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ABSTRACT

Imputation Methods For Dealing with Missing Scores in
Biometric Fusion

Yaohui Ding

Biometrics refers to the automatic recognition of individuals based on their
physical or behavioral characteristics. Multimodal biometric systems, which con-
solidate multiple biometric characteristics of the same person, can overcome sev-
eral practical problems that occur in single modality biometric systems. While
fusion can be accomplished at various levels in a multimodal biometric system,
score level fusion is commonly used as it offers a good trade-off between fusion
complexity and data availability. However, missing scores affect the implementa-
tion of most biometric fusion rules. While there are several techniques for han-
dling missing data, the imputation scheme, which replaces missing values with
predicted values, is preferred since this scheme can be followed by a standard
fusion scheme designed for complete data. Performance of the following im-
putation methods are compared: Mean/Median Imputation, K-Nearest Neighbor
(KNN) Imputation and Imputation via Maximum Likelihood Estimation (MLE).
A novel imputation method based on Gaussian Mixture Model (GMM) assump-
tion is also introduced and it exhibits markedly better fusion performance than the
other methods because of its ability to preserve the local structure of the score dis-
tribution. Experiments on the MSU database assess the robustness of the schemes
in handling missing scores at different training set sizes and various missing rates.
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1 Introduction
Biometrics, or biometric recognition, refers to the automatic recognition of indi-
viduals based on their physical and behavioral characteristics, such as face, fin-
gerprint, iris and voice [1]. Biometric systems that consolidate multiple biometric
characteristics of the same identity are known as multimodal biometric systems.
Multimodal biometric systems overcome many practical problems like noisy sen-
sor data, non-universality and/or lack of distinctiveness of the biometric trait, un-
acceptable error rates, and spoof attacks [2].

The consolidation of different biometric sources is called biometric fusion.
Biometric fusion can be implemented at various levels, such as image level, fea-
ture level, rank level, score level and decision level. Fusion at the score level is
the most popular approach discussed in the literature [1, 2].

Most techniques for score level fusion are designed for a complete score vec-
tor1 where the scores to be fused are assumed to be available. These techniques
cannot be invoked when score vectors are incomplete.

Deletion methods, which omit all incomplete vectors, have negative implica-
tions for parameter bias and inefficiency [3, 4, 5], and are not suitable for use in
biometric systems [6]. Certain “strong” classification methods can get fair results
without deletion, especially when working with decision trees methods, such as
Dynamic Path Generation [7] and the Lazy Decision Tree approach [8, 9]. Im-
putation methods, on the other hand, which substitute the missing scores with
predicted values are better since (a) they do not delete any of the score vectors
which may contain useful information for identification, and (b) their application
could be followed by a standard score fusion scheme.

Many imputation methods are widely known. The Mean Imputation is one
of the most frequently used methods. The Median Imputation seems to be more
robust than Mean Imputation, since the mean can be affected by the presence of
outliers. In microarrays data analysis, missing values are sometimes replaced by
zero. The shortcomings of these simple imputation methods have been discussed
in the literature [10, 11, 12].

Dixon [13] introduced the K-Nearest Neighbor (KNN) imputation technique
for dealing with missing values in supervised classification problems. One sig-
nificant advantage of KNN imputation is that the correlation structure of the data
can be taken into consideration without any strict model assumption. In the Hot
Deck (HD) Imputation method [14], a missing value (the recipient) of an attribute

1Here, the elements of the vector are the scores generated by the individual matchers
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is filled in with a value (the donor) from the current data by using an estimated
distribution for the missing attribute. The simplest way to implement HD is to
randomly draw an observed value in the corresponding attribute as the donor. In
order to incorporate the uncertainty caused by the estimation process, Multiple
Imputation (MI) methods [15, 16, 17] estimate the missing values several times
with the values drawn from a fitted distribution.

Another popular method is based on Maximum Likelihood Estimation (MLE)
to handle the parameter estimation problem in the case of missing data [15, 27].
Variants of the Expectation-Maximization (EM) algorithm are used in these Max-
imum Likelihood (ML) procedures. They are generally superior to deletion meth-
ods, as MLE utilizes all the observed attributes of the data and can incorporate the
probability mechanism leading to the missing data. However, the original MLE is
a parameter estimation method rather than an imputation method. Therefore this
method cannot be applied directly in a classification environment.

Besides several parametric (Mean, MLE) and nonparametric (KNN, HD) tech-
niques which have been stated above, there are some semi-parametric techniques
that allow to control the trade-off between parsimony of sample size and flexibil-
ity of model assumption. One approach is based on the use of Gaussian Mixture
Models (GMMs) [18, 19, 21]. GMMs are not constrained to a specific functional
form, but allow for a large class of distributions. Priebe [22] shows that, with
10,000 observations, a log-normal density can be well approximated by a mix-
ture of 30 Gaussian components. An empirical study by DiZio et al. [23] shows
that, for the preservation of the covariance structure, a random draw method is
preferable over a conditional mean method when the GMM is used.

The missing score problem in multimodal biometrics has received limited at-
tention. Nandakumar et al. [28] designed a Bayesian approach utilizing both ranks
and scores to perform fusion in an identification system. The proposed method can
handle missing information by assigning a fixed rank value to the marginal likeli-
hood ratio corresponding to the missing entity. Fatukasi et al. [6] compared three
different variants of the KNN imputation method in biometric fusion.

In this work, two existing methods (Mean imputation and KNN imputation)
for handling missing scores are analyzed. Further, the MLE method is used as an
imputation scheme in biometric fusion. Next, a novel imputation method called
Hot Deck via the Gaussian Mixture Model (HD GMM) is also introduced. This
can be viewed as an extension of the Hot Deck imputation scheme, but instead of
using the current values in the training dataset, a simulated dataset is employed as
the pool of donors. The MSU database [1] containing scores of three modalities
(face, fingerprint and hand-geometry) is used in the experiments.
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2 Multimodal Biometric System

2.1 Overview of Biometrics
A biometric system is essentially a pattern recognition system consisting of the
following main modules [24]:

• Sensor module, which captures the biometric data of an individual. An
example is a fingerprint sensor that images the ridge and valley structure of
a user’s finger.

• Feature extraction module, in which the acquired biometric data is pro-
cessed to extract a set of salient or discriminatory features.

• Matcher module, in which the features extracted during recognition are
compared against the stored templates to generate match scores. For ex-
ample, in the matcher module of a fingerprint-based biometric system, the
number of matching minutiae between the input and the template fingerprint
images is determined and a match score is reported.

• System database module, which is used to store the biometric templates of
the enrolled users.

A number of biometric characteristics exist and are broadly used in various
applications, such as DNA, fingerprint, iris, face, hand geometry and ear. Each
biometric has its strengths and weaknesses, and a single biometric is not expected
to effectively meet the requirements of all applications. In other words, no single
biometrics is superior under all circumstances.

