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ABSTRACT 

Two-dimensional Polymer and Thin-Film Semiconductor-based Photonic Crystals for 

Biosensing Applications 

 

 

Bashar M. R. Hamza 

 

Detecting biomolecules at very low concentrations is of a significant importance for a wide variety 

of applications ranging from human health to national security.  A diverse class of sensing platforms 

utilizing the specificity of physical properties of materials and their change in the presence of target 

analytes has been developed. The main objective of such systems is to deliver cost-effective, ultra-

sensitive, and reliable sensors that can withstand noisy environments (i.e. dirty samples) with efficient 

operational characteristics (low power, high throughput, etc.). Optical, electrochemical, and mechanical 

sensors have demonstrated promising detection capabilities, which further encouraged research aimed at 

producing even much more sensitive systems that are capable of extending detection limits to single 

molecules. 

The unique optical properties of photonic crystals (PhCs) as well as their nano-meter scale features, 

which can be comparable to that of single molecules, make them well suited as a basis for sensors capable 

of fulfilling the ultra-sensitive detection requirements. Semiconductor materials are commonly used to 

engineer PhCs that can either trap light at high efficiency in high-quality factor resonant cavities to 

enhance fluorescence emission from labeled molecules, or cause a very precise attenuation of the 

transmitted or reflected light after the adsorption of unlabeled molecules to the surface of these PhC 

structures. However, the high cost of sensing platforms utilizing semiconductor materials motivates the 

development of soft lithographic techniques to fabricate photonic crystals in biocompatible polymer 

materials and simplify their integration with microfluidic channels and optical waveguides.  

The theory, design, fabrication, and optical characterization of PhC lattice structures as biosensing 

platforms in both semiconductor and polymer materials will be demonstrated throughout this thesis. 

Electron Beam Lithography as well as soft lithographic techniques are presented to achieve sub-

micrometer scale PhC lattices in silicon, Polydimethylsiloxane (PDMS), and epoxy. The main focus will 

be on a passive detection modality in which the PhC structures are used to manipulate light emitted from 

fluorescing molecules to achieve an enhancement of this emission. A 27-fold enhancement factor has 

been recorded when IR-emitting quantum dots were utilized as the emitting molecules within the PhCs. 
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CHAPTER 1: PHOTONIC CRYSTAL SENSORS 

1.1 PHOTONIC CRYSTALS AND THEIR APPLICATIONS 

Controlling light propagation through a material has been the topic of intensive research since the 

pioneering works of E. Yablonoivitch [1] and S. John [2]. The objective at that time was to inhibit 

spontaneous emission and study light localization in periodic dielectric structures. The remarkable work 

of those two scientists marked the beginning of applying solid state physics theories and concepts to 

optics and electromagnetism. It was very soon realized that as the periodicity of solid state crystals 

determines the conduction and energy properties of their materials; the periodic dielectric structures that 

occur at scales comparable to the propagating wavelengths determine the transmission capabilities of 

photons through these materials [3-6]. 

Photonic crystal (PhC) has been the title given to this new class of materials that is characterized 

by a periodically varying dielectric function ε. This periodicity can occur in one, two, or all orthogonal 

directions as shown in Figure 1.1. A typical example of the one-dimensional (1D) photonic crystals is the 

distributed Bragg reflector (DBR), in which layers of two or more different optical materials are stacked 

on top of each other in a periodic fashion. Although these DBRs are now considered a 1D class of PhCs, 

they were studied for several years before the findings of Yablonoivitch and John [7-10] and their unique 

ability to allow transmission of specific wavelengths while reflecting others was found to be dependent on 

the refractive index contrast between the layers as well as the thickness of each layer [7-10]. Currently, 

these structures are employed in a wide variety of optoelectronic devices [3]. Two-dimensional (2D) 

PhCs occur when the dielectric variation is engineered to be periodic in two directions and maintained 

constant along the third direction. This is achieved by either introducing holes of a low dielectric material 

with specific symmetry in a higher dielectric material, or simply the opposite case in which pillars of a 

high dielectric material are surrounded by a low dielectric background. In three-dimensional (3D) PhCs, 

the refractive index is varied along all the three directions of space. This is usually achieved using a 

bottom-up approach in which 1D or 2D PhCs slabs are carefully aligned and stacked to create a periodic 

variation along the third dimension [11].  

The main interest in PhCs comes from their unique and very selective ability to control light 

propagating through them. As the electronic potential periodicity in a crystal determines the existence of 

the electronic band structure, the periodic dielectric potential of the PhCs allows the existence of allowed 

and forbidden bands (photonic bandgaps). Therefore, as will be discussed in Chapter 2, concepts such as: 

Block theorem, Brillouin zones, energy bands, dispersion relationships, etc. that were previously to study 
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the interaction between electrons and their periodic lattices, were also utilized to understand photon 

motion within the periodic PhCs. This motion is governed by Maxwell‟s equations. 

 As light becomes incident on a PhC lattice of any dimensionality, it gets reflected off each layer 

of periodic media, and when suitable conditions are met, i.e. the periodicity is comparable in scale to the 

propagating wavelength and there is a sufficient refractive index contrast between the low- and high-ε 

regions, light will no longer be allowed to propagate and a complete control over its leakage is possible. 

This unique feature of nanoscale PhC lattices has made them very attractive for a wide variety of 

applications such as waveguides and optical filters [3]. The more interesting attribute of PhCs is the 

ability to create localized modes by introducing defects in an otherwise ordered PhC lattice. Efficient 

resonators, beam splitters, lasers, and light emitting diodes (LEDs) are among the most common 

applications of PhCs [3]. A main objective of nanophotonic device research is to integrate all of these 

PhC-based optical components on a single chip and be able to process optical signals in a similar fashion 

to how conventional electronic chips control electron flow. 

 In addition to the objective of creating integrated optical circuits, PhC lattices have been also the 

focus of intensive research involving optical-based sensors [12]. They have become the new 

nanotechnology-based class of optical sensors that have potential to provide ultra-sensitive detection 

capabilities that exceed that of the other sensor types: mechanical and electrochemical. In general, the 

demand for accurate sensors that can detect trace changes of the desired target has increased. With a wide 

variety of applications in the industrial and biomedical fields, this demand requires simple, fast, safe, 

portable, and inexpensive sensing platforms. It is also very important to produce reliable technologies that 

allow the testing of a larger number of samples in a timely manner.  

Figure 1.1. The three types of photonic crystals (PhCs) [6] 
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When altering any of the critical PhC parameters, such as: lattice constant, periodicity, or the 

materials of the high- and low-ε regions, the range of allowed, blocked, and confined wavelengths is also 

altered. This has provided researchers with a very accurate and sensitive tool indicating not only the 

concentration or mass of a desired target, but also its specific type due to its refractive index signature. 

Two main detection modalities utilizing PhCs as the core structures can be realized: active and passive. 

Throughout the following sections of this chapter, a literature review is presented to explain the unique 

properties of each modality.  

 

1.2 THE ACTIVE DETECTION MODALITY UTILIZING PHOTONIC CRYSTALS 

Several critical parameters play a role in determining the optical bandgap properties of PhCs. If we 

are to take a simple 2D PhC lattice of a triangular symmetry of low-ε holes in a high- ε slab, as shown in 

Figure 1.2, then the following list demonstrates those parameters: 

 

1. The dielectric constant of the slab (ε1) 

2. The dielectric constant of the hole (ε1) 

3. The slab thickness (h) 

4. The lattice constant (a) 

5. The radius of the holes (r) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Critical parameters of a 2D PhC slab 
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In the active detection modality, one of these parameters is intentionally modified when target 

analytes are introduced to the sensor with a specific PhC lattice. This translates into either changes of the 

radius and/or the lattice constant due to swelling effects, or changes of the effective refractive index as the 

target analytes replace the low-ε regions of the PhC lattice. In most detection schemes utilizing this 

modality, a control sample is first tested to acquire initial information regarding the specific range of 

transmitted/reflected wavelengths. As the desired target is introduced, the change in one or more 

parameters translates into changes of the transmitted/reflected wavelengths. These changes are usually 

observed as red or blue shifts which are directly dependent on the local density of the adsorbed molecules 

and are very sensitive to the target type and quantity.  

Chemical, humidity, gas, and protein biosensors are among the most common sensor types that 

utilize this active detection modality. 

  

1.2.1 Chemical Sensors 

 

Polymerized crystalline colloidal arrays (PCCAs) are self-assembled three-dimensional photonic 

crystal lattices that result from the electrostatic repulsion between highly charged spheres [13]. The 

repulsion allows the spheres to align in either a face-centered cubic (FCC) or a body-centered cubic 

(BCC) arrays and can very intensely Bragg diffract visible wavelengths. The unique characteristic of 

these arrays is their target-induced volume changes that cause the diffracted light to shift accordingly. For 

example, PCCA has demonstrated a unique ability to sense pH changes and the ionic strength of a 

specific chemical solution. By relating the diffracted wavelength to the lattice constant and the hydrogel 

volume, precise monitoring of the changes in pH and ionic strength is possible (Figure 1.3) [13]. 

Moreover, the same three dimensional photonic-crystal arrays, and based on volume-induced changes, 

were used develop a new sensing motif for the detection and quantification of creatinine, which is an 

important small molecule marker of renal dysfunction [14]. 

In a similar method, the three-dimensional crystalline colloidal arrays embedded within a 

polyacrylamide-poly(ethylene glycol) (PEG) hydrogel have demonstrated the ability to generate a 

colorimetric glucose recognition sensor [15]. As glucose of different concentrations is introduced to the 

array, it self-assembles the boronic acid and PEG functional groups into a supramolecular complex 

capable of introducing blue shifts to the photonic-crystal-based diffracted wavelengths. The visually 

evident diffraction color shifts across the visible spectral region using this method, from red to blue over 

physiologically important glucose concentration ranges. Thus, a new noninvasive glucose recognition is 

made possible [15-17].  
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Figure 1.4. Examples of two 3D PhC based glucose sensing mechanisms. (Top) Changing lattice constant 

due to volume-induced changes. (Bottom) changing the radius due to swollen microgel particles chemical 

sensor for glucose using the three-dimensional PCCAs [17] 

Figure 1.3. An example of a chemical sensor for pH changes in a solution. As the volume of the 3D 

polymer-based PhC changes, red or blue shifts can be observed accordingly [13] 
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1.2.2 Humidity Sensors 

 

Hydrogel-based PhCs have demonstrated a unique ability to detect humidity changes with response 

times on the order of few seconds [18, 19]. The ability of the PhC hydrogel structures to have this useful 

response to humidity is due to the acrylamide that makes up the polymer which possesses an excellent 

hydrophilicity and water absorption characteristics. As ambient humidity increases, the hydrophilic 

acrylamide hydrogel absorbs water from the air to reach a new equilibrium. This water absorption induces 

a deformation from its previous equilibrium contracted structure by attempting to swell in all directions. 

The swelling causes a spacing increase between the layers of the 3D PhC, and hence an increase in the 

lattice constant, which causes a shift of the reflectance spectrum peak. At normal incidence, strong 

interference of reflected light from the regular spaced alternating layers cause Bragg reflection at a 

specific wavelength. As the distance increases between the layers, a red-shift in the reflection peak is 

observed within few seconds (Figure 1.8) [18].  

Other kinds of photonic crystal humidity sensors use nano-porous polymer photonic crystals [20].  

As the humidity changes, the transmittance at the stop gap wavelength shifts due to changes in the 

refractive index of the structure. For example, a humidity percentage change from 40 to 90% is capable of 

inducing shifts of 43 nm in the stop gap position and resulting with an increase in the transmittance from 

12% to 87% at 600nm [20]. 

 

 

 

 

 

 

 

 

 

 

 

1.2.3 Gas Sensors 

 

The response of a 2D PhC resonator to changes of the ambient gas demonstrates another example of 

how photonic crystal lattices can be actively utilized in ultra-sensitive sensing platforms. For example, 

when a two-dimensional triangular PhC lattice fabricated in GaAs (Figure 1.7(a)) [21] with a resonant 

Figure 1.5. (Left) SEM image of 3D PhC-based hydrogel humidity sensor. (Right) Spectra shift with time from ambient 

conditions 50% to 80% RH [18]. 
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cavity was introduced to different gases, the refractive index within the holes surrounding the cavity 

changes accordingly. Such refractive index changes of the surrounding gas influence the effective 

refractive index of the membrane waveguide and the photonic band structure due to the change of the 

index contrast between the semiconductor and the holes. Both effects lead to a shift of the cavity 

resonance into the same direction [21]. In Figure 1.6, different transmission peaks are observed at the 

presence of three different ambient gases. A shift of the resonance toward higher wavelengths can be 

clearly observed as the refractive index of the ambient is increased from that of vacuum to Nitrogen and 

finally to SF6.  

Moreover, air-guiding Photonic Bandgap Fibers (PBFs) have demonstrated the ability to sense both 

strongly (acetylene/hydrogen cyanide) and weakly (methane/ammonia) absorbing gases [22]. PBFs are 

very advantageous as gas sensors due to the long optical path that they introduce which allows more 

interaction between the gas and light mode field and therefore only very small sample volume is needed. 

Furthermore, PBFs can be bent and connected to standard fiber-optic instruments using advanced splicing 

techniques [22].  

 

 

1.2.4 Biosensor for Protein Detection 

 

A 2D PhC slab of a triangular array of air holes in silicon can also be used to analyze protein binding 

on the pore walls and quantitatively measure the protein diameter. In this unique and ultra-sensitive 

biosensor, a partial TE bandgap was realized in the triangular lattice with an r/a ratio of approximately 

0.29. Since the PhC slab lacked a TM bandgap, all experiments were carried out using a TE polarized 

light at around 1.58 μm [23-25].  

Figure 1.7 illustrates the bio-molecule binding mechanism. Antibodies are first immobilized on the 

internal surface where they form a monolayer and capture the target protein molecules. When a probe-

functionalized sensor is exposed to the target, a monolayer of target species is again captured on the 

Figure 1.6. (a) Scanning electron microscopy image of the cavity (b) Transmission of a PhC resonator in vacuum (solid 

black line), nitrogen (dashed red line), and SF6 (blue dotted line) [21] 
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surface of the sensor. Since the pore size of the PhC holes was 30 times larger than the protein 

hydrodynamic diameter, a uniformly thick monolayer of the proteins coated the pore wall. This 

biomolecule coating causes a refractive index change only in the vicinity of the pore wall. When proteins 

of different sizes coated the internal walls, different amounts of resonance red shift (Figure 1.8) were 

observed and very low masses of approximately 2.5 femtograms were detected. The device performance 

was verified by measuring the red shift corresponding to the binding of glutaraldehyde and bovine serum 

albumin (BSA) [23].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.5 Biosensor for Protein-DNA Interaction  

 

Understanding protein-DNA interactions is very important for the understanding of several 

cellular processes. The study of such an interaction has been dependent on small molecule disruptors. 

However, there are very few methods available for the rapid identification of compounds that disrupt 

protein-DNA interactions [26].  

Figure 1.7. Schematic of bio-molecule recognition: (a) the target molecules are captured by the probe molecules. (b) The 

bio-molecules form a uniform layer on the internal surface of the sensor. In reality the layer thickness is very small 

compared with the pore size. [23] 

Figure 1.8. Normalized transmission spectra of the PC microcavity. Curve (a) indicates the initial spectrum resonance after 

oxidation and silanization, curve (b) is measured after glutaraldehyde attaches to the pore walls, and curve (c) is  obtained 

after infiltration of BSA molecules. [23] 
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It was realized that the adsorption of these molecules on the surface of a PhC transducer proved 

to be a very effective method of allowing such an interaction to be examined with a variety of protein 

types. The PhC biosensor in this example is very sensitive to biomolecular interactions that occur on its 

surface. It is composed of a 1D periodic arrangement of dielectric material that very effectively prevents 

propagation of very narrow bands of light whose wavelength is directly dependent on the local density of 

the adsorbed biomolecules (Figure 1.9). Two very different protein-DNA interactions were successfully 

analyzed using this method; the bacterial MazEF complex, which binds to its promoter DNA in a 

sequence-specific manner, and the human AIF, a protein that binds nonspecifically to chromosomal DNA 

[26]. The sensor system utilizing these structures was capable of identifying compounds that prevent 

protein-DNA binding. The group predicted that such generality and simplicity of the PhC method should 

enable such structures to find broad utility for identification of compounds that inhibit protein-DNA 

binding [26]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9. (a) Schematic of the PC biosensor. A broadband LED illuminates the biosensor from the bottom, and 

reflected light is collected and transferred to a spectrometer where the PWV is measured. (b) Image of PC biosensor 

films adhered to the bottom of black 384-well plates. (c) Diagram of protein-DNA binding experiments performed 

with PC biosensors. Streptavidin-coated biosensors are used to bind biotinylated DNA oligomers, and a distinct peak 

wavelength of the reflected light is observed. After the  addition of Starting Block (Pierce Biotechnologies), a DNA-

binding protein is added, and a shift in the wavelength of reflected light is observed [26] 
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1.3 THE PASSIVE DETECTION MODALITY UTILIZING PHOTONIC CRYSTALS 

In the active modality, as was explained previously, the introduction of a specific target to the system 

incorporating PhC lattices causes a critical change in one or more of the PhC parameters which then is 

translated into red or blue shifts of the transmitted/reflected incident light. The concept for passive 

detection utilizing PhCs is different in a sense that all parameters are designed to remain essentially 

constant throughout the whole detection experiment, and hence the PhC lattice acts as efficient light 

manipulative tool that controls and guides the emission from labeled molecules toward a specific 

direction. Therefore, it is fair to say that the PhC lattices alone are not sensors. They are simply passive 

elements within their sensors that efficiently manipulate and guide light to propagate toward conventional 

detectors that analyze the produced signal.  

