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 ABSTRACT 
  

THREE ESSAYS ON UTILIZING SPATIAL ECONOMETRICS IN 

NATURAL RESOURCE ECONOMICS RELATED TO WATER, 

HEALTH, AND ENERGY 

Zohreh Erfanian 

 

Spatial interaction and the locational structure between observations have recently 

gained more attention in the field of econometrics for both cross-sectional and panel data 

analyses. Compared to a non-spatial economic model, a spatial model relaxes the 

assumption of independency in observations. This research will apply spatial econometrics 

modeling in three different fields in applied economics: 1) water charge and minimum 

monthly access charge in West Virginia municipalities, 2) Naloxone access law and opioid 

overdose deaths among the U.S. states, and 3) 𝑃𝑀2.5 concentrations and asthma 

hospitalizations in Pennsylvania counties. Based on the nature of water resource imposing 

spillovers in water charge model is inevitable, likewise Naloxone law and 𝑃𝑀2.5 

concentrations. We expect to see a significant spillover effects in water charge and 

minimum water access charge as well as Naloxone law and asthma prevalence among 

observations.  

In Chapter 2, we apply linear and log-log functional forms plus spatial econometric 

analyses to a 2014 dataset of 125 municipal water utilities in West Virginia to investigate 

the determinants of charges for water use and access. The water charges models are 

consistent with the theory of water cost determination as water source, debt, and economies 

of size and scale influence what consumers pay for water. Based on model results, 

groundwater use by utilities is estimated to save household customers in West Virginia 

over $12.6 million annually.  The results for the spatial model indicate that there are 

moderate spillover effects for both water and minimum access charges among utilities. 

West Virginia households using municipal water typically pay far below the OECD 

standard of 3% to 5% of household income which may explain why socioeconomic factors 

do not influence monthly minimum charges. A manuscript based on this essay is accepted 

for the publication for in the journal, Water Economics & Policy.   

Chapter 3 contains an essay examining naloxone access laws.  Opioid overdose is 

the leading cause of unintentional death in the U.S. Naloxone is a medicine that reverses 

the overdose. The second essay investigates the effects of Naloxone access laws on opioid 

overdose death rates.  Analyses reveal that when broken down by access law provisions, 

there exist positive effects on overdose death rates depending upon the provision.  The 

results indicate that Naloxone access provisions have regional impacts by influencing 
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overdose death rates neighboring states.  Looking across multiple provisions, our findings 

provide no statistical evidence that these laws reduce opioid overdose death rates. This 

essay has been published in Review of Regional Studies.  

Finally, Chapter 4 is an essay relating 𝑃𝑀2.5 concentrations and asthma 

hospitalization across Pennsylvania counties.  Ambient air pollution adversely impacts 

human health.  According to the World Health Organization, 235 million people around the 

world currently suffer from asthma, which includes approximately 25 million in the United 

States. There is substantial epidemiological evidence linking outdoor air pollution and 

asthma symptoms, more specifically particulate matter concentrations and asthma. Based 

upon county level data from 2001-2014, a spatial panel framework based upon prevailing 

wind patterns is used to investigate the direct and indirect impacts of PM2.5 concentration 

levels on asthma hospitalization rates in Pennsylvania. This model controls for population 

density, precipitation, per capita income, and smoking rate. Results show that PM2.5 

concentrations have both positive direct and indirect effects on asthma hospitalization rates. 

Varying with county population size, a one μg/m3 increase in PM2.5 will add asthma 

hospitalization costs between $3.1M (Philadelphia County) and $37,732 (Cameron 

County).  This study highlights the need for a more accurate impact analysis of ambient air 

pollution on asthma that reflects the impacts on neighboring regions as well. A one μg/m3 

increase in PM2.5 concentrations throughout all counties in Pennsylvania raises the number 

of annual asthma hospitalizations by over 1,200, with 26.8% of this increase occurring due 

to spillover effects.  In the case of asthma hospitalization rates from PM2.5 pollution, an 

appropriate wind direction algorithm is important to identify spillover effects across 

counties. This essay has been under review in Journal of Regional Analysis and Policies. 
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CHAPTER 1: BACKGROUND AND SIGNIFICANCE 

Spatial interaction and the locational structure between observations have recently 

gained more attention in the field of econometrics for both cross-sectional and panel data 

analyses. Given a location to any observation in the system, spatial econometrics 

specifies, estimates, and tests how the magnitude of a variable of interest would be 

determined by the value of the same variable at other locations in the system (Anselin, 

2001).  Compared to a non-spatial economic model, a spatial model relaxes the 

assumption of independency in observations.  Spatially correlated observations could be 

zip codes, cities, municipalities, counties, states, and countries (Elhorst, 2014). In this 

study, applying different level of spatially correlated observations I model spatial 

spillovers in topics related to water, health and environment.  

Purpose of this study 

The overall aim of this study is to empirically demonstrate, at the municipal, 

county and a state level, how the spatial analysis may help to find a more accurate results 

while evaluating the impacts of exogenous variables, shocks and policies in different 

fields. This study is composed of three essays. 

Aim of Essay 1: Examine the factors impact the water charges and access in West 

Virginia municipalities applying a spatial model 

The first essay describes the factors that explain water charges and access in West 

Virginia municipalities.   

The specific objectives for this essay are listed below: 
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1. Given the dramatic differences in water charges observed for municipal 

utilities throughout the state of West Virginia, the main objective of this 

research is to investigate the factors that explain water charge differences.   

2. The next question addressed in this research is about how minimum access 

charges for water provision (independent from the water volume 

consumption) account for social equity concerns across municipalities.   

3. Explore whether there are any spillover effects in water charges and the 

minimum water access across municipalities. 

Aim of Essay 2: Examine state-level variations in opioid overdose deaths as a result of 

the Naloxone access law with an application of spatial regression 

The second essay focuses on one of the most important recent national challenges, 

opioid crisis.  Opioid overdose is the leading cause of unintentional death in the U.S. 

(Visconti et al., 2015). While opioid epidemic is a phenomenon that all the states are 

suffering from, there are regions consist of a cluster of states that experience a higher rate 

of opioid overdoses. It is plausible that the opioid related Naloxone access law state level 

policy in one state can affect the opioid overdose deaths of the neighboring states because 

of cross bordering the drugs. Therefore, using a spatial econometrics model this study 

aims to: 

1. Evaluate the effectiveness of state level Naloxone overdose prevention laws 

on overdose deaths in the U.S.  

2. Explore whether there are any spillover effects in the Naloxone access law 

and the overdose deaths across states. 
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Aim of Essay 3: Examine county-level asthma hospitalization rate and 𝑷𝑴𝟐.𝟓 

concentrations: An application of spatial Durbin panel approach  

The third essay examines the complex relationship between 𝑃𝑀2.5 concentrations 

and asthma hospitalization outcome. Over the last decades, air pollution has changed 

from less concentrations of SO2 and coarse particles toward more traffic-related air 

pollutants (TAP) (i.e., nitrogen oxides (NOx), small particles and organic compounds) 

(Pénard-Morand et al., 2010). While many researchers investigate the effects of short-

term and long-term exposure to PM and resulting asthma symptoms (Silverman and Ito, 

2010; Samoli et al., 2011; Iskandar et al., 2012; Zhang et al., 2015), further research is 

needed to investigate the presence of “uncompensated spillovers” of 𝑃𝑀2.5 concentrations 

on asthma hospitalization. Therefore, using a Spatial Durbin Model, the objectives are to: 

1. Identify and estimate the impacts of 𝑃𝑀2.5 concentrations on asthma 

prevalence across counties in the state of Pennsylvania. 

2. Check whether or not there is any spillover effects from 𝑃𝑀2.5 concentrations 

and asthma prevalence across counties in Pennsylvania. 
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CHAPTER 2: CHARGES FOR WATER AND ACCESS: WHAT 

EXPLAINS THE DIFFERENCES AMONG WEST VIRGINIA 

MUNICIPALITIES? 

 

INTRODUCTION 

Water is a basic resource that is vital to the existence of life. Because of this, provision of 

potable water is often discussed as a basic human right (United Nations, 2010).  While a renewable 

resource, the global water cycle implies essentially a fixed water supply (Renzetti, 2012).  

Increasing demands for water strain the ability of communities to achieve sustainable management. 

One of the main goals in a sustainable water planning system is providing adequate supplies of 

clean water for all users at a reasonable cost (Gleick, 1998). According to the World Bank (2015), 

99% of Americans have access to an improved water source; however, consumers pay vastly 

different amounts for the same volume of water. For instance, Walton (2015) provides water price 

data for 30 major U.S. cities with a range for the same volume of water from $23.26 (in Fresno, 

CA) to $153.78 (in Santa Fe, NM).  These price data were calculated as a monthly bill for a family 

of four using 100 gallons per person per day. 

Provision of clean and reliable water is a key element of any developed society. Water 

markets are mostly dominated by monopolists or at least contains monopoly elements (Klein, 

1996). The lack of any feasible and realistic competition makes it necessary to have a regulatory 

mechanism in place to deal with the loss of social welfare imposed by a monopoly market. In West 

Virginia, the provision of water services occurs as a regulated monopoly. The West Virginia Public 

Service Commission (WV PSC) provides oversight for this necessary government function to 

ensure that consumers have access to safe and reliable water supplies at reasonable rates. Through 
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the WV PSC, municipal utilities operate as monopolies within their communities because of the 

capital intensive structure of operating a water utility.   

Pricing regulation by the WV PSC is based on the costs faced by water providers.  

However, when water charges across West Virginia municipalities are examined on the basis of 

cost to residential customer for 4,500 gallons, a more than five-fold difference is observed (from 

$13.26 in Vienna to $71.89 in Matoaka) (WV PSC, 2014).  This range is comparable to that found 

at a national level even with a much more homogenous climate in West Virginia.  Figure 1 

demonstrates the spatial distribution of charges across West Virginia municipal utilities.  

Given these dramatic differences in water charges and a growing concern for the municipal 

agencies’ actions for supplying drinking water (Renzetti, 1999; Rijsberman, 2006; Ercin and 

Hoekstra, (2014); World Economic Forum, 2015; Mekonnen and Hoekstra, 2016), our main 

objective in this research is to examine what factors explain the cost differences among municipal 

water utilities across the state of West Virginia. We use a cost-based approach to determine what 

factors explain water pricing differences.  

In this research, we use the term water charge as the concept to be examined.  Price and 

charge both involve the element of money, but price describes how a consumer must pay to gain an 

additional unit of product or service, while charge is the total amount paid to acquire a certain 

quantity of a product or service.  In terms of water supply in the United States, water charge is a 

way to standardize the acquisition of water across a multitude of pricing structures.  Water utility 

pricing structures often include a minimum charge and either fixed or variable unit charges 

(usually on a per 1,000-gallon basis).  This argument, as first stated by Coase (1946), notes that the 

efficient price in a regulated market needs to be expressed as a two-part tariff. The volumetric 

charge equals to marginal cost and the fixed fees equal to each customer’s share of fixed costs.  
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Besides this main objective, we ask another question about whether social equity concerns 

are linked to minimum charges for access to water provision (independent from the water volume 

consumption) among water utilities.  We will investigate whether minimum charges by utilities 

vary based upon socioeconomic circumstances within a community.  Similar to water charges, 

minimum charges differ across municipal utilities.  For example, there are 30 municipalities in 

West Virginia whose minimum charge to consumers is zero, while the highest minimum charge in 

our sample is at the municipality of Sistersville where households have $39 per bill as the 

minimum charge.   

Kanakoudis and Tsitsifli (2014) point out that assessment of minimum charges is not 

socially fair. Fairness matters to consumers, especially fairness in distribution is a concern in 

political philosophy.  Regardless of income level, all individuals should have access to water. In 

the scope of fairness literature, consumers need to pay for water based on their ability to pay.  This 

is an issue that we address in this study by examining minimum charges by water utilities as the 

amount that households are obliged to pay per month to have access to water.  These charges 

generate a secure source of revenue for the local water utilities that enable them to cover, for 

example, water losses in their network.   

Finally, we introduce a spatial aspect to models that explain water and minimum access 

charges.  We add geographic variables to investigate the spatial implications of water charges. 

Commonly, municipal utilities located in the same county or region will have similarities in their 

primary source of water, topography, cost of living, etc.  These similarities among municipalities in 

a region may have effects on either water charges or minimum charge determinants within a spatial 

framework.   
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Thus, this study contributes to the literature in three ways.  First, we introduce spatial 

characteristics to the model to determine the extent to which neighboring municipal utilities 

influence the municipal water charges.  Second, we consider geography and morphology attributes 

in the water charges model.  Lastly, we test to see whether social equity considerations explain 

minimum access charges to water provision.  The next four sections cover:  previous literature 

related to the economy of water, conceptual and empirical models along with methods, and data 

utilized in this research.  In the last two sections, we provide the results and then conclude with a 

discussion of the implications from this research. 

LITERATURE REVIEW 

Among the studies on water issues include:  pricing and costs, utility ownership and 

efficiency, utility regulatory policies, and social equity.  We will focus on these issues in separate 

sub-sections below. 

Water pricing and costs 

Goldstein (1986) argued that potable water is an inexpensive, virtually limit-less resource 

in many areas of the United States.  According to Goldstein, accessibility and availability of the 

water supply is the reason why water cost is not a substantial concern in the U.S.  After 30 years of 

changes in availability of water resources, the Goldstein argument of limit-less water supplies is 

questionable (e.g. Boyer et al. (2015) note examples in the western U.S.), but his main 

recommendation of setting water charges in a way that reflects the full cost of providing water is 

still accurate and valuable.  From Feigenbaum and Teeples (1983), who recommend a hedonic cost 

function for water provided by public versus private, to Bae (2007), who investigates institutional 

factors influencing the water pricing system, there is a considerable amount of research evaluating 
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water pricing in the U.S.  These pricing structures involve different systems of either a uniform 

block rate, decreasing block rate, increasing block rate, or increasing and declining block rate.   

While Renwick and Archibald (1998) find that price-based policies are as effective as non-

price policies, there is a clear trend in water conservation policies towards volumetric charging 

(Inman and Jeffery, 2006; Randolph and Troy, 2008; Millock and Nauges, 2010; Polycarpou and 

Zacharizdis, 2013).  Baerenklau et al. (2014) is an example of investigating a new water rate 

mechanism (increasing block rate water budgets), which considers household-specific 

characteristics and environmental conditions in setting a more efficient block rate.  Sanchez-

Martinez and Rodriguez-Ferrero (2016) argue that natural hydrological conditions require 

application of a complex, integrated and highly developed water management and pricing systems.  

Finally, two influential studies for this research include Bae (2007) and Antonioli and 

Filippini (2001).  Bae (2007) examines factors influencing the cost of water provision.  He 

separates the influential factors into four major categories: (1) institutional arrangements and 

characteristics, (2) government regulations, (3) supply factors and characteristics, and (4) natural 

environment and local characteristics.  The maximum capacity of water production and treatment, 

water sources, water loss during water production, and rate structures are the explanatory variables 

that Bae uses to explain cost variation over a sample of 259 utilities across the U.S.  For monthly 

residential water charges, positive impacts on cost are found for variables concerning the volume 

of water sold, use of increasing block rates, long-term utility debt, water loss, implementation of 

prior appropriation doctrine, and providing other infrastructure services.  Variables with negative 

impacts include ground water as a source, water treatment capacity, daily water production, and a 

combined bill with other services.  Antonioli and Filippini (2001) recommend controlling for 

geographical and morphological variables in cost model in order to achieve more accurate results. 
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Water efficiency, ownership, and utility regulation 

Among water efficiency and ownership studies, Teeples and Glyer (1987) estimate three 

cost models examining water delivery systems to compare ownership efficiency.  The authors find 

that as specification improves, differences between public and private water supplies reduce to 

insignificance.  Renzetti and Dupont (2004) find the same results in their study. They emphasize a 

lack of evidence for differences in performance of public versus private utilities.  Also Bel et al. 

(2010) find there is no empirical evidence that private ownership is more efficient than public 

ownership utilities and Carvalho (2012) points out that this result is not surprising because of a 

wide range of different circumstances in each case study. 

As mentioned by other water economists, Savenije (2002) argues that because a large 

investment (high fixed cost) is needed to supply water at an economy of scale, water provision is a 

natural monopoly market.  In particular, residential water supply is also considered a natural 

monopoly (Müller, 2015).  As Holland (2006) points out, the owner of a water supply system is 

interested in shrinking the deliveries in order to increase the profit by a higher cost of water 

provided to customers.  To deal with derived market failure, governmental regulation is required to 

control the monopoly structure of the water market (Guerrini et al, 2011; Pahl-Wostl, 2015; 

Suárez-Varela et al., 2017; Araral et al., 2017).  

Water and equity  

Efficiency and equity tradeoffs are a well-defined topic within the foundations of welfare 

economics (Boadway, 1976; Zajac, 1978; Le Grand, 1990; Kritikos and Bolle, 2001).  The trade-

off between efficiency and equity is considerable when there is a high level of fixed cost of 

providing services in markets such as energy, water, and transportation (Borenstein and Davis, 

2012).  Studies that investigate equity and efficiency in water supply include Bakker (2001), 
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Garcia-Valinas (2005), and Porcher (2014).  Bakker (2001) discusses economic equity versus 

equalization in water policy. Distinguishing between these two concepts, he explains that based on 

the equity principle, users should be charged according to their ability to pay.  Following Bakker, 

Garcia-Valinas (2005) uses the same equity argument to propose a tariff rate which achieves 

efficiency, equity, financial aspects and/or public acceptability and transparency.  The author 

controls for water supplied, labor and capital cost, and the length of the pipeline.  Porcher (2014) 

discusses the effects of rebalancing water rates from current tariff to Coasian tariffs in France.  The 

result is a lower bill for consumers and strong distributional consequences.  

Water affordability gains growing attention in recent years (Mack and Wrase, 2017); 

Komarulzaman, 2017; Teodoro, 2018; Vanhille et al., 2018; Wutich et al., 2017). The Organization 

for Economic Co-operation and Development recommends that water bills not exceed 3-5% of 

annual household income (OECD, 2003; OECD, 2010).  Bithas (2008) argues that increasing block 

rates do not promote social equity and recommends the number of members in each household to 

be considered in setting water cost.  Finally, the Consumer Utilities Advocacy Centre (2012) 

contends that social equity was traditionally an important concern in the urban water pricing 

system, while nowadays policies focus on different aspects such as water efficiency, financial 

sustainability, and cost recovery.  He recommends a two-part tariff: a fixed supply charge and a 

variable charge.  Based on household income or other economic circumstances, the requisite social 

support policy should be considered in a fixed charge.  

MODEL AND METHODS 

As motivated by Bae (2007), the general form of a model that explains variations in water 

charges to customers from a municipal water utility includes four categories of variables that 

influence the cost of water provision:  
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𝑊𝐶𝑖 = 𝑓(𝑄𝑖, 𝐼𝑛𝑖 , 𝐸𝑛𝑖 , 𝐺𝑒𝑖 )                                                                                   (1) 

where (WC) is the water charges for a fixed volume of water that customers pay in return for 

provision of water; (Q) is the quantity of water sold by the water utility; (In) is a vector of 

institutional and cost of providing service characteristics of water utilities; (En) is the index of 

water quality provided by the utility; and (Ge) is geographical characteristics of the area served 

by the utility.  

As described in the introduction, the WC variable reflects the cost to a residential 

consumer from consumption of 4,500 gallons of water.  This charge is for a consistent water 

quantity across municipal water utilities and represents an average cost faced by residential 

customers.  Following Kim (1987), Kim and Clark (1988), Fabbri and Fraquelli (2000), Mizutani 

and Urakami (2001), Filippini (2008), and Ansink and Houba (2012), we control for both 

economies of size and scale to account for quantity of water sold.  Each of these studies 

distinguish between output scale and network scale effects (economies of size and scale).  Sold 

water and sold water per capita reflect different (although related) issues of economies of size and 

scale aspects for municipal water utilities.  Also, inclusion of sold water better accounts for water 

purchases by surrounding communities and public service districts that impact the volume of 

water produced by the utility.      

In the institutional category, we utilize variables of primary water source (i.e. ground 

water, surface water, or purchased water), network line length, long term debt, and volume of 

water loss in water production cycles.  Bae (2007) controlled for different water right doctrines 

(i.e. riparian rights versus prior appropriation), different ownerships for water supply (i.e., public 

water versus private water systems), and different pricing mechanisms (i.e. uniform rates, 

increasing block rate, or decreasing block rates).  Our observations are within a single state where 
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more than 80% of all municipal water utilities follow a declining block rate structure.  Since there 

is no significant heterogeneity in block rates, our final estimation does not control for this 

variable.  

The water quality category includes a variable that reflects water quality violations 

experienced by utilities.  For the geography category, we include variables reflecting elevation 

changes and differences in slope within a municipality’s boundary along with population density.  

Table 1 shows the explanatory variables considered in each category. 

Table 1. Categorization of explanatory variables 

Variable Category 

Sold water (million gallons) Quantity 

Sold water per customer (million gallons) Quantity 

Network length (miles/customer) Institutional 

Debt ($1,000/customer) Institutional 

Water loss (%) Institutional 

Ground water as source Institutional 

Violations (number in 2014) Water quality 

Elevation difference (ft.) Geographical 

Average slope (%)  Geographical 

Population density (person/sq. mile) Geographical 

 

Based on equation (1) and the variables described above, an empirical equation for water 

charges is written as: 

𝑊𝐶𝑖 =  𝛽0 + 𝛽1𝐿𝑖𝑛𝑒𝑖 + 𝛽2𝑆𝑜𝑙𝑑𝑖 + 𝛽3𝑆𝑜𝑙𝑑𝑖
2 + 𝛽4𝑆𝑜𝑙𝑑𝑃𝐶𝑖 + 𝛽5𝑆𝑜𝑙𝑑𝑃𝐶𝑖

2 + 𝛽6𝐷𝑒𝑏𝑡𝑖 +

𝛽7𝐿𝑜𝑠𝑠𝑖 + 𝛽8𝐺𝑟𝑜𝑢𝑛𝑑𝑖 + 𝛽9𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐷𝑖 + 𝛽10𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐷𝑖
2 + 𝛽11𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑖 +

𝛽12𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝐷𝑖𝑓𝑖 + 𝜀𝑖                                                                                                                (2) 

   The error term (εi) is assumed to comply with the BLUE standard assumptions of 

expected value equal to zero, homoscedasticity, independently distributed and not correlated with 

other error terms or the independent variables.  However, as pointed out by Guyomard and 

Vermersch (1989) and Filippini (1996), estimation of a translog variable cost function with a high 

number of explanatory variables can lead to multicollinearity problems.  Thus, we evaluate three 
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functional forms for the water charges model: a linear with quadratic variables, a Cobb-Douglas 

(log of dependent and independent variables), and a spatial model. A total of ten different 

specifications are estimated and evaluated with adjusted R2, Akaike Information Criterion (AIC), 

Schwarz Information Criterion (SIC), and Hannan-Quinn criteria to select the best specification.  

The first six models have a linear functional form and the remaining four are log-log form.  A 

Davidson-MacKinnon J test is applied to choose between linear and log-log model specifications. 

Our approach here is to initially estimate a non-spatial water charges model and then 

control for spatial spillovers by estimating another model in a spatial framework. According to the 

LeSage and Pace (2009) and Elhorst (2014), non-spatial econometric estimation is based upon 

observed values being independent of location with no correlation between neighbors.  In non-

spatial models, each observation has a mean of 𝑥𝑖𝛽 and a random component  𝜀𝑖 where the 

observation 𝑖 represents a region or point in space at one location and is considered to be 

independent of observations in other locations, i.e. 𝐸(𝜀𝑖 𝜀𝑗) = 𝐸(𝜀𝑖)𝐸(𝜀𝑙) = 0.  

However, in many cases, this independence assumption is not applicable so that 

observations at different points or regions are dependent (LeSage and Pace 2009).  Suppose we 

have two neighbors (regions) 𝑖 and 𝑗.  If these two regions are spatially correlated and normality 

for error terms is assumed, then: 

𝑦𝑖 = 𝜌𝑖𝑦𝑗 + 𝑥𝑖𝛽 + 𝜀𝑖                                                                                                (3) 

𝑦𝑗 = 𝜌𝑗𝑦𝑖 + 𝑥𝑗𝛽 + 𝜀𝑗                                                                                                (4) 

where the dependent variable in neighbor j influences the dependent variable in neighbor i and vice 

versa.  When the spatial component (whether this component is from the dependent variable, 

control variables or the error term) is statistically significant, the coefficients estimated by non-

spatial model may be biased.  Also, variances may be non-efficient (Griffith, 2005; LeSage and 
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Pace, 2009).  Accordingly, statistical tests (t-test and F-test) may be invalid, leading researchers to 

interpret their results improperly. 

