
Graduate Theses, Dissertations, and Problem Reports

2004

Empirical assessment of architecture-based reliability of open-Empirical assessment of architecture-based reliability of open-

source software source software

Ranganath Perugupalli
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Perugupalli, Ranganath, "Empirical assessment of architecture-based reliability of open-source software"
(2004). Graduate Theses, Dissertations, and Problem Reports. 1555.
https://researchrepository.wvu.edu/etd/1555

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Research Repository @ WVU (West Virginia University)

https://core.ac.uk/display/230478109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1555&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1555?utm_source=researchrepository.wvu.edu%2Fetd%2F1555&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Empirical Assessment of Architecture-Based Reliability

of Open-Source Software

Ranganath Perugupalli

Thesis submitted to the College of Engineering and Mineral Resources

at West Virginia University

In partial fulfillment of the requirements

For the degree of

Master of Science

In

Computer Science

Katerina Goseva-Popstojanova, Ph.D., Chair

James D. Mooney, Ph.D.

Hany H. Ammar, Ph.D.

Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2004

ABSTRACT

Empirical Assessment of Architecture-Based Reliability of Open-Source

Software

Ranganath Perugupalli

A number of analytical models have been proposed earlier for quantifying

software reliability. Some of these models estimate the failure behavior of the software

using black-box testing, which treats the software as a monolithic whole. With the

evolution of component based software development, the necessity to use white-box

testing increased. A few architecture-based reliability models, which use white-box

approach, were proposed earlier and they have been validated using several small case

studies and proved to be correct. However, there is a dearth of large-scale empirical data

used for reliability analysis. This thesis enriches the empirical knowledge in software

reliability engineering. We use a real, large-scale case study, GCC compiler, for our

experiments. To the best of out knowledge, this is the most comprehensive case study

ever used for software reliability analysis. The software is instrumented with a profiler, to

extract the execution profiles of the test cases. The execution profiles form the basis for

building the operational profile of the system, which describes the software usage. The

test case failures are traced back to the faults in the source code to analyze the failure

behavior of the components. These results are used to estimate the reliability of the

software, as well as the uncertainty in the reliability analysis using entropy.

Keywords – software architecture, software reliability, open-source software,

operational profile, failure analysis, entropy, uncertainty, cvs, change logs, profiler,

bugzilla.

 iii

DEDICATION

I am honored to dedicate this publication to my beloved father, Shri Anantha

Rama Sarma, who did more than he could for me. I express my deep love to my Uncle,

late Shri Subrahmanya Sastri, who encouraged me to pursue higher studies. I wish that

his soul rests in peace after his long pain and suffering. I express my deep love and

affection to my mother Padmavathi and brothers Ramakrishna and Ravi, and my aunt

Mythili for their continuous support and motivation.

 iv

ACKNOWLEDGEMENTS

I express my sincere thanks to Dr.Katerina Goseva Popstojanova, for giving me

the opportunity to work with her. I thank her for her motivation and guidance during my

research. I would like to thank my committee members Dr. James D. Mooney, and Dr.

Hany H. Ammar, for their valuable time, contribution and support in this course of study.

I thank my research colleague, Sunil for his help during my research work. I express my

special thanks to Maggie* Hamill, for her support and contribution in my research.

 v

Contents

1 Introduction 1

 1.1 Related Work……………………………….. 4

 1.2 Problem Statement…………………………. 9

1.3 Contributions……………………………….. 9

 1.4 Thesis Outline………………………………. 11

2 Our Approach 12

 2.1 Software Architecture and Usage…………… 13

 2.2 Software Failure Behavior…………………... 14

 2.3 Calculating Component and System Reliability 15

 2.4 Uncertainty Analysis………………………… 15

3 Description of case study 16

 3.1 Introduction to GCC…………………………. 16

 3.2 Size of GCC………………………………….. 18

 3.3 Process of Compilation………………………. 19

 vi

3.4 Test Cases……………………………………. 19

4 Experimental Setup 22

 4.1 Introduction to Profiling……………………. 22

 4.1.1 Flat Profile………………………….. 24

 4.1.2 Call Graph…………………………... 27

 4.1.2.1 The Primary Line…………. 29

 4.1.2.2 Function callers…………… 30

 4.1.2.3 Function subroutines……… 31

 4.1.2.4 Mutually Recursive Calls…. 32

 4.1.3 Statistical Sampling Error………….. 32

 4.2 Profiling GCC Test Cases…………………... 33

4.2.1 Building the GCC sources and Test Cases
 33

4.2.2 Mapping from Functions to Components
 37

 4.3 Building Database…………………………... 39

 4.3.1 Profile_Names……………………… 39

 4.3.2 Profile_Data………………………… 40

 vii

 4.3.3 Functionstofiles…………………….. 42

 4.3.4 Componentdata……………………... 43

5 Building the Operational Profile 45

6 Fault Detection 50

 6.1 Mapping Failures to Faults………………….. 50

 6.1.1 Searching Test Change-Logs and Source
 Code Change-Logs………………….. 51

 6.1.2 Searching the Bug Tracking Database
 Bugzilla……………………………… 54

 6.1.3 Execute Tests on Newer Versions and
 Search Log files……………………. 58

 6.2 Estimating Component Reliability…………. 58

 6.3 Estimating System Reliability……………… 60

7 Uncertainty Analysis Using Entropy 61

8 Conclusions 64

9 References 66

 viii

List of Figures

1.1 Architecture-Based Methodology for Reliability Analysis 2

2.1 Our Approach……………………………………………. 13

3.1 Experimental Setup……………………………………… 20

4.1 Example of Flat profile………………………………….. 25

4.2 Call graph………………………………………………... 28

4.3 Sample from the call graph………………………………. 29

4.4 Sample from the Call Graph…………………………….. 30

4.5 Sample from the Call Graph……………………………. 31

4.6 Sample from *.sum file generated by Dejagnu…………. 35

5.1 Operational profile of GCC……………………………… 47

6.1 Sample from the Test Case Change-Log………………… 52

6.2 Sample from Source-code Change-Log………………….. 53

7.1 Expected execution rate and component uncertainty graph 63

 ix

List of Tables

3.1 Versions of GCC released as of August 2004…………… 17

3.2 Details of the source code for GCC-2.96-20000731…….. 18

4.1 Status codes used for log files in Dejagnu testing tool….. 34

4.2 Component Reliabilities………………………………… 38

4.3 Sample from the Profile_Names table…………………... 40

4.4 Sample from Profile_Data table from our database…….. 41

4.5 Sample from Functionstofiles table from our database….. 42

4.6 Sample of Component_Data table in our database……… 44

5.1 Call counts for components in GCC……………………. 46

5.2 Transition probability matrix for GCC………………… 49

6.1 Table that describes the bug attributes…………………. 56

6.2 Sample of Bugzilla bug database……………………… 57

6.3 Component Reliabilities……………………………….. 59

 x

7.1 Component Uncertainties……………………………. 62

1

Chapter 1

Introduction

A number of analytical models have been proposed earlier for quantifying software

reliability. Some of these models talked about the reliability growth at the testing phase

[38]. The software reliability is estimated using black-box testing with a randomly chosen

set of test cases. The black-box models treat the software as a monolithic whole. These

models care only about the outcome of the testing and do not consider the internal

structure of the software. With the evolution of component-based software development

software-reuse is of utmost importance to the modern day developers. The black-box

approach was proved to be inappropriate for this kind of systems. We need to employ

white-box model for these component-based systems, which also consider the

information about the architecture of the software at the component level. The

methodology to architecture-based reliability assessment proposed in [20] is described

here. Figure 1.1 depicts the graphical representation of the methodology. In order to

estimate the software reliability using the architecture-based model we need to know

• The software architecture described by the flow of control among components in

the system

• The software usage described by its component interactions determined by the

operational profile.

• The software failure behavior described by reliabilities of the components

In this chapter we explain the architecture-based approach to find the software

architecture, software usage and the software failure behavior.

 2

Figure 1.1: Architecture-Based Methodology for Reliability Analysis

A state-based approach is used to build the architecture-based reliability model [7] and

[8]. The architecture-based reliability model is appropriate for large component-based

software. The architecture of software is defined by the way the components in the

system interact with each other. The model uses the control flow graph as a

representation of the software architecture. The states in the diagram represent the

components in the system and the arcs represent the interaction between the components

in the form of control transfer. It is assumed that the component interactions have the

Markov property. The software architecture is modeled with discrete time Markov chain

(DTMC). P = [pij] is the transition probability matrix of the Markov chain, where pij is the

probability that control is transferred from i to j. The Markov chain is constructed in two

 3

phases. The structural phase establishes the software architecture, using different

abstraction levels with the data obtained from the requirement-specification or the static

metrics obtained from the lexically based code parsers. This phase does not consider the

component interactions during the execution. The dynamic statistical phase estimates the

transition probabilities of the components. The component interactions depend on the

operational profile of the system. Depending on the phase of development of the

software, the dynamic behavior of the software can be found using either the Unified

Modelling Language (UML, in early stages of development) or from the test coverage

tools (in integration phase). There are two different approaches that are generally

followed for building the Markov chain model.

• Intended Approach is used if the software is in its early phase of development.

The software architecture is estimated using the information obtained from the

design and specification documents or using some historical data from similar

products. The object-oriented systems use UML as a standard design tool. We can

use use-case diagrams and sequence diagrams obtained from the UML

specifications to make an estimation of software architecture [39]. The sequence

diagrams depict the interaction between the components (mentioned in use-case

diagram) in the form of message passing. The transition probability of the

component i to component j is given by pij = (nij / ni), where nij is the number of

times component i sends messages to j and ni is the total number of messages

from component i.

• Informed Approach is used if the software is in later phases of development, in

which the source code is available and accessible. The dynamic behavior of the

components is estimated using the testing tools and the source code. Profiling

tools [4] and test coverage tools [40] are used to obtain the component traces

during the test case executions. The transition probabilities are obtained using the

frequency counts of the component interactions.

 4

K. Goseva Popstojanova and Sunil. K. Kamavaram applied this methodology to find the

uncertainty in reliability estimation using the European Space Agency (ESA) software

[20]. The ESA software, which has 10,000 lines of code, is also small compared to some

industrial software applications. However, in spite of its importance, there have been very

few efforts on applying large-scale industry level empirical case studies in the filed of

reliability. Although researchers like David Leon, Andy Podgurski used large-scale

software systems in [12], [27], [28] and [30], these studies are focused on execution

profiles rather than the reliability of the software. The reason for not having many of such

contributions is that locating and gaining access to the large-scale software is difficult

and the process of collecting and analyzing the necessary data is very time consuming

and also very expensive.

The main motivation for this thesis is the dearth of empirical data available on large-scale

software systems in the field of software reliability. This thesis is focused on using large-

scale case studies to validate the architecture-based reliability models, as well as on

contributing towards the usage of larger case studies the field of software reliability. We

use GCC, a GNU open source compiler, which is being used for several years and has

more than 30 versions released over a period of 7 years. GCC has more than 800,000

lines of source code written in C and is the most comprehensive case study ever used for

the reliability analysis.

1.1 Related Work

This thesis emphasizes the usage of large-scale empirical case studies for software

reliability analysis. We implement the architecture-based methodology for uncertainty

analysis of software reliability proposed in [7] and [20] to estimate the reliability of the

system and to study the uncertainty analysis of reliability using entropy. We implement

the white-box approach to estimate the operational profile of the software. This approach

is different from the black-box approach for software reliability modeling, where the

system is considered as a monolithic entity [23]. In black-box approach only the

interaction of the system with the out side world are considered. We use the executing

 5

profiles generated during testing to analyze the failure behavior of the system (see

Chapter 6).