2.2 Multimodal Biometrics
Multimodal biometric systems overcome several practical problems of single-
biometric systems, like noisy sensor data, non-universality and/or lack of distinc-
tiveness of the biometric trait, unacceptable error rates, and spoof attacks [2]. The
procedure by which information from multiple biometric traits is consolidated is
called biometric fusion, which is the critical component in multimodal biometrics.

2.2.1 Fusion of Biometrics

The layout of a bimodal biometric system is shown in Figure 1, and the purpose
is to illustrate the various levels of fusion for combining two (or more) biometric
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systems. The three possible levels of fusion are: (a) fusion at the feature level, (b)
fusion at the match score level, (c) fusion at the decision level.

• Feature level: The raw data captured from each sensor will be used to build a
feature vector, which uniquely identifies a given person in the feature space.
Combining more feature vectors results in one vector with higher dimen-
sionality and may increase the probability of correctly identifying a person.

• Match Score level: Fusion at the match score level is typically more effec-
tive than fusion at the decision level. Each single-modal biometric system
measures and calculates its own match score. Match scores are a measure of
the similarity or distance between features derived from a presented sample
and a stored template. A match or non-match decision is made based on
a certain decision threshold. For example, one approach is to construct a
score vector using the match scores from each biometric modality, then a
trained classifier will decide one of two classes: “Accept” (genuine user) or
“Reject” (imposter user) based on the score vector.

• Decision level: Fusion at this level is the least informative. Each biometric
system makes a decision and then those decisions are combined, usually
using majority voting scheme. Some methods to weight the decisions from
each biometrics are also used.

Apart from the above, fusion is possible at the raw data level or the rank level.
Fusion at the score level is considered to be the most common approach due to the
ease in accessing and combining the scores generated by different matchers [1].

2.2.2 Fusion at Score Level

Fusion techniques at the score level can be divided into three categories. The
transformation-based score fusion will normalize the match scores to a common
domain prior to combining them. Choice of the normalization scheme and com-
bination weights are data-dependent and require extensive empirical evaluation.
In a classifier-based score fusion, scores from multiple matchers will be treated
as a score vector, therefore, a classifier can be constructed to discriminate gen-
uine and imposter scores. In this case, biometric fusion is considered as a typical
classification problem. Density-based score fusion is usually based on the likeli-
hood ratio test. Based on the Neyman-Pearson theorem, if the underlying densities
of genuine and imposter scores are explicitly known, the likelihood ratio fusion

4



Figure 1: The biometric fusion could be implemented at various levels: a) fusion
at feature level; b) fusion at match score or rank level; c) fusion at decision level.
This figure is based on [24].
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technique will provide the highest Genuine Accept Rate (GAR) for a fixed False
Accept Rate (FAR) [29]. However, the underlying densities of scores cannot be
exactly estimated in practice.

In this work, a common transformation-based score fusion technique, namely,
the sum rule has been used to obtain all the Receiver Operating Characteristic
(ROC) curves summarizing the fusion performance. As mentioned earlier, a
score normalization scheme is required prior to merging the scores from differ-
ent modalities into a single scalar score. Based on an empirical evaluation, Jain et
al. [1] found that the min-max normalization scheme followed by a simple sum
of scores fusion resulted in a superior GAR than other normalization and fusion
techniques for the dataset used here. So the same process is used in this work.

2.2.3 Performance Measures

Usually, the performance of a biometric system can be measured in terms of two
error rates, False Accept Rate (FAR) and False Reject Rate (FRR) [25]. The FAR
refers to the errors that occur when a system mistakes the biometric measurements
from two different individuals to be from the same person. In statistics, FAR is
the probability of a type-II error. The FRR refers to the errors that the biometric
system mistakes two biometric measurements from the same person to be from
two different people. FRR is the probability of a type-I error. FAR and FRR
are also called as False Match Rate (FMR) and False Non-Match Rate (FNMR),
respectively, in some literature.

To understand the performance of a biometric system, a plot of FAR vs. FRR is
usually used. This is known as a Receiver Operating Characteristic (ROC) curve.
ROC curves present a non-dimensional, basic technical performance measure for
comparing two or more biometric systems. It can also display the trade-offs be-
tween FAR and FRR over a wide range of thresholds. In this study, ROC curves
are plotted as GAR (Genuine Accept Rate) vs. FAR, where GAR is the comple-
ment of FRR (GAR = 1-FRR).

Equal Error Rate (EER) can also be used to give a threshold independent per-
formance measure of a biometric system [2]. It is the point where the FAR equals
the FRR. In the other words, EER is the error rate occurring when the decision
threshold of a system is set so that the proportion of false rejections are approxi-
mately equal to the proportion of false acceptances. In Figure 2, the EER of the
hand-geometry scores in the MSU database is about 10.7%.

Figure 3 provides an example of a multimodal biometric system that can
demonstrate a better recognition performance than using a single biometric. This
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Figure 2: Example of the ROC Curve (GAR vs FAR) for Hand-Geometry scores
in the MSU database.

example employs the simple sum of scores as the fusion scheme, and the min-
max normalization technique is used for transforming the match scores from face,
fingerprint and hand-geometry into a common domain before fusion.

2.3 When Score Goes Missing in Biometric Fusion
Most techniques for score level fusion are designed for a complete score vector,
where the scores to be fused are assumed to be available. When any of the scores
are missing, these techniques cannot be invoked.

Incomplete score vectors can occur under different conditions. There are many
causes for missing data such as the failure of a matcher to generate a score (e.g.,
a fingerprint matcher may be unable to generate a score when the input image is
of inferior quality), the absence of a trait during image acquisition (e.g., a surveil-
lance multibiometric system may be unable to obtain the iris of an individual),
and sensor malfunction, where the sensor pertaining to a modality may not be op-
erational (e.g., failure of a fingerprint sensor due to wear and tear of the device).

There are several methods to deal with missing data as pointed out earlier.
However, some practical constraints have to be dealt with when it comes to bio-
metrics.

Compared with most studies that adopt the entire dataset for the analysis, a
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Figure 3: Example of ROC curves for three single-modal biometrics in the MSU
database and the simple sum fusion.

fixed and complete training set is preferred in the context of biometrics because
(a) imputation is based on this entire fixed set rather than a dynamically changing
set, and (b) one can easily handle both complete and incomplete score vectors in
the test set.

The independence between score vectors requires a vector-by-vector imputa-
tion process rather than a batch process where all missing scores are imputed at
the same time. With this understanding, only the observed part of this score vector
and the training set can be used to perform the imputation. Any information from
the other independent vectors cannot be incorporated.

