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ABSTRACT 
 

Empirical Assessment of Architecture-Based Reliability of Open-Source 

Software 

 
Ranganath Perugupalli 

 
 

A number of analytical models have been proposed earlier for quantifying 

software reliability. Some of these models estimate the failure behavior of the software 

using black-box testing, which treats the software as a monolithic whole. With the 

evolution of component based software development, the necessity to use white-box 

testing increased. A few architecture-based reliability models, which use white-box 

approach, were proposed earlier and they have been validated using several small case 

studies and proved to be correct. However, there is a dearth of large-scale empirical data 

used for reliability analysis. This thesis enriches the empirical knowledge in software 

reliability engineering. We use a real, large-scale case study, GCC compiler, for our 

experiments. To the best of out knowledge, this is the most comprehensive case study 

ever used for software reliability analysis. The software is instrumented with a profiler, to 

extract the execution profiles of the test cases. The execution profiles form the basis for 

building the operational profile of the system, which describes the software usage. The 

test case failures are traced back to the faults in the source code to analyze the failure 

behavior of the components. These results are used to estimate the reliability of the 

software, as well as the uncertainty in the reliability analysis using entropy. 

 
 
Keywords – software architecture, software reliability, open-source software, 

operational profile, failure analysis, entropy, uncertainty, cvs, change logs, profiler, 

bugzilla.  
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Chapter 1 
 
Introduction 
 
A number of analytical models have been proposed earlier for quantifying software 

reliability. Some of these models talked about the reliability growth at the testing phase 

[38]. The software reliability is estimated using black-box testing with a randomly chosen 

set of test cases. The black-box models treat the software as a monolithic whole. These 

models care only about the outcome of the testing and do not consider the internal 

structure of the software. With the evolution of component-based software development 

software-reuse is of utmost importance to the modern day developers. The black-box 

approach was proved to be inappropriate for this kind of systems. We need to employ 

white-box model for these component-based systems, which also consider the 

information about the architecture of the software at the component level. The 

methodology to architecture-based reliability assessment proposed in [20] is described 

here. Figure 1.1 depicts the graphical representation of the methodology. In order to 

estimate the software reliability using the architecture-based model we need to know 

 

• The software architecture described by the flow of control among components in 

the system 

• The software usage described by its component interactions determined by the 

operational profile. 

• The software failure behavior described by reliabilities of the components 

 

In this chapter we explain the architecture-based approach to find the software 

architecture, software usage and the software failure behavior. 
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Figure 1.1: Architecture-Based Methodology for Reliability Analysis 

 

A state-based approach is used to build the architecture-based reliability model [7] and 

[8]. The architecture-based reliability model is appropriate for large component-based 

software. The architecture of software is defined by the way the components in the 

system interact with each other. The model uses the control flow graph as a 

representation of the software architecture. The states in the diagram represent the 

components in the system and the arcs represent the interaction between the components 

in the form of control transfer. It is assumed that the component interactions have the 

Markov property. The software architecture is modeled with discrete time Markov chain 

(DTMC). P = [pij] is the transition probability matrix of the Markov chain, where pij is the 

probability that control is transferred from i to j.  The Markov chain is constructed in two 
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phases. The structural phase establishes the software architecture, using different 

abstraction levels with the data obtained from the requirement-specification or the static 

metrics obtained from the lexically based code parsers. This phase does not consider the 

component interactions during the execution. The dynamic statistical phase estimates the 

transition probabilities of the components. The component interactions depend on the 

operational profile of the system. Depending on the phase of development of the 

software, the dynamic behavior of the software can be found using either the Unified 

Modelling Language (UML, in early stages of development) or from the test coverage 

tools (in integration phase). There are two different approaches that are generally 

followed for building the Markov chain model. 

  

• Intended Approach is used if the software is in its early phase of development. 

The software architecture is estimated using the information obtained from the 

design and specification documents or using some historical data from similar 

products. The object-oriented systems use UML as a standard design tool. We can 

use use-case diagrams and sequence diagrams obtained from the UML 

specifications to make an estimation of software architecture [39]. The sequence 

diagrams depict the interaction between the components (mentioned in use-case 

diagram) in the form of message passing. The transition probability of the 

component i to component j is given by pij = (nij / ni), where nij is the number of 

times component i sends messages to j and ni is the total number of messages 

from component i.   

 

• Informed Approach is used if the software is in later phases of development, in 

which the source code is available and accessible. The dynamic behavior of the 

components is estimated using the testing tools and the source code. Profiling 

tools [4] and test coverage tools [40] are used to obtain the component traces 

during the test case executions. The transition probabilities are obtained using the 

frequency counts of the component interactions. 
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K. Goseva Popstojanova and Sunil. K. Kamavaram applied this methodology to find the 

uncertainty in reliability estimation using the European Space Agency (ESA) software 

[20]. The ESA software, which has 10,000 lines of code, is also small compared to some 

industrial software applications. However, in spite of its importance, there have been very 

few efforts on applying large-scale industry level empirical case studies in the filed of 

reliability. Although researchers like David Leon, Andy Podgurski used large-scale 

software systems in [12], [27], [28] and [30], these studies are focused on execution 

profiles rather than the reliability of the software. The reason for not having many of such 

contributions is that locating and gaining access to the large-scale software is difficult 

and the process of collecting and analyzing the necessary data is very time consuming 

and also very expensive.  

 

The main motivation for this thesis is the dearth of empirical data available on large-scale 

software systems in the field of software reliability. This thesis is focused on using large-

scale case studies to validate the architecture-based reliability models, as well as on 

contributing towards the usage of larger case studies the field of software reliability. We 

use GCC, a GNU open source compiler, which is being used for several years and has 

more than 30 versions released over a period of 7 years. GCC has more than 800,000 

lines of source code written in C and is the most comprehensive case study ever used for 

the reliability analysis. 

 

1.1 Related Work 
 

This thesis emphasizes the usage of large-scale empirical case studies for software 

reliability analysis. We implement the architecture-based methodology for uncertainty 

analysis of software reliability proposed in [7] and [20] to estimate the reliability of the 

system and to study the uncertainty analysis of reliability using entropy. We implement 

the white-box approach to estimate the operational profile of the software. This approach 

is different from the black-box approach for software reliability modeling, where the 

system is considered as a monolithic entity [23]. In black-box approach only the 

interaction of the system with the out side world are considered. We use the executing 
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profiles generated during testing to analyze the failure behavior of the system (see 

Chapter 6).                                   

 

The difficulties in handling the large-scale empirical case studies were discussed by 

Thomas J.Ostrand and Elaine J. Weyuker in [24]. We are using GCC compiler, which is a 

GNU open source project. It has 300 source files and 800,000 lines of C code, which is 

much bigger than the case study they used (an inventory control system with 500,000 

lines of code) in [24]. The version management systems maintained by the developers for 

these projects are huge and difficult to extract and analyze [24]. GCC maintains a CVS 

repository in the form Change-Log files, which contain the changes made to the source 

over a period of time. The problem with these Change-Log’s and the MR (modification 

requests) data repositories that were mentioned in [24] is that they are not intended for 

the purpose of the fault detection, so it is very difficult for us to find the information we 

need. There can be different kinds of changes in these log files such as fixing faults, code 

enhancements, code modifications, new code, and also documentation change. It is 

difficult to find out which of those changes are initiated because of a fault. In [24] 

Thomas J.Ostrand and Elaine J. Weyuker made an assumption that, if just one or two 

files were changed then it was likely a fault, while if more than two files were changed 

then it is more likely a code modification or an enhancement. Instead of making this kind 

of assumption, we propose more accurate methods to identify faults (see Chapter 7). In 

this thesis, we were successful in extracting the fault information from the Change-Log’s 

and finding the critical components in the system that failed most number of times. This 

information is useful in making decision on allocating the testing efforts for the 

components in the system.  

 

Andy Podgurski, Jiayang Sun and Bin Wang used GCC in [12] to come up with an 

automated support for classifying reported software failures in order to facilitate 

prioritization and diagnosing the faults. The main intention of their research was to 

provide the developer with the classification of failures and failure clusters, so that the 

developer can plan his testing efforts accordingly. Andy Podgurski and David Leon used 

GCC 2.95.2 and the regression test suite provided with GCC 3.0.2 to conduct their 
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experiments. C proper part of GCC was used for the experiments. The open source 

projects like GCC do not have the sophisticated bug-reporting system like some of the 

commercial software projects. Andy Podgurski and David Leon used Change-Logs 

provided with GCC to map failures to faults and could manage to map most of the 

failures to corresponding faults using these log files. Andy Podgurski and David Leon 

implemented the method “Execute tests on newer versions & search logs” (explained in 

chapter 6), to classify the remaining failures. We use GCC 3.2.3 and the test suite of GCC 

3.3.3 for our research. We use execution profiles of the test cases and the Change-Logs of 

GCC to come up with the reliability estimates for the components that tells us which 

components have higher reliability and which of them are more fault prone and need 

more testing efforts. In [30], David Leon, Andy Podgurski used large-scale open source 

projects like GCC, Jikes and javac to compare four different techniques for test case 

filtering: test suite minimization, prioritization by additional coverage, cluster filtering 

with one-per-cluster sampling, and failure pursuit sampling. David Leon, Andy 

Podgurski used the regression test suite provided with GCC 3.0.2, which contains test 

cases for defects present in GCC 2.95.2. 136 test cases were failed out of 3,333 test cases 

they have executed. Executions were profiled using gcov, a basic block profiler provided 

with GCC. Using these execution profiles, David Leon, Andy Podgurski manually 

classified the failures into groups of failures that were assumed to have same cause. 

There failures were mapped to 27 defects in the system. 

 

Swapna S.Gokhale, W. Eric Wong and S.Trivedi conducted experiments on large-scale 

empirical case study in [23] to come up with an analytical approach to architecture-based 

reliability prediction. The reliability model was represented as a discrete time Markov 

chain (DTMC). Execution profiles generated during extensive testing were used to find 

the branch probabilities of the DTMC. All the experiments were conducted on an 

application called as SHARPE (Symbolic Hierarchical Automated Reliability Predictor), 

which is used to solve stochastic models of reliability, performance and performability 

[23]. It has multiple releases and change information associated with each release. 

SHARPE has a total of 373 functions and 35,412 lines of C code, which is very small 

compared to GCC that has more than 800,000 lines of code.  Swapna S.Gokhale, W. Eric 
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Wong and S.Trivedi found the failure behavior of the component by a time-dependent 

failure intensity, which can be determined using test coverage and fault density approach 

[25]. A dataflow-coverage testing tool called ATAC (Automatic Test Analyzer in C) was 

used to find the test coverage, on 735 test cases that were created by the developers to test 

SHARPE. ATAC not only runs the test cases but also generates execution profiles. An 

assumption that when a function X calls another function Y control is eventually 

transferred back to function X, was used for the experiments.  

