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ABSTRACT

VELOCITY PROFILE IN CONFINED ELLIPTIC FRACTURES

Stephen Ronald Pack, Jr.

Predicting the effect of friction on fluid flow inside a hydraulically induced

fracture is an important problem in the design of successful oil and natural gas

fracture treatments of wells.  Hydraulic fracturing is the process of using hydraulic

pressure to create a fracture in an oil or gas bearing formation and distribute propping

agents along the fracture to hold it open after the treatment is completed.  The

primary objective of this research is to determine the friction inside a smooth fracture.

Also incorporate the effect of friction on a fluid transient inside a tapered-elliptical-

confined fracture.  In order to do so, the non-uniform velocity profile in an elliptic

fracture with laminar flow of both Newtonian and non-Newtonian fluids was

calculated.  A transient flow computer program is presented using the method of

characteristics, to show the frictional effects on acoustic damping.  The pressure pulse

of an acoustic wave reflection, caused by a fluid transient during fracturing, is

proportional to the steady state velocity and density of the fluid.  The pressure pulse

considered here is caused by a sudden fractional change in mass flow rate.  For one-

dimensional flow its magnitude is ∆p = -ρc∆V = 
A

q
c

∆
− ρ , where ρ is the fluid

density, c is the wave speed and ∆V is the change in fluid velocity.  In tubing with

turbulent flow, the velocity profile is fairly flat, thus approximately equal to Vav.

Note ∆q is the change in volume flow rate.  However for flow inside a hydraulic

fracture, the 3D velocity profile is highly non-uniform, and the use of Vav creates an

error as Vmax >> Vav. The variation in hydraulic diameter associated with an elliptic
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cross-section of a confined fracture as given by the Perkins/Kern model6 is

responsible for the large difference between Vmax and Vav.  It is shown that for a

smooth wall, elliptic fracture, with laminar Newtonian flow, Vmax = 2.66 Vav.
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NOMENCLATURE

a1 Width of near-crack-tip zone (ft)
A Tube area
Ax Fracture cross-sectional area varying with x
c  Wave propagation velocity (ft/sec)
DH Hydraulic diameter
E Young’s modulus
E’ The effective Young’s modulus due to the overburden pressure
f Friction coefficient
fD Darcy friction coefficient
FE Fluid efficiency
G Pad fluid gel
H Hydraulic head
h Fracture height
Lf Length of the fracture
Lfav Length of fracture based on average velocity
N Number of reaches in tube or fracture
NRe Reynolds number for Newtonian fluid
NRe’ Reynolds number for power law fluid
n’ and K’ Power law coefficients
p Fluid pressure
pis Instantaneous shut in fluid pressure
pLf Fluid pressure at end of fracture
Prop Fluid proppant content
q Fluid flow rate (ft3/s)
qf Fluid flow rate entering a single fracture
qp Fluid pumping rate into well tube
rt fexperimental/flam

RMS Root mean square
t Time
V Velocity
Vav q/Ax the average velocity
Vmax Maximum centerline velocity varies with x
Vm,x Centerline velocity averaged over y direction with assumed parabolic

Pousseulle flow velocity profile
Vz,x Fracture velocity at any distance z from centerline but averaged over y
           direction with assumed parabolic Pousseulle flow velocity profile
Volp Volume of fluid pumped
Volf Volume of the fracture
w Fracture width, with subscript (av) means average
wm,o Centerline width at origin of fracture
wm,x Centerline width of fracture
wz,x Width of fracture at any distance z from centerline
x Fracture centerline axis measured from well casing
σ Drag ratio correction factor defined by Lord/McGowan
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σmin Minimum in-situ stress or fracture closure stress
σc Confining stress
φ Porosity of the surface
ν Poisson’s ratio
ε Relative roughness inside fracture
ρ Fluid density
µ Fluid viscosity
τ Acoustic wave period, subscript (t) for tube and (f) for fracture
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The demand for oil and natural gas has remained stable over the years.  In

about 50% of the wells, applying hydraulic rock fracturing can increase production.

Hydraulic rock fracturing consists of pumping fluid at a high volume rate and

increasing pressure into the perforated well casing.  Various aspects of this process

have been reviewed in chapter 2.

1.2 Fracturing Effects

Hydraulic fracturing is basically the creation of artificial flow channels in rock.

These flow channels are intended to increase reservoir production.  The geology of the

rock where fracturing occurs must also be considered.  When stimulating a well, the

fracturing pressure must be carefully controlled to avoid fracturing through the

confining layers into a water-carrying vein.

Many, so-called 2D and 3D closed form solutions, have been developed in the

1960's. Each based on different simplifying assumptions to deal with the complex solid-

fluid mechanics interaction problem. The various models result in different fracture

length predictions as shown in Table 1.1.
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Table 1.1 Comparison of Final Fracture Dimensions with 2D Values from Reference 1

Model Total Fracture Length
(ft)

Maximum Wellbore Width
(ft)

3D 1800 0.224

PKN simplified model 2305 0.212

GdK simplified model 1882 0.239

PKN computer model 2400 0.195

KZ computer model 1416 0.280

With change in fracture length there is a corresponding difference in the bottom

hole pressure-time history. The model that closest resembles the actually measured

pressures is likely to be the one preferred by the fracturing supervisor. Nolte and Smith2

discuss four pressure-time histories, each exhibiting a different pressure-time exponent

during fracturing. The modes are: Mode I with small positive slope (this mode is the

most common); Mode II with zero slope or at constant pressure (associated with either a

sudden increase in fluid loss, height or compliance); Mode III with unit slope (e.g.

proppant screenout); Mode IV with negative slope (associated with rapid height

growth). Mode I represents a fracture propagating under the assumption for slope

bounds of 0.125→0.25.  This is the most common as well as the most desired type of

fracturing.  Mode II has constant pressure, which is likely caused by fluid leakage equal

to input fluid, which leads to constant width and thus pressure.  Mode III indicates that

proppant causes a barrier, which prevents further length growth.  Then the fracture width

must grow to accommodate the entering fluid.  This time linear growth in width is

directly proportional to the rate of pressure build up.  Mode IV depicts that the fracture



3

is propagating outwardly and upwardly into the confinement layers.  Propagating into

confinement layers could lead into fracturing into a water reservoir and flooding out the

well.  Obviously it is very difficult to incorporate these various Modes of operation in

one theoretical model.

Figure 1.1
Examples with the Different Characteristic Slopes from Reference 2

The solution obtained depends on the boundary conditions imposed.  An

important aspect is the fluid efficiency (FE), which is a measure of the fluid available for

fracture volume creation.  As a result, the volume of fluid pumped (Volp), when

multiplied by FE gives the volume of the fracture (Volf).  The loss of fluid into the rock

is given by Darcy’s law and is a function of time.  The pumping flow rate (q) needs to be

maximized in order to maximize FE.
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1.3 Acoustic Well Characteristics

During the rock fracturing process the length, L, of a confined fracture is

estimated from the fracture volume, the confining fracture height, h, and the average

width, w.  The fluid volume in the fracture is equal to the volume of fluid pumped

minus fluid loss into the formation and the average width is calculated from measured

fluid pressure and minimum in-situ stress.  Then, L = (½ fluid volume) / (w * h).  Due

to the approximations associated with this calculation of fracture length, another

technique was being pursued.  This method was based on measuring the natural

frequency of pressure oscillations inside the fracture.  The natural frequency is

inversely proportional to fracture length as given by: frequency = c / 4L.

It is possible to calculate the fracture wave oscillation natural frequency, when

the pressure pulses, generated by either natural or imposed fluid transients, become

identifiable.  These pressure pulses are proportional to the flow velocity inside the

fracture and inversely proportional to viscous damping and fluid leakage.  Non-

Newtonian gel fluids are used to reduce friction and to create a filter cake, which

eliminates fluid losses through the fracture wall into the formation.   Caking is the

process of filling cracks and valley’s in the rock surface with long chain molecules.  The

result is that fluid leakage, defining fluid efficiency, is restricted to the region near the

newly formed fracture.  This is important for the assumption that the fluid pumped

multiplied by the fluid efficiency, equals the volume growth rate in two opposing

fractures.
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1.4 Method of Characteristics

To investigate the acoustic well characteristics during hydraulic rock

fracturing, a one-dimensional method of characteristics was applied to a well with a

defined geometry and two opposing confined fractures.  The method of characteristics

has been fully described by Chaudry3 and Wylie4.  It is a time-step marching solution

of the continuity and momentum equations. The continuity and momentum equations

are different from those found in most fluids text books because some terms can be

neglected in fluid transients and other terms are added to account for the expansion of

the pipe, at the high pressure changes.  From Newton’s second law of motion the

momentum equation is derived:

dF = dm * dV/dt

The friction shear force acting on an element of fluid inside a differential length of

pipe, of diameter D is given by the Darcy-Weisbach formula.4

dFf = (f/4) ½ ρV2πD dx

The differential pressure force is given by

dx
x

H
gAdx

x

p
AdFp ∂

∂
−=

∂
∂

−= ρ

Differential mass, dm = ρA dx and acceleration, 
x

V
V

t

V

dt

dV

∂
∂

+
∂
∂

=  inserted above

gives: 







∂
∂

+
∂
∂

=













+

∂
∂

−
x

V
V

t

V
A

D
AV

f

x

H
gA ρρρ

4

2

1

4
2 .

To account for reverse flow use: V2 = V|V| and neglect the term 
x

V
V

∂
∂

as it is small

relative to 
t

V

∂
∂

in transient flow.  The momentum equation in reference 4 becomes



6

 0
2

||
=+

∂
∂

+
∂
∂

D

VfV

t

V

x

H
g .           (1-1)

The continuity equation equates the change in volume, dVol, under the applied wave

pressure due to change in volume from fluid compressibility and that from pipe

expansion or contraction.

