteine SH group to keyhole limpet hemocyanine using  

maleimidobenzoyl-N-hydroxysuccinimde ester. The MT-3 antibody was affinity purified  

using the dodecapeptide linked to SulfoLink gel (Pierce, Rockford, IL) through the C-

terminal cysteine residue.  

Chronic exposure to arsenic or cadmium of UROtsa cells  

NaAsO2 was prepared as a 1 mM stock solution with water and added to cell  
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culture medium before feeding cells. The passage numbers of UROtsa cells in serum and  

serum-free medium were 88 and 51, respectively. Cells were fed with 1 µM arsenic  

containing fresh medium once every three days. Two months later cells were fed every  

other day with extra glucose because cells would die due to cellular toxicity resulting  

from acidic pH of the medium. Approximately three months after exposure to arsenic,  

cells began growing fast. Therefore, the cells were subcultured 1:10 ratio after three  

months exposure. The untreated UROtsa cells were usually subcultured 1:4 ratio and  

reached 100% of confluence in 7-8 days after subculturing. These chronically arsenic  

exposed UROtsa cells were subcultured 1:10 ratio and reached 100 % of confluence in 5-  

6 days after subculturing.  

UROtsa cells were cultured on 6 well plates both with regular and serum free  

media. Upon reaching 90 % confluence, 1 µM CdCl2 was added into each well. After  

cells reached confluence, cells were subcultured at 1:4 ratio in T75 flasks. Transfer  

resulted in 90 % cell death followed by regrowth of the cells. The cells were fed with  

fresh media containing metals once every three days. One month later, after the cells  

were transferred into the T75 flask, extra glucose (1 mg/ml) was added to cell culture  

medium and two months later, cells were split 1:10 ratio. The RNA and protein samples  

were collected every four serial subcultures.  

Growth rate of transformed UROtsa cells  

Cells were cultured in T75 flask with or without 1 µM CdCl2 or 1 µM NaAsO2.  

After being trypsinized and resuspended, cells were seeded to a 1:20 ratio in six-well  

plates with or without metals. The exposed UROtsa cells were used as a control. For  
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rescued condition, exposed cells were cultured without arsenic or cadmium for two  

weeks. Then cells were seeded to 1:20 ratio in 6 well-plates and maintained without  

arsenic or cadmium and monitoered the growth rate by recording absorbance at 570 nm  

every 24 hours for 6 days by MTT assay. The growth rate, expressed as doubling time,  

was calculated from the slope of linear regressed plots of LN (cell number) vs. time (6).  

The absorbance at 570 nm was measured instead of cell numbers in this study; slope was  

calculated after absorbance value was multiplied by 100 and integrated. The integrated  

value was used for regression and the x value was used for slope.  

Soft Agar Assay  

Soft agar assays were performed using standard procedures (7). 1.01 % of noble  

agar in DMEM was heated until dissolved on the hot plate. After mixing with the same  

volume of 1.01 % noble agar and cell culture media, 5 ml mixture (0.55 % agar) was  

poured in 60 mm plates and solidified at room temperature. The remaining mixtures were  

kept at45 OC water bath to prevent solidification. After trypisinization, cells were  

resuspended in culture media and counted. 2x 105 cells in medium were mixed with half  

volume of 0.55 % noble agar containing medium. 1.5 ml of 2x105 cells in 1.5 ml of  

0.275 % noble agar containing medium was poured onto the 5 ml of bottom layer of  

0.55% noble agar containing medium in 60 mm dish. The 60 mm dishes were put inside  

the box which has two water contained beakers. This moisturized box prevented  

dehydration of soft agar in 60 mm dishes. Then this box was put back to the cell culture  

incubator. The next day cells were observed under microscope to make sure all cells were  

single. One week later, cells were observed under the microscope to see how many cells  
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formed colonies. Three weeks later, colonies containing more than 10c ells were  

photographed and counted.  

Nude Mice and Transformed Cell Injection  

A nude mouse tumorigenicity assay was performed (8). Athymic nude mice (NCr 

nu/nu) were obtained through the National Cancer Institute. All animal care procedures 

were in strict accordance with state of the art animal resource facility (20,600 GSF 1, 

7950 NSF). All animals were fed with LabDiet5001 (TestDiet). Four different  

transformed cell types were injected into nude mice: 1 µM cadmium exposed UROtsa  

cells in serum medium, 1 µM cadmium exposed UROtsa in serum-free medium, 1 µM  

arsenic exposed UROtsa in serum medium, and 1 µM arsenic exposed UROtsa in 

serumfree medium. Transformed cells were cultured in T75 flasks. The cells were 

trysinized and centrifuged briefly. The cells were resuspended with 1 ml of PBS buffer. 

The resuspended cells were inoculated subcutaneously in the dorsal thoracic midline of 

11 approximately eight-week-old female nude mice for each transformed cell lines. All 

mice were sacrificed 5-9 weeks after injection. Each tumor sample was divided into three  

pieces for histology, RT-PCR and protein dot blot. For histology, tumor tissue was kept  

in 10 % formalin after removal from mouse. For RT-PCR and protein dot blot, tumor  

tissue was kept in liquid N2 before transferring to – 70 OC  for further investigation. PC-3,  

the prostate cancer cell line, was used as a control for this experiment.  

Hematoxylin and Eosin Staining  

The tumor was removed from the nude mouse and cut out as a small piece of  

tissue (usually 10 mm x 10 mm x 3mm) and fixed overnight in 10 % neutral formalin.  
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The tissues were incubated in two washes of 10 % formalin for one minute each, 70%  

alcohol for one minute, 95 % alcohol for one minute and fourth washes of 100 % alcohol  

for one minute four times. Dehydrated tissues were cleared in xylene, infiltrated and  

embedded in paraffin, and sectioned with a sharp knife at 5 µm thick as serial sections.  

The serial sections were put on covered slide and dried. The slides were kept at room  

temperature until further investigation. The slides were deparaffinzed by three times  

incubation of clean xylene for three mintues, followed by two washes from absolute  

ethanol to 95, 80, and 70 % ethanol, and washed in distilled water for two minutes. The  

slides were incubated with hematoxylin for seven minutes, dipped 10 times in tap water,  

dipped 3-5 times in acidic alcohol (3 % HCl in 70 % ethanol), and washed in tap water.  

Tissue was dipped 3-5 times in lithium carbonate, washed in tap water and stained in  

eosin for 45 seconds. The tissue was dehydrated by washed in 95 and 100 % alcohol  

twice. Finally, tissue was incubated with xylene twice for three minutes and covered with  

cover slip and dried at room temperature.  
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Introduction  

Recent studies demonstrate that MT-3 is up-regulated in human bladder cancer  

and might serve as a biomarker for bladder cancer because it is not expressed in normal  

urothelium but is overexpressed in most bladder cancers, with expression correlating  

directly to increasing tumor grade (1, 2). Immunohistochemical analysis showed that  

MT-3 staining was intense in both carcinoma in situ and high-grade bladder cancer, and  

low to moderate in low-grade cancers and dysplastic lesions. This was based on  

determining the localization and expression of the MT-3 protein and mRNA in fresh and  

archival biopsy specimens from patients undergoing differential diagnosis for a variety of  

bladder disorders. While these observations suggest an important role for MT-3 in human  

bladder cancer, there are only limited data in humans and animals for development of a  

hypothesis to explain the up-regulation of MT-3 gene expression.  

The UROtsa cell line was derived from the normal urothelium lining the ureter of  

a 12-year-old girl and was immortalized by SV40 large T-antigen (3). The cells did not  

acquire characteristics of neoplastic transformation as noted by lack of colony formation  

in the soft agar and growth of tumors in nude mice (3). The previous study showed that  

propagation of the UROtsa cell line on serum-free growth medium results in expression  

of structural features of differentiated urothelium (4). Ultrastructure analysis has shown  

detailed organization of these multilayered mounds and freeze-fracture has revealed the  

presence of specialized intercellular junctions including zonula occluden. These findings  

are significant in that UROtsa appears to have similar characteristics of in vivo human  

urothelium. Previous studies also showed that the UROtsa cell line didn’t express MT  
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isoform 3 and thus this cell line was suggested as a useful model system for determining  

functional consequence of forcing MT-3 overexpression on the normal urothelial cell (4).  