 

Thomas J.Ostrand and Elaine J. Weyuker conducted experiments on a large-scale fault-

reporting database that is collected for all production systems at AT&T [33]. This was an 

inventory tracking system that has 13 releases produced over a period of several years. 

The current version has 1,974 files written in JAVA, with a total of 500,000 lines of code. 

Whenever a fault is identified in the system an entry is made in the database associated 

with the corresponding software. The entry includes, the stage of the development that 

the problem was identified, the release version of the program and the severity of the 

problem. The data is similar to the modification request (MR) data used in [24]. This data 

was used to come up with the fault distribution among the different files in the system. In 

addition to the fault distributions among the files, Thomas J.Ostrand, Elaine J. Weyuker 

addressed many issues in [33] like, affect of the module size on the fault density, 

persistence of failures between different releases of the software and whether newly 

written files were more fault-prone then the old files written for the earlier version. A 

module is the basic code component of the system. The goal of the experiment was to 

identify the files that were more fault-prone and could be used as predictors of fault-

proneness of the system. Even though it was commercial software, which is considered to 

be highly reliable, Thomas J.Ostrand and Elaine J. Weyuker mentioned that finding faults 

from the database was hard because the data was not well organized. Our research does 

differ from what Thomas J.Ostrand and Elaine J. Weyuker did in the sense that we used 

dynamic data from testing to come up with the failures and them mapped them to the 

faults using the Change-Logs (see chapter 6) to estimate the fault-proneness of the 

components in the system. With the experiments conducted on the AT&T software, 

Thomas J. Ostrand, Elaine J. Weyuker found that for each release, the “faults were 
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always heavily concentrated in a relatively small number of files”. Thomas J. Ostrand, 

Elaine J. Weyuker and Robert M. Bell conducted some more experiments in [32] on the 

same case study (AT&T inventory tracking system) to find out which files in the software 

system are most likely to contain the largest number of faults. The AT&T software has a 

version tracking system maintained through out the life cycle of the project. The system 

contains the MR (modification request) entries, which has the changes made to the 

different files in the system. Thomas J. Ostrand, Elaine J. Weyuker and Robert M. Bell 

used static analysis of the version tracking system to find the fault-prone files. Finding 

the faults using the MR entries was not straight forward because an MR may contain a 

change that was initiated because of a fault, an enhancement or change in the 

specifications, and it was difficult to differentiate between different kinds of changes. An 

assumption that “if only one or two files were changed by the modification request (MR), 

then it was likely a fault, while if more than two files were affected, it was likely not a 

fault”, was made through out the experiments. Thomas J. Ostrand, Elaine J. Weyuker and 

Robert M. Bell concluded that 20% of the total files, in which they found most critical 

faults, were constituted to 83% of the total system size.  

 

Norman E. Fenton and Niclas Ohlsson in [31] discussed the dearth of empirical data in 

the field of software engineering. Norman E. Fenton and Niclas Ohlsson, in their 

experiments found that a very small number of modules in the system contain most of 

faults discovered in the testing phase as well as the normal operations. However, 

contradicting the conclusions made by Thomas J. Ostrand, Elaine J. Weyuker and Robert 

M. Bell in [32], [33], Norman E. Fenton and Niclas Ohlsson found that the fault-

proneness of the modules do not depend on their size or complexity. This finding proved 

that, the most widely used fault density measures and the metric studies based on those 

measures are flawed. Norman E. Fenton and Niclas Ohlsson also stated in [31] that, those 

modules that are most fault-prone pre-release are among the ones that are least fault-

prone post-release. All these observations were based on the experiments conducted on 

the empirical data obtained from a large telecommunication application from Ericsson 

Telecom AB. Michael R. Lyu, Zubin Huang, Sam K. S. Sze and Xia Cai discussed the 

problem of limited empirical data available in the literature, to evaluate the effectiveness 
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of software testing and fault tolerance in [29]. Mutation testing [29] was used to evaluate 

the effectiveness of software testing and software fault tolerance. Mutants were created 

by injecting faults in to the software. Michael R. Lyu, Zubin Huang, Sam K. S. Sze and 

Xia Cai stated that coverage testing [29] is an effective way of fault detection. However it 

was also mentioned that testing coverage is not as effective as mutant coverage to 

evaluate the testing quality. An industry-scale critical flight control system was 

developed to conduct the experiments. 

 

1.2 Problem Statement                                         
 

This thesis focuses on empirical assessment of architecture-based methodology for 

software reliability analysis, using large real life empirical case studies. It addresses two 

critical problems associated with handling large-scale empirical case studies for 

architecture-based reliability assessment. The first problem is to develop an efficient way 

for building the operational profile of the software from large number of huge execution 

profiles obtained during testing. The second problem is to automate the analysis of the 

failure behavior of components (i.e., to identify faults that led to failures), using the 

software artifacts such as change logs and CVS logs, which are not specifically made for 

the purpose of failure analysis. 

 

1.3 Contributions 
 

The most important thing that differentiates our research from most of the other work 

presented in related work is the size of the case study we are using for the reliability 

analysis. Despite the importance of using large-scale industrial software’s for the 

reliability analysis, there have been very limited efforts in this area. To the best of our 

knowledge, GCC 3.2.3, a GNU open source compiler, with approximately 800,000 lines 

of C source code, is the largest case study ever used for the study of software reliability 

analysis. Using such a large case study for reliability analysis, itself is a major 
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contribution, considering the limited empirical data available in the area. The 

contributions of this thesis are summarized as follows. 

 

• The main contribution of this thesis to the architecture based approach for 

reliability assessment proposed in [7] and [8] is to validate the methodology by 

implementing it on large-scale object based case study. The architecture-based 

model given in [20] and [8] for the software reliability assessment considers the 

usage of the software described by its operational profile. Building the operational 

profile for such a large case study was not trivial. We used test cases provided 

with GCC to generate execution profiles, which are used to estimate the dynamic 

behavior of the software. The profiler gives the execution details at function level. 

Mapping these functions to components was a hard task, because the 

documentation available was old and not sufficient to do the mapping. We were 

able to build the operational profile for GCC at the component level and find the 

transition probabilities of the components. Unlike the manual process followed by 

David Leon, Andy Podgurski in [30] to analyze the execution profiles, we 

automated the process of parsing the execution profiles and storing the data in 

relational database, which made the calculation of transition probabilities 

efficient, even though the profiles we have 2126 execution profiles, each with 

more than 2500 function calls. 
 

• Another major contribution of the thesis is in finding the faults in the system that 

caused the failures in test case executions. After identifying the failed test cases 

we used the Test case Change-Logs and Source code Change-Logs provided with 

the GCC source code. The problem with these Change-Log files is similar to what 

Thomas J. Ostrand, Elaine J. Weyuker and Robert M. Bell had with MR’s 

(modification requests) in [32]. The Change-Log files were not created for the 

purpose of finding the faults in the system. We employed three methods to map 

the failures to faults in the source code; Searching test case Change-Logs and 

GCC Change-Logs, Search the bug-tracking database Bugzilla, Execute tests on 

newer versions & search logs. The last method (Execute tests on newer versions & 
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search logs) was first used by Andy Podgurski and David Leon in [12]. The Test-

case Change-Log has approximately 3500 entries and the Source-code Change-

Logs have approximately 19,300 entries. Searching through these files manually 

to map failures to faults is time consuming and error prone. We have automated 

the process of searching through both change logs to map the failures to the 

corresponding faults. Since most of the open source software maintains the same 

format for the Change-Log files the automation saves a lot of time and effort. 
 

The failures were mapped to faults in GCC. The mapping was done at both file level and 

component level. We observed that there are very few files where most of the faults are 

concentrated. This observation strengthens the argument made by Thomas J.Ostrand and 

Elaine J. Weyuker in [32] and [33] that “the faults were always heavily concentrated in a 

relatively small number of files”. The overall system reliability was calculated using the 

method proposed by K. Goseva Popstojanova and K. S. Trivedi in [7]. We compare the 

value of the reliability with the value we got from the black-box method and found that 

the value is relatively accurate. We have conducted uncertainty analysis using entropy, on 

GCC, which was proposed by S. K. Kamavaram and K. Goseva Popstojanova in [9]. We 

observed that some of the components are more uncertain, and thus more critical than the 

rest of the components.  
 

1.4 Thesis Outline 
 

This thesis presents an empirical analysis of architecture-based analysis of software 

reliability. The current chapter gives a brief introduction to the architecture-based 

methodology for reliability analysis in component-based systems, describes the related 

work done in this area, and explains the contribution. Chapter 2 presents the approach we 

followed to implement the architecture-based methodology. Chapter 3 describes the case 

study we are using. Chapter 4 gives a detailed explanation about the experimental setup. 

Chapter 5 describes about finding the operational profile. Chapter 6 explains the mapping 

of failures to faults. Chapter 7 presents uncertainty analysis based on entropy. Finally 

chapter 8 presents the conclusions. 
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Chapter 2 
 
Our Approach 
 
 

We used GCC, a GNU open source compiler for our experiments. Open source projects 

are suitable for our experiments on reliability analysis using white-box approach because 

many software artifacts are available, like 

  

• Source code  

• Requirements and design documentation 

• Test suites, with an oracle  

• CVS logs which contain change information between different version releases  

• GCC Change-Logs and test case Change-Logs   

 

Figure 2.1 describes our empirical approach for the architecture based reliability analysis.  

The Figure 2.1 explains the procedure we followed to extract the information we need for 

the reliability analysis like software architecture, software usage and software failure 

behavior.  

 

Since we are using white-box approach for the reliability analysis, we need to know what 

part of the code has been executed, which functions are called, which functions take 

much time to execute. For this purpose we need a profiler that tracks the executions of 

the software and gives us the data we need. We used gprof, a GNU open source profiler 

that is used specially to profile applications written in C and C++. GCC is instrumented 

wit gprof. We chose to use the test suite provided with GCC to get the execution profile. 

We run the test cases with Dejagnu, a GNU testing tool. The generated execution profiles 

are stored in an ORACLE database so that they can be used easily and efficiently. 
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Figure 2.1: Our Approach 
 
 
2.1 Software Architecture and Usage 
 

The software architecture and the usage are reflected by the operational profile of the 

software. We used the execution profiles we got from the test executions as the basis for 

building GCC architecture. The information in the profiles also gives us the usage of 

different components of GCC. The profiler gives us the execution profile at the function 

level. We have 1759 unique functions that were invoked during the execution of all the 

2126 test cases. It is difficult to build the software architectural model using so many 

states. We mapped these functions to files in the source code so that the number is more 

manageable. We have 108 files that these functions belong to. Building the architectural 

model using 108 states is also not trivial. We wanted to reduce this number further by 
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mapping these files to components. Component is a part of compiler that is dedicated to a 

particular functionality. We have 17 components in our system. We mapped 108 files we 

have to these 17 components to build the architecture of GCC. We calculated the values 

for the transition probabilities using the values from the database. The database is built in 

such a way that it has information about the executions at function level, file level and 

also at the component levels. We built the operational profile of GCC based on the test 

case execution profiles.  

