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Smart Fluids Using Mechanics: Mechanical Control of Fluid 

Viscosity Using 3D-printed Functional Particles 

 

Rofiques Salehin 

 

Abstract 

 

It is common to manipulate fluid flow properties by infusing additives. Such substances 

typically include particulate matter that influence fluid mechanical properties. While molecular 

chemistry can lead to such additives, it has become also possible to explicitly manufacture 

them using 3D printing. In this way mechanical properties of fluids may be controlled by 

infusing variable-shaped functional particles. Here, a way is presented that serves the purpose 

of controlling viscosity of a fluid by infusing star shaped functional particles. These functional 

particles are 3D printed using a star shape with variable number of legs and leg lengths. Explicit 

molecular dynamics simulations of the fluid with infused particles are performed for a variety 

of structural parameters. The dimensions are chosen with the condition of being easily 

manufactured. The relation and change of viscosity with respect to the size, shape and packing 

fraction (in a control volume) is analyzed. In connection to the viscosity’s behavior, the 

structure, diffusion, variation of stress and pressure are also discussed.  
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CHAPTER-1 

INTRODUCTION & THESIS OVERVIEW 

 

1.1 Introduction 

If we turn on the bathroom’s faucet then the valve inside the faucet will effectively control the 

water’s apparent viscosity[1]. By this way, we only have control at faucet’s valve. Although it 

works well in our household, but implementing the same hydraulic valve phenomena in every 

case would be cumbersome or sometimes impossible. A characteristic example is the case of 

vehicle suspensions which should adapt to road conditions as they may be monitored through 

sensors in the vehicle. We are interested in finding the possibility of continuous control of 

damping characteristics of the shock absorber fluid in the suspension. There are plenty of 

analogous examples exist where valves are inefficient. Semi-active prosthetic limb, cockpit 

seats in the helicopter aviation industry, seat damping in construction vehicles and earthquake-

resistant damping in the building are few of such examples. In the past, there have been 

suggestions of functional dampers [2]–[4], such as magnetorheological (MR) fluids [5]–[9] , 

Electrorheological (ER) fluids [10]–[12], Ferrofluids [13] etc. However, these fluids are 

heavily limited by their ultra-low shear-yield stresses (100 kPa), which have prohibited 

commercial applications. Moreover an external field is required to successfully implement this 

concept. Therefore, we aimed to develop a novel route towards engineering functional dampers 

using 3D-printing of generically applicable functional particles [14] made of light and strong 

polymeric and metallic materials. 

 

We implement the way to control damping characteristics of generic fluids by infusing 

functional particles. The idea is based on the engineering use of the concept of collective 

jamming [15]–[21] that takes place in randomly packed ensembles, such as sand piles and other 

particular matter. Jamming takes place when the packing fraction of the constituent grains in a 

finite volume, is large enough that the system develops elastic properties and finite yield stress. 

For example, think of filling up a metallic box with M&Ms: if M&Ms are packed efficiently, 

it is not possible to compress them further, which implies the emergence of solid elasticity. The 

phenomena of jamming and fluid-to-jammed transition are general and are characterized by 
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various aspects that may become useful in various fields of our society, from human traffic 

jams to cell migration in our body.  

 

1.2 Thesis Overview 

In this study we have simulated a complex fluid system under shear. We have infused 

functional particles in generic fluid similar to smart fluid mechanics [22], [23] without any 

external magnetic or electric sources. The infused functional particles comes to jammed state 

under the applied shear. Due to this jamming transition fluid’s viscosity rises with respect to 

the systems packing density. Our purpose is to observe and visualize the variation of the fluid’s 

viscosity as a function of packing fraction. The viscosity calculation is related to the applied 

shear strain rate and resulting shear stress. Therefore, we emphasized mainly on the stress 

calculation and its variation with strain rate. The diffusivity and pair correlation function is also 

studied afterwards to understand the system concentration.  We have used Molecular Dynamics 

(MD) simulation [24]–[28]  for both macroscopic and microscopic length scale in a popular 

MD simulation package named Large-scale Atomic/Molecular Massively Parallel 

Simulator (LAMMPS) [29]–[31] written in C++. We have used reduced (LJ) unit system in 

our simulation. The simulation results could be transformed into conventional units and 

compare with the experimental results. 

 

This paper has reviewed few of the works on functional particles and jamming transition in 

chapter 2. Here we also discussed the MD simulation method briefly. The methodology section 

in chapter 3 includes the details of our simulation model and how we generated our functional 

particles. It also has detailed discussion about the stochastic rotation dynamics (SRD). We have 

used this dynamics to imbue the fluidic property from numerous ideal point particles that 

interacts with specific pair potential. The observable properties along with respective boundary 

conditions are also added in this chapter. In chapter 4 we represent all the results by processing 

the data found from the simulations. We have discussed and analyzed our findings from the 

plottings on viscosity, diffusivity, radial distribution function, pressure, shear stress and strain 

rate. Finally chapter 5 summarizes and concludes our findings and recommendations for future 

work. 
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CHAPTER-2 

LITERATURE REVIEW 

 

 

2.1 Functional particles  

 

The functional particles are functionalized in different ways to get desired properties or modify 

the current properties. These properties could include surface modification, biocompatibility, 

electronic device fabrication, drug delivery, water purification, coating application, imaging 

agents etc. But we will keep our focus on functionalizing the shape and surface of the particle 

for desired response. Because this functionalization of particle could influence the fluid 

mechanical properties such as viscosity [32], [33] , adhesion between infused particles with the 

generic fluid.  

 

Marc Z. Miskin and Heinrich M. Jaeger proposed through evolutionary computing that the 

mechanical response such as modulus of elasticity of a particle is mostly depends on the shape 

of granular material because this shape determines both the packing arrangement and contact 

interaction [34]. This dependency is demonstrated by computer simulation using artificial 

evolution algorithm [35], [36]. The shape could be created in any form by joining granular 

materials. Because of these granular particles the surface asperity is generated automatically. 

Also tri-axial compression test proves this dependency. 

 

Functional particle consists with two sphere shaped granular particle would give much stiffer 

and stronger packing [37] than a single sphere. It would be clearly understood from stress-

strain curve for single and double spheres. The more compact the shape the more stiff the 

packing that cause the rise of elastic modulus E. While measuring these responses the initial 

condition, boundary condition and material property is also considered.  But if the number of 

spheres is more than two then the opening angle at the central sphere plays the role for particle 

shape. The shape for larger number of sphere is an inexhaustible parameter. To find the 
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particular shape for desired behavior efficiently from the numerous potential configurations of 

particles the Evolutionary Computing is used. The main idea of this computing is to start with 

few different shapes of particles and measure the performance of each shape. Then choose the 

best of these and improve that specific one by modifying the shape into few more closely 

related shapes. And following this same iteration creates finally creates the best offspring that 

gives the best result. By this approach they found the stiffest and softest response that gives the 

largest and smallest elastic modulus respectively. In general for different number of spheres 

the softest response is found for rod like (linear) shapes. For three, four and five spheres most 

compact shapes are found in the form of triangular, rhombic and triangular bi pyramid shapes 

respectively. This response are stiffest at high packing because the particles could not slide past 

each other and thus increases the local contact that raise the stress. On the other hand the linear 

ones easily slide past each other. Near Jamming point the strain stiffening also depends on 

particle shape. The same algorithm could found the best shape for strain stiffening by 

determining the second derivative of stress with respect to strain.  

 

Figure 2.1: Stiffest and Softest particle shapes for constituent number of spheres n=1, 2, 3, 4 

and 5  [34] 
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The mechanical properties such as adhesion, flowability depends largely on shape and surface 

asperity of the particles. The adhesion on iron plate due to asperity is studied by Helmar Krupp 

[38]. Likewise, Leopoldo Massimilla and Giorgio Donsi examines the adhesion on silica for 

surface asperity [39]. But Akinobu Otsuka, Kotaro Iida, Kazumi Danjo and Hisakazu Sunada 

did the experimentation to find out the best shape for adhesion property using impact separation 

method using 26 different powdered materials [40].  

The surface of power materials are functionalized by removing protuberances and fine particles 

by dissolving into different types of acid solution for specific materials such as silica sand into 

hydrofluoric acid , sulfadimethoxine into dilute ethanol and calcium carbonate into dilute 

hydrochloric acid. 

The impact separation method determines the adhesion force between particles placed on glass 

in a measuring cell attached with motor driven hammer. In room temperature this experiment 

is conducted for all different types of particles and percentage of particles remaining after the 

shock is plotted against separation force to compare the adhesion force for each material. The 

result founds that the spherical shaped particles regardless the materialistic property shows 

higher adhesive forces. When the surfaces are functionalized by removing the protuberances 

this adhesive force is increased about ten-times. If the concentration of acid is increased while 

dissolving the particles to functionalize then the desired adhesive force is increased further. 

Moreover,adhesive force increases initially for the increase of treatment time but for 

sufficiently longer treatment time it tends to come at a constant value. 

 

2.2 Molecular Dynamics (MD) simulation  

 

Molecular Dynamics (MD) simulation is a typical simulation technique based on statistical 

mechanics for systems with many particles. MD simulation runs based on Newton’s second 

law of motion and requires complete information about position and momentum of each 

particles inside the system. MD  produces the average values for series of measurements of a 

particular system like statistical mechanics [41] does. This simulation technique could be 

categorized into many forms by considering whether the interactions are short ranged or long 

ranged ; the system is open, closed or isolated ; the ensemble that is used are micro canonical, 

canonical or isothermal-isobaric ; the interaction potential functions are simple or by step ; 
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interactions involved pair particles or multi-particle ; the constituent particles are atoms or 

molecules and if molecule whether it is rigid or flexible and so on. MD simulation is most 

frequently used in liquids. The reason is both solid and gas has better theoretical foundation 

than liquid. Solids has fixed lattice position and gases has weak interaction between its atoms 

but liquids there is interaction but no ordered structure. 

MD simulation does not depend on the initial state of the system. For same system with 

different initial condition should not affect the results. But to reach in an equilibration state 

where there would be no memory of initial state could take place with different speed. 

Therefore adequate time should be provided. Initial velocities are set in random directions 

depending on temperature. 

MD could have couple of unit style such as lj, real, metal, si, cgs, electron, micro or nano. 