Objectives of the Study  

The first goal of this study was to see the effect of MT-3 overexpression in the  

normal human bladder epithelial cell line. The second goal was to develop the UROtsa  

cell system as a model for the overexpression of MT-3 in bladder cancer and the MT  

stress response of normal urothelium.  

Results  

The UROtsa cell line was stably transfected with MT-3 gene under control of the  

cytomegalovirus (CMV) promoter, or the blank vector without the MT-3 gene. The  

stable transfectants were selected by 30 µg/ml hygromycin B. The selected clones were  

cultured in serum-free medium for further investigation. As confirmed in the previous  

study, MT-3 mRNA was not detected in the blank vector transfectants and parental  

UROtsa cells by 40 cycles of PCR at an input of 500 ng total RNA (Fig 1A). Immuno-dot  

blot analysis of the corresponding protein sample from these wild type UROtsa cells  

demonstrated no detectable MT-3 protein (data not shown). Four MT-3 transfected clones  

were selected for the further investigation. MT-3 mRNA was detected at 25 cycles of  

PCR and 500 ng of total RNA inputs (Fig 1A). RT-PCR of glyceraldehydes 3-phospate  

dehydrogenase (gapdh) in all these cells was performed as a control of input of amount of  

total RNA (Fig 1B). In contrast to the high levels of MT-3 mRNA expression, the MT-3  

protein was not detected in these MT-3 transfected clones (data not shown). To confirm  

this data, sixteen more clones were selected and analyzed by RT-PCR and immuno-dot  
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Fig. 1. Stable overexpression of MT-3 mRNA in UROtsa cells. Total RNA was  
isolated from nontransfected cells and clones of MT-3 or control vector-transfected cells  
and RT-PCR was performed. (A) MT-3 mRNA was detected from each of the four MT-3  
transfected clones at 25 cycles of PCR with MT-3 specific primers. MT-3 mRNA was not  
detected from nontransfected and control vector-transfected clones at 40 cycles with MT-  
3 specific primers. (B) RT-PCR for the housekeeping gene, glyceraldehydes 3-phosphate  
dehydrogenase (gapdh), performed at 30 cycles with gapdh specific primers. The total  
RNA was used from the same RNA in (A).  
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blot for MT-3 protein. All selected clones of MT-3 transfected UROtsa cells showed the  

expression of MT-3 mRNA (Fig 2A). All sixteen MT-3 transfected clones did not express  

noticeable levels of MT-3 protein (Fig 2B). To confirm that the MT-3 gene inserted into  

pcDNA3.1/Hygro (+) plasmid construct was functional, the plasmid construct was  

transfected into PC-3 (prostate cancer), HS578T (breast cancer), HK-2 (kidney), and  

MCF-7 (breast cancer) cell lines. RT-PCR data confirmed the successful isolation of MT-  

3 transfected clones from each cell line. The immuno-dot blot data also showed  

successful expression of MT-3 protein from the alternative cell lines (Fig 2B). These  

results demonstrate that the low accumulation of MT-3 protein in transfected UROtsa  

clones was neither because of MT-3 plasmid misconstruction nor problems with the MT-  

3 immuno-dot blot detection system. The UROtsa cells containing the MT-3 vector were  

named UROtsa(MT3) cells and those containing the unmodified vector named  

UROtsa(3.1).  

There are several indications that induction of MT protein synthesis is blocked by  

RNA synthesis inhibitors even though mRNA level is increased (5). The half-lives of MT  

are tremendously different when bound to various heavy metals (6). These studies  

suggest that MT accumulation is also regulated by post-transcriptional processes or  

protein stabilities. This hypothesis also is supported by previous studies that exposure of  

cells to cadmium and copper can increase the level of the MT-1 and MT-2 at the 

posttranscriptional level by stabilizing the protein against degradation (7, 8,9). Even 

though MT-3 protein is synthesized in UROtsa(MT3) cells, protein may be degraded 

rapidly due to lack of metals to bind. To test this hypothesis, UROtsa(MT3) and  
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Fig. 2. Expression of MT-3 in 16 MT-3 gene transfected UROtsa clones compared to  
other MT-3 gene transfected cell lines. (A) The mRNA expression assessed by RTPCR  
and reported as relative IOD (IOD of the MT-3 RT-PCR product band at 30 cycles  
normalized to that of GAPDH at 30cycles). (B) MT-3 protein expression was measured  
by immuno-dot blot. PC-3 is prostate cancer cell line , HK-2 is kidney cell line, and  
HS578T and MCF-7 are breast cancer cell lines. Triplicate RT-PCR and immuno-dot blot  
were analyzed and shown are the mean and standard error.  
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UROtsa(3.1) cells were exposed to metals and MT-3 protein was measured. The cells 

were cultured with 1, 5 and 9 µM concentration of cadmium in serum-free medium up to 

16 days. Cell viability was determined by the MTT assay. MTT assay data showed no 

cellular toxicity with 1 µM CdCl2, intermediate level of cell death with 4 µM CdCl2 and 

a high level of cell death with 9 µM CdCl2 in both UROtsa(MT3) and UROtsa(3.1) cells 

(Fig 3A.,3B). There was no difference in sensitivity to cadmium between UROtsa(MT3) 

and UROtsa(3.1) cells. The total RNA and proteins were collected from these cadmium 

exposed cells for RTPCR and immuno-dot blot. Previous study showed that MT-1E, MT-

1X and MT-2A were expressed in UROtsa cell line (4). As expected, mRNAs of MT-1E, 

MT-1X and MT-2A were induced by cadmium in both cell types (Fig 4, Fig 5). Exposure 

of UROtsa(MT3) cells to cadmium had no effect on the expression of the MT-3 protein 

compared to UROtsa(3.1) cells at any point in the time course up to 96 hrs (Fig. 6). In 

contrast, an identical exposure to cadmium produced significant increases in the MT-1 

and MT-2 protein at all concentrations of cadmium both UROtsa(MT3) and UROtsa(3.1) 

cells (Fig. 7).  

Zinc is an essential metal during cell proliferation and differentiation (10).  

Intracellular levels of zinc are critical for induction of the MT genes since metal response  

element transcription factor -1 (MTF1) is a zinc-finger transcription factor and is well  

known as trans-acting element for MT gene expression (11, 12). Several studies have  

shown that zinc containing MT shows more resistance to protease than cadmium  

containing MT and cadmium and zinc may regulate MT in differently (13). To test  

whether or not zinc may stabilize MT-3 protein, UROtsa(MT3) and UROtsa(3.1) cells  
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Fig. 3. Viability of UROtsa(3.1) and UROtsa(MT3) cells exposed to cadmium  
chloride. Cell viability was determined by MTT assay and all determinations were made  
in triplicate. The graphed values are expressed as percentages of mean absorbance of  
treated cells divided by the mean absorbance of control cells for each triplicate  
determination. (A)Viability profiles of UROtsa(3.1) (B) UROtsa(MT3). Triplicate of  
immuno-dot blot were analyzed and shown are the mean and standard error.  
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Fig. 4. Expression of metallothionein isoforms in UROtsa(3.1) cells exposed to  
cadmium chloride The cells were exposed to three levels of cadmium for up to 96 hours  
and harvested at the indicated time points. (A) Expression of MT-1E mRNA at 33 cycles.  
(B) Expression of MT-1X mRNA at 28 cycles (C) Expression of MT-2A mRNA at 28  
cycles. The IOD of the MT RT-PCR product normalized to that of GAPDH (25 cycles)  
and divided by control IOD. Triplicate culture samples were analyzed and shown are the  
mean and standard error.  
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Fig. 5. Expression of metallothionein isoforms in UROtsa(MT3) cells exposed to  
cadmium chloride. The cells were exposed to three levels of cadmium for up to 96  
hours and harvested at the indicated time points. (A) Expression of MT-1E mRNA at 33  
cycles. (B) Expression of MT-1X mRNA at 28 cycles (C) Expression of MT-2A mRNA  
at 28 cycles. The IOD of the MT RT-PCR product normalized to that of GAPDH (25  
cycles) and divided by control IOD. Triplicate culture samples were analyzed and shown  
are the mean and standard error.  
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Fig. 6. Expression of metallothionein-3 in UROtsa(MT3) cells exposed to cadmium  
chloride. The cells were exposed to three levels of cadmium for up to 96h and harvested  
at the indicated time points. Levels of MT-3 protein were determined using an 
immunodot- blot with an MT-3 specific antibody. Shown are the means and SE of 
triplicate cell samples.  
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Fig. 7. Expression of metallothionein-1/2 protein in UROtsa(3.1) (A) and  
UROtsa(MT3) (B) cells exposed to cadmium chloride. Nanograms of MT-1/2 protein  
expressed at various time points in UROtsa cells exposed to three levels of cadmium up  
to 96h and harvested at the indicated time points . Levels of MT-1 and 2 proteins were  
determined using an immuno-dot blot with an E9 antibody. Shown are the means and SE  
of triplicate cell samples.  
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were exposed to zinc chloride for up to 72 hours. MTT assay showed that 50 and 100 uM  

zinc were not lethal (Fig. 8). MT-3 protein did not accumulate (Figs.9, 10). In contrast,  

MT-1 and MT-2 proteins were induced by zinc up to four folds.  