 

2.2 Software Failure Behavior 
 

Even though the test suite does not reflect the system’s usage perfectly, this test suite has 

wide variety of test cases that tests different features of gcc like, variables, language 

dependent structures, and memory allocations. The most important reason for choosing 

the test suite is that they have the failure information associated with the test case 

failures, which will be used as a oracle to find the failure behavior of the system. We 

employed three methods to find the defect information about the failures.  

 

• Searching test logs & change logs: We searched the GCC Change-Log files and 

the test case Change-Log files to find the location of the failure. The details of 

implementing this method and sample log files are given in Section 6.1. The 

whole process is automated using awk. We could find 41 defects with this 

method. This is the most efficient method among the three. 

 

• Search the bug-tracking database Bugzilla: Bugzilla is a "Defect Tracking 

System" or "Bug-Tracking System" [13]. Bugzilla has a big database which has 

information about the failures in the system. The failures may be due to the 

failures of test case or operational failures that users find after deployment. The 

test case Change-Log files has a PR (problem report) number associated with each 

test case. Bugzilla used this PR number to index the failures related to the test 

case executions.We searched the bugzilla databe with the PR numbers we have 

for the failed test cases. We could find only 3 defects with this method. The 
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details of the implementation and a sample bugzilla database are given in Section 

6.2.  

• Execute tests on newer versions & search logs: The failed test cases are tested 

against the newer versions so that we could find out when the bug was fixed. 

After finding the version in which the bug was fixed, we repeat the first method to 

trace the location of the defect. This method is more efficient than the second one. 

We could find 20 defects with this method. 

 

2.3 Calculating compontnt and system reliabilities 
 

“The reliability of component i is the probability Ri that the component performs its 

function correctly” [20]. We already have the information about the non-failed test cases 

and the failure behavior of the system was determined in section 2.2.2. We found the 

mean value of the component reliabilities using the failure information of the test cases 

and the number of non-failed test cases. Since the number of failures for each component 

is very small compared to the number of executions for each component, the values for 

the component reliabilities are very high. The system reliability is calculated using the 

method explained in [20]. The reliability is also calculated using the black box approach 

by dividing the number of failed test cases over the total number of test cases. These two 

values are compared and the error is estimated. 

 

2.4 Uncertainty analysis 
There will be a certain amount of uncertainty in the reliability calculation even though the 

mathematical model is accurate [7]. The uncertainty of the operational profile and the 

reliability model are analyzed using the concept of source entropy. Entropy is a very well 

known concept in information theory. It cannot estimate the reliability value. We used 

entropy to calculate the amount of uncertainty in GCC, which is represented as a Markov 

chain. The range of the value is 0 ≤ H(S) ≤ log (n) [9]. We used conditional entropy to 

calculate the component uncertainties. We also found the expected execution rates of all 

components. 
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Chapter 3 
 
Description of case study 
 
 
3.1 Introduction to GCC 

GCC stands for "GNU Compiler Collection". GCC is an integrated distribution of 

compilers for several major programming languages including C, C++, Objective-C, 

Java, Fortran, and Ada [1]. The part of compiler that  is specific to a particular language 

is called the "front-end". GCC also supports front-ends for Pascal, Mercury and Cobol in 

addition the above mentioned languages. Initially GCC was refered to as ‘GNU C 

compiler’ when it was used only to compile C programs. Even now we use the same 

definition when we refer to the compilation of  C programs or when we speak of the 

language-independent component of GCC, which is the code that is used commonly for 

all the languages that it supports. The majority of the compiler optimizers are included in 

the language independent  component of GCC. It also includes all the ‘back-ends’, which 

are used to generate machine code for various processors.  

GCC is an open source software that is available for free. The different versions released  

by the GCC community as of August 2004 can be seen in Table 3.1. Source code for each 

version is available to download from different mirror sites of GCC. GNU also maintains 

a CVS (Concurrent Version System) repository to avail the users to download the source 

code.  
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Release Release date 

GCC 3.4.1 July 1, 2004 

GCC 3.4.0 April 18, 2004 

GCC 3.3.4 May 31, 2004 

GCC 3.3.3 February 14, 2004 

GCC 3.3.2 October 17, 2003 

GCC 3.3.1 August 8, 2003 

GCC 3.3 May 13, 2003 

GCC 3.2.3 April 22, 2003 

GCC 3.2.2 February 05, 2003 

GCC 3.2.1 November 19, 2002

GCC 3.2 August 14, 2002 

GCC 3.1.1 July 25, 2002 

GCC 3.1 May 15, 2002 

GCC 3.0.4 February 20, 2002 

GCC 3.0.3 December 20, 2001

GCC 3.0.2 October 25, 2001 

GCC 3.0.1 August 20, 2001 

GCC 3.0 June 18, 2001 

GCC 2.95.3 March 16, 2001 

GCC 2.95.2 October 24, 1999 

GCC 2.95.1 August 19, 1999 

GCC 2.95 July 31, 1999 

Table 3.1: Versions of GCC released as of August 2004 
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3.2 Size of GCC 

To the best of our knowledge, GCC is the biggest case study ever used for empirical 

software reliability estimation. In our experiments we used the C proper part (the part of 

GCC that compiles programs written only in C) of GCC. The C proper part itself has 300 

source files written in 12 different languages and has approximately 800,000 lines of 

ANSI C code [2]. These files include both the programming and scripting languages. 

Table 3.2 contains the list of languages and lines of code written in each of those 

languages for the version GCC-2.96-20000731. This table shows how large the case 

study actually is. 

 
 

 

Table 3.2: Details of the source code for GCC-2.96-20000731 
 
 
 
 
 
 
 

LANGUAGE LOC 

ANSI C 789,901 

CPP  126,738 

YACC 19,272 

SH 17,993 

ASM 14,559 

LISP 7,161 

FORTRAN 3,814 

EXPECT 3,705 

SED 310 

PERL 144 

OBJC 479 

Total 984,076 
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3.3 Process of compilation 

The whole process of compilation in GCC is controlled by a single file named toplev.c. 

The process of compilation is implemented in multiple passes [3]. In addition to 

sequencing all the passes this file has many additonal responsibilites such as 

initialization, decoding arguments, opening and closing files. The parsing pass is called 

first from the toplev.c. The parsing pass parses the file and generates the high level tree 

representation. The tree representation is converted into RTL (Register Transfer 

Language) intermediate code using the files expr.c, expmed.c and stmt.c. After finishing 

the parsing of the function-definition the parsing pass calls the function 

rest_of_compilation in toplev.c. The function rest_of_compilation is 

responsible for finishing the rest of the compilation process and printing the assembly 

code for that function definition. The parsing pass calls the function 

rest_of_decl_compilation when it reads a top-level declaration. All the other 

passes are called by rest_of_compilation in sequence. Once the function 

definition is compiled the storage used for compilation is freed except for the inline 

functions. The process of compilation is performed in 20 different passes including the 

parsing pass. 

 
3.4 Test cases 
 
GCC has a regression test suite maintained to ensure the quality of the software over a 

period of time. This test suite comes with the full distribution of GCC. New test cases are 

added to the regression test suite with each release of GCC. When a new version of GCC 

is released, normal users as well as the developers test it against different programs. 

Some of the programs may give warnings or fail to give the expected results. When an 

unexpected output is found, the user tries to locate the bug and fixes it. All such test cases 

are added to the regression test suite. The new test cases that were added would be 

available with the next released version. In this way the developers make sure that the 

bug will not be present in the newer version. Since we must determine the locations of 

the bugs, it is best to use test cases from the latest version and test them against the old 

version. Most of the test cases that were added to the new version will fail on the older 
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version. For example we conducted all of our experiments on GCC 3.2.3, but we used 

test cases from GCC 3.3.3, which includes test cases from four newer versions. Figure 

3.1 depicts the process involved. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Experimental Setup 
 

When we tested the regression test suite of GCC 3.2.3 against GCC 3.2.3, only 52 test 

cases failed out of the 21,000 test cases. However, 110 test cases failed out of the 2126 

test cases chosen from GCC 3.3.3 when tested against GCC3.2.3. The reason is that, most 

of these test cases were added to the regression test suite of GCC 3.3.3 after GCC 3.2.3 

was released. For example, the test cases that test the faults in GCC 3.2.3 are added to the 

test suite after the release of GCC 3.2.3. This is the reason behind choosing the test cases 
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from GCC 3.3.3 to test GCC 3.2.3, which will give us a better chance to locate the bugs 

in GCC 3.2.3. 

 

The 21,000 test cases in the regression test suite of GCC 3.3.3 are arranged in 13 

different folders. Each folder contains a unique set of test cases. Some of the folders 

contain test cases that test one particular language. GCC test suite has test cases to test C, 

C++, Java, Objc, Ada, and g77 front-ends. For example the folder g++.dg has test cases 

that test C++ language part of GCC. As mentioned in section 3.2 we are only concerned 

with the C proper part of GCC. There are three sets of test cases that were written to test 

the C proper part of GCC. These are gcc.c.torture, gcc.dg and gcc.misc.tests. There are 

2126 test cases in these three folders. All these test cases are written in the C language.  

 

Test cases that run on any target machine are in gcc.c.torture. There are three 

subdirectories in gcc.c.torture. Test cases that merely need to be compiled are in compile 

directory, test cases, which should give an error are in noncompile directory and the 

execution tests are in execute sub-directory. All the test cases in gcc.dg are named against 

the feature of GCC that they test. For example all bit-field tests are named bf-*.c. The 

gcc.misc.tests folder has miscellanious test cases. Some of  them are target 

specific and some of them test the profilers that come with GCC [1]. Different kinds of 

test cases can be run with a single test driver, using Dejagnu, a GNU testing tool. 
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Chapter 4 
 
Experimental Setup 
 
 
4.1 Introduction to profiling 
       
 

We are using the white-box approach to extract the software failure behavior. In black- 

box testing we use a set of test cases to test the software. We estimate the reliability based 

on the test results with out considering the execution details. With black-box approach, 

we would not know why a test case was failed. In the white-box approach we also 

consider the execution details. We instrument the source code using a profiler to analyze 

the software executions.  

 

Profiling is “the strategy of collecting calls, counts and execution times on a per function 

basis” [4]. The profile generated at the function level can be called specifically as 

‘function level profile’. We can define profile as a data set that stores all the data that 

belongs to an execution. The profile contains a lot of data about the execution of the 

given program. It tells us where a program spent its execution time, which functions were 

executed during that period, and which functions are called from which other functions. 