Unlike the missing data problem in Gene-expression or other data mining ap-
plications where usually a large number of variables are used, current multimodal
biometric systems involve less than 5 modalities. Therefore, exhaustive methods
which consider all possible combinations of missing patterns, such as the exhaus-
tive fusion framework [6], are likely to be more efficient in multimodal biomet-
rics. On the other hand, some imputation methods like Bayesian Network (BN)
[30] which require more variables to compute probabilistic relationships between
them, might be unusable in a biometrics environment.
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3 Patterns of Missing Data
Distinguishing between different patterns of missing data is important because
it will impact the choice of method used for handling the problem. Rubin [27]
defines a taxonomy for different patterns of missing data.

• Missing Completely At Random (MCAR): the probability of an observation
being missing does not depend on the value of the observed or unobserved
data. In mathematical terms, this is written as:

Pr(Xm|Xmis,Xobs) = Pr(Xm), (1)

where Xm denotes the missingness mechanism2 of data, and Xmis and Xobs

denote the unobserved part and observed part, respectively.

• Missing At Random (MAR): given the observed data, the missingness mech-
anism does not depend on the unobserved data. Mathematically,

Pr(Xm|Xmis,Xobs) = Pr(Xm|Xobs). (2)

• Missing Not At Random: When neither MCAR nor MAR hold, we say the
data are Missing Not At Random, abbreviated as MNAR. In other words,
the mechanism of missing data does depend on the unobserved data.

In order to analyze the performance of various methods dealing with missing
data, researchers usually randomly remove some entries from a complete dataset
to generate missing data artificially. In this case, the generated missing data will
follow the MCAR pattern. In reality, researchers may not know the real reason
behind the missing data in most cases. Therefore, the generated dataset can be
assumed to conform to a MAR pattern. In this work, either MCAR or MAR is
assumed, suggesting that the missing data is not dependent on the value which is
missing.

It must be noted that, methods for distinguishing between MCAR and MAR
are computationally expensive. Ramoni and Sebastiani [32] describe a novel
method, called the Robust Bayesian Estimator (RBE), which does not depend
on any assumption of the missing patterns discussed above. The robustness is
achieved from bounding the incomplete data with the set of all possible estimates,
which are constrained by the incomplete data itself.

2In statistical literature, the cause for the missing data is sometimes called the missingness
mechanism
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4 Imputation Methods

4.1 Criteria
As stated by Marker et al. [33], two major criteria should be employed in assessing
the performance of imputation methods: firstly, a good imputation method should
preserve the natural relationship between variables in a multivariate dataset (in
our case, the variables correspond to scores originating from multiple classifiers);
secondly, a good imputation method should embody the uncertainty caused by the
imputed data by deriving variance estimates.

These two criteria are applicable for imputation in a biometric score dataset.
Additionally, the use of imputed data should result in comparable performance to
that of the original data containing no missing data. Some imputation methods
may not result in good performance if they overstate or understate the relationship
between variables, or if they omit the uncertainty in the imputed data.

4.2 Notation
In the context of multimodal biometric systems, a user i offers p biometric modal-
ities. The system will generate a vector of match scores, xxxi = (xi1,xi2, . . . ,xip),
where each match score corresponds to one modality. Suppose there are n users,
then the score matrix with n observations and p attributes can be written as:

D =


xxx1
xxx2
...

xxxn

=


x11 x12 . . . x1p
x21 x22 . . . x2p
...

... xi j
...

xn1 xn2 . . . xnp

 ,

where xi j denotes the match score from the j-th modality of the i-th user. Simi-
larly, the training set can be expressed as Dtr.

If there is no missing data, the conventional fusion techniques can be imple-
mented on each observation (row) separately, and then make the decision whether
each observation belongs to a genuine user or an imposter. For any observation
xxxi containing missing scores, it can be written in the form (xxxobs

i ,xxxmis
i ), where xxxobs

i
and xxxmis

i , respectively, denote the observed and missing attributes for observation
i. The missing values xxxmis

i can be replaced with the imputed value xxximp
i using the

methods considered below.
Different multivariate distributions will be assumed in the following methods.

Let Θ denote all the parameters to be estimated in a particular model. Take the
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MLE method as an example. The dataset D will be assumed to have a p-variate
normal distribution with mean µµµ = (µ1, . . . ,µp) and covariance matrix Σ, so here
Θ = (µµµ,Σ) corresponds to the parameters of the multivariate normal distribution.
Since both MLE and GMM methods use iterative algorithms for estimation, let
Θ(t) denote all the parameters to be estimated at the t-th iteration.

4.3 Mean Imputation
In mean imputation, missing values xxxmis

i are filled by the average of scores from
the corresponding attributes in the training set Dtr. For example, suppose the
second attribute of xxxi is missing, then this missing score will be imputed by the
average of the second attribute in Dtr:

ximp
i2 =

1
ntr

ntr

∑
j=1

ξ j2, (3)

where ξ j2 ∈ Dtr is the j-th observation from the training set Dtr, and ntr is the
total number of samples in the training set.

Several drawbacks of the mean imputation scheme have been pointed out by
Little and Rubin [10]. Obviously, the variance is underestimated. Besides that,
replacing all missing values in a modality with a single value will artificially dis-
tort the shape of the distribution of original scores, which will cause a bias for
our classification purposes. Similar disadvantages occur in the Median Imputa-
tion method, although the median is less affected by the presence of outliers in the
distribution.

4.4 K-Nearest Neighbor Imputation
In a classical KNN imputation, the missing values of an observation are imputed
based on a given number of instances (k) in Dtr that are most similar to the in-
stance of interest. A measure of distance d between two instances should be
determined. In this work, a Euclidean distance function is considered. Let xxxi and
xxx j be two observations; then d is defined as:

d(xxxi,xxx j) = ∑
h∈Oi∩O j

(xih − x jh)2,

where Oi = {h|the h-th attribute of the i-th observation is observed}. In other
words, only the mutually observed attributes are used to calculate the distance
between observations.
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The KNN algorithm is described as follows:

1) For each observation xxxi, apply the distance function d to find the k
nearest neighbor vectors in the training set Dtr;
2) The missing attributes xxxmis

i are imputed by the average of the corre-
sponding attributes from those k nearest neighbors.

KNN imputation does not require the creation of a predictive model for each
attribute, and so it can easily treat instances with multiple missing values. How-
ever, there are some concerns with respect to KNN imputation. Firstly, which
distance function should be used for a particular dataset? The choice could be
Euclidean, Manhattan, Mahalanobis, Pearson, etc. In this work the Euclidean
distance is employed. Secondly, the KNN algorithm searches through the entire
dataset looking for the most similar instances, and can therefore be a very time
consuming process. Thirdly, the choice of k, will impact the results. The choice
of a small k may produce a deterioration in the performance of the classifier after
imputation due to overemphasis on a few dominant instances in the estimation
process of the missing values. On the other hand, a neighborhood of large size
would include instances that are significantly different from the instance contain-
ing missing values thereby hurting the estimation process, and the classifier’s per-
formance declines. According to our analysis (not shown here), we found k = 5
to provide the best imputation accuracy on our relatively small dataset.