This modality is mostly utilized for biosensing applications. However, it is much less common than 

the active one. The reason is due to the increased interest in developing biosensors that do not involve an 

extra labeling step that may alter the desired target and not allow it to be reused. On the other hand, for 

several other applications, rapid DNA detection for molecular biometrics for instance, laser induced 

fluorescence (LIF) is considered the fastest and most common method to detect labeled or naturally 

fluorescing biomolecules at very low concentrations [27-29]. Modern bench-top fluorescence analysis 

instruments are capable of generating accurate quantitative measurements of specific target analytes, 

leading to widespread use in biomedical and environmental applications. Fluorescence spectroscopy 

offers excellent sensitivity and low detection limits for a wide range of fluorescent label/molecule 

combinations. However, the bench-top nature of diagnostic systems that employ these methods does not 

lend itself well to sample analysis outside of dedicated laboratories in point-of-use or point-of-care 

scenarios. The following two sub-sections will explain two common detection methods in which PhC 

lattices with specific photonic bandgaps are utilized to cause at least 27-fold enhancement of the 

fluorescence signal from labeled molecules on the surface of the PhC or within high quality-factor 

resonant cavities. 

 

1.3.1 Surface Fluorescence Enhancement Biosensor 

 

Labeling target analytes for visualization and quantification purposes is very important to life science 

procedures that involve imaging of cells and their components as well as gene expression profiling. 

Research on the effects of metals on enhancing fluorescence and specifically that of surface plasmon 

resonance has demonstrated promising results [30-35]. However, it was soon observed that such 

fluorescence enhancement on metal surfaces can also undergo non-uniform enhancement when colloidal 



11 

 

nanoparticles serve as the substrate. Patterned metal-based nanostructures have been pursued in hopes to 

resolve this issue, but the large-area fabrication of such nanostructures has been a limiting factor of such 

methods. Moreover, fluorophore quenching of labeled molecules that are in the vicinity of the metal 

substrates (~20 nm) was another factor that limited these methods from being employed to large-scale 

enhancement sensors [36]. 

A proposed efficient solution to the previous limitations is through the use PhCs which have 

demonstrated capabilities of fluorescence enhancement through mechanisms similar to those observed 

with metal nanostructures. PhCs fabricated in dielectric materials proved to be very effective at reducing 

quenching effects of fluorophores close to the PhC surface [37]. After careful design, the dielectric-based 

PhCs allow for narrow-band reflections with spectral properties determined by the PC dimensions.  

Since the narrow-band reflections of the proposed 1D PhC varies with position at a fixed 

illumination angle, a single device can potentially exhibit reflections at a range of wavelengths including 

that of fluorophore‟s excitation wavelength. To achieve this functionality, a thin high refractive index 

TiO2 layer was deposited on the dielectric-based 1D PhC (Figure 1.10). By coating the device with a 

monolayer of Cy5-conjugated protein and scanning it at normal incidence with a microarray scanner, a 

spatial map of enhanced fluorescence was generated in order to determine the reflected wavelength that 

corresponds to the greatest enhancement. The group reported PhC an 18-fold fluorescence enhancement 

when such a reflection overlaps the fluorophore excitation wavelengths [37]. 

In a recent work demonstrated by the same group [38], a one-dimensional PhC was used to 

experimentally demonstrate that the detection of fluorescent molecules on a PhC surface can be 

substantially enhanced through the combined effects of resonance-enhanced excitation of the fluorescent 

dye, resonance-enhanced extraction of the fluorescence emission and a dielectric nanorod surface coating 

increasing the surface area available for fluorophore–PC interaction [38]. Enhanced excitation is obtained 

by engineering a high-Q TM resonant mode to efficiently couple with an incident TM-polarized λ = 633 

nm laser for exciting Cyanine-5 (Cy5). Enhanced extraction results from a low-Q TE resonance designed 

to spectrally overlap the Cy5 emission spectrum for channeling TE-polarized emission towards the 

detection instrument. To increase the emission based on surface area, the entire surface is coated with 

TiO2 nanorods that allows more fluorophores to penetrate into the region of enhanced near-electric fields. 

Experimental results reveal a 588-fold enhancement in fluorescence intensity relative to an unpatterned 

glass surface. Figure 1.11 demonstrates the enhancement results as well as a schematic of the proposed 

one-dimensional photonic crystal structure [38]. 
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Figure 1.10. (a) Atomic force microscopy image of a portion of the photonic crystal surface. (b) Side view of the model 

used in Rigorous Coupled-Wave Analysis computations of the structure response. (c) Simulated transmission response as 

a function of wavelength under TE illumination for a region of the structure resonant at 633 nm. (d) Simulated electric 

field intensity for the structure in (b) when illuminated with 633 nm TE-polarized light at normal incidence. [37] 

Figure 1.11. Fluorescence enhancement on the surface of a 1D PhC with nano-rods as shown in image. inset [38] 
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1.3.2 Resonant-Cavity-Based Fluorescence Enhancement Biosensor 

 

In the PhC-based transduction mechanism developed by our group [39-46], the PhC structure is 

considered a passive element that is utilized as a slab waveguide enhancing emission from labeled 

molecules that fall within its bandgap. The enhancement results from the fact that frequencies that fall 

within the bandgap of a two-dimensional PhC slab are not allowed to leak outside of the slab if the slab 

contained at least 14 periods of varying dielectric constant regions. Therefore, a two-dimensional PhC 

slab is designed to have a bandgap surrounding an emission of quantum dots (QDs) that emit around 1100 

nm. Exciting the quantum dots from within the PhC forces the emitted light to be confined within the PhC 

region and leak only vertically where a detector is placed. Using this method, 27-fold enhancement of the 

emitted light is experimentally recorded. Figure 1.12 summarizes this detection mechanism [46].  

Achieving much higher enhancement factors is possible through the incorporation of resonant cavities 

within the PhC lattices. The resonant cavities confine the emitted wavelengths that originally fall within 

the bandgap into much smaller volumes. As the volume of the cavity is reduced, Purcell‟s effect can 

cause larger enhancement factors by increasing the spontaneous emission rate of the QDs within a PhC 

point defect nanocavity. This can lead to more photons per unit time and area, resulting in an 

enhancement in fluorescence that is proportional to the quality factor (Q) of the defect. 

 

1.4 THESIS ORGANIZATION 

The work explained throughout the next four chapters of this thesis focuses on utilizing PhC lattices 

fabricated in thin-film semiconductor materials and polymers as passive elements of a fluorescence-

enhancement-based biosensor. The detailed theory behind photonic crystals and their unique attributes 

will be explained in Chapter 2. Modeling results of several symmetric and asymmetric PhC lattices using 

frequency and time-domain simulation tools to extract the critical parameters will be demonstrated in 

Chapter 3. These parameters provide us with the dimensions of the desired lattice properties that result in 

light/lattice interaction properties that lead to proper device function. The fabrication processes that were 

developed to realize these lattices will be explained in Chapter 4. This also includes the novel soft-

lithographic techniques that were developed to create PDMS- and Epoxy- based PhCs. Chapter 5 

discussed the characterization results of the fluorescence enhancement qualities of these lattices. 

Conclusions and future directions are summarized in Chapter 6.   
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Figure 1.12.( Top) two and three dimensional representation of the fluorescence enhancement caused by the spatial 

confinement of the emitted light within the PhC. The resonant cavity is carefully designed to cause the emitted light 

from the labeled molecule to be trapped and leaked toward a detector above the PhC slab. (Bottom) Finite Difference 

Time Domain (FDTD) [46] 



15 

 

CHAPTER 2: PHOTONIC CRYSTAL THEORY 

2.1 PHOTONIC CRYSTALS’ THEORY – LITERATURE REVIEW
1
 

 

A time varying electric field can create a magnetic field and a time varying magnetic field can 

produce an electric field. Such a behavior of the electric and magnetic fields are governed by a unique set 

of formulas known as Maxwell‟s equations. These equations are considered the rules that govern all 

classical electromagnetic phenomena which were put forth by James Clerk Maxwell [3-6]. 

To fully understand the behavior of electromagnetic waves in photonic bandgap materials, it is better 

to first discuss the similarities between the Schrodinger and Maxwell equations that govern the motion of 

electrons and photons, respectively. The electron behavior is described using the Schrodinger equation [3-

6] 

 

 
   

        
                   ………………………………………………………Equation 2.1 

 

Where  
   

        
         is called Hamiltonian operator, h is Planck‟s constant, m* is the effective 

mass of the electron, V(r) is the potential function, E is the total energy, and      is the wave function of 

the electron, which is interpreted as the probability amplitude function. For a defect-free crystal lattice, 

the potential is periodic; V(r) = V(r+R), where R is a vector that represents the displacement between 

plane waves that are modulated by an amplitude function relative to the periodicity of the lattice. These 

waves are commonly known as Bloch waves [3]. 

On the other hand, the electromagnetic fields are governed by classic electromagnetic theory. The 

fields are described using four equations that relate the electric field to the magnetic field and to other 

present sources or charges within the medium. These are called Maxwell‟s equations and in the absence 

of magnetic media, two of the four equations can be combined, as will be explained in the following 

section, to yield the final master photonic crystal equation (Equation 2.2). 

 

    
 

     
           

 

 
 
 
     ……………………………………………………… Equation 2.2 

 

                                                      
1
The derivation of the photonic crystal master equation demonstrated here is based on [3-6]. Therefore, detailed 

explanation of this derivation can be found in these references. 
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Where     
 

     
     is Maxwell‟s operator, H(r) is the magnetic field, ω is the angular frequency, 

c is the speed of light in vacuum, and      is the dielectric permittivity. Similar to the atomic crystalline 

lattice, photonic crystals have a periodic dielectric structure,               , and solutions are also 

Bloch waves. It is obvious that both equations, 2.1 and 2.2, are of the eigenvalue/eigenfunction type. They 

both describe a wavelike function in space,     in 2.1 and      in 2.2, and each wave exists in a periodic 

medium characterized by a periodic potential V (for electrons) and a periodic permittivity ε (for photons). 

The Hamiltonian operator in Schrodinger‟s equation and Maxwell‟s operator in the master PhC equation 

are both Hermitian operators; second-order space differential operators [3]. The corresponding real 

eigenvalues to these two equations are the electron energy E and the squared frequency of the 

electromagnetic wave   , respectively. 

The coherent scattering at each lattice location in electronic and photonic lattices creates bands in the 

eigenvalue spectrum in which propagation is prohibited. Moreover, when defects are introduced in the 

periodic medium, by doping for instance, localized states are created with eigenvalues solutions that did 

not exist in the defect-free lattice. As the defect density increases, trapped waves will have higher chances 

of tunneling to nearby defect sites to permit the propagation of states with eigenvalues inside the bandgap 

of the bulk crystal. In semiconductor devices, this doping is very critical to the functionality of many 

devices such as: diodes, transistors, and light-emitting diodes (LEDs). In a similar fashion, introducing 

defects in periodic photonic crystal lattices has many applications such as: high-Q factor resonators and 

efficient waveguides [3]. It is then obvious that such common analogies between Schrodinger and 

Maxwell eigenvalue equations will encourage researchers to apply the useful solid-state physical 

phenomena such as: Bloch waves, reciprocal lattice, Brillouin zone, band diagram, dispersion diagrams, 

etc. to the periodic photonic crystal lattices and strive to produce similar solutions that could potentially 

result with a new class of optical devices. 

However, the physical nature of the magnetic field is a vector quantity, while the electronic wave 

function is a scalar quantity. Moreover, Maxwell‟s equations posses no characteristic length scale which 

contradicts completely with the Schrodinger equation in which all of its physical constants, i.e. Planck‟s 

constant, the electron mass, and Bohr radius, are basic scales of length. Therefore, any scaling in the 

dimensions of an electronic crystal will have a significant impact on the expected outcome. On the other 

hand, the same scaling operation can be applied to a photonic problem and only the frequencies will be 

affected by a predetermined scaling factor. These distinctions arise from the fact that the atoms of 

semiconductor crystalline solids are naturally occurring while atoms of a PhC lattice are engineered and 

fabricated for a specific application which is a complex process, as will be discussed in Chapter 4[3-6]. 

Therefore, the scale invariance of Maxwell‟s equations was utilized to test the ability to fabricate lattices 
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for microwave scales with confidence that the obtained unique optical properties will be maintained when 

moving to smaller-scale wavelengths and lattices upon the availability of fabrication tools or methods for 

this new scale. Moreover, Yablonovitch indicated that the band theory assumes uncorrelated wave 

functions of multiple particles. This fits the electromagnetic behavior very well as they obey the principle 

of superposition but for electrons, their strong interactions make such a theory inapplicable [3]. 

 

Maxwell’s Equations for Photonic Crystals 

 

To study the propagation of electromagnetic waves in photonic crystals, we begin with Maxwell 

equations. The four macroscopic Maxwell equations in SI units are [3-6]: 

 

      …………………………………………………………………………….............Equation 2.3 

         …..……………………………………………………………………………..Equation 2.4 

      
 

 

 

  
     ………………………………………………………………………..Equation 2.5 

      
 

 

 

  
     ………………....…………………………………………………….Equation 2.6 

 

Where E is the electric field, B is the magnetic field, D is the displacement field, H is the magnetic 

field strength, ρ represents free charges, and J represents free currents. Since photonic crystals are 

normally fabricated in dielectric materials, no free charges or currents in the material makes the 

assumption ρ = J = 0 valid. Moreover, for most dielectric materials of interest with properties independent 

of direction and magnetic permeability, the relative magnetic permeability  (r) is very close to unity and 

also for simplicity the magnetic field can be written as B=   H. With ε being dielectric permittivity and is 

equal to the square of the refractive index n, we can relate the displacement field to the electric field as 

well as the magnetic field to the magnetic field strength as shown in Equations 2.7 and 2.8 [4] 

 

                 …………………………………………………………………..…....Equation 2.7 

                 …………………………………………………………………..…...Equation 2.8 

 

Maxwell‟s Equations then can be re-written as follows: 

 

           ………………….……………………………………………….….............Equation 2.9 

               ….............................................................................................................Equation 2.10 

            
        

  
   ……………………………………………………………....Equation 2.11 
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   ………………………………………………………...Equation 2.12 

 

In general, both E and H are functions of time and space. However, due to the linearity of Maxwell 

equations, we can separate the time dependency from the spatial dependency by expanding the fields into 

a set of harmonic modes. Using Fourier analysis, the decomposition of a function into a number of 

sinusoidal functions of different frequencies can be done and then recombined to obtain the original 

function [4]. Therefore, E and H can be expanded into a set of harmonic modes that sinusoidally vary in 

time as follows: 

 

                  ……………………………………………………………………....Equation 2.13 

                   ……………………………………………………………………....Equation 2.14 

 

To find the equations governing the mode profiles for a given frequency, we insert the above 

equations into Equations 2.9-2.12. The two divergence equations give the condition [4]:  

  

                       ………………………………………………………...........Equation 2.15 

 

This means that no point sources or sinks of displacement and magnetic fields exist in the medium. 

The two curl equations relate E(r) to H(r)   

 

                   ………………………………………………………...........Equation 2.16 

                       …………………………………………………….........Equation 2.17 

 

By dividing equation 2.17 by    ) and then taking the curl, equation 2.16 then can be used to 

eliminate E(r). Moreover, the constants           can be combined to yield vacuum speed of light [4],  

 

   
 

      
 …………..…………………………………………………………………..Equation 2.18 

 

The result is: 

    
 

    
            

 

 
 
 
      or, 

         
 

 
 
 
     , where           

 

    
          ……………………….Equation 2.19 
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Equation 2.19 is called the master equation. L represents a differential operator. The master equation 

can be solved first to find the modes H(r) and the corresponding frequencies then Equation 2.17 can be 

used to recover E(r) as follows: 

 

     
 

       
        ………………………………………..………………….…..Equation 2.20 

 

The reason why the problem was formulated in terms of H(r) and not E(r) is mainly due to 

mathematical convenience. 