We can find which functions are executed most, which functions are slower than 

expected, and which functions are called more or less often than expected. It will help us 

in finding the key areas where a rewriting could be considered to make the program 

perform better. One may think that this can be done just by inspecting the source code, 

however we can only find static information like software metrics with this approach. 

Though the profiler does not give us any information about the failures in software 

directly, it gathers the execution data automatically. The data includes the functions that 

were visited, execution time and the function calls. This data can be used to analyze the 

failure behavior of the software. Since it is an automated process it can be used with large 
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complex programs that are too difficult to analyze by inspecting the source. The 

information we get from code inspection will be static, where as the profile gives us the 

dynamic information about the executions. However, the profiler doesn’t tell us where 

the execution starts or where it ends. The profiler tells us where the program spent its 

time. Details about the profiler information are explained in section 4.1.1 and 4.1.2. 

 

The profiler we use for our experiments is gprof, a GNU profiler developed by Jay 

Fenlason and Richard Stallman [4]. This is an open source profiler. The gprof can be 

used with many languages including C, C++, Pascal and Fortarn77. We are doing all our 

experiments on LINUX (Debian) system. We also tried a profiler called gcov, but this 

gave us profiles at line and block level. It is hard to analyze the profiles at block level 

especially for huge programs like GCC. Gprof gives the profile at the function level, 

which was easy to analyze compared to the profiles at line or block level. We found gprof 

as a good match for our requirements. Profiling with gprof has the following three steps. 

 

• Compile and link the program with profiling enabled 

      It is the first step in generating the profiles. When we run the compiler we have to 

use the option ‘-pg’ in addition to all the options we use for the compilation.  

• Execute the program to generate the profile data 

      After the program is compiled for profiling, we need to execute the program to 

generate the data that is needed by the gprof, to get the profile information. We 

can run the program with the normal options we used before. The program may 

run a little slow as it has to generate some extra information during execution. 

The information that is generated by the profiler is mostly effected by the 

program input and the type and number of arguments given when running the 

program. The profile only gives information about those parts of the software that 

are active during the execution. The program writes the profiling information into 

a file called gmon.out. This file will overwrite any file that is named gmon.out, 

but we can change the file name or make a back-up copy once it is created. The 
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file will be written properly only when the test case executed normally, that is, it 

exits from the main function or by calling exit.  

• Run gprof to get the profile data file 

      Once we execute the program and the gmon.out is generated, we have to run 

gprof to interpret the information that the gmon.out contains. There are two 

kinds of profiles we get from gprof; flat profile where the list of all functions that 

were active during the program execution are listed, and a call graph where the 

history of all function calls is specified. We can save these profiles into a file by 

redirecting the standard output. The default executable file is a.out and the 

default profile-data-file is gmon.out. We can also give multiple 

profile-data-files to get the summarized report from all the profiles.  

4.1.1 Flat profile  
 
The flat profile shows the names of the functions that were active during the execution 

and the time that was spent in each. A sample flat profile generated by gprof is shown in 

Figure 4.1. This sample is taken from the documentation of gprof [5]. 

 

If we look at the flat profile shown in Figure 4.1, we can observe that the functions are 

ordered by the decreasing amount of time spent in them. There are some functions listed 

in the flat profile like profil and mcount, which were used for profiling itself. The 

time spent in them is the overhead that profiler brings into the execution.  
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Each sample counts as 0.01 seconds. 
  %        cumulative    self                self    total            
 time      seconds       seconds    calls    ms/call ms/call name     
 33.34       0.02         0.02      7208      0.00     0.00  open 
 16.67       0.03         0.01       244      0.04     0.12  offtime 
 16.67       0.04         0.01         8      1.25     1.25  memccpy 
 16.67       0.05         0.01         7      1.43     1.43  write 
 16.67       0.06         0.01                               mcount 
  0.00       0.06         0.00       236      0.00     0.00  tzset 
  0.00       0.06         0.00       192      0.00     0.00  tolower 
  0.00       0.06         0.00        47      0.00     0.00  strlen 
  0.00       0.06         0.00        45      0.00     0.00  strchr 
  0.00       0.06         0.00         1      0.00    50.00  main 
  0.00       0.06         0.00         1      0.00     0.00  memcpy 
  0.00       0.06         0.00         1      0.00    10.11  print 
  0.00       0.06         0.00         1      0.00     0.00  profil 
  0.00       0.06         0.00         1      0.00    50.00  report 
 

 
 

Figure 4.1: Example of Flat profile 
 
The meanings of the fields in Figure 4.3 are explained here. 
 

• % Time is the percentage of the total execution time that the program spent in 

this function. These should all add up to 100%.  

• Cumulative seconds is the cumulative total number of seconds the computer 

spent executing this functions, plus the time spent in all the functions above this 

one.  

• Self-seconds is the number of seconds accounted for by this function alone. The 

flat profile listing is sorted first by this number. This time is calculated using the 

sampling method. The sampling time is given at the starting of the flat profile. 
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• Calls is the total number of times the function was called. If the function was 

never called, or the number of times it was called cannot be determined (probably 

because the function was not compiled with profiling enabled), the calls field is 

blank.  

• Self-ms/call represents the average number of milliseconds spent in the function 

per call, if this function is profiled. Otherwise, this field is blank.  

• Total ms/call represents the average number of milliseconds spent in the function 

and its descendants per call, provided that the function is profiled. Otherwise, this 

field is blank.  

• Name is the name of the function. This field sorts the flat profile alphabetically 

after the self seconds field is sorted 

 
 

The first line in the flat profile indicates the sampling time (0.01 seconds in this case) that 

is used to calculate the time periods for the function executions. If the time spent in the 

function is not considerably greater than the sampling time period it is considered as 

invalid. The sampling period estimates the margin of error in the time column. The 

program is monitored every 0.01 seconds. A time period of 0.01 seconds is assigned to 

the function that is active at that time. The function is assigned 0.02 seconds if it appears 

again. The last value in the ‘cumulative seconds’ column field tells the total execution 

time which is 0.06 in this case. That means only six samples are taken during the 

execution. One during the time when the execution is in  ‘open’ and one for the 

offtime, memccpy, write, and mcount. Self-seconds tells how much time is 

spent in each function. 

There are some functions like tzset, tolower and strlen, which have a non-

zero value in the calls field but have a zero in the self-seconds field. The call graph (see 

section 4.1.2) is showing that these functions are called during the execution, but the time 

spent in them is shown here as zero. This indicates that the time spent in those functions 

is much less than the sampling time 0.01 seconds. So the profiler could not extract the 

time period for those functions due to the paucity of the histograms that were generated 



 27

[4]. As the number of samples taken is too small (6 in this case), none of these numbers 

in the self seconds column can be regarded as reliable. If we run the program again there 

is a possibility that we get different values for them [5]. Due to the Statistical Sampling 

Error (see section 4.1.3) none of these values are accurate. 

 
4.1.2 Call Graph 
 
 

The call graph contains entries for all the functions that are invoked during the execution. 

The call graph tells us how much time was spent in each function and its children 

functions during the execution. There may be some functions that have a very small 

execution time, but they call functions that use a significant amount of time. Figure 4.2 

shows a call graph taken from the same profile as the flat profile example in Figure 4.1. 

 

The dashed lines divide the table into entries for different functions. Each block 

represents one function. Each entry, corresponds to a function, which is identified by the 

primary line and starts with an index number in square brackets. The name of the 

function is at the end of the line. The preceding lines of the primary line describe the 

callers of the function (i.e. parents) and the following lines describe the descendants (i.e. 

children). All these entries are sorted by the total amount of time spent in them and their 

children. Unlike the flat profile, the functions that are used solely for profiling are not 

mentioned in the call graph. The fields in the call graph have different meanings in 

different contexts. Each context and the meanings of the fields are described in the 

following section. 
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 Granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 seconds 

 
 Index % time    self  children    called     name 
                                                 <Spontaneous> 
 [1]    100.0    0.00    0.05                 start [1] 
                 0.00    0.05       1/1         main [2] 
                 0.00    0.00       1/2         on_exit [28] 
                 0.00    0.00       1/1         exit [59] 
 --------------------------------------------------------------------- 
                 0.00    0.05       1/1         start [1] 
 [2]    100.0    0.00    0.05       1         main [2] 
                 0.00    0.05       1/1         report [3] 
 --------------------------------------------------------------------- 
                 0.00    0.05       1/1         main [2] 
 [3]    100.0    0.00    0.05       1         report [3] 
                 0.00    0.03       8/8         timelocal [6] 
                 0.00    0.01       1/1         print [9] 
                 0.00    0.01       9/9         fgets [12] 
                 0.00    0.00      12/34        strncmp <cycle 1> [40]  
                 0.00    0.00       8/8         lookup [20] 
                 0.00    0.00       1/1         fopen [21] 
                 0.00    0.00       8/8         chewtime [24] 
                 0.00    0.00       8/16        skipspace [44] 
 --------------------------------------------------------------------- 
 
 [4]     59.8    0.01        0.02       8+472    <cycle 2 as a whole>
                 0.01        0.02     244+260      offtime <cycle 2>    
[7] 

                 0.00        0.00     236+1         tzset <cycle 2>  [26] 
---------------------------------------------------------------------- 

 

Figure 4.2: Call graph 
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4.1.2.1 The Primary Line 

The primary line describes the function that the block belongs to. It has an index at the 

beginning and the name of the function at the end of the line.  Figure 4.3 shows a primary 

line from the call graph. 

 
 
  Index   % time     self    children     called       name 

  [3]       100.0    0.00    0.05         1            report [3] 

Figure 4.3: Sample from the call graph 

The meanings of the fields in Figure 4.3 are explained here. 

• Index is a unique number that is given to each function name at the beginning of 

its primary line. This number is used as an index for the function. When ever the 

function in primary line is used as a caller or a subroutine (child) this index is 

used along with its name. 

• % Time is the percentage of the total time that was spent in this function. This 

includes the time spent in its children. The time for this function is added with its 

callers, so adding the percentages of time for its parents is meaningless to find 

%time here. 

• Self is the total amount of time spent in this function. This is equal to the ‘self 

seconds’ field entry for this function in the flat profile. 

• Children is the total time spent by the children of this function. This should be 

equal to the sum of all the ‘self’ and ‘children’ field entries for its subroutines. 

• Called is the total number of time the function is called. There can also be 

recursive calls. If there are recursive calls this filed is represented as two numbers 

separated by a ‘+’. The first one represents the number of non recursive calls and 

the second one represents the recursive calls. 

• Name is the name of the function, followed by the index number. 
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The cycles in the execution are named by the word cycle and they are represented by 

consecutive integers. If the function is part of a cycle, the cycle number is printed 

between its name and the index number. For example the function offtime is a part of 

the cycle 2 and has index number 7. So the primary line will have offtime <cycle 

2> [7] at the end. 