The difficulties in handling the large-scale empirical case studies were discussed by

Thomas J.Ostrand and Elaine J. Weyuker in [24]. We are using GCC compiler, which is a

GNU open source project. It has 300 source files and 800,000 lines of C code, which is

much bigger than the case study they used (an inventory control system with 500,000

lines of code) in [24]. The version management systems maintained by the developers for

these projects are huge and difficult to extract and analyze [24]. GCC maintains a CVS

repository in the form Change-Log files, which contain the changes made to the source

over a period of time. The problem with these Change-Log’s and the MR (modification

requests) data repositories that were mentioned in [24] is that they are not intended for

the purpose of the fault detection, so it is very difficult for us to find the information we

need. There can be different kinds of changes in these log files such as fixing faults, code

enhancements, code modifications, new code, and also documentation change. It is

difficult to find out which of those changes are initiated because of a fault. In [24]

Thomas J.Ostrand and Elaine J. Weyuker made an assumption that, if just one or two

files were changed then it was likely a fault, while if more than two files were changed

then it is more likely a code modification or an enhancement. Instead of making this kind

of assumption, we propose more accurate methods to identify faults (see Chapter 7). In

this thesis, we were successful in extracting the fault information from the Change-Log’s

and finding the critical components in the system that failed most number of times. This

information is useful in making decision on allocating the testing efforts for the

components in the system.

Andy Podgurski, Jiayang Sun and Bin Wang used GCC in [12] to come up with an

automated support for classifying reported software failures in order to facilitate

prioritization and diagnosing the faults. The main intention of their research was to

provide the developer with the classification of failures and failure clusters, so that the

developer can plan his testing efforts accordingly. Andy Podgurski and David Leon used

GCC 2.95.2 and the regression test suite provided with GCC 3.0.2 to conduct their

 6

experiments. C proper part of GCC was used for the experiments. The open source

projects like GCC do not have the sophisticated bug-reporting system like some of the

commercial software projects. Andy Podgurski and David Leon used Change-Logs

provided with GCC to map failures to faults and could manage to map most of the

failures to corresponding faults using these log files. Andy Podgurski and David Leon

implemented the method “Execute tests on newer versions & search logs” (explained in

chapter 6), to classify the remaining failures. We use GCC 3.2.3 and the test suite of GCC

3.3.3 for our research. We use execution profiles of the test cases and the Change-Logs of

GCC to come up with the reliability estimates for the components that tells us which

components have higher reliability and which of them are more fault prone and need

more testing efforts. In [30], David Leon, Andy Podgurski used large-scale open source

projects like GCC, Jikes and javac to compare four different techniques for test case

filtering: test suite minimization, prioritization by additional coverage, cluster filtering

with one-per-cluster sampling, and failure pursuit sampling. David Leon, Andy

Podgurski used the regression test suite provided with GCC 3.0.2, which contains test

cases for defects present in GCC 2.95.2. 136 test cases were failed out of 3,333 test cases

they have executed. Executions were profiled using gcov, a basic block profiler provided

with GCC. Using these execution profiles, David Leon, Andy Podgurski manually

classified the failures into groups of failures that were assumed to have same cause.

There failures were mapped to 27 defects in the system.

Swapna S.Gokhale, W. Eric Wong and S.Trivedi conducted experiments on large-scale

empirical case study in [23] to come up with an analytical approach to architecture-based

reliability prediction. The reliability model was represented as a discrete time Markov

chain (DTMC). Execution profiles generated during extensive testing were used to find

the branch probabilities of the DTMC. All the experiments were conducted on an

application called as SHARPE (Symbolic Hierarchical Automated Reliability Predictor),

which is used to solve stochastic models of reliability, performance and performability

[23]. It has multiple releases and change information associated with each release.

SHARPE has a total of 373 functions and 35,412 lines of C code, which is very small

compared to GCC that has more than 800,000 lines of code. Swapna S.Gokhale, W. Eric

 7

Wong and S.Trivedi found the failure behavior of the component by a time-dependent

failure intensity, which can be determined using test coverage and fault density approach

[25]. A dataflow-coverage testing tool called ATAC (Automatic Test Analyzer in C) was

used to find the test coverage, on 735 test cases that were created by the developers to test

SHARPE. ATAC not only runs the test cases but also generates execution profiles. An

assumption that when a function X calls another function Y control is eventually

transferred back to function X, was used for the experiments.

Thomas J.Ostrand and Elaine J. Weyuker conducted experiments on a large-scale fault-

reporting database that is collected for all production systems at AT&T [33]. This was an

inventory tracking system that has 13 releases produced over a period of several years.

The current version has 1,974 files written in JAVA, with a total of 500,000 lines of code.

Whenever a fault is identified in the system an entry is made in the database associated

with the corresponding software. The entry includes, the stage of the development that

the problem was identified, the release version of the program and the severity of the

problem. The data is similar to the modification request (MR) data used in [24]. This data

was used to come up with the fault distribution among the different files in the system. In

addition to the fault distributions among the files, Thomas J.Ostrand, Elaine J. Weyuker

addressed many issues in [33] like, affect of the module size on the fault density,

persistence of failures between different releases of the software and whether newly

written files were more fault-prone then the old files written for the earlier version. A

module is the basic code component of the system. The goal of the experiment was to

identify the files that were more fault-prone and could be used as predictors of fault-

proneness of the system. Even though it was commercial software, which is considered to

be highly reliable, Thomas J.Ostrand and Elaine J. Weyuker mentioned that finding faults

from the database was hard because the data was not well organized. Our research does

differ from what Thomas J.Ostrand and Elaine J. Weyuker did in the sense that we used

dynamic data from testing to come up with the failures and them mapped them to the

faults using the Change-Logs (see chapter 6) to estimate the fault-proneness of the

components in the system. With the experiments conducted on the AT&T software,

Thomas J. Ostrand, Elaine J. Weyuker found that for each release, the “faults were

 8

always heavily concentrated in a relatively small number of files”. Thomas J. Ostrand,

Elaine J. Weyuker and Robert M. Bell conducted some more experiments in [32] on the

same case study (AT&T inventory tracking system) to find out which files in the software

system are most likely to contain the largest number of faults. The AT&T software has a

version tracking system maintained through out the life cycle of the project. The system

contains the MR (modification request) entries, which has the changes made to the

different files in the system. Thomas J. Ostrand, Elaine J. Weyuker and Robert M. Bell

used static analysis of the version tracking system to find the fault-prone files. Finding

the faults using the MR entries was not straight forward because an MR may contain a

change that was initiated because of a fault, an enhancement or change in the

specifications, and it was difficult to differentiate between different kinds of changes. An

assumption that “if only one or two files were changed by the modification request (MR),

then it was likely a fault, while if more than two files were affected, it was likely not a

fault”, was made through out the experiments. Thomas J. Ostrand, Elaine J. Weyuker and

Robert M. Bell concluded that 20% of the total files, in which they found most critical

faults, were constituted to 83% of the total system size.

Norman E. Fenton and Niclas Ohlsson in [31] discussed the dearth of empirical data in

the field of software engineering. Norman E. Fenton and Niclas Ohlsson, in their

experiments found that a very small number of modules in the system contain most of

faults discovered in the testing phase as well as the normal operations. However,

contradicting the conclusions made by Thomas J. Ostrand, Elaine J. Weyuker and Robert

M. Bell in [32], [33], Norman E. Fenton and Niclas Ohlsson found that the fault-

proneness of the modules do not depend on their size or complexity. This finding proved

that, the most widely used fault density measures and the metric studies based on those

measures are flawed. Norman E. Fenton and Niclas Ohlsson also stated in [31] that, those

modules that are most fault-prone pre-release are among the ones that are least fault-

prone post-release. All these observations were based on the experiments conducted on

the empirical data obtained from a large telecommunication application from Ericsson

Telecom AB. Michael R. Lyu, Zubin Huang, Sam K. S. Sze and Xia Cai discussed the

problem of limited empirical data available in the literature, to evaluate the effectiveness

 9

of software testing and fault tolerance in [29]. Mutation testing [29] was used to evaluate

the effectiveness of software testing and software fault tolerance. Mutants were created

by injecting faults in to the software. Michael R. Lyu, Zubin Huang, Sam K. S. Sze and

Xia Cai stated that coverage testing [29] is an effective way of fault detection. However it

was also mentioned that testing coverage is not as effective as mutant coverage to

evaluate the testing quality. An industry-scale critical flight control system was

developed to conduct the experiments.

1.2 Problem Statement

This thesis focuses on empirical assessment of architecture-based methodology for

software reliability analysis, using large real life empirical case studies. It addresses two

critical problems associated with handling large-scale empirical case studies for

architecture-based reliability assessment. The first problem is to develop an efficient way

for building the operational profile of the software from large number of huge execution

profiles obtained during testing. The second problem is to automate the analysis of the

failure behavior of components (i.e., to identify faults that led to failures), using the

software artifacts such as change logs and CVS logs, which are not specifically made for

the purpose of failure analysis.

1.3 Contributions

The most important thing that differentiates our research from most of the other work

presented in related work is the size of the case study we are using for the reliability

analysis. Despite the importance of using large-scale industrial software’s for the

reliability analysis, there have been very limited efforts in this area. To the best of our

knowledge, GCC 3.2.3, a GNU open source compiler, with approximately 800,000 lines

of C source code, is the largest case study ever used for the study of software reliability

analysis. Using such a large case study for reliability analysis, itself is a major

 10

contribution, considering the limited empirical data available in the area. The

contributions of this thesis are summarized as follows.

• The main contribution of this thesis to the architecture based approach for

reliability assessment proposed in [7] and [8] is to validate the methodology by

implementing it on large-scale object based case study. The architecture-based

model given in [20] and [8] for the software reliability assessment considers the

usage of the software described by its operational profile. Building the operational

profile for such a large case study was not trivial. We used test cases provided

with GCC to generate execution profiles, which are used to estimate the dynamic

behavior of the software. The profiler gives the execution details at function level.

Mapping these functions to components was a hard task, because the

documentation available was old and not sufficient to do the mapping. We were

able to build the operational profile for GCC at the component level and find the

transition probabilities of the components. Unlike the manual process followed by

David Leon, Andy Podgurski in [30] to analyze the execution profiles, we

automated the process of parsing the execution profiles and storing the data in

relational database, which made the calculation of transition probabilities

efficient, even though the profiles we have 2126 execution profiles, each with

more than 2500 function calls.

• Another major contribution of the thesis is in finding the faults in the system that

caused the failures in test case executions. After identifying the failed test cases

we used the Test case Change-Logs and Source code Change-Logs provided with

the GCC source code. The problem with these Change-Log files is similar to what

Thomas J. Ostrand, Elaine J. Weyuker and Robert M. Bell had with MR’s

(modification requests) in [32]. The Change-Log files were not created for the

purpose of finding the faults in the system. We employed three methods to map

the failures to faults in the source code; Searching test case Change-Logs and

GCC Change-Logs, Search the bug-tracking database Bugzilla, Execute tests on

newer versions & search logs. The last method (Execute tests on newer versions &

 11

search logs) was first used by Andy Podgurski and David Leon in [12]. The Test-

case Change-Log has approximately 3500 entries and the Source-code Change-

Logs have approximately 19,300 entries. Searching through these files manually

to map failures to faults is time consuming and error prone. We have automated

the process of searching through both change logs to map the failures to the

corresponding faults. Since most of the open source software maintains the same

format for the Change-Log files the automation saves a lot of time and effort.

The failures were mapped to faults in GCC. The mapping was done at both file level and

component level. We observed that there are very few files where most of the faults are

concentrated. This observation strengthens the argument made by Thomas J.Ostrand and

Elaine J. Weyuker in [32] and [33] that “the faults were always heavily concentrated in a

relatively small number of files”. The overall system reliability was calculated using the

method proposed by K. Goseva Popstojanova and K. S. Trivedi in [7]. We compare the

value of the reliability with the value we got from the black-box method and found that

the value is relatively accurate. We have conducted uncertainty analysis using entropy, on

GCC, which was proposed by S. K. Kamavaram and K. Goseva Popstojanova in [9]. We

observed that some of the components are more uncertain, and thus more critical than the

rest of the components.