Among these units lj unit style is dimensionless and therefore known as reduced unit [25]. This 

reduced dimensionless unit system is expressed in terms of distance σ, mass m, energy 휀 and 

Boltzmann constant 𝑘𝐵. There are several benefits of using reduced unit. For MD simulation it 

is better to use values that is not much far away from unity as there are quite a few of them 

whose values are much smaller than 1 in atomic scale. Also the equations of motion are 

simplified by using this unit system. Finally the most important feature of reduced unit is 

scaling. Once the properties of a system is measured in reduced unit then it could convert to 

any unit system for different systems. That would save much of computational work and effort. 

We are attaching a table consisting the units of several parameters in LJ unit. 

 

 

Property LJ unit 

Mass m 

Distance σ 

Time 
𝜏 = (𝑚𝜎2/휀)

1
2 

Energy 휀 

Velocity σ/ 𝜏 

Force 휀/σ 

Torque 휀 

Temperature 휀/𝑘𝐵 
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Pressure 휀/σ3 

Dynamic Viscosity 휀𝜏/σ3 

Diffusivity σ2/𝜏 

Stress 휀/σ3 

density 𝑚/σ3 

 

Table 2.1: Reduced unit of different quantities. 

 

The microscopic state of a system is formed by considering all the particles position and 

momentum. For coordinate (q) and momentum (p) of each particle i we could write the 

Hamiltonian form of the equation of motion as the sum of kinetic energy as a function of 

momentum and potential energy as a function of position [24].  

𝑞 = (𝑞1, 𝑞2, 𝑞3, … … . 𝑞𝑁)                                                (2.3) 

𝑝 = (𝑝1, 𝑝2, 𝑝3, … … . 𝑝𝑁)                                                (2.4) 

𝐻(𝑞, 𝑝) = 𝐾(𝑝) + 𝑈(𝑞)                                               (2.5) 

For molecular mass 𝑚𝑖 and index 𝛼 that indicates the component of momentum p in x,y,z 

directions the kinetic energy k is expressed as,  

𝐾 = ∑ ∑ 𝑝𝑖𝛼
2 2𝑚𝑖⁄𝛼

𝑁
𝑖=1                                                  (2.6) 

And the potential energy U that contains the intermolecular interaction information is in general 

expressed as following,  

𝑈 = ∑ 𝑣1𝑖 (𝑟𝑖) + ∑ ∑ 𝑣2(𝑟𝑖, 𝑟𝑗)𝑗>𝑖 + ∑ ∑ ∑ 𝑣3(𝑟𝑖, 𝑟𝑗 , 𝑟𝑘)𝑘>𝑗>𝑖𝑗>𝑖𝑖𝑖            (2.7) 

Where the first term 𝑣1 represents the external effect on the system. The second term 𝑣2 is the 

pair potential that depends only on the pair separation distance 𝑟𝑖𝑗 = |𝑟𝑖 − 𝑟𝑗| . The third term 

represents the triplets. The summations considers only the distinct pairs (i, j) or triplets (i, j, k) 

once (i.e. either ij or ji for pairs). 

The equations of motion could be written in different forms [28]. One of the fundamental form 

is Lagrangian equation of motion written as [24],   
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𝑑

𝑑𝑡
(𝛿𝐿

𝛿�̇�𝑘
⁄ ) − (𝛿𝐿

𝛿𝑞𝑘
⁄ ) = 0                                           (2.8) 

Where Lagrangian function L dependent upon q and �̇� is defined with respect to Kinetic energy 

K and potential energy U as following, 

L= K – U                                                               (2.9) 

In Cartesian coordinates 𝑟𝑖 the Lagrangian equation becomes, 

𝑚𝑖�̈�𝑖 = 𝑓𝑖                                                              (2.10) 

Where 𝑚𝑖 is the mass of atom i and 𝑓𝑖 is the force on that atom defined as, 

𝑓𝑖 = ∇𝑟𝑖
𝐿 = −∇𝑟𝑖

𝑈                                                   (2.11) 

Now the momentum equation will be, 

𝑝𝑘 = 𝛿𝐿
𝛿�̇�𝑘

⁄                                                           (2.12) 

If there is molecules instead of atoms then the same equation could be applied for the center of 

mass of the molecule i .  

Now for Hamiltonian form of equation of motion could be written as, 

𝐻(𝑝, 𝑞) = ∑ �̇�𝑘𝑝𝑘𝑘 − 𝐿(𝑞, �̇�)                                             (2.13) 

Where H is the Hamiltonian function that gives the momenta feature as following, 

�̇�𝑘 = 𝛿𝐻
𝛿𝑝𝑘

⁄                                                              (2.14) 

�̇�𝑘 = −(𝛿𝐻
𝛿𝑞𝑘

⁄ )                                                        (2.15) 

For Cartesian coordinates the Hamiltonian equation becomes, 

�̇�𝑖 =
𝑝𝑖

𝑚𝑖
⁄                                                              (2.16) 

�̇�𝑖 = −∇𝑟𝑖
𝑈 = 𝑓𝑖                                                      (2.16) 



The equations of motions are solved at each time step using simulation algorithm that is fast, 

requires less memory, permit the use of shorter as well as longer time step, could duplicate 

trajectory as closely as possible, satisfy conservation laws for momentum and energy and 
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simple form with easy programming. Most widely used algorithm for time integration is the 

Verlet algorithm [42] adopted by Verlet and Stormer. This method gives the direct solution of 

2nd order equation based on the current position r(t), position at previous time step r(t-𝛿t) and 

acceleration a(t). The position is calculated as follows with an error of order δ𝑡4 [24], 

𝑟(𝑡 + 𝛿t) = 2𝑟(𝑡) − 𝑟(t − 𝛿t) + δ𝑡2𝑎(𝑡)                                  (2.17) 

The velocities are useful for estimating kinetic energy and therefore calculated as following 

with an error of order δ𝑡2,  

𝑣(𝑡) =
𝑟(𝑡+𝛿t)−𝑟(𝑡−𝛿t)

2𝛿t
                                                        (2.18) 

v(t) can only be calculated when 𝑟(𝑡 + 𝛿t) is known. Also verlet algorithm is properly centered 

between r(𝑡 + 𝛿t) and r(𝑡 − 𝛿t) makes the time reversible. Finally, the position advances in 

single stage rather than two stage as predictor-correction model. For this reasons velocity 

calculation has few deficiencies. This deficiencies could be overcome by leap-frog method that 

use the following algorithm  [43], 

𝑟(𝑡 + 𝛿t) = 𝑟(𝑡) + 𝛿tv(t +
1

2
𝛿t)                                          (2.19) 

𝑣 (𝑡 +
1

2
𝛿t) = 𝑣 (𝑡 −

1

2
𝛿t) +  𝛿ta(t)                                      (2.20) 

Current position r(t) and acceleration a(t) is stored along with mid time step velocity v(𝑡 −

1

2
𝛿t). The next mid timestep velocity v(𝑡 +

1

2
𝛿t) is found from the implementing the velocity 

equation. By this way current velocities are calculated as, 

𝑣(𝑡) =
𝑣(𝑡+

1

2
𝛿t)+𝑣(𝑡−

1

2
𝛿t)

2
                                              (2.21) 

The advantage is by scaling the velocity the simulation energy is achieved. But still it does not 

handle the velocity satisfactorily. Therefore Velocity Verlet algorithm is proposed by Swope, 

Andersen, Berens and Wilson [44] which stores position r(t), velocity v(t) and acceleration a(t) 

at time t with minimum round off-error as the following , 

𝑟(𝑡 + 𝛿t) = 𝑟(𝑡) + 𝛿tv(t) +
1

2
𝛿𝑡2a(t))                                     (2.22) 

𝑣(𝑡 + 𝛿t) = 𝑣(𝑡) +
1

2
𝜕𝑡[𝑎(𝑡) + 𝑎(𝑡 + 𝜕𝑡)]                                (2.23) 
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The Verlet algorithm could be recovered from this by removing the velocities. It does involves 

two stages. First the new position r(𝑡 + 𝛿t) is calculated and then mid time step velocity is 

calculated as  

𝑣 (𝑡 +
1

2
𝛿t) = 𝑣(𝑡) +

1

2
𝜕𝑡𝑎(𝑡)                                                 (2.24) 

Then the force and accelerations at that 𝑡 + 𝛿t is calculated which follows by the final velocity 

calculated as,  

𝑣(𝑡 + 𝛿t) = 𝑣 (𝑡 +
1

2
𝛿t) +

1

2
𝜕𝑡𝑎(𝑡 + 𝛿t)                                (2.25) 

 

 

In experiment usually temperature and pressure are controlled or fixed to a constant value but 

in Molecular Dynamics pressure, temperature, energy and volume any of these two could be 

controlled and fixed based on the requirement. If volume and energy is choose it is called micro 

canonical (NVE) ensemble average. Here N is the number of atoms. Similarly canonical (NVT) 

or isothermal-isobaric (NPT) ensemble average fixed the volume and temperate or pressure 

and temperature respectively. In microscopic level the thermal fluctuation could be large that 

could make the precise measurement difficult. Therefore modifying dynamics using ensembles 

makes the MD simulation reach in equilibrium directly. These ensembles could be applied by 

a feedback mechanism where the controlled parameter fluctuates around the desired mean 

value or constraint mechanism where controlled parameter is kept constant strictly. There are 

other ways also to control the desired parameter such as coupling or simply resetting the 

parameter at each time step [26]. For example, there are several methods such as constraint 

method, extended system method and stochastic method to keep the temperature constant [45]. 

In the first method by imposing constraint, total kinetic energy is kept constant. As temperature 

is related with kinetic energy therefore temperature also remain constant. For non-equilibrium 

molecular dynamics simulation Gaussian thermostat is used as the constraint. This thermostat 

imposed a force term in the equation of motion to restrict the particle motion. The extended 

method system introduced additional degree of freedom that allows the total energy to fluctuate 

while in thermal contact with heat bath. Finally, the stochastic method implements the concept 

of random force affecting thermal motion for macroscopic system in microscopic system. A 

friction force and random force is added to the equation of motion where both of these forces 
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are interconnected with temperature. Therefore, when temperature is increased due to random 

force, friction force is reduced and thus kept the temperature constant. 