After examining spatial dependency of our dependent variable with a Moran’s I test1 

(Moran’s i index = 0.113, P-value = 0.030), this result show spatial dependency and the need to 

apply spatial econometrics modeling.  There are five different spatial models. The first is the 

spatial autoregressive lag model (SAR) as shown in equations 3 and 4. Spatial Error Model (SEM) 

assumes dependency in error term.  A SLX model or spatial lag of explanatory variable assumes 

that only explanatory variables play a direct role in determining dependent variables.  Lastly, the 

Spatial Durbin Model (SDM) and Spatial Error Durbin Model (SDEM) include spatial lags of the 

explanatory variables as well as the dependent variable and a spatial lag of the explanatory 

variables (WX) along with spatially dependent disturbances.  

To observe dependence between neighboring municipal water utility observations, spatial 

econometrics models differentiate between direct and indirect effects.  Direct effects show how 

changes in an explanatory variable for the ith utility influences the ith utility’s dependent variable.  

Indirect effects illustrate the effects of an explanatory variable in jth utility on ith utility’s dependent 

variable2.  LeSage (2008) argues that since the impacts of the explanatory variable are different 

among observations, it is desirable to have a measurement of overall and average impacts.  He 

introduces the concepts of average direct, indirect, total effects, and also feedback effects.  LeSage 

and Pace (2014) explain “Feedback effects arise when changes to own region/entity characteristics 

exert an impact on outcomes in the own and neighboring regions/entities, which produce additional 

changes or feedback effects on outcomes in the own region.”   

                                                 
1 For more information, please see Li et al. (2007). 

2 For more information, see LeSage and Pace (2014) and LeSage (2008).  



18 
 

Parameters in a general linear regression interpret as partial derivative of the dependent 

variable respect to the explanatory variable.  Independent assumption is the base for the estimation 

of partial derivatives in a linear regression.  

In a spatial model, interpretation of the parameters become more complicated.  LeSage and 

Pace, 2009; Anselin and LeGallo, 2006; Kelejian, Tavlas and Hondronyiannis, 2006; Kim, Phipps, 

and Anselin, 2003; LeGallo, Ertur, and Baumont, 2003 argue that the model with a spatial lag of 

the dependent variable require special interpretation of the parameters.  

Elhorst (2014) calculated the direct, indirect and the total effect in a general nesting spatial 

(GNS) model as  

               𝑌 = (𝐼 − 𝛿𝑊)−1(𝑋𝛽 + 𝑊𝑋𝜃) + 𝑅                                                                   (5) 

where R is a rest term containing the intercept and the error terms. 

The matrix of partial derivatives of expected dependent variable with respect to explanatory 

variables can be seen as  

 

[
𝜕𝐸(𝑌)

𝜕𝑥1𝑘
 .  

𝜕𝐸(𝑌)

𝜕𝑥𝑁𝑘
] =  [

𝜕𝐸(𝑦1)

𝜕𝑥1𝑘
.

𝜕𝐸(𝑦1)

𝜕𝑥𝑁𝑘
. . .

𝜕𝐸(𝑦𝑁)

𝜕𝑥1𝑘
.

𝜕𝐸(𝑦𝑁)

𝜕𝑥𝑁𝑘

]                                                                             (6) 

  

= (1 − 𝛿𝑊)−1 [

𝛽𝑘 𝑤12𝜃𝑘 . 𝑤1𝑁𝜃𝑘

𝑤21𝜃𝑘 𝛽𝑘 . 𝑤2𝑁𝜃𝑘

. . . .
𝑤𝑁1𝜃𝑘 𝑤𝑁2𝜃𝑘 . 𝛽𝑘

  ] 

 
 

where 𝑤𝑖𝑗 is the (i, j)th element of W.  Every diagonal element of the partial derivative matrix 

shows the direct effect while the indirect effects show by every off-diagonal element.  Since the 

direct and indirect effects are unique for each observation, Lesage and Pace (2009) propose to 

report the summary indicators (the average of the diagonal elements for the direct effect and the 
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average of either the row sums or the column sums of the off-diagonal elements for indirect 

effects).  𝜃 in a SAR model is equal to zero, indirect effect would be equal to the off-diagonal 

elements of (1 − 𝛿𝑊)−1 𝛽𝑘. 

All spatial models have a weight matrix (W), which quantifies the connections between 

regions.  Elhorst (2014) names the weight matrix as a tool to describe the spatial arrangement of 

the geographical units in the sample.  There are variety of units of measurement for spatial 

dependency such as neighbors, distance, and links (Getis, 2007). The spatial weight matrix is based 

on the distance between municipalities.  In this study, we applied seven nearest-neighbors weight 

matrix.3 Spatial econometric models are estimated using software codes provided by Donald 

Lacombe.4   

For the minimum monthly access charge model, we include variables reflecting cost, social 

equity, municipal governance, city size, and fixed cost considerations.  Brown (2007) explains that 

minimum charges are established to provide an essentially guaranteed base revenue stream for the 

utility.  Kanakoudis and Tsitsifli (2014) argue that the determination of the fixed charge has to be 

based on the actual water charge.  Besides water charge, we introduce social demographics of a 

municipality such as percentage of elderly population, median household income, and percentage 

of population below the poverty level to the minimum charge equation to see whether these 

socioeconomic characteristics influence the minimum monthly charge for access to water 

provision.  

The general form for a minimum access charge equation for water provision is:  

𝑀𝑀𝐶𝑖 = 𝑓(𝑊𝐶𝑖, 𝑆𝐸𝑖 ,  𝑆𝑀𝑖 , 𝐶𝑆𝑖, 𝑊𝐿𝑖)                                                                   (7) 

                                                 
3 Lesage and Pace (2010) argue that the configuration of the spatial weight matrix matters very little 

4 Available at: http://myweb.ttu.edu/dolacomb/matlab.html 



20 
 

where (MMC) stands for the minimum monthly charge set by the municipal water utility i, (WC) is 

the water charge, and (SE) shows the socioeconomic factors as indicators of social equity concerns 

influencing minimum charges.  

SM is a dummy variable to describe municipality governance.  This variable is included in 

the minimum monthly access charge model to examine whether local politics influenced this 

charge.  A “strong” mayor-council type of government is compared to a “weak” mayor-council 

and council-manager.  Under a “strong” mayor-council government, a mayor is elected separately 

and has substantial administrative and budgetary authority above the council (National League of 

Cities, 2013).  It is hypothesized that a “strong” mayor type of government would result in more 

political pressure to keep minimum charges low relative to a “weak” mayor or council-manager.  

There is some evidence in the literature that the existence of a “strong” mayor inhibits the 

implementation of policies such as market-based ideas within municipalities (Krebs and Pelissero, 

2010, Bae et al., 2013).  

The CS variable measures the effect of city size on minimum monthly water charge. As we 

explained earlier, minimum charge represents a fixed proportion of the water charge that each 

residential customer must pay regardless of their water consumption.  Since West Virginia is a 

small, mostly rural state, there are few large cities (only one over 50,000 in population).  Thus, the 

size variable utilized was a distinction between class II municipalities (10,000 to 50,000 in 

population) versus class III and IV municipalities (less than 10,000).  The logic for this variable is 

that larger municipalities imply a greater tax base from which there may be an increased ability of 

the municipality to absorb losses that might be incurred from lower minimum monthly access 

charges.  Lastly, we include a variable to measure water loss (WL).  The WL variable examines 

whether fixed costs like water losses influence the minimum water charge.  
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The empirical model for minimum monthly access charges is: 

𝑀𝑀𝐶𝑖 =  𝛽0 + 𝛽1𝑊𝐶𝑖 + 𝛽2𝑃𝐶𝐼𝑖 + 𝛽3𝑆𝑅𝑖 + 𝛽4 𝐻𝑂𝑖 + 𝛽5𝑆𝑀𝑖 + 𝛽6𝐶𝑆𝑖 + 𝛽7𝐿𝑖 + 𝜀𝑖     (8) 

where (PCI) is average per capita income; (SR) is the percentage of households with one or more 

above 65-year-old; and (HO) is the percentage of households own a house unit.  To avoid a 

simultaneity issue, predicted water charges from equation 2 are utilized for MC since both water 

charges and minimum charges are proposed simultaneously by water utilities to the WV PSC.   

Since education, percent below poverty, and income variables are highly correlated, we 

conducted robustness checks by examining different combinations of these variables in models.  

We examine four different regression models and based on adjusted R2, AIC, SIC, and Hannan-

Quinn criteria, the best model specification is chosen.   

DATA 

Data for this research are primarily based on the annual reports submitted to the WV PSC 

by municipal water utilities in West Virginia.  These annual reports for water utilities are available 

through WV PSC website5 and data were collected for 2014.  These reports contained numerous 

missing values – mostly for total treatment capacity, total main line, total long term debt, and water 

source.  According to the WV PSC, there is no obligation for utilities to provide the information in 

their annual report.  Thus, additional information was gathered through email and phone calls to 

utility personnel about missing data or when information in a report seems questionable.  

Although regulated by the West Virginia Bureau of Public Health (WVBPH), the quality of 

water provided by each municipal utility differs depending upon the number of violations to 

drinking water standards.  We introduce two variables to reflect violations during 2014 obtained 

                                                 
5 Available at: http://www.psc.state.wv.us/Annual_Reports/default.htm 
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from an annual report of environmental engineering division of the WVBPH:  1) the number of 

violations reported for each water utility, and 2) a dummy variable as an indicator of having a 

water violation or not. Out of 125 observations, 72 municipalities did not have any reported 

violations in 2014.  The Natural Resource Analysis Center at West Virginia University provided 

the necessary topography data within municipality boundaries, maximum elevation, minimum 

elevation, elevation difference, and the average slope.  Municipal population size is derived from 

the 2014 population estimates of the U.S. Census Bureau (2015).  

A total of 14 cities in West Virginia have a population greater than 10,000, nine of these 

municipalities are in our data base.  For local governance, historically, most municipalities in West 

Virginia have implemented a mayor-council type of government (Brisbin et al., 1996).  This type 

of government was selected as the base and compared to a strong mayor type.  Municipalities with 

a strong mayor were determined from an on-line search of municipal government web pages and a 

description of their governing structure. Of the 125 municipalities in the database, only nine have a 

strong mayor type. 

Tables 2 and 3 show the data summary statistics6 and expected coefficient signs for the 

independent variables in the water charge and the minimum monthly access charge models.  Due 

to considerations of economies of size and scale, negative coefficients are expected for population 

density, water sold, and the water sold per customer.  We expect a positive coefficient for main line 

length due to added infrastructure costs.  Since ground water typically requires less treatment than 

surface water, we expect a negative coefficient for the ground water source variable.  Also, the 

                                                 
6 For the log-log models, a value of 0.1 is used to replace zeros in all variable observations of zero with the exception of the violations 

variable. This allowed for conversion of variables to log values at a small value close to zero. Since the violations variable is 

expressed as integers only, we added +1 to the current values.  
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violation coefficient is expected to be negative as the number of violations stem from lower quality 

source water and less treatment.  To control for the degree of elevation changes within the utility 

service area, we introduce two topographic variables: difference between maximum and minimum 

elevation and average percent slope (Reznik et al. 2016).  We expect both to have negative 

coefficients – the more changes in topography, the higher the cost of providing water due to higher 

costs of water transmission.  In addition, we tried to control for other explanatory variables such as 

coal production, distance from the river, possibility to have access to private well, and water utility 

age.  None of these variables had a statistically significant coefficient when included in 

regressions, therefore we report these results in Appendices III-IV.     

For the minimum monthly access charge equation, we expect a positive sign for water 

charge.  If social equity matters in setting minimum water charges, then income, education, and 

home ownership variables are expected to have positive coefficients.  Also with social equity 

concerns, the percent of residents who are below the poverty line and the percentage of elderly 

households both should have negative impacts on minimum charges. 

Table 2. Summary statistics of variables used in the water charge model (n=125) 

Variable Mean 
Standard 

Deviation 
Min Max 

Expected 

sign of 

coefficient 

Water charges ($) 38.71 11.88 13.26 71.89  

Network length (miles/customer) 0.04 0.27 0.001 3.10 + 

Sold water (million gallons) 137.34 295.26 13 11,374 - 

Sold water per customer (million 

gallons) 
0.06 0.08 0.002 0.83 - 

Debt ($1,000/customer) 1.52 1.42 0 6.03 + 

Water loss (%) 24.59 17.23 0 92.32 + 

Ground water as source  0.26 N/A 0 1.00 - 

Population density (person/sq. 

mile) 
1,316.60 786.37 125.94 5,778.89 - 

Violations (number in 2014) 2.46 5.15 0 34 - 

Elevation difference (ft.) 452.92 234.11 71.99 1285.03 + 

Average slope (%)  18.834 11.175 4.62 55.82 + 
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Table 3. Summary statistics of variables used in the minimum monthly access charge model 

(n=125) 

Variable Mean 
Standard 

Deviation 
Min Max 

Expected 

sign of 

coefficient 

Minimum monthly charge ($) 20.99 7.11 3.87 39  

% HHs with 1 and >1 older than 

65 (%) 
31.32 7.99 10.34 49.53 - 

Percentage of population older 

than 65 (%) 
17.62 5.82 4.60 37.50 - 

Median Income ($) 34,892.09 12,263.78 12,344 106,250 + 

Per capita Income ($) 19,719.85 6,473.85 4,472 64,099 + 

Percentage below poverty rate 

(%) 
22.61 9.96 0.1 55.3 - 

Percentage of home ownership 

(%) 
67.44 12.96 29.90 92.70 + 

Percentage of bachelor degree or 

higher (%) 
14.64 10.32 0.1 65.80 + 

Class II municipalities 0.06 N/A 0 1 - 

Strong Mayor 0.04 N/A 0 1 - 

Water loss (%) 24.59 17.23 0 92.32 + 

 

RESULTS 

We estimate regressions using WC and MMC as dependent variables with institutional, 

governmental, geographical, environmental, and socioeconomic factors serving as independent 

variables.  Variables that are highly correlated with the number of customers (network length, sold 

water, debt) are converted to per capita to avoid multicollinearity.  For the water charges model, all 

specification criteria (adjusted R2, AIC, SIC, and Hannan-Quinn criteria) show models with 

Violations and Elevation difference variables as the best for both linear and log-log specifications.  

The Davidson-MacKinnon J test resulted in selection of a linear specification with variables not 

transformed into log values7.   

                                                 
7 The estimated coefficient for predicted value from the log-log model in the linear model is 0.10 (p-value = 0.717) while the estimated 

coefficient for the predicted value from the linear model in the log-log model is 1.04 (p-value = 0.000).     
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For the spatial model, we choose the most representative weight matrix for the data by 

testing for different sets of nearest neighbor relationships.  The seven nearest neighbors’ weight 

matrix has the highest log likelihood value among the eight matrices examined.  Since log-

likelihood has the power to compare the models, this statistic guides us to our particular 

specification (Kalenkoski and Lacombe, 2013).   

To examine spatial correlation among observations, we utilize five different spatial models 

(i.e. SAR, SEM, SDM, SDEM, and SLX).  Table 4 shows the results for the SAR model since this 

model is the only one with a significant spatial component.  We report the other specifications in 

Appendix I.  Model 1 specification is used in a spatial framework because among all the linear and 

log-log functional forms, this model has the highest adjusted R2.  In the SAR model, there is a 

positive and statistically significant spillover effect.  This result means that water charges in 

neighboring municipal utilities have positive spillover effects on the water charge of a particular 

municipal utility. In other words, since water charges are spatially dependent, if charges increase in 

a neighboring municipal j, then water charges in municipal i will increase as well.  

With a statistically significant ρ value in the SAR model, the OLS coefficient estimates are 

likely biased and presented in Table 4 only for a comparison with the magnitude of the direct 

effects from the SAR model.  The water charges model has direct effect with p-values below 0.05 

for the variables: sold water per capita; total debt; ground water as a water source, and population 

density.  The network length variable has a direct effect with a p-value under 0.10, while water 

loss, elevation difference and violation variable coefficients have p-values much above 0.05 (Table 

4).  Our expectations for the elevation difference and violation variables are not met by this model, 

however, their p-values are all above 0.10.  
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To interpret the direct effect results, a one person increase per square mile will decrease the 

water charge by $0.01.  Although based on the quadratic form of population density, this is true up 

to a certain point (5000 people/square mile), after this point, population density will actually start 

to increase water charges.  Other interpretations of 4,500 gallon charges include: increasing the 

total long-term debt by one thousand dollars per customer will increase this charge by $1.84, use of 

ground water as a primary water source reduces this charge by $4.83, and an increase of one mile 

in main line length per customer will increase this charge by $5.15.  

While none of the indirect effects have p-values even close to 0.10, the total effect impacts 

in the SAR model increase the overall magnitude of impact on water charges.  For example, 

ground water as a water source has an estimated total impact of reducing water charges by $6.45 in 

the SAR model compared to the linear model estimate of $5.11.  
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Table 4. Water charges model results for OLS and SAR estimations (n=125) 

 OLS SAR 

Variable Coefficients Direct effect Indirect effect Total effect 

Network length pc 
5.20 

(0.096) 

5.15 

(0.087) 

1.87 

(0.442) 

7.03 

(0.131) 

Sold water (000) 
-8.82 

(0.282) 

-8.33 

(0.285) 

-2.15 

(0.544) 

-10.48 

(0.315) 

Sold water2 (000) 
0.0007 

(0.859) 

0.0004 

(0.915) 

0.00007 

(0.992) 

0.0005 

(0.936) 

Sold water pc 
-126.40 

(0.006) 

-125.33 

(0.004) 

-44.37 

(0.368) 

-169.71 

(0.026) 

Sold water pc2 
147.79 

(0.006) 

146.86 

(0.004) 

51.88 

(0.366) 

198.75 

(0.025) 

Debt pc 
1.84 

(0.002) 

1.84 

(0.001) 

0.65 

(0.347) 

2.50 

(0.015) 

Water loss 
0.05 

(0.281) 

0.05 

(0.234) 

0.02 

(0.511) 

0.07 

(0.273) 

Ground water 
-5.11 

(0.008) 

-4.83 

(0.008) 

-1.61 

(0.339) 

-6.45 

(0.020) 

Population density (000) 
-10.01 

(0.000) 

-9.87 

(0.000) 

-2.59 

(0.336) 

-12.46 

(0.009) 

Population density2 (000) 
0.002 

(0.002) 

0.002 

(0.001) 

0.0004 

(0.346) 

0.0022 

(0.015) 

Violation 
0.17 

(0.323) 

0.15 

(0.346) 

0.04 

(0.590) 

0.20 

(0.378) 

Elevation difference 
-0.006 

(0.110) 

-0.005 

(0.126) 

-0.001 

(0.432) 

-0.007 

(0.157) 

Constant 
55.54 

(0.000) 

- - 45.45 

(0.000) 

 Adj. R2 = 0.32 

F 12,112 = 5.91 

 

 
Adj. R2 = 0.34 

 

   ρ = 0.23 

p-value = 0.001 

 

Note:  P-values in parenthesis 

pc = per customer 

 

Finally, the best model specified for minimum monthly access charges includes 

variables for households with one or more residents over 65 and per capita income (Table 5).  This 

model also is examined for spatial impacts.  We repeat the same procedure as the water charge 

model in order to choose the most appropriate weight matrix.  The seventh nearest neighbor weight 

matrix has the highest log-likelihood, so that we continue the rest of spatial econometric 

estimations based upon influences from the seventh nearest neighbors.  The results of the SAR and 
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SEM estimations (the only two spatial models with statistically significant spatial components) are 

presented in Table 5.  The results for the other three spatial models are presented in Appendix II.   

Interpreting the spatial model impacts, only predicted water charges impact minimum 

monthly access charges with p-values below 0.05.  These minimum monthly access charges 

incorporate from between 33% and 40% of the municipal utility’s 4,500-gallon charge.  All other 

variables, including the socioeconomic variables, have impacts with p-values well above 0.10.  

Overall, the results of these models show that socioeconomic factors within municipal populations 

do not contribute to equity considerations explaining variations in municipal utility minimum 

charges.  

Water charges have positive indirect effects on the minimum monthly access charges so 

that predicted water charges in municipal i influence not only the minimum water charge in 

municipal i, but also influence the minimum water charge in neighboring j municipalities.  This 

spillover effect from water charges is about 1/3 the size of the direct effect.  Also, the SEM model 

result shows that there are some significant spillover effects of variables that are not explicitly 

modeled (error term).  Except for the negative total effect by strong mayor in the SAR model, none 

of the variable coefficients other than predicted water charge in Table 5 show evidence of 

statistical significance.  
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Table 5. Minimum monthly access charge model results for OLS, SAR, and SEM estimates 

(n=125) 

 OLS SAR SEM 

Variable Coefficients Direct effect Indirect effect Total effect Coefficients 

Predicted Water 

Charge 

0.39 

(0.000) 

0.33 

(0.000) 

0.11 

(0.077) 

0.44 

(0.000) 

0.39 

(0.000) 

Household with one 

or more older than 

65 

0.04 

(0.638) 

0.03 

(0.524) 

0.01 

(0.589) 

0.04 

(0.534) 

0.04 

(0.649) 

Per capita income 
-0.04 

(0.658) 

-0.04 

(0.710) 

-0.02 

(0.759) 

-0.06 

(0.720) 

-0.028 

(0.746) 

Home ownership 

rate 

0.06 

(0.264) 

0.04 

(0.238) 

0.01 

(0.368) 

0.05 

(0.259) 

0.06 

(0.230) 

Class II 

municipalities 

-1.20 

(0.645) 

-1.68 

(0.647) 

-0.68 

(0.708) 

-2.37 

(0.659) 

-0.38 

(0.824) 

Strong Mayor 
-4.55 

(0.095) 

-4.62 

(0.118) 

-1.70 

(0.276) 

-6.33 

(0.099) 

-4.04 

(0.115) 

Water loss 
0.01 

(0.100) 

0.006 

(0.855) 

0.001 

(0.898) 

0.007 

(0.864) 

0.001 

(0.959) 

Constant 
1.02 

(0.823) 
- - 

-5.25 

(0.31) 

1.51 

(0.736) 

 Adj. R2= 0.19 

F 7,117 = 5.19 

 
Adj. R2 = 0.20 

 
Adj. R2 = 0.23 

 ρ = 0.34 

p-value = 0.007 

λ = 0.31 

p-value = 0.022 

Note:  P-values in parenthesis 

CONCLUSIONS 

Previous studies on water cost estimation have neglected both geography and spillover 

aspects regarding factors explaining the cost of providing water, although some researchers 

explicitly recommend controlling for these variables (Antonioli and Filippini, 2001).  As discussed 

earlier, the main goal of this study is first to estimate the influences of primary factors on water 

charges and secondly, to estimate the determinants of minimum monthly access charges across 

municipalities in West Virginia.  Our estimation of the water charge model shows that the quantity 

of water sold per customer, population density, ground water as a primary source of water, and 

utility debt source are the most important explanatory factors for residential water charges.  In 

addition, main line length is an influential factor to explaining water charges.  The addition of a 
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geographic variable did not explain variations in water charges and did have its expected impact on 

water charges.   

From our model results, ground water as a water source lowers water charges by about $5 

to $6 per 4,500 gallons (approximately a 15% reduction in customer cost).  This result 

demonstrates the importance of protecting ground water quality with source water protection 

programs.  According to the U.S. Environmental Protection Agency, states, local governments, and 

utilities all play important roles in water protection programs.  In West Virginia, implementation of 

wellhead protection programs began in the early 1990’s as a part of ground water protection 

strategy to encourage utilities to develop protection and management plans.  The WVBPH assesses 

all of West Virginia’s public water systems and creates polices to provide clean and safe drinking 

water.  Our water charge model results provide the basis for a rough estimate of the benefits from 

this ground water protection.  Allowing for a $5 saving for each 4,500 gallons of use, the over 

240,000 households in West Virginia served by municipalities using ground water have an annual 

cost savings of $3.6 million in their water charges compared to other water sources.     