4.5 Imputation through MLE
The theoretical benefits of Maximum Likelihood Estimation (MLE) are widely
known. After incorporating the Expectation Maximization (EM) algorithm, the
MLE via EM method can be used to handle the problem of parameter estima-
tion in an incomplete dataset, even under the MAR assumption [11]. In order
to explain this algorithm, a simple example using a bivariate normal dataset with
missing data will be first introduced. Then we will bring in the use of the sweep
operator [10] and show how this operator provides a simple and convenient way
of performing the ML calculations for incomplete normal data. Finally, we will
introduce the EM algorithm for incomplete multivariate normal data and its im-
plementation in a biometrics environment.
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4.5.1 An Example of Bivariate Normal Data

In a bivariate normal dataset, the maximizer of the log-likelihood of incomplete
data can be computed directly [10]. Considering a bivariate normal sample with
m complete bivariate observations {(xi1,xi2); i = 1, . . . ,m} and n−m univariate
observations {xi1; i = m + 1, . . . ,n}, the parameters of the joint distribution of xi1
and xi2, θθθ , can be written as

θθθ = (µµµ,Σ) = (µ1,µ2,σ11,σ12,σ22),

and the log-likelihood of θθθ can be computed by:

l(µµµ,Σ|xxxobs) = −1
2
{m ln |Σ|+

m

∑
i=1

(xi −µµµ)Σ−1(xi −µµµ)T}

−1
2
{(n−m) lnσ11 +

n

∑
l=m+1

(xi1 −µ1)2

σ11
}.

This likelihood equation, however, does not have an obvious solution. But the
joint distribution of xi1 and xi2 can be factored into a marginal distribution of xi1
and a conditional distribution of xi2 given xi1:

f ((xi1,xi2|µµµ,Σ) = f (xi1|µ1,σ11) f (xi2|xi1,β0,2·1,β1,2·1,σ22·1),

where, f (xi1|µ1,σ11) is the normal distribution with mean µ1 and variance
σ11, and f (xi2|xi1,β0,2·1,β1,2·1,σ22·1) is the normal distribution with mean β0,2·1 +
β1,2·1µ1 and the variance σ22·1. “2 · 1” denotes the regression of xi2 on xi1. This
parameterization can be denoted by ϕϕϕ :

ϕϕϕ = (µ1,σ11,β0,2·1,β1,2·1,σ22·1).

Here, we express the relationship between these 2 different parameterizations
θθθ and ϕϕϕ :

β0,2·1 = µ2 −β1,2·1µ1,

β1,2·1 = σ12/σ11, (4)

σ22·1 = σ22 −σ2
12/σ11.

Similarly, the components of θθθ , other than µ1 and σ11, can be expressed as
follows:
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µ2 = β0,2·1 +β1,2·1µ1,

σ12 = β1,2·1σ11, (5)

σ22 = σ22·1 +β 2
1,2·1σ11.

The density of the data xxxobs factors in the following way:

f (xxxobs|θθθ) =
m

∏
i=1

f (xi1,xi2|θθθ)
n

∏
i=m+1

f (xi1|θθθ)

= [
n

∏
i=1

f (xi1|µ1,σ11)][
m

∏
i=1

f (xi2|xi1,β0,2·1,β1,2·1,σ22·1)]. (6)

The first bracketed factor in the above equation is the density of an independent
sample of size n from the normal distribution with mean µ1 and variance σ11.
The second factor is the density for m observations from the conditional normal
distribution with mean β0,2·1 +β1,2·1µ1 and the variance σ22·1.

ML estimates can be obtained by independently maximizing the likelihoods
corresponding to these two components:

µ̂1 = n−1
n

∑
i=1

xi1,

σ̂11 = n−1
n

∑
i=1

(xi1 − µ̂1)2. (7)

Maximizing the second factor uses standard regression results and yields:

β̂0,2·1 = x̄2 − β̂1,2·1x̄1,

β̂1,2·1 = s12/s11, (8)

σ̂22·1 = s22 − s2
12/s11,

where

x̄ j = m−1
m

∑
i=1

xi j,

and

s jk = m−1
m

∑
i=1

(xi j − x̄ j)(xik − x̄k), j,k = 1,2.
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The ML estimates of other parameters can now be obtained using (5):

µ̂2 = β̂0,2·1 + β̂1,2·1µ1

= x̄2 + β̂1,2·1(µ̂1 − x̄1), (9)

σ̂22 = σ̂22·1 + β̂ 2
1,2·1(σ̂11 − s11). (10)

4.5.2 The Sweep Operator

The sweep operator provides a simple and convenient way of performing the ML
calculations for incomplete normal data, and this ML calculation is critical for the
EM algorithm which will be introduced in the following subsection.

The sweep operator is defined for symmetric matrices as follows [10]:
A pxp symmetric matrix G is said to be swept on row and column k if it is

replaced by another symmetric pxp matrix H with elements defined as follows:

hkk = −1/gkk,

h jk = hk j = g jk/gkk, k ̸= j, (11)
h jl = g jl −g jkgkl/gkk k ̸= j,k ̸= l.

Considering the 3x3 case:

G =

 g11 g12 g13
g21 g22 g23
g31 g32 g33

 ,

then:

H = SWP[1]G

 −1/g11 g12/g11 g13/g11
g12/g11 g22 −g2

12/g11 g23 −g13g12/g11
g13/g11 g23 −g13g12/g11 g33 −g2

13/g11

 . (12)

We use the notation SWP[k]G to denote the matrix H defined by (11). Also,
the result of successively applying the operations SWP[k1]G, SWP[k2]G, . . . ,
SWP[ki]G to the matrix G will be denoted by SWP[k1,k2, . . . ,ki]G. The sweep
operator is commutative.