4.1.2.2 Function’s callers 

The functions that are listed above the primary line of the function are the callers of that 

function. They have the same fields as the primary line. But they have different meaning 

in this context. Figure 4.4 shows part of the call graph, which depicts the primary line of 

the function ‘report’ and its caller and a subroutine. 

 

 

Index     % time        self        children         called                   name 

                0.00    0.05       1/1           main [2] 
[3]    100.0    0.00    0.05       1         report [3] 
                0.00    0.03       8/8           timelocal [6] 

 

Figure 4.4: Sample from Call Graph 

The meanings of the fields in Figure 4.4 are explained here. 

• Self is the percentage of time spent in the function ‘report’ when it is called by 

‘main’. 

• Children is the percentage of time spent in the subroutines of ‘report’ when it 

is called by ‘main’. The sum of these two fields (self and children) is the 

percentage of time spent within ‘report’ when it is called by ‘main’. 

• Called is a combination of two numbers separated by a ‘/’. The first one is the 

number of times the function ‘report’ was called by ‘main’ and the second one is 

the total number of non-recursive calls to ‘report’ from any of the functions. 



 31

• Name and index number are the name of the caller function and the index 

number. Some times the caller function may not have its own entry. In that case 

there will be no index number after the name. If the caller is part of a recursion 

cycle, the cycle number is printed between the name and the index number. The 

word ‘spontaneous’ appears in the name field if the caller has no identity. 
 
4.1.2.3 Function’s Subroutines 

 

The lines that are below the primary line represent the subroutines of the function. Figure 

4.5 depicts a small part of call graph that shows the function ‘main’ and its subroutines. 

 
 
Index   % time    self    children   called     name 
... 
 
[2]     100.0     0.00    0.05       1          main [2] 
                  0.00    0.05       1/1           report [3] 
 
 

Figure 4.5: Sample from the Call Graph  

 

The fields are same for both the primary line and the subroutine line. But they have 

different meaning in this context. 
 

• Self is the amount of time spent within the function ‘report’ when it is called by 

‘main’. 

• Children is the amount of time spent in the subroutines of ‘report’ when it is 

called by ‘main’.  

• Called is a combination of two numbers separated by a ‘/’. The first one is the 

number of times the function ‘report’ was called by ‘main’ and the second one is 

the total number of non-recursive calls to ‘report’ from any of the functions. 

• Name is the name of the subroutine function followed by its index number. If it 

is the part of any cycle then the cycle number is also printed between the name 

and the index number. 
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4.1.2.4 Mutually recursive calls: 

 

The output of gprof is very complicated to analyze because it considers cycles among 

functions. A cycle exists in the call graph if a function calls another function that calls the 

original function. But there is a problem with gprof regarding the cycles. If function a 

and function b call each other and b and c call each other all three functions belong to the 

same cycle. Even, when function b calls a, but a does not call b, gprof still considers it as 

a single cycle. However, the cycle information is not important for our research. 

 
 
4.1.3 Statistical Sampling Error 
 

Gprof uses sampling to find the time periods, so the time periods in the profiles have 

some statistical inaccuracy in them. For n samples the error rate is square root of n. For 

example if the sample time is 0.01 seconds and the total run time is 1 second then there 

are 100 such samples and the error rate is 10. If there is a function that has a very small 

amount of execution time so that the sampling can find that function only once, the 

profiler may find it zero times or even twice in some cases. The numbers are considered 

reliable only when they are much higher than the sampling time. The small numbers in 

the ‘self seconds’ tells us that these functions share an insignificant percentage of total 

time, so they need not be optimized. 

Reducing the sampling period would give us more accurate values for the self-seconds. 

But unfortunately the sampling rate is not controlled by gprof itself. Instead it is handled 

by the special function monstartup, which is called by a profiled program when it 

starts up. This function uses the Linux operating system function profil to set up the time-

based sampling. On typical UNIX systems, as well as on GNU/Linux, the precision of the 

gprof timer is determined by the behavior of the profil function. On GNU/Linux, profil is 

part of glibc, not a kernel system call. If we want to change the sampling time we have to 

find the sources for the profil function in the kernel and then examine them to see if you 

can change the sampling frequency. Then, we have to rebuild the kernel with this 
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changed function in it before we can start generating profiles with greater sampling 

frequency. 

 
4.2 Profiling GCC test cases 
 
 
4.2.1 Building the GCC sources and run test cases 
       
All our experiments were performed on GCC-3.2.3, which was released on April 22, 

2003, and GCC-3.3.3, which was released on February 14, 2004. Although we are 

concerned only about the compiler proper cc1 (see Section 3.2), we downloaded the 

complete GCC with different language front-ends, so that we would not have any 

problems in building the GCC source. The sources for these versions are downloaded 

from one of the mirror sites of GCC. The details of the source code are explained in 

Section 3.2. Like any software from GNU, GCC needs to be configured before it can be 

built. To instrument the source code and generate the profiles for GCC some special 

options must be used while installing GCC. Some key differences between normal 

installation and profiling-enabled installation are:   
 

• We need either CC or GCC added to the Unix PATH variable 

• Have a separate directory for building the source code 

• Use option “-g -profile -O2” while configuration 

• Use “make all” instead of “make bootstrap” 

 

As explained in Section 3.4 we used the test suite of GCC 3.3.3 to test GCC 3.2.3. We 

ran the test cases with a GNU testing tool called dejagnu. Dejagnu is a collection of Tcl 

scripts crafted to develop a test infrastructure that supports a specific tool [1]. There is no 

limit on the number of test cases that can be tested with dejagnu. Dejagnu is written in 

expect. Expect uses Tcl, a tool command language. Dejagnu is open source software 

developed by GNU. 
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Out of 20,000 test cases available with GCC 3.3.3 test suite we used only 2126 test cases, 

which are in the gcc.c.torture, gcc.dg and gcc.misc.tests folders because we are only 

testing the C proper part of GCC (see Section 3.4). We run all the test cases using a 

single make command. This tests all components of gcc, the language front-ends and all 

the runtime libraries. We can even run these test cases separately. We have separate test 

drivers written in expect to run each set of test cases separately. Details of these test cases 

are given in Section 3.4. GCC has targets make-check-gcc and make-check-g++ which 

are used to test c and c++ language frontends separately. We can also run the test cases in 

different order by writing scripts in expect. When we run the test cases using the make-

check command  various *.sum and *.log files are created in the subdirectories of the 

testsuite [1]. The *.log files contain a detailed description of testcase name, type of 

testcase and the corresponding result. The *.sum summarize all the results. The results in 

the *.log files and .sum files are associated with the status codes shown in table 4.1. a 

sample from the sum (.sum) file is shown in  Figure 4.6. 

 

Status Code Meaning 

PASS The test passed as expected 

XPASS The test unexpectedly passed 

FAIL The test unexpectedly failed 

XFAIL The test failed as expected 

UNSUPPORTED Test is not supported on this platform 

ERROR Testsuite detected an error 

WARNING The testsuite detected a possible problem 

Table 4.1: Status codes used for log files in Dejagnu testing tool 

It is very easy to interpret the results once we have the log files that are generated during 

testing. We considered both XFAIL and FAIL status codes as failures and we neglected 

those with the status codes UNSUPPORTED, ERROR. UNSUPPORTED and ERROR 
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status codes are generated due to the failures in running the test cases, for example failure 

in the test driver (Dejagnu). 

PASS: gcc.c-torture/compile/20030821-1.c,  -O3 -fomit-frame-pointer   

PASS: gcc.c-torture/compile/20030821-1.c,  -O3 -g   

PASS: gcc.c-torture/compile/20030821-1.c,  -Os   

FAIL: gcc.c-torture/compile/20030907-1.c,  -O0   

FAIL: gcc.c-torture/compile/20030907-1.c,  -O1   

FAIL: gcc.c-torture/compile/20030907-1.c,  -O2 

PASS: gcc.c-torture/compile/981007-1.c,  -Os   

XFAIL: gcc.c-torture/compile/981022-1.c,  -O0   

XFAIL: gcc.c-torture/compile/981022-1.c,  -O1   

XFAIL: gcc.c-torture/compile/981022-1.c,  -O2   

………………………………………………………………………… 

…………. 

=== gcc Summary === 

 

# of expected passes  19903 

# of unexpected failures 1355 

# of expected failures  68 

# of unresolved testcases 58 

# of unsupported tests  100 

/home/sunil/gcc/config/gcc/xgcc version 3.2.3 

Figure 4.6: Sample from *.sum file generated by Dejagnu 
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We also generated execution profiles for all the test cases so that we can have an insight 

into execution path. Saving each profile separately after the execution is tedious as there 

are 2126 such profiles. We combined the process of testing and profiling and automated 

the whole process using awk scripts. The test cases are basically C programs. Every time 

we run a new test case (running a test case is nothing but compiling a C program) a new 

gmon.out file (a file in which all the profile information is stored) will be created in the 

same folder. The script will run the profiler and save the profile so that the new gmon.out 

file will not replace it. 

 

Generating profiles for test cases is not a trivial task because we built both cc1 (compiler 

proper) and the GCC driver binary (gcc) with profiling. The gcc program is just a driver 

that parses the options we give with gcc (the command), and calls whatever subprograms 

needed to compile the program. The functions that are called by gcc driver include the 

preprocessor, the compiler proper (cc1), the assembler, the linker, and possibly other 

programs. Since we built both gcc driver and cc1 for profiling, the gcc-gmon.out 

overwrites the cc1-gmon.out, but it is the cc1-gmon.out that we want. Irrespective of the 

input given to the compiler the profile for gcc driver remains same. We had two options 

to choose from to resolve this problem. One was to run the compiler proper (cc1) 

separately. The second one was to rebuild the exact same sources without profiling 

(normal bootstrap) and then, instead of installing them, we can to copy myconfig/gcc/xgcc 

over /root/install/bin/gcc. Relinking the xgcc executable without -p/-pg will solve the 

problem. We ran the compiler proper separately and generated profiles only for cc1 

driver. This is the most reasonable way we found, to generate the profile for the compiler 

proper cc1.  

 

Each time a profile is generated, it is stored along with the test case in the test case sub- 

directory. We have 2126 profiles, one for each test case. Each profile has a flat profile 

and a call graph. Each flat profile has 700 to 1000 functions in it. The call graph had 

more functions because it shows all the children and parents of each function that was 

executed. There is lot of redundant data in the profiles generated by gprof. We parsed the 



 37

file to extract the information we needed. We care only about the unique function names 

in the profile and which function called which other functions and how many times. The 

profiles we have are similar to each other in the sense that, there are many common 

functions in all the profiles. This is because the test cases are too small that there can be 

significant difference between the two profiles. We choose these test cases to analyze the 

behavior of GCC because they test different parts of the compiler and we have an oracle 

that tells us which test cases are passed and which test cases are failed, so that we can 

trace the faults related to these failures.  