 

For MD simulation the smaller the system the lower the computation requires. Therefore the 

system size needs to be determined appropriately so that it becomes small enough to make the 

computation less expensive and at the same time big enough to capture the actual behavior of 

total system. Unless the goal is to find the behavior at the boundary one could eliminate the 

walls to capture the original interior state. The boundary free from walls could be captured by 

periodic boundary condition. For this kind of boundary condition atoms leaves from one face 

of the simulation and enters immediately into the simulation box from the opposite face. During 

this periodicity wraparound effect also takes into account while updating equations of motion 

and interaction computations. Wraparound effect could be understood by a 1D model in x-

direction extends from –L/2 to L/2 . If an atom coordinate x becomes greater than L/2 then its 

coordinate is adjusted by subtracting L from it that makes the final coordinate staying inside 

the box. Similarly if the x coordinate is lower than –L/2 than the coordinate is adjusted by 

adding L to its coordinate. In general rectangular shaped and rectangular prism shaped region 

is easier to handle periodicity for 2D and 3D case respectively. Although other shapes could 

also be used for periodicity.  

 

Figure 2.2: Periodic boundary condition that has series of images all around identical to the 

central image [46]. 
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In MD it chooses one particle and considers the interaction with all other particles within a 

distance of potential cutoff called 𝑟𝑐 and thus reduces the computational cost by avoiding the 

interactions outside the cutoff distance. The time required to examine whether the particles are 

separated by less than the cutoff distance is proportional to 𝑁2 where N is the number of 

particles. This list of neighbors are updated after each time steps. Between this updates MD 

does not check all particles rather only the particles that falls into the neighbor list. To speed 

up the neighbor list calculation there are couple of ways such as cell subdivision, verlet 

neighbor list etc.  

 

Cell subdivision is the method of organizing the information of atoms position to reduce the 

computational effort by dividing the simulation region into lattices of small cells with the edge 

length equals to the cutoff distance 𝑟𝑐. Atoms in one cell could only interact with the atoms 

inside that cell or the adjacent cells only. By this way it has to consider 14 neighboring cells 

for 3D or 5 neighboring cells for 2D case. Separate lists are required to gather the information 

of each cell. But the number of particles could vary rapidly from cell to cell and therefore to 

avoid the waste of storage linked list approach is used. 

 

Neighbor list method enables the use of a neighbor list for several successive time steps. It 

replaces the cutoff 𝑟𝑐 by 𝑟𝑛 where 𝑟𝑛 = 𝑟𝑐 + ∆𝑟 and ∆𝑟 is generally known as skin distance. If 

the microscopic environment changes slowly then this approach works much better as the 

neighbors remain valid for typically 10 or 20 time steps even for small skin distance. There is 

also an approach called multiple-time step method where there are two neighbor list primary 

and secondary. Primary neighbors includes all the atoms in a distance 𝑟𝑝 larger than the cutoff 

distance 𝑟𝑐 whereas secondary neighbors are the atoms in between the 𝑟𝑝 and 𝑟𝑐. 
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                            (a)                                          (b)                                          (c) 

Figure 2.3: The different approaches to computing interactions: (a) all pairs (b) cell subdivision 

and (c) neighbor list [26] 

 

MD is computationally intensive because of many time steps along with subsequent 

computations in each time step. Therefore to speed up the simulation we could reduce the 

amount of computation in each time step, reduce the number of time steps and/or the time step 

size by taking the minimum required run time , run the simulation in parallel running,  Use 

GPUs to speed up the performance of computers [47]. 
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Table 2.2: Simplified schematic of the molecular dynamics algorithm.[48] 

 

 

2.3 Jamming in Complex Fluids 

 

Jamming is a very common phenomena in our everyday life. Traffic jams in the roads and 

highways, pile of sand, shaving foam, powdered raw materials that clog the conduit; all of them 

are the result of jamming.  

 

Jamming transition is the way of a system from flowing material or liquid to gain rigidity. But 

during this transition to rigidity the internal structure remains disordered. Different disordered 

matter such as foams, colloidal suspensions, granular material, glasses etc. can be jammed and 

turn into rigid state that deformed elastically due to applied stress.  Fluid could also be solidified 
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by crystallization but in that case the system is rather ordered.  Jamming could also be defined 

as the physical process that causes the rise of viscosity by varying the particle density of 

materials in mesoscale such as complex fluids, polymers etc. Jamming causes the phase 

transition of materials which is highly nonlinear with packing density. It is pretty similar to 

glass transition but in that case the liquid state turned into solid by cooling but in this case it is 

done by increasing the density. Jamming transition has both first order and second order 

transition. Jamming transition could be controlled by varying thermodynamic variable (i.e. 

temperature, density) or mechanical variable (i.e. stress). A liquid turns into glass when 

temperature is lowered that increases the viscosity. Flowing foam becomes rigid when applied 

stress is lowered. Colloidal suspension stops flowing when its density is increased. These 

different control parameter does not actually change the structure but brings the system into 

rigid state. The phases remain amorphous and order parameter has not been identified to 

differentiate the phases [49]. 

 

Frictionless spheres interact with repulsive force near zero temperature is considered as the 

simplest model of jamming. Jamming of frictionless deformable particles with repulsive 

interaction is caused by deformation due to pressure on packing density. When deformation 

stops the pressure also stops and jamming is also lost that makes the system loss its rigidity. 

Therefore the system geometry and its rigid behavior is dependent to each other. The average 

number of contact between the particles are very important for the system to hold its rigidity. 

If this contact number reaches to a minimal value the system loses its rigidity. A precise value 

that indicates the minimum contact number between the particles to demonstrate the jamming 

property is called isostatic contact number [20]. The jamming may vary from one system to 

another depending on the constituents of that system. Both static and sheared system could lead 

to jamming. System could be jammed under shear by straining and also the jamming could 

break by breaking the chain when stress reaches to a required level. Also a system which 

consumed energy could also be jammed. By increasing and decreasing the packing fraction or 

applied stress value above and below the yield point could jam and unjam the system. Density, 

stress and temperature are the three key factor regarding jamming transition. The density is 

dependent upon many factors such as particle shape, deformability, friction, dispersity etc. 

 

If shear is applied in system consists of colloidal hard particles then over a certain value of 

shear stress the system could jam because of the forming of force chain among the particles in 
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the sheared direction. This makes the material act as a solid because of the rise of contacts in 

between the particles that creates array of force chains that shows resistance against the applied 

force to deform. This type of solid does not act like the conventional elastic or plastic solids 

rather than like a new solid named fragile. Fragile means that it could not support even an 

infinitesimal small load elastically. Fragility could be distinguished into 2 types. One is bulk 

fragility that considers body force and the other is boundary fragility that considers forces at 

the boundary. The responses could also be considered as macro fragile that considers the mean 

orientation or micro fragile that considers the individual contacts [50].  

 

Cates et al. named the material that cause jamming due to applied stress and results a solid like 

property as fragile material. Jammed particles are stuck and could not escape from their 

position in a small confined space. But if stress is applied from different direction the jamming 

could breaks up. Therefore new theoretical description is proposed for fragile matter. As cates 

et al. considers non-deformable particles therefore deformation of material due to stress is not 

useful consideration. It also considers the system supports applied load as jamming force in the 

same direction but not as an elastic body. It completely ignore the effect of strain. So the new 

concept of fragile matter includes the particles deformation property. The problem arises with 

the consideration that there is no attractive force nor any thermal motion. But the attractive 

force could be replaced with repulsive forces in confined space. This is similar to say that 

instead of attracting each other due to attractive internal force they are coming closer due to 

externally applied force imposed by pressure. Changing temperature could change the 

interaction force between particles. The higher the temperature lower the attractive force and 

the lower the temperature the higher the attraction force becomes. Therefore by lowering the 

temperature it is possible to increase the attraction force that would replace the necessity of 

stress applied externally and results in a jammed state. Liquids could jam the same way by 

lowering temperature and this happens because of the increase of viscosity below its freezing 

point. The same way jamming could be unjammed by increasing the temperature. This density 

could be varied by applied stress and temperature. So there is a definite relation between these 

parameters which could be easily understood by the Figure 2.4 illustrated below [16]. 



  17   
 

 
Figure 2.4: Jamming phase diagram [16] . 

 

 

 

CHAPTER-3 

METHODOLOGY 

 

3.1 MD simulation model 

For running our desired simulation we have chosen a vastly popular MD simulation package 

LAMMPS. It uses neighbor list method to keep track of surrounding particles. We could run 

the simulation both is serial and parallel mode quite effectively. 
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We have chosen a square shaped (30*30 square unit) two dimensional simulation box having 

periodicity in both X and Y directions. From the available unit system (i.e. 

lj, real, metal, si, cgs, electron, micro, nano) in LAMMPS we choose the LJ which is also 

named as reduced unit.  The velocities for two different type of particles are created using 

random number generator at specified temperature. The types are assigned as small for SRD 

particles that act as fluid and big for functional star particles we infused varying the leg lengths 

and number of legs by reading the star data file we have created with asperities because of our 

requirement. We have set the keywords such that each processor independent on the number 

of processor used creates velocity based on random seed number that is generated based on 

atoms coordinates. 

We have chosen the soft potential for pairwise interaction which is a repulsive potential that is 

soft at the starting but hardens the interaction over time. It computes pairwise interaction as the 

following [51], 

𝐸 = 𝐴 [1 + 𝐶𝑜𝑠 (
𝜋𝑟

𝑟𝑐
)] ,   𝑤ℎ𝑒𝑟𝑒 𝑟𝑐 > 𝑟                                        (3.1) 

Here, A is a prefactor which is in energy unit and 𝑟𝑐 is the cutoff distance. It is clear from the 

equation that E does not blows up even if when r goes to 0 and hence it is very effective for 

pushing apart overlapped atoms. We could ramp the prefactor value from an initial value to our 

desired value with respect to time.  

 

The neighbor list is updated as a list with a skin distance (∆𝑟) equals 0.3 which is a default 

value for lj unit in LAMMPS. Also we choose the faster algorithm named bin to build the 

neighbor list where binning operation scales linearly with N/P . Here N is the number of atoms 

and P is the number of processors. The neighbor listing could be modified by defining certain 

parameters. We choose not to delay for building the new neighbor list at all after the defined 

number of time steps are completed from the initial building of neighbors. We have also 

checked before creating the new neighbors whether some of the atoms moves more than half 

of the skin distance or not. 