The conclusion drawn from studies with UROtsa(MT3) cells is that transfected  

MT-3 gene is successfully transcribed but not translated very efficiently. As discussed  

earlier, MT-3 is different from other metallothionein isoforms in many ways. Therefore,  

it was of interest to determine whether or not other MT isoforms are translated in UROtsa  

cell line. The MT-1E is one of the common and well studied isoforms. To confirm that  

MT-1E had been successfully transfected into UROtsa cells, pcDNA3.1/Hygro (+)  

specific primer was used for RT-PCR because the UROtsa cells showed basic level of  

MT-1E mRNA. RT-PCR for 30 cycle data showed that MT1E was successfully  

transfected and transcribed (Fig. 11). The MT-1E transfected UROtsa cells were named  

UROtsa(MT1E). The UROtsa(MT1E) cells were exposed to 1, 5, and 9 µM CdCl2 up to  

96 hours. The MTT assay showed no toxic effect of cadmium at any time course (Fig. 12).  

The MT-1 and MT-2 proteins in UROtsa(MT1E) were increased more than 60 %  

compared to the basal levels in UROtsa(3.1) (Fig. 7A, Fig. 13). This result demonstrated  

that the inserted MT-1E gene was transcribed and translated in the UROtsa cell line.  

Discussion  

The initial goal of this study was to investigate that the consequences of the stable  

transfection of MT-3 gene into immortalized human urothelial cell line. The stable  

transfection of MT-3 resulted in the expected overexpression of MT-3 mRNA but the  

level of MT-3 protein was similar to that of the background levels found in the parental  
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Fig. 8. Viability of UROtsa(3.1) (A) and UROtsa(MT3) (B) cells exposed to zinc.  
Cell viability was determined by MTT assay and all determinations were in triplicate.  
The graphed values are expressed as percentages of the mean absorbance of treated cells  
Divided by the mean absorbance of control cells for each triplicate determination.  
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Fig. 9. Expression of metallothionein-1/2 protein in UROtsa(3.1) (A) and  
UROtsa(MT3) (B) cells exposed to zinc.  Nanograms of MT-1/2 protein expressed at  
various time points in UROtsa cells exposed to three levels of cadmium up to 72h and  
harvested at the indicated time points . Levels of MT-1 and 2 proteins were determined  
by an immuno-dot blot with an E9 antibody. Shown are the means and SE of triplicate  
cell samples.  
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Fig. 10. Expression of metallothionein-3 in UROtsa(3.1) (A) and UROtsa(MT3) (B)  
cells exposed to zinc.  Cells were exposed to three levels of zinc chloride for up to 72h  
and harvested at the indicated time points. Levels of MT-3 protein were determined using  
an immuno-dot blot with an MT-3 specific antibody. Shown are the means of triplicate  
cell samples.  
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Fig 11. Stable overexpression of MT-1E mRNA in UROtsa cells.  Total RNA was  
isolated from nontransfected cells and clones of MT-1E or control vector-transfected  
cells and RT-PCR was performed. PCR was performed by using pcDNA3.1 especific  
vector. MT-1E mRNA was detected from MT-1E transfected clones at 30 cycles of PCR.  
MT-3 mRNA was not detected from nontransfected and control vector-transfected clones  
at 30 cycles.  
  

 

 

 

 

 

 

 

                                                                 56 



 

 

 

 

Fig 12. Viability of UROtsa(MT1E) cells exposed to cadmium chloride. The cell  
viability of MT-1E transfected UROtsa cells was determined by MTT assay. The  
absorbance at 570 nm for each of the three treatments, as well as untreated cells were  
measured in triplicate at hours 6, 12, 24, 36, 48, 72 and 96. Each of the treatments (1, 5  
and 9 µÌ cadmium chloride) was plotted as separate lines expressed as a percentage of  
mean absorbance of treatments divided by mean absorbance of untreated controls for  
each triplicate determination. Shown are the means and standard error of triplicate cell  
samples.  
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Fig 13. Effect of cadmium on MT-1/2 protein expression in UROtsa(MT1E) cells.  
The MT-1E transfected UROtsa cells were exposed 1, 5, and 9 µM cadmium and cell  
lysates were prepared at 0, 6, 12, 24, 36, 48, 72 and 96 hours for determination of MT-1/2  
protein levels.  
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cells and blank vector control. This finding was unexpected since other studies using the  

identical vector and transfection protocol did result in the overexpression of both MT-3  

mRNA and protein. Recent rodent studies demonstrated that there was no clear  

relationship between MT-1 and MT-2 mRNA and protein levels (8). In adult mouse  

 injected with copper or cadmium, MT protein levels in liver did not change even though  

mRNA expression increased. In contrast, MT protein levels in kidney increased with  

increased mRNA levels. It is well-documented for MT-1 and MT-2 isoforms that in  

addition to transcriptional control, there is also a component of post-transcriptional  

control that depends on the metal saturation state of the MT-1 and MT-2 proteins (14, 15).  

MT protein is susceptible to degradation when devoid of metal, and stabilizes against  

degradation upon metal binding and saturation of the binding sites. These studies suggest  

that the failure of the stably transfected UROtsa cells to accumulate MT-3 protein in the  

presence of elevated MT-3 mRNA might operate through a similar mechanism involving  

metal saturation and stability of the MT-3 protein. This hypothesis was tested in the  

present study and there was no effect on MT-3 protein accumulation when MT-3  

transfected UROtsa cells were exposed to cadmium. This finding demonstrates that metal  

saturation of MT-3 protein is not a potential mechanism to explain the posttranscriptional  

restriction of MT-3 protein accumulation in the transfected UROtsa cells.  

In contrast, the MT-1 and MT-2 proteins were accumulated to higher levels under  

identical conditions of cadmium exposure in the MT-1E transfected UROtsa cells.  

Several cell lines transfected with MT-1E did not show any difference from parental or  

blank vector transfected cells. These findings are the first indication that some cell types  
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possess a specific mechanism for the post-transcriptional regulation of MT-3 protein  

expression.  

Although the exact mechanism of post-transcriptional regulation of MT-3 protein  

is still unknown, there is evidence that its activity in cell culture may be defined by the  

tissue of origin. The stable transfection of MT-3 gene in several cancer cell lines such as  

PC-3 (prostate caner), MCF-7 (breast cancer) and Hs578T (breast cancer) resulted in  

decreased cell growth rate due to overexpression of MT-3 protein (16, 17). The primary  

human proximal tubule (HPT) cells expressed MT-3 mRNA and protein by stable  

transfection and accumulated increased protein upon exposure to cadmium. The  

immortalized HK-2, proximal epithelial cells, showed increased MT-3 protein upon  

exposure to cadmium in MT-3 transfected clones and formed domes that may involve  

vectoral active transport (18). The MCF-10 (immortalized breast cell line) failed to make  

MT-3 protein after stable transfection (publication under preparation). These studies  

suggest that regulation of MT-3 expression may involve specific function of MT-3  

proteins in different cell types.  