Suppose we arrange the original parameters of the joint distribution of xi1 and
xi2, θθθ = (µ1,µ2,σ11,σ12,σ22), in the following symmetric matrix:

θθθ ∗ =

 −1 µ1 µ2
µ1 σ11 σ12
µ2 σ21 σ22

 .
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If θθθ ∗ is swept on row and column 1, we obtain from (12):

SWP[1]θθθ ∗ =

 −(1+ µ2
1/σ11) µ1/σ11 µ2 −µ1σ12/σ11

µ1/σ11 −σ−1
11 σ12/σ11

µ2 −µ1σ12/σ11 σ12/σ11 σ22 −σ2
12/σ11

 . (13)

Comparing with the equation (4), the above equation (13) can be rewritten as:

ϕϕϕ∗ = SWP[1]θθθ ∗ =

 −(1+ µ2
1/σ11) µ1/σ11 β0,2·1

µ1/σ11 −σ−1
11 β1,2·1

β0,2·1 β1,2·1 σ22·1

 (14)

and [
−(1+ µ2

1/σ11) µ1/σ11
µ1/σ11 −σ−1

11

]
= SWP[1]

[
−1 µ1
µ1 σ11

]
. (15)

The operation of sweeping on a variable in effect turns that variable from an
outcome variable into a predictor variable. Similarly, there is also an operator
inverse to sweep, that turns predictor variables into outcome variables:

H = RSW[k]G,

where,

hkk = −1/gkk,

h jk = hk j = −g jk/gkk, k ̸= j, (16)
h jl = g jl −g jkgkl/gkk k ̸= j,k ̸= l.

This reverse sweep (RSW) is commutative and is the inverse operator to sweep;
that is:

(RSW[k])(SWP[k])G = (SWP[k])(RSW[k])G = G.

After defining the RSW, we can introduce the transformation between ϕ̂ϕϕ and
θ̂θθ :

ϕ̂ϕϕ = SWP[1]θ̂θθ =

 SWP[1]
[
−1 µ̂1
µ̂1 σ̂11

]
β̂0,2·1
β̂1,2·1

β̂0,2·1 β̂1,2·1 σ̂22·1

 , (17)

and
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θ̂θθ = RSW[1]θ̂θθ =

 SWP[1]
[
−1 µ̂1
µ̂1 σ̂11

]
β̂0,2·1
β̂1,2·1

β̂0,2·1 β̂1,2·1 σ̂22·1

 . (18)

4.5.3 MLE via EM in Multivariate Normal Data

A general method for using MLE in missing data imputation was described by
Dempster et al. [18] in their influential article on the EM algorithm. The key idea
of EM is to solve a difficult incomplete-data estimation problem by iteratively
solving an easier complete-data problem. Intuitively,“fill” in the missing data with
the best guess under the current estimate of the unknown parameters (E-STEP),
then re-estimate the parameters from the observed and filled-in data (M-STEP).
An overview of EM has been given in [10, 16, 20].

In order to obtain the correct answer, Dempster et al. [18] showed that, rather
than filling in the missing data values per se, the complete-data sufficient statistics
should be computed in every iteration. The form of these statistics depends on the
model under consideration. With the assumption of K-variate normal distribution,
the hypothetical complete dataset D belongs to the regular exponential family. So
∑n

i=1 xik and ∑n
i=1 xikxi j are sufficient statistics of samples from this distribution

( j,k = 1, . . . ,K). The modified t-th iteration of E-STEP can then be written as:

E

(
n

∑
i=1

xik|Dtr,xxxobs
i ,Θ(t)

)
=

n

∑
i=1

x(t)
ik , k = 1, . . . ,K,

E

(
n

∑
i=1

xikxi j|Dtr,xxxobs
i ,Θ(t)

)
=

n

∑
i=1

(
x(t)

ik x(t)
i j + c(t)

i jk

)
,

where,

x(t)
ik =

{
xik, if xik is observed,

E
(

xik|Dtr,xxxobs
i ,Θ(t)

)
, if xik is missing,

(19)

and
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c(t)
i jk =

{
0, if xik or xi j is observed,

Cov
(

xik,xi j|Dtr,xxxobs
i ,Θ(t)

)
, if xik and xi j are missing.

(20)

Missing values xik are thus replaced by the conditional mean of xik given the
set of values xxxobs

i , available for that observation. These conditional means and
the nonzero conditional covariances are easily found from the current parameter
estimates by sweeping the augmented covariance matrix so that the variables xxxobs

i
are predictors in the regression equation and the remaining variables are outcome
variables.

The M-STEP of the EM algorithm is straightforward and is a standard MLE
process, i.e.,

µ(t+1)
k =

1
n

n

∑
i=1

x(t)
ik , k = 1, . . . ,K, (21)

σ (t+1)
jk =

1
n

E

(
n

∑
i=1

xikxi j|Dtr,xxxobs
i

)
−µ(t+1)

k µ(t+1)
j . (22)

The algorithm will iterate repeatedly between the two steps until the difference
between covariance matrices in subsequent M-STEPs falls below some specified
convergence criterion. Although the classical EM algorithm will stop at this M-
STEP, it is straightforward to get the imputed values by performing the E-STEP
one more time, which means using the sweep operator and the regression equa-
tions with xxxobs

i as predictors one more time.

4.5.4 Some Comments about MLE

When this method is used in the biometric scenario involving match scores, some
additional constraints are required. As mentioned in Section 2.3, the different
observations (vectors) should be assumed to be independent, and this assumption
should be maintained as much as possible during the estimation and imputation
procedure. In order to accommodate this assumption, when calculating the ML
estimation for the incomplete vector xxxi = (xxxobs

i ,xxxmis
i ), only the training set Dtr and

the observed part of this vector xxxobs
i will be included. This strategy is relevant in a

practical situation where the training set is relatively fixed.
A notable drawback of EM algorithm should be pointed out. The imputed

scores from the EM algorithm lack the residual variability which are present in
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the training set with complete data because they fall exactly on the regression line
when using the parameters estimated by the iterations [17]. The Multiple Imputa-
tion (MI) method proposed by Rubin [27] accounts for missing data by restoring
not only the natural variability in the missing-data, but also by incorporating the
uncertainty caused by the estimation process.

The general strategy of MI can be summarized as follows: impute missing
values using an appropriate model which can plausibly represent the data with
random variation, repeat this m > 1 times to produce m data sets with complete
data, and then combine the results to obtain overall estimates using Rubin’s Rules
[27]: the overall estimate is the simple average of the m estimates, and the overall
estimate of the standard error is a combination of the within-imputation variability,
W , and the between-imputation variability, B:

T = W +[(1+1/m)∗B].

NORM, a very useful program proposed by Schafer [16], creates multiple im-
putation for incomplete data with arbitrary patterns of missing values under the
multivariate normal model. Although it is designed for multiple imputation, a
similar algorithm has been employed to calculate the ML estimates of an incom-
plete dataset. NORM is used as an auxiliary software in this study.

4.6 Imputation via the GMM Estimation
As mentioned earlier, the MLE method is based on the multivariate normal as-
sumption to determine the likelihood function form and sufficient statistics. Al-
though this assumption is mild, an obvious violation of normality often happens in
biometrics because of the inherent discrimination between genuine and imposter
scores.

Finite mixture models allow more flexibility, because they are not constrained
to one specific functional form. As shown in Fraley and Raftery [34, 38], many
probability distributions can be well approximated by mixture models. At the
same time, in contrast to nonparametric schemes, mixture models do not require
a large number of observations to obtain a good estimate [22, 23].