 

2.2 THE PHOTONIC BANDGAP 

Photonic crystals have discrete translational symmetry that is not invariant under translations of any 

distance, but rather, only distances that are a multiple of some fixed step length which is commonly 

known as the lattice constant. The simplest example of such system is the 1D photonic crystal (Figure 

2.1) 

 

 

 

 

 

 

 

 

 

 

 

 

For this system, a continuous translational symmetry can be observed in the x and z directions and a 

discrete translational symmetry in the y direction with a basic step length which is called the lattice 

constant, a. In other words, the dielectric constant is only varying along the y direction. The discrete 

symmetry will allow us to write the dielectric function in terms of the lattice constant as follows [3-6],  

 

             ………………………………………..………….…………….……….Equation 2.21 

 

Figure 2.1. A 1D photonic crystal with varying dielectric constant in the y direction. Red layers can 

represent high refractive index regions while blue layers can represent low refractive index regions 



20 

 

By repeating this translation, we see that             for any R that is an integral multiple of a; 

R = la where l is an integer. The discrete periodicity in the y direction leads to a y-dependency for H that 

is simply the product of a plane wave with a y-periodic function. The plane wave is similar to that in free 

space but modulated by a periodic function because of the periodic lattice as shown in Equation 2.22 [4]  

 

                   
      ………………………………………………………….... Equation 2.22 

 

The modes can then be written as follows 

 

   
              

              
      ………………………………………….... Equation 2.23 

 

This result is commonly known as Bloch‟s theorem. In solid states physics, the form of Equation 

2.22 is known as a Bloch state [3-6]. Bloch states with a wave vector ky and that of a wave vector ky + mb 

are identical. In fact, all the ky‟s that differ by an integral multiple of     
  

 
 are not different from a 

physical point of view. This allows us to consider only ky‟s that exist in the range –
 

 
         which 

is the region of nonredundant values of ky. This region is commonly known as the Brillouin zone, which 

is explained later in this section. In this region, the dielectric is invariant under translations through a 

multitude of lattice vectors and                     for some integers l, m, and n [4].  

The real space vectors, a1, a2, and a3, give rise to three primitive reciprocal lattice vectors, b1, b2, and 

b3, defined in such a way that              . These reciprocal vectors, which will also be explained 

later in this section, span a reciprocal lattice of their own which is inherited by wave vectors [3-6].  

The modes of a three-dimensional periodic system are Bloch states that can be labeled by a Bloch 

wave vector                         where k lies in the Brillouin zone. Each value of the wave 

vector k inside the Brillouin zone identifies an eigenstate of L with frequency  (k) and an eigenvector Hk 

of the form:  

 

                  …………………………………………………………………....Equation 2.24 

 

Where uk(r) is a periodic function on the lattice               for all lattice vectors R. The 

wave vector k is a conserved quantity in a periodic system and hence the addition of a reciprocal lattice 

vector does not change an eigenstate or its propagation direction. This is different from the free-space 

case, in which all wave vectors represent physically distinct states [3].  
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Equation 2.24 demonstrates how the electromagnetic modes of a photonic crystal with discrete 

periodicity can be written as Bloch states. All of the information about these modes is given by the wave 

vector k and the periodic function uk(r). To solve for uk(r), the Bloch state can be inserted into the master 

equation to get the following: 

 

           
    

 
 
 
      ……………………………………………………………....Equation 2.25 

 

Where     is the new Hermitian operator defined as             
 

    
          

The function u and the mode profiles are determined by the eigenvalue problem which is restricted 

to a single unit cell of the photonic crystal lattice to create a discrete spectrum of eigenvalues. Hence, for 

each value of k, an infinite set of modes with discretely spaced frequencies can be found, which we can 

label by a band index n. And since k enters as a continuous parameter in  , the frequency of each band 

varies continuously as k varies. Therefore, the modes of a photonic crystal are simply a set of continuous 

functions       indexed in the order of increasing frequency by the band number. The information 

contained in these functions is called the band structure of the photonic crystal. Studying the band 

structure of a crystal supplies us with the most of the information we need to predict its optical properties. 

For a given photonic crystal with a periodic dielectric function    , we can use powerful software 

computational tools that solve Equation 2.25 as a standard eigenvalue equation in an iterative 

minimization technique for each value of k. The electromagnetic variational theorem states that “the 

lowest frequency mode of a system is the field pattern that minimizes the electromagnetic energy 

functional,” [39] and this is accomplished by concentrating electric field energy in the high dielectric 

regions. Therefore, the definition of a photonic crystal‟s dielectric and air bands is analogous to a 

semiconductor‟s valence and conduction bands. A band diagram of a two-dimensional infinitely long 

photonic crystal of triangular lattice of air holes in silicon is shown in Figure 2.2. In this figure, the lower 

frequency dielectric bands have their electric field energy mostly concentrated in higher dielectric 

regions, while higher frequency air bands have the electric field energy of their modes concentrated in 

lower dielectric regions.  

The photonic bandgap is that frequency range in the middle in which there are no solutions for the 

master photonic crystal equation for any k value as shown in Figure 2.3. The origin of the photonic 

bandgap arises due to the fact that the lower frequency band‟s electric field energy becomes concentrated 

in the higher dielectric regions, and since the electromagnetic variational theorem requires that each 

allowable mode be orthogonal to the modes below it in frequency, the second band modes would ideally 

be concentrated in the same high dielectric regions as well [39]. However, the orthogonality requirement  
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causes the electric field energy of this second band of modes to be concentrated in the lower dielectric 

regions instead. A significant increase in the frequency of the second band compared to the first would 

then be sufficient to create a region of no modes that is known as the „photonic bandgap‟.  

 

The Reciprocal Lattice 

 

If f(r) is a periodic function on a lattice with             for all vectors R that connect one 

lattice point to the next, then the dielectric function ε(r) in photonic crystals is considered an example of 

such a function [3]. To analyze any periodic function, it is common to take the Fourier transform and 

build a periodic function      out of plane waves with various wave vectors. Given a lattice with a set of 

lattice vectors R, all of the reciprocal lattice vectors   can be determined once the condition     is some 

integer multiple of    for every  . Every lattice vector R can be written in terms of primitive lattice 

vectors, which are the smallest set of vectors pointing from one lattice to another. For example, on a 

simple cubic lattice with a lattice constant  , the vectors   are of the form:                      

where (l,m,n) are integers and a1, a2, and a3 are the primitive lattice vectors [4].  

The reciprocal lattice vectors     form a lattice of their own. In fact, the reciprocal lattice has a set of 

primitive vectors bi that will allow G to be written as               . The requirement that 

        will result with the following: [4] 

Figure 2.2. TE band diagram of a two-dimensional infinitely-thick photonic crystal of triangular lattice of 

air holes in silicon. Green band indicate the region of no solutions (photonic bandgap) 
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                                       ………..…………………. .Equation 2.26 

        
        
      

  ………..…………………………………………………………. ...Equation 2.27 

 

Equation 2.27 can be written as            . From there, given the set {a1,a2,a3}, the set {b1, b2, 

b3} must be identified to satisfy the condition of Equation 2.27. One method of resolving this can be done 

by exploiting a feature of the cross product [4]:  

 

            …..…………………...………………………………………………. .Equation 2.28 

 

Therefore, for any vectors x and y we can construct the primitive reciprocal lattice vectors with the 

following recipe: 

 

    
          

           
                                       

          

           
         

          

           
 

 

The Brillouin Zone 

 

One interesting feature of Bloch states is that different values of k can lead to the same mode. For 

example, a mode with wave vector k and a mode with a wave vector k+G are considered the same mode, 

if G is a reciprocal lattice vector. Therefore, when k is incremented by G, the phase between cells is 

incremented by G  R which is 2   and the result is the same physical mode. This means that there is a 

redundancy in the label k [4]. To eliminate this redundancy, a finite zone in reciprocal space must be 

found in which adding increments of G will not lead to the same mode. The zone that is closest to k = 0 is 

called the (first) Brillouin zone. And since the work presented here focuses on the square and triangular 

lattices, the reciprocal lattice vectors and Brillouin zones of each must be identified.  

For a square lattices with a lattice constant a, the lattice vectors are        and       . To use the 

prescription of identifying reciprocal vectors as stated in the previous section, a third basis a3 in the z 

direction must be used of any length, since the crystal is homogeneous in that direction. The results are  
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The reciprocal lattice is also a square lattice, but with spacing 
  

 
  instead of a and hence the name 

reciprocal lattice suits this fact very well. The same analogy can be applied to the triangular lattice with 

lattice vectors              and              to obtain the reciprocal lattice vectors [4] 

 

                                       
    

 
    

  

  
                          

    

 
    

  

  
   

 

This is a triangular lattice rotated by 90
o
 with respect to the primitive one with spacing of 

    

    
. 

To determine the Brillouin zone, the origin point is selected and the area that is closest to this point 

than any other point in the lattice is shaded. Geometrically, this can be accomplished by drawing 

perpendicular bisectors of every lattice vector that starts at that origin point. Each bisector divides the 

lattice into two half-planes and the intersection of all the half-planes that contain origin is the Brillouin 

zone. The square and triangular primitive lattice vectors, reciprocal vectors, and the Brillouin zones are 

shown in Figure 2.3. 

In some photonic crystal lattices, we need not consider every point of k inside the Brillouin zone. 

The smallest region within the Brillouin zone for which the       are not related by symmetry is called 

the irreducible Brillouin zone. A photonic crystal with the symmetry of a simple square lattice and a 

square Brillouin zone center at k = 0, the irreducible zone is a triangular wedge with 1/8 the area of the 

full Brillouin zone; the rest of the Brillouin zone consists of redundant copies of the irreducible zone. 

 

2.2.1 Two-dimensional Photonic Crystals (Infinitely Long) 

 

A two-dimensional photonic crystal is periodic along two of its axes and homogenous along its third 

axis (Figure 2.4). Any mode that propagates parallel to the plane of the photonic crystal is invariant under 

reflections through that plane [4]. The mirror symmetry of the 2D PhC lattices allows for the 

classification of the modes into two polarizations; transverse-electric (TE) modes having H normal to the 

plane and E in the plane and transverse-magnetic (TM) modes have just the opposite of that [4]. The band 

diagrams for TE and TM modes can be completely different. It is therefore possible to observe a wide 

photonic bandgap for one polarization and not for the other for a specific lattice. In this section, the band 

diagram of an infinitely-long photonic crystal will be discussed.  

Only very few geometries can be analyzed using exact analytical tools. For most photonic crystals, 

numerical simulations are required to fully understand the behavior of light that interacts with them. The 

plane-wave expansion method, which makes use of the fact that normal modes in periodic structures can 
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be expressed as a superposition of a set of plane waves is the most convenient method to understand this 

light interaction with periodic PhC lattices [3-6]. 

In this method, the master equation is converted to a matrix eigenvalue problem that is solved using 

standard numerical techniques to obtain the dispersion relations inside a photonic crystal. The 

eigenfrequency solutions are plotted as functions of the in-plane wave vectors tracing the edges of the 

irreducible Brillouin zone. The resulting dispersion diagram becomes simply a geographical 

representation of the frequencies that correspond to waves propagating within a photonic crystal lattice 

with various wave vectors.  

The diagrams for square and triangular lattices of rods of Si surrounded by toluene are shown in 

Figure 2.5. It is obvious how a complete overlapping bandgap cannot be extracted from either lattice. The 

minima and maxima of the first and second bands, respectively, determine the bandgap frequencies and 

almost always occur at the irreducible Brillouin zone edges, and often at a corner. Therefore, the wave 

vector is normally plotted along the edges of this irreducible Brillouin zone. 

 

 

Figure 2.3. The primitive lattice vectors, the reciprocal lattice vectors, and the Brillouin zones for the 

square (top row) and triangular lattices (bottom row) [4] 
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Figure 2.4. Infinitely-long 2D PhC with a triangular lattice symmetry of dielectric rods 
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Figure 2.5. PWEM solved using MIT Photonic Bands (MPB) to obtain the dispersion (band) diagram 

for two different lattices. (top) Square lattice of silicon rods surrounded by toluene and (bottom) 

triangular lattice of silicon rods surrounded by toluene. Bandgap can 
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2.2.2 Two-dimensional Photonic Crystal Slabs 

 

Two-dimensional photonic crystal slabs (Figure 2.6) are similar to infinitely-long photonic crystals 

in their in-plane periodicity. However, two-dimensional calculations cannot be applied directly to finite-

thickness slab structures. In the previous section, the band diagram of a two-dimensional photonic crystal 

structure was shown in Figure 2.5 which may be applied to a three-dimensional structure only when these 

periodic structures extend infinitely in that third dimension [49]. These previous diagrams demonstrated 

two-dimensional bands that correspond to states with no vertical wave-vector component that is 

perpendicular to the PhC plane. When vertical wave vectors are included in the calculations, a continuum 

of states is produced throughout all frequencies above the first band and this ultimately cancels the 

bandgap of the two-dimensional structure [47-49]. Moving from an infinitely long structure to one with a 

finite thickness recreates the band gap in the guided slab modes. The system then becomes fundamentally 

three-dimensional and distinct from the two dimensional calculations with a new set of parameters that 

must be considered such as: slab thickness, effective refractive index contrast of the slab and its 

background, and mirror symmetry of the photonic crystal slab [49]. 

The band diagram of a PhC slab is calculated by first finding the states of the slab and then the light 

cone is overlaid as an opaque region on the band diagram [47]. The light cone consists of radiation 

„leaky‟ modes that extend infinitely in the region above and below the slab. This region is normally 

referred to as the background. Guided modes, on the other hand, are simply the localized states within the 

slab and exist in the regions of the band diagram that are outside the light cone. The slab guided modes  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.6. A two-dimensional photonic crystal slab 
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are computed using preconditioned conjugate-gradient minimization of the Rayleigh quotient in a plane-

wave basis [47]. This requires a periodic cell which is already achieved in the plane of the PhC and this 

periodicity is extended to the third dimension by generating a sequence of slabs separated by a 

background region (low-ε medium). It is important that this background is of a sufficient thickness so that 

the periodic vertical slabs do not affect the mode solutions of each other.  

The light cone is normally depicted as a uniform shaded area that does not reflect the varying density 

of states in this region. Figure 2.7 demonstrates the TE band diagram of a slab photonic crystal compared 

to that of an infinitely-long photonic crystal of a triangular lattice of toluene holes in silicon.  

The light cone is the most important feature in Figure 2.8 that distinguishes slabs from infinitely-

long photonic crystals. The guided modes that lie below the light cone in the bottom band diagram of 

Figure 2.7 do not couple with modes in the bulk background. These guided states extend infinitely in the 

PhC plane and decay exponentially into the background region [49]. The resulting confinement is 

somehow similar to the total internal reflection (TIR) in which the guided modes remain in the higher 

effective index of the silicon slab and become resonant when they reach the edge of the light cone but due 

to losses effects, they cannot remain resonant permanently within the slab and start to leak to the 

background. These structures are still referred to „„photonic crystals‟‟ due to the existence of a photonic 

bandgap. This bandgap, however, is different than that for an infinitely-long lattice. It contains the range 

of frequencies in which no “guided” modes exist.  Therefore, it is not a real bandgap as there are radiation 

losses which have a major impact on the overall functionality of the photonic crystal lattice. However, 

they have also been uniquely utilized by several research groups to successfully develop efficient light 

emitting diodes (LEDs) and lasers when they managed to control the background radiation using slab 

photonic crystals with defined bandgaps [3].  

The guided modes within the PhC slab are divided into two classes that are not purely TE or TM 

polarized. The reason is due to the lack of a discrete translational symmetry in the vertical direction. 

However, when considering the horizontal symmetry plane that bisects the slab, guided modes then can 

be classified as even or odd with respect to reflections through this plane. These even and odd states are 

very similar to TE and TM states for the infinitely-long PhCs [48].  

As mentioned earlier, the slab thickness plays an important role in determining whether or not a 

photonic bandgap exists for a specific PhC slab. Thick slabs will cause the generation of higher-order 

modes that lie slightly above the first band and hence either canceling or severely narrowing the photonic 

bandgap to a point of no use. On the other hand, thin slabs will be considered a very weak perturbation of 

the background dielectric constant and therefore guided modes within the slab will hardly exist [49]. 

Johnson et al [49] proposed a method of calculating the optimal slab thickness. It is suggested to be on the  
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Figure 2.7. TE band diagram of a triangular lattice of an infinitely-long photonic crystal of toluene holes in Si (top)and a 

triangular lattice of a slab photonic crystal of toluene holes in Si (bottom). Photonic bandgaps are shaded in green. 