 

4.2.2 Mapping from functions to components 

 
The profiler gives us the execution information at the function level. On average we have 

more than 700 functions in each flat profile (see Section 4.2.1). We found that there are 

1759 unique functions in 2126 profiles we have. We are using state based approach to 

build the architecture-based software reliability model [7] [8]. We can build a control 

flow graph from the profile data by considering each function as a state in the system. It 

is very unrealistic that we build a control flow graph with 1759 states in it. It is very 

difficult to estimate the reliability at the function level because we do not have fault 

information at function level. More over there will be a state explosion in the Markov 

chain if we use all 1579 functions as states. We reduced the number of states by mapping 

these functions to the corresponding files. We used ctags to map functions to files. Ctags 

is an open source software developed by GNU, which is used to extract different kinds of 

tags in a C program [26]. A tag can be anything from a simple variable to something 

more complex, like a structure. We found that these 1759 functions belong to 108 source 

files in GCC.  
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Building the operational profile for GCC at the file level is not trivial because we have 

108 files that control flows between. We would need to make 108 states in our Markov 

chain. Instead, we decided to further reduce the number of states by mapping these files 

to components. This is very hard because the documentation available for GCC in their 

official website and all other accessible resources is very old. Further more. We had 

limited domain knowledge. We used some information about the passes of compiler 

given in [6], but only 65 files have been mentioned in this documentation. In [6] the 

compilation process is divided into series of steps (passes) and a few files are assigned to 

each pass. However, that information was not enough to divide the system into 

components. More than 50 files out of 108 files are missing from the documentation. We 

looked in to the source code to understand what each file does and assign that file to the 

appropriate component. We divided GCC into 17 components, which have different 

functionalities. Files are assigned to components based on their functionality. The 

components and the number of files in each component are given in table 4.2 

 

Component Name Comp. ID # of files 

Parsing 1 32 

Tree Optimization 2 11 

RTL Generation 3 26 

Jump Optimization 4 4 

CSE 5 4 

GCSE 6 2 

Loop Optimization 7 10 

Register Allocation 12 11 

Branch Processing 13 4 

Final Pass 14 9 

Library Files 15  21 

Top Level Control 17 1 

 

Table 4.2: Component Reliabilities 
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4.3 Building Database 
 
Since the profiles are extremely big, it would be inefficient to store them in flat files (see 

Section 4.2.2). A database is more efficient and manageable than a flat file when we use 

the information repeatedly [10]. We stored all the information in the database, so that we 

do not have to parse the profiles every time we want some information from them. We 

used JAVA programming language and ORACLE relational database (with JAVA 

database connectivity) for the parsing and database development respectively. We have 

the following four tables in our database 

 
• Profile_Names 

• Profile_Data 

• Functionstofiles 

• Component_Data 

 
4.3.1 PROFILE_NAMES 

 

The first table in our database is Profile_Names. Profile_Names table has two 

attributes. First one is the profile name and second is profilenum (the index number). 

Profilenum is the primary key for the table. A small sample from Profile_Names is 

shown in Table 4.3. Values are taken from the profile number one, the profile for the first 

test case. The only use of this table is to assign unique index numbers for the profiles so 

that they can be used in the remaining tables. 
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PROFILE NAME PROFILENUM 

Wreturn-type 1651 

Wreturn-type2 1652 

Wshadow-1 1653 

Wswitch-2 1654 

Wswitch-default 1655 

Wswitch-enum 1656 

Wswitch 1657 

Wunknownprag 1658 

Wunreachable-1 1659 

 

Table 4.3: Sample from the Profile_Names table. 

 

4.3.2 PROFILE_DATA 

 

The second table in the database is Profile_Data. It contains function call data from all 

2126 profiles. The data was taken only from the call graphs of all the profiles. 

Profile_Data is the most important table in the database because it has all the information 

from the profiles. All the remaining tables use information from Profile_Data. 

Profile_Data has five fields; filenum, functionname, functioncalled, count and time. 

 

• Filenum is the index number created in the Profile_Names table. 

• Functionnam  is the name of a unique function in the profile.  

• Functioncalled is one of those functions that were called by the functionname in 

the current profile.  

• Count is the number of times the functionname called the functioncalled.  

• Time is the time spent in the functionname in the current profile.  

 

A sample from Profile_Data table is shown in Table 4.3. The values in the table are not 

from the original profile, but illustrate how the values in the table are organized. As 
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shown in table 4.3, the function calls related to the first profile are listed first, followed 

by the function calls related to profile two and so on. We have information about 2126 

test cases in our database. Table 4.4 is just a sample of the data we have in profile_data. 

We have 4,643,491 rows in this table. One can estimate the size of data we have and the 

complexity of the case study we are using, by looking at this table.  

 

FILENUM FUNCTIONNAME FUNCTIONCALLED COUNT TIME 

1 insn_default_length constrain_operands 435 0.01 

1 insn_default_length get_attr_i387 45 0.02 

1 insert_insn_on_edge emit_insns_after 43543 0.05 

1 shorten_branches emit_insns_after 34 0.01 

1 constrain_operands find_reg_note 5 0.01 

2 propagate_block propagate_one_insn   45 0.02 

2 propagate_block compare_tree_int     4354 0.01 

2 size_diffop compare_tree_int     356 0.01 

2 bitmap_copy propagate_one_insn    77 0.06 

2 bitmap_copy Bitmap_print 5 0.04 

3 reg_to_stack dead_or_set_p 6 0.05 

3 reg_to_stack find_regno_note 5657 0.01 

3 reg_fits_class_p try_split    67688 0.02 

3 try_split set_noop_p   678 0.04 

3…… find_reloads rtx_equal_p          676 0.01 

………. ……….. ……………. ……….. …………. 

2126 Recog push_operand         343 0.01 

2126 Recog Binary_fp_operator 33 0.01 

2126 get_insn_name immediate_operand 1 0.02 

2126 make_insn_raw        ix86_binary_operator_ok 5547 0.01 

 

Table 4.4: Sample from Profile_Data table from our database 
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4.3.3 FUNCTIONSTOFILES 

 
We divided GCC into components so that the data becomes more manageable (see 

section 4.2.2). Functionstofiles table has the mapping from functions to files and to 

components.  We have three fields functionname, filename and componentname in this 

table.  

• Functionname is name of the function,  

• Filename is name of the file that functionname belongs to. 

• Componentname is the component that the filename belongs to.  

 

We have 1759 records in the table, one for each unique function. Table 4.5 shows a 

sample from the table Functionstofiles. 

 

FUNCTIONNAME FILENAME COMPONENTNAME 

error_with_file_and_line diagnostic.c        Final Pass 

gen_split_1038 gen.c RTL generation 

error_module_changed Diagnostic.c Final Pass 

Record_last_error_module Diagnostic.c Final Pass 

htab_hash_string hashtab.c System Library 

in_data_section varasm.c Final Pass 

set_named_section_flags varasm.c Final Pass 

default_section_type_flags varasm.c Final Pass 

Named_section_flags varasm.c Final Pass 

default_elf_asm_named_section varasm.c Final Pass 

 

Table 4.5: Sample from Functionstofiles table from our database 
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4.3.4 COMPONENT_DATA 

  

 Component_Data has the information about the profiles at the component level. 

Component_Data table has same structure as the Profile_Data table. The records are 

generated by combining information from Profile_Data and Functionstofiles tables. The 

function names in Profile_Data were replaced by the corresponding component names. 

We used the table Functionstofiles for the mapping. A small part of the table is shown in 

table 4.6. We have five fields in this table: Filenum, Component Calling, Component 

Called, Count and Time. 

 

• Filenum is the index number assigned to the profile. 

• Component Calling is the component where the calling function is in. 

• Component Called is the component where the function called is in.  

• Count is the number of times the Component Calling called the Component 

Called. 

• Time is the time spent in the Component Calling. 
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FILENUM COMPONENT 

CALLING 

COMPONENT 

CALLED 

COUNT TIME 

1 Parsing Parsing 435 0.01 

1 Jump optimization RTL generation 45 0.02 

1 Parsing System Calls 43543 0.05 

1 Tree optimization  Parsing 34 0.01 

1 RTL generation Jump optimization 5 0.01 

2 Tree optimization  Parsing 45 0.02 

2 Parsing System Calls 4354 0.01 

2 Tree optimization  RTL generation 356 0.01 

2 Parsing System Calls  77 0.06 

2 Tree optimization  Parsing 5 0.04 

3 RTL generation RTL generation 6 0.05 

3 RTL generation System Calls 5657 0.01 

3 Parsing Parsing 67688 0.02 

3 Jump optimization System Calls 678 0.04 

3… Tree optimization  RTL generation 676 0.01 

……….. 

………. 

….………….. 

…………. 

………………… 

………………… 

……….. 

……….. 

…………

………....

2126 Parsing System Calls 343 0.01 

2126 RTL generation Jump optimization 33 0.01 

2126 Parsing Parsing 1 0.02 

2126 Jump optimization Parsing 5547 0.01 

 

Table 4.6: Sample of Component_Data table in our database 
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Chapter 5 
 
Building the Operational Profile 
  

We gathered all the information needed to build the operational profile of GCC using 

gprof during the testing (see Section 4.2). The validity of the operational profile is very 

difficult to estimate because it requires an in depth knowledge of the field usage of the 

software. The usage of the software components differs from one execution to the other. 

Some components could be activated only by a very complex sequence of instructions 

whose frequency is very hard to estimate a priori [20]. We tried to build an operational 

profile for the system that closely reflects the actual behavior on a given system 

architecture. We used the regression test suite provided with the GCC source code. 

Details about the test cases are given in Chapter 3. These test cases were written to test 

different features like language specific constructs, variable declarations and memory 

allocation of GCC. We can also generate different operational profiles by running a 

subset of test cases. We are building the operational profile for the C proper part of GCC 

so we have chosen a specific set of test cases from the suite that are written in C (see 

Section 4.2.1).  