If the bulk modulus of elasticity of the fluid is defined by 
dVol

dp
VolK −= ,

then the change in volume due to fluid compressibility is

K

Adxdt

t

p

K

dpAdx
dVol

∂
∂

−=−= .  The change in pipe volume due to the increase in

radius dVol = 2πr drdx.  When the wall thickness is (e) and the wall material modulus

of elasticity is (E), then the change in pressure causes a circumferential stress (σ)

related to strain, or 
r

dr
E=σ .  The pressure rise is related to the increase in

circumferential stress dp
e

r






=σ or 

r

dr
E

e

rdp
= .  Solving for 

eE

r
dpdr

2

= or

dxdt
t

p

Ee

DA
dpdx

eE

r
dVol

∂
∂

==
3

2π .  Equating the increase in pipe volume to the

change in fluid volume plus the net volume in flow of fluid into control volume, Adx,

in time dt gives dxdt
x

V
A

K

Adxdt

t

p
dxdt

t

p

Ee

DA

∂
∂

−
∂
∂

−=
∂
∂

.  Defining the square of the

wave speed inside the fluid by: 







 +

=

eE

D

K

c
1

12

ρ
 gives 0

1
2

=







∂
∂

+
∂
∂

pct

p

x

V
, or in

terms of fluid head 
g

p
H

ρ
=  gives continuity equation in reference 4:
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0
2

=
∂

∂
+

∂
∂

t

H

x

V

g

c
          (1-2)

where

A = pipe area

c = speed of sound

D = pipe diameter

f = Darcy’s friction factor

g = acceleration of gravity

H = hydraulic head

p = pressure

V = velocity

Vol = volume

dx = element of pipe length

dt = time step

ρ = fluid density

σ = circumferential stress increase

These two partial differential equations can be converted to ordinary differential

equations by the method of characteristics and are only valid along specific directions

as given by the C+ and the C- equations.  Integrating the resulting ordinary differential

equations can be done by either graphical or numerical means in the x-t plane.  They

are grouped and identified as the C+ and C- equations.  This is explained in detail in

reference 4, with a portion duplicated here in single spacing in the remainder of this

Section 1.4.
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








−+=

−=++
+

)41(

)31(0
2

||

:

c
dt

dx
D

VfV

dt

dV

dt

dH

c

g

C










−−=

−=++−
−

)61(

)51(0
2

||

:

c
dt

dx
D

VfV

dt

dV

dt

dH

c

g

C

Thus the two partial differential equations have been converted to two total
differential equations, Eqs. (1-3) and (1-5), each with the restriction that it is valid
only when the respective Eqs. (1-4) and (1-6) are valid.

It is convenient to visualize the solution as it develops on the independent
variable plane (i.e. the x-t plane).  Inasmuch as c is generally constant for a given
pipe, Eq. (1-4) plots as a straight line on the x-t plane; and similarly Eq. (1-6) plots as
a different straight line.  This is shown in Figure 1.2 below.  These lines on the x-t
plane are the characteristic lines along which Eqs. (1-3) and (1-5) are valid.  The
latter equations are referred to as compatibility equations, each one being valid only
on the appropriate characteristic line.  No mathematical approximations have been
made in this transformation of the original partial differential equations.  Thus every
solution of this set will be a solution of the original system given by Eqs. (1-1) and
(1-2).

   t

        P

C+     C-

      A           B

     0 x

Figure 1.2
Characteristic Lines in the x-t Plane from Reference 4
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A pipeline is divided into an even number of reaches, N, each ∆x in length, as shown
in Figure 1.3 below.  A time-step size is computed, ∆t = ∆x/c, and Eq. (1-4) is
satisfied by a positively sloped diagonal of the grid, shown by the line AP.  Since N is
an even integer the time step is also an even submultiple of the transit time, L/c.  If
the dependent variables V and H are known at A, then Eq. (1-3), which is valid along
the C+ line, can be integrated between the limits A and P, and thereby be written in
terms of unknown variables V and H at point P.  A negatively sloped diagonal of the
grid, shown by BP satisfies Eq. (1-6).  Integration of the C- compatibility equation
along the line BP, with conditions known at B and unknown at P, leads to a second
equation in terms of the same two unknown variables at P.  A simultaneous solution
yields conditions at the particular time and position in the x-t plane designated by
point P.

    t

   ∆t    P1         P3         P5 P7

   ∆t          P2          P              PN

        C+    C-

t = 0         A      B
     x = 0 ∆x         x = L

Figure 1.3
x-t Grid for Solving Single-Pipe Problems from Reference 4

By multiplying Eq. (1-3) by 
g

dx

g

cdt
= , and by introducing the pipeline area to

write the equation in terms of discharge in place of velocity, the equation may be
placed in a form suitable for integration along the C+ characteristic as shown in
Figure 1.3.
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∫∫∫ ++
P

A

P

A

P

A

x

xH

Q

Q

H

H

dxQQ
AgD

f
dQ

gA

c
dH ||

2 2
          (1-7)

The variation of Q with x under the integral in the last term is unknown, thus
an approximation must be introduced in this evaluation.  The trapezoidal rule was
used in this evaluation.  It is of second-order accuracy, maintains the linear form of
the integrated equations, and is a satisfactory approximation for most problems.  The
integration of along the C-

 characteristic between B and P yields

( ) 0||
2 2

=
∆

+−+− APAPAP QQ
gDA

xf
QQ

gA

c
HH           (1-8)

( ) 0||
2 2

=
∆

−−−− BPBPBP QQ
gDA

xf
QQ

gA

c
HH           (1-9)

These two compatibility equations are basic algebraic relations that describe the
transient propagation of piezometric head and flow in a pipeline.  By solving for HP,
these equations may be written

( ) ||: APAPAP QRQQQBHHC −−−=+         (1-10)

( ) ||: BPBPBP QRQQQBHHC +−+=−         (1-11)

in which B is a function of the physical properties of the fluid and the pipeline, often
called the pipeline characteristic impedance:

gA

c
B =         (1-12)

and R is the pipeline resistance coefficient:

22 AgD

xf
R

H

∆
= .         (1-13)

The friction factor, f, may be a constant, or it may be adjusted with the local Reynolds
number in accordance with the Moody diagram in each reach at each time step during
calculations.

These equations satisfy steady conditions in the pipe since the flows are equal,
QA = QP = QB and RQP|QA| is the steady-state friction head loss over the reach ∆x.  If
an exponential friction formula is preferred, the last term of Eq. (1-10), for example,
would become R’QP|QA|n-1, with n the exponent in the friction loss equation and R’ is
the coefficient.

The solution to a problem in liquid transients usually begins with steady-state
conditions at time zero, so that H and Q are known initial values at each computing
section (Fig. 1.3), for t = 0.  The solution consists of finding H and Q for alternate
grid points along t = ∆t, then proceeding to t = 2∆t, and so on, until the desired time
duration has been covered.  At any interior grid intersection point, point P at section i,
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the two compatibility equations are solved simultaneously for the unknowns Qi and
Hi.  Equations (1-10) and (1-11) may be written in a simple form, namely

C+ : Hi = CP - BPQi             (1-14)
C- : Hi = CM + BMQi             (1-15)

`
in which the coefficients CP, BP, CM, and BM are known constants when the equations
are applied.  Their values in the C+ and C- compatibility equations are, respectively :

CP = Hi-1 + BQi-1 BP = B + R|Qi-1|         (1-16)

CM = Hi+1 - BQi+1 BM = B + R|Qi+1|         (1-17)

By first eliminating Qi in Eqs (1-14) and (1-15), we have

MP

PMMP
i BB

BCBC
H

+
+

=         (1-18)

Then Qi may be found directly from either Eq. (1-14) or (1-15) or from

MP

MP
i BB

CC
Q

+
−

=         (1-19)

The subscript notation used in the equations above, which is convenient for computer
calculations, is shown in Fig. 1.3.  It may be noted that section i refers to any grid
intersection point in the x direction.  Subscripted values of H and Q at each section
are always available for the preceding time step, either as given initial conditions or
as the result of a previous stage of the calculations.

Numerical values of H and Q are found at alternate grid intersection points P2,
P, and PN (Fig. 1.3) at time 1∆t; then time is incremented by ∆t and the procedure is
repeated for interior grid intersection points P3

 and P5 (Fig. 1.3) at time 2∆t.
Examination of the grid in Fig. 1.3 shows that the endpoints of the system are
introduced every other time step after the initial conditions.  Therefore, to complete
the solution to any desired time, it is necessary to introduce appropriate end
conditions, called boundary conditions.4

1.5 Research Objective

A one-dimensional transient flow solution using the method of characteristics

is presented in this research work.  It demonstrates the acoustic response based on an

average velocity inside the fracture, assuming it behaves like a one-dimensional tube.
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As the transient induced pressure pulses are directly proportional to velocity

inside the tube, the primary objective of this research was to determine how the

maximum velocity inside the fracture differs from the average velocity Vav = q/A

which is used in the transient flow computer program.  This investigation was limited

to fluid flow inside smooth wall fractures with both Newtonian and non-Newtonian

gel fluids.  Newtonian fluids are fluids such as water, air, and gasoline.  If a fluid is

Newtonian then the shear stress acts on a plane normal to the y-axis, 
dy

dV
yx ∝τ .  The

term non-Newtonian classifies fluids in which shear stress is not directly proportional

to deformation rate.  Thus they are said to be time-dependent or time-independent.

They may be adequately represented by the power law model, which for one-

dimensional flow becomes 
'

'
n

yx dy

dV
k 








=τ .  The surface roughness, RMS or root

mean square, has not been considered in this analysis for smooth surface fractures.  In

reality the surface roughness may be assumed to disappear when using gel fluids,

which cover the fracture with a filter cake of thickness RMS.  The resulting flow area

loss to the fracture area A = h*wav is given by Aloss = 2RMS*h.  Thus, caking

increases all fluid velocities by the ratio 
RMSw

w
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In an effort to define the research project, various aspects of hydraulic

fracturing and fracture geometry were studied.  A review of some relevant papers on

the subject has been presented in Chapter 2.  It became apparent that more work

needs to be done in the area of predicting fluid friction loss inside the fracture.

Friction loss is a function of fluid types, fracture geometry, surface roughness, and



13

flow rate.  This is dealt with in detail in later chapters.  The actual velocity profile

was compared with the average velocity in order to bring in perspective the validity

of using Vav in the transient flow analysis program.  Chapter 3 gives the equation

derivations for the actual velocity profile compared to the average velocity for

Newtonian flows.  The more complex non-Newtonian flows are covered in Appendix

A.  Chapter 4 shows the results using the average velocity in the transient flow

analysis program.
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Chapter 2
Literature Review

2.1 Hydraulic Fracturing Theory

The first rock fracturing techniques were developed in 1948.  These

techniques were commercialized a year later, leading to lofty praise due to their high

success ratio.  Within a few years, thousands of wells per year were being stimulated

by hydraulic fracturing techniques.5

Hydraulic fracturing techniques were created in order to increase production

of wells.  Oil and natural gas accumulate in the pores and natural spaces of subsurface

rocks.  A permeable rock has interconnected pores.  These interconnections form

channels through which the oil or natural gas can flow.  Low permeability describes

rock whose channels are small, restricting fluid flow.  High permeability describes

rock whose channels allow fluid to flow easily.  Both types of rock present problems

in the commercial market of extracting oils and natural gas.  In high permeable rock,

drilling fluid may enter the flow channels leading to the blockage of these channels;

therefore, restricting fluid flow in the production phase.  In low permeable rock, the

channels may be too restrictive to allow the fluid to flow into the wellbore.  Often it is

beneficial to create artificial channels in the rock to increase fluid flow into the

wellbore.

During hydraulic fracturing, fluid fills the wellbore under pressure applied at

the surface.  The pressure of the fluid in the rock pores also increases.  This hydraulic

pressure is applied equally in all directions.  When the fluid pressure exceeds the

minimum in-situ compression stress, the rock will part, as its tensile strength is

negligible. Any additional pressure causes the rock walls to elastically compress.  The
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fracture length will extend as long as sufficient pressure is maintained by injection of

additional fluids.  To prevent closure in these fractures, propping agents are often

placed inside the fracture.  A propping agent is a material that has high permeability

in proportion to the surrounding formation.  It is strong enough to hold the fracture

open after the fracturing process is completed.  This creates better production phase

flow, through the fracture, into the well bore.