 

Rigid bodies are consists of several atoms but it considers all force and torque applied on it as 

sum of forces and torques in its constituent particles. Therefore despite having several particles 

the whole structure acts as one body particle [52]. Protein, colloidal particles are the examples 

of rigid bodies. The star particles we have generated for our simulation was consists with small 
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circular particles. So while running the simulation we considered those constituent particles 

together as rigid body. Also as we used multiple star particles in each system therefore the body 

style was set as molecule for each rigid bodies.  

 

Our simulation box is has very small dimension in z axis compared to the other two dimension. 

Therefore, we could consider our simulation as a 2D case and take care about the dynamics so 

that it zero out the velocities and forces for each of the atoms in simulation in z direction. For 

each time steps we computed and dumped our desired parameters such as shear stress, strain 

and pressure values. But to check whether the dynamics is maintaining the desired behavior 

and following the conservation law we have also dumped the kinetic energy, potential energy, 

temperature, velocity and the values of defined variables at each time step.  

 

The visualization is also an important part in case of MD simulation. We have dumped the 

coordinates of each of the atoms after a certain time steps in xyz format and loaded the dumped 

file in VMD [53] to visualize the simulation. 

 

 

3.2 Star particle Generation  

We have generated functional star particles with asperities to infuse into the fluid. For this 

purpose we have used an algorithm using python programming language. Our goal was to 

generate particles with arms. Also to create the asperity [18] on the surface we decided to use 

small spherical/circular particles and by joining those particles create our desired star shaped 

particles. The small circular particles that we chose has radius r= 0.2 σ. We compiled few of 

those small particles together to form the core of the star particle. The radius of the core R was 

chosen 0.65 σ. We run 1000 trials to place the particles in the center so that these placed 

randomly with no overlap and also make sure these particles are not too close. After creating 

the core decide the number of leg we add using the following formula, 

𝜃 = 2 ∗
𝜋

𝑁𝑙𝑒𝑔
                                                                  (3.2) 

Where 𝜃the angle between legs and Nleg is the number of legs. In our case we choose Nleg 

equals 3, 5 and 7. The number of particles in each leg is determined as the following, 
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𝑛 =
𝐿

2∗𝑟
+ 1                                                                  (3.3) 

Here L is leg length and n is the number of small particles in each leg. However we set this 

formula such a way that only took the integer value of the first term of above equation. The 

radial distance from the center of core to the edge of leg is calculated afterwards as the 

following way, 

𝑟𝑑 = (𝑅 + 𝑟) ∗ 𝐶𝑜𝑠(𝜃 ∗ 𝑖)                                                      (3.4) 

𝑟𝑑
𝑎 = 𝑟𝑑 + 𝑗 ∗ 2 ∗ 𝑟 ∗ 𝐶𝑜𝑠(𝜃 ∗ 𝑖)                                            (3.5) 

Here 𝑟𝑑 is the radial distance from core, 𝑟𝑑
𝑎 is the distance where the center of newly added 

small particle is placed and i and j are the iteration numbers which determines how many 

number of legs are creating and how long the leg lengths are extending respectively.  

 

(a)                                                                            (b) 

 

                                                                            (c) 

Figure 3.1: Single (a) 3leg (b) 5leg and (c) 7leg Star particle with core radius 0.65σ  and leg-

length 2.5σ. 
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We have created 30 star particles for each system having same number of legs and leg lengths 

and dispersed those into a 30*30 square unit area randomly. We calculated the packing fraction 

(φ) of the system using the following way, 

φ =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑟 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒∗𝑎𝑟𝑒𝑎 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑏𝑜𝑥
                              (3.6) 

We tried to cover the range of packing fraction starting from close to 0 and ending close to 

1.As leg length is the only variable here that could vary this packing fraction we choose leg 

length equals 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0 for 3 leg that gives us 

packing fraction equals 0.18, 0.23, 0.28, 0.34, 0.44, 0.49, 0.54, 0.59, 0.69, 0.74, 0.79, 0.84, 

0.94 respectively. And leg length 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 for 5 leg that gives the packing 

fraction 0.22, 0.30, 0.40, 0.47, 0.62, 0.72, 0.80 respectively. Finally leg length 0.0, 0.5, 1.0, 

1.5, 2.0, 2.5 for 7 leg that gives the packing fraction 0.25, 0.37, 0.50, 0.60, 0.84, 0.96 

respectively. 

 

(a)                                                                                      (b) 

 

                                                                           (c) 

Figure 3.2:  Randomly dispersed configuration of 30 Star particles in each system having a 

square shaped (30*30 𝜎2) simulation box for (a) 3leg (b) 5leg and (c) 7leg. 
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To do an experimental demonstration and compare the simulations with real world 

experimentation we have created few physical star particles by 3D printing and Laser cutting. 

For this purpose first we designed the particle with one of the popular engineering design 

software named Solidworks. We choose the Acrylonitrile butadiene styrene (ABS) plastic and 

3/16" x 24" x 24" - Orange Plexiglas Acrylic Sheet as the material for completing our 3D 

printing and LASER cutting respectively. As the dimensions are convertible from reduced unit 

to any physical unit we could easily transform all the dimensions in physical form and perform 

the similar procedure to rise the chosen fluids viscosity in a long rectangular pipe by 

experimentation. The dimensions of one particular star particle having a circular core with 

radius 0.65σ and leg length 2.5σ is printed for experimental demonstration by transforming 

into physical unit. We have printed 5 legged star particles with core radius 0.65cm and each 

leg length equals to 2.5cm. Each leg has given a width of 0.4cm. The thickness of star particles 

are kept 0.45 cm which is very small compared to the length and width of the system and thus 

creates an almost 2D case like our simulation. Around 30 particles are printed for a system with 

control volume 30cm x 30cm x 0.5cm = 450 𝑐𝑚3.  

 

 

                              (a)                                                                              (b) 

Figure 3.3: 5 leg star particles by (a) 3D printing and (b) LASER cutting. 

 

 

3.3 Stochastic Rotation Dynamics (SRD) 

 

Stochastic Rotation Dynamics (SRD) [54]–[60], introduced by Anatoly Malevanets and 

Raymond Kapral, are cheap-coarse grained particles that serves as background solvent that do 
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not interacts with each other but with solute particles of different shapes (spheroid, ellipsoid, 

line, circular, triangle, rigid bodies etc.). The fluid like property of SRD imbues due to the 

collision performed between SRD and solute particle and the random rotation that sets the 

velocity distribution after each number of fixed time steps. As SRD’s do not interact with each 

other therefore the large scale calculation becomes possible for calculating the solute properties 

(i.e. viscosity, diffusivity) in background fluid. The mass of each SRD could be set in the input 

script. The mass of SRD’s (𝑚𝑆𝑅𝐷) could be related with the temperature (T), SRD timestep (∆𝑡) 

and mean free path (𝜆) between collisions of SRD particles with a fundamental equation as 

following [61], 

𝜆 = ∆𝑡√
𝑘𝐵𝑇

𝑚𝑆𝑅𝐷
                                                            (3.7) 

Where 𝑘𝐵 is the Boltzmann constant. The SRD time step slightly different than the simulation 

time step. When the suspended solute particles advect with time step dt, the SRD particles 

advect with N*dt where N is an integer number of time step of the simulation. Therefore SRD 

time step is higher than the solute time step and that is why they have different timescale. The 

random rotation takes place after this SRD time steps but the collision steps follow the 

simulation time steps. The length scale of SRD to update velocities is set equal or lower than 

the one-fourth of the solute particles diameter to adequately create the fluid like property 

around the solute. Usually the SRD particles have less mass than the solute particles and 

therefore in the collision steps when SRD’s collide with solutes it bounces back with new 

velocity that changes the momentum of SRD’s. This collision also causes the force and torque 

that imparts in the solute particle. The style of collision could be set in two ways. One is slip 

and other is no slip. Slip condition would impart only force but no torque in the solute particle. 

But no slip will impart both. The solute particle overlapping could also be controlled. No 

overlap could fast the collision calculation process. The simulation creates two kinds of bins 

SRD bin and Search bin. In SRD bin it is used to bin the SRD particles and update their 

velocities. The search bin is used for collision of SRD and solute particle calculations. The bin 

size almost equal to the SRD length scale and it could vary to adjust the number of bin as an 

integer value. The random shifting of all particles with same vector in a bin is made while the 

particles does not moves much higher than the mean free path in the rotation step for velocity 

update. During the collision of SRD and solute particle, the stochastic temperature control 

method is implemented in the bins. Without any thermostat it will take much long time for the 
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SRD’s to come in equilibrium state. The maximum velocity of SRD particles could also be 

controlled.  

 

SRD is coarse-grained particle based method [62] that has numerical stability, internal 

thermostatting and simple implementation. It could also be used in fluctuation fluid dynamics 

to address sedimentation, reacting fluid, vesicles in flow, polymers in flow etc [58]. The details 

are not fully solved but it could provide correct hydrodynamic interaction among embedded 

particles [60]. SRD works better when the Peclet number is with order 1 and Reynolds numbers 

in between 0.05 to 20. Although SRD method is much faster, it could not be used for arbitrarily 

large peclet numbers. For that reason the amplitude of noise should be reduced. If a large 

number of particles are used in each node that would reduce the noise. But increasing the 

particle number at each node does not work for peclet number higher than 20. Also for high 

Reynolds number this method is inefficient. The H theorem shown that this method has correct 

hydrodynamic equations [63]. 

  

For a system with coarse grained particles placed in square shaped lattice then the system is 

divided into a number of bins. The method actually consists of two distinct steps. One is 

Collision step and the other is Streaming step. In the streaming step the particles updated its 

positions during each time step. The position is updated according to its displacement vector 

in each SRD time step. Collisions step is performed by random rotation matrix. It updates the 

particles velocity at each SRD time steps. During collision steps the rotation matrix performs 

in each bin separately. It conserves the mass, momentum and energy consistent with the 

conservation laws at collision steps.  