Let observations xxx1, . . . ,xxxn be a random sample from a finite mixture model
with K underlying components in unknown proportions π1, . . . ,πK . Let the density
of xxxi in the k-th component be fk(xxxi;θθθ k), where θθθ k is the parameter vector for
component k. In this case, Θ = (π1, . . . ,πK;θθθ 1, . . . ,θθθ K) = (πππ,θθθ), and then the

19



density of xxxi can be written as:

f (xxxi;Θ) =
K

∑
k=1

πk fk(xxxi;θθθ k),

where ∑K
k=1 πk = 1,πk ≥ 0, for k = 1, . . . ,K.

Finite mixture models are frequently used when the component densities fk(xxxi;θθθ k)
are taken to be p-variate normal distributions xxxi ∼ Np(µµµk,Σk), where observation
i belongs to component k. This model has been studied by Titterington et al. [35],
and by McLachlan & Basford [19]. Further details on the maximum likelihood
estimates of the components of Θ can be found in McLachlan and Peel [21].

When Gaussian Mixture Models are used in imputation, two main steps will be
essential: the density estimation using the GMM assumption and the imputation
itself based on this estimated density.

4.6.1 Density Estimation using GMM

The EM algorithm of Dempster et al. [18] is applied to the finite mixture model
for density estimation. Let the vector of indicator variables, zzzi = (zi1, . . . ,ziK), be
defined by:

zik =
{

1 if observation i ∈ component k,
0 if observation i /∈ component k.

where zzzi, i = 1, . . . ,n, are independently and identically distributed according to
a multinomial distribution generated by a single trial of an experiment with K
mutually exclusive outcomes having probabilities π1, . . . ,πK .

Let Θ̂ denote the maximum likelihood estimate of Θ. Then each observa-
tion, xxxi, can be allocated to component k on the basis of the estimated posterior
probabilities. The estimated posterior probability that observation xxxi, belongs to
component k, is given by:

ẑik = pr(observation i ∈ component k|xxxi;Θ̂) =
π̂k fk(xxxi; θ̂θθ k)

∑K
k=1 π̂k fk(xxxi; θ̂θθ k)

.

and xxxi is assigned to component k if:

ẑik > ẑik′ for k = 1, . . . ,K k ̸= k′.
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The EM algorithm consists of defining an initial guess for the parameters to
be estimated, and iteratively estimating the parameters until convergence of the
Expectation step (E-step) and the Maximization step (M-step).

The E step requires calculating the expectation of the log-likelihood of the
complete data conditioned on the observed data and the current value of the pa-
rameters:

ẑik = ẑ(t)
ik = E(zik|xxxobs

i ;Θ(t)) =
πk fk(xxxobs

i ;θθθ (t)
k )

∑K
k=1 πk fk(xxxobs

i ;θθθ (t)
k )

.

That is, zik is replaced by ẑik , the estimate of the posterior probability that ob-
servation i belongs to component k. The remaining calculations in the E step are
analogous to those required in the standard EM algorithm for incomplete normal
data:

E(zikxi j|xxxobs
i ;θθθ (t)

k ) =

{
ẑikxi j, xi j observed,

ẑikE(xi j|xxxobs
i ;θθθ (t)

k ), xi j missing.

E(zikx2
i j|xxxobs

i ;θθθ (t)
k )=

{
ẑikx2

i j, xi j observed,

ẑik[(E(xi j|xxxobs
i ;θθθ (t)

k ))2 +Var(xi j|xxxobs
i ;θθθ (t)

k )], xi j missing.

For j ̸= j′,

E(zikxi jxi j′|xxxobs
i ;θθθ (t)

k )=



ẑikxi jxi j′, xi j and xi j′ observed,

ẑikxi jE(xi j′|xxxobs
i ;θθθ (t)

k ), xi j observed, xi j′ missing,
ẑikE(xi j|xxxobs

i ;θθθ (t)
k )xi j′ , xi j′ observed, xi j missing,

ẑik[E(xi j|xxxobs
i ;θθθ (t)

k )E(xi j′|xxxobs
i ;θθθ (t)

k )
+Cor(xi j,xi j′|xxxobs

i ;θθθ (t)
k )], xi j and xi j′ missing.

In the M step of the algorithm, the new parameters θθθ (t+1) are estimated from
the sufficient statistics of the complete data:

π̂(t+1)
k =

1
n

n

∑
i=1

ẑ(t)
ik for k = 1, . . . ,K,

µ̂(t+1)
k j =

1
nπ̂k

E(
n

∑
i=1

ẑ(t)
ik xi j|xxxobs

i ;θθθ (t)
k ),

Σ̂(t+1)
k j j′ =

1
nπ̂k

E(
n

∑
i=1

ẑ(t)
ik xi jxi j′|xxxobs

i ;θθθ (t)
k )− µ̂(t+1)

k j µ̂(t+1)
k j′ .
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Although a mixture model has great flexibility in modeling, a restriction on
the number of components K is still required because, along with an increase in
the number of parameters, the estimation of these parameters from the training
data might imply a greater variance for each of the parameters. In this study, the
Bayesian Information Criterion (BIC) [36] is employed. The BIC can be written
as

BIC ≡−2L(Θ̂|xxxobs)+νK log(ntr)

where L(Θ̂|xxxobs) is the maximized log-likelihood function given the observed
data, νK is the number of parameters to be estimated in the assumed model, and
ntr is the number of observations in training set. The target is to find that νK which
minimizes BIC, and then a reasonable number of components K is obtained.

4.6.2 Two Imputation Methods via the GMM

With a reasonable density estimation method, various imputation schemes are pos-
sible. DiZio et al. [23] point out that for the preservation of the covariance struc-
ture, the Random Draw (RD) method is preferable over the Conditional Mean
method (introduced by Nielsen [37]) based on the GMM assumption. The esti-
mates of the Gaussian mixture model parameters are obtained as:

f (xxxi;Θ) =
K

∑
k=1

πikNp(xxxi; µµµk,Σk). (23)

In practice, the random drawing of a value xxxmis
i from the distribution of

f (xxxmis
i |xxxobs

i ;Θ) =
K

∑
k=1

πikNp(xxxmis
i |xxxobs

i ;Θ), (24)

could be accomplished in two simple steps: First, draw a value k from the multi-
nomial distribution Multi(1; π̂i1, . . . , π̂iK); then, given k, generate a random value
from the p-variate conditional Gaussian distribution Np(xxxmis

i |xxxobs
i ;Θ) as the impu-

tation of the missing value.
HD methods are generally preferred over other imputation techniques be-

cause of low operational cost, reduced nonresponse bias on univariate statistics,
and univariate plausibility (i.e., use of existing values in current dataset). On
the other hand, donor-based imputation can produce attenuation of associations
[14]. The main principle of the HD method is to use the current set of existing
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scores (donors) to provide imputation values for the incomplete vectors (recip-
ients), based on some reasonable rules like conditional distribution or distance
measurement. However, if the current set is not large enough, recipients would
only have limited donors to choose from, and this will reduce the accuracy of im-
putation. In the experiments, a bigger simulated dataset (nsim = 10ntr) based on
the estimation of the mixture model parameters is used as the “imputation pool”.