Proppant concentration is an important part of the hydraulic fracturing

process.  There are two proppant concentrations to be considered: (the concentration

at the surface in pounds per gallon at the pumps) and (the concentration in the

fracture in pounds per square foot of fracture surface area).6  It must be noted that the

proppant concentration at the pump is evaluated differently when using a

conventional fluid rather than a viscous fluid.

Conventional fracturing fluid allows the proppant to settle and pack the

bottom of the fracture.  Published equations have indicated that the fracture width is

dependent upon the viscosity of the fracturing fluid, injection rate, and fracture

length.  The advantage of using high proppant concentrations with conventional

fracturing fluids is to increase the proppant bed height.

Due to advancements in technology, high viscosity fracturing fluids are now

available.  These highly viscous fluids are known as proppant-suspending fluids.

Proppant-suspending fluids make it possible to transport proppant greater distances

from the wellbore as well as being able to prop the created fracture over its entire

height.  In proppant-suspending fluids, the proppant concentration is not directly

dependent upon the fracture width, as was the case with conventional fluids.  Yet, the
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fracture width still affects the size and concentration of the proppant that may be

placed in the fracture.

Calculating the concentration of the proppant in a fracture for a proppant-

suspending fluid may be done only if the surface area of the fracture is known.  Also,

only an average concentration of proppant in the fracture can be calculated unless the

proppant is started at a specific concentration at the pump and is held constant

throughout treatment.

The advantages of using a proppant-suspending fluid over a conventional fluid

with the same proppant concentration, is that proppant is distributed over greater

lengths and heights.  When using a conventional fluid, it could lead to low proppant

concentration throughout the fracture.  Studies have determined that low proppant

concentration in the fracture may cause extensive crushing and low fracture flow

capabilities.

2.2 Predicting Fracture Width

Predicting fracture width and length is a common problem in the oil and

natural gas industry today.  The prediction of these variables would allow for more

efficient design of the fracture treatment and increased well productivity.  During the

hydraulic fracturing treatment of an oil or gas well, the liquid pressure in the borehole

is increased until the tensile stress in the surrounding rock exceeds its tensile

strength.7  The rock will fracture along the path of least resistance which, is the path

of least compressive stress.  Yet, it remains uncertain whether the values chosen for

the operational parameters, such as injection rate, pumping time and fluid viscosity,
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are in fact the ideal ones.7  From past experience, there is a significant databank to

make rough predictions; however, a more thorough method is desired to analyze the

fracturing propagation process.  Such a method should maximize the use of

measurable parameters, allowing the field engineer to more accurately predict the

fracture results.

The study of fluid mechanics, material mechanics, and the theory of elastic

deformation of rocks, shows that the fluid pressure drop in the fracture controls the

width of a hydraulically induced fracture.  The operating conditions that cause high-

pressure drop along the crack, i.e. high pumping rate and viscous fluids, will result in

a relatively wide fracture.  Operating conditions, which cause low-pressure drop, i.e.

low pumping rate and non-viscous fluids, will result in a relatively narrow fracture.8

Understanding the width growth of fractures during the creation of the fracture is very

important.  Knowing this information would allow for fracture volume predictions to

be made under varied conditions.  Under moderate stress conditions like the

conditions that are usually encountered during hydraulic fracturing, and when more

stress is rapidly applied, most rocks fail in a brittle manner.8  Therefore the

assumption has been made that rocks behave as an elastic and brittle material.

Fractures in the vertical direction can sometimes be limited by conditions of

the earth.  In limestone reservoirs, nonpermeable section may have higher horizontal

stresses than permeable sections after the reservoir pressure has been drawn down.8

The fracture will continue to grow vertically until it reaches such a zone.  Once this

zone is reached the fracture will then continue to grow laterally outward from the

wellbore.  The fracture penetrates up and down into the bounding zones until
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equilibrium is reached.  If the bounding zones are not thick enough or if the pressure

drop inside the fracture becomes too high, then the fracture may crack through into

other zones.  This may result in the loss of oil or natural gas into these zones during

extraction.

2.3 Methods to Determine Fracture Height

Temperature surveys are generally the most reliable method for estimating

fracture height at the wellbore.  There are times when these surveys may be

inconclusive, but in general they are the most reliable method.  These methods

included (1) laboratory and field measurements of thermal conductivity, (2) computer

simulation of temperature surveys, (3) postfracture gamma ray logs to locate

radioactive proppant, (4) radial differential temperature (RDT) log, and (5) noise log.

In the oil and gas industry, massive hydraulic fracturing (MHF) has become vital.

Formations with microdarcy permeability can now be created because of MHF

treatments.9

In theory the incorporation of temperature logs can be used to estimate

wellbore fracture height.  Temperature logs have been used for years to estimate the

wellbore fracture height created by hydraulic fracturing.  Agnew in 1965 presented

the theory and the interpretation method of postfracture temperature surveys.9  His

method remains the most reliable method to determine fracture height.  The drawback

of his method is that surveys are sometimes difficult to interpret.  Difficulties arise

due to unusual temperature behavior adjacent to the treatment zone.
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One of the unusual temperature behavior patterns on a postfracture survey is a

warm anomaly of 10 to 80°F (-12 to 26°C) above the treatment zone.9  This anomaly

has the potential to extend several hundred feet above the intended zone.  To

understand the postfracture temperature surveys, two basic approaches were used.

First, laboratory measurements, computer simulations, and prefracture temperature

surveys were used to study the effects of thermal conductivity variation.  Second,

three production logging techniques were used to substantiate the interpretation of

temperature logs.9  To detect radioactive proppant, the logs were used with

postfracture gamma ray log, RDT, and the noise log.  The results from these methods

allow a better understanding and estimation of fracture height from temperature

surveys.  It should be noted that all methods currently available for measuring

fracture height have a small radius of investigation.  This radius is about 2 feet.

To interpret post fracture temperature surveys correctly, the thermal

conductivity variations in the earth must be considered.  Depending upon the mineral

content of the rock, the thermal conductivity may change.  The thermal conductivity

affects the geothermal gradient in a wellbore.  Yet, there is little known on how

thermal conductivity affects the postfracture temperature surveys.  It is known that

the temperature measured by postfracture temperature surveys is related inversely to

the rock thermal conductivities.9  Rocks with high thermal conductivity tend to

change temperature at a slower rate than rocks with low thermal conductivity.  Thus,

when a cool fluid is pumped into a hot wellbore, the zones that are of high thermal

conductivity cool less than the zones of low thermal conductivity.  Knowing the

thermal conductivity characteristics of a formation allows the location of anomalies
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on postfracture surveys to be predicted.  After identifying the anomalies caused by

conductivity changes, it is possible to determine which anomalies are caused by

fractures.

2.4 Rock Mechanics

When performing hydraulic fracturing, the mechanical properties of the rock

must be considered.  Rock mechanics is important in the determination of these basic

mechanical properties as well as the in-situ stresses in the rock.  In order to predict

minimum fracture extension pressures, the physical properties of the rock must be

determined.  The mechanical properties that are usually considered for a treatment

design are (1) elastic properties, which include the elastic modulus (E), the modulus

of rigidity or shear modulus (G), and Poisson’s ratio (ν); (2) strength properties such

as material tensile and compressive strength as well as fracture toughness; (3) the

ductility of the material; (4) the friction of the material.10  The reported values of

Poisson’s ratio for rock ranges from 0.05 to 0.25 in various literature.8  Due to the

fact that the minimum fracture extension pressure is not sensitive to Poisson’s ratio,

an average value of 0.15 is usually used.

Knowledge of rock mechanics is needed to explain what happens to a rock

during hydraulic fracturing.  All subsurface rocks are stressed in three directions due

to the horizontal reactions to the weight of the overlying formations.  Determining

whether the horizontal or vertical stress is greater, depends on additional stresses

imposed on the rock due to various geological movements that may have occurred in

the area.5  These tectonic stresses determine whether the fracture plane will be
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vertical, horizontal, or inclined as well as control the direction of the fracture.  Due to

these stresses on the rock and the strength of the rock itself, the rock is able to “stay

together” during fracturing.

Pressure analysis of transient fluid flow must also be related to mechanical

properties to correctly model the fracture propagation.  Pressure analysis not only

allows for the determination of fracture propagation, it also provides parameters

which will be used in future design treatments.  In investigating the material

properties of the rock, it must be noted that the material balance is an important

aspect of the pumping and closure phases of the fracturing treatment. It is known that

hydraulic fracturing containment is related to linear elastic fracture mechanics.  Three

cases represent this effect:  (1) the effect of different material properties for the pay

zone and the barrier formation, (2) the characteristics of fracture propagation into

regions of varying in-situ stress, and (3) the effect of hydrostatic pressure gradients on

fracture propagation into overlying or underlying barrier formations.11

There are many reasons why MHF techniques fail, including migration of the

fracture into overlying rock or permeability caused by application of hydraulic

fracturing fluid, loss of fracturing fluid into pre-existing cracks or fissures, or extreme

errors in estimating the quantity of in-place gas.11  Also poor estimates of in-situ

permeability can result in failures that appear to be a result of the fracturing process.

Hydraulic fracturing analysis is usually considered a three-dimensional problem.

However, this results in a time consuming, costly, and complicated problem.

Modeling the problem two-dimensionally makes it much simpler.  The fracturing

fluid is assumed to act over the entire length of the fracture.
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For case (1), between the pay zone formations and the barrier formations,

there are differences in mechanical properties.  The question posed is what role do

mechanical properties play in the containment of the hydraulic fracture to the pay

zone.  The stress intensity at the crack tip, nearest the interface varies as the fracture

approaches the interface.  Case (1) indicates the stiffness of the barrier formation as

measured by the shear modulus is less than the stiffness of the pay zone.11  For this

case the stress-intensity factor approaches infinity as the ratio of the radius to the

length approaches zero.  Thus the closer the fracture gets to the interface, the easier it

is to extend and the crack eventually will pass through the interface.

For case (2), analysis has been done, although simplified, that indicates an

increase in fracture propagation pressure if the fracture extends into a barrier

formation with higher in-situ stress.  By accurately measuring the fracture

propagation pressure, one can tell if the fracture has extended into the barrier zone.

For this case, the stiffness of the barrier layer is greater than the stiffness of the pay

zone.  The stress-intensity factor approaches zero as the ratio of radius to length also

approaches zero.  This situation provides a barrier effect and tends to arrest the crack

at the interface.11

For case (3) a vertical plane-strain crack in an infinite medium is subjected to

hydrostatic pressure loading.  The externally applied loads are tectonic stresses.  The

magnitude of the tectonic stresses is a function of depth and thus uniaxial strain

conditions prevail.11  The important thing is that the desired upward or downward

crack migration is possible.  By adjustment of the hydraulic fracture fluid density, the
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probability of producing horizontally propagating fractures can be maximized.  To do

this, the variation of in-situ stress with depth must be determined.

If the stiffness of the pay zones is less than the barrier layers, the hydraulic

fracture will be contained, but if the opposite exists, barrier penetration will occur.