In conclusion, MT-1E and MT-3 genes were stably trasnfected into the UROtsa  

cells. The transfected MT-1E gene was efficiently translated in the UROtsa cells but was  

not MT-3 gene. Even though the transfected MT-3 gene was transcribed in the UROtsa  

cells, the MT-3 gene appears to be regulated at the post-transcriptional level in the  

UROtsa cells. This study indicates that the regulation of MT-3 expression is different  

from other MT isoforms.  
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Introduction  

Human exposure to hazardous chemicals is common due to their wide usage in  

industry and their persistence in the environment. Cadmium is an important industrial and  

environmental pollutant and is classified as a carcinogen by the International Agency for  

Research on Cancer and the US National Toxicology Program based on an association  

between occupational or environmental cadmium exposure and development of cancers  

of the lung, prostate, kidney, liver, stomach and bladder (1). Even though the  

epidemiological studies suggest a link between cadmium exposure and various human  

cancers, mechanisms of cadmium-induced carcinogenesis are still unclear (1). Since  

cadmium is not considered a mutagen, several indirect genotoxic carcinogenic  

mechanisms have been suggested for the altered gene expression and disruption of 

cellcell adhesion. Several studies demonstrated that cadmium may replace Ca2+ in cell-

cell adhesion, resulting in disruption of cell-cell adhesion and changes of gap junctional  

communication (2-4). Chronic exposure to cadmium caused overexpression of cellular  

proto-oncogenes including c-fos, c-jun and c-myc and resulted in change of cellular  

proliferation and modification of signal transduction pathway (5). The environmental  

contaminant arsenic is considered as a human carcinogen. Arsenic occurs naturally in  

drinking water with levels ranging up to thousands of ppb. It is reported that ingestion of  

arsenic leads to skin lesions and an elevated risk of skin cancer (6). The arsenic ingestion  

through drinking water is associated with an elevated number of micronuclei in epithelial  

bladder cells in exposed populations (7). This indicates cytogenetic damage to bladder  

cells and strengthens the evidence that arsenic may cause bladder cancer and other  
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internal cancers. The epidemiological observation supports that arsenic is also associated  

with various cancers in humans, including tumors of the lung, skin, bladder and liver (8).  

Several studies demonstrated that low-level of chronic exposure to arsenic causes  

malignant transformation of epithelial cells by global DNA hypomethylation and aberrant  

gene expression (9-11). Interestingly, arsenic has also been used as an effective  

chemotherapeutic agent in the treatment of certain human cancers especially in leukemia  

(12). The chronic exposure to low concentrations of arsenic induces cell transformation,  

whereas higher concentrations of arsenic induce cell apoptosis (13, 14).  

Several cell culture systems have been developed to investigate the carcinogenic  

mechanism of environmental chemicals in various cancers (15). The bladder cancer is an  

environmentally induced cancer and this cancer is clearly linked with environmental  

chemicals and smoking. Since the major risk factor for bladder cancer is occupational and  

environmental exposure to chemicals, it is important to establish in vitro transformation  

model comprised of human urothelial cells, the common target cells for the these  

environmental contaminants (16, 17). Several reports have demonstrated the successful  

transformation of human uroepithelial cell lines by chronic exposure to various potential  

carcinogens but none have demonstrated the development of arsenic or cadmium-induced  

in vitro transformation model system in human urothelial cell line (18, 19).  

The UROtsa cell line was isolated from a primary culture of normal human  

urothelium through immortalization with a construct containing the SV40 large T antigen  

(20). It proliferates in serum-containing growth medium as a cell monolayer with little  

evidence of uroepithelial differentiation. When these cells are cultured in serum-free cell  
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culture medium, they are differentiated and express known features that strongly  

resemble in situ urothelium (21). These findings suggest that the UROtsa cells grown  

with serum-free medium could be a valuable tool for studying environmental insult to the  

human urothelium in general and in particular the stress response to environmental  

pollutants. The first aim of this study was to determine whether or not chronic exposure  

to low concentration of arsenic or cadmium results in in vitro transformation of human  

urothelial cell line. The second aim of this study was to develop an in vitro  

transformation model system for arsenic or cadmium induced transformation in human  

urothelial cells.  

Results  

In this study, chronic exposure to arsenic or cadmium showed no significant  

morphological difference of UROtsa cells compared with unexposed UROtsa control  

cells (Fig. 14). The cellular morphology is another good indicator for proliferative ability  

of cells. Highly dividing cells show a characteristic small and morphologically  

homogeneous cell type. By contrast, slowly dividing or senescent cells are larger with a  

high incidence of morphological heterogeneity (22). The larger and morphological  

heterogeneous cells appeared at the earlier stages of exposure to the two chemicals. These  

cells were not common at later stages of exposure.  

To determine the change in the rate of growth in UROtsa cells following chronic  

exposure to arsenic or cadmium, growth rates were determined by MTT assay for 1 µM  

cadmium treated UROtsa cells in serum medium and serum-free medium for seven  

months, 1 µM arsenic treated UROtsa cells in serum medium and serum-free medium for  
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Fig. 14 Phase contrast photomicrographs of human urothelial cell line.  
Picture (A) and (B) represent the control UROtsa cells. (A) The UROtsa cells were  
cultured in cell culture medium contained 5 % fetal bovine serum. Cells showed 100 %  
confluence. (B) UROtsa cells were cultured in serum-free medium. Cells started to form  
three-dimensional structure.  
All exposed cells were cultured with arsenic or cadmium for 9-10 weeks. (C) UROtsa  
cells with 1 µM arsenic were cultured with serum medium. Cells were 95 % of  
confluence and showed a characteristic epithelial morphology with phase-bright in  
intercellular borders and numerous mitotic figures. (D) UROtsa cells with 1 µM arsenic  
were cultured without serum. (E) UROtsa cells with 1µM cadmium were cultured with  
serum medium. Cells were above 100 % of confluence. (F) UROtsa cells with 1 µM  
cadmium were cultured without serum. All exposed cells showed no significantly  
different morphology. Magnification: 10 x  
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seven months, and untreated wild type UROtsa cells in serum medium as a control (Fig.  

15). The results demonstrated that chronic exposure to arsenic or cadmium in serum  

medium had an increased growth rate compared with untreated cells (Table 1A). The  

mean doubling time of the arsenic treated UROtsa cells in serum medium was 22.04  

hours compared with a doubling time of 43.13 hours in untreated UROtsa cells in serum  

medium. In contrast, the growth rate of arsenic or cadmium exposed UROtsa cells in  

serum-free medium did not show significantly difference from untreated cells. The  

growth rates of UROtsa cells in serum medium are greater than those of UROtsa cells in  

serum-free medium. There was no significant difference of growth rate between arsenic  

and cadmium exposed cells. Even though the growth rates of arsenic or cadmium  

exposed UROtsa cells with serum were changed, there was no morphological difference.  

To demonstrate whether or not arsenic or cadmium in medium involved increased growth  

rates in these exposed cells, the exposed cells were cultured without arsenic or cadmium  

for two weeks. Then these cells were subcultured at a 1:20 ratio and fed once every other  

day without arsenic or cadmium continuously. The results demonstrated that rescued  

cells showed no significant difference on the growth rate of the cells when compared with  

non-rescued cells (Table 1B). This result demonstrated that the growth rate of chronic  

exposure to arsenic or cadmium UROtsa cells in serum medium was not due to the  

presence of arsenic or cadmium in medium. It suggests that chronic exposure to arsenic  

or cadmium results in increased growth rate of UROtsa cells and this change is not  

reversible by removal of arsenic or cadmium from medium. Similar result was reported  

when in vitro transformed rat liver cells by arsenic were cultured without arsenic for six  
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Fig. 15 The effect of cadmium or arsenic exposure on UROtsa cell growth . 
Determination of growth rates of untreated UROtsa cells, UROtsa cells with 1 µM CdCl  
or 1 µM NaAsO2 exposed for seven months both in serum medium or serum-free  
medium was performed by seeding cells at a 1:20 ratio and recording absorbance at 570  
nm at the indicated time point by MTT assay. The results presented are an average of  
duplicate determinations of MTT assay per plate ± S.E.  
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Table 1. Effect of exposure to arsenic or cadmium on doubling time of UROtsa cells.  
The three months exposed UROtsa cells were used in this experiment. The growth rate,  
expressed as doubling time, was calculated from the slope of linear regressed plots of LN  
(cell number) vs. time. By using absorbance value at 570 nm in Fig. 2, slope was  
calculated by multiplying with 100 and integrated. The integrated value was used for  
regression and the x valuable was used for slope. Table (A) represents growth rates of  
continuously exposed UROtsa cells. (B) After exposing for seven months, cells were  
rescued from arsenic or cadmium for two weeks. During growth rate measurement for  
one week, cells were not exposed to arsenic or cadmium.  
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weeks and inoculated in the nude mice. Cells formed aggressive tumors in nude mice  

(10).  