Similar to Bae (2007), we find that utility debt also impacts water charges.  For every 

$1,000 of utility debt, water charges increase by about $2 per 4,500 gallons.  Given the mean of 

debt per customer and 4,500 gal of water use monthly, utility debt adds about $36 to the annual 

household water bill (about an 8% increase).  This result demonstrates the importance of grant 

versus loan financing to utilities.  As reported by the Environmental Finance System8, different 

organizations provide long term fixed low-interest loans to rural areas and low-income 

communities to help them to increase the water quality.  Prior to the 1987 amendments to the 

Clean Water Act, municipal utility assistance was provided through grants with the federal 

                                                 
8 http://efcnetwork.org/wp-content/uploads/2016/07/WV-Water-Wastewater-Funds-2016.pdf 
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government picking up 55% of project cost.  This amendment changed grants to low-interest rate 

loans.  This change means that now local governments are responsible for 100% of projects’ cost 

(Copeland, 1999).  This societal change of replacing the federal government grants to municipal 

utilities with low-interest loans has increased long term utility debt, which has increased water 

charges to customers.  

The population density variable has a negative effect on water charges in all model 

specifications, which means more dense areas have lower water charges.  Given the quadratic 

specification, this negative impact occurs only up to a certain point (5,000 people/square mile).  

This is also true for the total water sold to customers.  In other words, although municipalities in 

West Virginia are small, both size and scale impacts are still found in small municipalities.   

In addition, there are modest, but statistically significant (evaluated at a p=0.05 or lower) 

levels of spatial autocorrelation in both models among West Virginia municipal water utilities in 

terms of water charges and minimum monthly access charges.  This result shows that both these 

pricing decisions are influenced by neighboring utilities.  While none of the variables in the water 

charges model had statistically influential, indirect impacts, water charges in the minimum monthly 

access charge model had a positive indirect impact with a p-value below 0.10. Thus, an increase in 

water charges in municipal utility i leads not only to a higher minimum charge in municipality i, 

but also higher minimum charges in neighboring j municipalities due to positive spillover effects.     

When examining minimum charges, there is some evidence that utilities located in strong 

mayor governing system assess lower minimum charges than other municipalities.  Overall, 

minimum charges are closely related to water charges – incorporating just over one-third of the 

water charge for 4,500 gallons into the minimum charge.  To examine the share of household 

income taken up by water charges in West Virginia municipalities, we calculated the average water 
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use for each household multiplied the water charge and divided by the average household income.  

On average, West Virginia households pay far below the OECD standard of 3% to 5% of 

household income for water.  Our results indicate that the average share of water costs across West 

Virginia households with municipal water utilities is about 1.5% of household income devoted to 

water charges with a maximum share being 4%.  With such reasonable costs of water for 

households, this could be a factor explaining why our models find no significant effects from 

socioeconomic factors on monthly minimum charges for access to water.   

Finally, this research raises few issues with affordability of current municipal water 

charges.  However, Mack and Wrase (2017) project affordability issues that could occur with 

future water rate increases of 6% and 41%.  These projected increases are based upon observed 

water rate increases since 2010.  If such water rate increases do occur, this will leave the state of 

West Virginia with the highest percentage of at-risk census tracts (46%) of any state in the nation 

for households unable to afford water bills, primarily due to the prevalence of low-income and 

elderly households in southern and central parts of the state.  Their research raises potential future 

concerns about the continued affordability of water and the financial viability of municipal utilities 

providing service to areas with numerous low income households. 
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Appendix I. 

Table 6. Estimation results for water charges SEM, SDM, SLX, and SDEM models 

Variable SEM  SDM SLX SDEM 

Network length pc 
5.34 

(0.064) 

4.64 

(0.000) 

4.64 

(0.161) 

4.7 

0.10 

Sold water (000) 
-6.86 

(0.219) 
-6.96 

(0.325) 
-6.92 

(0.451) 
-6.78 

(0.395) 

Sold water square (000) 
0.0006 

(0.843) 

-0.0006 

(0.863) 

-0.0006 

(0.889) 

-0.0007 

(0.852) 

Sold water pc 
-123.33 
(0.000) 

-157.10 
(0.000) 

-156.98 
(0.001) 

-157.57 
(0.000) 

Sold water pc square 
145.40 

(0.000) 

187.19 

(0.000) 

178.11 

(0.002) 

178.11 

(0.000) 

Debt pc 
1.81 

(0.001) 
2.01 

(0.000) 
2.01 

(0.002) 
2.00 

(0.000) 

Water loss 
0.08 

(0.222) 

-0.03 

(0.398) 

0.04 

(0.478) 

0.03 

(0.424) 

Ground water 
-5.13 

(0.005) 
-5.004 
(0.004) 

-5.005 
(0.022) 

-4.96 
(0.009) 

Population density (000) 
-9.15 

(0.000) 

-9.15 

(0.000) 

-9.16 

(0.001) 

-9.18 

(0.000) 

Population density square (000) 
0.002 

(0.001) 
0.002 

(0.002) 
0.016 

(0.009) 
0.016 

(0.002) 

Violation 
0.14 

(0.357) 

0.09 

(0.554) 

0.09 

(0.607) 

0.095 

(0.563) 

Elevation difference 
-0.005 
(0.136) 

-0.004 
(0.311) 

-0.004 
(0.381) 

-0.004 
(0.328) 

Constant 
54.70 

(0.000) 

70.94 

(0.000) 

70.54 

(0.000) 

71.00 

(0.000) 

rho 
- 0.005 

(0.962) 
- - 

Lambda 
0.18 

(0.221) 
- - 

-0.05 

(0.767) 

W* Network length pc - 
-4.82 

(0.000) 

-4.85 

(0.567) 

-4.47 

(0.529) 

W* Sold water (000) - 
4.08 

(0.856) 

4.6 

(0.882) 

4.92 

(0.823) 

W* Sold water square (000) - 
-0.01 

(0.349) 

-0.01 

(0.445) 

-0.01 

(0.320) 

W* Sold water pc - 
-197.44 

(0.000) 

-196.18 

(0.253) 

-203.04 

(0.000) 

W* Sold water  pc square - 
186.88 

(0.000) 

185.58 

(0.326) 

191.23 

(0.000) 

W* Debt pc - 
1.97 

(0.200) 

1.95 

(0.296) 

2.03 

(0.190) 

W* Water loss - 
-0.07 

(0.536) 

-0.07 

(0.643) 

-0.06 

(0.620) 

W* Ground water - 
0.68 

(0.014) 

0.72 

(0.88) 

-0.36 

(0.927) 

W* Population density (000) - 
-5.57 

(0.274) 

-5.44 

(0.506) 

-5.78 

(0.421) 

W* Population density square 

(000) 
- 

0.001 

(0.453) 

0.01 

(0.553) 

0.001 

(0.472) 

W* Violation - 
0.58 

(0.332) 

0.58 

(0.426) 

0.57 

(0.342) 

W* Elevation difference - 
-0.003 
(0.645) 

-0.003 
(0.765) 

-0.003 
(0.716) 

R- square 0.37 0.44 0.44 0.44 

Number of observations = 125 

     P-values in parenthesis 
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Appendix II. 

Table 7. Estimation results for minimum water charge SEM, SDM, SLX, and SDEM models 

Variable SDM SLX SDEM 

Predicted water charge 
0.36 

(0.000) 

0.37 

(0.000) 

0.36 

(0.000) 

Household with one or more 

older than 65 

0.04 

(0.619) 

0.04 

(0.682) 

0.05 

(0.563) 

Per capita income 
-0.008 

(0.932) 

0.008 

(0.921) 

0.027 

(0.759) 

Home ownership rate 
0.06 

(0.955) 

0.06 

(0.340) 

0.05 

(0.377) 

Class II 
-1.02 

(0.135) 

-1.06 

(0.658) 

-1.20 

(0.609) 

SM 
-4.56 

(0.368) 

-5.01 

(0.073) 

-4.75 

(0.072) 

Water loss 
0.007 

(0.825) 

-0.006 

(0.855) 

-0.007 

(0.823) 

Constant 
8.51 

(0.620) 

9.38 

(0.609) 

8.60 

(0.643) 

Rho 
0.24  

(0.097) 
- - 

Lambda - - 
0.12 

(0.198) 

W* Predicted water charge 
-0.04 

(0.718) 

0.06 

(0.952) 

0.07 

(0.897) 

W* Household with one or 

more older than 65 

-0.04 

(0.760) 

-0.23 

(0.860) 

-0.01 

(0.888) 

W* Per capita income 
-0.03 

(0.750) 

-0.04 

(0.725) 

-0.04 

(0.720) 

W* Home ownership rate 
-0.01 

(0.627) 

-0.01 

(0.603) 

-0.01 

(0.615) 

W* Class II 
-10.29 

(0.112) 

-11.40 

(0.095) 

-11.16 

(0.112) 

W* SM 
-2.27 

(0.639) 

-4.77 

(0.454) 

-6.52 

(0.374) 

W*water loss 
0.064 

(0.408) 

0.07 

(0.365) 

0.06 

(0.435) 

R- square 0.28 0.28 0.29 

Number of observations = 125 

      P-values in parenthesis 
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Appendix III. 

         Table 8. Estimation results for water charge spatial model with the coal production variable  

 SAR 

 Direct effect Indirect effect Total effect 

Network length pc 
5.22 

(0.061) 

1.73 

(0.412) 

6.95 

(0.094) 

Sold water (000) 
-9.73 

(0.220) 

-3.09 

(0.522) 

-12.83 

(0.261) 

Sold water2 (000) 
0.001 

(0.738) 

0.0003 

(0.866) 

0.001 

(0.766) 

Sold water pc 
-130.31 

(0.003) 

-43.45 

(0.361) 

-173.77 

(0.020) 

Sold water pc2 
153.742 

(0.003) 

51.27 

(0.362) 

205.02 

(0.020) 

Debt pc 
1.79 

(0.001) 

0.59 

(0.333) 

2.39 

(0.012) 

Water loss 
0.06 

(0.190) 

0.02 

(0.484) 

0.08 

(0.229) 

Ground water 
-5.12 

(0.006) 

-1.60 

(0.317) 

-6.72 

(0.014) 

Population density (000) 
-9.57 

(0.000) 

-3.18 

(0.327) 

-12.76 

(0.008) 

Population density2 (000) 
0.001 

(0.002) 

0.0005 

(0.330) 

0.002 

(0.013) 

Violation 
0.13 

(0.398) 

0.04 

(0.624) 

0.17 

(0.424) 

Elevation difference 
-0.003 

(0.373) 

-0.001 

(0.557) 

-0.005 

(0.391) 

Coal production 
-0.000 

(0.352) 

-0.000 

(0.632) 

-0.000 

(0.390) 

Constant 
45.807 

(0.000) 

Adjusted R- square 0.336 

Rho 
0.22 

(0.000) 

P-values in parenthesis 

Note: In this model, we control for the cumulative coal production to see if there is any impact for 

the municipalities that are located in counties with surface and underground coal production.  As 

the Appendix III shows coal production is not an influential factor to determine the water charge in 

municipalities.  
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Appendix IV. 

Table 9. Estimation results for water charge spatial model with the distance from the river 

variable 

 SAR 

 Direct effect Indirect effect Total effect 

Network length pc 
5.43 

(0.063) 

1.96 

(0.278) 

7.40 

(0.081) 

Sold water (000) 
-8.65 

(0.252) 

-3.00 

(0.423) 

-11.65 

(0.271) 

Sold water2 (000) 
0.0005 

(0.884) 

0.0001 

(0.928) 

0.0006 

(0.894) 

Sold water pc 
-127.09 

(0.002) 

-45.24 

(0.184) 

-172.33 

(0.007) 

Sold water pc2 
149.008 

(0.002) 

52.95 

(0.182) 

201.96 

(0.007) 

Debt pc 
1.79 

(0.002) 

0.63 

(0.189) 

2.43 

(0.007) 

Water loss 
0.05 

(0.310) 

0.01 

(0.468) 

0.06 

(0.328) 

Ground water 
-4.66 

(0.014) 

-1.61 

(0.186) 

-6.28 

(0.019) 

Population density (000) 
-9.72 

(0.000) 

-3.47 

(0.174) 

-13.20 

(0.003) 

Population density2 (000) 
0.001 

(0.003) 

0.0006 

(0.190) 

0.002 

(0.009) 

Violation 
0.16 

(0.305) 

0.05 

(0.443) 

0.22 

(0.316) 

Elevation difference 
-0.006 

(0.097) 

-0.002 

(0.301) 

-0.008 

(0.115) 

Distance from the river 
-0.000 

(0.586) 

-0.000 

(0.656) 

-0.0001 

(0.591) 

Constant 
45.600 

(0.000) 

Adjusted R- square 0.334 

Rho 
0.24 

(0.056) 

P-values in parenthesis 

Note: Distance to a river may influence the water charge.  We expect to see municipalities that are 

closer to a river provide the water with a lower charge.  To test for this hypothesis, we introduce a 

new variable that measure the distance from main rivers in West Virginia: North Branch Potomac 

River, Greenbrier River, Ohio River, Tug Fork, Hughes River, Monongahela River, Shavers Fork, 

Cheat River, Shenandoah River, Kanawha River, South Branch Potomac River, Tygart Valley 

River, New River, Cacapon River, Little Kanawha River, West Fork River, Guyandotte River, 

Twelvepole Creek, Back Creek, Elk River, Bluestone River, and Bukhannon River.  The distance 

from a nearest river for the water utility is not an influential factor to determine the water charge.  
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Appendix V. 

         Table 10. Estimation results for water charge spatial model with the possibility to have a 

private water well variable  

 SAR 

 Direct effect Indirect effect Total effect 

Network length pc 
5.21 

(0.079) 

1.85 

(0.349) 

7.06 

(0.108) 

Sold water (000) 
-8.46 

(0.279) 

-2.86 

(0.451) 

-11.32 

(0.294) 

Sold water2 (000) 
0.0007 

(0.850) 

0.0002 

(0.895) 

0.0009 

(0.858) 

Sold water pc 
-126.81 

(0.003) 

-44.72 

(0.270) 

-171.53 

(0.016) 

Sold water pc2 
147.88 

(0.003) 

51.89 

(0.269) 

199.78 

(0.016) 

Debt pc 
1.87 

(0.001) 

0.65 

(0.238) 

2.52 

(0.007) 

Water loss 
0.05 

(0.284) 

0.01 

(0.465) 

0.07 

(0.298) 

Ground water 
-4.78 

(0.007) 

-1.61 

(0.240) 

-6.40 

(0.015) 

Population density (000) 
-9.97 

(0.000) 

-3.48 

(0.216) 

-13.45 

(0.003) 

Population density2 (000) 
0.001 

(0.001) 

0.0005 

(0.229) 

0.002 

(0.007) 

Violation 
0.14 

(0.375) 

0.04 

(0.524) 

0.19 

(0.390) 

Elevation difference 
-0.006 

(0.104) 

-0.002 

(0.323) 

-0.008 

(0.122) 

Well 
-0.88 

(0.665) 

-0.36 

(0.700) 

-1.24 

(0.661) 

Constant 
45.429 

(0.000) 

Adjusted R- square 0.333 

Rho 
0.24 

(0.060) 

P-values in parenthesis 

Note: Some argue having the access to a private water well may increase the water charge for the 

municipality.  Because utility need to provide the drinking water to different locations while by 

having access to the private well, the number of customers may decrease.  We test the hypothesis 

to see if having access to a private well tend to impact water charge in municipalities.  The results 

show although the effects in negative but it is insignificant.  
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Appendix VI. 

         Table 11. Estimation results for water charge spatial model with the water utility age 

variable  

 SAR 

 Direct effect Indirect effect Total effect 

Network length pc 
5.07 

(0.084) 

1.92 

(0.294) 

7.00 

(0.104) 

Sold water (000) 
-8.83 

(0.263) 

-3.30 

(0.429) 

-12.13 

(0.283) 

Sold water2 (000) 
0.0009 

(0.809) 

0.0003 

(0.857) 

0.001 

(0.818) 

Sold water pc 
-120.24 

(0.006) 

-46.03 

(0.212) 

-166.27 

(0.018) 

Sold water pc2 
40.22 

(0.006) 

53.41 

(0.208) 

193.64 

(0.017) 

Debt pc 
1.82 

(0.001) 

0.69 

(0.202) 

2.52 

(0.007) 

Water loss 
0.05 

(0.237) 

0.02 

(0.398) 

0.07 

(0.253) 

Ground water 
-4.56 

(0.011) 

-1.69 

(0.203) 

-6.25 

(0.020) 

Population density (000) 
-10.51 

(0.000) 

-3.98 

(0.168) 

-14.50 

(0.002) 

Population density2 (000) 
0.001 

(0.001) 

0.0007 

(0.179) 

0.002 

(0.006) 

Violation 
0.14 

(0.378) 

0.05 

(0.525) 

0.19 

(0.396) 

Elevation difference 
-0.005 

(0.117) 

-0.002 

(0.298) 

-0.007 

(0.129) 

Utility age 
-0.081 

(0.287) 

-0.032 

(0.441) 

-0.11 

(0.307) 

Constant 
40.90 

(0.000) 

Adjusted R- square 0.334 

Rho 
0.25 

(0.048) 

P-values in parenthesis 

Note: Age of the facilities in a water utility system may effect water charges.  Most of the 

municipality water utilities start performing in 1960 but there are some that start working earlier or 

later.  We control for the age of the utility and the results are not significant.  
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Figure 1. Map of West Virginia municipal utilities and 

their 2014 water charges 
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CHAPTER 3: THE IMPACTS OF NALOXONE ACCESS LAWS ON 

OPIOID OVERDOSE DEATHS IN THE U.S. 

 
 

INTRODUCTION 

Opioid overdose is the leading cause of unintentional death in the U.S. (Visconti et al., 

2015).  From 2000 to 2014, half a million people in the U.S. died from opioid overdoses, with over 

28,000 dying in 2014 alone.9 Overdose deaths have become such a problem in the U.S. that life 

expectancy has dropped two years in a row (Stobbe, 2017).  When addressing the opioid crisis as a 

public health problem, state level responses can be categorized as either attempts to: (1) limit the 

supply of opioids through prescription drug monitoring programs, or (2) reduce the number of 

overdoses by authorizing the more widespread provision of overdose reversal drugs, such as 

Naloxone (Davis and Chang, 2013a; Davis et al., 2013b; Davis et al., 2014; Beheshti et al., 2015; 

Davis et al., 2017).  Naloxone is a prescription drug that counteracts the effects of an overdose, 

making it an extremely powerful, though complicated, drug in that its provision may create a false 

sense of security among drug users.  

In this research, we estimate the effect that state level Naloxone access laws have on 

overdose deaths using a spatial difference-in-differences framework. Given the vast array of 

literature focusing on opioid overdose death (Visconti et al., 2015; Stobbe, 2017; Scott et al., 2007; 

Rossen et al., 2013), there is a huge gap in coverage of possible spatial dependency in state and/or 

county level data. One can easily hypothesize that Naloxone access laws have spatial spillover 

effects on opioid overdose death rates across states due to factors such as cross-border movement 

                                                 
9 For more information, please refer to Rudd et al. (2016) 
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of Naloxone, prescription and illegal drugs, and physician shopping (see e.g. Buchmueller and 

Carey 2018).  Thus, not accounting for spatial dependency in state level data allows for 

misspecification of the actual impact of these laws on the outcome variable. 

To avoid this misspecification bias, the use of a spatial difference-in-difference analysis 

provides us with estimates of both within state and spillover effects among contiguous states from 

enactment of a Naloxone access law. The extent to which the law expands access to Naloxone 

varies state by state. The spillover analysis allows us to document biases present in the standard, 

non-spatial model. We find that Naloxone access laws (either as a binary variable, the days after 

the law, or when broken down into various provisions10) have positive and significant impacts on 

opioid overdose death rates and mostly these impacts occur within neighboring states.  The impacts 

of a Naloxone access law within the state itself are not significant except for provisions which 

provide immunity for criminal and civil liability for a lay person.  Thus, important state level 

spillover effects exist for Naloxone access laws on opioid overdose death rates.   

Our main contribution to the literature is development of a SDID (Spatial Difference-in- 

Difference) framework to investigate the spillover effects of state level Naloxone access laws on 

overdose death rates in surrounding states.  In addition, we examine the different impacts of 

specific provisions of access law as explained in section 2.  Enactment of Naloxone access laws 

demonstrates suggestive evidence of spatial dependence in that neighboring states begin to adopt 

these laws, especially after 2013.11  To the best of our knowledge, no previous study has controlled 

for the spatial interaction between Naloxone access laws and opioid overdose death rates so that 

the regional aspects of these laws has not been investigated.  

                                                 
10 Provisions are identified later  

11 Available at: http://lawatlas.org/ 
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The rest of the manuscript proceeds as follows. Section 2 provides background information 

on trends in opioid overdose and Naloxone access laws. Section 3 provides an empirical model and 

section 4 describes the data.  In section 5, we explain the methods and spatial econometric 

framework utilized, while section 6 reports the results.  We conclude in section 7 with a discussion 

and policy implications. 

Opioid overdose is the leading cause of unintentional death in the U.S. (Visconti et al., 

2015). From 2000 to 2014, half a million people in the U.S. died from opioid overdoses, with over 

28,000 dying in 2014 alone.12 Overdose deaths have become such a problem in the U.S. that life 

expectancy has dropped two years in a row (Stobbe, 2017).  State responses to the opioid crisis can 

be categorized by attempts to limit the supply of opioids through prescription drug monitoring 

programs and attempts to reduce the number of overdoses by authorizing the provision of drugs 

such as Naloxone (Davis and Chang, 2013a; Davis and Burris, 2013b; Davis et al., 2014; Beheshti 

et al., 2015).  Naloxone is a prescription drug that counteracts the effects of an overdose, making it 

an extremely powerful, though complicated, drug in that its provision may create a false sense of 

security among addicts.  

In this research, we estimate the effect of state level Naloxone access laws on overdose 

deaths using a spatial difference-in-differences framework. Given the vast array of literature 

focusing on opioid overdose death (Visconti et al., 2015; Stobbe, 2017; Scott et al., 2007; Rosen et 

al., 2013), there is a huge gap in coverage of possible spatial dependency in state and/or county 

level data. One can easily hypothesize that Naloxone access laws have spatial spillover effects on 

opioid overdose death rates across states due to factors such as cross-border movement of both 

                                                 
12 For more information, please refer to Rudd et al. (2016) 
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Naloxone and opioid drugs.  Thus, not accounting for spatial dependency in state level data allows 

for misspecification of the actual impact of the law on the outcome variable. 

To avoid this misspecification bias, the use of a spatial difference-in-difference analysis 

provides us with estimates of both within state and spillover effects among contiguous states from 

enacting a Naloxone access law.  In terms of the extent to which the law expands the access to 

Naloxone varies state by state.  The spillover analysis allows us to document biases of the standard 

model.  We find Naloxone access law (in general as a binary variable, the days after the law and 

breaking down Naloxone access laws into various provisions), has a mixture of positive and 

significant impacts on opioid overdose death rates occurs, particularly within neighboring states.  

Our results mean that state level adaptation of a Naloxone access law is statistically associated with 

higher opioid overdose deaths in neighboring states, although the impacts within the state itself are 

not significant.  Thus, important spillover effects exist from the various provisions of Naloxone 

access laws on opioid overdose death rates.   

 Our main contribution to the literature is developing a SDID (Spatial Difference in 

Difference) framework to investigate the spillover effects of state level Naloxone access laws on 

overdose death rates in surrounding states.  In addition, we examine the different impacts of 

specific provisions of access law as explained in section 2.  Enactment of Naloxone access laws 

demonstrates suggestive evidence of spatial dependence in that neighboring states begin to adopt 

these laws, especially after 2013.13 To the best of our knowledge, no previous study has controlled 

for the spatial interaction between Naloxone access laws and opioid overdose death rates so that 

the regional aspects of these laws has not been investigated.  

                                                 
13 Available at: http://lawatlas.org/ 
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The rest of the manuscript proceeds as follows. Section 2 provides background information 

on trends in opioid overdose and Naloxone access laws.  Section 3 provides an empirical model 

and section four describes the data.  In section five, we explain the methods and spatial 

econometric framework utilized, while section six reports the results and robustness checks.  We 

conclude in section seven with a discussion and policy implications. 

BACKGROUND  

Opioid trends 

Mortality from opioid overdose has more than quadrupled since 1999.14 Figure 2 

compares opioid overdose death rates among states in 1999 and 2016.  Opioid overdose death 

rates increased during this time period in every state.  In 2016, West Virginia had the highest rate 

of overdose death, while Nebraska had the lowest rate. Between 1999 and 2016, increases in 

opioid overdose death rates per 100,000 ranged from 0.69 in Arkansas to 38.17 in West Virginia.  