1.4 Thesis Outline

This thesis presents an empirical analysis of architecture-based analysis of software

reliability. The current chapter gives a brief introduction to the architecture-based

methodology for reliability analysis in component-based systems, describes the related

work done in this area, and explains the contribution. Chapter 2 presents the approach we

followed to implement the architecture-based methodology. Chapter 3 describes the case

study we are using. Chapter 4 gives a detailed explanation about the experimental setup.

Chapter 5 describes about finding the operational profile. Chapter 6 explains the mapping

of failures to faults. Chapter 7 presents uncertainty analysis based on entropy. Finally

chapter 8 presents the conclusions.

 12

Chapter 2

Our Approach

We used GCC, a GNU open source compiler for our experiments. Open source projects

are suitable for our experiments on reliability analysis using white-box approach because

many software artifacts are available, like

• Source code

• Requirements and design documentation

• Test suites, with an oracle

• CVS logs which contain change information between different version releases

• GCC Change-Logs and test case Change-Logs

Figure 2.1 describes our empirical approach for the architecture based reliability analysis.

The Figure 2.1 explains the procedure we followed to extract the information we need for

the reliability analysis like software architecture, software usage and software failure

behavior.

Since we are using white-box approach for the reliability analysis, we need to know what

part of the code has been executed, which functions are called, which functions take

much time to execute. For this purpose we need a profiler that tracks the executions of

the software and gives us the data we need. We used gprof, a GNU open source profiler

that is used specially to profile applications written in C and C++. GCC is instrumented

wit gprof. We chose to use the test suite provided with GCC to get the execution profile.

We run the test cases with Dejagnu, a GNU testing tool. The generated execution profiles

are stored in an ORACLE database so that they can be used easily and efficiently.

 13

Figure 2.1: Our Approach

2.1 Software Architecture and Usage

The software architecture and the usage are reflected by the operational profile of the

software. We used the execution profiles we got from the test executions as the basis for

building GCC architecture. The information in the profiles also gives us the usage of

different components of GCC. The profiler gives us the execution profile at the function

level. We have 1759 unique functions that were invoked during the execution of all the

2126 test cases. It is difficult to build the software architectural model using so many

states. We mapped these functions to files in the source code so that the number is more

manageable. We have 108 files that these functions belong to. Building the architectural

model using 108 states is also not trivial. We wanted to reduce this number further by

 14

mapping these files to components. Component is a part of compiler that is dedicated to a

particular functionality. We have 17 components in our system. We mapped 108 files we

have to these 17 components to build the architecture of GCC. We calculated the values

for the transition probabilities using the values from the database. The database is built in

such a way that it has information about the executions at function level, file level and

also at the component levels. We built the operational profile of GCC based on the test

case execution profiles.

2.2 Software Failure Behavior

Even though the test suite does not reflect the system’s usage perfectly, this test suite has

wide variety of test cases that tests different features of gcc like, variables, language

dependent structures, and memory allocations. The most important reason for choosing

the test suite is that they have the failure information associated with the test case

failures, which will be used as a oracle to find the failure behavior of the system. We

employed three methods to find the defect information about the failures.

• Searching test logs & change logs: We searched the GCC Change-Log files and

the test case Change-Log files to find the location of the failure. The details of

implementing this method and sample log files are given in Section 6.1. The

whole process is automated using awk. We could find 41 defects with this

method. This is the most efficient method among the three.

• Search the bug-tracking database Bugzilla: Bugzilla is a "Defect Tracking

System" or "Bug-Tracking System" [13]. Bugzilla has a big database which has

information about the failures in the system. The failures may be due to the

failures of test case or operational failures that users find after deployment. The

test case Change-Log files has a PR (problem report) number associated with each

test case. Bugzilla used this PR number to index the failures related to the test

case executions.We searched the bugzilla databe with the PR numbers we have

for the failed test cases. We could find only 3 defects with this method. The

 15

details of the implementation and a sample bugzilla database are given in Section

6.2.

• Execute tests on newer versions & search logs: The failed test cases are tested

against the newer versions so that we could find out when the bug was fixed.

After finding the version in which the bug was fixed, we repeat the first method to

trace the location of the defect. This method is more efficient than the second one.

We could find 20 defects with this method.

2.3 Calculating compontnt and system reliabilities

“The reliability of component i is the probability Ri that the component performs its

function correctly” [20]. We already have the information about the non-failed test cases

and the failure behavior of the system was determined in section 2.2.2. We found the

mean value of the component reliabilities using the failure information of the test cases

and the number of non-failed test cases. Since the number of failures for each component

is very small compared to the number of executions for each component, the values for

the component reliabilities are very high. The system reliability is calculated using the

method explained in [20]. The reliability is also calculated using the black box approach

by dividing the number of failed test cases over the total number of test cases. These two

values are compared and the error is estimated.

2.4 Uncertainty analysis
There will be a certain amount of uncertainty in the reliability calculation even though the

mathematical model is accurate [7]. The uncertainty of the operational profile and the

reliability model are analyzed using the concept of source entropy. Entropy is a very well

known concept in information theory. It cannot estimate the reliability value. We used

entropy to calculate the amount of uncertainty in GCC, which is represented as a Markov

chain. The range of the value is 0 ≤ H(S) ≤ log (n) [9]. We used conditional entropy to

calculate the component uncertainties. We also found the expected execution rates of all

components.

 16

Chapter 3

Description of case study

3.1 Introduction to GCC

GCC stands for "GNU Compiler Collection". GCC is an integrated distribution of

compilers for several major programming languages including C, C++, Objective-C,

Java, Fortran, and Ada [1]. The part of compiler that is specific to a particular language

is called the "front-end". GCC also supports front-ends for Pascal, Mercury and Cobol in

addition the above mentioned languages. Initially GCC was refered to as ‘GNU C

compiler’ when it was used only to compile C programs. Even now we use the same

definition when we refer to the compilation of C programs or when we speak of the

language-independent component of GCC, which is the code that is used commonly for

all the languages that it supports. The majority of the compiler optimizers are included in

the language independent component of GCC. It also includes all the ‘back-ends’, which

are used to generate machine code for various processors.

GCC is an open source software that is available for free. The different versions released

by the GCC community as of August 2004 can be seen in Table 3.1. Source code for each

version is available to download from different mirror sites of GCC. GNU also maintains

a CVS (Concurrent Version System) repository to avail the users to download the source

code.

 17

Release Release date

GCC 3.4.1 July 1, 2004

GCC 3.4.0 April 18, 2004

GCC 3.3.4 May 31, 2004

GCC 3.3.3 February 14, 2004

GCC 3.3.2 October 17, 2003

GCC 3.3.1 August 8, 2003

GCC 3.3 May 13, 2003

GCC 3.2.3 April 22, 2003

GCC 3.2.2 February 05, 2003

GCC 3.2.1 November 19, 2002

GCC 3.2 August 14, 2002

GCC 3.1.1 July 25, 2002

GCC 3.1 May 15, 2002

GCC 3.0.4 February 20, 2002

GCC 3.0.3 December 20, 2001

GCC 3.0.2 October 25, 2001

GCC 3.0.1 August 20, 2001

GCC 3.0 June 18, 2001

GCC 2.95.3 March 16, 2001

GCC 2.95.2 October 24, 1999

GCC 2.95.1 August 19, 1999

GCC 2.95 July 31, 1999

Table 3.1: Versions of GCC released as of August 2004

 18

3.2 Size of GCC

To the best of our knowledge, GCC is the biggest case study ever used for empirical

software reliability estimation. In our experiments we used the C proper part (the part of

GCC that compiles programs written only in C) of GCC. The C proper part itself has 300

source files written in 12 different languages and has approximately 800,000 lines of

ANSI C code [2]. These files include both the programming and scripting languages.

Table 3.2 contains the list of languages and lines of code written in each of those

languages for the version GCC-2.96-20000731. This table shows how large the case

study actually is.

Table 3.2: Details of the source code for GCC-2.96-20000731

LANGUAGE LOC

ANSI C 789,901

CPP 126,738

YACC 19,272

SH 17,993

ASM 14,559

LISP 7,161

FORTRAN 3,814

EXPECT 3,705

SED 310

PERL 144

OBJC 479

Total 984,076

 19

3.3 Process of compilation

The whole process of compilation in GCC is controlled by a single file named toplev.c.

The process of compilation is implemented in multiple passes [3]. In addition to

sequencing all the passes this file has many additonal responsibilites such as

initialization, decoding arguments, opening and closing files. The parsing pass is called

first from the toplev.c. The parsing pass parses the file and generates the high level tree

representation. The tree representation is converted into RTL (Register Transfer

Language) intermediate code using the files expr.c, expmed.c and stmt.c. After finishing

the parsing of the function-definition the parsing pass calls the function

rest_of_compilation in toplev.c. The function rest_of_compilation is

responsible for finishing the rest of the compilation process and printing the assembly

code for that function definition. The parsing pass calls the function

rest_of_decl_compilation when it reads a top-level declaration. All the other

passes are called by rest_of_compilation in sequence. Once the function

definition is compiled the storage used for compilation is freed except for the inline

functions. The process of compilation is performed in 20 different passes including the

parsing pass.

3.4 Test cases

GCC has a regression test suite maintained to ensure the quality of the software over a

period of time. This test suite comes with the full distribution of GCC. New test cases are

added to the regression test suite with each release of GCC. When a new version of GCC

is released, normal users as well as the developers test it against different programs.

Some of the programs may give warnings or fail to give the expected results. When an

unexpected output is found, the user tries to locate the bug and fixes it. All such test cases

are added to the regression test suite. The new test cases that were added would be

available with the next released version. In this way the developers make sure that the

bug will not be present in the newer version. Since we must determine the locations of

the bugs, it is best to use test cases from the latest version and test them against the old

version. Most of the test cases that were added to the new version will fail on the older

 20

version. For example we conducted all of our experiments on GCC 3.2.3, but we used

test cases from GCC 3.3.3, which includes test cases from four newer versions. Figure

3.1 depicts the process involved.

Figure 3.1: Experimental Setup

When we tested the regression test suite of GCC 3.2.3 against GCC 3.2.3, only 52 test

cases failed out of the 21,000 test cases. However, 110 test cases failed out of the 2126

test cases chosen from GCC 3.3.3 when tested against GCC3.2.3. The reason is that, most

of these test cases were added to the regression test suite of GCC 3.3.3 after GCC 3.2.3

was released. For example, the test cases that test the faults in GCC 3.2.3 are added to the

test suite after the release of GCC 3.2.3. This is the reason behind choosing the test cases

GCC
3.2.3

April 22

2003

 GCC
3.3.1

Aug 08
2003

GCC
3.3.2

Oct 17
2003

GCC
3.3.3

Feb 14
2004

Instrument GCC

3.2.3 with gprof

Run the test cases
from GCC 3.3.3 on

GCC 3.2.3

 21

from GCC 3.3.3 to test GCC 3.2.3, which will give us a better chance to locate the bugs

in GCC 3.2.3.

The 21,000 test cases in the regression test suite of GCC 3.3.3 are arranged in 13

different folders. Each folder contains a unique set of test cases. Some of the folders

contain test cases that test one particular language. GCC test suite has test cases to test C,

C++, Java, Objc, Ada, and g77 front-ends. For example the folder g++.dg has test cases

that test C++ language part of GCC. As mentioned in section 3.2 we are only concerned

with the C proper part of GCC. There are three sets of test cases that were written to test

the C proper part of GCC. These are gcc.c.torture, gcc.dg and gcc.misc.tests. There are

2126 test cases in these three folders. All these test cases are written in the C language.