To test whether or not arsenic or cadmium exposure induces anchorage 

independent colony formation, soft agar assay was performed. Figure 16 shows the 

results of a typical experiment demonstrating colony formation in soft agar by UROtsa 

cells exposed to arsenic or cadmium. All of the unexposed UROtsa cells failed to grow in 

soft agar, whereas seven-month exposed cells exhibited the capacity to form colonies in 

soft agar (Fig. 16). To demonstrate that there was no methodological error of soft agar 

assay, PC-3 cells were used as positive control for all soft agar assays since several 

studies demonstrated colony formation of PC-3 cells in soft agar (23). The exposed  

UROtsa cells in serum medium formed bigger and more colonies than those in serumfree  

medium. The colonies were counted at a magnification of 10 x after three weeks in  

soft agar (Fig. 17). The UROtsa cells in serum medium containing 1 µM arsenic formed  

18 +/- 2.57 colonies per field, whereas cells in serum-free medium containing1 µM  

arsenic formed 3.17 +/- 0.67 colonies per field. The UROtsa cells in serum medium with  

1 µM cadmium formed 10.83 +/- 1.96 per field and cells in serum-free medium with 1  

µM cadmium formed 0.58 +/- 0.16 colonies per field. The total colony number of  

UROtsa cells with cadmium in serum-free was 315 +/- 45 colonies per 2x105 cells. The  

data demonstrate that UROtsa cells in serum medium formed more colonies than in  

serum-free medium.  

The soft agar assay assesses the ability of cells to grow in the absence of adhesion,  

one of the in vitro characteristics of transformation (24). The ability of arsenic or  
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Fig. 16 Effects of arsenic or cadmium exposure to UROtsa cells in colony formation  
Assay. A total of 2 x 105 cells were plated in duplicate in 1.5 ml of 0.275 % agar in cell  
culture medium onto the 5ml of bottom layer of 0.5 % agar in 6-cm dish. The dishes were  
incubated at 37OC in a humidified 5 % CO2 incubator. Colonies were counted and  
photographed three weeks after plating. For control, PC-3 cells (A) and untreated UROtsa  
cells (B) were used. All treated UROtsa cells were exposed to arsenic or cadmium for  
seven months: (C) 1 µM arsenic exposed with serum, (D) 1 µM arsenic exposed without  
serum, (E) 1 µM cadmium exposed with serum, (F) 1 µM cadmium exposed without  
serum. Magnification: 10 x.  
 

                                                                  74 



 

 

 

                          

Fig. 17 Colony-formation capacity of UROtsa cells. The UROtsa cells were exposed to  
1 µM arsenic or 1 µM cadmium for seven months. 2x105 cells per dish were incubated  
with 0.275 % agar for three weeks at 37OC in 5 % CO2. The colonies of >10 cells were  
counted at 10 x of magnification for 6 fields per dish. The sAs and sCd represent UROtsa  
cells in arsenic and cadmium in serum medium, respectively. The fAs and fCd represent  
UROtsa cells in arsenic and cadmium in serum-free medium. The results presented are an  
average of duplicate determinations of visible colonies per plate ± S.E.  
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cadmium exposed UROtsa cells to form colonies in soft agar suggests that they were  

fully transformed and may have a possibility to form tumors in nude mice.  

To test the expression of metallothioneins during chronic exposure to arsenic or  

cadmium in UROtsa cells, levels of protein from arsenic or cadmium-seven months  

exposed cells were measured by immuno-dot blot. Levels of metallothionein-1 and 2  

proteins increased dramatically compared to unexposed cells, 1.56 +/- 0.01 ng/µg of total  

protein (Fig. 18A). The MT-1 and 2 proteins in cadmium exposed UROtsa cells with or  

without serum showed 17.65 +/- 0.4 ng/µg and 16.23 +/- 0.95 ng/µg, respectively. The  

MT-1 and 2 proteins in arsenic exposed UROtsa cells with or without serum showed 2.9  

+/- 0.36 ng/µg and 9.38 +/- 0.47 ng/µg, respectively. There was no significant difference  

in induction levels of MT-1 and MT-2 with or without serum in cell culture medium. The  

levels of metallothionein-3 protein in all exposed UROtsa cells were between 0.13 and  

0.24 ng/µg (Fig. 18B). These levels were considered as undetectable levels of protein due  

to nonsepecific binding of immuno-dot blot systems.  

Discussion  

The transformation of normal cells into cancer cells requires series of distinct  

steps involving uncontrolled cellular proliferation, loss of intercellular adhesion, and gain  

of angiogenesis. Evidence indicates that tumorigenesis is a multistep process and these  

steps are consequences of genetic alterations that evolve progressively from normal via  

series of premalignant states into invasive cancers (25). Many of these phenomena have  

linked the extracellular matrix (ECM) to the development and control of malignancy.  

Cellular interactions with the ECM control cell adhesion, motility, and cellular matrix  
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Fig. 18 Expression of metallothionein protein in UROtsa cells.  The UROtas cells with  
1 µM arsenic or 1 µM cadmium exposed for seven months and total protein was collected.  
Total 0.75 µg and 1.5 µg of protein was used for immuno-dot blot of metallothionein-1/2  
and metallothionein-3, respectively. Panel (A) represents of metallothionein-1 and  
metallothionein-2 protein and panel (B) represents of metallothionein-3 protein. The sAs  
and sCd represent UROtsa cells in arsenic and cadmium in serum medium, respectively.  
The fAs and fCd represent UROtsa cells in arsenic and cadmium in serum-free medium.  
Levels of MT-1 and 2 proteins were determined using an immuno-dot blot with an E9  
antibody. Level of MT-3 protein was determined using MT-3 specific antibody. Shown  
are the means and SE of triplicate cell samples.  
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degradation involve malignant phenotype. The characteristics of neoplastic cells, which  

distinguish from their normal counterparts, may be important to understand the  

mechanisms of malignant transformation. Therefore, in vitro transformation model  

systems are very useful tools in the understanding of fundamental differences between  

normal cells and tumors cells if both have been derived from a common source. Although  

many studies have reported tumorigenesis by exposure to arsenic or cadmium, the  

mechanisms of arsenic- or cadmium- induced carcinogenesis are still unclear.  

In this study, we showed that chronic exposure to arsenic or cadmium resulted in  

in vitro transformation of human uroepithelial cell line based on anchorage-independent  

growth. Appropriate observation on characteristic changes of UROtsa cells with arsenic  

or cadmium may reveal multiple steps of tumorigenesis in bladder cancer.  

The first change of in vitro transformation of UROtsa cells was increased  

metabolic rates compared with those of unexposed cells. After exposure to arsenic or  

cadmium for up to 8 weeks, UROtsa cells required extra glucose for survival. The  

cellular metabolic rate is controlled by a number of processes including metabolic  

demand and substrate supply. The next two differences were increased growth rate and  

anchorage-independent growth. After three months exposure to arsenic or cadmium,  

cellular proliferation rate had increased. When growth rates of seven-month exposed cells  

were measured, growth rate of exposed cells with serum was twice as high as that of  

control cells. After exposure to arsenic or cadmium for seven months, UROtsa cells with  

serum formed colonies in soft agar. The growth rate of transformed UROtsa cells without  

serum was not changed even though these cells formed colonies in soft agar. This result  
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suggests that increased growth rate may be followed by anchorage-independent growth.  

The most interesting result is that there was a significant difference in the in vitro  

transformation of UROtsa cells depending on which cell culture system was used. There  

are several possibilities to explain this phenomenon. We have shown here that growth  

rate of cells with serum was twice as fast as that of cells without serum. In this case, even  

though arsenic and cadmium are not genotoxic, many studies suggest that eventually  

these chemicals damage to gene indirectly if transformational phenomena are irreversible.  

The short term exposure to low levels of these chemicals does not induce transformation.  