Overdoses occur when a person takes a lethal or toxic amount of opiates – such as an 

illicit drug (e.g. heroin) or prescription medications (e.g. oxycodone).15  Opiate overdoses can 

lead to depressed or slowed breathing, confusion, and the lack of oxygen to the brain. Overdoses 

potentially can occur with legitimate uses of opiates, such as pain relief from a work-related 

injury.16   

 

 

 

                                                 
14 Available at: https://www.cdc.gov/drugoverdose/epidemic/index.html 

15 Importantly, many legally prescribed opioids are taken illegally by individuals who were not the original patient.  

16 Available at: https://www.cdc.gov/niosh/topics/prescription/default.html 
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Figure 2. Opioid overdose death per 100,000 population 

by state, 1999 and 2016 

 

Source: CDC-WONDER 

 

In 2015, 2.8 million private industry workers and 752,000 public sector workers suffered 

from nonfatal workplace injuries, many of which led to receiving opioid drug prescriptions and 

thereby leading to potential abuse, addiction, and/or overdose (Salsberg, 2017).  Former Food 

and Drug Administration head David Kessler called the opioid epidemic one of the “great 

mistakes of modern medicine”.17  Workplace injuries served as a driver for prescribing opioids 

that have the potential to transform into addiction and ultimately overdose and even death.  

Reducing opioid abuse and controlling overdose deaths is an important policy goal for 

both state and federal governments.  With a deadlier supply of drugs, controlling the opioid crisis 

became harder and harder over time.18  For many years, opioid overdose prevention programs 

have provided protection services.  Since 1996, an increasing number of community-based 

programs have provided Naloxone (an opioid antagonist) to laypersons to reverse the effects of 

opioid overdose.  Narcan TM (Naloxone) is a prescription medicine, but not a controlled 

                                                 
17 Available at: https://www.cbsnews.com/news/former-fda-head-doctor-david-kessler-opioid-epidemic-one-of-great-mistakes-of-

modern-medicine/ 

18 For more information, please refer to: https://www.washingtonpost.com/graphics/2017/health/opioids-

scale/?utm_term=.8748581d9268  
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substance that can block the effects of opioids with no life threatening effects on the opiate users. 

19, 20  Naloxone acts on a person’s brain by attaching to the same part of the brain that receives 

the opioid (Open society foundation, 2017).  Once administered, Naloxone takes two to three 

minutes for its effect to be felt.  If an overdose victim does not wake up, a second dose should be 

administered.  

News report examples of Naloxone being used to save lives abound.  For instance, Chad 

Ward, an Emergency Medical Services Supervisor in Huntington, WV, noted that in 2015 there 

were 944 drug overdoses in Cabell County, but having access to Naloxone allowed him to save 

many patients at the scene of the overdose.21  In another more famous example, the musician 

Prince suffered an oxycodone overdose on April 15, 2016. After being given two doses of 

Narcan, he recovered.  However, six days later, he overdosed for the last time on Fentanyl –a 

synthetic opioid 50 times more powerful than heroin.22 

The examples above demonstrate the conflicting viewpoints on Naloxone.  Whether 

Naloxone saves lives or simply delays an eventual overdose death is the paradox at the center of 

whether it is a solution to the overdose epidemic.23,24,25,26.   

With the recent growth in overdose deaths, interest in assessing the effects of Naloxone 

access laws and overdose prevention programs on overdose deaths has increased (e.g. Walley et 

                                                 
19 A controlled substance is generally an opioid or chemical whose manufacture, possession, or use is regulated by a government, 

such as illicitly used opioids or prescription medications. 

20 Available at: http://stopoverdoseil.org/narcan.html 

21 Available at: http://www.wsaz.com/content/news/WSAZ-Investigates-A-Dose-of-Reality-368538771.html 

22 Available at: https://www.cbsnews.com/news/official-pills-found-at-princes-estate-contained-fentanyl/ 

23 Available at: https://www.nytimes.com/2017/05/09/us/opioids-narcan-drug-overdose-heroin-fentanyl.html?emc=eta1 

24 Available at: http://www.wsaz.com/content/news/WSAZ-Investigates-A-Dose-of-Reality-368538771.html 

25 Available at: https://www.cbsnews.com/news/official-pills-found-at-princes-estate-contained-fentanyl/ 

26 Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4675355/pdf/nihms742274.pdf 



54 
 

al., 2013; Visconti et al., 2015).  Adoption of Naloxone access laws has been found to be 

associated with a 9 to 11 percent reduction in opioid-related deaths (Rees et al., 2017).  In a 

recent working paper, Doleac and Mukherjee (2018) argue that the positive association between 

Naloxone access laws and opioid-related emergency room visits along with opioid-related theft 

demonstrate a classic moral hazard problem among opioid abusers.  For example, providing 

access to Naloxone may have increased the likelihood individuals took more potent drugs 

(Doleac and Mukherjee 2018).  One reason for an increase in hospitalizations without a change 

in deaths for drug overdoses is that Naloxone allows individuals who otherwise would have died 

to make it to the hospital.  There is a body of literature that show behavioral responses to 

different policies (Chan et al., 2015; Lakdawalla et al., 2006; Cohen and Einav, 2003).  In 

another study, Siegler (2015) found a 16% decrease in overdose deaths in New York City after 

the implementation of an overdose prevention program, but his results were not statistically 

significant for heroin-related overdose mortalities.  Similarly, Rees et al. (2017) find statistically 

insignificant effects of Naloxone access laws on heroin-related deaths in the U.S.   

None of these previous research efforts have accounted for the spatial spillovers of access 

laws between states.  Without accounting for spatial spillovers, the results may be biased due to 

model misspecification.  In other words, by ignoring spatial aspects, only within state effects of 

access laws are examined under the assumptions that both the access law and overdose death rate 

in one state are totally independent of access laws and death rates in neighboring states.  The 

direction of this bias is ambiguous.  

Naloxone Access Laws 

Naloxone has been available by prescription since 1996, although the legal environment 

for prescribing and dispensing Naloxone varies by state.  State legislators have enacted a variety 
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of provisions to expand and to ease prescribing and distributing of Naloxone to prevent 

overdoses.  For example, a number of states have enacted laws that involve less civil and 

criminal liability, whether for prescribers, dispensers or users (Lim et al., 2016).  Davis and Carr 

(2015) argue that “at risk” individuals do not have regular contact with professional care givers 

so that laws and regulations need to ease access to Naloxone beyond traditional prescriptions.  

In a traditional Naloxone prescription setting, prescribers prescribe Naloxone to high risk 

individuals, such as those who take high doses of opioids.  In addition, under this setting, only 

pharmacists or physicians can distribute Naloxone.  Because of the spike in opioid-related 

deaths, lawmakers and researchers have pushed to make Naloxone available for those most likely 

to respond to an overdose.  The first responders include family, friends, harm reduction program 

staff, law enforcement officers, emergency medical technicians, and others (Davis and Carr, 

2015).   

State laws vary in terms of the extent to which they expand the access to Naloxone and/or 

remove the legal liabilities associated with prescribing, dispensing, or distributing Naloxone 

(Davis and Carr, 2017).  In some states, prescriptions of Naloxone can be provided to third 

parties, or individuals likely to witness an overdose while not being personally at risk of 

overdose.  In some states, prescribers, dispensers, and users are immune from criminal and/or 

civil liability when administering Naloxone.  Additional versions of access laws remove criminal 

liability for possession of Naloxone.  Certain states allow prescribing by a standing order, where 

prescribers give the authority to pharmacists and other healthcare providers to dispense Naloxone 

to the person in need (Davis and Carr, 2017; Green et al, 2015).  Within states without an access 

law, Naloxone requires a written prescription by a physician.  In these states, physicians who 
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prescribe and individuals who use Naloxone are not immune from criminal and civil liability and 

professional sanctions.  

The list below provided by the Prescription Drug Abuse Policy System (PDAPS) offers a 

breakdown of Naloxone access law (NAL) provisions into eleven types.27    

Provision 1: Having immunity from criminal prosecution for prescribing, dispensing or 

distributing Naloxone to a layperson for prescribers.  

Provision 2: Having immunity from civil liability for prescribing, dispensing or 

distributing Naloxone to a layperson for prescribers.  

Provision 3: Having immunity from professional sanctions for prescribing, dispensing or 

distributing Naloxone to a layperson for prescribers. 

Provision 4: Having immunity from criminal prosecution for prescribing, dispensing or 

distributing Naloxone to a layperson for dispensers. 

Provision 5: Having immunity from civil liability for prescribing, dispensing or 

distributing Naloxone to a layperson for dispensers. 

Provision 6: Having immunity from professional sanctions for prescribing, dispensing or 

distributing Naloxone to a layperson for dispensers. 

Provision 7: Prescribers are allowed to provide Naloxone to third parties. 

Provision 8: Pharmacists are allowed to dispense or distribute without a patient-specific 

prescription from another medical professional. 

Provision 9: Immunity from criminal liability when administering Naloxone for a  

Layperson. 

Provision 10: Immunity from civil liability when administering Naloxone for a layperson. 

                                                 
27 For more information, please refer to: http://pdaps.org/datasets/laws-regulating-administration-of-naloxone-1501695139 
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Provision 11: Removing criminal liability for possession of Naloxone28 

New Mexico was the first state to amend its laws (in 2001) to make it easier for medical 

professionals to prescribe Naloxone and for lay administrators to use it without fear of legal 

repercussions.  Table 12 shows the effective date of enacted Naloxone laws starting from 2001.  

At the end of 2016 a total of 48 states had adopted Naloxone access laws.  Thirty-nine of these 

states allowed “standing orders” (also called “non-patient-specific prescriptions”)  

As it is shown in Table 13, states tend to implement Naloxone laws by grouping 

provisions together.  For instance, immunity from civil liability for prescribers and dispensers is 

almost always implemented in the same state during the same year.  The exceptions are North 

Carolina and Ohio.  With the exception of Ohio, immunity from criminal liability for prescribers 

and dispensers is implemented in all the states simultaneously.  Immunity from civil and criminal 

liability for the laypersons follows the same trend.  These trends mean that when states 

implement a specific provision for a category of professional healthcare providers, they usually 

implement the same provision for other healthcare providers as well.  As a result of this pattern, 

collinearity issues arise in regression models when including all 11 provisions in an empirical 

model.  Because of this potential collinearity, we group these 11 provisions into five categories 

for our analysis, which we describe in more detail in the next section.   

Numerous studies have analyzed the relationships between Naloxone access laws and 

overdose deaths (Coffin et al., 2003; Seal et al., 2005; Walley et al., 2013; Davis, 2015; Davis 

and Carr, 2015; Rowe et al., 2016; Coffin and Sullivan, 2013; Enteen, et al., 2010; Green, et al., 

2008; Inocencio, et al., 2013; Lim et al., 2016; Wheeler et al., 2015).  These studies generally 

                                                 
28 Removing criminal liability for possession of Naloxone should increase access and encourage its use in emergency situations 

(Davis et al., 2013b). 
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investigate the effectiveness of Naloxone access on overdose deaths in observational settings.  

For instance, according to Wheeler et al. (2015) between 1996 and 2014, community 

organizations provided Naloxone rescue kits to 152,283 laypersons and received reports of 

26,463 overdose reversals. Evidence of Naloxone access laws as a public health response to the 

opioid crisis being an overdose prevention tool on both nationwide and regional scales is still 

mixed.  In this study, we employ state level analyses using the dates of enactment for Naloxone 

access laws to investigate the spillover effects on opioid overdose death rates.  

EMPIRICAL MODEL 

Empirical studies have shown that a number of factors influence opioid overdose deaths 

in the U.S.  Table 14 shows the important variables, study region, their impact on overdose 

deaths, and references.  However, the opioid epidemic literature is lacking investigations that 

include the effects of high-risk injury occupations such as mining, manufacturing and 

constructions, availability of drug prescriptions and heroin related crime (as an indicator for 

availability of heroin) on opioid overdose deaths.   
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Table 12. Effective Dates of Naloxone Access Laws, 1999-2016 

State Naloxone Access Law Effective Date 

Alabama 

Alaska 

Arizona 

Arkansas 

California 

Colorado  

Connecticut  
Washington, D.C.  

Delaware  

Florida 

Georgia  

Hawaii 

Idaho 

Illinois  

Indiana 

Iowa 

Kentucky  

Louisiana 
Maine  

Maryland  

Massachusetts  

Michigan  

Minnesota  

Mississippi 

Missouri 

Nebraska 

Nevada 

New Hampshire 

New Jersey  

New Mexico  

New York  

North Carolina   

North Dakota 

Ohio  

Oklahoma  

Oregon  

Pennsylvania  

Rhode Island  

South Carolina 

South Dakota 

Tennessee  

Texas 

Utah  

Vermont  

Virginia  

Washington  

West Virginia 
Wisconsin  

 

June 10, 2015 

March 15, 2016 

August 6, 2016 

July 15, 2015 

January 1, 2008  

May 10, 2013  

October 1, 2003  
March 19, 2013  

August 4, 2014  

June 10, 2015 

April 24, 2014  

June 6, 2016 

July 1, 2015 

January 1, 2010  

April 17, 2015 

May 27, 2016 

June 25, 2013  

August 15, 2015 
April 29, 2014  

October 1, 2013  

August 2, 2012  

October 14, 2014  

May 10, 2014  

July 1, 2015 

August 28, 2015 

May 28, 2015 

October 1, 2015 

June 2, 2015 

July 1, 2013  

April 3, 2001  

April 1, 2006  

April 9, 2013  

August 1, 2015 

March 11, 2014  

November 1, 2013  

June 6, 2013  

December 1, 2014  

June 18, 2012  

June 3, 2015 

July 1, 2016 

July 1, 2014  

September 1, 2015 

May 13, 2014  

July 1, 2013  

July 1, 2013  

June 10, 2010  

May 27, 2015 
April 9, 2014  

        Source: Prescription Drug Abuse Policy System (PDAPS) 
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Table 13. Effective Dates of Naloxone Access Law Provisions, 1999-201629 

Year PR 1 PR 2 PR 3 PR 4 PR 5 PR 6 PR 7 PR 8 PR 9 PR 10 PR 11 

2001 NM NM  NM NM  NM  NM NM  

2002            

2003 CT CT  CT CT       

2004            

2005            

2006            

2007       NY     

2008 CA CA  CA CA       

2009            

2010   
IL 

WA 
  

IL 

WA 

IL 

WA 
IL 

IL 

WA 
  

2011         CA   

2012 MA      MA  RI RI MA 

2013 

CO 

NJ 

NC 
VT 

CO 

NJ 

NC 
VT 

CO 

KY 

MD 
NJ 

CO 

NJ 

VT 

CO 

NJ 

VT 

CO 

KY 

MD 

NJ 

 

KY 

MD 
NJ 

NC 

OK 
OR 

VT 

VA 

KY 

NJ 

NC 

OR 

VT 

CO 
DC 

KY 

NJ 
NC 

VT 

CO 

DC 
KY 

NJ 

NC 
OR 

VT 

VA 

DC 

VT 

2014 

DE 

GA 
MN 

OH 

PA 
UT 

WI 

DE 

GA 

MI 
MN 

OH 

PA 
TN 

UT 

WI 

CA 

DE 

GA 
OH 

PA 

RI 
TN 

UT 

WI 

DE 
GA 

PA 

UT 
WI 

DE 
GA 

MI 

MN 
PA 

TN 

UT 
WI 

CA 
DE 

GA 

PA 
RI 

TN 

UT 
WI 

CA 

GA 
ME 

MI 

OH 
PA 

RI 

TN 
UT 

WI 

CA 

DE 

GA 
MA 

MN 

NM 
NY 

OK 

PA 
RI 

TN 

WI 

CT 

GA 

MA 
MI 

MN 

NY 
OH 

PA 

WI 

CT 

GA 

MI 
MN 

NY 

PA 
TN 

UT 

WI 

MI 

RI 

WI 

2015 

AL 

AK 

FL 
ID 

IL 
LA 

MS 

NE 
NV 

NH 

ND 
SC 

TX 

WV 

AL 

AK 

FL 

ID 
IN 

LA 
MD 

MS 

MO 
NE 

NH 

ND 
SC 

TX 

VA 
WV 

AK 

FL 
ID 

LA 

MS 
NE 

NV 

NH 
ND 

SC 

TX 

AL 

AK 
FL 

IL 
LA 

MS 

NE 
NE 

NH 

NC 
ND 

SC 

TX 
WA 

WV 

AL 

AK 

FL 

IL 

IN 
LA 

MD 
MS 

NE 

NH 
NC 

ND 

OH 
SC 

TX 

VA 
WA 

WV 

AK 

CT 
FL 

LA 
MS 

NE 

NV 
NH 

ND 

OH 
SC 

TX 

AL 

AK 

CO 
CT 

FL 
ID 

IN 

LA 
MS 

NE 

NV 
NH 

ND 

SC 
TX 

VA 

WV 

AL 
AK 

CO 

CT 
ID 

IN 
LA 

ME 

MD 
MS 

NV 

NH 
ND 

OH 

SC 
TX 

VA 

WA 
WV 

AL 

AK 
ID 

LA 

MS 
NE 

NV 

NH 
ND 

SC 

TX 

AL 

AK 

FL 

ID 
IL 

IN 
LA 

MD 

MS 
NE 

NH 

ND 
SC 

TX 

WA 
WV 

NV 

ND 

TX 
WV 

2016 

AZ 

ME 

MO 

SD 

WA 

 

IA 

ME 

SD 

WA 

AZ 
ME 

MO 

SD 

AZ 

CT 

ME 

MO 

SD 

ME 

MO 

SD 

AZ 

ME 

MO 

NM 

SD 

AZ 

IA 

SD 

AZ 

FL 

IA 

MO 

SD 

ME 
MO 

UT 

WV 

AZ 

IA 

ME 

MA 

MO 

IA 
LA 

MO 

NM 

Source: Prescription Drug Abuse Policy System (PDAPS) 

                                                 
29 Available at: http://pdaps.org/datasets/laws-regulating-administration-of-naloxone-1501695139 
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The difference-in-difference (DID) technique is an econometric tool first applied in the 

19th century to control for before-and-after implementation of a treatment or policy 30(National 

Research Council, 2004).  A standard DID model to evaluate the effects of a Naloxone access 

law by differentiating between treatment and control (untreated) states is represented by:   

            𝑇𝑂𝐷𝐷𝑟𝑎𝑡𝑒𝑖𝑡 =  𝛼0 + 𝛼1𝑋𝑖𝑡 + 𝛼2𝑁𝐴𝐿𝑖𝑡𝑇𝑖𝑡 + 𝑣𝑖 + 𝑤𝑡 +  𝜀𝑖𝑡                                      (1) 

 

where 𝑇𝑂𝐷𝐷𝑟𝑎𝑡𝑒𝑖𝑡 is the opioid overdose death rate in state i in year t. 𝑋𝑖𝑡 is a vector of time- 

varying covariates that control for factors influencing death rates such as those listed in Table 14.  

𝑁𝐴𝐿𝑖𝑡𝑇𝑖𝑡 is the DID variable which takes a value of 1 if the state had a Naloxone access law in 

that particular year and zero otherwise. 31  𝑣𝑖  is an unobservable, time-invariant state effect, 

which subsumes the main effect of the Naloxone law, while 𝑤𝑡 is a vector of year fixed effects 

which subsumes the main effect of the variable T (time). 𝜀𝑖𝑡 is an error term.  

The standard DID model presented in equation (1) raises a possible issue with 

endogeneity for the NAL variable, i.e. does the level of a state’s opioid overdose death rate 

influence enactment of a Naloxone access law in that state?  We tested for this by examining 

state overdose death rates in the year prior to enactment of an access law compared to rates in 

states without an access law.  To account for different years of means, we subtracted the state 

means from the national mean in that year (for non-access law states, 2014 overdose death rates 

are used).  A t-test showed no statistical difference between access law and no access law states 

(t = -0.611, p =0.544).  Based upon this evidence, endogeneity in equation (1) is not seen as an 

issue. 

                                                 
30 More information is available at: https://www.mailman.columbia.edu/research/population-health-methods/difference-difference-

estimation 

31 In Rees et al. (2017), those states that the law was in effect for less than a full year had NAL as a fraction.  
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Under a non-spatial econometric estimation, observations do not depend on location 

(LeSage and Pace, 2009; Elhorst, 2014).  They are independent points and therefore there is no 

correlation between them and their neighbors.  However, LeSage and Pace (2009) explain the 

case of spatial dependency: “In contrast to point observations, for a region we rely on the 

coordinates of an interior point representing the center (the centroid).  An important point is that 

in spatial regression models each observation corresponds to a location or region”.  In non-

spatial models, each observation has a mean of 𝑥𝑖𝛽 and a random component  𝜀𝑖 where the 

observation 𝑖 represents a region or point in space at one location and is considered to be 

independent of observations in other locations.  In other words, independent or statistically 

independent observations imply that 𝐸(𝜀𝑖 𝜀𝑗) = 𝐸(𝜀𝑖)𝐸(𝜀𝑗) = 0.  This assumption of 

independence greatly simplifies models.  

In many cases, this assumption is not applicable and observations located at different 

points or regions are dependent (LeSage and Pace, 2009).  Suppose we have two regions 

(neighbors) 𝑖 and 𝑗.  If these two regions are spatially correlated and normality for error terms is 

assumed, then: 

                     𝑦𝑖 ↔  𝑦𝑗                                                                                                                      (2)                     

 

where the dependent variable (y) in region j influences the dependent variable in its neighbor 

region i, and vice versa.  

All spatial models have a weight matrix (W), which quantifies the spillover between 

regions.  Elhorst (2014) expresses the weight matrix as a tool to describe the spatial arrangement 

of the geographical units in the sample.  There are variety of units of measurement for spatial 
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dependency such as neighbors, distance, and links (Getis, 2007).32 In this study, we conducted 

and applied different weight matrices and chose the appropriate contiguity weight matrix based 

on the nature of the research.  As Debarsy et al. (2012) point out given the cross-border shopping 

of goods a weight matrix for neighbors with border touching seems intuitively appealing.  

The use of spatial difference-in-difference (SDID) models has gained attraction in urban 

economics in recent years (Dubé et al., 2014; Sunak and Madlener, 2014; Heckert, 2015). 

However, to the best of our knowledge, few studies perform SDID model in public health and 

public policy research (Chagas et al. (2016) and Andrade (2016) are noted exceptions).  We 

argue that opioid overdose death rates and Naloxone access laws need to be evaluated within a 

regional framework.  For example, adoption of an access law in one state could well be followed 

by surrounding states.  Marijuana legalization status in U.S. states is a good example of 

mimicking law enactment in neighboring states.  In such cases, not only would opioid overdose 

death rates be affected by its own state level variables, but it also may be affected by neighboring 

state control variables.   

 

 

 

 

 

 

 

 

                                                 
32 For more details on the differences between the spatial weight matrices, please refer to Elhorst (2014) and Getis (2007). 



64 
 

Table 14. List of the Variables Utilized in Overdose Death Research 

Variable Study Region 
Coefficient 

Sign 
Reference 

Poverty  New York City districts + Marzuk et al., 1997 

Income distribution  
New York City 
neighborhoods 

- 
Galea et al., 2003 
Nandi et al., 2006 

External characteristics of neighborhood  
New York City 
neighborhoods 

- Hembree et al., 2005 

Internal characteristics of neighborhood 
New York City 
neighborhoods 

- Hembree et al., 2005 

Police activity 

New York City 
neighborhoods, New 

York City police 
precinct 

+ 
Nandi et al., 2006 

Bohnert et al., 2011 

Unemployment Italy provinces - Gatti et al., 2007 

Per capita GDP Italy provinces + Gatti et al., 2007 

Urbanization Italy provinces + Gatti et al., 2007 

Couples’ separation Italy provinces  Gatti et al., 2007 

Demographic factors (African-American men) 
Chicago 

neighborhoods 
+ Scott et al., 2007 

Location relative to the U.S.-Mexico border New Mexico counties - Shah et al., 2012 

Heroin source/type, price and purity 27 U.S. MSAs +/- Unick et al., 2014 

Educational attainment U.S states - Richardson et al., 2015 

State medical cannabis laws U.S states - Bachhuber et al., 2014 

Uninsured adults and health care cost New Mexico counties - Shah et al., 2012 

Substance Abuse Insurance Mandates U.S states - Selby, 2017 

 

Since medications like Naloxone can be rather easily transferred across state borders, 

users can buy Naloxone in a neighboring state with an access law and use it in their home state 

without an access law.  This type of transmission of Naloxone across state borders could affect 

the opioid overdose death rates in neighboring states.  In addition, the opioid epidemic in the 

U.S. is observed to be clustered in specific regions such as Appalachia and the Southwest33,34 

                                                 
33 For more details, please refer to: 

http://www.realclearhealth.com/articles/2017/06/14/analysis_peering_into_the_nations_opioid_crisis_through_a_regional_lens_1

10633.html 

34 For more details, please refer to: 

http://www.acutisdiagnostics.com/sites/default/files/Peeling_Back_the_Curtain_on_Regional_Variation_in_the_Opioid_Crisis_FI

NAL_June_2017%20%281%29.pdf 
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(see Rudd et al., 2016).  Therefore, analyzing the effectiveness of the Naloxone access law on 

opioid overdose deaths is more appropriate to investigate within a regional framework rather 

than a standard state level analysis.  