Test cases that run on any target machine are in gcc.c.torture. There are three

subdirectories in gcc.c.torture. Test cases that merely need to be compiled are in compile

directory, test cases, which should give an error are in noncompile directory and the

execution tests are in execute sub-directory. All the test cases in gcc.dg are named against

the feature of GCC that they test. For example all bit-field tests are named bf-*.c. The

gcc.misc.tests folder has miscellanious test cases. Some of them are target

specific and some of them test the profilers that come with GCC [1]. Different kinds of

test cases can be run with a single test driver, using Dejagnu, a GNU testing tool.

 22

Chapter 4

Experimental Setup

4.1 Introduction to profiling

We are using the white-box approach to extract the software failure behavior. In black-

box testing we use a set of test cases to test the software. We estimate the reliability based

on the test results with out considering the execution details. With black-box approach,

we would not know why a test case was failed. In the white-box approach we also

consider the execution details. We instrument the source code using a profiler to analyze

the software executions.

Profiling is “the strategy of collecting calls, counts and execution times on a per function

basis” [4]. The profile generated at the function level can be called specifically as

‘function level profile’. We can define profile as a data set that stores all the data that

belongs to an execution. The profile contains a lot of data about the execution of the

given program. It tells us where a program spent its execution time, which functions were

executed during that period, and which functions are called from which other functions.

We can find which functions are executed most, which functions are slower than

expected, and which functions are called more or less often than expected. It will help us

in finding the key areas where a rewriting could be considered to make the program

perform better. One may think that this can be done just by inspecting the source code,

however we can only find static information like software metrics with this approach.

Though the profiler does not give us any information about the failures in software

directly, it gathers the execution data automatically. The data includes the functions that

were visited, execution time and the function calls. This data can be used to analyze the

failure behavior of the software. Since it is an automated process it can be used with large

 23

complex programs that are too difficult to analyze by inspecting the source. The

information we get from code inspection will be static, where as the profile gives us the

dynamic information about the executions. However, the profiler doesn’t tell us where

the execution starts or where it ends. The profiler tells us where the program spent its

time. Details about the profiler information are explained in section 4.1.1 and 4.1.2.

The profiler we use for our experiments is gprof, a GNU profiler developed by Jay

Fenlason and Richard Stallman [4]. This is an open source profiler. The gprof can be

used with many languages including C, C++, Pascal and Fortarn77. We are doing all our

experiments on LINUX (Debian) system. We also tried a profiler called gcov, but this

gave us profiles at line and block level. It is hard to analyze the profiles at block level

especially for huge programs like GCC. Gprof gives the profile at the function level,

which was easy to analyze compared to the profiles at line or block level. We found gprof

as a good match for our requirements. Profiling with gprof has the following three steps.

• Compile and link the program with profiling enabled

 It is the first step in generating the profiles. When we run the compiler we have to

use the option ‘-pg’ in addition to all the options we use for the compilation.

• Execute the program to generate the profile data

 After the program is compiled for profiling, we need to execute the program to

generate the data that is needed by the gprof, to get the profile information. We

can run the program with the normal options we used before. The program may

run a little slow as it has to generate some extra information during execution.

The information that is generated by the profiler is mostly effected by the

program input and the type and number of arguments given when running the

program. The profile only gives information about those parts of the software that

are active during the execution. The program writes the profiling information into

a file called gmon.out. This file will overwrite any file that is named gmon.out,

but we can change the file name or make a back-up copy once it is created. The

 24

file will be written properly only when the test case executed normally, that is, it

exits from the main function or by calling exit.

• Run gprof to get the profile data file

 Once we execute the program and the gmon.out is generated, we have to run

gprof to interpret the information that the gmon.out contains. There are two

kinds of profiles we get from gprof; flat profile where the list of all functions that

were active during the program execution are listed, and a call graph where the

history of all function calls is specified. We can save these profiles into a file by

redirecting the standard output. The default executable file is a.out and the

default profile-data-file is gmon.out. We can also give multiple

profile-data-files to get the summarized report from all the profiles.

4.1.1 Flat profile

The flat profile shows the names of the functions that were active during the execution

and the time that was spent in each. A sample flat profile generated by gprof is shown in

Figure 4.1. This sample is taken from the documentation of gprof [5].

If we look at the flat profile shown in Figure 4.1, we can observe that the functions are

ordered by the decreasing amount of time spent in them. There are some functions listed

in the flat profile like profil and mcount, which were used for profiling itself. The

time spent in them is the overhead that profiler brings into the execution.

 25

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 33.34 0.02 0.02 7208 0.00 0.00 open
 16.67 0.03 0.01 244 0.04 0.12 offtime
 16.67 0.04 0.01 8 1.25 1.25 memccpy
 16.67 0.05 0.01 7 1.43 1.43 write
 16.67 0.06 0.01 mcount
 0.00 0.06 0.00 236 0.00 0.00 tzset
 0.00 0.06 0.00 192 0.00 0.00 tolower
 0.00 0.06 0.00 47 0.00 0.00 strlen
 0.00 0.06 0.00 45 0.00 0.00 strchr
 0.00 0.06 0.00 1 0.00 50.00 main
 0.00 0.06 0.00 1 0.00 0.00 memcpy
 0.00 0.06 0.00 1 0.00 10.11 print
 0.00 0.06 0.00 1 0.00 0.00 profil
 0.00 0.06 0.00 1 0.00 50.00 report

Figure 4.1: Example of Flat profile

The meanings of the fields in Figure 4.3 are explained here.

• % Time is the percentage of the total execution time that the program spent in

this function. These should all add up to 100%.

• Cumulative seconds is the cumulative total number of seconds the computer

spent executing this functions, plus the time spent in all the functions above this

one.

• Self-seconds is the number of seconds accounted for by this function alone. The

flat profile listing is sorted first by this number. This time is calculated using the

sampling method. The sampling time is given at the starting of the flat profile.

 26

• Calls is the total number of times the function was called. If the function was

never called, or the number of times it was called cannot be determined (probably

because the function was not compiled with profiling enabled), the calls field is

blank.

• Self-ms/call represents the average number of milliseconds spent in the function

per call, if this function is profiled. Otherwise, this field is blank.

• Total ms/call represents the average number of milliseconds spent in the function

and its descendants per call, provided that the function is profiled. Otherwise, this

field is blank.

• Name is the name of the function. This field sorts the flat profile alphabetically

after the self seconds field is sorted

The first line in the flat profile indicates the sampling time (0.01 seconds in this case) that

is used to calculate the time periods for the function executions. If the time spent in the

function is not considerably greater than the sampling time period it is considered as

invalid. The sampling period estimates the margin of error in the time column. The

program is monitored every 0.01 seconds. A time period of 0.01 seconds is assigned to

the function that is active at that time. The function is assigned 0.02 seconds if it appears

again. The last value in the ‘cumulative seconds’ column field tells the total execution

time which is 0.06 in this case. That means only six samples are taken during the

execution. One during the time when the execution is in ‘open’ and one for the

offtime, memccpy, write, and mcount. Self-seconds tells how much time is

spent in each function.

There are some functions like tzset, tolower and strlen, which have a non-

zero value in the calls field but have a zero in the self-seconds field. The call graph (see

section 4.1.2) is showing that these functions are called during the execution, but the time

spent in them is shown here as zero. This indicates that the time spent in those functions

is much less than the sampling time 0.01 seconds. So the profiler could not extract the

time period for those functions due to the paucity of the histograms that were generated

 27

[4]. As the number of samples taken is too small (6 in this case), none of these numbers

in the self seconds column can be regarded as reliable. If we run the program again there

is a possibility that we get different values for them [5]. Due to the Statistical Sampling

Error (see section 4.1.3) none of these values are accurate.

4.1.2 Call Graph

The call graph contains entries for all the functions that are invoked during the execution.

The call graph tells us how much time was spent in each function and its children

functions during the execution. There may be some functions that have a very small

execution time, but they call functions that use a significant amount of time. Figure 4.2

shows a call graph taken from the same profile as the flat profile example in Figure 4.1.

The dashed lines divide the table into entries for different functions. Each block

represents one function. Each entry, corresponds to a function, which is identified by the

primary line and starts with an index number in square brackets. The name of the

function is at the end of the line. The preceding lines of the primary line describe the

callers of the function (i.e. parents) and the following lines describe the descendants (i.e.

children). All these entries are sorted by the total amount of time spent in them and their

children. Unlike the flat profile, the functions that are used solely for profiling are not

mentioned in the call graph. The fields in the call graph have different meanings in

different contexts. Each context and the meanings of the fields are described in the

following section.

 28

 Granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 seconds

 Index % time self children called name
 <Spontaneous>
 [1] 100.0 0.00 0.05 start [1]
 0.00 0.05 1/1 main [2]
 0.00 0.00 1/2 on_exit [28]
 0.00 0.00 1/1 exit [59]

 0.00 0.05 1/1 start [1]
 [2] 100.0 0.00 0.05 1 main [2]
 0.00 0.05 1/1 report [3]

 0.00 0.05 1/1 main [2]
 [3] 100.0 0.00 0.05 1 report [3]
 0.00 0.03 8/8 timelocal [6]
 0.00 0.01 1/1 print [9]
 0.00 0.01 9/9 fgets [12]
 0.00 0.00 12/34 strncmp <cycle 1> [40]
 0.00 0.00 8/8 lookup [20]
 0.00 0.00 1/1 fopen [21]
 0.00 0.00 8/8 chewtime [24]
 0.00 0.00 8/16 skipspace [44]

 [4] 59.8 0.01 0.02 8+472 <cycle 2 as a whole>
 0.01 0.02 244+260 offtime <cycle 2>
[7]

 0.00 0.00 236+1 tzset <cycle 2> [26]
--

Figure 4.2: Call graph

 29

4.1.2.1 The Primary Line

The primary line describes the function that the block belongs to. It has an index at the

beginning and the name of the function at the end of the line. Figure 4.3 shows a primary

line from the call graph.

 Index % time self children called name

 [3] 100.0 0.00 0.05 1 report [3]

Figure 4.3: Sample from the call graph

The meanings of the fields in Figure 4.3 are explained here.

• Index is a unique number that is given to each function name at the beginning of

its primary line. This number is used as an index for the function. When ever the

function in primary line is used as a caller or a subroutine (child) this index is

used along with its name.

• % Time is the percentage of the total time that was spent in this function. This

includes the time spent in its children. The time for this function is added with its

callers, so adding the percentages of time for its parents is meaningless to find

%time here.

• Self is the total amount of time spent in this function. This is equal to the ‘self

seconds’ field entry for this function in the flat profile.

• Children is the total time spent by the children of this function. This should be

equal to the sum of all the ‘self’ and ‘children’ field entries for its subroutines.

• Called is the total number of time the function is called. There can also be

recursive calls. If there are recursive calls this filed is represented as two numbers

separated by a ‘+’. The first one represents the number of non recursive calls and

the second one represents the recursive calls.

• Name is the name of the function, followed by the index number.

 30

The cycles in the execution are named by the word cycle and they are represented by

consecutive integers. If the function is part of a cycle, the cycle number is printed

between its name and the index number. For example the function offtime is a part of

the cycle 2 and has index number 7. So the primary line will have offtime <cycle

2> [7] at the end.

4.1.2.2 Function’s callers

The functions that are listed above the primary line of the function are the callers of that

function. They have the same fields as the primary line. But they have different meaning

in this context. Figure 4.4 shows part of the call graph, which depicts the primary line of

the function ‘report’ and its caller and a subroutine.

Index % time self children called name

 0.00 0.05 1/1 main [2]
[3] 100.0 0.00 0.05 1 report [3]
 0.00 0.03 8/8 timelocal [6]

Figure 4.4: Sample from Call Graph

The meanings of the fields in Figure 4.4 are explained here.

• Self is the percentage of time spent in the function ‘report’ when it is called by

‘main’.

• Children is the percentage of time spent in the subroutines of ‘report’ when it

is called by ‘main’. The sum of these two fields (self and children) is the

percentage of time spent within ‘report’ when it is called by ‘main’.