The density of hydraulic fracturing fluid may control the migration of the hydraulic

fracture, either upward or downward in an isotropic, homogeneous medium.  If the

fluid density gradient is greater than the minimum horizontal in-situ stress gradient,

then downward migration is probable. If the fluid density gradient is less than the

minimum horizontal in-situ stress gradient, then upward migration is probable.  The

mechanical properties of the pay zone and barrier formation, as well as the minimum

horizontal in-situ stresses for these layers, play important roles in the prediction of

hydraulic fracture containment.11

2.5 Basic Relations

Various models are available from the literature to determine the fracture

geometry.  The most frequently reference models were the Perkins and Kern (PK),

Khristianovic and Zheltov, and Geertsma and de Klerk (KGD).  The elliptical cross-

section as defined by Perkins and Kern was used in this research project.  In the

application of the fracturing pressure analysis, three basic relations must be

considered.  They are the material balance, fluid flow, and the compressibility of the

fracture formation and the injected fluid.  However, the fluid compressibility will be

ignored for simplicity purposes of presenting the basic relations.
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Although there are three aforementioned models, the pressure analysis and

design requirements are always based on two expressions of material balance.  At the

end of pumping and the end of the closure time.8

The most important factor that must be considered is the in-situ stress field.

Stress not only controls or influences most aspects of fracture behavior, but also

influences the values of both reservoir properties and mechanical properties of rock.15

Generally increased confining stress results in an increase in strength and a decrease

in permeability and porosity.  The Khristianovitch-Zheltov / Geertsma-de Klerk

model is generally considered applicable for fractures with a height / length ratio

greater than one, and for this model, width is related to modulus by

w ~ (1/E)1/4           (2-1)

This implies that fracture width is relatively insensitive to modulus.10

Propagation pressure is related by

(P - σc )~ E1/4           (2-2)

where σc is the confining stress.

Thus, it is inferred that rock with a high modulus causes higher pressure, which may

alter the fracture geometry.  For fractures with a height / length ratio less than one, the

aforementioned relationships become

w ~ (µi4a1
2 /E)1/4           (2-3)

(P - σc) ~ Ew / 2a1           (2-4)

respectively.
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2.6 In-situ Stress

By definition, in-situ stress is the stress state in a given rock mass at depth.

The in-situ stress is greatly influenced by the overburden pressure.  The stresses

control the fracture azimuth and orientation (vertical or horizontal), vertical height

growth, surface treating pressures, and other facets of fracture behavior.10  Closure

stress σmin is defined as the minimum principal in-situ stress.  This stress is located at

the tip of the fracture, where the fracture width becomes zero.  This stress counteracts

with the closure pressure.  Currently, the only reliable method of measuring in-situ

stress is the hydraulic fracturing technique.  This technique consists of two variations:

the standard hydraulic fracture measurement and the step-rate / flowback procedure.

When the hydraulic fracturing technique is conducted properly it can yield accurate

estimates of the minimum principal in-situ stress and somewhat less accurate results

of maximum horizontal in-situ stress.  The procedure is to isolate the interval of

interest with packers, to pump a small volume of low viscosity fluid into the

formation to break it down, then shut in to measure the instantaneous shut-in

pressure.10

Under these conditions it is accepted that

σmin = pis           (2-5)

for a vertical fracture

σmin  = pis           (2-6)

where

pis = instantaneous shut in pressure
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For most oil and gas applications, however, it is impossible or impractical to

conduct these tests in an openhole environment.  Performing a stress measurement in

a cased and perforated hole causes additional complications because of the effects of

the casing, cement annulus, explosive perforation damage, and random perforation

orientation.12  Some tests show that under these conditions, accurate measurements of

σmin can be made through the perforations.

The second stress measurement technique is the step-rate / flowback test

procedure.  It is a more applicable procedure for determining stress over a larger

permeable interval.  Fluid is injected into a previously initiated fracture at various

flow rates, the “stabilized” pressure for each rate is recorded.  For data interpretation

see reference 10.

When performing rock fracturing, the rock properties of the most interest are

the elastic properties.  To simplify the theory and the calculations, the assumption is

made that rock behaves as a linear elastic material.  This assumption has allowed

solutions to become essential in the development of hydraulic fracturing theory.  It

must be noted that many rocks behave in a nonlinear manner and the effects of this

nonlinearity should be considered in certain instances.  The basic assumption of the

theory of linear elasticity is that the components of stress are linear functions of the

components of strain.

Not only are rocks subjected to external forces, but they are also subjected to

internal forces such as pore pressure and temperature.  Due to in-situ conditions,

volume changes cannot occur because impermeable rocks bound the reservoir.  The

impermeable rocks do not allow pore pressure to change.
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2.7 Effect of In-Situ Stresses and Rock Properties on Geometry

The fracture azimuth, for an anisotropic field is perpendicular to the

minimum, compressive principal in-situ stress.  Thus the fracture follows the path of

least resistance and therefore opens up against the smallest stress.  In-situ stresses

may single handedly control the fracture height.  Experiments have been conducted to

show the dominant effect of in-situ stresses opposed to rock properties.  The

importance of this test lies in the fact that in 20 separate tests, no major influence of

material properties could be discerned.10  There are also documented laboratory tests

that confer with this experiment.  This was significant due to the past belief that the

material properties played a vital role in fracture propagation.  This finding tends to

be favorable to the hydraulic fracturing industry due to the fact that many bounding

layers are often soft materials like shale, which have high stresses.10

Many experiments have been done to determine the parameters that control

hydraulic fracture containment.  These experiments demonstrate that the stress

contrast between the pay zone and bounding layer is the most important factor

controlling fracture height.  Material property interfaces are shown to have little

effect.6  For the past 30 years hydraulic fracturing has been used to aid in the

production of natural gas reservoirs.  With the increasing depletion of conventional

natural gas reserves, attention has been focused on producing gas from

unconventional gas resources such as tight gas sands and Devonian shales.6  To

stimulate these formations, massive hydraulic fracturing is used.  To provide a high

conductivity path for the gas to reach the wellbore, fractures longer than 4000 feet

must be propagated in the low-permeability gas-bearing formation.  It is very
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important that these massive hydraulic fractures be contained within the pay zone.

When referring to massive hydraulic fracturing in the tight gas sands, containment

may refer to confinement of the fracture to specified intervals comprising both gas-

bearing sandstone lenses and surrounding shale zones, or to the usual concept of

confinement within a single reservoir zone.6

To control containment, the difference in elastic modulus between the

reservoir rock and barrier rock usually is singled out as the primary mechanism.  It

has been observed that since the stress intensity factor at the tip approaches zero as a

fracture in a lower-modulus material propagates toward a higher-modulus material,

the fracture will tend to be arrested.  Conversely, for fracture propagation in a higher-

modulus material toward a lower-modulus material, it was observed that the stress

intensity factor becomes large as the interface is approached and the fracture should

break through the interface.  The problem with this analysis is that everything is

based on the strength intensity factor, which is defined as the strength of the square-

root singularity in stress at the crack tip.  Yet the nature of this singularity changes as

an interface is approached.6  Once the crack reaches the interface, the strength

intensity factor goes to zero and other singularities now control the fracture growth.

Experiments have been conducted, which show that differences in rock properties are

insufficient in stopping fracture growth at an interface. Fracture propagation is

effected by variations of in-situ stress.  The layer of greater in-situ stress would

provide an effective barrier because of the increase in the fracturing pressure

necessary to continue propagating a fracture in this layer.  The upward or downward

migration of the fracture can be influenced by the hydraulic gradient of the fracturing
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fluid relative to the vertical gradient of the minimum horizontal in-situ stress.  Not

only does the orientation of the minimum in-situ stress dictate the orientation of the

fracture, but also steep gradients and discontinuities in the magnitude of the stress can

act as barriers to fracture propagation.6

Fracture behavior around the interface has been important to determine

whether material property differences between adjacent layers can act as a barrier to

fracture propagation.  In all the experiments, the fractures propagated upward through

the interface into higher-modulus material.  The results also showed that material

property interfaces do not provide an effective mechanism for fracture containment.

Since the fracturing pressure above the minimum in-situ stress level should be

proportional to the elastic modulus, it will require, under similar conditions,

considerably more pressure to fracture in a higher-modulus material than in a lower-

modulus reservoir rock.6  Due to increasing viscous losses, the fracture may not

propagate a great distance even if it has broken through the interface.  The fracture

will propagate along the path of least resistance, such as a lower modulus material,

unless in-situ stresses or other parameters dictate otherwise.

Other experiments have been conducted to determine how the vertical and

horizontal distribution of the in-situ stress effected the fracture growth and geometry.

The minimum in-situ stress is equal to the closure pressure of the fracture after

fracturing is completed.  In-situ stress can vary widely over just a few feet as shown

in Figure 2.1 below.
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Figure 2.1
In-situ Stress Below Interface from Reference 6

Figure 2.1 shows that two significant in-situ stress irregularities exist below

the interface, and in both cases, the in-situ stresses increase by a factor of two to

three.6  With the variations in in-situ stress, the fracture usually propagated

horizontally outward and upward into a material of much higher modulus and the

growth stopped as it reached the region of greater in-situ stress.  When the fractures

were initiated above or below the in-situ stress peaks, the fractures propagated away

from the high in-situ stress regions.  The only exception to this is when the fractures

were initiated close to the in-situ stress peaks.  These often propagated through the

high in-situ stress region, but this may be due to borehole effects.6  The tests that were

initiated between the stress peak resulted in the fractures being contained in that area.

The fractures were of rectangular shape since the regions of greater in-situ stress
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contained them.  Some of these fractures became so restricted that the pressure rose

high enough for the fracture to break into higher regions.

The majority of evidence from the mineback of hydraulic fractures points to

in-situ stress gradients as being the only mechanism capable of containing hydraulic

fractures.6  Experiments have shown that discontinuities in the minimum principal in-

situ stress, which may occur at faults and steep gradients in this stress can arrest

fracture growth.  To be able to control the fracture height, minifractures can be

conducted to determine the stress distribution.

Mineback experiments have provided insight into the mechanisms responsible

for controlling hydraulic fracture growth.  Material property differences have been

shown to be insufficient to arrest a fracture at an interface.6  Determination of the

minimum in-situ stress is very important where containment is desired.

To be able to obtain deeply penetrating fractures, the in-situ stress contrasts

must be applied to the stimulation designs.  In general, the fracturing treatment design

is based upon the assumption that the vertical height of the fracture is known and that

this height remains constant from the wellbore to the point of deepest horizontal

penetration.  The contrast in in-situ stress between layers is the major influence of

how adjacent rock layers will impede the vertical growth of a hydraulic fracture being

propagated in the pay zone.  As a fracture growing in the pay zone approaches the

interface between the pay zone and the adjacent layer, its growth will be impeded if

the minimum in-situ stress of the adjacent layer is greater than the minimum in-situ

stress in the pay zone.13
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Presently the only viable technique to determine in-situ stress at depths greater

than 1000 ft is a small-scale hydraulic-fracturing operation.  Tests have been

performed to determine whether the stresses in particular the minimum horizontal

stress applied to the specimens could be estimated by analysis of the pressure/time

records obtained during the hydraulic fracturing of the specimens.13
  Later, it was

determined that this is not possible due to the fact that the fracture paths were

somewhat tortuous and the pressures were measured in the wellbore, which would be

a measure of some average stress acting perpendicular to the fracture.