The rule of choosing donors can be either random or based on some distance
function. In this work the Euclidean distance measurement d is employed to find
the best donor for an incomplete observation. Recall that the distance measure d
between two observations xxxi and xxx j has been defined as:

d(xxxi,xxx j) = ∑
h∈Oi∩O j

(xih − x jh)2. (25)

The Hot Deck Imputation procedure can be described in the following steps:

1) Use the estimated parameters, Θ, of GMM to simulate a dataset Dsim,
having a larger size than Dtr;
2) For each observation xxxi, apply the distance function d to find the
nearest neighbor in the simulated set Dsim;
3) The missing attributes xxxmis

i are imputed by the corresponding at-
tributes from the nearest neighbors taken from Dsim.
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5 Experiments and Results

5.1 The MSU Database
The Michigan State University (MSU) database used in this study, contains 500
genuine and 12,250 imposter score vectors. Take the i-th score vector as an ex-
ample, It is a 3-tuple: (xi1,xi2,xi3), where xi1, xi2 and xi3 correspond to the match
scores obtained from face, fingerprint and hand-geometry matchers, respectively.
The detail of the database has been described by Ross and Jain [25]. The finger-
print and face data were obtained from user set I consisting of 50 users. Each
user was asked to provide five face images and five fingerprint impressions (of
the same finger). This data was used to generate 500 (50*10) genuine scores and
12,250 (50*5*49) imposter scores for each modality. The hand geometry data was
collected separately from user set II which also consists of 50 users. This also re-
sulted in 500 genuine scores and 12,250 imposter scores for this modality. Each
user in set I was randomly paired with a user in set II. Thus the corresponding
genuine and imposter scores for all three modalities were available for testing.

It should be noted that the sample sizes of genuine scores and imposter scores
are highly imbalanced in this database. Byon et al. [26] demonstrate that, when
the class sizes are highly imbalanced, classification methods tend to strongly favor
the majority class, resulting in very low detection accuracy of the minority class.

In order to simplify the problem and retain generality, the proportion of gen-
uine score and imposter score is fixed at 1:4 in this study. This means a total of 500
genuine scores and 2000 imposter scores are randomly selected from the original
database. Figure 4 shows the density of the selected dataset and the recognition
performance of each modality.

5.2 Generation of Missing Data
In order to evaluate the performance of imputation methods, missing entries were
synthetically introduced into a complete (that has no missing data) match score
matrix. There are two different ways that are widely used to introduce missing
data: the histogram-based scheme and the rate-based scheme [41].

In the histogram-based scheme, histograms are produced for each attribute,
and then entries are removed from the complete matrix based on these histograms.
In this case, the histogram of the artificially missing entries is similar to that of
the original matrix. In the rate-based scheme, a specific percentage of the entries
are randomly selected and then removed from the complete score matrix.
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Figure 4: Density plots of the genuine and imposter scores in the selected dataset:
(a) Face; (b) Fingerprint; (c) Hand-Geometry; (d) ROC curves for the 3 modali-
ties.
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The former cannot be used in this work because the histograms or the esti-
mates of densities are also used by some of the imputation methods, such as the
GMM-based methods. If the histogram from the original score matrix fits the
model assumed by an imputation method, the artificially missing data will also fit
the assumed model well, and this imputation method will result in an optimized
performance. Therefore, the rate-based scheme was used to generate missing data
in the following experiments.

Figure 6 illustrates the construction of training sets and test sets used in this
study. 50% score vectors were first randomly selected from the dataset as the
training set. The proportion of genuine scores to imposter scores was set to 1:4.
The remaining score vectors were used as the test set. Next, for each modality,
10% of the scores were randomly removed from the test set, in order to artificially
generate the missing data while making sure that each observation contained at
least one observed score. As a result, a dataset with 50% of the observations as
the training set and a 10% missing rate for the test set was generated.

Two different sizes for the training set, that were 10% and 50% of the entire
dataset, were used for comparison. Similarly, two missing rates, 10% and 50%,
were specified for the test set. As a result, four different datasets encompassing
different training rates and missing rates were generated. Figure 5 illustrates the
scatter plots of two such test sets. It indicates that the two classes are reason-
ably separated in three dimensional space and therefore, a relatively simple fusion
method can perform well on this dataset.

As mentioned in the previous sections, although the above procedure to gen-
erate missing data is completely random and the datasets appear to conform to the
MCAR scenario, the MAR assumption or the MNAR assumption may be more
appropriate in operational data.

5.3 Transformation before Imputation
From the density plots of each attribute in Figure 4, it is noted that the dataset has
an obvious deviation from the multivariate normal assumption. So certain trans-
formations have to be applied to accommodate methods which assume normality.
However, according to our study (not shown here), the transformation of the score
matrix will distort the Euclidean distance between score vectors, and degrade the
accuracy of the density estimation process. This is also true for any row-wise or
column-wise normalization performed before imputation. Nevertheless, transfor-
mation does bring some benefits to the MLE method.

After applying the MLE imputation on the generated test set with missing
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Figure 5: Scatter plots of the original test set (‘o’: Genuine and ‘x’: Imposter): (a)
When 50% of the MSU database is used for testing; (b) When 90% of the MSU
database is used for testing.

Figure 6: Generation of the datasets used in the experiments. Here, 50% of the
dataset is used as training data, and a missing rate of 10% is specified for the test
set.
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data, we observed that some imputed values were negative, although all the match
scores in the original dataset are positive. These unexpected negative scores im-
pact the recognition performance. This phenomenon does not occur when other
methods are used. Since the MLE method uses the regression coefficients from
ML estimation to predict the final imputation, some of those coefficients could be
negative resulting in non-positive predictions.

In order to solve this problem, a square root transformation was applied before
processing using the MLE method. After the imputation procedure, the imputed
datasets were transformed back by squaring all the values. Figures 7 and 8 show
the improved performance by using square root transformation on different train-
ing sets, especially at a lower FAR level.
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Figure 7: ROC curves after using MLE imputation. Here, 50% of the dataset is
employed as training set, and a missing rate of 10% is specified for the test set:
(a) before transformation; (b) after transformation.

5.4 Comments on Mean Imputation
Figures 9 (a) and (b) show a surprisingly good performance at a lower missing rate
(10%) when the mean imputation scheme is used. However, when the missing rate
becomes larger, the performance decreases sharply.