 

For a system that consists N number of point SRD particles having position 𝑟𝑖(t) and velocity 

𝑣𝑖(𝑡) for i th particle at time t we could figure out the position of and velocity of that particle 

after small SRD time step dt. In the streaming step the particle having a velocity 𝑣𝑖(𝑡) will 

move a distance equals 𝑣𝑖(𝑡)*dt . That would give its new position [58], 

𝑟𝑖(t+dt) = 𝑟𝑖(t) + 𝑣𝑖(𝑡)*dt                                               (3.8) 
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Again for collision step particles of each bin are interacts. For random rotation matrix 𝜔(𝜉) 

where 𝜉 is the bin number cause the reset of particles velocity in that particular bin. The relative 

velocity is 𝑣𝑖-u where u(𝜉, 𝑡) is the mean macroscopic velocity of the particles in the bin 𝜉. The 

velocities are updated after dt timesteps as followings [58], 

𝑣𝑖(t+dt) = u[𝜉𝑖(t+dt)] + 𝜔[𝜉(𝑡 + 𝑑𝑡)]{𝑣𝑖(t) − u[𝜉𝑖(t + dt)]}               (3.9) 

The local temperature T(𝜉, 𝑡) is defined by the mean square displacement of the particles 

velocity from the mean velocity u at the bin 𝜉. The mean velocity u is the average velocity of 

all particles inside the bin 𝜉 which is calculated as following [58], 

u(𝜉) = 
1

𝑁
∑ 𝑣𝑘𝑘∈𝜉                                                       (3.10) 

If the square shaped bin size has side length b then for removing the temperature anomalies 

before the collision step the particles are shifted by same random vector ranging from [-
𝑏

2
,

𝑏

2
].  

 

3.4 Observables: Viscosity, Diffusivity, Radial Distribution 

Function 

Viscosity is the characteristic property of fluid. It is basically the resistance that a fluid face 

while trying to flow. Viscosity η is expressed as, 

η=
F/A
𝜕𝑢

𝜕𝑦

=
𝜏

𝜕𝑢

𝜕𝑦

                                                             (3.12)                                                                                                                                        

Where F is the force parallel to a surface with area A and 
𝜕𝑢

𝜕𝑦
 is the velocity gradient. 

It is also called the dynamic viscosity or absolute viscosity or shear viscosity [64]. The SI unit 

of viscosity is Pa/s. Poise is another unit of viscosity where 10P=1Pa/s.  

There is another quantity that is called kinematic viscosity which is just the ratio of viscosity η 

to density  . This is a measure of fluid flow under the influence of gravity. The SI unit of 

kinematic viscosity is 𝑚2/s. Stokes is another unit of kinematic viscosity where 104 stokes = 

1 𝑚2/s. 

ν =
η

𝜌
                                                                   (3.13) 
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Viscosity varies fluid to fluid. The more the viscosity more thick and resistive the fluid is. Like 

water has less viscosity than honey and therefore water is thinner and it flows more freely than 

honey does. Viscosity of fluid is normally the friction between the fluid molecules. So when 

the molecules come closer to each other this friction and so does the viscosity increases. 

Viscosity mostly depends on temperature. When the temperature increases the molecules goes 

far from each other which cause the viscosity go down and opposite when the temperature 

decreases. The same thing is not true for Pressure because incompressible fluids could not force 

the molecules to come closer to each other to cause more friction in between them and therefore 

no change in viscosity. But if the fluid compresses due to high pressure then the viscosity will 

rise. As the viscosity is dependent on temperature therefore it is required to mention the 

viscosity value of particular fluid with respective temperature.  

 

The fluids are also characterized into two categories named Newtonian fluid and Non-

Newtonian fluid . Newtonian fluid follows a linear relationship with shear stress and strain rate. 

And Non-Newtonian fluid follows a non-linear relation with shear stress and strain rate. Also 

there is a concept of Bingham plastic which has a linear relationship like Newtonian fluids 

except that it requires to pass an initial shear stress barrier to start flowing like fluid. And 

Bingham pseudo plastic also needs to pass in initial shear stress barrier but the relationship is 

non-linear. In general, all of the fluids are non-Newtonian fluid. Two new categories of fluid 

exists under non-Newtonian fluid those are shear-thinning fluid and shear thickening fluid. If 

the viscosity of the fluid increases with respect to the increase of strain rate then the fluid is 

called shear thickening fluid. And if the viscosity decreases with the increase of shear rate then 

it is called shear thinning fluid. The velocity profile varies depending on what kind of fluid we 

have.  
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                            (a)                                                                (b) 

 

                                     (c)                                                                  (d)  

Figure 3.4: (a) Shear stress as a function of shear rate for different Newtonian, Non-Newtonian 

shear thinning and shear thickening, Bingham plastic and Bingham Pseudoplastic fluid (b) 

shear stress on a fluid in between two boundary plate where one is moving and another is 

stationary  (c) Viscosity of Newtonian, Shear thinning and shear thickening fluids as a function 

of shear rate (d) velocity profile for Newtonian, shear thinning and shear thickening fluid [65] 
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Viscosity can be measured both experimentally and computationally. Some of the experimental 

method to measure viscosity are Capillary viscometer , Zahn Cup, Falling Sphere Viscometer, 

Vibrational Viscometer , Rotational Viscometer etc. [66][67] 

 

Typically in simulations, the rheological properties such as viscosity of fluids are measured by 

Non-equilibrium molecular Dynamics (NEMD) simulations [68]–[71]. A non-orthogonal 

simulation box needs to set up for running NEMD simulation where shear strain is applied with 

a desired constant strain rate. Although reverse Non-equilibrium Molecular Dynamics 

(rNEMD) [72] and equilibrium Molecular dynamics could also determine fluids viscosity. 

LAMMPS could use any of the MD, NEMD or rNEMD method to measure the fluids viscosity 

by the following five ways. A brief discussion regarding all of the methods are described below.  

 

Non Equilibrium Molecular Dynamics (NEMD) simulation deforms the simulation box using 

fix deform command with constant engineering or true strain rate in LAMMPS. The other 

method is named as Wall shearing also follows the same NEMD simulation technique but in 

this case shear is applied by moving one or several walls. This NEMD method runs based on 

the cause and effect. The velocity gradient or strain rate is the cause and its effect is found as 

the momentum flux or stress. The viscosity is calculated from the ratio of transferred 

momentum perpendicular to the velocity direction to the gradient of velocity. For flow in x 

direction and transfer of momentum in z direction the momentum flux 𝑗𝑧(𝑝𝑥) and velocity 

gradient 𝜕𝑣𝑥 𝜕𝑧⁄  is expressed as [72], 

𝑗𝑧(𝑝𝑥) = −𝜂
𝜕𝑣𝑥

𝜕𝑧
                                                     (3.14) 

Where 𝜂 is the proportionality constant otherwise known as shear viscosity. The velocity is set 

up in the simulation initially by ave/chunk that determines the velocity gradient. And pressure 

tensor 𝑃𝑥𝑧 is calculated by compute pressure command in LAMMPS. This 𝑃𝑥𝑧 is the x 

component of momentum 𝑝𝑥 transported along z direction per unit time and unit area. 

𝑗𝑧(𝑝𝑥) =
𝑝𝑥

2𝑡𝐴
                                                          (3.15) 

Here t is the time and A is the area. Because of periodicity we had to divide the momentum 

component by a factor 2. 

 



  29   
 

The rNEMD simulation method is almost similar to the NEMD method but in this case the 

cause and effect that we discussed earlier for NEMD simulation is reversed. Instead of applying 

velocity gradient or shear rate rNEMD method imposed momentum flux or stress that cause 

the velocity gradient or strain rate. The momentum flux is imposed by swapping momentum in 

one direction for atoms in different layers and different direction. The swap of momentum 

induces velocity gradient that is monitored by the same way as NEMD. This is generally known 

as Muller-Plathe algorithm [72]. LAMMPS has separate command names fix viscosity to 

calculate viscosity with this rNEMD method.. This method is also known as Norton-ensemble 

methods.  

 

Figure 3.5: Nonequilibrium simulation geometry. Velocity gradient in 𝑣𝑥 is set up in the z 

direction by shearing the liquid. And x momentum flows towards z direction that rise 

momentum flux 𝑗𝑧(𝑝𝑥) through the xy plane. [72] 

 

The simulation methods mentioned earlier calculates the viscosity of fluids directly and gives 

the viscosity value as output. We have followed the same NEMD technique but instead of 

getting the direct viscosity value we have dumped the viscous shear stress. Then using its 

relation with shear strain rate we measured the slope of their plotting to get shear viscosity. 
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Viscous stress tensor describes the internal forces in fluids. It is the results of strain rate (rate 

of change of deformation with respect to time). It actually arises from the friction or particle 

diffusion of the fluid particles of a system with different mean velocities. On the other hand 

elastic stress tensor describes the internal forces in elastic material because of deformation. 

Due to the jamming transition, our system transformed from liquid-like state to an intermediate 

state between solid and liquid therefore ours one is actually viscoelastic system that has both 

viscous and elastic component in its total stress tensor.  

The viscous stress tensor in a 3D could represented as a 3x3 matrix in following way at any 

point r with time t, 

휀(𝑟, 𝑡) = |

휀𝑥𝑥 휀𝑥𝑦 휀𝑥𝑧

휀𝑦𝑥 휀𝑦𝑦 휀𝑦𝑧

휀𝑧𝑥 휀𝑧𝑦 휀𝑧𝑧

|                                                       (3.16) 

If there is any torque applied by any external source like external magnetic fields in case of 

Magnetorheological fluids or external electric fields in case of electrorheological fluids the 

viscous stress tensor will be antisymmetric. As we have not applied any external force fields 

in our system our stress tensor should be symmetric and therefore we got 휀𝑥𝑦 = 휀𝑦𝑥 , 휀𝑥𝑧 = 휀𝑧𝑥 

and 휀𝑦𝑧 = 휀𝑧𝑦 [73]. 

As our system is viscoelastic therefore total stress will be the sum of viscous stress tensor and 

elastic stress tensor which manifests itself as hydrostatic pressure p. Therefore the total stress 

could be expressed as following, 

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 휀𝑖𝑗                                                             (3.17) 

Where 𝛿𝑖𝑗 is unit tensor such that 𝛿𝑖𝑗=0 if i≠j and 𝛿𝑖𝑗=1 if i=j.  

The strain rate tensor E(r,t) is the derivative of strain tensor e(r,t) with respect to time. As it is 

the rate at which the mean velocity in the medium changes so strain rate tensor (represents the 

velocity pattern) could be expressed with respect to the gradient of velocity vector v(r,t) also. 