• Called is a combination of two numbers separated by a ‘/’. The first one is the

number of times the function ‘report’ was called by ‘main’ and the second one is

the total number of non-recursive calls to ‘report’ from any of the functions.

 31

• Name and index number are the name of the caller function and the index

number. Some times the caller function may not have its own entry. In that case

there will be no index number after the name. If the caller is part of a recursion

cycle, the cycle number is printed between the name and the index number. The

word ‘spontaneous’ appears in the name field if the caller has no identity.

4.1.2.3 Function’s Subroutines

The lines that are below the primary line represent the subroutines of the function. Figure

4.5 depicts a small part of call graph that shows the function ‘main’ and its subroutines.

Index % time self children called name
...

[2] 100.0 0.00 0.05 1 main [2]
 0.00 0.05 1/1 report [3]

Figure 4.5: Sample from the Call Graph

The fields are same for both the primary line and the subroutine line. But they have

different meaning in this context.

• Self is the amount of time spent within the function ‘report’ when it is called by

‘main’.

• Children is the amount of time spent in the subroutines of ‘report’ when it is

called by ‘main’.

• Called is a combination of two numbers separated by a ‘/’. The first one is the

number of times the function ‘report’ was called by ‘main’ and the second one is

the total number of non-recursive calls to ‘report’ from any of the functions.

• Name is the name of the subroutine function followed by its index number. If it

is the part of any cycle then the cycle number is also printed between the name

and the index number.

 32

4.1.2.4 Mutually recursive calls:

The output of gprof is very complicated to analyze because it considers cycles among

functions. A cycle exists in the call graph if a function calls another function that calls the

original function. But there is a problem with gprof regarding the cycles. If function a

and function b call each other and b and c call each other all three functions belong to the

same cycle. Even, when function b calls a, but a does not call b, gprof still considers it as

a single cycle. However, the cycle information is not important for our research.

4.1.3 Statistical Sampling Error

Gprof uses sampling to find the time periods, so the time periods in the profiles have

some statistical inaccuracy in them. For n samples the error rate is square root of n. For

example if the sample time is 0.01 seconds and the total run time is 1 second then there

are 100 such samples and the error rate is 10. If there is a function that has a very small

amount of execution time so that the sampling can find that function only once, the

profiler may find it zero times or even twice in some cases. The numbers are considered

reliable only when they are much higher than the sampling time. The small numbers in

the ‘self seconds’ tells us that these functions share an insignificant percentage of total

time, so they need not be optimized.

Reducing the sampling period would give us more accurate values for the self-seconds.

But unfortunately the sampling rate is not controlled by gprof itself. Instead it is handled

by the special function monstartup, which is called by a profiled program when it

starts up. This function uses the Linux operating system function profil to set up the time-

based sampling. On typical UNIX systems, as well as on GNU/Linux, the precision of the

gprof timer is determined by the behavior of the profil function. On GNU/Linux, profil is

part of glibc, not a kernel system call. If we want to change the sampling time we have to

find the sources for the profil function in the kernel and then examine them to see if you

can change the sampling frequency. Then, we have to rebuild the kernel with this

 33

changed function in it before we can start generating profiles with greater sampling

frequency.

4.2 Profiling GCC test cases

4.2.1 Building the GCC sources and run test cases

All our experiments were performed on GCC-3.2.3, which was released on April 22,

2003, and GCC-3.3.3, which was released on February 14, 2004. Although we are

concerned only about the compiler proper cc1 (see Section 3.2), we downloaded the

complete GCC with different language front-ends, so that we would not have any

problems in building the GCC source. The sources for these versions are downloaded

from one of the mirror sites of GCC. The details of the source code are explained in

Section 3.2. Like any software from GNU, GCC needs to be configured before it can be

built. To instrument the source code and generate the profiles for GCC some special

options must be used while installing GCC. Some key differences between normal

installation and profiling-enabled installation are:

• We need either CC or GCC added to the Unix PATH variable

• Have a separate directory for building the source code

• Use option “-g -profile -O2” while configuration

• Use “make all” instead of “make bootstrap”

As explained in Section 3.4 we used the test suite of GCC 3.3.3 to test GCC 3.2.3. We

ran the test cases with a GNU testing tool called dejagnu. Dejagnu is a collection of Tcl

scripts crafted to develop a test infrastructure that supports a specific tool [1]. There is no

limit on the number of test cases that can be tested with dejagnu. Dejagnu is written in

expect. Expect uses Tcl, a tool command language. Dejagnu is open source software

developed by GNU.

 34

Out of 20,000 test cases available with GCC 3.3.3 test suite we used only 2126 test cases,

which are in the gcc.c.torture, gcc.dg and gcc.misc.tests folders because we are only

testing the C proper part of GCC (see Section 3.4). We run all the test cases using a

single make command. This tests all components of gcc, the language front-ends and all

the runtime libraries. We can even run these test cases separately. We have separate test

drivers written in expect to run each set of test cases separately. Details of these test cases

are given in Section 3.4. GCC has targets make-check-gcc and make-check-g++ which

are used to test c and c++ language frontends separately. We can also run the test cases in

different order by writing scripts in expect. When we run the test cases using the make-

check command various *.sum and *.log files are created in the subdirectories of the

testsuite [1]. The *.log files contain a detailed description of testcase name, type of

testcase and the corresponding result. The *.sum summarize all the results. The results in

the *.log files and .sum files are associated with the status codes shown in table 4.1. a

sample from the sum (.sum) file is shown in Figure 4.6.

Status Code Meaning

PASS The test passed as expected

XPASS The test unexpectedly passed

FAIL The test unexpectedly failed

XFAIL The test failed as expected

UNSUPPORTED Test is not supported on this platform

ERROR Testsuite detected an error

WARNING The testsuite detected a possible problem

Table 4.1: Status codes used for log files in Dejagnu testing tool

It is very easy to interpret the results once we have the log files that are generated during

testing. We considered both XFAIL and FAIL status codes as failures and we neglected

those with the status codes UNSUPPORTED, ERROR. UNSUPPORTED and ERROR

 35

status codes are generated due to the failures in running the test cases, for example failure

in the test driver (Dejagnu).

PASS: gcc.c-torture/compile/20030821-1.c, -O3 -fomit-frame-pointer

PASS: gcc.c-torture/compile/20030821-1.c, -O3 -g

PASS: gcc.c-torture/compile/20030821-1.c, -Os

FAIL: gcc.c-torture/compile/20030907-1.c, -O0

FAIL: gcc.c-torture/compile/20030907-1.c, -O1

FAIL: gcc.c-torture/compile/20030907-1.c, -O2

PASS: gcc.c-torture/compile/981007-1.c, -Os

XFAIL: gcc.c-torture/compile/981022-1.c, -O0

XFAIL: gcc.c-torture/compile/981022-1.c, -O1

XFAIL: gcc.c-torture/compile/981022-1.c, -O2

…………………………………………………………………………

………….

=== gcc Summary ===

of expected passes 19903

of unexpected failures 1355

of expected failures 68

of unresolved testcases 58

of unsupported tests 100

/home/sunil/gcc/config/gcc/xgcc version 3.2.3

Figure 4.6: Sample from *.sum file generated by Dejagnu

 36

We also generated execution profiles for all the test cases so that we can have an insight

into execution path. Saving each profile separately after the execution is tedious as there

are 2126 such profiles. We combined the process of testing and profiling and automated

the whole process using awk scripts. The test cases are basically C programs. Every time

we run a new test case (running a test case is nothing but compiling a C program) a new

gmon.out file (a file in which all the profile information is stored) will be created in the

same folder. The script will run the profiler and save the profile so that the new gmon.out

file will not replace it.

Generating profiles for test cases is not a trivial task because we built both cc1 (compiler

proper) and the GCC driver binary (gcc) with profiling. The gcc program is just a driver

that parses the options we give with gcc (the command), and calls whatever subprograms

needed to compile the program. The functions that are called by gcc driver include the

preprocessor, the compiler proper (cc1), the assembler, the linker, and possibly other

programs. Since we built both gcc driver and cc1 for profiling, the gcc-gmon.out

overwrites the cc1-gmon.out, but it is the cc1-gmon.out that we want. Irrespective of the

input given to the compiler the profile for gcc driver remains same. We had two options

to choose from to resolve this problem. One was to run the compiler proper (cc1)

separately. The second one was to rebuild the exact same sources without profiling

(normal bootstrap) and then, instead of installing them, we can to copy myconfig/gcc/xgcc

over /root/install/bin/gcc. Relinking the xgcc executable without -p/-pg will solve the

problem. We ran the compiler proper separately and generated profiles only for cc1

driver. This is the most reasonable way we found, to generate the profile for the compiler

proper cc1.

Each time a profile is generated, it is stored along with the test case in the test case sub-

directory. We have 2126 profiles, one for each test case. Each profile has a flat profile

and a call graph. Each flat profile has 700 to 1000 functions in it. The call graph had

more functions because it shows all the children and parents of each function that was

executed. There is lot of redundant data in the profiles generated by gprof. We parsed the

 37

file to extract the information we needed. We care only about the unique function names

in the profile and which function called which other functions and how many times. The

profiles we have are similar to each other in the sense that, there are many common

functions in all the profiles. This is because the test cases are too small that there can be

significant difference between the two profiles. We choose these test cases to analyze the

behavior of GCC because they test different parts of the compiler and we have an oracle

that tells us which test cases are passed and which test cases are failed, so that we can

trace the faults related to these failures.

4.2.2 Mapping from functions to components

The profiler gives us the execution information at the function level. On average we have

more than 700 functions in each flat profile (see Section 4.2.1). We found that there are

1759 unique functions in 2126 profiles we have. We are using state based approach to

build the architecture-based software reliability model [7] [8]. We can build a control

flow graph from the profile data by considering each function as a state in the system. It

is very unrealistic that we build a control flow graph with 1759 states in it. It is very

difficult to estimate the reliability at the function level because we do not have fault

information at function level. More over there will be a state explosion in the Markov

chain if we use all 1579 functions as states. We reduced the number of states by mapping

these functions to the corresponding files. We used ctags to map functions to files. Ctags

is an open source software developed by GNU, which is used to extract different kinds of

tags in a C program [26]. A tag can be anything from a simple variable to something

more complex, like a structure. We found that these 1759 functions belong to 108 source

files in GCC.

 38

Building the operational profile for GCC at the file level is not trivial because we have

108 files that control flows between. We would need to make 108 states in our Markov

chain. Instead, we decided to further reduce the number of states by mapping these files

to components. This is very hard because the documentation available for GCC in their

official website and all other accessible resources is very old. Further more. We had

limited domain knowledge. We used some information about the passes of compiler

given in [6], but only 65 files have been mentioned in this documentation. In [6] the

compilation process is divided into series of steps (passes) and a few files are assigned to

each pass. However, that information was not enough to divide the system into

components. More than 50 files out of 108 files are missing from the documentation. We

looked in to the source code to understand what each file does and assign that file to the

appropriate component. We divided GCC into 17 components, which have different

functionalities. Files are assigned to components based on their functionality. The

components and the number of files in each component are given in table 4.2

Component Name Comp. ID # of files

Parsing 1 32

Tree Optimization 2 11

RTL Generation 3 26

Jump Optimization 4 4

CSE 5 4

GCSE 6 2

Loop Optimization 7 10

Register Allocation 12 11

Branch Processing 13 4

Final Pass 14 9

Library Files 15 21

Top Level Control 17 1

Table 4.2: Component Reliabilities

 39

4.3 Building Database

Since the profiles are extremely big, it would be inefficient to store them in flat files (see

Section 4.2.2). A database is more efficient and manageable than a flat file when we use

the information repeatedly [10]. We stored all the information in the database, so that we

do not have to parse the profiles every time we want some information from them. We

used JAVA programming language and ORACLE relational database (with JAVA

database connectivity) for the parsing and database development respectively. We have

the following four tables in our database

• Profile_Names

• Profile_Data

• Functionstofiles

• Component_Data

4.3.1 PROFILE_NAMES

The first table in our database is Profile_Names. Profile_Names table has two

attributes. First one is the profile name and second is profilenum (the index number).