When a spatial component (whether it is the spatial component of the dependent variable, 

control variables or the error term) is statistically significant, the coefficients estimated by non-

spatial models (in our case a general DID) would be biased or not efficient.  For example, if the 

spatial component is just in the error term, estimated coefficients in the non-spatial model are 

still unbiased and consistent, but not efficient (Case, 1991).  In addition, variances may be non-

efficient in non-spatial models (Griffith, 2005; LeSage and Pace, 2009).  Accordingly, statistical 

tests such as t- and F-tests may be invalid, leading researchers to interpret their results 

improperly.   

We conduct the estimation process by adding a spatial component to the non-spatial 

econometric analysis in a panel data framework.  The SDID model developed for opioid 

overdose death rate can be written as 

 𝑇𝑂𝐷𝐷𝑟𝑎𝑡𝑒𝑖𝑡 =  𝛽0 + 𝛽1𝑁𝐴𝐿𝑖𝑡𝑇𝑖𝑡 +  ∑ 𝛽𝑗
𝑛
𝑗=2 𝑋𝑖𝑗𝑡 + 𝜌𝑊𝑇𝑂𝐷𝐷𝑟𝑎𝑡𝑒𝑗𝑡 +

                                   𝜗𝑊𝑁𝐴𝐿𝑗𝑡𝑇𝑗𝑡 + 𝜃𝑊𝑋𝑗𝑡 + 𝑣𝑖 +  𝑤𝑡 + 𝜀𝑖𝑡            (3)                                         

 

where TODDrate stands for the opioid overdose deaths per 100,000 populations in state i and 

time t, NAL represents a dummy variable whether the state has a Naloxone access law in a given 

year.  X is a vector of demographic variables described above, while 𝑣𝑖 and 𝑤𝑡 are state and year 

fixed effects, respectively.  The terms 𝑊𝑇𝑂𝐷𝐷𝑟𝑎𝑡𝑒, 𝑊𝑁𝐴𝐿 𝑇, and 𝑊𝑋 denote the spatial 

components of opioid overdose death rate, Naloxone access law, and other control variables, 

respectively. 𝜌, 𝜗, 𝑎𝑛𝑑 𝜃 represent the spillover effects of the dependent variable and 
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independent variables, respectively.  These variables explain the effects of dependent variable 

and independent variables of neighboring states (j) on the dependent variable in specific state (i).  

We examine the impact of Naloxone access laws with three different models.  First, 

following Rees et al. (2017), we impose a dummy variable for passage of a Naloxone access law 

at the state level in Model 1.  For Model 2, we assess the impact of access laws by the number of 

days since the effective date of the law.35 To examine the impacts of access laws over time, a 

quadratic form of this variable was included in this model.  Finally, Model 3 provides for a 

breakdown of access laws by their specific provisions.  Since Naloxone access laws are not 

homogenous, to evaluate the effects of access laws on opioid overdose death rates, one needs to 

differentiate between the provisions included in each law.  Keeping NAL 1 for the binary 

variable in Model 1, we control for access law provisions by imposing five binary variables in 

Model 3 with grouping provisions to avoid collinearity:  

NAL 1: Having a Naloxone access law.  

NAL 2: Immunity from criminal liability, civil liability and professional sanctions for 

prescribing, dispensing or distributing Naloxone to a layperson for prescribers and 

dispensers 

NAL 3: Third parties’ authorization to prescribe Naloxone 

NAL 4: Pharmacists are allowed to dispense or distribute naloxone without a patient-

specific prescription from another medical professional 

NAL 5: Immunity from criminal and civil liability administering Naloxone to a layperson  

NAL 6: Removing criminal liability for possession of Naloxone 

                                                 
35 The days after law is measured by counting the days from the effective date to the last day of the year.    
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A priori we would expect these Naloxone access laws to be associated unequivocally 

with greater access to Naloxone. However, whether these laws should lead to improvements in 

drug overdose rates remains an open question. Due to the overdose-reversing properties of 

Naloxone, we expect improved access to reduce overdose deaths. However, if as others have 

found, Naloxone leads to individuals behaving in riskier ways by taking more potent drugs or 

larger amounts of drugs, we may expect access to increase drug deaths. While understanding 

how each different provision will affect individuals is a goal of this research, ultimately, the sign 

and magnitudes of these effects are empirical questions. 

For the X vector of control variables, there is some evidence in the literature that poverty, 

unemployment, uninsured rate, and income inequality are each positively correlated with opioid 

overdose deaths (Galea et al., 2003; Nandi et al., 2006; Gatti et al., 2007; Shah et al., 2012).  

Conversely, income and education have negative relationships with opioid overdose deaths 

(Richardson et al., 2015).  We expect to see positive effects from the availability of legal and 

illegal opioids on opioid overdose death rates.  Medical marijuana laws are expected to have a 

negative effect on opioid overdose death rates because we expect opioids and marijuana to be 

substitutes so that medical marijuana laws will likely reduce the cost of receiving marijuana and 

therefore decrease the quantity of opioids demanded. 

 DATA 

Data for constructing the three models come from a number of different sources.  We use 

data from the Centers for Disease Control and Prevention (CDC) Wonder for 1999-201636 which 

contain the universe of opioid overdose deaths and opioid overdose death rates by state in the 

                                                 
36 National Vital Statistics System (NVSS) 
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U.S. We focus on the 48 continuous states of the U.S. and Washington, D.C. over this time 

period.  These data were compiled using underlying cause of death compressed mortality files.  

The number of opioid overdose deaths by state were classified using the International 

Classification of Diseases, Tenth Revision (ICD-10).  We included overdose deaths coded as 

unintentional (X40–44), homicide (X85), undetermined intent (Y10–Y14), and suicide cases 

(X60–64).37 Among deaths with opioid overdose as the underlying cause, the type of opioid 

involved is indicated by the following ICD-10 multiple cause-of-death codes: opioids (T40.0, 

T40.1, T40.2, T40.3, T40.4, or T40.6); heroin (T40.1); natural and semisynthetic opioids 

(T40.2); methadone (T40.3); and synthetic opioids other than methadone (T40.4). The dependent 

variable unit is the number of opioid overdose deaths per 100,000 populations. Population data 

are collected from the Centers for Disease Control and Prevention (CDC) Wonder.  

For our variable of interest, we create measures of whether each state had a Naloxone 

law, the various provisions of each law, and effective dates from the Prescription Drug Abuse 

Policy System (PDAPS38).  For control variables in the X vector, Unick et al. (2014) recommend 

including illicit drug price.  Without having access to such data for our time frame, we instead 

control for drug arrests and quantity of prescription drug sales. Sale and possession related 

arrests of opium or cocaine and their derivatives (Morphine, Heroin, and Codeine) were provided 

by the Federal Bureau of Investigation to control for illicit opioids supply.  The availability of 

prescription opioids comes from controlled substances transactions of prescriptions available 

through Automated Reports and Consolidated Ordering System (ARCOS).39    

                                                 
37 As a robustness check we test the total number of opioid overdose deaths as the dependent variable (not restricted to ICD-10 codes 

recommended by Ruhm (2016)). 

38 Available at: http://pdaps.org/ 

39 Available at: https://www.deadiversion.usdoj.gov/arcos/retail_opioid_summary/ 



69 
 

State level economic variables of per pupil spending on education, poverty rate, 

unemployment rate as well as population density and uninsured rate were obtained from the U.S. 

Census Bureau.  Income inequality, high school attainment, and the college attainment data were 

obtained from U.S. state-level income inequality data and annual state-level measures of human 

capital attainment at Mark W. Frank home page.40  Per capita personal income was based on the 

information provided by Federal Reserve Bank of St. Louis (FRED).41 Employment in mining, 

construction, and manufacturing and labor force were collected from Bureau of Labor Statistics 

(BLS).42  To compute the employment ratio for high-risk injury occupations, we added the 

number of employment in mining, manufacturing and construction and divided it by the total 

labor force. Medical marijuana law data were collected from the leading source for pros and cons 

of controversial issues.43 Finally, the spatial weight matrix (a shape file of U.S. states consisting 

of the latitudinal and longitudinal coordinates of all the 48 states and D.C.) was adapted from the 

U.S. Census Bureau (Tiger) report. 

To control for spillover effects of Naloxone access laws, the 48 continuous U.S. states 

plus District of Colombia were included in our analysis.  In spatial analysis, contiguity and 

neighborhoods play vital roles (Tobler, 1970).  We focused on contiguous states based on the 

first law of geography:  everything is related to everything else, closer things even more so 

(Tobler, 1970).  Descriptive statistics for each variable are reported in Table 15 along with the 

expected signs of Naloxone access law and control variables.  Following previous studies (Rees 

                                                 
40 Available at: http://www.shsu.edu/eco_mwf/inequality.html 

41 Available at: https://fred.stlouisfed.org/release?rid=151 

42 Available at: https://www.bls.gov/sae/data.htm 

43 Available at: http://medicalmarijuana.procon.org/view.resource.php?resourceID=000881 
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et al., 2017) which found a negative effect of Naloxone access laws on opioid overdose deaths, 

we expect to have a negative effects of the law on opioid overdose death rates. 

METHODS 

Exploring spatial dependency in opioid overdose death rates across states 

As we mentioned in the previous section, the economic distance concept is a motivation 

for spatial spillover effects.  Before analyzing spatial dependency by corresponding econometric 

models, an intuitive way to identify clusters is by looking at a map of overdose death rates. As 

shown in Figure 2, opioid overdose death rates have increased over time.  In 1999, only two 

states had an overdose death rate between 8 and 10 deaths per 100,000 population.  By 2016, 34 

states had overdose death rates between 8 and 40 deaths per 100,000 population. Also, some 

spatial clusters are obvious especially in 2016.  New Mexico had the highest opioid overdose 

death rate in 1999. In 2016, its surrounding states also had high rates of overdose deaths.  

Substantial clustering also exists within states on the east coast.  

Given the fact that opioid overdose death rates show visual evidence of clustering among 

states, the next step is to detect spatial autocorrelation.  Spatial autocorrelation measures the 

interrelationship of opioid overdose death rate across neighboring states.  A common index used 

to discover spatial autocorrelation is the Global Moran’s I index.44 As pointed out by Chen and 

Haynes (2015), Moran’s I is a test on a yearly basis.  A significant and positive z-value for 

Moran’s I index implies a positive spatial autocorrelation.  Table 16 shows the results for 

Moran’s I index for two points of time and its z-statistics and p-value.  These tests reveal that 

there has been and still is (as of 2016) significant spatial autocorrelation among state level opioid 

                                                 
44 More information is available at: http://ceadserv1.nku.edu/longa//geomed/ppa/doc/globals/Globals.htm 
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overdose death rate in the U.S.  This means state level opioid overdose death rates tend to be 

clustered together.  

Moran’s I index assesses the overall presence of spatial autocorrelation.  This index could 

offset the effects of spatial autocorrelation if some observations have a positive spatial 

autocorrelation while the others show a negative spatial autocorrelation.  For further 

examination, we also report the results of local Moran’s I test (LISA).  Scatter plots of LISA 

shows observations in four different quadrants: High value observation surrounded by high value 

observations (i.e. QI: HH) and three other clusterings for LH (QII), HL (QIV), and LL (QIII) 

quadrants.  Figure 4 provides Moran scatter plots of the US opioid overdose death rates in 1999 

and 2016.  This figure illustrates that in both years, most of the states with high overdose rate are 

adjacent to states with high overdose rates.  This also is true for the states with low overdose 

death rates.  Thus, we apply a first-order contiguity weight matrix in our spatial analysis. 

The existence of statistically significant spatial autocorrelation among states implies that 

the ordinary least square estimations (non-spatial models) may lead toward biased estimates of 

the regression results.  Therefore, it is appropriate to apply spatial models in the analysis of 

Naloxone access laws and opioid overdose death rate.  As Delgado and Florax (2015) point out, 

identification of causal effects is no longer valid if the Stable Unit Treatment Value Assumption 

(SUTVA)45 is violated.  A SUTVA violation means that in determining the treatment effect, 

considering one’s own treatment status is not sufficient.  Treatment status of neighboring regions 

(in our case states) has to be taken into account as well (Delgado and Florax (2015).   

 

 

                                                 
45 Stable Unit Treatment Value Assumption: potential outcomes for person i are unrelated to the treatment status of other individuals 
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Table 15. Descriptive Statistics 

Variables Mean St. Dev. Min Max 
Expected 

Sign 

Opioid overdose death rates (per 100K pop) 7.05 5.12 0.26 40  

Total opioid overdose death rates (per 100K pop) 7.38 5.32 0.19 41.8  

NAL 1 0.173 0.363 0 1 - 

NAL 2 0.136 0.328 0 1 - 

NAL 3 0.135 0.327 0 1 - 

NAL 4 0.096 0.276 0 1 - 

NAL 5 0.133 0.323 0 1 - 

NAL 6 0.032 0.168 0 1 - 

Days after Naloxone access law (days/1000) 0.234 0.712 0 5.745 - 

Square of the days after Naloxone access law 

(days2/1000) 

349 1,978 0 25,150 + 

Presence of Medical marijuana law 0.25 0.43 0 1 - 

Heroin arrest rate (arrests/100k pop) 138.05 103.15 0.61 761.43 + 

Opioid prescription (kg/100k pop) 56.527 41.023 6.911 496.506 + 

Employment ratio (%) 0.14 0.04 0.002 0.26 + 

Population density (pop./mi2) 342.31 1,242.48 5.028 10,013 -/+ 

Income inequality (Income share for the top %10) (%) 44.72 4.98 33.27 62.17 + 

College attainment (the total number of college 

graduates/ the total state population) (%) 

0.19 0.04 0.10 0.46 - 

Spending on education ($1000) 9.226 2.838 4.169 20.609 - 

Poverty rate (%) 13.38 3.34 5.60 23.90 + 

Unemployment rate (%) 5.71 2.06 2.30 13.70 + 

Uninsured rate (%) 12.69 4.14 3.00 26.10 + 

Median HH income (thousand dollars) 47.15 8.36 29.29 76.16 - 

Per capita income (thousand dollars) 38.03 9.09 20.56 75.75 - 

Number of observations 784  

 

 Table 16. Moran’s I index for State Level Opioid Overdose Death Rates 

 1999 2016 

Moran’s i 0.407 0.581 

z-statistics 5.413 5.842 

p-value 0.010 0.000 
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Figure 3.  Opioid overdose death rates in the U.S. 1999 

and 2016
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Figure 4. Moran’s scatter plot of state Level Opioid 

Overdose Death Rates (1999 and 2016) 

 

 

Spatial econometric analysis 

There are five different spatial models. The first one is the spatial autoregressive lag 

model (SAR) where the dependent variable in neighbor j influences the dependent variable in 

neighbor i and vice versa.  Second, a Spatial Error Model (SEM) assumes dependency in the 

error term.  SLX model or spatial lag of control variables assumes that only control variables 

play a direct role in determining dependent variables.  Lastly, there are Spatial Durbin Model 

(SDM) and Spatial Error Durbin Model (SDEM) that include spatial lags of the control variables 

as well as the dependent variable and a spatial lag of the control variables (WX), as well as 

spatially dependent disturbances.  

As discussed above and based upon the results of the spatial analysis, we have strong 

reasons to suspect that spatial spillovers are important both theoretically and empirically when 

examining the effect of access policy for both state and temporal variation.  To evaluate the 

effects of Naloxone access laws on opioid overdose death rates, we first test a general non-spatial 

specification against SAR and SEM models by conducting a Lagrange Multiplier (LM) test.  In 

both cases, the spatial models were the appropriate specification (LM for non-spatial against 



75 
 

SAR = 45.51 and p-value = 0.00, LM for non-spatial against SEM = 10.01 and p-value = 0.00).  

The next step is testing SAR against SEM.  By applying the robust LM test we failed to reject 

that the SAR model is the most appropriate specification46 (LM spatial lag = 148.37 > LM spatial 

error = 112.86).  Knowing that the SAR, SEM, and SLX models are nested within SDM and 

SDEM and for applied works LeSage recommends applying either a SDM or SDEM47, we 

continue our estimations by focusing on SDM model which is a global spatial econometric 

model encompassing both SAR and SLX models.48  

In addition to applying Lagrange multiplier, LM spatial lag, and LM spatial error tests, 

we also applied Bayesian posterior model probabilities to compare SDM and SDEM 

specifications.  Consistent with the results from the LM tests, this analysis provides further 

support of the SDM specification in our context.  

SPATIAL RESULTS 

As discussed in the previous sections, considering cross border issues of Naloxone and 

opioid drugs, it is important to consider the spillover effects between states in regards to 

overdose death rates and Naloxone access laws.  We argue that a first-order contiguity weight 

matrix is the right choice for several reasons.  First, we need the weight matrix to be exogenous 

to our estimation, and a first-order contiguity matrix fits this requirement.  Secondly, 

geographical proximity has been shown to be important for spillovers (e.g., Jaffe, 1989; Jaffe el 

al., 1993; Attila, 2000, Chagas et al., 2016).    

                                                 
46 For more information, please refer to Florax et al. (2003) 

47 For more information, please refer to LeSage (2014) 

48 As noted by LeSage (2014), cross-border shopping has a local spillover rather than a global. We argue that in the case of legal 

prescriptions and illicit drugs, drug transfers occur through more than just neighboring states. In addition, state legislatures may 

adopt Naloxone access laws based upon neighboring states’ overdose death rates and the adoption of an access law.  
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Table 17 presents the spatial regressions results for Models 1 and 2 presented in section 

3.  Within these two models, there are no statistically significant, direct effects of Naloxone 

access laws on overdose death rates.  That our direct effect results are small and statistically 

insignificant suggest that Naloxone laws do not affect overdose rates in the state they are 

enacted. Indirect effects are positive and statistically significant.  When direct and indirect 

effects are combined, both models show positive impacts, meaning that opioid overdose death 

rates increase following the implementation of Naloxone access laws, with the majority of this 

effect coming through spatial spillovers.  

This may seem a counterintuitive result, i.e., that a more lax legislative environment for 

Naloxone in a state leads to more deaths in surrounding states. However, it is important to note 

that Doleac and Mukherjee (2018) find evidence of higher hospitalization rates in states 

following Naloxone laws and some evidence of regional increases in deaths.  They also note 

evidence of increased fentanyl use, a much more potent opiate than even heroin.  

Model 3 differentiates between laws by breaking them down into five provision 

groupings.  Table 18 shows the estimation results for access laws by provision.  Given the 

statistically significant spatial autocorrelation coefficient (𝜌), the parameter estimates in the two-

way fixed effects spatial autoregressive model cannot be interpreted as non-spatial models.  We 

estimate the direct and indirect effects to yield an interpretation of the spatial spillover effects.  

These results show similar outcomes to Models 1 and 2 when we break down these laws by their 

provisions.  With the exception of provisions of immunity from criminal and civil liability for 

administering Naloxone, the direct effects on overdose death rates are small and statistically 

insignificant, showing no evidence of reducing these rates.  This direct effect suggests that some 

aspect of removing criminal liability of Naloxone distribution makes individuals more likely to 
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fatally overdose.  We can only speculate that perhaps this provision removes a stigma from 

taking drugs and further serves as an implicit approval to take more potent drugs (Doleac and 

Mukherjee 2018) or that Naloxone laws are correlated with fentanyl distribution.  

Out of five provision groupings, immunity from criminal liability, civil liability and 

professional sanctions for prescribing, dispensing or distributing Naloxone to a layperson for 

prescribers and dispensers (NAL 2), the ability of prescribers to provide Naloxone to third 

parties (NAL 3), immunity from criminal and civil liability administering Naloxone to a 

layperson (NAL 5), and removing criminal liability for possession of Naloxone (NAL 6) have 

statistically significant indirect effects.  NAL 2, NAL 5, and NAL 6 increase overdose death 

rates in the neighboring states where they are enacted, while the ability of prescribers to provide 

Naloxone to third parties decreases overdose death rates in the neighboring states.  In each case, 

indirect effects are much larger than direct effects, from about 5 to 15 times greater than the 

corresponding direct effects.  For total effects, NAL 5 and NAL 6 are statistically significant and 

positive; while NAL 3 is significantly negative (Table 17). Thus, while both negative and 

positive impacts on overdose death rates are found to exist for Naloxone access law provisions; 

positive impacts via spillover effects dominate the outcome of these laws.   

While these spillover effects are large, we caution restraint when interpreting these 

coefficients. Previous research has differed on the effect of Naloxone laws on overdose deaths.  

Our direct effect results are small and statistically insignificant suggesting that Naloxone laws do 

not affect overdose rates in the state they are enacted.  Several reasons may explain the size and 

direction of these spillover effects.  First, these laws may be enacted in neighboring states 

because of perceived drug risk or even drug deaths occurring in nearby states. Additionally, the 

positive and statistically significant indirect effects of access laws may be explained by their 
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potential impacts on the increased availability of high potency drugs (like heroin) in neighboring 

states. Our logic is that increased access to Naloxone keeps opioid drug abusers alive longer and 

leaves them seeking higher potency drugs, thus leading to more of these drugs flowing through 

illegal drug supply channels across multiple states.    

Other influences on opioid overdose death rates include heroin related arrests and opioid 

prescription with positive and significant direct, indirect (only opioid prescription) and total 

effects (Table 17).  Heroin related crime and prescriptions of opioids both increase opioid 

overdose death rates.  Opioid prescription increases the overdose death rates within the state as 

well as surrounding states, while heroin related crime increases the overdose death rate only 

within the state.   Employment of those who work at mining, construction and manufacture 

industries also increases opioid overdose death rates within the state while decreasing rates in 

neighboring states. 
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Table 17. Estimation Results for Model 1 (dummy of access law NAL 1) and Model 2 (days after 

effective date of access law) 

Variables  Model 1 Model 2 

 Direct Indirect Direct Indirect 

Naloxone access law 1 

 

Days after NAL 

 

Days after NAL^2 

 

Medical marijuana law 

 

Heroin related arrest 

 

Opioid prescription 

 

Employment ratio 

 

Population density 

 

Income inequality index 

 

College graduate  

 

Education spending per student 

 

Poverty  

 

Unemployment  

 

Uninsured  

 

Per capita income 

 

 

0.238 

(0.554) 

- 

 

- 

 

1.318*** 

(0.001) 

0.008*** 

(0.000) 

0.010*** 

(0.003) 

34.104*** 

(0.002) 

0.002** 

(0.032) 

-0.011 

(0.825) 

-0.060 

(0.434) 

0.116 

(0.431) 

0.169 

(0.307) 

-0.161 

 (0.205) 

0.052 

(0.321) 

-2.130*** 

(0.002) 

 

5.767*** 

(0.000) 

- 

 

- 

 

2.687* 

(0.058) 

0.007 

(0.225) 

0.021* 

(0.098) 

-68.280** 

(0.039) 

-0.006 

(0.327) 

-0.035 

(0.817) 

0.118 

(0.633) 

0.045 

(0.921) 

1.570*** 

(0.004) 

-0.529 

(0.186) 

0.333* 

(0.052) 

4.246* 

(0.096) 

 

- 

 

0.251 

(0.583) 

-0.00001 

(0.812) 

1.109** 

(0.010) 

0.008*** 

(0.000) 

0.010*** 

(0.002) 

36.500*** 

(0.001) 

0.003 

(0.014) 

-0.015 

(0.757) 

-0.034 

(0.653) 

0.124 

(0.425) 

-0.043 

(0.791) 

-0.163 

(0.198) 

0.071 

(0.195) 

-2.571*** 

(0.000) 

- 

 

7.656*** 

(0.000) 

-0.001*** 

(0.000) 

1.772 

(0.217) 

0.009* 

(0.086) 

0.024** 

(0.048) 

-59.90* 

(0.061) 

0.009 

(0.142) 

-0.052 

(0.736) 

0.151 

(0.536) 

-0.019 

(0.966) 

1.210 

(0.822) 

-0.359 

(0.353) 

0.420** 

(0.025) 

1.84 

(0.474) 

𝛒 
 

0.49 

(0.000) 

0.48 

(0.000) 

𝐑𝟐 0.85 0.85 

Observations 882 882 

Note: Numbers in the parentheses represent p-values  

*, **, and *** refer to 10%, 5%, and 1% significance levels, respectively. 
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Table 18.  Direct, Indirect, and Total Effects of SDM Model (Based on Model 3) 

Variables Direct Effect Indirect Effect Total Effect 
Naloxone access law 2 

 

Naloxone access law 3 

 

Naloxone access law 4 

 

Naloxone access law 5 

 

Naloxone access law 6 

 

Medical marijuana law 

 

Heroin related arrest 

 

Opioid prescription 

 

Employment ratio 

 

Population density 

 

Income inequality index 

 

College graduate rate 

 

Education spending per student 

 

Poverty rate 

 

Unemployment rate 

 

Uninsured rate 

 

Per capita income 

 

-0.199 

(0.710) 

-0.555 

(0.382) 

-0.237 

(0.708) 

1.994***  

(0.009) 

0.373 

 (0.539) 

0.815* 

(0.059) 

0.008*** 

(0.000) 

0.012*** 

(0.000) 

31.699*** 

(0.003) 

0.001 

(0.214) 

-0.008 

(0.868) 

-0.048 

(0.508) 

0.155 

(0.289) 

0.011 

(0.941) 

0.035 

(0.787) 

-0.0007 

(0.987) 

-2.179*** 

(0.002) 

2.970**  

(0.016) 

-5.948*** 

(0.006) 

4.165 

(0.102) 

9.659*** 

(0.001) 

5.710** 

(0.012) 

0.308 

(0.825) 

0.005 

(0.271) 

0.030** 

(0.016) 

-49.547  

(0.116) 

-0.002  

(0.744) 

-0.026  

(0.859) 

0.163 

(0.491) 

0.432  

(0.322) 

0.636  

(0.218) 

0.274 

(0.518) 

0.030 

(0.855) 

3.584  

(0.149) 

2.771 

(0.178) 

-6.503**  

(0.013) 

3.928 

(0.179) 

11.653*** 

(0.001) 

6.084** 

(0.017) 

1.124 

(0.504) 

0.014**  

(0.017) 

0.042***  

(0.003) 

-17.847  

(0.609) 

-0.0003  

(0.957) 

-0.034 

(0.835) 

0.114  

(0.678) 

0.587  

(0.240) 

0.647  

(0.257) 

0.310  

(0.500) 

0.030  

(0.877) 

1.404  

(0.614) 

𝛒 

 
0.47 

(0.000) 

𝐑𝟐 0.86 

Observations 882 

Note: Numbers in the parentheses represent p-values. 