The expression could be written as, 

𝐸𝑖𝑗 =
𝜕𝑒𝑖𝑗

𝜕𝑡
=

1

2
(

𝜕𝑣𝑗

𝜕𝑥𝑖
+

𝜕𝑣𝑖

𝜕𝑥𝑗
)                                                    (3.18) 

Strain rate tensor and viscous stress tensor represents the velocity pattern and viscous stresses 

at any point r are related by viscosity tensor 𝜇 as following, 
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휀𝑖𝑗 = ∑ 𝜇𝑖𝑗𝑘𝑙𝐸𝑘𝑙𝑘𝑙                                                            (3.19) 

Here the viscous stress tensor could be expressed as the sum of symmetric tensor 휀𝑠 commonly 

known as viscous shear stress related with shearing deformation and scaler multiple 휀𝑣 of 

identity tensor when the material is compressed or expanded at same rate. The bulk viscosity 

𝜇𝑣 is the slope found from stress tensor 휀𝑣 vs strain rate tensor 𝐸𝑣 whereas shear viscosity  𝜇𝑠 

is the slope found from stress tensor 휀𝑠 and strain rate tensor 𝐸𝑠. Mathematically these 

quantities are related as following , 

휀𝑖𝑗 = 𝜖𝑖𝑗
𝑣 + 𝜖𝑖𝑗

𝑠                                                              (3.20) 

𝜖𝑖𝑗
𝑣 =

1

3
𝜕𝑖𝑗 ∑ 휀𝑘𝑘𝑘                                                          (3.21) 

𝜖𝑖𝑗
𝑠 = 휀𝑖𝑗 −

1

3
𝜕𝑖𝑗 ∑ 휀𝑘𝑘𝑘                                                   (3.22) 

휀𝑣 = 𝜇𝑣𝐸𝑣                                                               (3.23) 

휀𝑠 = 𝜇𝑠𝐸𝑠                                                                (3.24) 

We have calculated the viscous shear stress 𝜖𝑖𝑗
𝑠  from our simulation and calculated the shear 

viscosity 𝜇𝑠 by calculating the slope for given strain rate tensor 𝐸𝑠 [74]. 

We have also calculated the standard error of mean by considering the values we found from 

configurations of same leg lengths for specific number of legs for plotting the error bar. The 

standard error of mean is calculated by the following formula, 

𝑆𝐸𝑀 =
𝜎

√𝑛
                                                            (3.25) 

Where, SEM= standard error of mean,  𝜎=standard deviation of the samples and n= number of 

sample used. 

 

Diffusion is associated with the random thermal motion of atoms that changes the macroscopic 

concentration profile. This process occurs in gases liquids amorphous and crystalline solids of 

metals, ceramics, polymers, semiconductors etc. It is the net movement of atoms or molecules 

from high concentration to low concentrations. The atomic structure of materials along with 

any defects in it such as rates of kinetic processes, processes that modify materials and material 

failure etc. could be investigated by diffusion. It is solely dependent on Temperature. Diffusion 

follows the Random walk model that means that the particles moves randomly without 
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knowing the path it is going to take. The diffusion equation in 3D which is also known as Fick’s 

2nd law is written as the following [75], 

𝜕𝑐

𝜕𝑡
= 𝐷(

𝜕2𝑐

𝜕𝑥2 +
𝜕2𝑐

𝜕𝑦2 +
𝜕2𝑐

𝜕𝑧2)                                                      (3.26) 

Where c is the concentration and D is the diffusivity which is our prime interest. 

Diffusivity is the rate of diffusion at which particles or heat spreads. It is also known as 

diffusion coefficient. It. The diffusivity of particles are known as mass diffusivity. Similarly, 

diffusivity of heat is known as thermal diffusivity. In our latter discussion we will be focusing 

on mass diffusivity only. 

Diffusivity of mass could be categorized into three types. First one is self-diffusion coefficient 

which is the rate of diffusion of atoms which are labeled. As the atoms are literally 

indistinguishable from one another this kind of diffusivity could be calculated using radioactive 

isotopes. The second type is hetero-diffusion coefficient which refers to the rate of diffusion of 

one molecular species into another. This type of diffusion needs more than one type of 

molecules and most of the diffusions in our practical life actually falls into this category. The 

final type is mutual diffusion coefficient. When different molecule types diffuses into each 

other then the rate which this mutual diffusion is occurred is called mutual diffusion coefficient. 

 

Diffusivity closely connected with mean square displacement (MSD) also known as average 

squared displacement or mean square fluctuation. It measures the deviation of particles position 

from a reference point with respect to time. Mathematically it can be described as the following 

equation, 

𝑀𝑆𝐷 = (𝑥 − 𝑥0)2 =
1

𝑁
∑ (𝑥𝑛(𝑡) − 𝑥𝑛(0))2𝑁

𝑛=1                              (3.27) 

Where N is the number of particles, 𝑥𝑛(0) is the reference position and 𝑥𝑛(𝑡) is the position 

after time t. As in random walk series of steps  are taken randomly so if it moves forward and 

then comes back to its initial position then by adding its vector sum of distance will give zero 

value that is no use to calculate the total distance travelled. Therefore MSD is much appropriate 

to use for calculating total distance because it squares each distance and sums up all the positive 

values and finally gives the average. The relation of MSD and Diffusivity is analyzed by 

Einstein in his study of Brownian motion and he showed that MSD is proportional to the time 

elapsed which is related as the following equation [76], 
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𝑀𝑆𝐷 = 6 𝐷𝑡 + 𝐶                                                  (3.28) 

Where t is the time and D, c are constants. This D is the diffusion coefficient and hence we 

could find this quantity from the slope of MSD vs time plotting. Although at very short time 

this relationship is not linear rather it is parabola. The reason is the relationship holds a linear 

relationship when the path particles follows is completely random and randomness is generated 

by collisions of particles with its neighboring particles. But at very short time before making 

any collisions the particle moves with constant velocity and therefore the distance it travels is 

proportional to time and MSD becomes proportional to time squared. 

 

For diffusion coefficient calculation of our system we calculated the mean square displacement 

of group of atoms by considering the periodic boundaries. We have two groups of particles in 

our system. One is the small SRD particles and other one is the big star particles. First we 

calculated the displacement in all direction dx, dy, dz and after that total squared displacement 

(dx*dx+dy*dy+dz*dz) is calculated. Then the sum of all the total displacements for each atom 

is divided by the total number of atom to get the mean squared displacement (MSD). The slope 

of mean squared displacement vs time step plot gives the diffusion coefficient of those atoms. 

We run our simulation for a longer time period so that the relationship truly becomes linear. 

For calculating the diffusion coefficients of molecules (star particles in our case which is 

composed of several number of atoms) we calculated the center of mass for each molecule and 

then considered those center of atoms and followed the same procedure for diffusion coefficient 

[77]. 

 

Radial distribution function (RDF) is also known as Pair correlation function g(r) which 

describes how the particles dispersed in a system from by taking account of one reference 

particle. In simple it is the probability of finding a particle from a reference particle at specific 

distance. It could describe the structure of molecular system effectively. Liquid is a disordered 

molecular system whose molecules are moving continuously. The snapshot of any time could 

capture the instantaneous disorder in the liquid which could be used for calculation of average 

structure of that system. 

 

The usefulness of RDF calculation is vast. The experimental studies with various method such 
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as X-ray, Neutron diffraction etc. could easily be compared with simulation methods result 

using this RDF method. It also could calculate the internal energy almost accurately by 

combining with interatomic pair potential function. It could also be used to calculate the 

Structure factor [78]. 

 

 

Figure 3.6: Calculation of radial distribution function g(r). Red particle is the reference 

particle and blue particles falls within the range of radial increment Δr lined in black [78] 

 

RDF can be easily constructed for a simulation for better understanding of this method. Select 

a system with dispersed particles that are moving while the simulation is running. Now choose 

one specific particle near the center of the system and draw concentric spheres (for 3D) or 

circles (for 2D) around it with an increment of ∆r from each other. Now for a particular time 

calculate the number of particles at each shell. It is better to take snapshots of that particular 

system to ensure no particle moves during this calculation. Follow this procedure a number of 

times with a fixed interval. Finally take the average number of atoms in each shell. Now RDF 

is the ratio of the average number of atoms in each shell to the volume (for 3D) or area (for 

2D) of each shell multiplied with the average density of particles in the system. 

Mathematically, Radial distribution function g(r) is, 
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𝑔(𝑟) = {

𝑛(𝑟)

𝜌4𝜋𝑟2∆r
     , 𝑓𝑜𝑟 3𝐷

𝑛(𝑟)

𝜌2𝜋𝑟∆r
      , 𝑓𝑜𝑟 2𝐷

                                               (3.29) 

 

Where average atom density 𝜌 is defined as, 

𝜌 = {

𝑁

𝑉𝑜𝑙𝑢𝑚𝑒
 ,      𝑓𝑜𝑟 3𝐷

𝑁

𝐴𝑟𝑒𝑎
  ,        𝑓𝑜𝑟 2𝐷

                                                     (3.30) 

 

Here N is the total number of particles and ∆r is the shell width at distance r. We could also 

choose each different atom from the system separately and follow the same procedure to 

calculate RDF that would lead to the average RDF calculation for the system. 

 

The RDF calculation makes more sense when it is plotted with the radial distance r. This plot 

has some important aspects. First is, for very small r value the RDF is zero because it indicates 

the width of the reference particle and there is no other particle in its width unless overlapping 

is allowed. Second important feature is couple of peaks. The first peak is highest for most of 

the cases. This peaks indicates that the packing of atoms in reference to its neighborhood. The 

higher the number of peaks the higher the degree of ordering. Usually the highest peak comes 

first and then the rest of the peaks decreases as sequentially as the radial distance increases and 

finally it reaches to a value of 1 which is because it means the average density as a whole. 
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Figure 3.7: Radial distribution function for the Lennard-Jones fluid model [79] 

 

We have various systems of star particles with different number of legs and leg lengths. Each 

system also has 30 different configurations of dispersed stars. We have calculated the radial 

distribution function g(r) for each system configurations and then averaged over the 

configurations to get statistically precise plotting. For these calculations we have used ∆r=0.2 

unit and maximum radial distance r=10 unit. 

 

3.5 Boundary Conditions 

A flow model can describe rheological data (i.e. shear stress , strain rate, packing density etc.) 

in mathematical form. That equation could further use for plotting the flow as a basic diagram 

as a concise way to describe the flow. Moreover the variation of model parameters due to state 

variables could also be understood more conveniently by using functional models [80] 

 

There are 3 types of functional models for rheology: 1. Empirical 2. Theoretical and 3. 