31 

 

order of half the two-dimensional gap-bottom wavelength. The group justified this by explaining that the 

gap-bottom frequency was used instead of the midgap because the state at the bottom of the gap is the 

basis for both the state at the lower edge of the slab gap and the excited states at upper edge. When the 

slab thickness is at least an order of the wavelength, then the small energy barrier will prevent the 

generation of higher-order states via a nodal plane. On the other hand, slabs of less than half the 

wavelength in thickness will not be sufficient for the existence of any guided modes [49]. 

It is also very important to consider the effective refractive index of the background medium above and 

below the slab because in most applications, specifically in our proposed transducer as will be discussed 

in the following chapter, this medium will not be air at all times. Therefore, if the slab is sandwiched 

between some background with an effective refractive index that is lower than that of the slab, index 

guiding will still allow the generation of guided bands. However, it must be noted that the localization of 

the guided modes within the slab and the creation of bandgaps means that the substrate must be 

sufficiently thick (several wavelengths).  

The increased effective refractive index surrounding the slab pulls down the frequencies of the 

guided modes and focuses them under the narrow light cone. However, the guided modes become less 

localized within the slab and it was measured that 89% of the energy of the lowest band remains within 

the height of the slab with a dielectric background of 2, versus 96% for that of an air background [49]. 

 

2.2.2.1 Defects in Two-dimensional Photonic Crystals 

 

It has been discussed previously that a photonic bandgap of a two dimensional photonic crystal 

represents the range of wavelengths that are prohibited from propagating in the periodicity plane of the 

photonic crystal. This is mainly due to the fact that the dielectric periodicity of the photonic crystal causes 

the propagating light to undergo coherent scattering that prevents it from transmitting through the lattice. 

However, by breaking the lattice symmetry at specific locations, single localized modes or a set of closely 

spaced modes can be generated within the bandgap. This can be accomplished by either removing a single 

rod from a lattice of PhC rods within a specific background or replacing it with another one of different 

size, shape, or dielectric constant. This perturbation ruins the discrete translational symmetry of the 

lattice. 

The main interest in these defects is the frequencies that they support as well as the associated 

quality factor (Q-factor) of each mode. As its name indicates, the Q-factor is simply a measure of the 

quality of this cavity or how efficient it is in storing energy. It is equal to the number of oscillations the 

cavity can support before the trapped energy decays by     
 (~ 0.2%) [47]. The total quality factor for 

the cavity,     , is represented as follows: 
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 …..…….………………...………………………………………………. .Equation 2.29 

 

Where    is the Q factor of radiating modes outside of the slab and    is the quality factor of the 

guided modes in the plane of the photonic crystal. The in-plane leakage occurs due to tunneling effects. 

This leakage can be minimized by increasing the number of un-altered photonic crystal periods 

surrounding the cavity. The guided-modes‟ quality factor,    , then becomes very large and its reciprocal 

in Equation 2.2, 1/  , approaches zero making the following approximation valid [47]: 

 

          ….………………...…………………………………………………………. .Equation 2.30 

 

Another way of measuring a specific cavity‟s Q-factor is done by examining the sharpness of the 

cavity‟s resonance peak. The width of this peak is inversely proportional to the cavity Q factor,  

 

          ….………………...………………………………………..………………. .Equation 2.31 

 

Where    is the center resonant frequency and Δλ is the spectral full-width half-maximum (FWHM) 

of the resonance.  A high Q-factor photonic crystal nanocavity is the one that can maintain its trapped 

photons over more radiation cycles than a lower Q-factor nanocavity but can support much fewer 

resonant frequencies than the lower Q-factor cavities. These resonant cavities, in general, can be 

classified as acceptor or donor defects depending on their size and their index of refraction. Acceptor 

defects are formed by removal of high index material from a specific lattice location as shown in Figure 

2.8(a) which represents an enlarged air hole within a two-dimensional triangular lattice of air-holes in 

silicon. The defect frequencies normally occur near the bottom edge of the photonic bandgap. On the 

other hand, donor defects are formed by the addition of high index material at a lattice location as shown 

in Figure 2.8(b). This defect is created by filling out a range of air holes with the same refractive index 

material as that of the slab, silicon here. Donor defect resonant frequencies normally occur near the top 

edge of the photonic band gap.  
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2.3 PHOTONIC CRYSTAL AS CORE STRUCTURES OF A BIOSENSOR 

Throughout this second chapter, the theory behind the unique characteristics of photonic crystals has 

been discussed. Utilizing these properties to achieve fluorescence enhancement will be the focus of the 

modeling, fabrication, and optical characterization results that will be discussed in the next few chapters. 

The modeling of various designs of semiconductor and polymer photonic crystal lattices is done first 

using frequency and time-domain simulation tools, MPB and MEEP respectively. These tools will 

provide us with critical information regarding the parameters of the photonic crystal lattice of each 

material, the bandgap ranges that they support, as well as the resonant cavity modes and their quality 

factors. Once this information is obtained, the results are translated into computer-aided-design (CAD) 

files that can be used to produce photonic crystal structures at the end of several fabrication processes, as 

will be explained in Chapter 4. The characterization of these structures using either PbS IR-emitting 

quantum dots (QDs) or fluorescein then follows to prove the concept of how these photonic crystals can 

become the core structures of an ultra-sensitive biosensor capable of enhancing fluorescence emitted from 

labeled biomolecules.   

 

 

 

 

Figure 2.8. (a) a resonant cavity in which the defect is generated by filling in the holes with high dielectric material surrounding 

a central lower dielectric circular opening. (b) a resonant cavity in which 6 holes on top and bottom of a central hole are filled 

with high dielectric region. Extending this filling technique to the edge of the photonic crystal can generate a W1 waveguide. 
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CHAPTER 3: THE MODELING OF PHOTONIC CRYSTAL LATTICES 

3.1 SILICON BASED PHOTONIC CRYSTALS 

In the second chapter, the origin of the photonic band diagram was discussed. For a given photonic 

crystal with a periodic dielectric function     , powerful software computational tools are used to solve 

Equation 2.25 as a standard eigenvalue equation in an iterative minimization technique for each value of 

k. MIT Photonic Bands (MPB) is a freely available, frequency domain software tool used to carry out 

such simulation [50]. The y-axis of the diagram represents the normalized frequency, a/λ where a is the 

lattice constant, and the x-axis is wave vector, k.  

When a bandgap is resolved for a specific lattice, a two-dimensional triangular lattice of air holes in 

Silicon for instance, the lattice constant can be calculated as well as the radius of the circular air holes. 

Infinitely-thick photonic crystal lattices are normally first simulated to have a rough approximation of 

where the bandgap will be. For most applications, an infinitely-thick photonic crystal lattice is not useful, 

yet it is a very critical starting point in simulation (Figure 3.1). The simulation results of these infinitely-

thick photonic crystals will be considered later on when simulating realistic two-dimensional photonic 

crystal slabs that can be fabricated and optically characterized.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. (Left) A representation of an infinitely-thick photonic crystal lattice of air holes in silicon. (Right) TE band 

diagram of an infinitely-thick photonic crystal of toluene holes in Silicon. Point x is the top of the lowest band while 

point y represents the bottom of the second band. The difference is the photonic bandgap. 
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The bandgap for a given lattice is typically characterized by its width, which can be calculated using 

the following formula [4] (using Figure 3.1 labels): 

 

                 

  
                                                                           

                 
 

  
   

       
 

 

3.1.1 Infinitely-Thick Photonic Crystal Lattices of Silicon and Toluene 

 

For the silicon-based photonic crystal lattices, it is very critical to realize the optimal photonic crystal 

lattice and the critical parameters that will result with the widest possible complete photonic bandgap. 

This means that both polarizations should have an overlapping bandgap for a specific range of 

frequencies, and, the wider the bandgap, the better chance of enhancing more emitted frequencies from 

labeled biomolecules. However, it is important to note also that the widest possible bandgap for a specific 

lattice might not be practical since it may require a spacing between its high or low periodic dielectric 

regions beyond what can be fabricated and this imposes a serious limitation considering the difficulty of 

achieving sub-100nm PhC lattices with the available nano-fabrication tools. The most two common 

symmetric lattices that are investigated in this work are the square and the triangular lattices. Moreover, it 

is important to consider the possible refractive index of the low-ε regions within these lattices as they will 

mostly be occupied by the solvent containing the target biomolecules. Later in Chapter 5, the 

characterization results will be demonstrated using PbS quantum dots (QDs) suspended in a toluene 

solution. Therefore, the low-ε regions of the triangular and square lattices are assumed to be that of 

toluene throughout this section.  

Modeling results of infinitely-thick lattices of either toluene holes in silicon or silicon pillars 

surrounded by toluene will be demonstrated for a specific range of radii. The four studied lattices are: 

 

 Infinitely-thick square photonic crystal lattice of toluene holes in silicon 

 Infinitely-thick square photonic crystal lattice of silicon pillars surrounded by toluene 

 Infinitely-thick triangular photonic crystal lattice of toluene holes in silicon 

 Infinitely-thick triangular photonic crystal lattice of silicon pillars surrounded by toluene 
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To determine parameters necessary for design and fabrication, a photonic bandgap map will be first 

plotted. This map demonstrates the width of the TE and TM bandgaps for a range of lattice radii from 

0.2a to 0.4a. Once a wide bandgap is found for a specific lattice, the band diagram for the TE and TM 

bands is plotted separately and that specific lattice is indicted with a vertical line on the bandgap map 

plots. At the end of this section, tables containing numerical values of the bandgap widths and their 

locations will be demonstrated. Since the characterization of the silicon-based photonic crystal lattices is 

carried out using IR-emitting Quantum Dots (QDs) with an emission peak at around 1100 nm, the actual 

lattice parameters that must be fabricated in order to confine this emission wavelength will also be 

tabulated at the end of each section.  

For a square photonic-crystal lattice of toluene holes in an infinitely long theoretical silicon sample, 

the radius of the holes is varied from 0.2a to 0.4a in increments of 0.01. The reason for these two 

boundaries is due to practicality of the fabricated structures once a bandgap is resolved. For example, to 

enhance an 1100-nm emitted light from the QDs, 0.2a and 0.4a demonstrate the range of radii of the 

square and triangular lattices that can be fabricated with the current available lithography tools. Beyond 

these two values, a complete bandgap may be observed, but fabricating a lattice with „veins‟ or „spots‟ [4] 

that are only very few tens of nanometers is a very challenging task and might be very unpractical once 

fabricated. The MPB modeling results of this structure revealed a very narrow bandgap for the TM 

polarization only between the 8
th
 and 9

th
 bands for a lattice with        . The band diagram of this only 

bandgap in this range is shown in Figure 3.2 (gap indicated with a red arrow).      

For a square lattice of silicon pillars surrounded by toluene, bandgaps for both polarizations were 

observed for all lattice radii between 0.2a and 0.4a. Most of the observed TE bandgaps, however, are 

between the higher bands that did not result with an overlapping complete photonic bandgap. The 

bandgap maps for both polarizations are shown in Figures 3.3 and 3.4. The largest TM bandgap of 

18.57% was observed between the first and second bands for a lattice with         (between 

normalized frequencies 0.243862 and 0.293771) while the largest TE bandgap of 5.076% was observed 

for the same lattice,        , but between the 9
th
 and 10

th
 bands. The band diagrams of these two 

polarizations are demonstrated in Figures 3.5 and 3.6. 

For a triangular lattice of toluene holes in silicon, only very narrow bandgaps for the TM polarization 

were observed for the range of radii between 0.38 and 0.40. The TE polarization, on the other hand, 

showed bandgaps for all radii values between 0.2a and 0.4a. The bandgap map for each polarization is 

demonstrated in Figures 3.7 and 3.8 while the band diagram of the highest bandgap lattice for the TM and 

TE polarizations is demonstrated in Figures 3.9 and 3.10, respectively. However, no overlapping 

complete photonic bandgap for this lattice was observed. 
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Finally, for a triangular lattice of silicon pillars surrounded by toluene, the TM polarization 

demonstrated bandgaps for the full studied range of radii while the TE bandgap demonstrated higher-

order bandgaps for the range between 0.2a and 0.25a and 0.28a and 0.30a only. The bandgap map for 

each polarization is demonstrated in Figures 3.11 and 3.12 while the band diagram with widest bandgap 

for the TM and TE polarizations is demonstrated in Figures 3.13 and 3.14, respectively. However, once 

again, no overlapping complete photonic bandgap for this lattice was observed.  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. TM band diagram of a square lattice of toluene holes in Si. A very narrow bandgap is indicated with the 

red arrow between the 8th and 9th bands 
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Figure 3.3. TM bandgap map for a square lattice of Si pillars in toluene. The widest observed bandgap was at r/a = 0.24 

Figure 3.4. TE bandgap map for a square lattice of Si pillars in toluene. The two bandgaps at r/a =0.24 are indicated by a 

vertical line. 
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Figure 3.5. TM band diagram for r/a = 0.24 with an 18.57%  bandgap width between the first two bands 

Figure 3.6. TE band diagram for r/a = 0.24 with an 5.076%  bandgap width between the 9th and 10th bands 
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Figure 3.7. TM bandgap map of a triangular lattice of toluene holes in silicon. The widest 

observed bandgap was at r/a = 0.39 

Figure 3.8. TM bandgap map of a triangular lattice of toluene holes in silicon. 

The widest observed bandgap was at r/a = 0.4 
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Figure 3.9. TM band diagram demonstrating two bandgaps between the higher-order bands (6 and 7, and 8 and 

9) for a triangular photonic crystal lattice of toluene holes in silicon with r/a = 0.39 

Figure 3.10. TE band diagram demonstrating a bandgap of size 29.59% between the first two bands for a triangular 

lattice of toluene holes in silicon with r/a = 0.4 
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Figure  3.11. TM bandgap map for a triangular lattice of silicon pillars surrounded by toluene. The widest 

observed bandgap for this lattice was found at r/a = 0.22 

Figure 3.12. TE bandgap map for a triangular lattice of silicon pillars surrounded by toluene. The widest 

observed bandgap for this lattice was found at r/a = 0.2 
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Figure 3.13. TM Band diagram of a triangular lattice of silicon pillars in toluene with r/a = 0.2 

Figure 3.14. TE band diagram of the largest TE bandgap between the 4th and 5th bands for a triangular lattice 

of silicon pillars surrounded by toluene with r/a = 0.2 
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Tables 3.1-3.4 demonstrate detailed information regarding the bandgap size for each of the previous 

lattices as well as the range of frequencies of the bandgaps.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1. Summarized modeling results for the lattice of a square lattice of toluene holes in silicon 
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Table 3.2. Summarized modeling results for the lattice of silicon pillars in toluene 
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Table 3.3.  Summarized simulation results of the bandgap for both polarizations of a triangular lattice of 

toluene holes in silicon 
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Table 3.4. Summarized simulation results of the bandgap for both polarizations of a triangular 

lattice of silicon pillars in toluene 



48 

 

3.1.1.1 Analyzing Infinitely-Thick Photonic Crystal Lattices of Silicon and Toluene 

 

In the previous section, we considered different lattices of silicon and toluene as the high and low 

dielectric region within their lattices, respectively. The band structure of silicon pillars in toluene of both 

triangular and square lattices were demonstrated in Figures 3.4-3.5 and 3.12-3.13. The horizontal axis 

demonstrates the value of the in-plane wave vector that is moved along the edges of the irreducible 

Brillouin zone. Those edges are selected because the minima and maxima frequency points of a given 

bandgap almost always occur at these edges. In the next section, however, it will be demonstrated that this 

is not the always the case when considering slab photonic crystals sandwiched between low dielectric 

regions other than air. 

For the square and triangular lattices of silicon pillars surrounded by toluene background, it can be 

clearly noticed that a complete and wide TM bandgaps were resolved. In contrast, for the TE modes there 

were very narrow bandgaps. The reason for this is that the field associated with the lowest TM modes of 

the dielectric band (or low frequency bands) is very highly concentrated in the silicon pillars. On the other 

hand, the field pattern of the air bands (high frequency bands) is highly concentrated in the toluene 

regions surrounding the silicon pillars. This contrast in field concentrations of consecutive TM modes 

leads to the observed wide TM photonic bandgaps. Alternatively, the concentration contrast between the 

electric field of the high and low consecutive TE modes in the high and low dielectric regions is not as 

strong as that for the TM polarization modes. In fact, the TE modes in these lattices were forced to 

penetrate the toluene regions as the field lines cross the dielectric boundaries. This is the reason why wide 

TE bandgaps for these lattices were not observed. 

The other lattices of toluene holes in silicon presented a more dispersed distribution of high dielectric 

material, and hence, it allowed the TE field lines to propagate along these regions. Therefore, the opposite 

applies to these lattices and wide TE bandgaps were resolved instead of TM. 