The availability of in-situ stress data and the knowledge of the role that it and

other rock mechanics parameters play in the physical process of fracture growth can

lead to fracturing control.13  A successful stimulation design requires a knowledge of

the in-situ stress field.  It also requires knowledge of contrasts within relatively

narrow ranges at well depth where the stimulation treatment is performed.

2.8 Fluid Loss from Hydraulically Induced Fractures

Accurate knowledge of fluid loss properties of the fracturing fluid is important

for successful hydraulic fracturing treatments.  Dynamic fluid loss refers to fluid

leakoff from a fracture when a high flow velocity along the fracture exists at the point

where fluid leakoff occurs.  This is a normal situation since hydraulic fractures

produce a long, narrow crack along which fluid flows at high velocities (up to several

hundred feet per minute).  High velocity is maintained far down the fracture even

though volumetric flow rate decreases as the fracture becomes progressively more

narrow.14  In a dynamic fluid loss test, fluid in a high stream of velocity moves past
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the rock surface at the same time fluid enters the core.  The high fluid velocity

inhibits thick filter cake formation.  Initially, pressure drop is totally dissipated across

the core and fluid leakoff occurs as if no additive were present.  Next, a filter cake

begins to form and leakoff velocity is lower because some pressure drop occurs

across the cake.14  Once the fluid leakoff velocity and the cake thickness become

constant, steady state is reached.  Flow velocity through the steady-state cake is

dependent upon flow velocity across the rock surface, upon fluid and additive

properties and upon rock pore size.  Dynamic fluid loss tests provide the best method

for simulation of the fluid loss process during hydraulic fracture operations.14

Through the use of the tests and a reasonable theoretical model for the rate of fracture

growth, fracture length can be estimated.
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Chapter 3

VELOCITY PROFILE MODELING

3.1 Steady Two Dimensional Laminar Flow Model for an Elliptic Fracture

During hydraulic fracturing of gas or oil bearing rock formation, a pad fluid

gel is pumped under pressure in excess of the minimum in-situ stress, σmin.  The rock

shears in the direction perpendicular to σmin, which if below 2000 feet deep, is usually

horizontal.  This means that the fractures created will be in the vertical plane and

radiate outward from the well casing.  Initially these fractures are circular but if

restrained in the vertical direction by stronger layers of containment rock, then the

fracture becomes of constant height, h, and continues radially outward to a length,

Lf >> h.

3.2 Model Boundary Conditions

All fracture models are based on elastic rock deformation equations to relate

hydraulic pressure to fracture width. The local pressure is calculated by inserting fluid

frictional characteristics in the momentum equation and fluid loss and storage

assumptions in the continuity equation. To solve these equations, boundary conditions

must be defined. Most existing models use similar equations but different boundary

conditions. For the user to evaluate the suitability of any model, its assumed boundary

conditions must be clearly defined. The boundary conditions assumed in this analysis

are as follows.

1) Uniform rock properties with known Young's modulus and Poisson’s ratio thus E',

and a known minimum in-situ horizontal stress σmin, where  
21

'
ν−

=
E

E
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2) Fracture propagation within confined boundaries without slip, thus producing a

fracture of constant height, h and varying elliptically in the vertical plane with width

wz,x, which reaches a maximum width wm,x in the middle and reduces to zero at the

tips. The x-coordinate runs radially outward from the well casing and the z-

coordinate is in the vertical direction. The subscripts of each variable indicate the

direction of its variability.

3) As the fracture considered changes only gradually in width and is assumed to be of

constant height, the components of velocity in the y and z-directions can be ignored.

In this case the velocity vector has only a component in the x-direction which varies

drastically with y and z position.  From Euler’s equation ρVdV = -dp, it follows that

the components of the pressure gradient in the y and z direction can be ignored, thus

one can use the boundary condition that the pressure is uniform in the y-z plane, or

dp/dx is the same at any x location.  Then ||
→

V = Vx but Vx varies along all three x,

y, and z-axes.  Along the y-axis, the flow has the same boundary conditions as

Hagen-Poiseuille flow and therefore the velocity profile is parabolic with an

averaged value, Vz,x, equal half the maximum centerline value.  The next task is to

compute Vz,x along the x and z-axes.   Within the majority of the fracture, it is

assumed that the rock surface is covered with gel fluid.  This is known as the cake

effect and results in negligible fluid loss. This allows the use of constant flow rate,

      qi (ft
3/s) = (q), which equals the injected flowrate.
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3.3 Pressure Gradient Derivation

For a fracture where the length, Lf far exceeds the height, the Sneddon15 model was

selected as used by Perkins and Kern.  Based on this model, the fracture is elliptical in

the vertical z-direction and decreases in maximum width, wm,x as pressure drops.  At

the limit x = Lf, the fracture length, the fluid pressure is reduced to the minimum in-

situ stress, which is σmin = pLf and the maximum width of the fracture has reduced to

zero.  At any other station, x < Lf, the maximum width is given by

'
2 min

, E

p
hw xm

σ−
=           (3-1)

E’ is used rather than E due to the over burden pressure of the rock.  The weight of

the rock pushing down from above must be taken into account.  E’ and E are related

by Poisson’s ratio, ν.  This results in an elliptical cross-section given by

1
)()( 2

,2
1

2

2
2
1

2

=+
xmw

y

h

z
          (3-2)

where y is

y = ½ wz,x   ⇒  y = ½ wm,x 

2

2
1

1 









−

h

z

Therefore wz,x = wm,x

2

2
1

1 







−

h

z

The area (Ax) is defined by

hwhwdwA avxm

h

h zxzx === ∫− ,

5.0

5.0 , 4

π
          (3-3)

where wav = Ax/h is the average fracture width and wm,x is the centerline maximum

width related to local hydraulic pressure px.
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avxm w
E

p
hw

π
σ 4

'
2 min

, =
−

=              (3-4)

The following velocity profile analysis is based on the previous conclusion that the

pressure gradient, dp/dx, is uniform in the y-z plane.

H

xz

D

Vf

dx

dp
2
,2

1 ρ−
=

The hydraulic diameter, DH = 4 * area / wetted wall perimeter

xzH
xz

H wD
dz

dzw
D ,

, 2
2

4
=⇒=                       (3-5)

Various shear stress models are used depending on the Reynolds number and fluid

characteristics.  For turbulent flow down the well tube, friction is a weak function of

velocity, thus it can be assumed constant, and is given by Blasius for smooth pipes as

25.0Re

3164.0

N
f =

The Reynolds number for Newtonian fluid is given by

NRe = 
µ

ρ Hxz DV ,            (3-6)

For laminar flow inside a nearly parallel wall cross-section fracture, the velocity profile

is parabolic.  Using the Darcy friction coefficient, f, for a Newtonian fluid as given

Hxz DVN
f

,

64

Re

64

ρ
µ

==           (3-7)

If the friction coefficient, f, were modified to account for the tortuous path caused by the

rough fracture surface and averaged over the entire height, a simple correction factor

(rt=fexperimental/flam) could be applied as shown in Table 3.1 from reference 16.
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Table 3.1 Comparison of Measured vs. Theoretical Friction Factors in Hydraulic
Fracture

Test Fluid
Flow Rate
(gal/min)

Height
(ft)

Apparent
Viscosity

(cp)
rt =

fex / flam

4 Water 10 10 1.0 1.39
5 Water 20 12 1.0 2.45
6 Water 30 12 1.0 2.75
7 Water 40 15 1.0 3.11
9 50 lbm gel 20 20 20 2.15
10 50 lbm gel 40 20 22 2.16
11 50 lbm gel 20 20 45 1.48

By limiting this analysis to “smooth” fractures, rt can be assumed to equal 1.  Applying

the x component of the momentum equation gives

2
,

,

2
,

,

2
,

2
,2
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,2
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xz
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At any station x, these variables are constant, with the exception of Vz,x and wz,x, or

2
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As wz,x varies elliptically, then Vz,x decreases parabolically from Vm,x at the centerline

down to zero at the tips where z = ½ h. The relationship between (Vm,x) and (Vav) =

q/Ax can be readily integrated to give

xm
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As (Vm,x = ½ Vmax), this means that perfectly smooth fracture walls result in a

centerline velocity avav VVV 66.2

2

1
3

4

max == .

Figure 3.1
3D Velocity Profiles Caused by Friction

Apply the continuity equation in order to define flowrate (q).
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Solve for (dp/dx) as a function of the flow rate (q) and 
xmav ww ,4

π
=

2

2

3
, 3

2

3

128

avxxm wA

q

hw

q

dx

dp µπ
π

µ
==−         (3-10)
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Next determine the change in width (wm,x) as a function of x. Take the derivative of Eq.

(3-4) and equate it with Eq.(3-10).
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Separate the variables and integrate from any station x to x = Lf, the end of the fracture

where p = σmin and wm,x=0
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gives
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The local centerline width defines the local average width
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as needed in the transient flow computer program to calculate the steady state areas as

anyone station
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which causes an increase in velocity throughout the fracture as found from 
x

x A

q
V = ,

assuming no leakage until near the end of the fracture.  The steady state pressure is then

most conveniently calculated by using the known width using Eq. 3-1, which gives

h

Ew
p av

π
σ

'2
min =−                      (3-16)
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With the fracture centerline width variation known as a function of x, one can determine

the fracture volume, Volf and solve for its length, Lf.
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Both ∆p and Volf  can be measured during fracturing at constant q.  As ∆p increases in

bottom hole pressure and assuming two equal and opposite fractures, the fracture

volume Volf  can be computed.  Volf = Vol pumped * Fluid Efficiency.  The length

(Lf) can be calculated for a given flow rate q.
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As (q) may not be constant throughout the fracturing process, it is better to write an

equation for ( ∆p ) as a function of the measurable volume.  By combining Eqs. 3-4 and

3-16, ∆p  can be written as
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If (q) is constant, then the fracture volume (Volf) growths linearly with time and

combining Eqs 3-17 and 3-19 ∆p  can be written as
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Thus plotting (log ∆ p) versus (log t) gives a slope of 1/5 as shown in Fig 3.2.
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Figure 3.2
Measured and Simulated Net Pressure: Opening Natural Fissures from Reference 17

3.4 Errors Associated With Assuming Vav Across Fracture

The following analysis calculates the errors associated with the use of Vav and

wav instead of using Vm,x and wm,x.  Equate the pressure gradient from both Eq. (3-4) and

the momentum Eq. (3-8).
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This shows that the pressure gradient based on the average velocity is 22% higher than

the pressure gradient based on the actual 3D-velocity profile.  Separating variables and

integrating this average velocity model from x to Lfav
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Compare the volume (Volav) based on average velocity (Vav) to that based on the

parabolic velocity profile (Vm,x).
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Equating this volume to that from Eq. (3-18) provides the ratio of fracture length

estimates based on the average and actual velocity profiles.
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These results are obtained by assuming quasi-steady state and the steady flow

continuity equation.  With the derived values for width, wm,x and pressure, (p - σmin)

both as a function of distance from the fracture tip, (Lf – x) the non-steady state of

fracture length growth as a function of  time may be addressed.