Structural. Empirical model is deduced from experimental data that is available. On the other 

hand theoretical model is the derivation from the concept of fundamental concept to understand 

structure. Finally structural model considers the structure and its change in kinetics. It may be 

https://en.wikipedia.org/wiki/Lennard%E2%80%93Jones_potential
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used together with empirical data. Dispersed systems information is found from analysis of this 

model. Few of the functional model of different types are listed in the table below. 

 

  

Table 3.1: Flow models for describing shear stress vs strain rate data [80] 

 

Among these flow models we have used Herschel-Bulkley model [81] for shear stress and 

strain rate result analysis.  We have also used power law model for total pressure with respect 

to packing density. Details about these two models are described in respective result section. 

 

Shear actually means shear strain that is the deformation of a material when its parallel internal 

surfaces slides past each other. Now this shear strain produces shear stress and from the ratio 

of shear stress and shear strain rate we could achieve our desired shear viscosity. Now the shear 

strain could be applied in two ways (a) simple shear and (b) pure shear [82]. Simple shear is 

the most general shear strain of materials. In this strain the force is acted parallel to the surface 
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that causes the surface closer to the applied force move far than the surface away from the force 

that cause a change in the materials shape. There is no compression or extension occurs but 

rotation occurs that cause the change in shape but not volume. On the other hand if the force is 

acted perpendicular to the surface that cause the surface perpendicular to the applied forces 

direction to compress and simultaneously the opposite surfaces to extend then it is called pure 

shear. There is no rotation in this type of shear occurs and therefore orthogonal planes remains 

orthogonal. In this case the shape does not change but volume does change. This two type of 

shear also could take place simultaneously. 

 

 

 

                                                                          (a) 

 

                                                                          (b) 

 

(c) 

Figure 3.8: A square shaped object under (a) simple shear (b) pure shear and (c) simultaneous 

simple and pure shear [83] 

In our Non-equilibrium molecular dynamics simulation for continuous strained system we have 

used pure shear strain to change the area of our 2 dimensional simulation box during running 

the dynamics with different rates equals to 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 
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0.008, 0.009, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09 . We have compressed the 

simulation box in y direction and let it expand in x direction with same proportion. We could 

have change the box dimension non-linearly with time while keeping the strain rate constant. 

But that would not be ideal for the output data processing. We have used constant engineering 

strain rate that change the box dimension linearly with time. If 𝐿0 is the initial box length and 

erate is engineering strain rate then after time dt the box length L will be,  

𝐿 = 𝐿0 (1 + erate ∗ dt)                                                 (3.11) 

We have remapped the fluids of the simulation box in order to match with the change of the 

box. Finally we have not kept any dimensions of the simulation box shrink-wrapped.  

 

 

 

CHAPTER-4 

RESULTS  

 

4.1 Shear Stress and Viscosity vs Strain Rate  

We have three different kind of star particles (a) 3 leg (b) 5 leg and (c) 7 leg where each of 

them has various number of leg lengths . For 3 leg star particles the leg lengths (L) are 0.0, 0.5, 

1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0 . For 5 leg star particles the leg lengths (L) are 

0.0, 0.5, 1.0, 1.2, 1.3, 1.5, 1.6, 2.0, 2.5, 3.0 and for 7 leg star particles the leg lengths (L) are 

0.0, 0.5, 1.0, 1.3, 1.5, 1.6, 1.7, 1.8, 2.0, 2.5 . Each leg lengths has 30 different configurations 

where each configuration has different initial condition. We have infused each configuration 

of star particles into SRD particle which have fluid like properties separately and run our 

simulation after removing the overlapping of stars until the simulation reaches in equilibrium 

state. Then we applied pure shear strain along Y directions and allow the system to expand 

orthogonally in the X direction. We have used strain rate equals 0.001, 0.002, 0.003, 0.004, 

0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09 for each 

system. 
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From the shear stress vs strain rate plot in Figure 4.1(a), 4.2(a) and 4.3(a) we have found that 

for lower strain rate we get lower shear stress and for a gradual increase in strain rate the shear 

stress is also increased exponentially. The packing fraction of each system also plays an 

important role in shear stress value. For same strain rate the system with higher packing fraction 

gives higher stress because of jamming. For lower strain rate and very low packing fraction the 

system gives the lowest stress values and therefore it might reach in negative stress also. Again 

the exponential increment of stress with respect to strain rate could be estimated using the 

Herschel-Bulkley model [80]. This model includes the yield stress into the power law model. 

The model shows the relationship with respect to yield stress, slope and power as following, 

𝜎 = 𝐴�̇�𝛼 + 𝜎𝑦                                                         (4.1) 

 

Here, 𝐴 is the slope, 𝛼 is the exponent and 𝜎𝑦 is the yield shear stress. We have plotted the 

nonlinear regression plotting of shear stress vs strain rate using Herschel-Bulkley equation. The 

fitting used least square method [84]. These fitting plots for shear stress with respect to strain 

rate are showed in Figure 4.1 (b), 4.2(b) and 4.3(b). Also to have a clear understanding how 

the yield stress and exponent varies with respect to strain rate we have plotted exponent vs 

packing fraction and yield stress vs packing fraction plots by considering different strain rates. 

This plotting of Figure 4.1(c), 4.2(c) and 4.3(c) proves that only for 3 leg star particles with 

very lower packing fraction the exponent reaches less than 1 which means the shear thinning 

behavior of the fluid. But except that every other packing densities for 3 leg, 5 leg and 7 leg 

packings the exponent is higher than 1 which means the shear thickening behavior of fluid. 

This implies that the overall system is mostly behaving as shear thickening fluid for both higher 

and lower packing fraction. Also the yield stresses that plotted alongside the exponents. For 

low packing densities plotting in the figures demonstrates that the yield stresses are also low 

and with the increase in packing density the yield stresses also increases exponentially. It 

indicates the shifting from liquid-like state to a solid-like state of the system happened due to 

the jamming transition.  
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        (c)  

 

 

 

 

 

 

Figure 4.1: Shear stress vs shear strain rate plotting for (a)3 leg (b)5 leg and (c)7 leg star 

particles.  
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                                                                       (c) 

Figure 4.2: Fitting in Herschel-bulkley model for for (a) 3 leg (b) 5 leg and (c) 7 leg star 

particles.  
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                                                                                (c)                                                                           

Figure 4.3: Exponent and yield stress plotting with respect to packing fraction for (a) 3 leg (b) 

5 leg and (c) 7 leg star particles. 
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We can also conclude about the shear thickening behavior based on the viscosity vs strain rate 

plotting. From definition of shear thinning we know that the viscosity decreases with the rate 

of applied shear strain. Again for shear thickening the viscosity increases with the rate of shear 

strain. Modern paints, ketchup quicksand, toothpaste etc. are example of shear thinning fluid. 

On the other hand, corn stark dissolved in water is an example of shear thickening fluid. It is 

clearly visible from the Figure 4.4 (a, b, c) that for the increase in shear rate the viscosity also 

increases. Although for higher packing the increment is higher we can safely conclude that 

viscosity is increasing for the increment of strain rate and that is why our fluid with infused 

star particles with different leg lengths and number of legs in general shows shear thickening 

behavior.  

 

 

 

 

 

 

 

                                     (a)                                                                             (b) 

 

 

 

 

 

                               

                                                                                 (c) 

Figure 4.4: Viscosity plotting with respect to strain rate of (a) 3 leg (b) 5 leg and (c) 7 leg star 

particles for different packing fraction. 
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4.2 Pressure and jamming  

The total pressure calculated for systems under shear could also be used to understand the 

jamming transition more clearly. We have calculated the steady state average total pressure for 

different systems with different packing density under multiple constant shear rate applied for 

sufficiently longer time period. In principle we expect to see the total pressure vanishes for 

packing fraction lower than jamming and rise to finite values after jamming packing fraction 

[17], [85]. From Figure 4.5 (a, b, c) we have found that after jamming point the total pressure 

values reaches finite values by diverging from that point. At higher packing fraction, the higher 

strain rate cause the total pressure diverge further away than lower strain rate. Using these 

plotting we have found the jamming packing fraction for systems consists with 3 leg, 5 leg and 

7 leg star particles. 

 

We have also used the power law model [80] to show the relationship of pressure and packing 

fraction after the jamming transition. 

𝑃 = {
𝐵(𝜑 − 𝜑𝑐)𝛽  , 𝑤ℎ𝑒𝑛 𝜑 > 𝜑𝑐

0                      , 𝑤ℎ𝑒𝑛 𝜑 ≤ 𝜑𝑐
                                           (4.2) 

 

Here, B is the slope, 𝛽 is the exponent and 𝜑𝑐 is the jamming packing fraction. In the Figure 

4.6 (a, b, c) we have showed how the exponent and jamming packing fraction varies with 

respect to the applied strain rate into different system that consists infused 3leg, 5leg and 7leg 

star particles with different packing density.  
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                                       (a)                                                                       (b) 

 

                                                                               (c) 

Figure 4.5: Total pressure plotting with respect to packing fraction for (a) 3 leg (b) 5 leg and 

(c) 7 leg star particles for strain rate 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 

0.009, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09 . 
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                                      (a)                                                                        (b) 

 

                                                                          (c) 

Figure 4.6: Error bar plotting of exponent and jamming packing fraction with respect to strain 

rate for (a) 3 leg (b) 5 leg and (c) 7 leg star particles.  

 

4.3 Jammed System Under Uniform Shear Strain Rate 

We are considering shear driven jamming under different shear strain rate. For each 

configuration of system we applied strain rate equals 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 

0.007, 0.008, 0.009, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09 . We dumped the strain 

values, total pressure values and shear stress values for each strain rate. Then for each strain 

rate we took the average total pressure and average shear stress for each strain window 

Δϒ=1000. The error bar is the standard error of mean which is calculated from the 
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configurations with equal leg length and number of legs. The system was expected to lose 

memory of its initial configuration when sheared for long time [17]. At the same time for higher 

packing fraction and lower strain rates the initial configuration memory persists for longer 

strains than lower packing fraction or higher strain rates. We have plotted average pressure and 

average shear stress for lower strain rate 0.001 and higher strain rate 0.009 . For different 

packing densities, it is found that the different packings and strain rate follows the same trend 

of coming into the steady state we were expecting for all 3 leg , 5 leg and 7 leg star particles. 