Since complete photonic bandgaps for both polarizations were not observed in any of the studied 

lattices, those lattices that presented wide bandgaps in either polarizations are going to be studied further 

when slab photonic crystals are considered. These lattices were: 

 

 Square lattice of silicon pillars surrounded by toluene with r/a = 0.24 

 Triangular lattice of toluene holes in silicon with r/a = 0.35 

 Triangular lattice of silicon pillars surrounded by toluene with r/a = 0.22 

 

The dimensions of each lattice to be considered for fabrication are explained in tables 3.5-3.8. 
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Table 3.5. Actual lattice parameters for a square lattice of infinitely-high silicon pillars surrounded by toluene 

Table 3.6. Actual lattice parameters for a triangular lattice of infinitely-thick toluene holes in silicon 

Table 3.7. Actual lattice parameters for a triangular lattice of silicon pillars surrounded by toluene 
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3.1.2 Finite-Thickness Slab Photonic Crystals of Silicon, Toluene, and Air 

 

In the previous section, we started by modeling infinitely thick photonic crystal lattices to have an 

idea of where the photonic bandgaps for each lattice can be found. If an infinitely-thick photonic crystal 

lattice demonstrated no bandgap or very narrow bandgaps in either polarization, then this lattice will 

mostly not posses any bandgap effects when a finite thickness is introduced in the vertical dimension. 

Further, published results indicate that moving from an infinitely thick photonic crystals to slab photonic 

crystals causes a shrinkage of the bandgap by at least 40% [47-49].  

Two-dimensional photonic crystal slabs (Figure 2.7) are similar to infinitely-thick photonic crystals 

in their in-plane periodicity. However, two-dimensional calculations cannot be applied directly to finite-

thickness slab structures. Moving from an infinitely long structure to one with a finite thickness recreates 

the band gap in the guided slab modes. The modeled material system then becomes fundamentally three-

dimensional and distinct from the two dimensional calculations with a new set of parameters that must be 

considered such as: slab thickness, effective refractive index contrast of the slab and the background 

above and below the slab, and mirror symmetry of the photonic crystal slab in the vertical direction [46].  

When modeling photonic crystal slabs for practical applications, it is also very important to consider 

the effective refractive index of the background medium above and below the slab because, in most 

applications (specifically in our proposed transducer as will be discussed in the following chapter) this 

medium can be air, water, or any other solution. However, since the PbS Quantum Dots (QDs) are 

suspended in toluene when characterizing the photonic crystal structures, the low dielectric regions are 

assumed to have the refractive index of toluene.  

The photonic crystal parameters that were extracted from modeling infinitely-thick photonic crystals 

were used when modeling the finite-thickness slabs. Specifically, the main interest is on the three lattices 

that demonstrated the widest bandgaps. These lattices are: 

 Square lattice of silicon pillars surrounded by toluene with r/a = 0.24 

 Triangular lattice of toluene holes in silicon with r/a = 0.35 

 Triangular lattice of silicon pillars surrounded by toluene with r/a = 0.22 

For each lattice, the slab thickness was varied between h=0.5a to h=1.2a in increments of 0.1 to 

determine whether these slabs posses a bandgap or not. However, it is also important to point out that 

some finite-thickness slabs, i.e. lattices of silicon pillars in air, are not realistic for our application. For 

example, a triangular lattice of silicon pillars surrounded by toluene cannot be free standing when 

„sandwiched‟ by toluene. Therefore, SiO2 was chosen to be the material below these slabs. When 

fabricated, the photonic crystal can either be made in the silicon layer above the silicon dioxide layer or 

extruded to the SiO2 layer below it. Very minor modifications to the band diagram are expected to be 
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observed since the dielectric constants of toluene and SiO2 are very close to each other.  On the other 

hand, those lattices of toluene holes in silicon can indeed be fabricated to be free-standing structures 

sandwiched between toluene. Figures 3.15-3.22 demonstrate the band diagrams of the TE- and TM-like 

polarizations for square and triangular lattices of silicon pillars lattices surrounded by toluene and 

sandwiched in between two SiO2 layers. The band diagrams are shown for those specific lattices with the 

widest bandgap in their infinitely-thick representation. The results presented here are summarized for the 

thinnest and thickest slabs in the range between 0.5a and 1.2a.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15. TE-like band diagram for a square lattice of Si pillars in Toluene demonstrating no bandgap within the guided 

modes below the light cone can be observed. 
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Figure 3.16. Zodd (TM-like) band diagram of a slab photonic crystal (h = 1.2a) square lattice of silicon 

pillars immersed in toluene. Only a directional bandgap can be observed between the X and M points. 

Figure 3.17. Zeven (TE-like) band diagram of a slab photonic crystal square lattice (h=0.5a) of silicon 

pillars in toluene. No bandgap can be resolved under the light cone for the guided modes. 
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Figure 3.18. Zodd (TM-like) band diagram of a slab photonic crystal (h = 0.5a) square lattice of silicon 

pillars in toluene. Neither direction nor a complete bandgap can be observed for the guided modes. 

Figure 3.19.  Zeven (TE-like) band diagram of a slab photonic crystal triangular lattice (h=1.2a) of silicon pillars in 

toluene. No bandgap can be resolved under the light cone for the guided modes. 
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Figure 3.20. Zodd (TM-like) band diagram of a slab photonic crystal triangular lattice (h=1.2a) of silicon 

pillars in toluene. Only a directional bandgap can be resolved in the M to K direction. 

 

Figure 3.21. Zeven (TE-like) band diagram of a slab photonic crystal triangular lattice (h=0.5a) of silicon pillars 

in toluene. No bandgap can be resolved under the light cone for the guided modes 
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Figures 3.23-3.26 demonstrate the band diagrams of the TE- and TM-like polarizations for triangular 

lattices of toluene holes within silicon and sandwiched in between two SiO2 layers. The band diagrams 

are shown for those specific lattices, r/a = 0.36, as they demonstrated the widest bandgaps in their 

infinitely-thick representation. Those diagrams are shown for a slab of the maximum considered 

thickness, 1.2a, and again for a slab with the minimum considered thickness, 0.5a.    

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22. Zodd (TM-like) band diagram of a slab photonic crystal triangular lattice (h=0.5a) of silicon pillars in 

toluene. No bandgap can be resolved under the light cone for the guided modes. 
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Figure 3.23. Zeven (TE-like) band diagram of a slab photonic crystal triangular lattice (h=1.2a) of toluene holes in 

silicon. Only a directional bandgap between M and K can be resolved for the guided modes. 

 

Figure 3.24. Zodd (TM-like) band diagram of a slab photonic crystal triangular lattice (h=1.2a) of toluene holes in 

silicon. Only a very narrow directional bandgap between M and K can be resolved for the guided modes. 
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Figure 3.25. Zeven (TE-like) band diagram of a slab photonic crystal triangular lattice (h=0.5a) of toluene holes 

in silicon. Only a directional bandgap between M and K can be resolved for the guided modes. 

 

 

Figure 3.26. Zodd (TM-like) band diagram of a slab photonic crystal triangular lattice (h=0.5a) of toluene holes in 

silicon. Only a directional bandgap between M and K can be resolved for the guided modes. 
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Due to the lack of a complete photonic bandgap in the previous set of triangular photonic crystal 

lattices, these lattices were modeled again but this time with an air background below and above the slab. 

This, as shown in Figures 3.26-3.28, produced complete bandgaps for the guided modes as bands started 

to lie outside of the light cone near the edges of the irreducible Brillouin zone. Figure 3.27 shows a 

bandgap map for the range of slab thicknesses between 0.5a and 1.2a. Figures 3.28 and 3.29 demonstrate 

the TE and TM-like band diagrams for a slab thickness of 0.8a with a reasonable 13.48% bandgap for the 

TE-like modes and 4.69% for the TM-like modes. The actual extracted data for these lattices are 

demonstrated in tables 3.8 and 3.9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.27. TE bandgap for a triangular lattice of slab photonic crystal of 

toluene holes in silicon sandwiched by air background 
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Figure 3.28. TE band diagram for a triangular slab photonic crystal lattice of toluene holes in 

silicon sandwiched by air. A bandgap of size 13.4% can be observed. 

Figure 3.29. TM band diagram for a triangular slab photonic crystal lattice of toluene holes in silicon sandwiched 

by air. A bandgap of size 4.8% can be observed between the 4th and 5th bands 
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3.1.2.1 Analyzing Slab Photonic Crystals of Silicon, Toluene, and Air 

 

Throughout section 3.3.3, modeling results of the slab photonic crystal lattices that demonstrated 

wide bandgap in their infinitely thick lattices were demonstrated. The band diagram of all lattices 

sandwiched between toluene or SiO2 lacked a complete photonic bandgap or even complete TE- or TM-

like photonic bandgaps for all wave vector k directions. Only directional photonic bandgaps could be 

resolved between the X and M edges and the M and K edges of the irreducible Brillouin zone for the 

square and triangular lattices, respectively. This is due to the higher refractive index of the background 

that creates mode solutions within the bandgap which cancels its complete existence. This may indeed be 

a problem for our biosensor design since it is expected to operate with liquid solutions that have higher 

refractive index than that of air. However, when carrying out the characterization experiment, as will be 

discussed in chapter 5, partial directional photonic bandgaps still demonstrated a resonance effect and an 

emission enhancement when the IR-emitting quantum dots were excited from within the PhC slab.  

Complete photonic bandgaps can be observed if the background material above and below the slab is 

changed to that of air. In Table 3.10, summarized results of the actual dimensions of the lattice with a 

Table 3.8. Table summarizing the bandgap measurement results for TE-like modes of a slab triangular lattice of 

toluene holes in silicon (sandwiched by air). r/a = 0.35a 

Table 3.9. Table summarizing the bandgap measurement results for TE-like modes of a slab triangular lattice of 

toluene holes in silicon (sandwiched by air). r/a = 0.35 
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complete TE bandgap can be found. To calculate the actual lattice constant for a lattice with an r/a that is 

equal to 0.35, a point within the photonic bandgap, normally the mid-gap, is considered. That point 

represents a normalized frequency value that is equal to the lattice constant divided by the wavelength to 

be controlled (a/λ). For example, from Figure 3.28, the mid-gap point is approximately 0.267. Therefore, 

the lattice constant of triangular photonic crystal lattice that would prohibit 1100nm light from 

propagating through it is: 

 

 

 
       

 

    
       

                       

 

The radius is 0.35a. Therefore, it is equal to 102.79nm and the thickness (0.8a) is equal to 234.9 nm. 

These results for the different slab thicknesses are summarized in Table 3.10. 

 

 

 

 

 

 

 

 

3.1.3 Time Domain Modeling of a Slab Photonic Crystal Lattice 

 

MIT Electromagnetic Equation Propagation (MEEP) is a free, finite difference time domain (FDTD), 

Linux-based software package that can be used to model electromagnetic systems [51]. Previously, MPB 

was used to search for photonic bandgaps for specific finite-thickness photonic crystal slabs. The lattices 

that demonstrated photonic bandgap effects are simulated using MEEP to perform numerical calculations 

and measurements that, to some extent, can mimic real-world measurements. In this section, it is used to 

demonstrate the bandgap effect and the light confinement capability of photonic crystal lattices in high 

quality factor resonant cavities.  

In the previous sections, it has been demonstrated that for any wavelength (frequency) which falls 

within the photonic bandgap of a specific lattice, the wave vector associated with the photon traveling at 

that wavelength through the lattice plane will not be allowed to propagate. Instead, after several periods of 

Table 3.10. Dimensions of a triangular lattice of toluene holes in silicon and sandwiched by air 
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the lattice, that photon is expected to be confined for several emission periods before leaking out of the 

plane of the photonic crystal. To demonstrate this effect in MEEP, a finite-thickness photonic crystal slab 

from the previous section is considered. A triangular lattice of toluene holes inside Silicon sandwiched by 

air background below and above the slab demonstrated a bandgap between the normalized frequencies 

0.251 and 0.29 for a slab of height        and radius          . The band diagram for this slab is 

shown in Figure 3.30 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 3.30, the green box indicates the bandgap frequencies for the guided modes under the light 

cone. To demonstrate the effect of the photonic bandgap on propagating electromagnetic waves, three 

frequencies are studied: ~0.27, 0.15, and 0.47. The 0.27 normalized frequency falls inside the bandgap, 

while the 0.15 and 0.47 normalized frequencies fall below and above the bandgap for this lattice in the 

dielectric and air bands, respectively. By tailoring the frequency width of a point source emitting a 

Gaussian spectrum in the central hole of this lattice with 22 periods of holes in the X and Y directions (the 

PhC plane), the simulated emission can very closely approximate the actual behavior of an emission from 

a quantum dot inside this exact same hole in an actual fabricated structure. The electric field in the plane 

of the photonic crystal for each of these three frequencies is demonstrated in Figure 3.31.  

Figure 3.30. TE band diagram of a finite thickness slab of a triangular lattice of toluene holes in 

Silicon sandwiched by air (h/a = 0.7 r/a = 0.35).  
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From Figure 3.31, it can be very clearly observed that the electric field intensity for those 

frequencies that fall outside of the bandgap propagate easily through the photonic crystal plane and leak 

out of the lattice. In fact, the photonic crystal lattice to waves corresponding to these frequencies will be 

just like any homogeneous medium that has no effect on its propagation path. On the other hand, when 

the Gaussian point source in the center of the lattice is designed to emit a frequency that falls within the 

bandgap (0.278), after ~14 periods of the photonic crystal lattice in any direction, this emission will no 

longer be able to propagate and become confined around that source and within the photonic crystal 

 

 

 

 

 

 

 

 

 

 

 

plane. This effect is called the „photonic bandgap effect‟ since the frequency of emission falls within the 

photonic bandgap. 

When altering the periodicity of the photonic crystal by introducing defects in the center surrounding 

the emission location, the defect mode can be very carefully tuned to create mode solutions within the 

photonic bandgap. In other words, light can be confined into much smaller designed regions with very 

high quality factors. The defect discussed here is an L7 defect in which 7 adjacent lattice locations are 

removed from the central column and one single opening in the center is left but with a smaller r/a ratio 

that the rest of the lattice. Figure 3.32 demonstrates this defect introduction method. For frequencies that 

are outside of the photonic bandgap, the defect region has no effect on the propagating wavelength. 

However, for those frequencies within the bandgap, the defect region will confine light spatially with high 

quality factors. The quality factor for the defect demonstrated in this Figure is recorded to be around 565. 

Smaller and higher quality factor defects can be designed. However, for the objective of being able to 

easily observe the defect region in a regular microscope setting with a low resolution IR camera, larger 

defects are more desirable.  

MEEP can also be used to predict the fluorescence enhancement value of emission within a resonant 

cavity inside a photonic crystal when compared to an emission without a photonic crystal. A flux plane in 

Figure 3.31. Electric field concentration in the plane of the photonic crystal for three frequencies: 0.278, .015, and 0.47 
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the vertical direction above the slab is used in the MEEP simulations to collect and sum energy flux until 

the fields are off and therefore approximating a real-world, time-integrated detector. The flux plane in the 

simulations is designed with an area that is equal to that of the computational region. In other words, it is 

completely covering the area above the photonic crystal lattice. Thee flux plane is placed 3 lattice 

constants above the slab when a photonic crystal lattice is used and 3 lattice constants above the Gaussian 

point source when there is no photonic crystal. The collected flux around the resonant frequency for both  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cases is recorded and approximately 8-fold enhancement can be observed when emission is confined 

within a resonant cavity and forced to leak out vertically toward the detector. Figure 3.33 summarizes 

these modeling results. 

 

 

 

 

 

 

Figure 3.32. Light confinement within a L7 defect for frequencies that fall inside the bandgap only  
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3.2 POLY(DIMETHYLSILOXANE) (PDMS)-BASED PHOTONIC CRYSTALS 

Thin film semiconductor materials are commonly utilized as substrates in the fabrication of PhCs 

utilized in sensing platforms due to the large refractive index contrast between these materials and the 

aqueous solution of the target analytes. This large refractive index contrast makes it easier to design a 

PhC that has a complete photonic bandgap. However, one drawback of the use of solid thin films for PhC 

lattices in biosensors is the increased cost of integrating small pieces of solid materials with polymer-

based microfluidic structures. Microfluidic structures in biosensors are primarily fabricated via molding 

processes in biocompatible materials, which are not readily amenable to the inclusion of sections of 

semiconductor wafer material containing suspended PhC films less than 500nm thick. It can be 

accomplished, but this integration step will significantly increase the final cost of system that utilizes this 

type of transducer, making them less attractive from a marketing standpoint due to the disposable nature 

of this type of chem/biosensor component.  

PhC lattices fabricated in polymer materials can provide solutions to the previous limitations. 