Assuming no change in boundary conditions in time ∆t, the entire fracture

with identical geometry and pressure is shifted radially outward by a distance ∆x =

dLf.  Thus, the only change in fracture geometry with time occurs at the well inlet

side.  This analysis was done to show the difference when using average velocity

opposed to actual velocity.  The following computer program in Chapter 4 illustrates

how using average velocity inside the fracture with a constant fracture friction

coefficient causes the pressure signal to dampen out.
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CHAPTER 4

ACOUSTIC WELL CHARACTERISTIC ANALYSIS

4.1 Acoustic Analysis

The following is a computer program to calculate the acoustic wave pressure

oscillation in a typical well pipe and fractures.  The flow boundary conditions are

flow reduction from 14 to 7 bpm, within half the tube period or within 4 seconds.

The configuration selected was based on rounded off data from Halliburton Job ticket

100723, February 4, 1998.  The fracture model was assumed to be of uniform width,

(w = Vol/(h*Lf)), with a rectangular cross section.  This simple well model is to

demonstrate the use of the method of characteristics.  The program becomes complex

unless the geometry selected is simple.  The fracture length was assumed to be equal

to one tenth that of the well tubing.  Power Law equations were used for tube friction

loss calculations.  For turbulent flow in the tube, the Lord/McGowan model from

reference 18, provides the turbulent friction coefficient (fDGel) = σ*(fDwater), where












++

+
+−

=
))((Pr028.0)ln(1639.0

)(2365.0024.8
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GeopG

V

G

eσ         (4-1)

This sigma equation is calibrated on a reference coefficient, (fDwater) defined

differently from before by

(fDwater) = 







2.0Re

046.0*4

N
, where 

water

HVD
N

µ
ρ

=Re

Then the turbulent friction coefficient (fDGel) = σ*fDwater.

Inside the fracture laminar flow was assumed, thus using n’ and K’ to find NRe’.
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This gives the Darcy friction coefficient as 
Re'

64

N
.

The method of characteristics requires tube (1) and fracture (2) to be divided

into an even number of segments.  Selecting ∆x = 400 ft, then the tube has

20
400

8000
1 ==N segments and the fracture 2

400

800
2 ==N  segments.  The time

increment (∆t) = ∆x/c = 400/4000 = 0.1 seconds.  The end stations are: 1,NS = N1 + 1

= 21 and 2,NS = N2 + 1 = 3.  The example program is written in Quick Basic and is

found in Appendix C.

4.2 Procedure

N = 1 is the beginning of the first segment and NS is the end of the last

segment.  Thus P1,1 and P1,NS are the pressures at the inlet and exit of the tube

respectively and P2,1 and P2,NS are the pressures at the inlet and exit of the fracture

respectively.  The characteristic impedance is defined as (B) = c/(gA) and the

resistance coefficient is defined as 
)2(

)(
2gA

D

x

fDR






 ∆

= .  At each node, (i), H, Q, CP,

CM, BP, and BM need to be determined by the method described in Chapter 1.
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4.3 Steady Flow Boundary Conditions

From job ticket 100723 obtain the steady flow fracture end static pressure

PNS2 = 6400 psi which is used for the minimum in-situ stress in this example

program.  Assume all flow leaks out near the fracture end with dynamic pressure

½ ρ(VNS2)2, which is assumed constant throughout this rectangular fracture.  Here

the fracture width is not calculated from Eq. (3-14) but is taken from job ticket

100723, which number is based on a much higher flow rate during fracturing.  It was

assumed that it takes more time for the rock to relax back to a new equilibrium

fracture width, than there was time to do so.  The fracture inlet static pressure P2,1 =

6400 – dff, where dff (psi) is the fracture friction pressure loss.  The well bottom

pressure = P1,NS1.  These pressures are related by P2,1 = P1,NS1 – ½ ρ(Vperf)
2.  The

perforation dynamic pressure was assumed lost.  Gravity was also ignored in all

calculations.  The tube inlet static pressure equals P1,1 = dft + ½ ρ(Vperf)
2 + dff +

(6400 psi = in-situ stress).

4.4 Transient Flow Boundary Conditions

Thirty-two data points per harmonic cycle are sufficient to graph the transient

wave shape.  Using the minimum number of required data points to minimize the

length of the program.  The flow rate was readily controlled by RPM of the positive

displacement pumps.  If the flow rate is reduced in time = ½ q * τt (where τt is the

tube period for the natural frequency), then the reflected wave is a damped harmonic.

Therefore when Q1,1 is reduced by ∆Q during 0<t< (½ τt = 4sec) it is given by

Q1,1 = ∆Q – ½ ∆Q * (1 – cos(πt / (½ τt)).  H1,1 will drop accordingly.  Q2,1 = (Vperf)
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* CdAp, where 
ρ

2*)11,21,1( pNSP
V perf

−
= .  The P2,1 pressure signal input to the

fracture is reflected at the fracturing surface tip, like an open reservoir with constant

head equal σmin.  Such a boundary condition gives the most damped fracture pressure

pulse.  The reflected signal arrives at 0.4 seconds, (½ τf), later.  Only if one is able to

determine the natural frequency inside the fracture, τf, can one estimate the fracture

length from Lf = 0.25 * τf * c.

4.5 Well Tube Casing and Fracture Data

Table 4.1 Tube Data

Tube Length, Lt (ft) = 8000 G = gel (lb/Mgal) 20
Tube Inside

 Diameter (inch) =
2.441 Prop (lb/gal) 0

A (ft^2) = 0.032498 Lord /McGowan NRe water = 886103.6123
Steady State Q (bpm) 14 Lord McGowan sigma 0.207492288

Q(ft3 / sec) (1bpm *
0.09359 ft3/sec/bpm) =

1.31026 water fB = 0.011893808

Velocity  (ft/sec)= 40.31759 fD(Gel) = 0.002467873
Fluid density (slugs/ft3 ) = 1.946 Characteristic friction

coefficient R1=
71.34845538

Gel with n' = 0.789 Characteristic impedance
coefficient B1=

3822.444352

K'(lbf*secn /ft2) = 6.14E-04 Friction loss in tube dftpsf (psf) 153507.0214
 Wave speed, c (ft/sec) = 4000 Loss dftxpsf in ∆X (psf) 7675.351068

delt=time step (sec) 0.1 Loss head ∆H in ∆X (ft) 122.4896917
Select ∆X (ft)= 400 Tube dynamic pressure (psf) 1581.619133

Number of Tube stations
N1=Lt / ∆X=

20 Delperf, dynamic pressure
perforation (psf) =

8649.394208

Calculate effective perforation area Pi 3.141592
50 perforations .28", Cd.65 Gravity, g (ft/s2) 32.2

Gives Net Area CdAp = 0.013897
Tube period τt = 4Lt/c

(sec)
8
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Table 4.2 Fracture Data

Fracture length, Lf (ft) = 800 NRe' = 228.2749156
Vol of both fract.=Vol

pumped*F.E.
788 FD (fracture) = 64/NRe' 0.2803637

Each fracture has Vol (ft3) 394 Alternate assumed
fD(fracture) =

0.2803637

Fracture height h (ft) = 70 Characteristic friction
coefficient R2 =

510.2056303

Fracture width w =
Vol/(h*Lf) (ft)=

0.007036 Characteristic impedance B2= 252.2306649

DH = hydraulic diameter
(ft) =2w=

0.014071 Pinsitu (psi) 6400

A = w*h  (ft2) = 0.4925 Pinsitu (psf) 921600
Steady state Q = Qtube / 2

(bpm)
7 Hinsitu (ft) 14707.66599

Steady state Q (ft3/sec) 0.65513 Friction pressure loss dffpsf = 27442.83186
Velocity  (ft/sec)= 1.330213 Loss dffxpsf per ∆X (psf) 13721.41593

Fluid density (slugs/ft3) 1.946 Tube inlet pressure P1,1(psf) 1111199.247
Gel with n' = 0.789 Tube inlet head H1,1 (ft) 17733.44984

K' (lbf*secn/ft2) = 6.14E-04
Wave speed, c,  (ft/sec) = 4000

Number of stations N2
=Lf/ ∆X =

2

The reason for this analysis is to determine if there is a need to use actual

velocity rather than average velocity in the computer program.  Using the

aforementioned input data from Table 4.1 and Table 4.2 from the Halliburton job

ticket, the pressure wave signals were graphed and are found in the following chapter.
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CHAPTER 5

RESULTS AND DISCUSSION

5.1 Steady State Results

These results were obtained by assuming quasi-steady state and the steady

flow continuity equation.  The values for the width, wm,x, and pressure, (px - σmin),

both as a function of distance from the fracture tip, (Lf – x), have been derived.  The

following tables display the results from the Qbasic program in Chapter 4.  The

program was run for 30 seconds and the flow rate dropped from 14 to 7 bpm in 4

seconds where it was held constant at 7 bpm after the first 4 seconds.  This chapter

also includes the figures of the transient pressure waves in the tubing and fracture

caused by the flow rate change.

Table 5.1 Steady State Tube Data

Station I H(ft) Q(ft^3/s) P (psi)
1 17733.45 1.31026 7716.66144
2 17610.96 1.31026 7663.360391
3 17488.47 1.31026 7610.059342
4 17365.98 1.31026 7556.758293
5 17243.49 1.31026 7503.457244
6 17121 1.31026 7450.156195
7 16998.51 1.31026 7396.855146
8 16876.02 1.31026 7343.554097
9 16753.53 1.31026 7290.253048
10 16631.04 1.31026 7236.951999
11 16508.55 1.31026 7183.65095
12 16386.06 1.31026 7130.349901
13 16263.57 1.31026 7077.048851
14 16141.08 1.31026 7023.747802
15 16018.59 1.31026 6970.446753
16 15896.1 1.31026 6917.145704
17 15773.61 1.31026 6863.844655
18 15651.13 1.31026 6810.543606
19 15528.64 1.31026 6757.242557
20 15406.15 1.31026 6703.941508

1NS 15283.66 1.31026 6650.640459
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Table 5.2 Steady State Fracture Data

Station H(ft) Q(ft^3/s) P (psi)
1 15145.62 0.65513 6590.575221
2 14926.64 0.65513 6495.287611

2NS 14707.67 0.65513 6400

5.2 Transient Flow Results

Table 5.3 Transient Flow Calculations for the Well Tube

B1 = 3822.444 R1 = 71.34845538
Cv = 0.006219

Time T CM1,1 BM1,1 H1,1 Q1,1 CP1,2
0 17733.44984 1.31026

0.1 22741.84578
0.2 12602.56 3915.929379 17717.65742 1.3062271
0.3 22710.63794
0.4 12602.2 3915.648499 17669.93744 1.2942278
0.5 22617.05129
0.6 12600.39 3914.812495 17590.04042 1.2745576
0.7 22461.96574
0.8 12595.79 3913.441301 17478.59043 1.2477007
0.9 22247.85674
1 12587.19 3911.567872 17337.08384 1.2143184