Profilenum is the primary key for the table. A small sample from Profile_Names is

shown in Table 4.3. Values are taken from the profile number one, the profile for the first

test case. The only use of this table is to assign unique index numbers for the profiles so

that they can be used in the remaining tables.

 40

PROFILE NAME PROFILENUM

Wreturn-type 1651

Wreturn-type2 1652

Wshadow-1 1653

Wswitch-2 1654

Wswitch-default 1655

Wswitch-enum 1656

Wswitch 1657

Wunknownprag 1658

Wunreachable-1 1659

Table 4.3: Sample from the Profile_Names table.

4.3.2 PROFILE_DATA

The second table in the database is Profile_Data. It contains function call data from all

2126 profiles. The data was taken only from the call graphs of all the profiles.

Profile_Data is the most important table in the database because it has all the information

from the profiles. All the remaining tables use information from Profile_Data.

Profile_Data has five fields; filenum, functionname, functioncalled, count and time.

• Filenum is the index number created in the Profile_Names table.

• Functionnam is the name of a unique function in the profile.

• Functioncalled is one of those functions that were called by the functionname in

the current profile.

• Count is the number of times the functionname called the functioncalled.

• Time is the time spent in the functionname in the current profile.

A sample from Profile_Data table is shown in Table 4.3. The values in the table are not

from the original profile, but illustrate how the values in the table are organized. As

 41

shown in table 4.3, the function calls related to the first profile are listed first, followed

by the function calls related to profile two and so on. We have information about 2126

test cases in our database. Table 4.4 is just a sample of the data we have in profile_data.

We have 4,643,491 rows in this table. One can estimate the size of data we have and the

complexity of the case study we are using, by looking at this table.

FILENUM FUNCTIONNAME FUNCTIONCALLED COUNT TIME

1 insn_default_length constrain_operands 435 0.01

1 insn_default_length get_attr_i387 45 0.02

1 insert_insn_on_edge emit_insns_after 43543 0.05

1 shorten_branches emit_insns_after 34 0.01

1 constrain_operands find_reg_note 5 0.01

2 propagate_block propagate_one_insn 45 0.02

2 propagate_block compare_tree_int 4354 0.01

2 size_diffop compare_tree_int 356 0.01

2 bitmap_copy propagate_one_insn 77 0.06

2 bitmap_copy Bitmap_print 5 0.04

3 reg_to_stack dead_or_set_p 6 0.05

3 reg_to_stack find_regno_note 5657 0.01

3 reg_fits_class_p try_split 67688 0.02

3 try_split set_noop_p 678 0.04

3…… find_reloads rtx_equal_p 676 0.01

………. ……….. ……………. ……….. ………….

2126 Recog push_operand 343 0.01

2126 Recog Binary_fp_operator 33 0.01

2126 get_insn_name immediate_operand 1 0.02

2126 make_insn_raw ix86_binary_operator_ok 5547 0.01

Table 4.4: Sample from Profile_Data table from our database

 42

4.3.3 FUNCTIONSTOFILES

We divided GCC into components so that the data becomes more manageable (see

section 4.2.2). Functionstofiles table has the mapping from functions to files and to

components. We have three fields functionname, filename and componentname in this

table.

• Functionname is name of the function,

• Filename is name of the file that functionname belongs to.

• Componentname is the component that the filename belongs to.

We have 1759 records in the table, one for each unique function. Table 4.5 shows a

sample from the table Functionstofiles.

FUNCTIONNAME FILENAME COMPONENTNAME

error_with_file_and_line diagnostic.c Final Pass

gen_split_1038 gen.c RTL generation

error_module_changed Diagnostic.c Final Pass

Record_last_error_module Diagnostic.c Final Pass

htab_hash_string hashtab.c System Library

in_data_section varasm.c Final Pass

set_named_section_flags varasm.c Final Pass

default_section_type_flags varasm.c Final Pass

Named_section_flags varasm.c Final Pass

default_elf_asm_named_section varasm.c Final Pass

Table 4.5: Sample from Functionstofiles table from our database

 43

4.3.4 COMPONENT_DATA

 Component_Data has the information about the profiles at the component level.

Component_Data table has same structure as the Profile_Data table. The records are

generated by combining information from Profile_Data and Functionstofiles tables. The

function names in Profile_Data were replaced by the corresponding component names.

We used the table Functionstofiles for the mapping. A small part of the table is shown in

table 4.6. We have five fields in this table: Filenum, Component Calling, Component

Called, Count and Time.

• Filenum is the index number assigned to the profile.

• Component Calling is the component where the calling function is in.

• Component Called is the component where the function called is in.

• Count is the number of times the Component Calling called the Component

Called.

• Time is the time spent in the Component Calling.

 44

FILENUM COMPONENT

CALLING

COMPONENT

CALLED

COUNT TIME

1 Parsing Parsing 435 0.01

1 Jump optimization RTL generation 45 0.02

1 Parsing System Calls 43543 0.05

1 Tree optimization Parsing 34 0.01

1 RTL generation Jump optimization 5 0.01

2 Tree optimization Parsing 45 0.02

2 Parsing System Calls 4354 0.01

2 Tree optimization RTL generation 356 0.01

2 Parsing System Calls 77 0.06

2 Tree optimization Parsing 5 0.04

3 RTL generation RTL generation 6 0.05

3 RTL generation System Calls 5657 0.01

3 Parsing Parsing 67688 0.02

3 Jump optimization System Calls 678 0.04

3… Tree optimization RTL generation 676 0.01

………..

……….

….…………..

………….

…………………

…………………

………..

………..

…………

………....

2126 Parsing System Calls 343 0.01

2126 RTL generation Jump optimization 33 0.01

2126 Parsing Parsing 1 0.02

2126 Jump optimization Parsing 5547 0.01

Table 4.6: Sample of Component_Data table in our database

 45

Chapter 5

Building the Operational Profile

We gathered all the information needed to build the operational profile of GCC using

gprof during the testing (see Section 4.2). The validity of the operational profile is very

difficult to estimate because it requires an in depth knowledge of the field usage of the

software. The usage of the software components differs from one execution to the other.

Some components could be activated only by a very complex sequence of instructions

whose frequency is very hard to estimate a priori [20]. We tried to build an operational

profile for the system that closely reflects the actual behavior on a given system

architecture. We used the regression test suite provided with the GCC source code.

Details about the test cases are given in Chapter 3. These test cases were written to test

different features like language specific constructs, variable declarations and memory

allocation of GCC. We can also generate different operational profiles by running a

subset of test cases. We are building the operational profile for the C proper part of GCC

so we have chosen a specific set of test cases from the suite that are written in C (see

Section 4.2.1).

We run these test cases using a tool called dejagnu (see Section 4.2). We used gprof, a

GNU profiler to get the traces of the execution (see Section 4.1). As explained in section

4.3, we have developed a database to store all the data from the execution profiles. All

the information we need to build the operational profile is in the database. We extracted

the values from the database to find the transition probabilities of the components. We

have 17 components in our system. We added two hypothetical states START and END,

the starting state and an absorbing state respectively. START and END do not contain

any files. They are just dummy states added to the system to complete the Markov chain

[20]. Table 5.1 has the counts (number of functions calls) for the component interactions.

 46

Table 5.1: Call counts for components in GCC

 If X and Y are two states in the system, the entry (X, Y) in the table represents the

number of times component X called component Y. These counts take all (2126) test

cases into consideration. There are no entries for components 8, 9, 10 and 11 because no

execution profile contains any function from the files in these components. The test cases

we chose may not need these components to be invoked to finish the execution. We did

not consider those calls that are from some function in the component to some other

function in the same component. So we have zeroes for all (X, X) entries. We represented

the operational profile, in the form of a graph shown in Figure 5.1.

 47

Fig 5.1: Operational profile of GCC

The component we have at the center (component 17) controls the execution. The

compilation process starts and stops in component 17. We have a dummy state START

from which the control transfers to component 17. Once the control goes to component

17, it handles calls to all the other passes and finishes the execution. We also have a state

called END where the execution ends. The END component does not contain any files in

it. It is a dummy state, which is used to represent the end of execution. In reality the

execution starts and stops in component 17 itself. We can see the control passes from 17

to all other components.

 48

The profiles generated from gprof have information about the functions that were visited

and the number of times each function called other functions in the profile. They do not

have information about the sequence of execution. It is very hard to find how many times

the execution ends in component 17 because, we have multiple end points in component

17 as the assembly code for each and every construct of program will be generated

separately by different functions in component 17 (in toplev.c). We had to find out

manually which functions in component 17 will lead to an end.

The reason for multiple end points for GCC is test case minimization [1]. “A simplified

test case means the simplest possible test case that still reproduces the bug. If you remove

any more characters from the file of the simplified test case, you no longer see the

bug”[11]. A test case is a C program in our experiments. Minimization is removing the

part of the program that does not test the program and keeping only the part of the

program that causes the failure of the system. A minimized test case may not be a

complete C program but just a part of it. There are different functions in the toplev.c that

take care of different constructs of C program. We needed to consider all such functions

to come up with our hypothetical END state.

The transition probability matrix is shown in table 5.2. The entry in cell (X, Y) represents

the probability that component X calls component Y. The values in Table 5.2 are derived

from Table 5.1 using the Equation 5.1.

i

ij
ij n

n
P = (5.1)

Where nij = ∑ j ijn

 49

Table 5.2: Transition probability matrix for GCC

 50

Chapter 6

Fault Detection

6.1 Mapping Failures to Faults

“”Failure is a departure of system behavior in execution from user requirements” [22].

Failure is a user-oriented concept in the sense that it must occur during the execution of

the software by the user. The defects detected by source code and design inspections

cannot be considered as failures. These defects may not cause a failure during the actual

execution of the software. “Fault is the defect that causes or can potentially cause the

failure when executed” [22]. Fault is developer oriented in the sense that it is generated

because of an error during the development of the software. For example, suppose that a

particular output is expected for a test case and it does not occur, it might be because of

some missing code or some incorrect code in the software, which is a fault.

We encountered failures during the execution of the test cases. Now, we are trying to

map these failures to faults in the software. Finding the number of times each component

is executed is very easy because we have all the data in our database. We can directly get

the values from the database using SQL queries. It is hard to find out how many times

each component has failed. For all those test cases that failed, we had to find out why

they were failed. Neither the log files, that are generated during the testing nor the

execution profiles generated by gprof contain any information about the location of the

fault. There is no documentation given by the GCC developers regarding the test case

failures.

We employed the following three methods to find the failure information.

• Searching test case Change-Logs and Source-code Change-Logs of version 3.3.3

• Search the bug-tracking database Bugzilla

• Execute tests on newer versions & search logs

 51

Section 6.1 explains each of the methods in detail.

6.1.1 Searching test logs & change logs of version 3.3.3

 As we discussed in chapter 3, different versions of GCC are released periodically.

Every version of GCC comes with a regression test suite. To track the changes made to

the test suite, the developers maintain a database that has all the changes made to the test

suite. The data is in the form of Change-Log files. Change-Log files are provided along

with the test cases. There are two kinds of Change-Log files; Source-code Change-Log

files and test case Change-Log files.

Test case Change-Log files contain the change information about the test suite that

comes with GCC source code. They contain information about when a test case is added

to the suite, who added that and what kind of test case it is. A sample from one of the log

files is shown in Figure 6.1.

Source-code Change-Log files contain the change information about the source files in

GCC. They are renewed with every version of GCC. The information in the Source-code

Change-Log file includes when a file is changed, who changed the file and how the file

was affected by the change. A sample from the file is shown in Figure 6.2.