Polymer materials are relatively cheaper than semiconductor materials and can be mass produced using 

much simpler fabrication processes. However, polymer materials generally have low refractive index 

which can significantly reduce the desirable effects of the unique light manipulative properties of their 

PhC lattices due to the low refractive index contrast between regions of different materials. Therefore, a 

set of simulations have been carried out to search for a photonic crystal lattice with a complete or partial 

photonic bandgap in poly(dimethylsiloxane) (PDMS). PDMS is a central component of biocompatible 

Figure 3.33. Total flux as a function of normalized frequency 
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microfluidic channels and it has been the material of choice whenever micromolding is carried out. The 

nanomlding techniques developed to fabricate these lattices in PDMS are discussed in Chapter 4. 

The refractive index of PDMS is around 1.43 when mixed and cured with a curing agent at a ratio of 

15:1 (PDMS:curing agent). Therefore, frequency-domain modeling using MPB was carried out to reach a 

conclusion of whether or not PhC lattices composed of this material posses a bandgap. Four lattices were 

studied: 

 

 Infinitely-thick square photonic crystal lattice of air holes in PDMS 

 Infinitely-thick square photonic crystal lattice of PDMS pillars surrounded by air 

 Infinitely-thick triangular photonic crystal lattice of air holes in PDMS 

 Infinitely-thick triangular photonic crystal lattice of PDMS pillars surrounded by air 

 

MPB modeling of both square lattices of air holes in PDMS and PDMS pillars surrounded by air 

resulted in no bandgaps for the range of radii between 0.2a to 0.4a. This means that light is fully 

transmitted through these photonic crystal lattices without any attenuation. On the other hand, triangular 

lattices of air holes in PDMS, as well as PDMS pillars in air, both demonstrated the existence of narrow 

bandgaps that could be tuned for either surface or resonant-cavity based enhancement. The gap map for 

each of these lattices, as well as the band diagram for those lattices that demonstrated the widest 

bandgaps, are shown in Figures 3.34-3.41. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.34. TE and TM bandgap map for a square lattice of air holes in PDMS demonstrating no bandgap for 

radii between 0.2a and 0.4a 
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Figure 3.35. TE and TM bandgap map for a square lattice of PDMS pillars in air demonstrating no bandgaps for 

radii between 0.2a and 0.4a 

Figure 3.36. TM bandgap map for a triangular lattice of air holes in PDMS demonstrating no bandgaps 

for radii range between 0.2a and 0.4a 
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Figure 3.37. TE bandgap map for a triangular lattice of air holes in PDMS 

Figure 3.38. TE band diagram of a triangular lattice of air holes in PDMS demonstrating a narrow bandgap 

(1.304%) between the first and second bands for a lattice with r/a = 0.36 
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Figure 3.39. Bandgap map of a triangular lattice of PDMS pillars in air. A 

4.461% bandgap at r/a=0.28 can be observed 

Figure 3.40. TE bandgap map for a triangular lattice PDMS pillars in air. No 

bandgap is observed 
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3.2.1 Analyzing Infinitely-Thick Photonic Crystal Lattices of PDMS and Air 

 

It is very clear from the modeling results that the low refractive index contrast between the high and 

low dielectric regions of a photonic crystal lattice in PDMS makes it almost impossible to design a lattice 

with a complete bandgap. However, two lattices demonstrated partial bandgaps. They were: 

 

 Triangular photonic crystal lattice of air holes in PDMS 

 Triangular lattice of PDMS pillars surrounded by air 

 

If the low dielectric regions in these previous two lattices replaced by that of any material with a 

refractive index higher than 1, bandgaps will no longer exist. The low refractive index contrast in these 

lattices prevents the separation of the electric or the magnetic field of the propagating electromagnetic 

wave in the different regions of the lattice, hence no range of prohibited wavelengths will be created. 

However, for the two previous lattices, it is still desirable to calculate the actual parameters of these 

Figure 3.41. TM band diagram of a triangular lattice of PDMS pillars in air demonstrating a 

bandgap of 4.461% at r/a = 0.28 
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lattices. Here, the IR-emitting quantum dots are replaced with a visible wavelength emission such as that 

of fluorescein (515 nm).  

For a triangular lattice of air holes in PDMS, the widest TE bandgap was observed at a lattice with 

an r/a ratio of 0.36. Therefore, if the theoretical radius is 0.75a, then the actual lattice constant a must be 

2.083a. This is simply a scaling of the lattice constant so that it can be fabricated while at the same time 

its dimensions are still in the sub-micron scale to allow control over visible range wavelengths. The actual 

parameters for this lattice are summarized in Table 3.11. 

 

 

 

 

 

 

 

 

 

For a triangular lattice of PDMS pillars in air, the widest TM bandgap was observed at a lattice with 

an r/a ratio of 0.28. Therefore, if the theoretical radius is 0.75a, then the actual lattice constant a must be 

2.678a. The actual dimensions for this lattice are summarized in Table 3.12.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.11. Actual lattice parameters of a triangular lattice of air holes in PDMS 

Table 3.12. Actual lattice parameters of a triangular lattice of PDMS pillars surrounded by air 
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3.3 EPOXY-BASED PHOTONIC CRYSTALS 

In the previous section, the disadvantages of incorporating thin-film-semiconductor-based PhC 

lattice as the core structures within their biosensors have been discussed. Another possible polymer 

material to be considered for molding photonic crystal lattices into is epoxy, Epoxy Technology®. 

Epoxy‟s refractive index is approximately 1.5168, which is higher than that of PDMS and can also be 

made biocompatible. In chapter 4, a novel nanomolding process to produce submicron photonic crystal 

lattices in epoxy is discussed.  

In order to reach a conclusion of whether or not Epoxy is suitable as the substrate material for the 

PhC lattices, frequency-domain simulations through MPB were carried out once again. Throughout this 

section, the bandgap map of 4 different lattices will be demonstrated as well as the band diagrams of the 

highest bandgaps recorded for each lattice. The four lattices are 

 

 Infinitely-thick square photonic crystal lattice of air holes in Epoxy 

 Infinitely-thick square photonic crystal lattice of Epoxy pillars surrounded by air 

 Infinitely-thick triangular photonic crystal lattice of air holes in Epoxy 

 Infinitely-thick triangular photonic crystal lattice of Epoxy pillars surrounded by air 

 

Once again, square lattices of air holes in Epoxy and Epoxy pillars surrounded by air both 

demonstrated no bandgaps for the range of radii between 0.2a to 0.4a. This means that light is fully 

transmitted through these photonic crystal lattices without any attenuation. On the other hand, triangular 

lattices of air holes in Epoxy as well as Epoxy pillars in air both demonstrated the existence of bandgaps 

that could be tuned for either surface or resonant-cavity based enhancement. The gap map for each of 

these lattices as well the band diagram that demonstrated the widest bandgaps are shown in Figures 3.42-

3.49. 

 

 

 

 

 

 

 

 

 



73 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.42. TM and TE bandgap map for a square lattice of Air Holes in Epoxy demonstrating no bandgaps of any 

size for the radii range between 0.2a and 0.4a 

Figure 3.43. TM and TE bandgap map for a square lattice of Epoxy pillars in air demonstrating no bandgaps 

of any size for the radii range between 0.2a and 0.4a 
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Figure 3.44. TM band diagram of a triangular lattice of air holes in Epoxy. No bandgap was observed for the radii 

range between 0.2a and 0.4a 

Figure 3.45. TE band diagram of a triangular lattice of air holes in Epoxy. A bandgap of size 4.41% 

was observed for a lattice with r/a =0.37 



75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.46. TE band diagram for a triangular lattice of air holes in epoxy with r/a = 0.37 

Figure 3.47. TM bandgap map for a triangular lattice of epoxy pillars in air 
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Figure 3.48. TM bandgap map for a triangular lattice of epoxy pillars in air. No bandgap was observed for the radii range 

0.2a to 0.4a 

Figure 3.49. TM band diagram for a triangular lattice of epoxy pillars in air with r/a = 0.28 and a bandgap of 

7.63% between the first and second bands 
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3.3.1 Analyzing Infinitely-Thick Photonic Crystal Lattices of Epoxy and Air 

 

The two lattices that demonstrated partial bandgaps for either the TE or the TM polarizations were: 

 

 Triangular photonic crystal lattice of air holes in Epoxy 

 Triangular lattice of Epoxy pillars surrounded by air 

 

If the low dielectric regions in these previous two lattices replaced by that of any material with a 

refractive index higher than 1, bandgaps will no longer exist. The low refractive index contrast in these 

lattices prevents the separation of the electric or the magnetic field of the propagating electromagnetic 

wave in the different regions of the lattice, hence no range of prohibited wavelengths will be created. 

However, for the two previous lattices, it is still desirable to calculate the actual parameters of these 

lattices. Here, the IR-emitting quantum dots are replaced with a visible wavelength emission such as that 

of fluorescein (515 nm).  

For a triangular lattice of air holes in Epoxy, the widest TE bandgap was observed at a lattice with an 

r/a ratio of 0.37. Therefore, if the theoretical radius is 0.75a, then the actual lattice constant a must be 

2.027a. This is simply a scaling factor of the lattice constant.  It will allow the lattice to be molded in the 

nanoscale while at the same time prohibiting the propagation of visible range wavelengths. Table 3.13 

summarized the parameters of this lattice. 

 

 

 

 

 

 

 

 

 

For a triangular lattice of Epoxy pillars in air, the widest TM bandgap was observed at a lattice with 

an r/a ratio of 0.28. Therefore, if the theoretical radius is 0.75a, then the actual lattice constant a must be 

2.678a. The actual lattice parameters are summarized in Table 3.14. 

 

 

 

Table 3.13. Actual lattice parameters of a triangular lattice of air holes in epoxy 
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Table 3.14 Actual lattice parameters of a triangular lattice of Epoxy pillars in air 
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CHAPTER 4: FABRICATION OF SEMICONDUCTOR- AND POLYMER-

BASED PHOTONIC CRYSTAL LATTICES 

4.1 INTRODUCTION 

In the previous chapter, the modeling tools used to predict the behavior of electromagnetic waves as 

they propagate through the periodic photonic crystal lattices were discussed. These tools provided the 

critical photonic crystal dimensions that must be known in order to fabricate a lattice that can potentially 

manipulate the flow of specific desired wavelengths. Tables summarizing the actual dimensions of the 

lattices indicate that they all possess sub-micron dimensions. Therefore, photolithography processes can 

no longer be used due to the diffraction limit of light at these sub-micron scales. Instead, E-beam 

Lithography (EBL) is used to fabricate the nano-scale structures. The process to fabricate these nano-

scale structures starts with an e-beam lithography step, but requires a series of subsequent steps involving 

metal mask deposition, lift-off, etching, etc. 

Throughout this chapter, the EBL process as well as the subsequent steps of metal deposition and 

plasma etching is first explained. Afterwards, the developed recipes to fabricate nano-scale photonic 

crystal lattices in Silicon, Silicon on Insulator (SOI), PDMS, and Epoxy are discussed. 

 

4.2 ELECTRON-BEAM LITHOGRAPHY 

The term „lithography‟ in semiconductor science is used to refer to the microfabrication processes 

that involve the use of ultraviolet light, or photons, to expose a photo-sensitive material called photoresist 

and create a desired pattern that can be transferred to an underlying substrate in subsequent fabrication 

steps [52-54]. The range of wavelengths that are used to do this exposure is normally between 193 and 

436nm. At length scales comparable to these wavelengths, however, the diffraction limit of conventional 

optics becomes an issue, making patterns at such scales difficult produce with optical lithography [52-54].  

E-beam Lithography is a very precise, high-resolution patterning method capable of overcoming the 

previous diffraction limit of photolithography and produce structures on a scale down to 1/100 of a visible 

photon wavelength [55, 56]. Unlike photons, electrons‟ associated waves have wavelengths of very few 

angstroms, which are several orders of magnitude shorter than the optical wavelengths. The low mass of 

electrons allows them to penetrate a resist layer to dissipate their energy and then become scattered in a 

grounded substrate. Therefore, when the EBL techniques first emerged, it was predicted to replace 

photolithography in VLSI manufacturing when PMMA (Poly Methyl Methacrylate) was first introduced 
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as an electron-beam resist. However, the low throughput of this method compared to regular 

photolithography prevented it from being fully integrated into the mass IC production.  

Unlike photolithography, the EBL process can be done without the need of any actual physical 

photomasks. Its „direct write‟ characteristic allows the creation of the desired pattern in a computer aided 

design (CAD) file. Software control over the EBL hardware components translates this designed CAD 

pattern into a writing „path‟ where the electron beam scans the surface as designed by the file. The 

extremely high resolution of this method and the direct write flexibility together allowed the method to 

become an initial tool for nano-scale patterning. Both photolithography and EBL are designed to control 

particles, photons and electrons respectively, and focus them to a very concentrated energy field for 

writing. Therefore, it is fair to say that there are a lot of similarities between the two methods in their 

optical components. EBL systems use electrostatic and magnetic lenses to focus its electron beam. These 

lenses operate to deflect electrons and slow their speed as they penetrate through different 

electromagnetic fields. The source of electrons comes from the electron gun which is made of a cathode 

and a lens. The electrons are produced by the cathode and then focused by the lens to become a beam.  

The main components of an EBL system‟s column are demonstrated in Figure 4.1. The electron gun 

is one of the main components as it is the source of the electrons. These electrons are normally 

accelerated to a kinetic energy between 10 keV and 100 keV [57]. If the gun cathode component is of a 

field emission type, this portion is normally designated a separate continuous vacuum system to maintain 

the lowest number of gaseous particles before the beam is released and hence reduce beam deflection at 

that early stage. Once the beam is created, the gun alignment system is then assembled along a 1 meter 

vertical column that is very precisely designed to ensure a well defined beam when reaching the sample. 

The condenser lens is the first of these alignment components. Its main purpose is to converge and 

condense the emitted electron beam from the cathode. The beam blanker is placed next in the path of the 

beam to allow control over the switching mechanism of the beam when it is required to expose only 

specific regions at specific times. This blanking mechanism is not mechanical as its name may indicate. 

Instead, it is simply an electrostatic deflector that deflects the beam off its axis when it is desired to not 

expose a specific region. Zoom lens then adjusts the focal plane followed by astigmatism correction of the 

beam that is done by the Stigmator [57].  

Once the beam is aligned and focused, apertures then allow control over its width. The smaller the 

angle which the beam makes after the aperture the less spread out the beam is. Smaller angles also 

produce better electron optical resolution. Therefore, small apertures are normally used when high 

resolution writing is required. After passing through the aperture, the beam is then focused by the last lens  
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component of the column which is the Projection lens. Electrostatic or magnetic deflectors are then placed 

to allow for control of the beam deflection when electrical signals are produced that correspond to a 

specific pattern [57]. 

When performing an EBL procedure, several parameters must be set to allow for a high resolution 

pattern. The most important one is the beam spot size as it determines the resolution of the overall pattern 

and the smallest exposed features that can be created. The acceleration voltage is another parameter that 

must be set according to the chosen e-beam resist and its thickness. Higher acceleration voltages are 

normally used to produce higher resolution features in thick resists as the proximity effect is reduced. The 

beam current must also be set carefully. It controls the speed of the lithography process and therefore, 

higher beam currents are capable of exposing more features at a given time. However, the beam current 

value is normally increased when high throughput is desired but smaller beam current values are usually 

desired as slower exposure can produce higher resolution patterns. Finally, the scanning field is the 

parameter that determines the largest area that can be written without the need to stitch several portions of 

the desired pattern together. 

 

Figure 4.1. The electron optical components inside the column of an EBL system [57] 
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4.3 ELECTRON-BEAM EVAPORATION  

E-beam evaporation is a technique of depositing thin materials on a substrate through the use of a 

high energy electron beam that causes these materials to evaporate. A wide variety of materials such as: 

refractory metals, low-vapor-pressure metals, alloys, and oxides can be evaporated using this technique 

[57, 58]. The method concentrates an electron beam in a crucible containing the desired material to be 

deposited, which creates a large amount of heat capable of evaporating the target and producing high 

deposition rates. This method has advantages over thermal evaporation techniques including lower 

temperature processing. High temperatures are often undesirable due to contamination and the effects of 

high temperatures on lift off processes involving e-beam resists. 

The main components of an e-beam evaporation system are demonstrated in Figure 4.2. These 

include a tungsten thermionic electron emitter, an electromagnetic coil steering the electron beam by 

producing a transverse magnetic field, a high voltage DC power supply, and a crucible or hearth where 

the target material is kept [58]. When a high voltage is applied to the tungsten filament, electrons are 

generated thermionically from the filament. These electrons are emitted in a random manner and therefore 

they must be directed in a specific path in order for the evaporation of the target material to take place. 

Therefore, a deflection/focusing of this beam is achieved when the electromagnetic coils generate a 

magnetic field capable of shaping the path of the beam. The electron beam then bombards the source 

material, transferring its kinetic energy to heat upon impact. However, it is important to point out that the 

energy given off by a single electron upon impact is very small, which is not sufficient to produce the 

desired heat. Instead, this heat is generated due to the large number of focused electrons hitting the 

surface continuously making the total energy sufficient to melt and evaporate the target.  