 *, **, and *** refer to 10%, 5%, and 1% significance levels, respectively. 

 

Per capita income has a significant and negative direct effect on opioid overdose death 

rates.  The implication is that states with higher per capita incomes have lower opioid overdose 

death rates, while states with lower per capita incomes suffer from higher opioid overdose death 

rate.  Contrary to our expectations, states which passed a medical marijuana law have slightly 

higher overdose death rates. Other variables (income inequality, education spending per student, 
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poverty rate, and uninsured rate) do not have statistically significant effects on overdose death 

rates.   

In terms of control variables, our results are consistent with those found by Keyes et al. 

(2014) but contradict Gatti et al. (2007). The Gatti et al. study focuses on Italy, a very different 

context from ours.  

Finally, as a robustness check, a new dependent variable of total opioid overdose death 

rates introduced in section 4 is examined.  As pointed out by Rees et al. (2017), opioid overdose 

deaths published by CDC is based on the underlying cause of death (accidental, intentional, and 

undetermined intent), for example see Ruhm (2016).  For this check, the new dependent variable 

represents a comprehensive and unrestricted measure of opioid overdoses using Model 3.  The 

relative magnitude and sign for all statistically significant effects from Naloxone access law 

provision groupings and all other variables are unchanged from Table 18.49   

CONCLUSIONS  

Opioid overdose deaths are the leading cause of unintentional death in the U.S. These 

drugs are associated with more deaths than car accidents and guns. To address this nationwide 

public health emergency, state governments have implemented Naloxone access laws to ease 

access to this overdose reversal drug.  In this research, we examine the impact of these Naloxone 

access laws on opioid overdose deaths and their spillover effects to surrounding states.  No 

endogeneity between overdose death rates and access laws is found to exist.  

We applied spatial econometrics models to avoid potential bias in coefficient estimation 

and our regression results from all three models indicate no matter how we control for Naloxone 

                                                 
49 These estimated results are available from the corresponding author upon request. 



82 
 

access laws, we find no statistical evidence to show that Naloxone access laws help to reduce 

drug overdose death rates. When measuring Naloxone access laws in three different ways, 

positive spillover effects of these laws are statistically significant and dominate direct effects in 

terms of magnitude.  Thus, Naloxone access laws have more regional than state level effects.  

We are the first study to explore the spatial spillovers of these Naloxone access laws across 

states.     

It is useful to compare the magnitude of the aggregate effects from groupings of 

Naloxone access law provisions with the effects for heroin related arrests and drug 

prescriptions.  To do that, we use state level means to compare relative magnitudes.  For 

example, if an overdose prevention policy could reduce opioid prescriptions by 50%, the impact 

of this policy would reduce opioid overdose death rates by slightly over one per 100,000 

population.  Conversely, the total effect of enactment of a Naloxone access law containing the 

three significant provisions (NAL 3, 5, and 6) results in an increase in overdose death rates by 11 

per 100,000 population.  This simple calculation indicates that compared to a supply side policy, 

the overall effect of a Naloxone access law on opioid overdose death rates is much higher, 

however, in the opposite of the intended direction.  

Spatial econometrics has an important role to play in research on drug epidemics (see 

e.g., Partridge et al. (2012) for a general discussion of the importance of spatial econometrics).50 

Due to movement of opioid drugs and Naloxone across state borders, in this paper, we 

demonstrate that the use of conventional, non-spatial analyses may be biased in this 

environment.  Overall, due to a statistically significant spatial autoregressive component, the 

opioid overdose death rate in one state is associated with opioid overdose death rates in its 

                                                 
50 For more information, please refer to Gibbons and Overman (2012), McMillen (2012), and Corrado and Fingleton (2012). 
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neighboring states.  This result means that there are spillover effects in opioid overdose death 

rates among neighboring regions (states).  An increasing trend in opioid overdose death rates in 

one particular state may be followed by neighboring states as well.   

Naloxone as a harm reduction strategy works well by reversing overdoses and saving 

lives. To combat opioid overdose deaths, however, Naloxone access laws do not appear to be a 

suitable strategy. The fight against opioid overdose rates requires policy makers to focus on 

dealing with opioid addiction and find ways to treat addiction. State level enactment of a 

Naloxone access law can be viewed as a starting point to a strategy of implementing and 

expanding access to save lives, but not as a sufficient response to the opioid crisis and overdose 

problems.  In addition to enactment of access laws, both federal and state governments should 

consider the next steps such as policy recommendations presented by Clark (2017) (e.g. team-

based care model, more collaboration with pharmacists, expanding harm reduction treatment 

model).  Both federal and state governments need to be involved in preventive policies more 

focused on regional rather than state-specific solutions.  

The combination of Naloxone access law and increasing availability of high potency 

drugs could be partially responsible for not finding a significant result within the states that pass 

such a law (Doleac and Mukherjee 2018). We are not able to control for an accurate 

measurement of opioid potency, but studies suggest opioid users shift toward consuming 

stronger, more illicit drugs like heroin and synthetic opioids like fentanyl when policies are 

enacted limiting opioid misuse (Alpert et al. Forthcoming; Evans et al. 2018; Jones et al. 2018; 

Gladden et al. 2016).51 There are two channels to explaining this shift: less availability of 

                                                 
51 For more information, please refer to: https://www.vox.com/science-and-health/2017/5/8/15454832/fentanyl-carfentanil-opioid-

epidemic 
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prescription painkillers and drug users seeking out a stronger high.52 In addition, cross border 

movement of Naloxone may influence our results for the direct effects of access laws.  

Our results are broadly consistent with Doleac and Mukherjee (2018), who point that 

while broadening Naloxone access increases opioid-related emergency room visits and opioid-

related theft, it does not reduce overdose deaths.  Conversely, while Rees et al. (2017) show that 

the heroin related overdose deaths are not associated with the Naloxone access law, they provide 

support for a protective effect of Naloxone access laws on overall drug-related deaths. We 

contribute to this literature by showing that Naloxone access has regional effects.  Failing to 

control for spillover effects across state borders likely biases results.   

We recognize several limitations in our research. First, many states have only recently 

enacted Naloxone access laws.  Our data cover years 1999 to 2016, for those 19 states with 

newly enacted laws in 2015 and 2016, we do not have post implementation data.  Empirical 

results may change with more post implementation data for these 19 states.  Second, county level 

analysis would be preferable to assess the spillover effects across states, but these data were not 

consistently and publicly available for overdose death rates.53   

One future avenue of research is to employ a mechanism that differentiates the 

relationship between neighbors by whether or not they have an access law.  Our analysis does 

not differentiate between these types of neighboring states and this distinction may be important 

in determining the magnitude of the spillover effect.  Further research also should consider 

applying a hierarchical analysis and provide spillover estimates at both levels of the hierarchy 

(including both county and state level data in county level model).  Finally, research should 

                                                 
52 For more information, please refer to: https://www.vox.com/science-and-health/2017/8/3/16079772/opioid-epidemic-drug-

overdoses 

53 For example, the CDC does not publish county level observations with less than nine overdose deaths. 
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examine enactment of Naloxone access laws in conjunction with other policy responses, such as 

increased intervention and treatment programs for addiction to assess the impact of multiple 

policies on overdose death rates as well to limit the unintended consequences of Naloxone access 

on risky drug behaviors.    

REFERENCES  

Alpert, A., Powell, D., & Pacula, R. L. (2017). Supply-side drug policy in the presence of 

substitutes: Evidence from the introduction of abuse-deterrent opioids (No. w23031). 

National Bureau of Economic Research. 

 

Andrade, L. C. D. (2016). Spillover effects of blacklisting policy in the Brazilian 

Amazon (Doctoral dissertation, Universidade de São Paulo). 

 

Attila, V. (2000). Local academic knowledge spillovers and the concentration of economic 

activity. 

 

Bachhuber, M. A., Saloner, B., Cunningham, C. O., & Barry, C. L. (2014). Medical cannabis 

laws and opioid analgesic overdose mortality in the United States, 1999-2010. JAMA 

internal medicine, 174(10), 1668-1673. 

 

Beheshti, A., Lucas, L., Dunz, T., Haydash, M., Chiodi, H., Edmiston, B. & Sobota, B. (2015). 

An evaluation of naloxone use for opioid overdoses in West Virginia: a literature 

review. American medical journal, 6(1), 9. 

 

Bohnert, A. S., Nandi, A., Tracy, M., Cerdá, M., Tardiff, K. J., Vlahov, D., & Galea, S. (2011). 

Policing and risk of overdose mortality in urban neighborhoods. Opioid and alcohol 

dependence, 113(1), 62-68. 

 

Buchmueller, T. C., & Carey, C. (2018). The effect of prescription drug monitoring programs on 

opioid utilization in medicare. American Economic Journal: Economic Policy, 10(1), 77-

112.  

 

Case, A. C. (1991). Spatial patterns in household demand. Econometrica: Journal of the 

Econometric Society, 953-965. 

 

Chagas, A. L., Azzoni, C. R., & Almeida, A. N. (2016). A spatial difference-in-differences 

analysis of the impact of sugarcane production on respiratory diseases. Regional Science 

and Urban Economics, 59, 24-36. 

 



86 
 

Chan, T. Y., Hamilton, B. H., & Papageorge, N. W. (2015). Health, risky behaviour and the 

value of medical innovation for infectious disease. The Review of Economic 

Studies, 83(4), 1465-1510. 

 

Chen, Z., & Haynes, K. E. (2015). Public surface transportation and regional output: A spatial 

panel approach. Papers in Regional Science, 94(4), 727-751. 

 

Clark, M. N. (2017). Qualitative study of opioid overdose education and naloxone access 

strategies in community health center primary care settings: opportunities for expanding 

access and saving lives (Doctoral dissertation, Boston University).  

 

Coffin, P. O., Fuller, C., Vadnai, L., Blaney, S., Galea, S., & Vlahov, D. (2003). Preliminary 

evidence of health care provider support for naloxone prescription as overdose fatality 

prevention strategy in New York City. Journal of Urban Health, 80(2), 288-290. 

 

Coffin, P. O., & Sullivan, S. D. (2013). Cost-effectiveness of distributing naloxone to heroin 

users for lay overdose reversal. Annals of Internal Medicine, 158(1), 1-9. 

 

Cohen, A., & Einav, L. (2003). The effects of mandatory seat belt laws on driving behavior and 

traffic fatalities. Review of Economics and Statistics, 85(4), 828-843. 

 

Corrado, L., & Fingleton, B. (2012). Where is the economics in spatial econometrics?. Journal of 

Regional Science, 52(2), 210-239. 

 

Davis, C., & Chang, S. (2013a). Legal interventions to reduce overdose mortality: Naloxone 

access and overdose Good Samaritan laws. The Network for Public Health Law. 32(19), 

2. 

 

Davis, C., Webb, D., & Burris, S. (2013b). Changing law from barrier to facilitator of opioid 

overdose prevention. The Journal of Law, Medicine & Ethics, 41(s1), 33-36. 

 

Davis, C. S., Ruiz, S., Glynn, P., Picariello, G., & Walley, A. Y. (2014). Expanded access to 

naloxone among firefighters, police officers, and emergency medical technicians in 

Massachusetts. American journal of public health, 104(8), e7-e9. 

 

Davis, C. (2015). Naloxone for community opioid overdose reversal. Public Health Law 

Research. Retrieved June, 25, 2015. 

 

Davis, C. S., & Carr, D. (2015). Legal changes to increase access to naloxone for opioid 

overdose reversal in the United States. Opioid and alcohol dependence, 157, 112-120. 

 

Davis, C., Chang, S., & Carr, D. (2017). Legal interventions to reduce overdose mortality: 

naloxone access and overdose Good Samaritan laws. Network for Public Health Law. 

 

Davis, C., & Carr, D. (2017). State legal innovations to encourage naloxone dispensing. Journal 

of the American Pharmacists Association, 57, S180-S184.  



87 
 

Debarsy, N., Ertur, C., & LeSage, J. P. (2012). Interpreting dynamic space–time panel data 

models. Statistical Methodology, 9(1), 158-171. 

 

Delgado, M., & Florax R. (2015). Difference-in-Differences Techniques for Spatial Data: Local 

Autocorrelation and Spatial Interaction Tinbergen Institute Discussion Paper 15-

091/VIII. Available at 

SSRN: https://ssrn.com/abstract=2637764 or http://dx.doi.org/10.2139/ssrn.2637764. 

 

Doleac, J. L., & Mukherjee, A. (2018). The moral hazard of lifesaving innovations: naloxone 

access, opioid abuse, and crime. 

 

Dubé, J., Legros, D., Thériault, M., & Des Rosiers, F. (2014). A spatial Difference-in-

Differences estimator to evaluate the effect of change in public mass transit systems on 

house prices. Transportation Research Part B: Methodological, 64, 24-40. 

 

Elhorst, J. P. (2014). Spatial econometrics: from cross-sectional data to spatial panels (pp. 20-

25). Heidelberg: Springer. 

 

Enteen, L., Bauer, J., McLean, R., Wheeler, E., Huriaux, E., Kral, A. H., & Bamberger, J. D. 

(2010). Overdose prevention and naloxone prescription for opioid users in San 

Francisco. Journal of Urban Health, 87(6), 931-941. 

 

Evans, W. N., Lieber, E., & Power, P. (2018). How the reformulation of OxyContin ignited the 

heroin epidemic (No. w24475). National Bureau of Economic Research. 

 

Florax, R. J., Folmer, H., & Rey, S. J. (2003). Specification searches in spatial econometrics: the 

relevance of Hendry’s methodology. Regional Science and Urban Economics, 33(5), 

557-579. 

 

Frank, M. W. (2015). US State-Level Income Inequality Data. Huntsville, TX. Available at: 

http://www. shsu. edu/eco_mwf/inequality. html. 

 

Galea, S., Ahern, J., Vlahov, D., Coffin, P. O., Fuller, C., Leon, A. C., & Tardiff, K. (2003). 

Income distribution and risk of fatal opioid overdose in New York City 

neighborhoods. Opioid and alcohol dependence, 70(2), 139-148. 

 

Gatti, U., Tremblay, R. E., & Schadee, H. M. (2007). Community characteristics and death by 

homicide, suicide and opioid overdose in Italy: The role of civic engagement. European 

Journal on Criminal Policy and Research, 13(3-4), 255-275. 

 

Getis, A. (2007). Reflections on spatial autocorrelation. Regional Science and Urban 

Economics, 37(4), 491-496. 

 

Gibbons, S., & Overman, H. G. (2012). Mostly pointless spatial econometrics?. Journal of 

Regional Science, 52(2), 172-191. 

 

https://ssrn.com/abstract=2637764
http://dx.doi.org/10.2139/ssrn.2637764


88 
 

Gladden, R. M. (2016). Fentanyl law enforcement submissions and increases in synthetic opioid–

involved overdose deaths—27 states, 2013–2014. MMWR. Morbidity and mortality 

weekly report, 65. 

 

Green, T. C., Heimer, R., & Grau, L. E. (2008). Distinguishing signs of opioid overdose and 

indication for naloxone: an evaluation of six overdose training and naloxone distribution 

programs in the United States. Addiction, 103(6), 979-989. 

 

Green, T. C., Dauria, E. F., Bratberg, J., Davis, C. S., & Walley, A. Y. (2015). Orienting patients 

to greater opioid safety: models of community pharmacy-based naloxone. Harm 

reduction journal, 12(1), 25. 

 

Griffith, D. A. (2005). Effective geographic sample size in the presence of spatial 

autocorrelation. Annals of the Association of American Geographers, 95(4), 740-760. 

 

Heckert, M. (2015). A Spatial Difference-in-Differences Approach to Studying the Effect of 

Greening Vacant Land on Property Values. Cityscape, 17(1), 51.  

 

Hembree, C., Galea, S., Ahern, J., Tracy, M., Piper, T. M., Miller, J. & Tardiff, K. J. (2005). The 

urban built environment and overdose mortality in New York City neighborhoods. Health 

& place, 11(2), 147-156. 

 

Inocencio, T. J., Carroll, N. V., Read, E. J., & Holdford, D. A. (2013). The Economic Burden of 

Opioid‐Related Poisoning in the United States. Pain medicine, 14(10), 1534-1547. 

 

Jaffe, Adam B. (1989). Real effects of academic research. American Economic Review 79(5): 

957-970. 

 

Jaffe, Adam B., Manuel Trajtenberg, and Rebecca Henderson. (1993) Geographic localization of 

knowledge spillovers as evidenced by patent citations. The Quarterly journal of 

Economics 108(3): 577-598. 

 

Jones, C. M., Einstein, E. B., & Compton, W. M. (2018). Changes in Synthetic Opioid 

Involvement in Drug Overdose Deaths in the United States, 2010-2016. Jama, 319(17), 

1819-1821. 

 

Keyes, K. M., Cerdá, M., Brady, J. E., Havens, J. R., & Galea, S. (2014). Understanding the 

rural–urban differences in nonmedical prescription opioid use and abuse in the United 

States. American journal of public health, 104(2), e52-e59. 

 

Lakdawalla, D., Sood, N., & Goldman, D. (2006). HIV breakthroughs and risky sexual 

behavior. The Quarterly Journal of Economics, 121(3), 1063-1102. 

 

LeSage, J. P. (2014). What regional scientists need to know about spatial econometrics. The 

review of Regional Studies, 44: 13-32.  

 



89 
 

LeSage, J., & Pace, K., (2009). Introduction to Spatial Econometrics. Taylor & Francis Group, 

LLC. 

 

Lim, J. K., Bratberg, J. P., Davis, C. S., Green, T. C., & Walley, A. Y. (2016). Prescribe to 

Prevent: Overdose Prevention and Naloxone Rescue Kits for Prescribers and 

Pharmacists. Journal of addiction medicine. 10(5), 300. 

 

Marzuk, P. M., Tardiff, K., Leon, A. C., Hirsch, C. S., Stajic, M., Portera, L., & Hartwell, N. 

(1997). Poverty and fatal accidental opioid overdoses of cocaine and opiates in New York 

City: an ecological study. The American journal of opioid and alcohol abuse, 23(2), 221-

228. 

 

McMillen, D. P. (2010). Issues in spatial data analysis. Journal of Regional Science, 50(1), 119-

141. 

 

Open society foundation. (2017) "Naloxone: Frequently Asked Questions," Last accessed 

December 2017 at: 

http://naloxoneinfo.org/sites/default/files/Frequently%20Asked%20Questions-

Naloxone_EN.pdf 

 

Nandi, A., Galea, S., Ahern, J., Bucciarelli, A., Vlahov, D., & Tardiff, K. (2006). What explains 

the association between neighborhood-level income inequality and the risk of fatal 

overdose in New York City?. Social science & medicine, 63(3), 662-674. 

 

National Research Council. (2004). Indicators for waterborne pathogens. National Academies 

Press. 

 

Partridge, M. D., Boarnet, M., Brakman, S., & Ottaviano, G. (2012). Introduction: whither 

spatial econometrics?. Journal of Regional Science, 52(2), 167-171. 

 

Rees, D. I., Sabia, J. J., Argys, L. M., Latshaw, J., & Dave, D. (2017). With a Little Help from 

My Friends: The Effects of Naloxone Access and Good Samaritan Laws on Opioid-

Related Deaths (No. w23171). National Bureau of Economic Research. 

 

Richardson, R., Charters, T., King, N., & Harper, S. (2015). Trends in Educational Inequalities in 

Opioid Poisoning Mortality: United States, 1994–2010. American journal of public 

health, 105(9), 1859-1865. 

 

Rossen, L. M., Khan, D., & Warner, M. (2013). Trends and geographic patterns in drug-

poisoning death rates in the US, 1999–2009. American journal of preventive medicine, 45(6), 

e19-e25. 

 

Rowe, C., Santos, G. M., Vittinghoff, E., Wheeler, E., Davidson, P., & Coffin, P. O. (2016). 

Neighborhood-Level and Spatial Characteristics Associated with Lay Naloxone Reversal 

Events and Opioid Overdose Deaths. Journal of Urban Health, 93(1), 117-130. 

 

http://naloxoneinfo.org/sites/default/files/Frequently%20Asked%20Questions-Naloxone_EN.pdf
http://naloxoneinfo.org/sites/default/files/Frequently%20Asked%20Questions-Naloxone_EN.pdf


90 
 

Rudd, R. A., Aleshire, N., Zibbell, J. E., & Matthew Gladden, R. (2016). Increases in opioid and 

opioid overdose deaths—United States, 2000–2014. American Journal of 

Transplantation, 16(4), 1323-1327. 

 

Ruhm, C. J. (2016). Drug poisoning deaths in the United States, 1999–2012: a statistical 

adjustment analysis. Population health metrics, 14(1), 2. 

 

Salsberg, B. (2017). “Workers comp programs fight addiction among injured workers.” 

Associated Press News. Last accessed January 2018 at:  

https://apnews.com/ccea326c84b747cdb1d7bff83efdb303/workers-comp-programs-fight-

addiction-among-injured-workers 

 

Scott, G., Thomas, S. D., Pollack, H. A., & Ray, B. (2007). Observed patterns of illicit opiate 

overdose deaths in Chicago, 1999–2003. Journal of Urban Health, 84(2), 292-306. 

Seal, K. H., Thawley, R., Gee, L., Bamberger, J., Kral, A. H., Ciccarone, D., ... & Edlin, B. R. 

(2005). Naloxone distribution and cardiopulmonary resuscitation training for injection 

opioid users to prevent heroin overdose death: a pilot intervention study. Journal of 

Urban Health, 82(2), 303-311. 

 

Selby, R. J. (2017). The Impact of Substance Abuse Insurance Mandates. 

 

Shah, N. G., Lathrop, S. L., Flores, J. E., & Landen, M. G. (2012). The influence of living along 

the US-Mexico border on unintentional opioid overdose death, New Mexico (USA), 

2005–2009. Opioid and alcohol dependence, 125(1), 19-26. 

 

Siegler, A. E. (2015). Effect of the New York City Overdose Prevention Program on 

Unintentional Heroin-related Overdose Death, 2000-2012. City University of New York. 

 

Stobbe, M. (2017).  “Soaring overdose death rates cut US life expectancy for 2nd year.”  Associated 

Press story published in the Charleston Gazette-Mail, last accessed December 2017 at: 

http://abcnews.go.com/Health/wireStory/soaring-overdose-deaths-cut-us-life-expectancy-

2nd-51924911  
 

Sunak, Y., & Madlener, R. (2014). “Local impacts of wind farms on property values: a spatial 

difference-in-differences analysis.” FCN Working Paper No. 1/2014. Last Accessed March 

2017 at: https://www.fcn.eonerc.rwth-

aachen.de/global/show_document.asp?id=aaaaaaaaaajuzwl 

 

Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit 

region. Economic geography, 46(sup1), 234-240. 