In Figure 6.1, the first line in each entry has the date on which the test case has been

written, name of the author, and the email address For example the line “2004-02-03

Zack Weinberg zack@codesourcery.com” tells us that Zack Weinberg has made a change

to the Change-Log on 2004-02-03. The following lines have the test cases that were

added by that author on that date. For example, the line “g++.dg/eh/forced4.C: XFAIL

ia64-hp-hpux11” tells us that the forced4.c test case was added to g++.dg folder. The

most important information here is the PR number (Problem Report number) given to

each added test case. This PR number will be used as an index to search through the

Bugzilla database (see Section 6.2). There are more than 3500 entries in the Test-case

Change-Log file. However, we have only 169 PR numbers corresponding to the test cases

 52

we used. That is why the searching Bugzilla was not so successful because the search was

based on PR numbers.

Figure 6.1: Sample from the Test Case Change-Log

The entries in the Source-code Change-Log (Figure 6.2) have the same format as the test

case change log. The information here is different from the test case Change-Log. We can

see the date and the name of the author followed by the list of files that were changed by

that author on that date and a very brief description of the changes made. We used both

test case Change-Log files and the Source-code Change-Log files in parallel to track the

failures. In [12], [27], [28] Andy Podgurski, David Leon and William Dickinson used the

 53

failure information about GCC test cases. However, the authors did not use the Change-

Log files to find the faults. They run the test cases on different versions to find out when

the test cases stopped failing. there are more than one Source-code Change-Log files in

the GCC source code which are arranged chronologically. Each Source-code Change-Log

has more than 19,000 entries. The ratio of PR numbers in Source-code Change-Log is

even smaller than Test-case Change-Log. We have only 3550 PR numbers. this is the

reason why we did not use PR numbers as a key for mapping changes from Test-case

Change-Log to Source-code Change-Log.

Figure 6.2: Sample from Source-code Change-Log

 54

We can track a failure and map it to the corresponding fault using these two files. When a

test case is written, it is tested against the latest version available. If the test case fails, the

author will make an entry in the test case Change-Log, along with the date and the author

name. Then he tries to find out the location of the fault and fix it. Once the problem is

fixed, an entry will be made in the Source-code Change-Log representing the date,

author, and the files that were changed to fix the problem. We use this information to

track the failures and map the failures to faults in the source code. For example, if we

have a test case that failed on GCC 3.2.3, we search for the test case file name in the test

case Change-Log (of GCC 3.3.3) first. Then we use the name and date of that entry to

search the Source-code Change-Log, which when found tells us, all the files that were

changed to ensure that the failure would not happen again. There can be other entries in

the Change-Log files due to the changes made for the enhancements in the system. We

find the defects at the file level. We could find 41 defects with this method. This is 75%

of the total defects that we found. This is the most efficient method among the three. We

automated the whole process using awk (a Unix scripting language). The script searches

the Test case Change-Log and records the name of the person and the date of the change

entry, and then searches the Source-code Change-Log, to find the entry with the same

date and name. Since these two log files are in same format, it was very easy to automate

the process.

6.1.2 Search the bug-tracking database Bugzilla

Bugzilla is a "Defect Tracking System" or "Bug-Tracking System" [13]. Bug tracking

systems are used by developers to keep track of the bugs in the software. Bugzilla is a

free software from GNU developers. It is most widely used bug tracking system not only

because its free, but also for the features it has. Bugzilla is a powerful tool that will help a

group of developers to get organized better and communicate effectively. Bugzilla also

helps in reducing the downtime, increasing the productivity, and reducing project costs.

Here are a few special features that bugzilla provides [13].

 55

• Optimized database structure for increased performance and scalability

• Excellent security to protect confidentiality

• Advanced query tool that can remember your searches

• Integrated email capabilities and comprehensive permissions system

• Editable user profiles and comprehensive email preferences

Bugzilla contains information about bugs in software. Every bug entered in bugzilla

database is given a set of attributes. Table 6.1 explains the attributes. Bugzilla provides an

excellent query facility to search for bugs based on these attributes. A sample output of

the bugzilla query is shown in Table 6.2. Every bug has a detailed description associated

with it.

The PR numbers extracted from the test case Change-Log files are used to search in the

description page of a bug. This was a manual process, and was also the most inefficient

method of the three proposed because there are no PR number entries for all the test cases

in the test case Change-Log files. PR number is the only index that can be used for

searching the bugzilla database. We found only 3 defects with this method, which is only

5% of the total bugs found.

 56

Attribute Purpose Possible values

Bug-id Unique ID given to the bug Any valid integer

Status Define and track the life cycle

of a bug

UNCONFIRMED

NEW

ASSIGNED

WAITING

SUSPENDED

REOPENED

RESOLVED

VERIFIED

CLOSED

Resolution Define and track the life cycle

of a bug

FIXED

INVALID

WONTFIX

DUPLICATE

WORKSFORME

Severity Describes the impact of a bug Critical

Normal

Minor

Enhancement

Priority Describes the importance and

order in which a bug should be

fixed

P1

P2

P3

Table 6.1: Table that describes the bug attributes

 57

bug_id bug_severity priority Gcchost short_short_desc

57 Normal P3 - confusing name lookup diagnostic
99 Normal P3 - Constant expressions constraints
100 Normal P3 - Statement expressions issues
157 Minor P3 - -
189 Normal P3 - -
192 enhancement P3 - -
336 enhancement P3 - -
346 Normal P3 - -
378 Normal P3 - -

429 enhancement P3 i386-pc-
linux-gnu

-

448 Normal P3 i686-pc-
linux-gnu

-

456 Normal P3 i686-pc-
linux-gnu

529 Minor P3

545 Normal P3 i686-pc-
linux-gnu

561 enhancement P3 -
576 enhancement P3 -
592 Normal P3 -

605 enhancement P3 *-sun-
solaris*

704 enhancement P3 i686-pc-
linux-gnu

712 normal P3 -

772 normal P3 i686-pc-
linux-gnu

864 enhancement P3 -

914 normal P3 i686-pc-
linux

950 normal P3 -

Table 6.2: Sample of bugzilla bug database

 58

6.1.3 Execute tests on newer versions & search logs

We could not find the defect information about some of the test cases using either of the

above methods. As a final bug location method, we tried to test those test cases on newer

versions that were released after 3.2.3) and see where exactly it executed without a

failure. We have three versions released between GCC 3.3.3 and GCC 3.2.3. This method

is used by Andy Podgurski, David Leon in [12]. Even though we used this method as our

final option, it proved to be more efficient than searching the bugzilla for defects. After

identifying the version in which the bug was fixed, ‘Searching test logs & change logs’

was repeated here to find the defects (as explained in section 6.1). We found 20 defects

with this method, which is 20% of the total defects found.

6.2 Estimating component reliability

“The reliability of component i is the probability Ri that the component performs its

function correctly” [20]. There are many methods to calculate the component reliabilities.

We can use the historical data and the requirement documents if the project is in early

stages. We can also use software reliability growth models for each component [18], [19].

However, the failure data available may not always sufficient to apply these models. Here

we used information about the non-failed executions together with information about the

failed executions during the testing to find the component reliabilities [14], [15], [16],

[17]. These methods depend heavily on the type and nature of the test cases used to find

the faults. Irrespective of the method used to find out the component reliabilities, the

values may be inaccurate. We estimated the mean value of reliability for each

component. Equation 6.1 gives the reliability of a component.

 (6.1)

Where fi is the number of failures and ni is the number of executions of component i in N

randomly generated test cases.

i

i

n
i n

fR
i
lim1

∞→
−=

 59

Table 6.3 shows the number of times each component was executed. We also found the

number of times each component failed. After we found the defect information about all

the components we calculated the component reliabilities using equation 6.1. The

component reliabilities are shown in table 6.3.

Comp. ID Fi Ni Ri

1 30 1,656,221 0.99998189

2 1 135,180 0.99999260

3 7 1,688,076 0.99999785

4 0 162,338 1.00000000

5 1 11,326 0.99991171

6 1 57,377 0.99998257

7 0 72,680 1.00000000

12 0 372,486 1.00000000

13 0 16,087 1.00000000

14 4 381,046 0.99998950

15 10 919,668 0.99998912

17 1 302,504 0.99999669

Table 6.3: Component Reliabilities

Comp_ID is a unique identification number given to the component. Component ID’s 8,

9, 10, 11 and 16 are not shown because they were not executed by any of the 2126 test

cases. Fi is the number of times the component failed in the 2126 test cases. Ni is total

number of times the component is executed in 2126 test cases. Ri is the reliability of the

component i. We can observe that the reliabilities are extremely high and almost equal to

one. This is because we have few failures compared to the number of executions of each

component.

 60

6.3 Estimating system reliability

We used the state-based composite method proposed by R.C. Cheung in [21] to combine

the software architecture with the failure behavior of the software. The model assumes a

single entry node and single exit node for the system. We added two absorbing states C

and F to the discrete time Markov chain (DTMC). These states represent the successful

completion and failure of the system respectively. We already have added two dummy

states START and END in the operational profile (Figure 5.2), which represent the

beginning and ending of the execution. The transition probability P is converted to P1.

The transition probability Pij in the original matrix (Table 5.2) is converted to RiPij to

generate the values in P1. Ri is the reliability of the component i. RiPij is the probability

that the component i produces the correct result and the control is transferred to

component j [20]. An arc is made between the failure state and the component i with a

transition probability of (1 - Ri), to consider the failure of component i. The components

C and F are not considered when calculating the system reliability. The reliability of the

system is the probability that the control reaches state C from START state. The matrix

P1 is converted into Q by deleting the rows corresponding to C and F. The element Qk (1,

n) represents the probability of reaching state n from START state with k transitions [20].

The number of transitions ranges from 0 to infinity. We can prove that

∑∞

=
−−==

0
1)1(

k
k QQS [9]. So the system reliability is R = S (1, n) Rn. We used

MATLAB to implement the equation to find the system reliability.

The value for the reliability calculated using this method is 0.9201. We also found the

reliability of the system using the black box testing and compared the two values. The

error in the reliability estimate is given by equation 6.2. The error in estimation is a mere

5.5%.

 (6.2)

%5.5100
9741.0

9741.09201.0100 =⋅
−

=⋅
−

actual

actualmodel
R

RR

 61

Chapter 7

Uncertainty analysis using entropy

We estimated the system reliability using the architecture-based methodology proposed

in [20]. They derived an equation for the system reliability in terms of the transition

probability Pij and the component reliability Ri, however, there exists a considerable

uncertainty in the software usage and failure of the components. There will be a certain

amount of uncertainty in the reliability calculation even though the mathematical model

is accurate [7]. We studied the uncertainty in the operational profile and the software

reliability model. We used a method that is based on source entropy to analyze the

uncertainty in the software reliability model [9]. This method can be used to assess the

uncertainty of the operational profile and software reliability model.

Entropy is a very important concept in the field of information theory. In information

theory entropy is used to estimate, to which extent a source can be compressed. Entropy

calculates the amount of uncertainty in a Markov source. Equation 7.1 gives the entropy

of the system.

 (7.1)

Here ∏i represents the steady state probability of state i. Pij is the transition probability of

the stochastic source. The range of the value is 0 ≤ H(S) ≤ log (n) [37] where H(S) is the

entropy of the system. The entropy for GCC is calculated as 1.0913. We also quantified

the uncertainty of the components using the concept of conditional entropy. The

uncertainty of the component i, is given by equation 7.2. The values of the uncertainties

are shown in Table 7.1.