The power supply voltage for this procedure is typically between 10 to 30 kV with a power ranging 

from 10 to 30 kW and it is always carried out under a vacuum of 10
-5

 torr or less. This high vacuum 

ensures minimal chamber contamination and prevents gas collisions between evaporated molecules and 

other particles in the chamber that will severely affect the smoothness of the deposited material. 

Moreover, to prevent the filament coating from getting contaminated, the filament is typically located out-

of-sight of the evaporated material. Source materials are held in a Cu hearth, which is water cooled to 

prevent its outgassing, melting, and alloying with molten deposition material [58]. 
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4.4 PLASMA ETCHING 

Early Integrated Circuit (IC) manufacturing was highly dependent on wet etching techniques due to 

their high selectivity, simplicity, and low cost. Selectivity is a measure of the etch depth in a desired 

substrate to its mask for a fixed period of time (normally one minute). However, the isotropic etching 

profiles and undercutting of the mask in wet etching techniques imposed critical limitations to device 

yield and reliability. Moreover, as IC manufacturing pushed toward more dense chips incorporating sub-

micron structures, accurate transfer of the mask pattern to the underlying substrate material becomes a 

crucial step that wet etching techniques failed to provide [40, 60]. To overcome these limitations, plasma 

etching was introduced as an efficient technique capable of providing precise control over aspect ratio, 

selectivity, and uniformity of the etched surfaces [60].  

A plasma reactor, illustrated in Figure 4.3, consists of two separated electrodes. One of these two 

electrodes can be the interior of the etching chamber. RF power is used in the majority of the plasma 

etching systems instead of DC power to ignite the etching plasma is mainly to prevent any possible 

charge accumulation when dielectric samples are used [61]. If a sufficient high frequency voltage is 

applied between the two electrodes, an electric field is generated, and when a specific gas is introduced 

into the  

Figure 4.2. E-beam Evaporation system components [59] 



84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

chamber, plasma can be generated. Plasma is a partially ionized gas that produces an obvious glow when 

discharging inside the chamber. Therefore, if a sample happens to be placed inside the same chamber, as 

shown in Figure 4.3, the uncovered region of the sample surface becomes exposed to the reactive species 

of the plasma and etching of the surface takes place [60].  

The four basic methods of plasma etching are:  

 

 Chemical Plasma Etching  

 Sputtering Plasma Etching  

 Reactive Ion Enhanced Etching 

 Protective Ion-Enhanced Etching. 

 

In the chemical based etching, thermalized neutral radicals chemically combine with molecules of 

the substrate‟s top surface to generate volatile products that can be removed from the sample. The gas 

mixture in this method is chosen to generate specific reactive species [62]. This method provides good 

etch rates and minimizes the plasma-induced damage. However, it is not a directional etching technique 

and isotropic etch profiles are commonly observed when this method is used. In Sputtering-based plasma 

Figure 4.3. Schematic of plasma etching [61] 
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etch, energetic ions formed in the plasma are accelerated by the applied field toward the sample surface to 

cause a physical bombardment that etches the exposed surface. This method produces anisotropic profiles 

but it can also result with damaged or rough surfaces due to the physical bombardment effect that it 

involves [62].  

In the Energetic-Ion-Enhanced mechanism, a combination of particles from the previous two 

methods is generated to produce etch rates that exceed those of chemical and sputtering rates. It is 

normally referred to as Reactive Ion Etching (RIE) [62]. The main advantage of this mechanism is that it 

results with highly anisotropic etch profiles and can be used to remove polymer by-products [62].   

Finally, in Protective Ion-Enhanced Plasma Etching, an inhibitor film coats the inner walls of the 

etched features to generate a layer that blocks the etching of the sidewall to lead to an increased 

anisotropy. This mainly happens due to the fact that the generated plasma normally contains neutral 

etchant species that adsorb to surface of the sample continuously. As etching takes place, ions remove the 

inhibitor from the horizontal surfaces leaving behind the protective film untouched to result with highly 

anisotropic etch profiles [62]. 

 

4.5 SILICON-BASED PHOTONIC CRYSTALS 

The main tools that were used to fabricate photonic crystal structures in silicon were explained in the 

earlier sections of this chapter. These tools were used in a specific sequence in order to fabricate the final 

photonic crystal structure in silicon. A top-down approach was followed for most of the processes that 

will be discussed in this section. This method started by first creating a DesignCAD file using the 

Nanometer Pattern Generation System (NPGS) software tool that controlled the behavior of the e-beam 

lithography system [63]. The modeling results discussed in Chapter 3 helped in generating this 

DesignCAD file containing the desired photonic crystal lattice dimensions that posses a photonic 

bandgap. Negative or positive tone e-beam resists were then spin-coated the top surface of the sample 

with desired thicknesses as different spin speeds correspond to different thicknesses. The patterns were 

then written in this top e-beam sensitive polymer layer and then developed before several other metal 

mask deposition, lift-off, and etching steps took place to produce the final structures that could be 

optically characterized.  

Two methods will be explained in detail in the next two sections. The first is a recipe that is adapted 

from [43] to produce suspended photonic crystal lattices of air holes in Silicon by starting first with a 

negative tone e-beam resist, ma-N 2403. The second will be the opposite of the first, which is to create 

silicon rods (pillars) surrounded by air using a positive tone resist, PMMA 950K A3. Exposure and spin 

recipes have been already developed in [43]. However, optimizing these recipes to the Silicon-on-
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Insulator and regular Silicon samples will be discussed in detail. SEM as well as descriptive images of 

each fabrication step along the process from end to finish will be demonstrated.  

The fabrication processes explained in the following two sections involve several steps and lift off 

processes that can affect negatively on the overall quality of the final fabricated structures. Therefore, in 

order to minimize the number of the fabrication steps to produce final PhC structure in silicon and 

improve the side-wall quality of these structures, a negative tone resist Hydrogen-Silsesquioxane is used. 

This resist can serve as a hard etching oxide mask once treated with Oxygen plasma. 

 

4.5.1 Fabrication of Symmetric Photonic Crystal Lattices of Air Holes in Silicon 

 

In order to fabricate symmetric photonic crystal lattices, commercially available Silicon-on-Insulator 

wafers were used. These wafers are made of a bulk silicon substrate and a thin top silicon layer that 

sandwich an approximately 1-μm layer of smooth SiO2. Figure 4.4 demonstrates a tilted cross section 

image of one of these wafers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The symmetry was achieved when the final photonic crystal structure was fabricated in the top 

silicon layer and the underlying sacrificial SiO2 layer was etched away. This created a channel of air 

below the slab that could be filled with any other liquid material when flow measurements were carried 

out. The process to create these symmetric structures is quite complex and involves several steps. This is 

mainly due to the fact that the thin e-beam resists used in these processes have poor dry etch resistance 

Figure 4.4. A tilted SEM image demonstrating the different layers of an SOI wafer. Top right 

corner inset demonstrates a description of the thickness of each layer 
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and very poor selectivity when used alone as masks to etch Si. Therefore, metal mask deposition and lift-

off processes were done to achieve a high enough depth in the Si substrate upon etching. 

The fabrication started with a regular degreasing (cleaning) step in which the sample were sonicated 

for 5 minutes in Acetone and then immersed in Methanol for another 5 minutes. The sample was then 

rinsed with DI water for 5 minutes and then dried with a steady Nitrogen flow produced by a nitrogen 

gun. The sample was then put in an oven set 120
o
 C for 20 minutes for a dehydration step. At this time the 

sample surface was ready to be coated with the e-beam resist. In order to produce holes in silicon, a 

negative tone e-beam resist was used to create pillars in the resist. This is simply due to a later lift-off 

process that was carried out to create the inverse of that to be transferred to the underlying substrate.  

The negative tone e-beam resist selected for this process was ma-N 2403 purchased from Micro 

Resist Technology. This resist has an excellent thermal stability with pattern resolution down to 50 nm. It 

is also very easy to remove and can be exposed in a range of energies between 20-50keV [64]. The 

negative-tone behavior of this resist is explained in Figure 4.5. 

 

 

 

 

 

 

 

 

 

 

The ma-N 2403 was spun on the wafer for 50 seconds at 5000 rpm. A soft bake step was then done 

to remove solvents and make the resist more sensitive to the electron beam. This baking step was done on 

a hot plate set to 95
°
 C for 3 minutes to achieve a final thickness of approximately 240 nm on top of the Si 

sample. The EBL process then began. A JEOL 7600 SEM system with e-beam lithography capability was 

used to accomplish this step.  

The pattern created in DesignCAD with submicron lattice dimensions was loaded to the NPGS 

software and converted into a run file that controlled the deflectors and the beam blanker by sending 

electric signals to the SEM. A detailed explanation of pattern preparation using the DesignCAD tool and 

the e-beam lithography procedure is explained in Appendices A and B, respectively. Once the beam was 

focused, the writing of the pattern was done at a dose range between 58-64 μC/cm
2
. This was the dose 

range that was found to be optimal to produce the best patterns on SOI wafers. The EBL write was then 

Figure 4.5. The negative-tone e-beam resist pattern development mechanism [64] 
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followed by an immediate development step in ma-D 525 for 65 seconds without agitation. To prevent 

overdevelopment from happening, the sample was then immediately immersed in water for at least 30 

seconds and then dried with a slow flow of N2 produced by a regular Nitrogen gun.  

At this stage, the sample contained a pattern that could easily be observed in an optical microscope. 

Submicron features, of course, were not visible. However, an idea of how well the development/exposure 

processes could be examined based on the shape of resist edges. The pattern was a two dimensional 

photonic crystal lattice of ma-N pillars surrounded by air, which is the inverse of what the desired final 

PhC lattice. Therefore, a thin layer of Ni was deposited using a Temescal BJD 2000 E-beam Evaporator 

to a thickness of approximately 30 nm. Nickel was selected due to the high Ni/Si etching selectivity 

which was approximately 1:15 at a 150 W RIE power [40]. Therefore, very thin layers of Ni were capable 

of withstanding prolonged dry etching procedures and achieved depths of several hundreds of nanometers 

in Si.  

The sample was then immersed in Remover PG (MicroChem®) set to 65
o
C for 15 minutes followed 

by a two –second sonication step ensure the full removal of the polymer. The Remover PG removed the 

ma-N polymer pillars and therefore lifted off the deposited layer of Ni on top of them. This created holes 

in the thin Ni layer which was used as an etching mask when the pattern was transferred to the underlying 

thin silicon layer. The etching procedure was done using a CF4/O2 gas mixture plasma using a Minilock-

Phantom III ICP-RIE system. The etching parameters were: 400 W ICP power, 150 W RIE power, 10 

mTorr chamber pressure, 27/3 sccm - CF4/O2 gas mixture flow rate ratio, and -130 V DC bias. One 

minute of etching using these previous parameters was sufficient to create ~300 nm holes in Si. The un-

etched Ni layer was then removed by dipping the sample in a Ni-etchant for 30 seconds with minor 

agitation. The sample was then cleaned in DI water and prepared for the final fabrication step.  

In the last step, the symmetry was created but dipping the sample in a Hydrofluoric Acid solution 

(HF) for 15 seconds. The sample was then rinsed in DI water for 5 minutes and dried very gently with a 

Nitrogen gun. The HF here wet etched the underlying SiO2 sacrificial layer and created a channel-like 

structure with the photonic crystal structure being the ceiling of this channel. SEM and descriptive 

drawings of this fabrication procedure are demonstrated in Figures 4.6-4.8. The actual dimensions of the 

fabricated structures compared to the as-designed dimensions are summarized in Table 4.1. 

Figure 4.7 and 4.8 demonstrate SEM images of successfully and perfectly fabricated structures when 

the previous process is followed precisely. Several inaccuracies can, however, result with collapsed 

structures or even unresolved photonic crystal features. For example, under-development of the resist, 

depositing thick layers of the Ni mask, or over sonicating the sample after the Remover PG step, can all 

potentially cause a bad lift off result in which the ma-N pillar either do not lift off or the inverse structure 

in Ni is broken due to the over sonication. SEM images demonstrating these two cases are shown in 
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Figures 4.8 and 4.9. Moreover, blow drying the suspended samples after the HF step with a fast Nitrogen 

gas flow can severely cause the suspended 260-nm-thick structures to collapse. Figure 4.10 demonstrates 

an example of this behavior as well.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Process flow of a suspended PhC in silicon as adapted from [43]. (1) ma-N 2403 was 

first spun coated on the SOI sample and an EBL procedure was carried out to define a pattern in the 

resist. (2) After developmen in ma-D 525 for 65 seconds, pillars of ma-N were resolved. (3) A thin 

layer of Ni was then evaporated on the surface. (4) A lift-off process was then done to obtain the 

desired pattern in the Ni hard mask. (5) A CF4/O2 plasma etch was then carried out to transfer the 

pattern to the underlying Si layer. (6) A 15-second dip in HF solution was then done to open the 

underlying channel and achieve the desired symmetry above and below the slab. 

Table 4.1. The as-designed vs. as fabricated dimensions of the PhC 

in  silicon. A deviation of only 2.84% was observed 



90 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. SEM image of the suspended PhC structures in silicon with underlying air 

channels. Image was captured at 85° glancing angle 

Figure 4.8. A high magnification image of the PhC structure in silicon and the underlying 

channel. Image was captured at 80° glancing angle 
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Figure 4.9. Thick Ni layers can cause serious problems when trying to do the lift off process. 

In this image, the Ni remained on top of the ma-N pillars even after a sonication step. 

Figure 4.10. SEM image demonstrating an over sonication result. This will cause the thin Ni 

layers to break and not remain attached to the Si to act as a hard etching mask. 
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4.5.2 Fabrication of Symmetric Photonic Crystal Lattices of Silicon Pillars and Air 

 

In the previous section, the fabrication procedure of a photonic crystal lattice of air holes in silicon 

was discussed. The vertical symmetry in that lattice was achieved once the SiO2 layer was wet etched in 

Hydrofluoric acid. In this section, the inverse of this process will be discussed. Specifically, the 

fabrication process to achieve a final vertically symmetric photonic crystal lattice of silicon pillars (rods) 

surrounded by air will be discussed. Of course, the vertical symmetry in air or any other liquid material of 

this structure is not possible. Therefore, the underlying SiO2 sacrificial layer will be kept in such a way 

the final structure can be sandwiched between it and a top deposited or placed oxide slab to achieve the 

desired vertical symmetry above and below the photonic crystal plane. Moreover, the fabricated PhC 

lattices of pillars can also be „extruded‟ to the underlying SiO2 layer, making the effective refractive index 

below the slab even lower than that of SiO2 alone and therefore an almost symmetric structure can be 

resolved when toluene or any other liquid fills the region above, within, and bellow the pillars. 

This process involves using a positive tone e-beam resist. The mechanism of exposing and 

developing a pattern written in a positive resist is explained in Figure 4.12.  PMMA (polymethyl 

methacrylate), MicroChem, was the selected resist for this process. It is a versatile polymeric material that 

is very well suited to produce high resolution positive patterns when a direct write e-beam system is used. 

Figure 4.11. Collapsed PhC structures due to a drying step with a high Nitrogen flow 
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Specifically, PMMA 950K A3 is used throughout this work. The 950K means it has a 950,000 molecular 

weight (MW) which resins in an anisole solvent while the A3 indicates a specific commercial viscosity 

label that MicroChem uses to indicate that it less viscous than A4 and more viscous than A2.  

 

 

 

 

 

 

 

 

The fabrication started with a regular degreasing step in which the SOI sample were sonicated for 5 

minutes in Acetone and then immersed in Methanol for another 5 minutes. The sample was then rinsed 

with DI water for 5 minutes, dried with a steady Nitrogen gas flow produced by a Nitrogen gun, and then 

put in an oven set to 120° C for 20 minutes for a dehydration step. At this time the sample surface was 

ready to be coated with the resist. In order to produce pillars of silicon, the PMMA 950K A3 was used as 

explained above. This was simply due to later lift-off process that would be carried out to allow Ni to act 

as a hard mask when transferring the final structure to the underlying Si layer.  

The PMMA A3 was the spun on the wafer for 50 seconds at 5000 rpm. This was followed by a soft 

bake step to remove solvents and make the resist more sensitive to the electron beam. The baking step 

was done on a hot plate set to 180
o
 C for 90 seconds to achieve a final thickness of approximately 110 

nm. The EBL process was then done using a JEOL 7600 SEM system with e-beam lithography capability.  