 

Unick, G., Rosenblum, D., Mars, S., & Ciccarone, D. (2014). The relationship between US 

heroin market dynamics and heroin‐related overdose, 1992–2008. Addiction, 109(11), 

1889-1898. 

https://apnews.com/ccea326c84b747cdb1d7bff83efdb303/workers-comp-programs-fight-addiction-among-injured-workers
https://apnews.com/ccea326c84b747cdb1d7bff83efdb303/workers-comp-programs-fight-addiction-among-injured-workers
http://abcnews.go.com/Health/wireStory/soaring-overdose-deaths-cut-us-life-expectancy-2nd-51924911
http://abcnews.go.com/Health/wireStory/soaring-overdose-deaths-cut-us-life-expectancy-2nd-51924911
https://www.fcn.eonerc.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaaajuzwl
https://www.fcn.eonerc.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaaajuzwl


91 
 

Visconti, A. J., Santos, G. M., Lemos, N. P., Burke, C., & Coffin, P. O. (2015). Opioid overdose 

deaths in the city and county of San Francisco: prevalence, distribution, and 

disparities. Journal of Urban Health, 92(4), 758-772. 

 

Walley, A. Y., Xuan, Z., Hackman, H. H., Quinn, E., Doe-Simkins, M., Sorensen-Alawad, A. & 

Ozonoff, A. (2013). Opioid overdose rates and implementation of overdose education and 

nasal naloxone distribution in Massachusetts: interrupted time series analysis. BMJ, 346, 

f174. 

 

Wheeler, E., Davidson, P. J., Jones, T. S., & Irwin, K. S. (2012). Community-based opioid 

overdose prevention programs providing naloxone—United States, 2010. MMWR. 

Morbidity and mortality weekly report, 61(6), 101. 

       
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



92 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



93 
 

CHAPTER 4: AIR QUALITY AND ASTHMA HOSPITALIZATION: 

EVIDENCE OF PM2.5 CONCENTRATION IN PENNSYLVANIA 

COUNTIES 

 

INTRODUCTION 

Ambient air pollution adversely impacts air quality and human health (Nel, 2005; Kampa 

and Castanas, 2008; Anderson et al., 2012). The National Ambient Air Quality Standards (NAAQS) 

set by the Environmental Protection Agency (EPA) include six principal pollutants (i.e., Carbone 

Monoxide (CO), Lead (Pb), Nitrogen Dioxide (NO2), Ozone (O3), Particulate Matters (PM), and 

Sulfur Dioxide (SO2)) as “criteria air pollutants” (EPA, 2016). Over the last few decades, air 

pollution concerns have changed from concentrations of SO2 and coarse particles towards more 

traffic-related air pollutants (TAP) (i.e., nitrogen oxides (NOx), small particles and organic 

compounds) (Pénard-Morand et al., 2010). The national average trend of SO2 air quality shows an 

87% decrease between 1980-2016 (EPA, 2018a). With decreasing trends in SO2, ozone, and nitrogen 

dioxide, particulates have gained more attention (Brunekreef and Holgate, 2002).  

The World Health Organization (WHO) named particulate matter (PM) as the pollutant that 

affects people more than any other pollutant (WHO, 2016). The severity and magnitude of PM health 

impacts is a function of its size. The smaller the size of PM, the more potential there is to cause 

severe damage to the human body (EPA, 2018b). The negative health impacts of PM are widely 

discussed in the literature (Pope et al., 2009; Raaschou-Nielsen, 2013; Wang et al., 2014; Zhu et al., 

2017).  More specifically, many researchers have investigated the effects of short-term and long-

term exposure to PM and resulting asthma symptoms (Silverman and Ito, 2010; Samoli et al., 2011; 

Iskandar et al., 2012; Zang et al., 2015).  
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The EPA has continuously updated its standards for criteria air pollutants since the passage 

of the Clean Air Act of 1990. For instance, the standards for PM have changed three times and ozone 

pollution standards have changed two times. One element of enforcement for these standards is 

designation of attainment or nonattainment by an area. Attainment/ nonattainment classification by 

EPA is based on the level of air pollutants. In the case of a geographic area where pollutant levels 

are below the NAAQS threshold, this area is categorized as an attainment area. Unlike an attainment 

area, a nonattainment area deals with persistent air quality problems and violates federal health-

related standards for outdoor quality (Pennsylvania Department of Environmental Protection, 2016).  

As a demonstration, Appendix I shows nonattainment designation for PM 2.5 concentrations 

in Pennsylvania are located primarily at or adjacent to metropolitan areas in the southeast and 

southwestern portions of the state during the time-period 2001 to 2014.  Pollution dischargers within 

nonattainment areas are required to comply with tighter environmental regulations than similar 

dischargers in attainment areas. For instance, in nonattainment areas, existing pollution sources are 

required to install “reasonably available control technology” (RACT) while new sources of pollution 

are required to achieve the “lowest available emission rate” in addition to the RACT requirement 

(Curtis, 2018).        

The main objective in this research is to examine what factors, including PM 2.5 

concentrations, explain asthma hospitalization rates in Pennsylvania. Applying a spatial regression 

model, this analysis provides us with estimates of both within county and spillover effects among 

contiguous counties from PM2.5 concentrations. The spillover analysis allows us to document the 

existence of biases that would be found when using standard, non-spatial models in estimating the 

impacts of PM2.5 concentrations.   
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By imposing a prevailing wind pattern in deriving the weight matrix, positive and significant 

effects of PM2.5 concentrations are found to occur on asthma hospitalization rate both within county 

and in neighboring counties.  These results reveal that county PM2.5 concentrations are associated 

with higher asthma hospitalization rates in neighboring counties, and within the county itself.  Thus, 

important spillover effects exist from the PM2.5 concentrations on asthma hospitalization rates.    

The main contribution of this research to the literature is investigating the spillover effects 

of the sources of PM2.5 pollutions on asthma hospitalization rates.  In addition, the study introduces 

a new approach to evaluating who is considered neighboring regions based upon prevailing wind 

direction when analyzing the health effects of air quality.  After examining the literature, no previous 

study has controlled for the spatial interaction between PM2.5 concentrations and asthma 

hospitalization rates, so that the regional aspects of PM2.5 concentrations have not been investigated.  

Since PM2.5 and other air pollutant concentrations move through the atmosphere, neglecting their 

transportation underestimates the real impact of air quality.    

The rest of the manuscript proceeds as follows. Section 2 provides background information 

on national and states’ trends in asthma and its associated costs to society.  Section 3 discusses 

ambient air pollution and, specifically, PM2.5 concentrations and asthma.  Section 4 explains the 

study area.  Section 5 provides details of the model developed for this research.  Section 6 describes 

the data and spatial data considerations.  Section 7 provides the results and section 8 concludes with 

a discussion and policy implications. 

ASTHMA: SYMPTOMS, TIME TREND, AND COST  

Asthma is a chronic respiratory and inflammatory lung disease characterized by episodes or 

attacks of impaired breathing. Even though scientists argue that there is not a specific, well-known 

cause for asthma, a combination of environmental factors and genetics are considered as the disease 
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triggers (Centers for Disease Control and Prevention, 2013). Being exposed to multiple 

environmental factors exacerbate asthma symptoms. Akinbami et al. (2011) and Akinbami et al. 

(2012) list airway irritants such as tobacco smoke and air pollution, allergens, respiratory infections, 

stress and exercise among common asthma attach triggers that exacerbate symptoms.  According to 

Bostantzoglou et al. (2015), asthma symptoms may include coughing, shortness of breath, wheezing, 

chest tightness and chest pain and be caused by inflammation and narrowing of small airways. 

Whether the disease severity is mild or persistent, a person’s quality of life may be affected by 

asthma. People with a mild disease may suffer severe attacks as well as those with a more severe and 

persistent symptom.  

National and state asthma trend 

Since the early 1980s, asthma has shown an upward trend in all ages, genders, and racial 

groups in the U.S. (Asher et al., 2006; National Center for Health Statistics, 2017). About 25 million 

Americans currently suffer from asthma, about one in every 13 people. Asthma is leading chronic 

disease and the third leading cause of hospitalization among individuals under 18 years of age 

(Centers for Disease Control and Prevention, 2017). 

Figure 5 shows the number of current prevalence (current prevalence is defined as those who 

answered "yes" to both "Have you ever been told by a doctor or other health professional that you 

had asthma?" and "Do you still have asthma?") of asthma in the U.S. between 2001 and 2015. Even 

though the overall trend of asthma’s current prevalence is increasing on both the national and the 

state levels over a period of 15 years, individual states follow a different pattern.  
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Figure 5. National current asthma prevalence, 2001-2015 

 

 

The Behavioral Risk Factor Surveillance System (BRFSS) provides the current asthma 

prevalence on the state level. Florida, Alabama, Pennsylvania, and Utah are among the high increase 

states for adult asthma prevalence. Compared to the average percentage increase in the U.S. between 

2001-2015 (43%), Pennsylvania experienced a slightly higher increase rate at 47%. 

The burdensome cost of asthma on society 

Asthma can affect people of different age and racial groups, but is more common among 

minorities.  Asthma represents a significant burden on individuals and society in terms of reducing 

productivity and increasing healthcare system demands (Crighton et al., 2012). In estimating the total 

cost of disease, three classifications of cost are considered. Costs related to management, 

complementary investigation or treatment and other costs like domestic or professional preventive 

measures, assistance in home care, and transportation to medical visits are categorized as direct costs.  

Indirect costs include work-related losses whether it is related to temporary, early, or permanent 

disability and early mortality. Finally, costs related to reductions in quality of life, increases in pain 
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or suffering, limitation of physical activities and job changes are classified as intangible costs (Nunes 

et al., 2017).  

According to the EPA’s asthma fact report, “asthma accounts for 14.2 million physician 

office visits, 439,000 discharges from hospital inpatient care, and 1.8 million emergency department 

visits each year” (EPA, 2016, p. 1).  In 2008, 14.2 million reported asthma as the reason for missed 

days of work (CDC, 2014). Reports show asthma accounts for 13.8 million missed school days in 

2013 (United States Environmental Protection Agency, 2017).  

In a number of studies, researchers estimate the costs associated with asthma. Stanford et al. 

(1999) assess the treatment cost of asthma in which the patient goes to the emergency department 

(ED). They report that, on average, each American paid $234.48 for an ED visit in 1996-1997. In a 

more recent assessment, Wang et al. (2014) report an estimate of $1,502 for asthma care charges in 

the ED based on data for 2006-2008. Average asthma hospitalization cost is much higher than an 

ED visit. Most of the cost of hospitalization belongs to inpatient nursing care and an average hospital 

visit of 3.8 days costs $3,102.53. Barret et al. (2014) differentiate between asthma hospitalization 

costs for adults versus children. While each hospital stays for a child in 2010 averaged a total of 

$3,600, the total cost for an adult was $6,600 for each hospital stay.   

What the previous studies have in common is a steady increase in asthma cost. The most 

recent estimates for the annual economic cost of asthma in the U.S. shows an increase from $12 

billion in 1994 to $56 billion in 2011 (NHAMCS, 2010; NHAMCS, 2011a; NHAMCS, 2011b). 

Direct costs account for $50.1 billion, mostly for hospital stays. The rest of the costs include lost pay 

from sickness or death and lost work output from missed school or work days ($3.8 billion) and 

premature death ($2.1 billion) (Barnett and Nurmagambetov, 2011; CDC, 2011). The cost involving 

asthma hospitalization in Pennsylvania follows the same increasing trend over years (Pennsylvania 
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Department of Health, 2012). Although there is no cure for asthma, it could be controlled by limiting 

exposure to triggers. In the next section, the connection between ambient air pollution and PM2.5 will 

be discussed. 

Asthma and ambient air pollution 

Ambient air pollution impacts public health both on short and long-term bases.  The most 

recent estimate reports that outdoor air pollution is responsible for more than 3% of the annual 

disability-adjusted life years lost in 2010 (Guarnieri and Blames, 2014).  Traffic and fossil-fuel 

power generation contribute the largest shares to urban air pollution (Perera, 2017; Cohen et al., 

2004). With the increasing rate of urbanization in the U.S., more individuals face the negative effects 

of exposure to pollution. In general, the association between exposure to ambient air pollution and 

human health outcomes has been addressed in both older and more recent studies. Specifically, the 

following health conditions have received attention: cardiovascular and respiratory diseases 

(Schwartz and Morris, 1995; Brook et al., 2004; Brook, 2008), lung cancer (Hamra et al., 2015; 

Cohen and Pope, 1995; Raaschou-Nielsen, 2013; Nafstad et al., 2003), low birth weight (Duagandzic 

et al., 2006; Pedersen et al., 2013; Yang and Chou, 2015; Yang et al., 2017), and morbidity and 

mortality (Currie and Neidell, 2005; Krewski et al., 2009; Woodruff et al., 2008). 

The negative effects of PM2.5 on human health in general and particularly on asthma are at 

the core of this study. Many researchers address the effects of short-term and long-term exposure to 

PM2.5 (Tatum and Shapiro, 2005; Eder et al., 2006; Künzli et al., 2009; Andersen et al., 2012; Harris 

et al, 2017; Vermchuk et al., 2018). For example, a one-year exposure to 10 µg/m3 in PM2.5  has been 

estimated to increase mortality by 7.5% (Global Catholic Climate Movement, 2017). In another 

recent study, scientists show that an annual exposure increase of 10 µg/m3 for PM2.5 leads to an 

average loss of life expectancy between 9 and 11 years (Andersen, 2017).   One of the issues with 
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PM2.5 concentrations is that there is not an exact threshold for the concentration level.  Recent studies 

show that the harmful effects are observed even in areas with concentration less than a third of the 

EPA current standard (Datz, 2015). 

Inhalation of particulate matter has been estimated to be responsible for 500,000 excess 

deaths each year worldwide (WHO, 1994). In a study done by the Schneider et al. (2010), estimates 

for the health impacts of PM2.5 emitted from coal-fired power plants and automobiles in the U.S. 

show over 13,000 deaths, 9,700 hospitalizations, and 20,000 heart attacks in 2010 with a total 

monetized value of more than $100 billion. Beelen et al. (2014), Schwartz et al. (2008), and 

Schneider et al. (2010) argue that long-term exposure to PM2.5 is associated with higher mortality 

risk, even when concentrations are below the standard limit. In other words, they believe there is no 

“safe threshold” for PM.  

Glad et al. (2012), and U.S. EPA, (2011) show the impacts of PM2.5 on asthma emergency 

department visits and early deaths, respectively.  Mann et al (2010), Meng et al (2010), Liu et al. 

(2009), Jacquemin et al. (2012), Malig et al. (2013), Samoli et al. (2011), and Silverman et al. (2010) 

describe the effects of PM2.5 on asthma symptoms.  Riedl and Diaz (2005), Namdeo et al. (2011), 

Ristovski et al. (2012), and WHO (2016) discuss the effects of PM2.5 on respiratory and 

cardiovascular disease. Lipsett et al. (1997) show the relationship between emergency room visits 

and exposure to PM10. Nel (2005) relates the exacerbation of asthma and chronic bronchitis to 

exposure to PM10 and PM2.5.  WHO (2016) also reveals an association between PM2.5 plus PM10 and 

lung cancer.  

While numerous studies have analyzed the relationship between ambient air pollutants and 

asthma, evidence of this association on a regional scale is still mixed. The discussion presented by 

North Carolina Attorney General in 2006 arguing pollution from TVA’s coal-fired power plants in 



101 
 

Tennessee causing damages the health of North Carolina’s residents is an example of the regional 

effects of ambient air pollution (Environmental Appeals Court, 2008). No previous research, 

however, has estimated the spatial spillover of PM2.5 pollution.  Due to a misspecification issue when 

not accounting for spatial spillover, the results of any regression estimation may be biased. In other 

words, when using a non-spatial regression analysis, we assume health outcomes at a county basis, 

like asthma hospitalization, are independent of the pollution levels (PM2.5 concentrations for 

example) in neighboring counties.  This assumption ignores the effects of PM2.5 concentrations on 

adjacent counties. By ignoring spatial spillover effects, the total effect of PM2.5 concentrations on 

health outcomes may be underestimated.  

STUDY AREA 

Asthma related indicators are not available for all the states on a county level. Because of 

this data limitation, instead of a regional or national analysis, we focus on one state, Pennsylvania.  

Asthma in Pennsylvania is a serious concern. In 2017, the current asthma prevalence rate in 

Pennsylvania for adults was reported at 10.9%; that is far higher than the average rate among adults 

in the U.S. (7.6%) (Henry J Kaiser Family Foundation, 2017). Delaware, Philadelphia, Montgomery, 

Bucks, and Washington are the counties with the highest asthma hospitalization rate, while Mifflin, 

Snyder, Juniata, Clinton, and Huntington counties have the lowest number of asthma 

hospitalizations. What the counties with a high asthma hospitalization rate and counties with a low 

asthma hospitalization rate have in common is their population density. Counties with a higher 

population density are struggling with more asthma triggers than counties with lower asthma 

hospitalization rate, which are usually more rural.   

According to 2015 Pennsylvania asthma fact sheet in 2013, the average cost for inpatient 

hospitalization was $26,952 which is significantly higher than the national average ($6,600) 
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(Pennsylvania Department of Health, 2015). While the cost involving asthma hospitalization in 

Pennsylvania is much higher than the U.S. average, there are other states, such as California and 

Wisconsin where the average cost per asthma hospitalization is also much higher than the U.S. 

average. For example, the average cost per asthma hospitalization in California in 2010 was $33,749. 

The total health care cost involving asthma and absenteeism for 2010 was estimated to be 

approximately $1.7 billion in Pennsylvania. With an almost 50 percent increase projected by 2020, 

asthma costs are estimated to be approximately $2.6 billion, which is an increased burden on the 

state economy at 0.34% of the state GDP as of 2017. 

MODELS  

A spatial regression model is used to investigate the impacts of PM2.5 concentrations on 

asthma hospitalization rates.  Spatial regression models differ from regression models by inclusion 

of a spatial interrelationship between observations of geographic areas such as cities, counties, states, 

or even countries (Elhorst, 2014). In a spatial model, each observation belongs to a location whereas 

observations in a non-spatial regression are independent (LeSage and Pace, 2009). This locational 

linkage is a fundamental point for the observation dependency assumption in spatial regression.  

Among the three types of spatial interaction effects, this study focuses on exogenous 

interactions among the independent variable (X). The spatial lag of X model (SLX) assumes that the 

dependent variable for each observational unit depends on an independent variable from other units 

of observations.  

Independent variable x of unit j  ↔  Dependent variable y of unit i 

A SLX model can be expressed as  

𝑌 =  𝛼ι𝑁 + 𝑋𝛽 + 𝑊𝑋𝜃 + 𝑢                                                                                          (1) 
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where Y is asthma hospitalization rate, WX denotes the interaction among the independent variables.  

𝛽 and 𝜃 represent a K × 1 vector of parameters to be estimated. W is the spatial weight matrix which 

accounts for identification of neighbors. There are four types of spatial weight matrices commonly 

used in applied studies: (i) p-order binary contiguity matrices. Contiguity weight matrices assume 

only those units of observations that share a common border are neighbors (p = 1 also called first-

order neighbors). When p = 2, neighbors and neighbors of neighbors are considered and so on; (ii) 

inverse distance matrices are based on distance between observation i and j; (iii) q-nearest neighbor 

matrices when q is a positive and an integer number defined based on the research question by the 

researcher; and (iv) block diagonal matrices when a group of units have intercorrelation with each 

other, but not with the rest of the observations (Elhorst, 2014).  

As pointed out by Anselin and Rey (1991), the proper choice of a spatial weight matrix is an 

important issue in empirical research. Generally, all mentioned forms of neighbors in spatial models 

deal with symmetric weight matrices. However, sometimes the most accurate definition of neighbors 

does not follow a symmetric form. Commuting flows in the transportation literature and regional 

labor market performance are two well-known examples of asymmetric spatial weight matrices. 

More related to our study, Chen and Ye (2018) capture the effect of wind direction on the PM10 

concentrations at the municipal level in China as an example of a dynamic and asymmetric spatial 

weight matrix dependent on weather patterns.  

Yang et al. (2017) and Yang and Chou (2015) explore the effects maternal exposure to 

downwind sulfur dioxide levels on the occurrence of low birth weight (LBW). They used zip code 

level of observations and control for wind direction by implementing a four-step procedure. Since 

these two studies did not apply a spatial regression model, this research is motivated by Cheng et al. 

(2014) and Chen and Ye (2018) who introduce dynamic, asymmetric weight matrices into traffic 



104 
 

modeling and PM10 concentrations, respectively. These authors argue that for some cases, such as 

network data and PM10 concentrations, a general homogeneous spatial weight matrix is inadequate 

and we need to apply a heterogeneous (and/or dynamic) spatial weight matrix.  

Applying this same rationale, our study introduces an empirical model based on a weight 

matrix built upon prevailing wind direction.  Based on this prevailing wind pattern, unit i is 

considered a neighbor for unit j if and only if it is located upwind of j.  Since unit j is downwind of 

unit i, unit j is not considered a neighbor for unit i. Following this logic, a weight matrix is 

constructed based upon the annual average prevailing wind map for Pennsylvania counties (World 

Forecast Directory, 2019).  

Figure 6. Annual prevailing wind direction 

 

 

 

 

 

 

 

 

 

 

Figure 6 shows the annual prevailing wind directions in the U.S. Based upon this map, the 

prevailing wind direction in Pennsylvania is southwest to northeast.  According to this prevailing 

wind direction, for instance, Washington County is considered to be a neighbor of Allegany and 

Westmoreland Counties, but Allegany County or Westmoreland County are not neighbors for 
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Washington County.  Since a weight matrix needs to be exogenous to the estimation procedure, a 

geographical weight matrix based upon prevailing wind direction fits this requirement. The notion 

of geographical proximity has been applied widely in previous literature (e.g., Jaffe, 1989; Jaffe el 

al., 1993; Varga, 2000; Chagas et al., 2016).  

In addition to ambient PM2.5 concentrations, empirical studies have shown several other 

factors are associated with asthma incidents. Included among the independent variables are:  

smoking rate (Chen et al., 1999; Thomson et al., 2004; Gilliland et al., 2006), and population density 

(Leinberger, 2010; Solé et al., 2007) and per capita income.  Each control variable is expected to be 

positively correlated with asthma incidence.  Per capita income level has been shown to be negatively 

correlated with asthma incidence (Kozyrskyj et al., 2010), while weather variables of precipitation 

and humidity have had mixed effects in the literature (Jerrett et al., 2008; Ho et al., 2007).  

The empirical model is defined as:  

𝐴𝑠𝑡ℎ𝑚𝑎𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑖𝑡 =  𝛽0 + 𝛽1𝑃𝑀2.5𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑡 +

 𝛽2𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑖𝑡 +  𝛽3 𝑃𝑒𝑟𝐶𝑎𝑝𝑖𝑡𝑎𝐼𝑛𝑐𝑜𝑚𝑒 +  𝛽4𝑆𝑚𝑜𝑘𝑖𝑛𝑔𝑅𝑎𝑡𝑒𝑖𝑡 +

𝛽5𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖𝑡 +  𝜃𝑊𝑃𝑀2.5𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑗𝑡 +  𝑣𝑖 +  𝑤𝑡 +  𝜀𝑖𝑡                                                                                                                              

(2)                                                                     

where 𝐴𝑠𝑡ℎ𝑚𝑎𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 stands for the asthma hospitalization rate in county i and time t, 

𝑃𝑀2.5𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 represents PM2.5 concentrations in county i and time t,  𝑆𝑚𝑜𝑘𝑖𝑛𝑔𝑅𝑎𝑡𝑒 is 

the smoking rate in county i and time t, 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐷𝑒𝑛𝑠𝑖𝑡𝑦 shows the population density in county 

i and time t, Precipitation shows the precipitation in county i and time t, while 𝑣𝑖 and 𝑤𝑡 are county 

and year fixed effects, respectively.  With county fixed effects, there is not a need to control for the 

availability of hospitals in each county, as the number of hospitals in each county does not change 

very much over time the same as population break down, which is not changing disproportionately 
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in different counties over time.  The term 𝑊𝑃𝑀2.5𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 denotes the spatial components 

of PM2.5 concentrations. 𝜃 represents the spillover effects of PM2.5 concentrations. This coefficient 

explains the effects of PM2.5 concentrations of neighboring county (j) on the asthma hospitalization 

rate in county (i).  