 

We run these test cases using a tool called dejagnu (see Section 4.2). We used gprof, a 

GNU profiler to get the traces of the execution (see Section 4.1). As explained in section 

4.3, we have developed a database to store all the data from the execution profiles. All 

the information we need to build the operational profile is in the database. We extracted 

the values from the database to find the transition probabilities of the components. We 

have 17 components in our system. We added two hypothetical states START and END, 

the starting state and an absorbing state respectively. START and END do not contain 

any files. They are just dummy states added to the system to complete the Markov chain 

[20]. Table 5.1 has the counts (number of functions calls) for the component interactions. 
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Table 5.1: Call counts for components in GCC 

 

 If X and Y are two states in the system, the entry (X, Y) in the table represents the 

number of times component X called component Y. These counts take all (2126) test 

cases into consideration. There are no entries for components 8, 9, 10 and 11 because no 

execution profile contains any function from the files in these components. The test cases 

we chose may not need these components to be invoked to finish the execution. We did 

not consider those calls that are from some function in the component to some other 

function in the same component. So we have zeroes for all (X, X) entries. We represented 

the operational profile, in the form of a graph shown in Figure 5.1.  
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Fig 5.1: Operational profile of GCC 
 
The component we have at the center (component 17) controls the execution. The 

compilation process starts and stops in component 17. We have a dummy state START 

from which the control transfers to component 17. Once the control goes to component 

17, it handles calls to all the other passes and finishes the execution. We also have a state 

called END where the execution ends. The END component does not contain any files in 

it. It is a dummy state, which is used to represent the end of execution. In reality the 

execution starts and stops in component 17 itself. We can see the control passes from 17 

to all other components.  
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The profiles generated from gprof have information about the functions that were visited 

and the number of times each function called other functions in the profile. They do not 

have information about the sequence of execution. It is very hard to find how many times 

the execution ends in component 17 because, we have multiple end points in component 

17 as the assembly code for each and every construct of program will be generated 

separately by different functions in component 17 (in toplev.c). We had to find out 

manually which functions in component 17 will lead to an end.  

 

The reason for multiple end points for GCC is test case minimization [1]. “A simplified 

test case means the simplest possible test case that still reproduces the bug. If you remove 

any more characters from the file of the simplified test case, you no longer see the 

bug”[11]. A test case is a C program in our experiments. Minimization is removing the 

part of the program that does not test the program and keeping only the part of the 

program that causes the failure of the system. A minimized test case may not be a 

complete C program but just a part of it. There are different functions in the toplev.c that 

take care of different constructs of C program. We needed to consider all such functions 

to come up with our hypothetical END state.  

 

The transition probability matrix is shown in table 5.2. The entry in cell (X, Y) represents 

the probability that component X calls component Y. The values in Table 5.2 are derived 

from Table 5.1 using the Equation 5.1. 

 

     
i

ij
ij n

n
P =                                                                                                          (5.1)                               

 

Where nij = ∑ j ijn  
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Table 5.2: Transition probability matrix for GCC 
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Chapter 6 
 
Fault Detection 
 

6.1 Mapping Failures to Faults 
 

“”Failure is a departure of system behavior in execution from user requirements” [22]. 

Failure is a user-oriented concept in the sense that it must occur during the execution of 

the software by the user. The defects detected by source code and design inspections 

cannot be considered as failures. These defects may not cause a failure during the actual 

execution of the software.  “Fault is the defect that causes or can potentially cause the 

failure when executed” [22]. Fault is developer oriented in the sense that it is generated 

because of an error during the development of the software. For example, suppose that a 

particular output is expected for a test case and it does not occur, it might be because of 

some missing code or some incorrect code in the software, which is a fault.  

 

We encountered failures during the execution of the test cases. Now, we are trying to 

map these failures to faults in the software. Finding the number of times each component 

is executed is very easy because we have all the data in our database. We can directly get 

the values from the database using SQL queries. It is hard to find out how many times 

each component has failed. For all those test cases that failed, we had to find out why 

they were failed. Neither the log files, that are generated during the testing nor the 

execution profiles generated by gprof contain any information about the location of the 

fault. There is no documentation given by the GCC developers regarding the test case 

failures.  

 

We employed the following three methods to find the failure information.  

• Searching test case Change-Logs and Source-code Change-Logs of version 3.3.3 

• Search the bug-tracking database Bugzilla 

• Execute tests on newer versions & search logs 
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Section 6.1 explains each of the methods in detail. 

 

6.1.1 Searching test logs & change logs of version 3.3.3 
 

 As we discussed in chapter 3, different versions of GCC are released periodically. 

Every version of GCC comes with a regression test suite. To track the changes made to 

the test suite, the developers maintain a database that has all the changes made to the test 

suite. The data is in the form of Change-Log files. Change-Log files are provided along 

with the test cases. There are two kinds of Change-Log files; Source-code Change-Log 

files and test case Change-Log files. 

 

Test case Change-Log files contain the change information about the test suite that 

comes with GCC source code. They contain information about when a test case is added 

to the suite, who added that and what kind of test case it is. A sample from one of the log 

files is shown in Figure 6.1. 

 

Source-code Change-Log files contain the change information about the source files in 

GCC. They are renewed with every version of GCC. The information in the Source-code 

Change-Log file includes when a file is changed, who changed the file and how the file 

was affected by the change. A sample from the file is shown in Figure 6.2.    

 

In Figure 6.1, the first line in each entry has the date on which the test case has been 

written, name of the author, and the email address For example the line “2004-02-03 

Zack Weinberg zack@codesourcery.com” tells us that Zack Weinberg has made a change 

to the Change-Log on 2004-02-03. The following lines have the test cases that were 

added by that author on that date. For example, the line “g++.dg/eh/forced4.C: XFAIL 

ia64-hp-hpux11” tells us that the forced4.c test case was added to g++.dg folder. The 

most important information here is the PR number (Problem Report number) given to 

each added test case. This PR number will be used as an index to search through the 

Bugzilla database (see Section 6.2). There are more than 3500 entries in the Test-case 

Change-Log file. However, we have only 169 PR numbers corresponding to the test cases 
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we used. That is why the searching Bugzilla was not so successful because the search was 

based on PR numbers.  

 

 

Figure 6.1: Sample from the Test Case Change-Log 

 

The entries in the Source-code Change-Log (Figure 6.2) have the same format as the test 

case change log. The information here is different from the test case Change-Log. We can 

see the date and the name of the author followed by the list of files that were changed by 

that author on that date and a very brief description of the changes made. We used both 

test case Change-Log files and the Source-code Change-Log files in parallel to track the 

failures. In [12], [27], [28] Andy Podgurski, David Leon and William Dickinson used the 
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failure information about GCC test cases. However, the authors did not use the Change-

Log files to find the faults. They run the test cases on different versions to find out when 

the test cases stopped failing. there are more than one Source-code Change-Log files in 

the GCC source code which are arranged chronologically. Each Source-code Change-Log 

has more than 19,000 entries. The ratio of PR numbers in Source-code Change-Log is 

even smaller than Test-case Change-Log. We have only 3550 PR numbers. this is the 

reason why we did not use PR numbers as a key for mapping changes from Test-case 

Change-Log to Source-code Change-Log. 

 

 

Figure 6.2: Sample from Source-code Change-Log 
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We can track a failure and map it to the corresponding fault using these two files. When a 

test case is written, it is tested against the latest version available. If the test case fails, the 

author will make an entry in the test case Change-Log, along with the date and the author 

name. Then he tries to find out the location of the fault and fix it. Once the problem is 

fixed, an entry will be made in the Source-code Change-Log representing the date, 

author, and the files that were changed to fix the problem. We use this information to 

track the failures and map the failures to faults in the source code. For example, if we 

have a test case that failed on GCC 3.2.3, we search for the test case file name in the test 

case Change-Log (of GCC 3.3.3) first. Then we use the name and date of that entry to 

search the Source-code Change-Log, which when found tells us, all the files that were 

changed to ensure that the failure would not happen again. There can be other entries in 

the Change-Log files due to the changes made for the enhancements in the system. We 

find the defects at the file level. We could find 41 defects with this method. This is 75% 

of the total defects that we found. This is the most efficient method among the three. We 

automated the whole process using awk (a Unix scripting language). The script searches 

the Test case Change-Log and records the name of the person and the date of the change 

entry, and then searches the Source-code Change-Log, to find the entry with the same 

date and name.  Since these two log files are in same format, it was very easy to automate 

the process. 

 

6.1.2 Search the bug-tracking database Bugzilla 
 

Bugzilla is a "Defect Tracking System" or "Bug-Tracking System" [13]. Bug tracking 

systems are used by developers to keep track of the bugs in the software. Bugzilla is a 

free software from GNU developers. It is most widely used bug tracking system not only 

because its free, but also for the features it has. Bugzilla is a powerful tool that will help a 

group of developers to get organized better and communicate effectively. Bugzilla also 

helps in reducing the downtime, increasing the productivity, and reducing project costs. 

Here are a few special features that bugzilla provides [13].  
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• Optimized database structure for increased performance and scalability  

• Excellent security to protect confidentiality  

• Advanced query tool that can remember your searches  

• Integrated email capabilities and comprehensive permissions system  

• Editable user profiles and comprehensive email preferences        

 

Bugzilla contains information about bugs in software. Every bug entered in bugzilla 

database is given a set of attributes. Table 6.1 explains the attributes. Bugzilla provides an 

excellent query facility to search for bugs based on these attributes. A sample output of 

the bugzilla query is shown in Table 6.2. Every bug has a detailed description associated 

with it.  

 

The PR numbers extracted from the test case Change-Log files are used to search in the 

description page of a bug. This was a manual process, and was also the most inefficient 

method of the three proposed because there are no PR number entries for all the test cases 

in the test case Change-Log files. PR number is the only index that can be used for 

searching the bugzilla database. We found only 3 defects with this method, which is only 

5% of the total bugs found. 
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Attribute Purpose  Possible values 

Bug-id Unique ID given to the bug Any valid integer 

Status Define and track the life cycle 

of a bug 

UNCONFIRMED  

NEW 

ASSIGNED 

WAITING  

SUSPENDED 

REOPENED 

RESOLVED 

VERIFIED 

CLOSED 

Resolution Define and track the life cycle 

of a bug 

FIXED  

INVALID  

WONTFIX  

DUPLICATE  

WORKSFORME  

Severity Describes the impact of a bug Critical  

Normal  

Minor  

Enhancement 

Priority Describes the importance and 

order in which a bug should be 

fixed 

P1 

P2 

P3 

 

Table 6.1: Table that describes the bug attributes 
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bug_id bug_severity priority Gcchost short_short_desc 

57 Normal P3  - confusing name lookup diagnostic 
99 Normal P3  - Constant expressions constraints 
100 Normal P3  - Statement expressions issues 
157 Minor P3  - - 
189 Normal P3  - - 
192 enhancement P3  - - 
336 enhancement P3  - - 
346 Normal P3  - - 
378 Normal P3  - - 

429 enhancement P3 i386-pc-
linux-gnu 

- 

448 Normal P3 i686-pc-
linux-gnu 

- 

456 Normal P3 i686-pc-
linux-gnu 

 

529 Minor P3    

545 Normal P3 i686-pc-
linux-gnu 

 

561 enhancement P3  -  
576 enhancement P3  -  
592 Normal P3  -  

605 enhancement P3 *-sun-
solaris* 

 

704 enhancement P3 i686-pc-
linux-gnu 

 

712 normal P3  -  

772 normal P3 i686-pc-
linux-gnu 

 

864 enhancement P3  -  

914 normal P3 i686-pc-
linux 

 

950 normal P3  -  
 

Table 6.2: Sample of bugzilla bug database  
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6.1.3 Execute tests on newer versions & search logs 
 
We could not find the defect information about some of the test cases using either of the 

above methods. As a final bug location method, we tried to test those test cases on newer 

versions that were released after 3.2.3) and see where exactly it executed without a 

failure. We have three versions released between GCC 3.3.3 and GCC 3.2.3. This method 

is used by Andy Podgurski, David Leon in [12]. Even though we used this method as our 

final option, it proved to be more efficient than searching the bugzilla for defects. After 

identifying the version in which the bug was fixed, ‘Searching test logs & change logs’ 

was repeated here to find the defects (as explained in section 6.1). We found 20 defects 

with this method, which is 20% of the total defects found. 