1.1 21978.74847
1.2 12573.59 3909.237434 17167.85912 1.1752329
1.3 21660.12139
1.4 12554.19 3906.506443 16974.03798 1.1314064
1.5 21298.77598
1.6 12528.43 3903.44126 16759.43928 1.0839182
1.7 20902.6561
1.8 12495.99 3900.116592 16528.4688 1.0339375
1.9 20480.63719
2 12456.81 3896.613709 16285.9891 0.982695

2.1 20042.28605
2.2 12411.01 3893.018479 16037.17462 0.9314525
2.3 19597.60014
2.4 12358.94 3889.419285 15787.35791 0.8814718
2.5 19156.735
2.6 12301.09 3885.904841 15541.87321 0.8339836
2.7 18729.72912
2.8 12238.07 3882.561993 15305.90358 0.7901571
2.9 18326.23521
3 12170.57 3879.473533 15084.33726 0.7510716

3.1 17955.26653
3.2 12099.36 3876.716108 14881.6385 0.7176893
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Table 5.4 Transient Flow Calculations for End Tube Station and Fracture

Fracture  Transient Solution

R2 = 510.2056 B2 = 252.2307
H1,NS1 Q1,NS1 Time T H2,1 Q2,1 H2,NS2 Q2,NS2

15283.66 1.31026 0 15145.62 0.65513 14707.67 0.65513
0.1

15283.66 1.31026 0.2 15145.62 0.65513 14707.67 0.65513
0.3

15283.66 1.31026 0.4 15145.62 0.65513 14707.67 0.65513
0.5

15283.66 1.31026 0.6 15145.62 0.65513 14707.67 0.65513
0.7

15283.66 1.31026 0.8 15145.62 0.65513 14707.67 0.65513
0.9

15283.66 1.31026 1 15145.62 0.65513 14707.67 0.65513
1.1

15283.66 1.31026 1.2 15145.62 0.65513 14707.67 0.65513
1.3

15283.66 1.31026 1.4 15145.62 0.65513 14707.67 0.65513
1.5

15283.66 1.31026 1.6 15145.62 0.65513 14707.67 0.65513
1.7

15283.66 1.31026 1.8 15145.62 0.65513 14707.67 0.65513
1.9

15283.66 1.31026 2 15145.62 0.65513 14707.67 0.65513
2.1

15281.43 1.305849 2.2 15144.33 0.652925 14707.67 0.65513
2.3

15274.23 1.292759 2.4 15139.86 0.64638 14707.67 0.654313
2.5

15261.26 1.271282 2.6 15131.32 0.635641 14707.67 0.651339
2.7

15242.27 1.241755 2.8 15118.29 0.620877 14707.67 0.645364
2.9

15217.39 1.204602 3 15100.72 0.602301 14707.67 0.635863
3.1

15187.05 1.160362 3.2 15078.79 0.580181 14707.67 0.622517

5.3 Figure and Table Results and Explanation

For steady state analysis the following equation was used
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This summation is the minimum in-situ stress plus the friction loss through the

fracture plus the dynamic head loss through the perforations plus the friction loss

through the tube.  Gravity terms could be ignored as all calculations were done in feet

of head, which is not effected by pipe or fracture altitude or orientation.

For transient analysis, Figure 5.1 represents the equivalent pressure head

readings at the tube inlet.  The period of this graph, 8 seconds, represents the time it

takes for the pressure wave to travel twice from tube inlet to end of tube and back.

After four oscillations the tube pressure wave dampens out due to friction.    Figure

5.2 represents the pressure head readings at the fracture inlet.  The initial straight line

denotes the time it takes for the pressure wave to reach the fracture inlet.  The

pressure waves shown are calculated just outside the casing wall.  Note that the

fracture friction is so high, that the ten times higher frequency pressure waves,

created fracture internal wave reflections that were not visible.  This may be due to

the use of a constant value for the friction coefficient, and Vav as a too low velocity.

To demonstrate the occurrence of the ten per cycle fracture internal wave reflections

the friction coefficient was artificially lowered by a factor of 100.  Now the pressure

waves created inside the fracture become visible.  This is shown in Figure 5.3.  Due

to the fracture length being 10 times shorter than the tube length, 10 oscillations occur

inside the fracture for every one oscillation inside the tubing.  Figure 5.4 represents

the tube inlet flow rate boundary condition.  The flow rate drops from 14 to 7 bpm in

4 seconds.
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Figure 5.1
H1,1 vs. Time

Figure 5.2

H2,1 vs. Time With Fracture Friction = 
Re
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Figure 5.3
H2,1 vs. Time With Fracture Friction = 0.0028

Figure 5.4
Fluid Flow Rate vs. Time

Time History of Head Changes at Fracture Inlet (Q1,1 reduces from 14 
to 7 bpm) Fracture Friction = 0.0028

14698

14700

14702

14704

14706

14708

14710

14712

14714

14716

0 5 10 15 20 25 30 35

Time (sec)

H
ea

d 
(f

t)

H2,1

Time History of Flow Rate Changes at Tube Inlet Q1,1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35

Time (sec)

F
lo

w
 R

at
e 

(f
t^

3/
se

c)

Q1,1



55

CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusion

Equation (3-24) indicates that the change in hydraulic diameter over the height of

the fracture has a profound effect on the difference in velocity between the maximum

centerline value and the average value.  In this case basing the length on the 2D velocity

inside the fracture overestimates its length by 67%. As was seen from Table 1.1, the

various models currently in use are based on the 2D-velocity model and have similar

order of magnitude differences. If the effect of increasing relative roughness, RMS is

added in the form of rt as a function of distance from the centerline, z, then the 3D effect

is likely to double. The tortuous path factor needs to be modeled. The significant

variation in the 3D velocity applies to Newtonian and gel fluids without proppant. It is

likely to have a profound effect on the transport and penetration of proppant. This

analysis demonstrates the need to continue investigation the aspects of friction in the

acoustic analysis of velocity transients inside a fracture.  The presence of these waves

was demonstrated by artificially lowering the friction coefficient by 100, which rendered

the fracture internal reflections visible.



56

6.2 Recommendations for Future Study

1) The computer program needs to be modified to account for the fracture velocity

profile and the equilibrium fracture width.  This might result in a reduced friction

coefficient, causing the fracture acoustic oscillation not to be critically damped.

2) Further study needs to be done on the tortuous path and how it effects the acoustic

characteristics of the fracture and proppant transport.

3) Various signal-processing techniques, which will be needed to isolate the fracture

characterizing oscillations from those inside the well tubing needs to be

investigated.



57

REFERENCES

1) Geertsma, J. “Two-Dimensional Fracture-Propagation Models,” pp. 81, Recent
Advances in Hydraulic Fracturing, SPE 1989.

2) Nolte K. G. and Smith M. B. “Interpretation of Fracturing Pressures,” pp. 131
Volume 1, SPE Reprint Series No. 28 Hydraulic Fracturing-2, 1990

3) Chaudhry, M. H., “Applied Hydraulic Transients” Van Nostrand Reinhold Co.,
1979.

4) Wylie, B. E. and Streeter, V. L., “Fluid Transients in Systems” Prentice Hall,
1993.

5) Martinez, S. J., Steanson, R. E. and Coulter, A. W. “Formation Fracturing,” pp.
46, Volume 1, SPE Reprint Series No. 28 Hydraulic Fracturing-1, 1990.

6) Warpinski, N. R., Schmidt, R. A. and Northrop, D., “In-Situ Stresses: The
Predominant Influence on Hydraulic Fracture Containment,” pp. 100 Volume 1,
SPE Reprint Series No. 28 Hydraulic Fracturing-1, 1990.

7) Geertsma, J. and de Klerk, K., “A Rapid Method of Predicting Width and Extent
of Hydraulically Induced Fractures,” pp. 73, Volume 1, SPE Reprint Series No.
28 Hydraulic Fracturing-1, 1990.

8) Perkins T. K. and Kern L. R. “Width of Hydraulic Fractures,” pp. 60, Volume 1,
SPE Reprint Series No. 28 Hydraulic Fracturing-1, 1990.

9) Dobkins, T. A., “Improved Methods To Determine Hydraulic Fracture Height,”
pp. 123, Volume 2, SPE Reprint Series No. 28 Hydraulic Fracturing-1, 1990.

10) Warpinski, N. R. and Smith, M. B., “Rock Mechanics and Fracture Geometry,”
pp. 57, Recent Advances in Hydraulic Fracturing, SPE 1989.

11) Simonson, E. R. and Abou-Sayed, A. S., Clifton, R. J., “Containment of Massive
Hydraulic Fractures” pp. 84 Volume 1, SPE Reprint Series No. 28 Hydraulic
Fracturing-1, 1990.

12) Daneshy, A. A., Slusher, G. L., Chisholm, P. T. and Magee, D. A., “In-Situ
Stress Measurements During Drilling,” pp. 153, Volume 1, SPE Reprint Series
No. 28 Hydraulic Fracturing-1, 1990.

13) Voegele, M. D., Abou-Sayed, A. S. and Jones, A. H., “Optimization of
Stimulation Design Through the Use of In-Situ Stress Determination,” pp. 112
Volume 1, SPE Reprint Series No. 28 Hydraulic Fracturing-1, 1990.



58

14) Williams, B. B., “Fluid Loss from Hydraulically Induced Fractures,” pp. 282
Volume 1, SPE Reprint Series No. 28 Hydraulic Fracturing-1, 1990.

15) Sneddon I. N. “The Opening of a Griffith Crack under Internal Pressure,” pp.
262, Proc. Roy. Soc. (1946) A, 187.

16) Veatch Jr. R. W., Moschovidis Z. A. and Fast R. C. “An Overview of Hydraulic
Fracturing,” pp. 1, Recent Advances in Hydraulic Fracturing, SPE 1989.

17) Economides M. J. and Nolte K. C. “Reservoir Stimulation,” Prentice Hall, 1989

18) Lord, D. L. and McGowan, J. M., “Real Time  Treating Pressure Analysis Aided
By New Correlation,”  SPE-15367, Presented in New Orleans, LA October 5-8,
1986.



59

APPENDIX A

Derivation of Pressure Gradient for Non-Newtonian Fluid

Initial Condition

For steady state analysis the momentum equation gives

HD

Vf

dx

dp 2
2
1 ρ−

=

The hydraulic diameter, DH = 4 * area/ wetted wall perimeter

xzH
xz

H wD
dz

dzw
D ,

, 2
2

4
=⇒= (1)

Inside the fracture the flow is laminar with Darcy friction coefficient.