Elhorst (2014) notes that “for the specification of more complicated behavioral hypotheses, 

including effects” (time fixed effect, space fixed effect, and two-way fixed effect) (p. 2). Spatial units 

have unique characteristics which are not always possible to control for all of them. Panel estimation 

introduces a dummy variable for spatial units in the estimation to capture unobservable predictors 

for units (𝑣𝑖). Our model also controls for time fixed effects to capture unobservable predictors over 

time (𝑤𝑡).   

DATA 

Data for constructing the empirical models come from different sources. The rate of 

hospitalizations for asthma are derived from the National Environmental Public Health Tracking 

Program (NEPHTP) for 2001-2014 and classified using the International Classification of Diseases, 

ninth Revision (ICD-9). We work with both age-adjusted hospitalization rate and crude 

hospitalization rate. Rates are age-adjusted applying the direct method using 2000 U.S. standard 

population (Klein and Schoenborn, 2001). The data covers ICD-9-CM: 493.XX diagnosis codes. 

More asthma related indicators such as asthma prevalence among adults, asthma prevalence among 

children, and emergency department visits for asthma are reported, but only over a more limited 

number of years and states. By definition, hospitalization data does not include asthma among 

individuals who do not receive medical care or who have not been hospitalized, including those who 

die in emergency rooms, in nursing homes, or at home without being admitted to a hospital, and 
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those treated in outpatient settings. NEPHTP provides asthma hospitalization information by 

counties for 28 selected states. Data are based on the date of admission rather than the date of 

discharge. Data represents the number of admissions rather than the number of individuals admitted 

to the hospital. In most cases, admissions of residents to out-of-state hospitals are excluded. Data are 

based on the county of individual residency.   

For the independent variable of interest, we created a measurement of annual PM2.5 

concentrations level based on data provided by CDC-NEPHTP. NEPHTP reports different air 

quality indicators, such as air toxics, mortality benefit associated with reducing PM2.5 concentrations 

level, and days above regulatory standard for Ozone and PM2.5. PM2.5 concentrations levels are based 

on seasonal averages and daily measurement for monitor and modeled data.  A Downscaler (DS) 

model is applied to predict the measurements for county and day observations with missing values 

in monitoring data.  The data generation process in DS is based on statistical fusion of the Air Quality 

System (AQS) and Community Multiscale Air Quality (CMAQ) model-predicted concentration 

values. AQS was used for observations with monitoring data. 

Population data come from the Bureau of Economic Analysis (BEA). Precipitation data are 

collected through PRISM climate group is supported by the USDA Risk Management Agency, and 

the National Center for Biotechnology Information published cigarette smoking prevalence in U.S. 

counties. Finally, for the spatial weight matrix, a shape file of Pennsylvania counties consisting of 

the latitudinal and longitudinal coordinates of all the 67 counties is adapted from the U.S. Census 

Bureau (Tiger) report.  

Contiguity and neighborhoods in spatial analysis play vital roles (Tobler, 1970). To control 

for spillover effects of PM2.5 concentrations, 67 contiguous counties were included in our analysis. 

Wind map of the United States and World Forecast Directory, El Dorado Weather, Inc. are used to 
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make the weight matrix. Descriptive statistics for each variable are reported in Table 19 along with 

the expected signs of PM2.5 concentrations and the control variables.  

Table 19.  Descriptive statistics 

Variables Mean St. Dev. Min Max 
Expected 

sign 

Asthma Hospitalization age-adjusted rate (per 10,000) 12.51 4.78 4.6 32  

Asthma Hospitalization crude rate (per 10,000) 13.00 4.88 4.6 31.4  

PM2.5 Concentrations (𝛍𝐠/𝐦𝟑) 12.23 2.42 7.8 23.3 + 

Smoking Rate (% of population age 18 and older) 19.67 2.95 9.04 25.7 + 

Precipitation (Inches) 46.03 8.54 24.73 83.86 + 

Per Capita Income (Thousand dollars) 33.725 8.343 18.263 75.835 - 

Population Density (Pop./mi2) 446.87 1,330.46 12.04 10,911.16 + 

Hispanic Population (Thousand people) 9.472 24.034 0.019 213.487 + 

Hispanic Population 19 and below (Thousand people) 3.811 9.467 0.008 78.000 + 

Number of observations 938  

 

Our motivation to work with a spatial model in this analysis is based upon air pollution 

movement tied to geographical distance. One should expect to see the residence of downwind 

locations being affected by air pollution levels from upwind areas. Before we analyze the model in 

a spatial regression framework, we used an intuitive way to identify asthma hospitalization rate 

clusters.  Figure 7 shows a map of asthma hospitalization rates for 2014, the last year of the dataset. 

Some spatial clusters are obvious in 2014. Philadelphia, Montgomery, Delaware and Bucks counties 

in the southeastern part of the state had asthma hospitalization rates in the highest category. In 

addition, there is another cluster of high category rates in the southwest part of the state.  Each cluster 

is associated with large metropolitan areas.    
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Figure 7. Asthma hospitalization rates in Pennsylvania 

counties, 2014 data 

 

The next step after visualizing asthma hospitalization among counties is to detect spatial 

autocorrelation. To test for asthma hospitalization rate autocorrelation, we applied the 1st-order 

spatial autoregressive (FAR) estimates code written by James P. LeSage, available through the 

spatial econometrics Toolbox for Matlab. FAR output includes the rho coefficients that indicates the 

autocorrelation between a dependent variable and a dependent variable in surrounding neighbors.  

Table 20 shows the results for the 1st-order spatial autoregressive estimates for two points of time 

and its z-probability. These tests reveal that there are significant spatial autocorrelations among 

counties in Pennsylvania. This means that Pennsylvania asthma hospitalization rates tend to be 

clustered together. 
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Table 20.  Results of 1st-order spatial autoregressive rho calculations for county level asthma 

hospitalization rates in Pennsylvania (age adjusted rates) 

 

 2001 2014 

Rho 0.961 0.980 

z-probability 0.000 0.000 

 

RESULTS 

The objective of this study is to investigate both the in-county and out-of-county effects of 

PM2.5 concentrations on asthma hospitalization.  To be able to respond to this question by estimating 

a two-way fixed effect spatial panel model, we tested the null hypothesis that the spillover effects of 

PM2.5 concentrations is statistically different from zero. As discussed in the previous sections, 

finding an accurate algorithm to deal with the spillover between pollutants and asthma matters. The 

weight matrix which defines the neighbors based on wind direction was determined to be the most 

accurate algorithm to investigate spillover effects of the pollution. To do a placebo test and check 

the reliability of the model, we tried applying a different weight matrix by using the reverse 

prevailing wind direction and the results shows statistically insignificant indirect effects. 

The estimated results for the model are reported in Table 21. We report the results following 

the crude rate asthma hospitalization.54  The PM2.5 concentrations variable has a positive and 

significant coefficient, meaning that there is a positive, within county correlation between PM2.5 

concentration and asthma hospitalization rates. A one μg/m3 increase in PM2.5 concentrations is 

associated with an estimated 0.71 per 10,000 population increase in the asthma hospitalization rate 

                                                 
54 We select the crude rate estimation as the most representative estimate of the existence of spillover effects from PM2.5 concentrations.  

This judgement is based on analyses using the number of county level asthma hospitalizations as a dependent variable, which consistently 

showed indirect effects were positive and statistically significant.   
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within the county where this increased concentration occurs.  The indirect effects of PM2.5 

concentrations are shown by the coefficient of PM2.5 concentrations in neighboring counties’ 

variable (Table 21). This coefficient is positive and statistically significant at the 10% level, meaning 

that asthma hospitalization rates increase with increasing PM2.5 concentrations in upwind counties. 

A one μg/m3 increase in PM2.5 concentrations in county i is associated with an estimated 0.12 per 

10,000 higher rate of asthma hospitalizations in downwind counties.   

Table 21. Asthma hospitalization estimation results for the SLX model 

Variable SLX model (age-adjusted rate) SLX model (crude rate) 

PM2.5 Concentrations 
0.697*** 

(0.000) 

0.712*** 

(0.000) 

Precipitation  
0.071*** 

 (0.000) 

0.073*** 

(0.000) 

Per Capita Income  
0.300*** 

 (0.000) 

0.303*** 

(0.000) 

Smoking Rate  
0.650*** 

 (0.000) 

0.654*** 

(0.000) 

Population Density  
0.001*** 

 (0.000) 

0.001*** 

(0.000) 

PM2.5 Concentrations in neighboring 

counties 

0.062 

0.294 

0.119* 

(0.057) 

Constant  
-23.633*** 

(0.000) 

-24.234*** 

(0.000) 

Year fixed effect Yes Yes 

County fixed effect Yes Yes 

Adjusted R-squared 0.53 0.49 

Number of observations 938 938 

   Note: Numbers in the parentheses represent P-values  

   *, **, and *** refer to 10%, 5%, and 1% significance levels, respectively. 

 

Other positive and statistically significant influences on asthma hospitalization include the 

percentage of smokers in a county and the density of the county’s population.  A 1% increase in 

smoking rate is associated with an increase of 0.65 per 10,000 population in asthma hospitalizations 

rate within a county.  The positive effects of higher population density, precipitation and per capita 

income are much smaller than smoking.   
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In addition to PM2.5 concentrations, the percentage of smokers in a county is another variable 

in our model that is alterable by public policy.  While neither the health effects of smoking nor PM2.5 

concentrations are limited to asthma prevalence (heart disease, stroke, cardiovascular disease, 

chronic obstructive pulmonary disease (COPD), and lung cancer increase with smoking), it is worth 

considering the comparative public health benefits from policies focusing on smoking rate reduction 

versus lowering of PM2.5 concentrations. We calculate the impacts of reducing both the smoking rate 

and PM2.5 concentrations by 10 percent from their current mean value over all counties. The results 

show that the effects of reducing PM2.5 concentrations on asthma hospitalization rates has less of an 

impact than reducing smoking rate (for example, 134 vs. 198 less hospitalizations in Philadelphia 

County). Finally, since the constant term in a fixed effect panel estimate that includes both year and 

county fixed effects is essentially not interpretable, we provide no explanation for the constant in 

this model.          

CONCLUSIONS AND POLICY IMPLICATIONS  

The objective of this study is to understand the asthma related health impacts from PM2.5 

concentrations. More specifically, the impact of PM2.5 concentrations on asthma hospitalization rates 

in Pennsylvania is investigated. A balanced panel of 67 counties in Pennsylvania over fourteen years 

(2001-2014) is applied to estimate the effects and capture the spillovers from PM2.5 concentrations 

on asthma hospitalization rates across counties. In this research, we identify an important aspect 

missing in the health impact analysis literature of ambient air pollution - the presence of statistically 

significant spatial autocorrelation among county level asthma hospitalization rates. This presence 

implies that the ordinary least square estimations (non-spatial models) may lead to a biased result 

and underestimate the overall impact of PM2.5 concentrations on asthma hospitalization rates. Spatial 

models incorporate the intercorrelation between county level PM2.5 concentrations and thereby 
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capture the spillover effects of these concentrations. In addition, applying spatial analysis without 

correctly employing wind direction to identify each unit’s neighbors also generates inaccurate 

estimations of PM2.5 concentrations impacts. Putting into practice the proper upwind and downwind 

relationships between counties within an ambient air pollution impact assessment is a key element 

to derive a precise impact estimations.      

Our results suggest that county level PM2.5 concentration is important explanatory factor in 

asthma hospitalization rates.  This finding is similar to the findings of numerous studies, including 

Glad et al. (2012), Mann et al (2010), Meng et al (2010), Liu et al. (2009), Jacquemin et al. (2012), 

Malig et al. (2013), Samoli et al. (2011), and Silverman et al. (2010). While there are several GIS-

based studies focused on the locational impacts of asthma (Yap et al., 2013; Crighton et al., 2012; 

Hanchette et al., 2011), asthma hospitalization impacts from PM2.5 concentrations occurring in 

upwind counties have not been discussed in the literature before.  

From Table 21 results, a one 𝛍𝐠/𝐦𝟑 increase in PM2.5 concentrations is associated with a 

combined asthma hospitalization rate increase of 0.8 per 10,000 population within both the county 

itself where the increase occurs as well as in downwind counties.  Considering the average charge 

for inpatient hospitalization in Pennsylvania ($26,952), the total annual cost from a one μg/m3 

increase in PM2.5 concentrations in Philadelphia county (the most urban county in Pennsylvania) is 

$3.1 million. Conversely, the total annual cost such an increase in PM2.5 concentrations in the most 

rural county (Cameron) is $37,732.  

We estimate the impact of this same one μg/m3 increase throughout all Pennsylvania 

counties on the number of asthma hospitalization using 2014 data.  A total of 1,244 additional asthma 

hospitalizations would occur with 26.8% of these hospitalizations happening in downwind counties 

because of increased PM2.5 concentrations in upwind neighboring counties. Using the average cost 
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of asthma hospitalization noted above, the additional cost is $33.51 million with $8.9 million being 

added due to spillover effects of PM2.5 concentrations.  Thus, ambient air pollution represents a 

regional issue rather than one related specifically to attainment or non-attainment of air quality 

standards at the county level. 

This study’s findings have policy implications for both federal and local governments. In 

December 2012, EPA reduced PM pollution standards by tightening the annual PM2.5 standard from 

15 to 12 𝜇𝑔/𝑚3
.  Even small changes at lowering the standard could have significant impacts on 

public health. Giannadaki et al. (2016) note that governments continue to adopt stricter limits for 

annual mean PM2.5 level.  As shown in this research, lower limits for PM2.5 concentrations lead to 

substantial reductions in at least one negative human health outcome - asthma hospitalizations.   

Although ambient air pollution has gained more attention for many years and there has been 

implementation of many regulations and air quality standards to help control pollution levels, still 

more work needs to be done. As one example, if the existing method to calculate the PM2.5-

attributable health effects is not capturing the spillover effects, the findings from this study show that 

inclusion of the out of area health effects of PM2.5 concentrations are potentially important in the 

consideration of setting or revising primary PM standards. Because the regulation of pollutants is an 

economic burden for the power generation sector and society in general (Curtis 2018), the most 

accurate accounting of human health effects is needed when considering pollution standard 

reductions – i.e. those which incorporate spillovers effects. Since nonattainment designations along 

with their incumbent increased regulation on pollution dischargers happen at city and county levels, 

the spillover benefits from these additional regulations need to be considered as the human health 

impacts of air pollution knows no boundaries.   
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Several limitations in the research are recognized.  First, to account for wind patterns, future 

research should consider a more detailed algorithm that involves wind speed and wind rose when 

computing a weight matrix. Wind rose is a diagram that shows the relative frequency of wind 

direction in a particular place. In practice, wind direction and speed change over time, so to 

investigate the effects of ambient air pollution, one needs to continually adjust the neighbors 

according to the frequency of wind direction and speed. For this research, corresponding information 

about direction and speed were not available for each county and each year. Thus, the empirical 

results found here may change with more accurate data of wind patterns. The weak statistically 

significant indirect effect of PM2.5 concentrations could be an indicator showing that this analysis 

might benefit from generating a more precise wind direction weight matrix.    

Second, asthma hospitalization is currently the only data available at the county level for 

Pennsylvania. Access to asthma prevalence and asthma emergency department visits data for 

conducting new estimations using these asthma related incidents would provide researchers with a 

better estimation of PM2.5 impacts.  

Finally, expanding the study region by applying all U.S. counties will provide a better 

understanding of the health impacts of the pollution.  Unfortunately, data for all the counties in the 

U.S. are not available in this point. Having access to these point data pollution levels may enable the 

researchers to achieve results that are more accurate. Unfortunately, the pollution data for points in 

county level in a time series is not readily available. One would expect point source data on pollution 

show greater effects on asthma hospitalization.   

Further research should consider improving on the above limitations by imposing a more 

accurate wind pattern, expanding estimations to include emergency department visits and asthma 

prevalence, and a county level analysis on the national level are recommended for future works. The 
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current outcome does contribute to the literature by examining the impact of ambient air pollution 

on human health by specifically documenting and estimating the cost of asthma spillover effects 

across Pennsylvania counties from PM2.5 concentrations.  
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Appendix VII. 

Figure 8. Attainment vs. nonattainment designation status in Pennsylvania counties based on 

PM2.5 concentrations criteria. 

 

Note:  Using the data from EPA Green Book, National Area and County-Level Multi-Pollutant Information, we define attainment vs. nonattainment counties 
based on the PM2.5 concentrations criteria. If the county falls in a nonattainment status in any years between 2001 and 2014, we consider it a nonattainment county, otherwise 
the county falls in an attainment status. 

https://www3.epa.gov/airquality/greenbook/multipol.html
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CHAPTER 5: SUMMARY AND CONCLUSIONS 

 
Study Summary 

Spatial econometrics has an important role to play in research (see e.g., Partridge et 

al. (2012) for a general discussion of the importance of spatial econometrics).1  By applying 

spatial models in three different research areas, I demonstrate in this dissertation the use of 

conventional, non-spatial analyses are biased in this environment. Overall, due to a 

significant spatial autoregressive component found in all models (water charge and minimum 

monthly access from essay 1, opioid overdose deaths and the Naloxone access law in essay 

2, and PM2.5 concentration and asthma hospitalization in essay 3), I found spillover effects 

exist in all three topics.  The existence of spillover effects can lead federal and local 

policymakers to a better understanding of the impacts of policies and strategies they make 

for their jurisdiction on the neighboring regions.  

In the first essay, I found that water charges in municipality level are influenced by 

long-term debt and the water source.  Also, water charge follows a spatial pattern so that 

municipalities and the PSC are adjusting water rates considering water charges from 

neighboring utilities. It could be the results of geographical and institutional characteristics 

or following the rates in neighboring municipalities.  For the second model in essay 1, the 

question considered is whether or not socioeconomic factors are considered to set the 

                                                 
1 For more information, please refer to Gibbons and Overman (2012), McMillen (2012), and Corrado and Fingleton 

(2012). 
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minimum water access. The results showed affordability is not a significant factor to predict 

and explain the minimum access charge.  

 Second essay investigated the impacts of a public health policy (Naloxone access 

law) on opioid overdose deaths in the U.S.  Aside from findings that show heroin availability, 

opioid prescriptions, high-risk occupations, population density, and college graduate rate are 

the influential factors to determine the opioid overdose deaths, I found while Naloxone 

access law doesn’t impact the opioid overdose death rate in the state which a law is 

implemented, there are positive spillover effects on death rates in surrounding states.  

In the third essay I presented a new approach to evaluate the effects of ambient air 

pollution on health outcome.  To be more specific I considered the spillover effects of PM2.5 

concentrations on asthma hospitalization in Pennsylvania counties.  The results showed that 

the PM2.5 concentrations in county i impacts on the asthma hospitalization in downwind 

counties.   

In the next part based on the results I will explain the policy implication for each 

essay.  

Implications 

The findings of the study have some policy implications for both federal and local 

governments.  Findings from first essay highlighted the role of financial constraint and source 

of water in water charge determination.  According to the results protecting ground water 

quality with source water protection programs seems a reasonable strategy to control and 

keep the water charge low.  Our water charge model results provide the basis for a rough 

estimate of the benefits from this ground water protection.  Allowing for a $5 saving for each 

4,500 gallons of use, the over 240,000 households in West Virginia served by municipalities 
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using ground water have an annual cost savings of $3.6 million in their water charges 

compared to other water sources.  

In terms of the long term debt, prior to the 1987 amendments to the Clean Water Act, 

municipal utility assistance was provided through grants with the federal government picking 

up 55% of project cost.  This amendment changed grants to low-interest rate loans.  This 

change means that now local governments are responsible for 100% of projects’ cost 

(Copeland, 1999).  This societal change of replacing the federal government grants to 

municipal utilities with low-interest loans has increased long term utility debt, which has 

increased water charges to customers.  

Also our results indicate that the average share of water costs across West Virginia 

households with municipal water utilities is about 1.5% of household income devoted to 

water charges with a maximum share being 4%.  With such reasonable costs of water for 

households, this could be a factor explaining why our models find no significant effects from 

socioeconomic factors on monthly minimum charges for access to water. 

Findings from the second essay have profound implications for Naloxone access law 

policy.  For the provisions with positive coefficients we find that in each case the effect of 

Naloxone access laws is to increase opioid death rates outside the states where these laws 

have been enacted.  Looking across multiple provisions, these findings provide no statistical 

evidence that these laws reduce opioid death rates.   

Our results show that when access laws are evaluated in isolation of any other state 

level policy response to opioids, increasing access to Naloxone does not reduce, but leads to 

increased overdose death rates.  Thus, the moral hazard perspective of this policy is the more 

accurate assessment of the outcome when access laws are evaluated as the only policy.  
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Immunity from civil and criminal liability for healthcare professionals and immunity from 

criminal liability for possession of Naloxone are provisions that show the change in behavior 

of the users and we see a positive effect of these laws on opioid overdose death rates.  The 

end result is that while administering Naloxone prevents an overdose death, the expanded 

ability to administer Naloxone does not reduce overdose death rates.  Enactment of a 

Naloxone access law is a starting point in implementing and expanding access to save lives 

seems a necessary strategy, but not a sufficient response to the overdose problem. 

Findings from the third essay highlighted the role of external sources of PM2.5 

concentrations in upwind counties on asthma hospitalization in downwind counties. 

Although ambient air pollution has gained more attention for many years and has led to the 

implementation of many regulations and air quality standards to help control the level of 

pollution, more work still needs to be done.  If the existing method to calculate the PM2.5-

attributable health effects is not capturing the spillovers, this study recommends the inclusion 

of the indirect health effects of PM2.5 concentrations to set or revise the primary PM 

standards.  Because the regulation of pollutants is an economic burden for the power 

generation sector and society, the most real and accurate human health effects need to be 

measured.  

An accurate measurement of pollutants should incorporate spillovers.  The real cost 

involving asthma hospitalization is not limited to the discharge within the county; this is true 

in the state level as well.  Even if a local government manages to decrease the ambient air 

pollution, public health may still be influenced by pollution levels in neighboring units.  To 

control ambient air pollution, this study recommends regional cooperation rather than a state 
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regulation.  Both federal and local governments should be involved in policies more focused 

on regions rather than a specific state or county. 

Study Limitation  

I recognize several limitations in my research.  First, the data available for the water 

plants locations in the first essay is limited.  The best way to model geographical 

characteristics is having access to the water plants locations. Spatial interpolation methods 

such as Kriging may help us to predict the location point with a high degree of confidence.  

In the second essay, many states have only recently enacted Naloxone access laws.  

Since our data cover years 1999 to 2016, for those 10 states with newly enacted laws in 2014, 

we do not have post implementation data.  Furthermore, 10 more states enacted laws in 2013, 

so that only one year of data is included in our dataset.  Empirical results may change with 

more post implementation data for these 20 states.  Second, county level analysis would be 

preferable to assess the spillover effects across states, but these data were not consistently 

available for public for overdose death rates.  Religion and social attitude toward drugs may 

have influences on overdose death rates. Empirical results may change after controlling for 

these variables.  Future works may consider dynamic spatial models.  Empirical results may 

change with the new method of estimation.  

For the third essay, first, to account for wind patterns, researchers need to consider a 

more accurate algorithm that involves wind speed and wind rose.  Wind rose is a diagram 

that shows the relative frequency of wind direction in a particular place.  In practice, wind 

direction and speed could change over time, so to investigate the effects of ambient air 

pollution, one needs to adjust the neighbors according to the frequency of wind direction and 
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speed.  For this research, I do not have corresponding information for each county and each 

year.  Empirical results may change with more accurate data for wind patterns.   

Second, asthma hospitalization is currently the only data available on a county level for 

Pennsylvania.  Having access to asthma prevalence and asthma emergency department visits 

and conducting new estimations for this asthma related incidents would give us a better 

estimation of the impact.  Occupational pattern may affect the asthma hospitalization. For 

instance, coal miners are more exposed to asthma prevalence.  In addition, age group could 

affect asthma hospitalization.  Children and elderly people suffer from a higher rate of asthma 

prevalence.  Results may change after controlling for occupation scheme and age groups.  

Controlling for some kind of measurement for the road pollution is the area, which remains 

for the future works.  Having access to the point data pollutions may enable the researchers 

to have results that are more accurate.  Unfortunately, the pollution data for points in county 

level in a time series is not readily available.  One can expect point source data on pollution 

show greater effects on asthma hospitalization.  Finally, a study region applying all the 

counties in the U.S. will give us a better understanding of the health impacts of the pollution.  

Unfortunately, data for asthma hospitalization for all the counties in the U.S. is not available 

in this point. 
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