Even though it might show some morphological changes, the cells return to normal when  

the carcinogen is removed. The UROtsa cells with serum undergo twice as much cell  

division as cells without serum. Due to increased cell cycle events, cells may be more  

susceptible to indirect genetic damage by arsenic or cadmium and it may increase chance  

of aggressive malignancy. The second possibility is due to differences cell culture  

medium composition. The serum-free medium has very restricted nutrients and trace  

elements. The serum-free medium in this study contains Dulbecco’s modified Eagles’  

medium and Ham’s F-12 supplemented with selenium, insulin, transferrin,  

hydrocortisone, triiodothyronine and epidermal growth factor. Otherwise, serum  

containing medium is composed of Dulbecco’s modified Eagles’ medium and bovine  

serum. Any compound that exists in serum-free medium but not in serum containing  

medium may delay the onset of tumorigenesis indirectly. The third possibility is that  

extracellular matrix proteins or cell-cell adhesion proteins may delay transformation of  

UROtsa cells in serum-free medium. Under serum-free cell culture medium, confluent  
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UROtsa cells produced three-dimensional structures (21). The cells displayed numerous  

desmosomal connections, complex interactions of the lateral membranes, and abundant  

intermediate filaments within the cytoplasm. Freeze fracture analysis also demonstrated  

that the cells possessed tight-junction sealing strands and gap junction. The overall  

morphology was most consistent with that found in the intermediate layers of in situ  

urothelium. Different expression patterns of cell adhesion proteins including integrins, â-  

catenin and cadherin in transformed cells have been reported (26). Reduced expression of  

E-cadherin has been associated with increased tumor recurrence and invasiveness and  

decreased overall survival of bladder patients (27, 28). The presence of multiple  

abnormalitiese in the E-cadherin-catenin complex has been correlated with advanced  

tumor stage in bladder cancer (29). The morphological change of cells is one of the  

characteristics of transformation when cells are exposed to carcinogens. Several studies  

have demonstrated morphological changes associated with transformed cells exposed to  

carcinogens or transfected by genes that are important in transformational processes (30).  

Several transformed cells formed morphologically different types of foci (31). In this  

study, we showed no morphological change in UROtsa cells after arsenic or 

cadmiuminduced transformation. Morphological studies have shown a correlation 

between loss of E-cadherin and expression and tumor cell invasion and metastasis (32). 

The cell adhesion proteins and several extracellular matrix proteins might be considered 

as tumor suppression proteins (33). It is also reported that the behavior of non-malignant 

bladder cells differ significantly from that of cancer ones with respect to the integrins 

used as well as the participation of glycosylation in adhesion (34). The integrin α6β4 with  
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collagen VII is not lost in on the urothelium’s basement membrane forming a  

hemidesmosomal anchoring complex, an effective barrier to cell migration. The  

association of integrin with collagen VII is lost in bladder cancer (35). There may be  

another possibility that extracelluar matrix proteins or cell-cell adhesion proteins may be  

involved in tumorigenesis of UROtsa cells with serum-free medium.  

The metallothionein (MT) is a small protein with high binding affinity with  

various metals and induced by various agents. Most studies on MTs have focused on  

essential trace element homeostasis and heavy metal detoxification. Recently, the role of  

MTs in carcinogenesis has become prominent due to their linkage with drug resistance  

(36). Recent studies report nuclear localization of MT protein during S phase of cell cycle  

and malignant cells (37). Several studies have demonstrated a correlative relationship  

between overexpressed MT and failure of chemotherapies (38). There is ample evidence  

showing that overexpression of metallothionein-3 is linked to certain tumors including  

breast and bladder cancer (39, 40). The MT-3 exhibits distinct properties from MT-1 and  

MT-2 in several ways. Several studies have demonstrated that the expression of MT-3  

(but not MT-1) inhibits the growth of cultured cells (41). MT-3, but not MT-1 or MT-2  

protein also inhibits the survival of neurons cultured with brain extracts from people with  

Alzheimer’s disease (42). The increased expression of MT-1 was not sufficient to rescue  

the pancreatic acinar cells from the lethal effects of MT-3 overexpression (43). Heavy  

metals and other agents that can induce MT-1 and MT-2 protein do not induce MT-3.  

Selection of tissue cells for resistance to heavy metals results in elevated levels of MT-  

1/2 protein by amplification of the entire MT gene locus (44). This study supports that  
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MT-1 and MT-2 proteins were induced dramatically by exposure to arsenic or cadmium  

but not MT-3 protein. This study also suggests that the increased MT-1 and 2 proteins  

may be not involved in the initiation of transformational steps because there was no  

significant difference in induction levels of MT by cadmium between serum and 

serumfree medium. This result supports other studies that levels of MT protein are 

usually undetectable in low grade tumors and increased with several high-grade in tumors 

(45, 46).  

Bladder cancer is one of the few tumors in which occupational and environmental  

exposure is considered to be a major risk factor. This study reports in vitro transformation  

of nontumorigenic human urothelial cell line UROtsa by chronic exposure to low  

concentrations of arsenic and cadmium. The arsenic- or cadmium-transformed cells  

exhibited anchorage-independent growth. There was no significant difference in  

tumorigenic ability or other characteristics between arsenic and cadmium-induced  

transformation. However, there was a significant difference in tumorigenicity between  

cells in serum and serum-free medium. Due to the three-dimensional structure of UROtsa  

cell line under serum-free medium, this in vitro transformation model system will be  

useful not only in investigations on the mechanisms of arsenic- or cadmium- induced  

carcinogenesis of bladder cancer but also to study possible roles of extracellular matrix  

proteins and cell-cell adhesion on the progress of bladder tumor.  
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Introduction  

Human urinary bladder cancer is the fourth most common form of cancer among  

men and eighth among women (1). Bladder cancer is one of tumors in which  

occupational and environmental exposure to chemicals have been documented as major  

risk factors. Carcinogens derived from occupational exposures, cigarette smoking,  

recurrent inflammatory conditions and schistosomal infections are important factors for  

initiation of bladder cancer (2). Although most bladder cancers initially were diagnosed  

as superficial papillary transitional cell carcinomas with relatively benign condition, 15%  

of diagnosed patients went through progression to deep muscle invasion of superficial  

bladder tumor due to high recurrent rates (3).  

Based on epidemiological and animal studies, arsenic and cadmium are  

considered as human carcinogens, although the molecular mechanisms are still unclear  

(4,5). The development of model system for in vitro transformation of human bladder cell  

line by exposure to arsenic or cadmium is important to understand molecular mechanisms  

of bladder tumors by these carcinogens. Urothelium is a highly specialized tissue lining  

the mammalian urinary tract, and is described as a transitional epithelium. Ninty percent  

of bladder cancer is due to malignant transformation of these transitional epithelial cells.  

In the previous study, we showed chronic exposure of low concentration of arsenic or  

cadmium resulted in malignant transformation of human urothelial cell line, UROtsa,  

based on increased growth rate and anchorage-independent growth in soft agar. In the  

present study, we examined the tumorigenicity of these transformed UROtsa cells.  

Tumorigenicity Assay  
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UROtsa cells exposed for seven months to 1 µM arsenic or 1 µM cadmium  

UROtsa cells with and without serum were used to test capability of tumor development  

after injection into nude mouse. Figure 19 demonstrates the results of a representative  

experiment with NCr-nu/nu mice and the efficiency of tumor formation calculated from  

all of the experiments. The untreated UROtsa cells and PC-3 cells were used for negative  

and positive controls, respectively. Tumors arose in 10 out of 11 mice injected PC-3 cells  

while none of the untreated UROtsa cells gave rise to tumors in any mouse. All  

transformed UROtsa cells were capable of forming tumors within 1 week after injection  

into the athymic nude mice. The arsenic or cadmium- transformed cells with serum  

formed tumors 10 out of 10, and 10 out of 11 inoculated mice, respectively. The arsenic  

or cadmium- transformed cells without serum formed tumors 5 from 9, and 7 from 10  

inoculated mice, respectively. Although the frequency of colony formation of  

transformed cells without serum in soft agar was lower than that of transformed cells with  

serum, the tumor incidence in nude mice was not significantly different (Table 2).  