 (7.2)

Where Pij is the transition probability

∑∑−=
j

ijij
i

i ppH logπ

∑−=
j

ijiji ppH log

 62

Component Name Comp. ID Expected
Execution Rate

Component
Uncertainty

Parsing 1 0.1007010 1.3418020

Tree Optimization 2 0.0023429 1.6623364

RTL Generation 3 0.1005563 1.4597536

Jump Optimization 4 0.0052616 1.5319009

CSE 5 0.0003992 1.3711187

GCSE 6 0.0005844 1.5794114

Loop Optimization 7 0.0003185 1.5911179

Register Allocation 12 0.3445442 1.2925663

Branch Processing 13 0.0000477 1.1466891

Final Pass 14 0.0386909 0.6457689

Library Files 15 0.3994340 0.7833594

Top Level Control 17 0.0070462 1.6905673

Table 7.1: component uncertainties

 The table also has the values for estimated execution rates ∏i for all the

components. The execution rates ∏i and the component uncertainties are shown in Figure

7.1. We can observe that component 1, 3, 12 and 15 have high expected execution rates

compared to the other components. Components such as 5, 6, 7, and 13 have low

expected execution rates compared to the others, which proves that the software

executions are skewed. The components with a higher execution rate are expected to

affect the system more than those that have a lower execution rate. The components with

higher uncertainty will have greater impact on large part of the system.

 63

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 12 13 14 15 17

Expected Execution Rate

Component Uncertainty

Components

Figure 7.1: Expected execution rate and component uncertainty graph

We can observe that components 2 and 17 are more critical in the system because they

have higher uncertainty. In Figure 7.1, components 12 and 15 have higher expected

execution rates however; component 12 is considered to be more critical since it has a

higher component uncertainty, which means that it will affect larger part of the system.

 64

Chapter 8

Conclusion

This thesis presents the architecture-based reliability analysis of a large-scale open source

application. We implement the Architecture-based methodology for uncertainty analysis

of software reliability proposed in [20] to estimate the reliability of the system and to

study the uncertainty analysis of reliability using entropy. We used GCC, a GNU open

source compiler for our experiments. This is the biggest case study ever used for

reliability analysis. The most important thing that differentiates our research from most of

the related work is the magnitude of the case study we are using. The problems associated

with experiments on empirical studies are explained. We addressed most of the

potentially difficult problems associated with large-scale software applications. All

previous studies on empirical studies mentioned in the related work, contributed to a

small set of these problems. We presented an architecture-based methodology for

reliability analysis. This methodology uses state based approach to find three important

features of the software; the software-architecture, software-usage, and the software

failure behavior, which are necessary to calculate the reliability of the system. An

empirical approach for the architecture based reliability analysis was proposed, which

uses white-box approach for the reliability analysis.

We used informed-approach to estimate the software architecture. The regression test

suite provided with GCC 3.3.3, which has test cases to test GCC 3.2.3 and a testing tool

called Dejagnu were used for testing GCC. Gprof, a GNU open source profiler, was used

to extract traces of the test case executions. The process of running the test cases and

saving the profiles was automated. We used call-graph generated by gprof, to find the

interaction of different components in GCC during the test case executions. However, the

profiler gave execution profiles at function level. We mapped these functions to 108 files

in the source code. These files were further mapped to 17 components in GCC. The

source code of GCC was inspected manually to come up with the mappings from

 65

functions to files and files to components. The profiles generated by gprof were huge and

difficult to manage. A database was built to save the information from the profiles and to

make the mapping easier. We extracted data from the database to build the operational

profile for GCC.

We mapped the test case failures to the faults in the source code. Test-case Change-Logs

and Source-Code Change-Logs, which were provided with GCC source, were used for

this purpose. We implemented three different methods; Searching test case Change-Logs

and GCC Change-Logs of version 3.3.3, Search the bug-tracking database Bugzilla,

Execute tests on newer versions & search logs, to map the failures to faults in the source

code. The first method proved to be most effective. We automated the whole process of

searching through the change log files and mapping failures from faults, unlike other

researches that used manual inspection.

The reliability is calculated for each component. The system reliability is calculated using

both black-box method and the white-box method that we implemented. We got nearly

accurate value for the reliability, with only 5% of difference between the values found

using the two methods. The component uncertainty was analyzed using the method

proposed in [9]. This method uses entropy as a measure of component uncertainty.

Source entropy quantifies the uncertainty of the operational profile and architecture-based

reliability models. We found the critical components that have high uncertainty value,

which require more testing efforts than the other components. Further, the architecture-

based methodology helps us to estimate the expected execution rate and uncertainty of

each component using the theory of Markov chains and conditional entropy respectively.

In summery, the results presented in this thesis enrich the empirical knowledge in

software reliability engineering. Lessons learned from this large-scale experiment are

expected to be useful for conducting similar studies in the future.

 66

References

[1] www.gnu.org

[2] http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html

[3] http://www.delorie.com/gnu/docs/gcc/gccint_30.html

[4] http://www.gnu.org/manual/gprof-2.9.1/html mono/gprof.html

[5] http://www.cs.utah.edu/dept/old/texinfo/texinfo.html

[6] http://www.ictp.trieste.it/texi/gpp/gpp_55.html

[7] K. Goseva Popstojanova and K. S. Trivedi, “Architecture-Based Approach to

Reliability Assessment of Software System", Performance Evaluation, Vol. 45, N0.

2-3, 2001, pp. 179-204.

[8] K. Goseva Popstojanova, A. P. Mathur, and K. S. Trivedi, “Comparison of

architecture-Based Software Reliability Mod els", Proc. 12th International

Symposium on Software Reliability Engineering (ISSRE 2001), 2001, Hong Kong,

pp.22-31.

[9] S. K. Kamavaram and K. Goseva Popstojanova, “Entropy as a Measure of

Uncertainty in Software Reliability", Proc. 13th International Symposium Software

Reliability Engineering, Supplementary proceedings 2002,pp. 209-210.

[10] C. J. Date, Hugh Darwen: Relational Database Writings 1989-1991 Addison-Wesley,

1992.

[11] Andreas Zeller and Ralf Hildebrandt, “Simplifying and Isolating Failure-Inducing

Input”, IEEE Trans. Software Engineering, Vol. 28, No. 2, February 2002.

 67

[12] Andy Podgurski, David Leon, Patrik Francis, Wes Masri, Melinda Minch, Jiayang

Sun and Bin Wang, “Automated support for classifying software failure reports”,

Proc. 25th International Conference on Software engineering, 2003, pp. 465 – 475.

[13] http://www.bugzilla.org

 [14] B.Littlewood and D.Wright, “Some Conservative Stopping Rules for Operational

Testing of Safety – Critical Software” IEEE Trans. Software Engineering, Vol.23,

No.11, 1997, pp.673-683.

 [15] K.W. Miller, L. J. Morell, R. E. Noonan, S. K. Park, D. M. Nikol, B.W. Murrill, and

J. M. Voas, “Estimating the Probability of Failure when Testing Reveals no

Failures”, IEEE Trans. Software Engineering, Vol.18, No.1, 1992, pp. 33- 43.

 [16] E. Nelson, “A Statistical Bases for Software Reliability”, TRW-SS-73- 02, TRW

Software series, 1973.

 [17] J.H.Poore, H.D.Mills and D.Mutchler, “Planning and Certifying Software System

Reliability”, IEEE Software, 1993, pp 88- 99.

[18] W. Everett, “Software Component Reliability Analysis”, Proc. Symp. Application–

Specific Systems and Software Engineering Technology, 1999, pp 204-211.

[19] S. Gokhale, W. E. Wong, K. Trivedi, and J. R. Horgan, “An Analytical Approach to

Architecture Based Software Reliability Prediction”, Proc. 3rd Int’l Computer

Performance & Dependability Symp (IPDS’98), 1998, pp. 13-22.

[20] K. Goseva Popstojanova and Sunil. K. Kamavaram, “Assessing Uncertainty in

Reliability of Component-Based Software System", Proc. 14th IEEE International

Symposium on Software Reliability (ISSRE 2003), Denver, CO, Nov. 2003.

 68

[21] R. C. Cheung, “A User-Oriented Software Reliability Model”, IEEE Trans. Software

Engineering, Vol.6, No.2, 1980, pp. 118-125.

[22] John Musa, “Software Reliability Engineering”, McGrawhill

[23] Swapna S. Gokhale, W.Eric Wong, Kishor S.Trivedi and J.R. Horgan, “An

analytical approach to Architecture-based software reliability prediction”, IEEE

Internation Computer Performance and Dependability Symposium (IPDS'98),

September 07 - 09, 1998.

[24] Thomas J.Ostrand and Elaine J. Weyuker, “Difficulties Encountered doing empirical

studies in an industrial environment”, Proc. 15th IEEE International Symposium on

Software Reliability (ISSRE 2004), Bretagne, France, Nov. 2004.

[25] M.Lipow, “Number of faults per line of code”, IEEE transactions on Software

Engineering SE- 8(4): 437-439, July 1982

[26] www.gnu.org

[27] William Dickinson, David Leon and Andy Podgurski, “Pursuing Failure: The

Distribution of Program Failures in a Profile Space”, Proc. 8th European software

engineering conference held jointly with 9th ACM SIGSOFT international

symposium on Foundations of software engineering, Vienna, Austria, 2001, pp.:

246-255

[28] William Dickinson, David Leon, Andy Podgurski, “Finding failures by cluster

analysis of execution profiles”, Proc. 23rd international conference on Software

engineering, Toronto, Ontario, Canada, 2001, pp.339-348.

 69

[29] Michael R. Lyu, Zubin Huang, Sam K. S. Sze, Xia Cai, “An Empirical Study on Testing and

Fault Tolerance for Software Reliability Engineering”, 14th International

Symposium on Software Reliability Engineering, Denver, Colorado, November 17-

21, 2003.

[30] David Leon, Andy Podgurski, “A Comparison of Coverage-Based and Distribution-Based

Techniques for Filtering and Prioritizing Test Cases”, 14th International Symposium

on Software Reliability Engineering, Denver, Colorado November 17-21, 2003.

 [31] Norman E. Fenton and Niclas Ohlsson, “Quantitative Analysis of Faults and

Failures in a Complex Software System”, IEEE transactions on Software

Engineering, Volume 26, No.8, August 2000, pp. 797-814.

 [32] Thomas J. Ostrand, Elaine J. Weyuker, Robert M. Bell, “Where the bugs are”, Proc.

of the 2004 ACM SIGSOFT international symposium on Software testing and

analysis, Boston, Massachusetts, USA, 2004, pp. 86 – 96.

[33] Thomas J.Ostrand, Elaine J. Weyuker, “The distribution of faults in a large industrial

software system”, Proc. of the 2002 ACM SIGSOFT international symposium on

Software testing and analysis, Roma, Italy, 2002, pp. 55-64.

 [34] Gregg Rothermel, Roland J. Untch, and Chengyun Chu, “Prioritizing Test Cases

For Regression Testing”, IEEE Trans. Software Engineering, Vol.27, No.10, 2001,

pp.929-948.

 [35] Jean Dolbec, and Terry Shepard “A component based software reliability model”,

Proc. of the 1995 conference of the Center for Advanced Studies on Collaborative

research, Toronto, Ontario, Canada, 1995, pp.19-29.

 [36] A.G. Koru and J. Tian, "Defect Handling in Medium and Large Open Source

Projects", IEEE Software, Vol.21, No.4, pp.54-61, July/August, 2004.

 70

[37] Robert M. Gray, “Entropy and Information Theory”, “Information systems

laboratory electrical engineering department Stanford university”, Springer-Verlag,

19 November 2000.

[38] W. Farr, “Software Reliability Modeling Survey", in Handbook of Software

Reliability Engineering, M.R. Lyu(Ed.) , McGraw-Hill, 1996, pp.71-117.

[39] G. Booch, J. Runbaugh, and I. Jacobson,, “The Unified Modeling Language User

Guide”, Addison Wesley, 1998.

[40] http://xsuds.agreenhouse.com

	Empirical assessment of architecture-based reliability of open-source software
	Recommended Citation

	Empirical Assessment of Architecture-Based Reliability of Open-Source Software

		2004-11-17T14:49:42-0500
	John H. Hagen
	I am approving this document