Unlike those studies using the weighted mean, the overall mean was used in
this study which ignored the different sample sizes of the two classes on purpose.
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Figure 8: ROC curves after using MLE imputation. Here, 10% of the dataset is
employed as training set, and a missing rate of 10% is specified for the test set:
(a) before transformation; (b) after transformation.

It is because, in practice, researchers cannot guarantee the proportion of the gen-
uine users and imposters. The scale of scores from the two classes also impacts
the mean value significantly, and it greatly depends on which biometric classifier
is being used to generate the match scores.

In a complete training set, the target/label value of each vector is available,
so it is possible to build two different models using the scores from two classes,
separately. Then the average of the results from those two models can be used as
the final imputation. However, this approach has similar weaknesses as the mean
imputation scheme, and from the ROC curves, it can be concluded that this kind
of imputation is not beneficial.

5.5 Random Draw and Hot Deck via the GMM
In Figures 10 and 11, it is observed that both the imputation methods based on the
Gaussian mixture model perform fairly well at a 50% training rate. But when the
training sample size reduces, the performance of random draw (RD) imputation
decreases sharply. The possible reason has to do with the nuances of the imputa-
tion process of RD. Recall the value k which was drawn from Multi(1; π̂i1, . . . , π̂iK),
that played a critical role in the process, because the final imputed value depended
upon the component that was chosen. A slightly biased value for k will cause an
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Figure 9: ROC curves after using Mean imputation: (a) a larger training set (50%)
and a smaller missing rate (10%); (b) a larger training set (50%) and a larger
missing rate (50%); (c) a smaller training set (10%) and a lower missing rate
(10%); (d) a smaller training set (10%) and a larger missing rate (50%).
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Figure 10: Comparison of RD imputation and HD imputation based on Gaussian
mixture models. Here, a larger training set (50%) and a lower missing rate (10%)
are specified: (a) RD GMM; (b) HD GMM.

enormous deviation from the true distribution corresponding to the missing score.
Therefore, if the size of the training set is not large enough, the RD GMM method
is more likely to generate a large bias. In contrast, the Hot Deck method does not
rely on the value k, but uses the distance corresponding to the observed part to
choose the “closest” neighbors in the simulated data.

5.6 Fusion Results
The min-max normalization scheme followed by the simple sum of scores has
been observed to result in reasonable improvement in matching accuracy of a
multimodal biometric system [1]. This scheme was used to present the fusion
results of various imputation methods in Figures 13 and 14.

From the ROC curves, it is observed that it is difficult for all the methods to
maintain good performance when the missing rate is 50%. Although the perfor-
mance of all schemes decrease sharply at a higher missing rate, the HD GMM
shows consistently good performance among the various methods. Even when
the training set is small (10%), HD GMM still provides an acceptable EER of
less than 10%. Figure 12 is the scatter plot of the imputed dataset after using the
HD GMM method. The line patterns are due to multiple observations sharing the
same value from the corresponding donor.

31



10
−2

10
−1

10
0

10
1

10
20

20

40

60

80

100

False Acceptance Rate (%)

G
en

ui
ne

 A
cc

ep
ta

nc
e 

R
at

e 
(%

)

 

 

Raw Face
Imputed Face
Raw Fingerprint
Imputed Fingerprint
Raw Hand
Imputed Hand
EER Line

10
−2

10
−1

10
0

10
1

10
20

20

40

60

80

100

False Acceptance Rate (%)

G
en

ui
ne

 A
cc

ep
ta

nc
e 

R
at

e 
(%

)

 

 

Raw Face
Imputed Face
Raw Fingerprint
Imputed Fingerprint
Raw Hand
Imputed Hand
EER Line

(a) (b)

Figure 11: Comparison of RD imputation and HD imputation based on Gaussian
mixture models. Here, a smaller training set (10%) and a larger missing rate (50%)
are specified: (a) RD GMM; (b) HD GMM.
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Figure 12: Scatter plots after Hot Deck via the GMM at different training sets and
missing rates: (a) 50% as training set, and a missing rate of 10% is specified for
the test set; (b) 10% as training set, and a missing rate of 50% is specified for the
test set.
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Figure 13: Fusion performance after using different imputation methods. Here,
50% of the dataset is employed as training data: (a) a missing rate of 10% is
specified for the test set; (b) a missing rate of 50% is specified for the test set.
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Figure 14: Comparison of different imputation methods. Here, 10% of the dataset
is employed as training data: (a) a missing rate of 10% is specified for the test set;
(b) a missing rate of 50% is specified for the test set.
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Table 1:
The preservation of data structure in MLE method. Here, 10% of the dataset is
employed as training data, and a missing rate of 10% is specified for the test set.

Training set Test set Imputed set
µ̂ 98.1 67.0 143.1 97.9 66.3 161.4 89.1 55.3 153.9

3175 -4402 1525 2783 -4603 2337 2700 -708 1009
Σ̂ -4402 23901 -5512 -4603 22715 -6503 -708 19452 -3050

1525 -5512 12816 2337 -6503 16518 1009 -3050 14277

Table 2:
The preservation of data structure in MLE method. Here, 10% of the dataset is
employed as training data, and a missing rate of 50% is specified for the test set.

Training set Test set Imputed set
µ̂ 98.1 67.0 143.1 97.9 66.3 161.4 30.4 288.2 59.5

3175 -4402 1525 2783 -4603 2337 1002 -2767 285
Σ̂ -4402 23901 -5512 -4603 22715 -6503 -2767 43324 -1448

1525 -5512 12816 2337 -6503 16518 285 -1448 2499

MLE imputation gives the best performance when the training set is small (at
a 10% training rate) in Figure 14. This is because an accurate ML estimate has
been obtained, which leads to a good preservation of the covariance matrix in the
original dataset. From Tables 1 and 2, it is observed that when the missing rate
increases, the accuracy of MLE degrades sharply, and the EER of the imputed set
increases from 5% to 8%.

34



6 Summary
The results in the previous sections indicate that the imputation of missing data
through the GMM is a powerful scheme for multimodal biometric fusion. Partic-
ularly, imputation via Hot Deck from the simulated dataset generated using the
estimated GMM, results in a better recognition performance than the others. Im-
putation by randomly drawing from the estimated GMM is also a viable option
when the training set is large enough to obtain an accurate estimation. Imputa-
tion based on Maximum Likelihood Estimation provides an alternative way when
the training set is relatively small. In addition, in order to preserve the original
scale of the score matrix, certain transformations can be applied when normality
is violated.

In the future, the robustness of the assumptions of every method will be fur-
ther analyzed. This is expected to offer additional guidance on how to choose
imputation methods for a particular dataset. Also, more work which combine
the imputation methods with score normalization and fusion will be conducted.
Finally, these experiments will be repeated on large operational datasets.
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