Histology of nude mouse tumors produced by cadmium-transformed cells  

Tumor tissues of nude mouse produced by transformed UROtsa cells from 5-9  

weeks after injection were fixed in 10% neutral formalin and processed for paraffin  

embedding. There was no tumor metastasis because the border between tumors and  

surrounding tissues was clearly delineated. The tumors formed by the cadmium 

transformed UROtsa cells with serum were composed of infiltrating nests and masses of  

moderately differentiated cells (Fig 20A). These infiltrating tumor nests and masses  

demonstrated increased differentiation from the basal surface with was composed of  
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Fig. 19 Tumorigenicity of arsenic or cadmium exposed UROtsa cells in nude mice.  
UROtsa cells treated with 1 µM arsenic or cadmium for seven months were inoculated  
subcutaneously into nude mice (n = 9 -11).Tumor incidence data as a percentage of the  
number of mice inoculated was collected 5 weeks after injection. The sAs and sCd  
represent that UROtsa cells in arsenic and cadmium in serum medium, respectively. The  
fAs and fCd represent that UROtsa cells in arsenic and cadmium in serum-free medium.  
The untreated PC-3, prostate cancer cell line, was used for positive control.  
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Table 2 Tumorigenicity of arsenic or cadmium exposed UROtsa cells in nude mice.  
UROtsa cells treated 1µM arsenic or cadmium for seven months were inoculated  
subcutaneously into nude mice (n = 9 -11).Tumor incidence data as a percentage of the  
number of mice inoculated was collected 5 weeks after injection. 
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Fig 20. Histological analysis of tumors produced by heterotransplatation of  
cadmium-transformed UROtsa cells with serum into nude mice.  
General view of H & E stained tissues from tumor derived by inoculated cadmium –  
transformed cells.  
(A) Nests and cords of infiltrating cells with centrally located, large, eosinophilic cells  
and focal central necrosis. The tumor sample was shown at the 7 weeks of injection with  
40 x of magnification. (B) Eosinophilic, filamentous cytoplasmic accumulation s in cells.  
The shown tumor tissue was taken picture at 400 x magnification at the 7 week of stage  
after injection. (C) Calcium deposits in areas of central necrosis within tumor nests. The  
shown tumor tissue was at 200x magnification at the 9 week of stage after injection.  
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small compact cells. Larger, more differentiated cells, characterized by an eosinophilic  

cytoplasm and a distinct cell border were present towards the center of these tumor  

masses (Fig 20A). These more differentiated cells were very common and most contained  

eosinophilic filamentous material which was often swirled within the individual cells (Fig  

20B). Areas of necrosis were rare even within the largest tumor specimens, but when  

present often contained prominent calcification admixed with eosinophilic laminations  

within the central necrotic areas (Fig 20C). The tumors formed by cadmium-transformed  

UROtsa cells without serum formed smaller tumors in the nude mice and were composed  

mainly of tight nests of moderately differentiated cells (Fig 21A). The tumors formed  

tight nests and whorls with little tendency for differentiation towards the center of the  

mass and there was also very little tendency for central necrosis or deposit within cells  

(Fig 21A). Although cells could be found that demonstrated differentiation towards the  

central areas of the whorls, this was not as prominent as found for tumors by transformed  

cells with serum, and many areas of the tumor had minimal tendency for this phenotypic  

squamoid differentiation ( Fig 21B). There was a slight increase in nuclear pleomorphism  

as noted by vesicular nuclei, nuclear lobulations and occasional nucleoli (Fig 21B, C).  

Histology of nude mouse tumors produced by arsenic-transformed cells  

The tumors formed by arsenic-transformed UROtsa cells with serum were  

remarkable for the phenotype of squamoud differentiation. Tumor sheets and nests  

demonstrated large central areas of acellular, esosinophilic, concentrically laminated  

deposits resembling the keratin ‘pearls’ of squamous cell carcinoma (Fig 22A,B). The  

uppermost layers of neoplastic cells, just underneath the acellular deposits, contained  

                                                                   96 



 

 

Fig 21. Histological analysis of tumors produced by heterotransplatation of 
cadmium-transformed UROtsa cells without serum into nude mice.  
General view of H & E stained tissues from tumor developed by cadmium-transformed  
UROtsa cells cultured in serum-free medium.  
(A) Small compact nests of cells lacking the central necrosis were shown at 100x  
magnification of 6week stage of injection. (B) A rare focal showing squamoid phenotypic  
change at 400x magnification of 6 week of stage after injection. (C) Mild to moderated  
nuclear pleomorphism was shown at 400 x magnification at the 6 week after injection.  
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Fig 22. Histology (H&E staining) of tumors produced by heterotransplantation of  
arsenic-transformed UROtsa cells with serum into nude mice. (A) Typical area of a  
tumor heterotransplant showing large squamous change (25 x) at the 9 week stage of  
injection. ( B) Squamous features with a central “pearl” of acellular, concentric deposits  
(200 x) at the 9 week of stage after injection. (C) Cells recapitulating granular cell layer  
of squamous epithelial with basophilic keratohyaline and a centrally located laminated  
“pearl” (400 x), 9 week stage. (D) Cells with intracellular bridges recapitulating the  
“spiny” layer in squamous epithelium (400 x), 5 week stage. (E) Intracellular bridging 
between cells (800 x), 5 week stage.  
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punctuate basophilic granules resembling the keratohyaline seen in the granular layer of  

the skin epidermis (Fig 22C). Also recapitulating the squamous differentiation, neoplastic  

cells between this and the basal layer of cells demonstrated prominent intracellular  

connections (Fig 22D, E), similar to the granulose or spinous cells within the skin. The  

tumor cells displayed moderate nuclear pleomorphism with irregular nuclear contours,  

grooves, and chromatin distribution with occasional prominent nucleoli. The morphology  

of the tumors formed by arsenic-transformed UROtsa cells without serum was similar to  

those grown on serum-containing growth medium (Fig 23A). These tumors exhibited  

more pleomorphism although the squamous features could still be easily discerned (Fig  

23A). Nuclear features were more pleomorphic with prominent nucleoli and occasional  

multinuclear giant cells (Fig 23B).  

Histology of nude mouse tumors produced by human prostate cancers was  

examined. Tumors from nude mice with inoculation of human prostate cancer cell line,  

PC-3, showed less differentiated condition. Tumors were composed of sheets of  

undifferentiated cells without whorls or nests of squamous or transitional cell  

differentiation (Fig 24A, B). No intracellular bridges, acellular deposits or spinous  

processes were observed. There was moderate pleomorphism in both the cells and nuclei.  

Foci of necrosis were scattered throughout the cellular sheet.  

Discussion  

There is extensive epidemiologic evidence that trivalent and pentavalent forms of  

arsenic cause characteristic skin alterations, including hyperkeratosis and skin cancer in  

humans (6). Epidemiologic studies have shown a strong association between arsenic  
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Fig 23. Histology of tumors produced by heterotransplantation of arsenic-
transformed UROtsa cells without serum into nude mice. Histological results from 9  
week- tumor tissues after H & E stain. (A) Squamous changes in poorly formed whorls at  
200 x magnifications. (B) Nuclear pleomorphism and tumor giant cells at 630 x 
magnifications. 
 

        

Fig 24. Histology of tumors produced by human prostate cells injected nude mice.  
The human prostate cells, PC-3, were injected into nude mice. After 5 weeks later, mice  
were sacrificed and tumor tissues were removed, fixed in neutral formalin, embedded in  
paraffin, sectioned at 5µm, and stained with H & E stain. (A) and ( B) showed that  
tumors were composed of undifferentiated cells without whorls or nests of squamous or  
transitional cell differentiation.  
 

 

 

 

                                                     101 



ingestion from contaminated drinking water and the development of bladder cancers in  

Taiwan, Argentina, Chile, and Japan (7-10). Combined in vitro transformation and nude  

mouse tumorigenicity studies will be helpful in understanding the carcinogenic potential  

of environmentally and occupationally related agents (11).  

In this study, we showed tumorigenicity of arsenic or cadmium-transformed  

human urothelial cell line. Tumorigenic animal cells injected subcutaneously into nude  

mice produce well-defined and frequently encapsulated tumors at the site of injection.  