Re'

64
, N

f zx = for a power law fluid or 
Re

64
, N

f zx =   for a Newtonian fluid (2)

where NRe’ is the power law Reynolds number.  The equation for the power law Reynolds

number is

NRe′ = 
'

1'

''2

'

25.0
75.08'

n
n

n
H

n

n
K

DV







 +−

−ρ
(3)

where ρ is the fluid density, V is the velocity, DH is the hydraulic diameter, and n’ and K’

are the power law coefficients.  The geometry analyzed is for 2 equal and opposite

rectangular fractures near completion of the fracture where the change in fracture length, L,

can be ignored during transient flow process.  This is done to avoid accounting for moving

boundaries and f is proportional to 1/V thus, it should not be assumed constant.  Based on

the Perkins model, the fracture is elliptical in the vertical z-direction and decreases in

maximum width, wm,x as pressure drops.  At the limit x = Lf, the fracture length, the fluid
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pressure has reduced to the minimum in-situ stress, which is σmin = pLf and the maximum

width of the fracture has reduced to zero.  At any other station x < Lf it is given by

'
2 min

, E

p
hw xm

σ−
= (4)

where

21
'

ν−
=

E
E

Pressure Distribution

        pwf - σmin

    ∆pf         p(x)

   σinsitu

x = 0 x = Lf

The equation for an ellipse is
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where y is given by

y = ½ wz,x   ⇒  y = ½ wm,x 

2

2
1

1 









−

h

z

because wz,x = wm,x

2

41 






−
h

z
 (6)



61

Begin Derivation of Pressure Gradient
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Applying the continuity equation
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Set t = [ 1 – (u)2 ]1/2
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h
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At z = 0 ⇒ u = 0

At z = h / 2 ⇒ u = 1

The limits of the integral become:  u = 0 ⇒ t = 1, u = 1 ⇒ t = 0

Separately evaluating the following integral
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For power law fluid, n’ < 1  for example n’ = 0.89  in which case 2+1/n’ = 2 +1/ 0.89 = 3.12

The solution is known from the table of integrals
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The power that t is raised to in the integral is between the limits 5 > (2 + 1/n’) > 3.
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The solution to the integral is known for the two limits of t3 and t5.
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Therefore, after integration and evaluation of the limits from 0 → 1, all of the u⋅t products

are zero.  The only term left is the sin-1(u) term which is π / 2.
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can be found.
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Next consider how p and wm,x vary along length of fracture by differentiating.

wm,x = (p - σmin) / (E’ / 2h)            (11)
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Another important measurable parameter is the friction pressure loss

Inside the fracture, ∆p = pw,o - σmin.  Rewriting equation 14 yields
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The following derivation is also repeated for a Newtonian fluid.

The Reynolds number for a Newtonian fluid is given by

NRe = 
µ

ρ HVD
           (16)

Derivation of Pressure Gradient for Newtonian Fluid
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Insert equation 1 and simplify
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Another important measurable parameter is the friction pressure loss

Inside the fracture, ∆p = pw,o - σmin.  Rewriting equation 24 yields
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Toward the end of the job, when the specified volume has been pumped or Volf

is known, it can be concluded that if the flow rate had been doubled then ∆p would

have been 25 = 32 times as high.
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While pumping at a constant qi, the volume pumped and thus the fracture volume,

Volf, grow linearly in time.
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APPENDIX B

'Ron Pack
'File: case4.BAS

'A = Tube Area
'Af = Fracture Area
'B1,B2 = Impedance
'BM,BP = Constants During Time Step In Compatibility
Equations
'c = Wave Propagation Velocity (ft/sec)
'CdAp = Perforation Area
'CM,CP = Constants During Time Step In Compatibility
Equations
'D = Inside Tube Diameter (in)
'delt = Time Step (sec)
'dff = Pressure loss across fracture (psf)
'dft = Pressure loss across tubing (psf)
'dffx = Pressure loss per section of fracture (psf)
'dftx = Pressure loss per section of tubing (psf)
'delH = dftx in feet of head
'delhf = dff in feet of head
'delperf = Pressure loss across perforations (psf)
'Dh = Fracture Hydraulic Diameter
'fD = Lord/McGowan Friction factor
'G = Gel G (lb/Mgal)
'h = Fracture height (ft)
'Hf = Fracture head
'Ht = Tube head
'K = K' for fluid
'Lf = Fracture Length (ft)
'Lt = Tube Length (ft)
'n = n' for Gel
'N1 = Number of Tube Stations
'N2 = Number of fracture stations
'P = Proppant Concentration (lb/gal)
'Pin = In-Situ Stress
'Q  = Steady State Flow rate
'Qf = Fracture Flowrate
'Qt = Tube Flow rate
'R1,R2 = Resistance Coefficient
'rho = Fluid Density
'TMAX = Program Running Time
'V = Tube Velocity
'Vf = Velocity inside fracture
'Vol = Volume pumped into fractures
'w = Fracture Width
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 OPEN "a:output.dat" FOR OUTPUT AS #1
 Lt = 8000
 D = 2.441
 Q = 14
 rho = 1.946
 n = .789
 K = .000614
 c = 4000
 Delt = .1
 CdAp = .013897
 N1 = 20
 G = 20
 P = 0
 Lf = 800
 Vol = 788
 mu = .0000179 ‘water
 h = 70
 N2 = 2
 Pin = 6400
 TMAX = 30
 NS1 = N1 + 1
 NS2 = N2 + 1

 DIM Qt(NS1), Ht(NS1)
 DIM Qf(NS2), Hf(NS2)

'Initial steady state tube calculations
 Pi = 4 * ATN(1)
 A = (Pi / 4) * (D / 12) ^ 2
 Q1 = Q * .09359
 V = Q1 / A
 delx = c * Delt
 tau = 4 * Lt / c

'Lord/McGowan Friction Factor calculation for the tubing
 NRe = (1.934 * V * (D / 12)) / mu
 fD = (4 * .046) / (NRe ^ .2)
 sig = .207492288#
 fD1 = fD * sig
 R1 = (fD1 * delx) / (2 * 32.2 * (D / 12) * (A ^ 2))
 B1 = c / (32.2 * A)
 CV = ((CdAp) ^ 2) * 32.2
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'Friction loss across tubing and perforations
calculations
 dft = (.5 * fD1 * (rho) * V ^ 2 * (Lt / (D / 12)))
 dftx = dft / N1
 delH = dftx / (32.2 * rho)
 delperf = (.5 * rho * ((Q1 / CdAp) ^ 2))

'Initial steady state fracture calculations
 VolFrac = Vol / 2
 w = VolFrac / (h * Lf)
 Dh = 2 * w
 Af = w * h
 Q2 = Q1 / 2
 Vf = Q2 / Af

'Friction coefficient calculation for the fracture
 NRef = (rho * Vf ^ (2 - n) * Dh ^ n) / (K * 8 ^ (n - 1)
* ((3 * n + 1) / (4 * n)) ^ n)
 fDf = 64 / NRef
 R2 = (fDf * delx) / (2 * 32.2 * Dh * (Af ^ 2))
 B2 = c / (32.2 * Af)
 P1 = Pin * 144
 Hin = P1 / (rho * 32.2)

'Pressure loss calculation across fracture
 dff = .5 * fDf * rho * Vf ^ 2 * (Lf / Dh)
 dffx = dff / N2
 delhf = dffx / (rho * 32.2)
 P11 = P1 + dff + delperf + dft
 h11 = P11 / (32.2 * rho)
 T = 0

'Steady state calculations
 FOR I = 1 TO NS1
 Qt(I) = Q1
 IF I = 1 THEN Ht(I) = h11 ELSE Ht(I) = h11 - delH
 PRINT #1, USING "######.######"; T; Qt(I); Ht(I)
 h11 = Ht(I)
 NEXT I
 h21 = Ht(NS1) - (delperf / (32.2 * rho))

 FOR I = 1 TO NS2
 Qf(I) = Q2
 IF I = 1 THEN Hf(I) = h21 ELSE Hf(I) = h21 - delhf
 PRINT #1, USING "######.######"; T; Qf(I); Hf(I)
 h21 = Hf(I)
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 NEXT I

'Transient calculations
 KMAX = INT(.5 * TMAX / Delt) + 1
 FOR K = 1 TO (KMAX - 1)
 T = 2! * Delt * K

'Tubing interior points
 FOR I1 = 2 TO 3
        FOR I = I1 TO N1 STEP 2
        CP1 = Ht(I - 1) + (Qt(I - 1) * B1)
        CM1 = Ht(I + 1) - (Qt(I + 1) * B1)
        BP1 = B1 + (R1 * ABS(Qt(I - 1)))
        BM1 = B1 + (R1 * ABS(Qt(I + 1)))
        Ht(I) = (CP1 * BM1 + CM1 * BP1) / (BP1 + BM1)
        Qt(I) = (Ht(I) - CM1) / BM1

'Tube inlet boundary condition
        CM11 = Ht(2) - (B1 * Qt(2))
        BM11 = B1 + (R1 * ABS(Qt(2)))
        IF T < (tau / 2) THEN Qt(1) = Q1 - (.65513 / 2) *
(1 - COS(Pi * (T / (.5 * tau)))) ELSE Qt(1) = Q1 - .65513
        Ht(1) = (Qt(1) * BM11) + CM11
        NEXT I
 NEXT I1

'Fracture interior positions
 FOR I2 = 2 TO 3
        FOR I = I2 TO N2 STEP 2
        CP2 = Hf(I - 1) + Qf(I - 1) * B2
        CM2 = Hf(I + 1) - Qf(I + 1) * B2
        BP2 = B2 + R2 * ABS(Qf(I - 1))
        BM2 = B2 + R2 * ABS(Qf(I + 1))
        Hf(I) = (CP2 * BM2 + CM2 * BP2) / (BP2 + BM2)
        Qf(I) = (Hf(I) - CM2) / BM2

'Tube exit boundary condition
        CM21 = Hf(2) - (Qf(2) * B2)
        BM21 = B2 + (R2 * ABS(Qf(2)))
        CP1NS = Ht(N1) + Qt(N1) * B1
        BP1NS = B1 + (R1 * ABS(Qt(N1)))
        Qt(NS1) = (-CV * (BP1NS + (BM21 / 2))) + SQR((CV
^ 2) * (BP1NS + (BM21 / 2)) ^ 2 + (2 * CV * (CP1NS -
CM21)))
        Ht(NS1) = CP1NS - (BP1NS * Qt(NS1))

'Fracture inlet boundary condition



76

        Qf(1) = Qt(NS1) / 2
        Hf(1) = CM21 + (BM21 * Qf(1))

'Fracture exit boundary condition
        CP2NS = Hf(N2) + Qf(N2) * B2
        BP2NS = B2 + (R2 * ABS(Qf(N2)))
        Hf(NS2) = P1 / (rho * 32.2)
        Qf(NS2) = (CP2NS - Hf(NS2)) / BP2NS
        NEXT I
 NEXT I2

'Variable storage
 FOR I = 1 TO NS1
 PRINT #1, USING "######.######"; I; T; Qt(I); Ht(I)
 NEXT I
 FOR I = 1 TO NS2
 PRINT #1, USING "######.######"; I; T; Qf(I); Hf(I)
 NEXT I
 NEXT K
END
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