(a)                                                                             (b)    

 

 

 

 

 

 

 

  (c)                                                                              (d) 

 

 

 

 

 

 

 

Figure 4.7: Total Pressure vs strain plot for low strain rate (a) 0.001 and high strain rate (b) 

0.009 of 3 leg star particles for packing fraction 0.18, 0.23, 0.28, 0.34, 0.44, 0.49, 0.54, 0.59, 

0.69, 0.74, 0.79, 0.84, 0.94. Average shear stress with respect to strain is also plotted for strain 

rate (c) 0.001 and (d) 0.009 of 3 leg star particles for same packing density. 
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(a)                                                                              (b) 
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Figure 4.8: Total Pressure vs strain plot for low strain rate (a) 0.001 and high strain rate (b) 

0.009 of 5 leg star particles for packing fraction 0.22, 0.30, 0.40, 0.47, 0.62, 0.72, 0.80. Average 

shear stress with respect to strain is also plotted for strain rate (c) 0.001 and (d) 0.009 of 5 leg 

star particles for same packing density. 
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(a)                                                                            (b) 
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Figure 4.9: Total Pressure vs strain plot for low strain rate (a) 0.001 and high strain rate (b) 

0.009 of 7 leg star particles for packing fraction 0.25, 0.37, 0.50, 0.60, 0.84, 0.96. Average 

shear stress with respect to strain is also plotted for strain rate (c) 0.001 and (d) 0.009 of 7 leg 

star particles for same packing density. 
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4.4 Viscosity  

 

Controlling the viscosity of the fluid by infusing star particles with variable number of legs and 

leg lengths was the prime focus of our work. We have calculated the shear stress from the 

simulation and dumped the stress values along with the strain values. Then we calculate the 

average shear stress for that specific strain rate. By this way we create arrays of shear stress vs 

strain rates for each configurations of leg lengths for specific number of legs. Then we have 

calculated the viscosity by calculating the slope from shear stress and strain rate plotting for 

each configurations. These viscosity values are again kept as an array of viscosity, leg length 

and packing fraction. As we have multiple viscosity values from same configuration we take 

the mean viscosity value for each configuration and for error bar plotting we use the Standard 

error of mean formula. Finally we plot the viscosity vs Leg length plot and viscosity vs packing 

fraction plot to see how the viscosity changes depending on these parameters.  

 

The plotting for viscosity with respect to leg length (L) and packing fraction (φ) is showed in 

Figure 4.10 (a, b) respectively. The red line of these plots are the viscosity plot for 3 leg star 

particles. It shows clearly that the viscosity was almost close to zero initially when the fluid 

has no particles or particles with very small leg length that generates very small packing 

density. But as soon as the leg lengths increased the viscosity value starts to rise and for leg 

length L=2.5 or φ≈0.5 the viscosity jumps to a higher value and it continues as the leg lengths 

continues to increase. Finally the viscosity reaches almost close to 15000 for L=6.0 or φ=0.94 

. Similarly for 5 leg and 7 leg star particle infusion the viscosity value indicated as green and 

blue line respectively jumps at L=1.5 or φ≈0.5 and reaches almost same viscosity value as the 

3 leg particles. Also from the error bar it is clear that at higher leg lengths the variation of 

viscosity is also higher.  
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Figure 4.10: Viscosity vs (a) Leg length and (b) packing fraction plotting for 3 leg , 5 leg and 

7 leg star particles. 

 

4.5 Diffusivity  

We have infused the star particles inside a square shaped (30*30 square unit) simulation box 

filled with fluid like SRD particles. For same number of leg we have calculated the diffusivity 

of both the Big star particles and small SRD fluids and plotted with respect to leg length (L). 

The diffusivity is calculated by measuring the slope of mean square displacement with respect 
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to time. The higher the leg length of star particles the lower the diffusion of both star particles 

and fluids. As we discussed earlier the diffusivity depends on mean square displacements of 

the particles. The longer leg prevents the fluids as well as themselves from one place to another 

and hence the diffusivity falls. This kind of behavior is identical for 3 leg , 5 leg and 7 leg star 

particles. 
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                                                                                (c) 

 

Figure 4.11: Diffusivity vs Leg length plotting of small SRD particles and big star particles for 

(a) 3 leg (b) 5 leg and (c) 7 leg star particles. 
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4.6 Radial Distribution Function (RDF) 

 

The radial distribution function g(r) otherwise known as pair correlation function gives the idea 

about the structure of finding the next star particles center of mass from a reference star 

particles center of mass. We have taken each 3 leg , 5leg and 7 leg star particles with all of their 

leg lengths, calculated their radial distribution function and finally plotted with the maximum 

radial distance r. These plotting of radial distribution function for 3 leg, 5 leg and 7 leg star 

particles with various leg lengths (L) and packing fraction (φ) are showed in Figure 4.12 . 

 

We have found that for each of the plotting has zero g(r) value at initial radial distance. The 

reason is at the very beginning of radial increment there is no other star particles rather than 

the reference particle itself. By closely looking at the increment of leg lengths for 3 leg star 

particles infused in SRD fluid we found that for smallest leg length L=0.0 the particles are 

dispersed almost homogeneously inside the simulation box. As the leg length increases the 

peak is starting to show up separately and becomes much visible from L=1.5 and at L=3.5 the 

highest peak is found at the very beginning. After the leg length increases more than that the 

there are two distinguished peak shows up that contains a huge drop of g(r) near the mid of 

maximum radial distance. This drop is also minimized at the largest leg length L=6.0 where 

the peak shows first and then the peaks dropped gradually because of the homogeneity of 

particles dispersion. Again for 5 leg star particles there is also zero g(r) value at the initial radial 

distances. The highest peak is founded right after that although the latter peaks are very closer 

to each other. As with the increase of leg lengths the first peak is distinguished more clearly 

where the latter peaks goes down and for L=3.0 we found a sharp first peak that is gone down 

rapidly after that and reaches to value close to 1. Finally for 7 leg star particles similar zero g(r) 

value at initial radial distance having peaks almost equal to each other at L=0.0 . But with 

increment of leg length the highest peak is occurred at the very beginning that goes sown 

sharply and maintain few equal height peaks close to 1. 
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         (a) 3 leg L0.0 ; φ=0.18                 (b) 3leg L0.5 ; φ=0.23              (c) 3 leg L1.0 ; φ=0.28 

 
        (d) 3 leg L1.5 ; φ=0.34                (e) 3 leg L2.0 ; φ=0.44              (f) 3 leg L2.5 ; φ=0.49 

 
      (g) 3 leg L3.0 ; φ=0.54              (h) 3 leg L3.5 ; φ=0.59                  (i) 3 leg L4.0 ; φ=0.69                  

 
          (j) 3 leg L4.5 ; φ=0.74             (k) 3 leg L5.0 ; φ=0.79                (l) 3 leg L5.5 ; φ=0.84 
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        (m) 3 leg L6.0 ; φ=0.94            (n) 5 leg L0.0 ; φ=0.22                      (o) 5 leg L0.5 ; φ=0.30 

 
        (p) 5 leg L1.0 ; φ= 0.40                (q) 5 leg L1.5 ; φ=0.47                   (r) 5 leg L2.0 ; φ=0.62 

 
       (s) 5 leg L2.5 ; φ=0.72                   (t) 5 leg L3.0 ; φ=0.80                    (u) 7leg L0.0 ; φ=0.25 

 
         (v)  7leg L0.5 ; φ=0.37              (w)   7leg L1.0 ; φ=0.50                  (x)   7leg L1.5 ; φ=0.60 
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                           (y)  7leg L2.0 ; φ=0.84                                  (z) 7leg L2.5 ; φ=0.96 

Figure 4.12: Radial distribution function plot with respect to gradual increment of leg length 

for (a)-(m) 3 leg star particles with packing fraction 0.18, 0.23, 0.28, 0.34, 0.44, 0.49, 0.54, 

0.59, 0.69, 0.74, 0.79 and 0.84, (n)-(t) 5 leg star particles with packing fraction 0.22, 0.30, 0.40, 

0.47, 0.62, 0.72 and 0.80 (u)-(z) 7 leg star particles with packing fraction 0.25, 0.37, 0.50, 0.60, 

0.84 and 0.96 . 

 

 

 

CHAPTER-5 

SUMMARY AND CONCLUSIONS 

 

From our study of Molecular Dynamics simulation using LAMMPS for fluids with infused 

particles of various shapes we have calculated the fluid viscosity in a way that is different than 

the direct methods. By varying the star particles leg length and number of legs we created 

different system with different packing density and plotted the viscosity with respect to leg 

length and packing fraction. It gives a clear view where the viscosity starts to jump due to the 

jamming transition. It is pretty clear from our work that jamming transition increases the solid 

like property of our system which was more fluidic initially and this shifting occurs due to the 

rise of fluids apparent viscosity. We have plotted the shear stress vs strain rate that shows that 

the slope (viscosity) increases as the strain rate increase which indicates the shear thickening 

of fluid. We also use the Herschel-Bulkley model for fitting the stress-strain plot and the model 

gives the exponent values greater than 1 for almost every cases that also indicates the shear 

thickening behavior at higher strain rate. The direct plotting of viscosity vs strain rate also 

shows the same shear thickening states. Then we choose the pressure parameter to evaluate the 
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jamming transition and used power law to see how the exponent and jamming packing density 

behaves. Those also gave us the same result as we found before. Moreover we have plotted the 

pressure and shear stress with respect to total strain to prove that for different configurations 

having different initial conditions but same leg length with same number of legs finally reaches 

to a steady state and loose its initial memory for sufficiently long runs. Finally we conclude 

our work by trying to find how the structure behaves for different systems containing star 

particles with variable number of legs and leg lengths by calculating diffusivity and pair 

correlation function. We found the diffusivity decreases gradually as the system is turning into 

solid like state due to jamming. The radial distribution function also gives a clear probability 

distribution how the stars are dispersed in these system. 

 

We believe there are so many details remaining in this field to work in future. The system could 

be studied more precisely for finding the exact jamming packing fraction by considering a 

larger system than us and doing critical scaling analysis [86]–[88] on that. Also we have used 

30 star particles for an area of 30*30 square unit. Future study could increase and decrease 

these particle numbers and area of simulation box. Also the number of leg and leg length could 

be varied differently than ours and establish a relationship between them with ours one. Finally 

the shape of star particles could be modified such a way so that the jamming becomes more 

evident with much lower packings.  
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