Examination of histological sections of tumors that develop after the injection of  

tumorigenic animal cells into nude mice confirms the well-circumscribed nature of the  

growing tumor. In addition, tumors that develop in nude mice after transplantation of  

malignant tumor cells retain the original tumor histopathology in the nude host. Tumors  

that grew in the nude mouse after heterotransplantation of human adenocarcinomas still  

resembled the original adenocarcinomas histologically (12). A unique finding in the  

present study was the morphology of the tumors produced by the heterotransplantation of  

the arsenic-transformed UROtsa cells into nude mouse. In the general population, the  

overwhelming majority of bladder cancers are transitional cell carcinomas with little or  

no evidence of squamous differentiation. In contrast, the tumor heterotransplants formed  

by the arsenic-transformed UROtsa cells displayed dominant features of squamous  

differentiation. These features include: concentrically laminated deposits resembling  

keratin “pearls”; granules resembling the keratohyaline seen in the granular layer of the  

skin epidermis; and, cells with predominant intracellular connections similar to the  

granulosa or spinous cells within the skin. It is possible that the squamous differentiation  
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may be an artifact of the model system or it may be a real feature to be expected in  

bladder cancers that arise from urothelial cells experiencing a long-term, substantial  

exposure to arsenic. The best answer to this question would be a study detailing the type  

of bladder cancers produced by patients in areas where there are high concentrations of  

arsenic in the drinking water. There is indirect evidence to suggest that the feature of  

squamous differentiation is a legitimate property of the urothelium transformed by 

longterm exposure to arsenic. The most compelling evidence is that a hallmark of high 

level environmental arsenic exposure is hyperkeratosis and skin cancer (13,14). Therefore, 

it would not be surprising if the keratinocyte-like cells of the bladder reacted to arsenic  

similar to that found for skin keratocytes. Specificity for arsenic is also suggested by the  

finding that malignant transformation of the UROtsa cells with cadmium resulted in  

tumor heterotransplants with minimal evidence of squamous differentiation. If the  

squamous differentiation was an artifact, it would be expected that a similar treatment  

protocol with cadmium would have produced similar results regarding squamous  

differentiation of the heterotransplants; however, only very rare profiles of squamous  

change were detected in the cadmium-induced tumors. That the squamous differentiation  

was not a rare one-time event is suggested by the finding that arsenic-exposed UROtsa  

cells grown on serum-containing and serum-free media both produced tumors with  

squamous differentiation when heterotransplanted into nude mice. These results suggest  

that bladder tumors diagnosed in areas where there exist high concentrations of arsenic in  

the drinking water should be examined carefully for features of squamous differentiation.  

There is only one other study of successful malignant transformation of human  
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epithelial cells with arsenic in immortalized epithelial cell culture, RWPE-1, derived  

from the prostate gland (15). The RWPE-1 cells were malignantly transformed when  

exposed to 5 µM sodium arsenite for 29 weeks. The resulting cultures formed epithelial  

tumors when heterotransplanted into nude mice. These tumors were positive for the  

production of prostate specific antigen, but displayed neither features of squamous  

differentiation nor keratinocyte differentiation. There were several interesting differences  

between the studies in the RWPE-1 and UROtsa cells. The RWPE-1 cells were exposed  

to 5µM arsenite for 29 weeks, a concentration which causes no noticeable cell mortality.  

The malignantly transformed cells were identified by the formation of foci of cells that  

had lost contact inhibition of growth. When these cells were heterotransplanted into nude  

mice, invasive tumors formed as noted by invasion of the underlying muscle layers. In  

contrast, the UROtsa cells experienced over 95 % cell death when treated with 5-fold less  

concentration of arsenic, and the malignantly transformed cells arose from clones that  

survived this initial arsenic-induced toxicity. Cultures arising from these clones had  

highly elevated growth rates but did not form foci of cells indicative of a loss of contact  

inhibition in cell culture medium even though they showed anchorage-independent  

growth in soft agar. When these cells were heterotransplanted into nude mice, tumors  

formed but did not invade the underlying muscles layer of the mouse. Thus, the UROtsa  

cells were more sensitive to arsenic toxicity than the RWPE-1cells, but the malignantly  

transformed RWPE-1 cells formed a more aggressive tumor.  

The present study also demonstrates the cadmium-induced malignant  

transformation of human urothelial cells. This is a significant finding since cadmium is  

                                                                      104 



classified as a human carcinogen with the potential for implication as a bladder  

carcinogen; although the data is less extensive than that linking arsenic as a bladder  

carcinogen (16, 17). The present malignant transformation of human urothelial cells by  

cadmium presents compelling evidence that cadmium has the potential of being a human  

bladder carcinogen. Furthermore, the model system developed should provide a valuable  

set of human cell lines to study the development and progression of cadmium-induced  

bladder cancer. The tumor heterotransplants produced by the cadmium-transformed cells  

were epithelial in character and had features consistant with those expected of an  

undifferentiated transitional cell carcinoma of the bladder. An additional significant  

finding is that there is evidence that the level of cadmium required to malignant  

transformation of urothelial cells is quite low when compared to the prostate, an organ  

where there is substantial evidence for a role of cadmium as a prostate carcinogen (18,  

19). The concentration of cadmium in the prostate of people with no known occupational  

exposure to cadmium is between 11 and 28 µM (20, 21). The studies demonstrating the  

cadmium-induced malignant transformation of human prostate epithelial cells showed  

that 10 µM of cadmium induced transformation following 8 weeks of continuous  

exposure to the metal (20). This level of cadmium exposure was not noted to be lethal to  

the cells. In comparison, the UROtsa cells were malignantly transformed at a 10-fold  

lower cadmium concentration and this concentration produced significant cytotoxicity to  

the cells. This provides indirect evidence that human bladder urothelium might be  

susceptible to relatively low concentration of cadmium.  

Several studies demonstrate a lack of correlation between tumorigenic  
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transformation and increased colony formation efficiency, or cell growth rate. The  

morphological alternation may not be necessary in malignant transformation (22). Some  

anchorage-independent cells are not tumorigenic in nude mice, but almost all of the  

tumorigenic cells show anchorage-independent growth in vitro. These data suggest that  

the acquisition of anchorage-independent proliferation in vitro is a necessary but not  

sufficient for tumorigenicity. Malignancy of cultured cells is demonstrated convincingly  

by the tumorigenicity of cells when transplanted into athymic nude mice. In this study,  

we have showed that in vitro transformed UROtsa cells by exposure to arsenic or  

cadmium formed tumors after injection into nude mice. The tumors generated in this  

study showed diversity, even though these were generated from arsenic- or cadmium-  

transformed UROtsa cells. These data demonstrate the capability of a human epithelial  

cell type to give rise to different histological phenotypes during tumorigenesis.  

During tumorigenesis, different genes are turned off and on, and these phenomena  

differ from cell types and tumor types. Therefore, these characteristic genes and proteins  

can be used as markers for specific cancers and many clinical trials are being performed  

to identify specific markers. Effort is being made to find specific markers between benign  

and neoplastic cells because it will make it easier to detect cancer earlier and provide  

better treatment for patients. Recent studies suggest several molecules as possible  

molecular markers for bladder cancer. There are, however, no widely accepted tumor  

markers that allow widespread screening for the early presence of bladder cancer or for  

the detection and monitoring of advanced stages of this disease (23). In this study, we  

showed the arsenic-induced malignant transformation of human urothelial cells. The  
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finding that human urothelial cells are directly susceptible to the transforming effects of  

inorganic arsenite is biologically significant because the study of arsenic-induced bladder  

carcinogenesis has been hampered by the lack of suitable animal models, since arsenic 

induced tumors in rodents have been difficult to produce unless arsenic is combined with  

other agents. The cell lines and heterotransplants developed in the present study are also  

significant as a model system on which to base studies defining the molecular and genetic  

events associated with arsenic-induced bladder cancer. Thus, the current model system  

consisting of the original non-tumorigenic UROtsa parental cell line, the arsenic-induced  

malignant transformants, and derived tumor heterotransplants should provide a valuable  

system to study the development and progression of arsenic-induced bladder cancer.  

In the previous study, we showed the malignant transformation of normal human  

urothelial cell line by chronic exposure to cadmium or arsenic in vitro. As demonstrated  

in this study, the malignant transformation of these cells was confirmed by the  

development of tumors after inoculation of these cells into nude mice. Malignant  

transformation of normal human urothelial cells is compelling evidence that arsenic and  

cadmium have the potential to be human bladder carcinogens.  
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