 
6.2 Estimating component reliability 
 

“The reliability of component i is the probability Ri that the component performs its 

function correctly” [20]. There are many methods to calculate the component reliabilities. 

We can use the historical data and the requirement documents if the project is in early 

stages. We can also use software reliability growth models for each component [18], [19]. 

However, the failure data available may not always sufficient to apply these models. Here 

we used information about the non-failed executions together with information about the 

failed executions during the testing to find the component reliabilities [14], [15], [16], 

[17]. These methods depend heavily on the type and nature of the test cases used to find 

the faults. Irrespective of the method used to find out the component reliabilities, the 

values may be inaccurate. We estimated the mean value of reliability for each 

component. Equation 6.1 gives the reliability of a component. 

 

                                                                                               

                                                                                                                                        (6.1) 
 
 
 
Where fi is the number of failures and ni is the number of executions of component i in N 

randomly generated test cases. 
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Table 6.3 shows the number of times each component was executed. We also found the 

number of times each component failed. After we found the defect information about all 

the components we calculated the component reliabilities using equation 6.1. The 

component reliabilities are shown in table 6.3. 

 

Comp. ID  Fi  Ni  Ri 

1 30 1,656,221 0.99998189 

2 1 135,180 0.99999260 

3 7 1,688,076 0.99999785 

4 0 162,338 1.00000000 

5 1 11,326 0.99991171 

6 1 57,377 0.99998257 

7 0 72,680 1.00000000 

12 0 372,486 1.00000000 

13 0 16,087 1.00000000 

14 4 381,046 0.99998950 

15 10 919,668 0.99998912 

17 1 302,504 0.99999669 

 

Table 6.3: Component Reliabilities 

 

Comp_ID is a unique identification number given to the component. Component ID’s 8, 

9, 10, 11 and 16 are not shown because they were not executed by any of the 2126 test 

cases. Fi is the number of times the component failed in the 2126 test cases. Ni is total 

number of times the component is executed in 2126 test cases. Ri is the reliability of the 

component i. We can observe that the reliabilities are extremely high and almost equal to 

one. This is because we have few failures compared to the number of executions of each 

component. 
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6.3 Estimating system reliability 
 
We used the state-based composite method proposed by R.C. Cheung in [21] to combine 

the software architecture with the failure behavior of the software. The model assumes a 

single entry node and single exit node for the system. We added two absorbing states C 

and F to the discrete time Markov chain (DTMC). These states represent the successful 

completion and failure of the system respectively. We already have added two dummy 

states START and END in the operational profile (Figure 5.2), which represent the 

beginning and ending of the execution. The transition probability P is converted to P1.  

The transition probability Pij in the original matrix (Table 5.2) is converted to RiPij to 

generate the values in P1. Ri is the reliability of the component i. RiPij is the probability 

that the component i produces the correct result and the control is transferred to 

component j [20]. An arc is made between the failure state and the component i with a 

transition probability of (1 - Ri), to consider the failure of component i. The components 

C and F are not considered when calculating the system reliability. The reliability of the 

system is the probability that the control reaches state C from START state. The matrix 

P1 is converted into Q by deleting the rows corresponding to C and F. The element Qk (1, 

n) represents the probability of reaching state n from START state with k transitions [20]. 

The number of transitions ranges from 0 to infinity. We can prove that 

∑∞

=
−−==

0
1)1(

k
k QQS  [9]. So the system reliability is R = S (1, n) Rn. We used 

MATLAB to implement the equation to find the system reliability. 

 

The value for the reliability calculated using this method is 0.9201. We also found the 

reliability of the system using the black box testing and compared the two values. The 

error in the reliability estimate is given by equation 6.2. The error in estimation is a mere 

5.5%. 

 

                                                                                                                                        (6.2) 
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Chapter 7 
 
Uncertainty analysis using entropy 
 
We estimated the system reliability using the architecture-based methodology proposed 

in [20]. They derived an equation for the system reliability in terms of the transition 

probability Pij and the component reliability Ri, however, there exists a considerable 

uncertainty in the software usage and failure of the components. There will be a certain 

amount of uncertainty in the reliability calculation even though the mathematical model 

is accurate [7]. We studied the uncertainty in the operational profile and the software 

reliability model. We used a method that is based on source entropy to analyze the 

uncertainty in the software reliability model [9]. This method can be used to assess the 

uncertainty of the operational profile and software reliability model.  

 

Entropy is a very important concept in the field of information theory. In information 

theory entropy is used to estimate, to which extent a source can be compressed. Entropy 

calculates the amount of uncertainty in a Markov source. Equation 7.1 gives the entropy 

of the system.  

 

                                                                                                                                        (7.1) 

 

Here ∏i represents the steady state probability of state i. Pij is the transition probability of 

the stochastic source. The range of the value is 0 ≤ H(S) ≤ log (n) [37] where H(S) is the 

entropy of the system. The entropy for GCC is calculated as 1.0913. We also quantified 

the uncertainty of the components using the concept of conditional entropy. The 

uncertainty of the component i, is given by equation 7.2. The values of the uncertainties 

are shown in Table 7.1.  

 

                                                                                                                                        (7.2) 

 

Where Pij is the transition probability 

∑∑−=
j

ijij
i

i ppH logπ

∑−=
j

ijiji ppH log



 62

 

Component Name Comp. ID Expected  
Execution Rate 

Component 
Uncertainty 

Parsing 1 0.1007010 1.3418020 

Tree Optimization 2 0.0023429 1.6623364 

RTL Generation 3 0.1005563 1.4597536 

Jump Optimization 4 0.0052616 1.5319009 

CSE 5 0.0003992 1.3711187 

GCSE 6 0.0005844 1.5794114 

Loop Optimization 7 0.0003185 1.5911179 

Register Allocation 12 0.3445442 1.2925663 

Branch Processing 13 0.0000477 1.1466891 

Final Pass 14 0.0386909 0.6457689 

Library Files 15 0.3994340 0.7833594 

Top Level Control 17 0.0070462 1.6905673 

 

Table 7.1: component uncertainties 

 

 The table also has the values for estimated execution rates ∏i for all the 

components. The execution rates ∏i and the component uncertainties are shown in Figure 

7.1. We can observe that component 1, 3, 12 and 15 have high expected execution rates 

compared to the other components. Components such as 5, 6, 7, and 13 have low 

expected execution rates compared to the others, which proves that the software 

executions are skewed. The components with a higher execution rate are expected to 

affect the system more than those that have a lower execution rate. The components with 

higher uncertainty will have greater impact on large part of the system.  
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Figure 7.1: Expected execution rate and component uncertainty graph 

 

We can observe that components 2 and 17 are more critical in the system because they 

have higher uncertainty. In Figure 7.1, components 12 and 15 have higher expected 

execution rates however; component 12 is considered to be more critical since it has a 

higher component uncertainty, which means that it will affect larger part of the system. 
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Chapter 8 
 
Conclusion  
 
 
This thesis presents the architecture-based reliability analysis of a large-scale open source 

application. We implement the Architecture-based methodology for uncertainty analysis 

of software reliability proposed in [20] to estimate the reliability of the system and to 

study the uncertainty analysis of reliability using entropy. We used GCC, a GNU open 

source compiler for our experiments. This is the biggest case study ever used for 

reliability analysis. The most important thing that differentiates our research from most of 

the related work is the magnitude of the case study we are using. The problems associated 

with experiments on empirical studies are explained. We addressed most of the 

potentially difficult problems associated with large-scale software applications. All 

previous studies on empirical studies mentioned in the related work, contributed to a 

small set of these problems. We presented an architecture-based methodology for 

reliability analysis. This methodology uses state based approach to find three important 

features of the software; the software-architecture, software-usage, and the software 

failure behavior, which are necessary to calculate the reliability of the system. An 

empirical approach for the architecture based reliability analysis was proposed, which 

uses white-box approach for the reliability analysis.  

 

We used informed-approach to estimate the software architecture. The regression test 

suite provided with GCC 3.3.3, which has test cases to test GCC 3.2.3 and a testing tool 

called Dejagnu were used for testing GCC. Gprof, a GNU open source profiler, was used 

to extract traces of the test case executions. The process of running the test cases and 

saving the profiles was automated. We used call-graph generated by gprof, to find the 

interaction of different components in GCC during the test case executions. However, the 

profiler gave execution profiles at function level. We mapped these functions to 108 files 

in the source code. These files were further mapped to 17 components in GCC. The 

source code of GCC was inspected manually to come up with the mappings from 
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functions to files and files to components. The profiles generated by gprof were huge and 

difficult to manage. A database was built to save the information from the profiles and to 

make the mapping easier. We extracted data from the database to build the operational 

profile for GCC.  

 

We mapped the test case failures to the faults in the source code. Test-case Change-Logs 

and Source-Code Change-Logs, which were provided with GCC source, were used for 

this purpose. We implemented three different methods; Searching test case Change-Logs 

and GCC Change-Logs of version 3.3.3, Search the bug-tracking database Bugzilla, 

Execute tests on newer versions & search logs, to map the failures to faults in the source 

code. The first method proved to be most effective. We automated the whole process of 

searching through the change log files and mapping failures from faults, unlike other 

researches that used manual inspection. 

 

The reliability is calculated for each component. The system reliability is calculated using 

both black-box method and the white-box method that we implemented. We got nearly 

accurate value for the reliability, with only 5% of difference between the values found 

using the two methods. The component uncertainty was analyzed using the method 

proposed in [9]. This method uses entropy as a measure of component uncertainty. 

Source entropy quantifies the uncertainty of the operational profile and architecture-based 

reliability models. We found the critical components that have high uncertainty value, 

which require more testing efforts than the other components. Further, the architecture-

based methodology helps us to estimate the expected execution rate and uncertainty of 

each component using the theory of Markov chains and conditional entropy respectively. 

 
In summery, the results presented in this thesis enrich the empirical knowledge in 

software reliability engineering. Lessons learned from this large-scale experiment are 

expected to be useful for conducting similar studies in the future. 
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