The pattern created in DesignCAD with submicron lattice dimensions was loaded to the NPGS 

software and converted into a run file that controlled the deflectors and the beam blanker by sending 

electric signals to the SEM tool. A detailed procedure of creating DesignCAD patterns and operating the 

e-beam lithography instrument is explained in Appendices A and B, respectively. Once the beam was 

focused, the writing of the pattern was done at a dose range between 320-335 μC/cm
2
. This dose range 

was found to be optimal to produce the best patterns on SOI samples. The write procedure was then 

followed by an immediate development step in an MIBK:IPA developer (1:3) for 65 seconds. To prevent 

overdevelopment from happening, the sample was then immediately immersed in Isopropyl Alcohol for at 

least 30 seconds and then rinsed with DI water for another 30 seconds before the sample was dried with a 

steady flow of N2 gas produced by a Nitrogen gun.  

At this stage, the sample contained a pattern that can be observed in an optical microscope. 

Submicron features, of course, were not visible. However, an idea of how well the development/exposure 

Figure 4.12. Positive-tone e-beam resist exposure and development mechanism [64] 



94 

 

processes could be examined. The pattern was a two dimensional photonic crystal lattice of holes in 

PMMA, which was the inverse of the final desired PhC lattice. Therefore, a thin layer of Ni was smoothly 

deposited using a Temescal BJD 2000 E-beam Evaporator to a thickness of approximately 20 nm. Nickel 

was selected due to the high Ni/Si etching selectivity which is approximately 1:15 at a 150 W RIE power 

[40]. Therefore, very thin layers of Ni are capable of withstanding a prolonged dry etch step and achieve 

depths of several hundreds of nanometers in Silicon.  

The sample was then immersed in Remover PG (MicroChem®) set to 65
o
C for 15 minutes followed 

by a two-second sonication step to ensure complete lift off. The Remover PG removed the PMMA 

polymer layer and therefore lifted off the Ni leaving behind only thin Ni pillars. The etching was done 

with a CF4/O2 gas mixture plasma using a Minilock-Phantom III ICP-RIE system. The chamber was first 

cleaned with a regular O2 plasma recipe for 10 minutes. The etching parameters were: 400 W ICP power, 

150 W RIE power, 10 mTorr chamber pressure, 27/3 sccm – CF4/O2 gas mixture flow rate ratio, DC bias 

~ -130V. 90 seconds of etching using these previous parameters was sufficient to create ~450 nm pillars 

in the top Si layer and the underlying SiO2 layer. The left Ni layer after the etching was then removed by 

dipping the sample in a Ni-etchant for 30 seconds with minor agitation. The sample was then finally 

cleaned in DI water and dried. 

Once again, the symmetry could not be achieved by wet etching the sacrificial oxide layer beneath 

the silicon pillars as this will lift off the pillars and cause the whole structure to collapse. Therefore, 

especially for those triangular lattices of silicon pillars surrounded by air with wide directional bandgaps 

between the M and K Brillouin zone edges, the symmetry was achieved by either leaving the underlying 

SiO2 un-etched or extending the PhC lattice to the SiO2 layer to lower the effective refractive index below 

the PhC slab. Figure 4.13 demonstrates the process flow of this method while Figure 4.14 demonstrate an 

SEM image of the final fabricate features. The deviation between the as designed dimensions compared to 

the observed fabricated dimensions is summarized in Table 4.2. 

In the previous section, the negative effects of several inaccuracies when following the discussed 

procedures were demonstrated. These included: resist under development, improper lift off by over 

sonication, and using a strong N2 flow when carrying out the drying steps. One other effect that must be 

discussed is that of an over etching step. The procedures discussed here utilize very thin Ni mask layers to 

ensure etch depths of several hundreds of nanometers in the underlying substrate, which is mostly Si for 

this work. However, sidewall anisotropy and smoothness are very critical parameters to be considered 

when prolonged etching procedures are desired to achieve high depths. These two parameters are severely 

affected when the Ni mask is completely used during the etching step. Therefore, it is advised that masks 

with thicknesses ranging between 20-30 nm, should not be used to etch Si using a CF4/O2 gas mixture for 

periods longer than 3 minutes. The effect of over etching is demonstrated in Figure 4.15. 
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Figure 4.13. . Process flow of a symmetric PhC of pillars in air. (1) electron beam lithography in the PMMA 

resist. (2) development of the resist in 1:3 (MIBK:IPA) for 65 seconds. (3) E-beam Evaporation of a thin Ni 

layer (~20 nm). (4) Metal lift off in Remover PG for 15 minutes followed by a two second sonication (5) Dry 

etch of the silicon using a CF4/O2 27/3 gas mixture at -85 V DC bias followed by a Ni removal step in Ni 

etchand. 

Table 4. 2. The as-designed vs. as fabricated dimensions of the PhC in silicon. A 

deviation of only 0.87% was observed 
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Figure 4.14. A tilted SEM image of the final structure of Silicon Pillars surrounded by air 

Figure  4.15. SEM of an over-etched Si sample in a CF4/O2 (27/3) gas mixture for 4 minutes 
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4.5.3 Hydrogen-Silsesquioxane (HSQ) Fabrication Recipe 

 

In the previous two sections, the fabrication process of holes in silicon and silicon rods surrounded 

by air was explained. It is obvious that these two processes involve multiple steps and the use of several 

microfabrication-based instrumentation in order to achieve final PhC structures in silicon. The main 

reason for this complexity is the resist poor dry etching resistance which fails to achieve desired depths in 

the underlying substrates when used directly as etching masks. Therefore, multiple steps of metal 

deposition and lift off are normally followed to create a hard mask that is more resilient to the dry plasma 

etching.  

The previous fabrication complexities can possibly be resolved when using a Hydrogen-

Silsesquioxane (HSQ) negative-tone electron-beam resist. It is currently commercially available from 

Dow Corning ®, and can be purchased in a wide range of concentrations when diluted in methyl-iso butyl 

ketone (MIBK). It has been widely used as a spin-on dielectric interlayer in the fabrication of integrated 

circuits. It is more desired than SiO2 due to its lower refractive index which reduces the resistance-

capacitance (RC) time constant in the circuitry [65].  An HSQ molecule has a cage-like structure made of 

Hydrogen, Silicon, and Oxygen (Figure 4.16). 

 

 

 

 

 

 

 

 

 

 

 

 

When exposed to an electron beam during a regular e-beam lithography procedure, the highly 

energetic electrons acquire sufficient activation energy capable of breaking the weak Si-H bonds and 

promote the formation of the stronger siloxane (Si-O-Si) bonds [65-70]. Therefore, electron beam 

irradiation causes resist cross linking and the cage-like structures to become a long-range-network 

structure [71]. 

Figure 4.16. The cage-like structure of an HSQ molecule [65] 
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The most interesting aspect of HSQ is the ability to convert the top surface of a developed HSQ into 

a predominantly SiO2 layer that is hydrophilic and can become an instant hard-etching mask to the 

underlying substrate, i.e. Silicon or GaN. Throughout this section, the spinning, exposure, development, 

and etching recipes of HSQ (FOx-14), Dow Corning, is discussed. 

In order to realize the optimal electron beam exposure recipe, first the spin and thickness relationship 

must be observed. Therefore, 6 silicon samples were degreased by a sonication step for 5 minutes in 

Acetone followed by Methanol for another 5 minutes. The sample were then rinsed with DI water, dried 

with nitrogen and then put in an oven set to 120° C for 20 minutes for a dehydration step. At this time the 

sample surface were ready to be coated with the resist. HSQ has a tendency to coagulate [65], therefore it 

should always be kept in its designated plastic bottles and refrigerated. Before spinning it, the bottle must 

be taken out of the refrigerator to warm up to room temperature (~25 C).  

The six samples were spun at different speeds that were varied between 1000-6000 rpm in 

increments of 1000 rpm. Each sample was then baked on a hot plate set to 95° C for 4 minutes and then 

cleaved from the center where the resist is mostly uniform to accurately observe the thickness when cross-

section sample imaging done using a JEOL 7600 SEM. Figure 4.17 demonstrates a plot of the average 

thickness that was recorded for each spinning speed.   

The thinnest HSQ sample (spin speed 6000 rpm) was used toward the end of this optimization 

procedure. This was mainly due to the limitation of the electron beam energy of the available e-beam 

lithography system as the maximum beam energy of 30 kV can be achieved using this tool and thicker 

HSQ layers require energies higher than 30 kV. For 6000 rpm spin speed, the HSQ thickness was around 

267 nm. At the beginning, and in order to develop an exposure recipe for this thickness, a DesignCAD 

file was generated to produce a triangular photonic crystal lattice of HSQ rods upon development. In this 

file, the dose was first varied from 100 μC/cm
2
 to 600 μC/cm

2
. The reason for this wide range was mainly 

due to the fact that an accurate approximate dose was not yet known. Figure 4.18 demonstrates SEM 

images of the different doses.  The optimal dose was found to be in the range between 285 and 315 

μC/cm
2
. This range produced the best features with dimensions very close to the designed dimensions. 

For this sample, a development time of 11 minutes in MF CD-26 (Shipley) was used based on ref. [65] in 

which a diluted FOx-14 HSQ resist was used and an 8-mintute developed was done.   
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In order to reach a decision of whether the range between 285-315 μC/cm
2
 is indeed the best dose 

range for FOx-14 of approximately 235 nm thickness, a development optimization process was done. In 

this process, the pattern dosage range was varied between 270-360uC/cm
2
 and 4 samples were written 

using e-beam lithography and developed in MF CD-26. Four development times were studied for this 

experiment: 5 minutes, 8 minutes, 12 minutes, and 18 minutes. These different development times were 

selected based on the initial results that were observed. For example, in Figure 4.18, it is clear that 11 

minutes of development was sufficient to observe an HSQ patterns for the whole dose range from 100 to 

600 μC/cm
2
. However, at doses lower than the desired range (285-315 μC/cm

2
), the HSQ pillars were 30 

nm smaller than the actual diameter. On the other hand, doses higher than the desired range demonstrated 

regions of undeveloped HSQ between the pillars which indicates that the beam energy was high and 

caused proximity exposure effect. The desired range showed patterns within tolerable shifts from the 

desired dimensions as well as almost complete development of the HSQ pillar. The results of the different 

development times are summarized in the SEM images of Figure 4.19. 

 

 

 

Figure 4.17. Spin speed vs. thickness in nanometer for HSQ (FOx-14) 
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It is obvious from Figures 4.19 and 4.20 that development time of 5 minutes and 8 minutes were not 

sufficient to fully resolve the exposed HSQ pillars. On the other hand, a development time of 18 minutes 

caused a serious distortion in the shape of the HSQ pillars within the desired range. Twelve-minute 

development resolved the best anisotropy of features‟ side walls as well as the best desired dimensions 

(diameter ~ 260 nm). 

However, the main objective of this work is to demonstrate the ability to use HSQ as a hard etching 

mask when etching semiconductor materials such as: GaN and Silicon. The main objective is to transfer 

the top layer of the HSQ pattern into an oxide layer that can withstand prolonged dry etching processes. 

This is normally done by oxygen plasma treatment step after the development of the HSQ and before the 

etching step. The HSQ O2 treatment was done in a March PX-250 Plasma Asher. The plasma parameters 

were as follows: 300 W power, 300 mTorr pressure, 38 O2 gas set point, and 600 seconds. After the 10-

minute plasma treatment step, the Si sample was then etched using two CF4/O2 gas mixtures for 60 

seconds. Figure 4.21 demonstrates SEM images of these two etching results. 

Figure 4.18. SEM images demonstrating the exposure-recipe optimization patterns. Dose range is from 

100-600uC/cm2 and development time is 11 minutes. Zoomed-in SEM images of the boxed regions in the top 

left SEM image are shown in the numbered images 1, 2, and 3. 
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Figure 4.19. SEM images of the desired range of doses over different development times; 5, 8, 

12, and 18 minutes (1st, 2nd, 3rd, and 4th row respectively) 
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For both etching recipes, the following parameters were kept constant: 400 W ICP power, 150 W 

RIE power, and 10 mTorr chamber pressure. However, for the first sample whose results are 

demonstrated in the top row of Figure 4.21, a 27/3 – CF4/O2 gas mixture was used. After 1 minute of 

etching using this recipe, the Si pillar depth was measured to be approximately 164 nm while the HSQ 

was totally removed to achieve a selectivity of 1/0.7 (HSQ/Si). The second etching recipe used a 18/2 

CF4/O2 gas mixture. After 1 minute of etching, the HSQ mask was etched away but the Si pillar had a 

depth of approximately 218 nm. The selectivity for this second recipe is 1/0.75 (HSQ/Si).  

The successful etching results demonstrated in Figure 4.21 prove the ability of HSQ to act as a silica-like 

mask when etching underlying substrates. However, the patterns shown in the figure are for these of 

silicon pillars surrounded by air. It will be very convenient to develop also exposure and development 

recipes of the inverse of that pattern in order to achieve final structures of holes in silicon. To accomplish 

this with HSQ‟s negative-tone behavior, a DesignCAD file must be designed with stitched features that 

will cause the beam to turn on and expose the surrounding region of the holes and not the holes 

themselves as was done previously. After development, the pattern in HSQ is expected to be a mesa-like 

structure of a two-dimensional photonic crystal of air holes in HSQ. The concept is clarified in Figure 

4.22. The optimal dose to achieve the desired dimensions was found to be ~ 290 μC/cm
2
 while the 

optimal development time was around 60 minutes. Figure 4.23 demonstrate SEM images of a fully 

resolved inverse pattern. A CF4/O2-plasma was used again to etch the features and produce the final 

structures in silicon. The remaining HSQ was removed by dipping the sample in HF followed by a rinse 

with DI water. Figure 4.23 demonstrate the mesa-like PhC structures in silicon. 

 

 

Figure 4.20. SEM images showing (left) a 90° cross-section image of a 315μC/cm2 dose of HSQ on 

silicon and 12-minute development. (Right) A top view of the pattern. 
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Figure 4.21. SEM images showing the final structure Si pillar etched using HSQ as a hard mask. Left column 

demonstrates images of etched silicon using a 27/3 (CF4/O2) etch recipe while the right column shows SEM images 

of etched Si using a 18/2 (CF4/O2) etch recipe 



104 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22.Inverse pattern writing technique using single unit stitching method when creating 

the DesignCAD file 
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Figure 4.23. SEM images of the mesa-like PhC pattern in HSQ. Images (1) and (2) represent tilted are zoomed-in 

images of the dashed regions in the top left SEM image. (3) a top-view SEM image of the mesa edge. Scale bar is 100 

nm in all images except for image (2) in which the scale bar is 1 μm 

Figure 4.24. Tilted SEM images of the final fabricated PhC structures in silicon using HSQ as a mas. (1) 70° angle 

(2) 80° angle 
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In order to compare HSQ‟s performance as a negative tone electron beam resist as well as a hard etching 

mask to other ordinary polymer electron beam resists, ma-N 2403 (MicroResist Technology GmbH) and 

PMMA 950K A3 (MicroChem) were used. For ma-N experiment, the resist was spun at 5000 rpm for 50 

seconds and baked on a hot plate set to 95° C for 3 minutes to achieve a thickness of approximately 240 nm. 

The optimal electron-beam dose was approximately 63 μC/cm
2
 for this resist. The sample was then developed 

in ma-D 525 for 70 seconds before it was hard baked on a hot plate set to 100° C for 1 minute. The sample was 

then etched using the same etching parameters as explained above for the treated HSQ samples. After the 

etching step, the sample was dipped in Remover PG (MicroChem) set to 65° C for 15 minute, rinsed with DI 

water and then dried with a Nitrogen gun. The etched features were observed using a JEOL 7600 SEM. Figure 

4.24 (1) demonstrates the final etched structures in silicon. This image demonstrates the poor etch selectivity 

of ma-N to silicon as the height of these features was measured to be approximately 140 nm (0.58 etch 

selectivity). Moreover, the isotropic side walls demonstrate ma-N‟s failure to act as a hard etching mask when 

compared to the well defined pillars produced by HSQ in Figure 4.21. 

As for the PMMA experiment, the sample was first cleaned and then spun with the PMMA resist at 5000 

rpm for 50 seconds before it was soft baked on a hot plate for 90 seconds at 180° C to achieve a final thickness 

of approximately 80 nm. A PhC pattern was then written using a JEOL 7600 EBL tool at a 330 μC/cm
2
 area 

dose. The sample was then developed in a Methyl Isobutyl Ketone and Isopropyl Alcohol solution mixed in 

a 1:3 ratio (MIBK:IPA) followed by a 20 second rinse in IPA. The sample was then hard baked in on a hot 

plate at 100° C for 1 minute and then etched using the sample etching parameters discussed above. The final 

etched features in silicon were analyzed using a JEOL 7600 SEM tool and a final thickness of the etched 

features was measured to be approximately 25 nm. Therefore, demonstrating a poor etch selectivity of about 

0.31 using this resist. Fig. 8 demonstrates a tilted SEM image of the final fabricated PhC features of holes in 

silicon using PMMA as a resist.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.25. (1) Tilted SEM image of the Si pillars that were achieved when using maN as a hard etching mask. (2) The  PhC 

structure in silicon using PMMA as a hard etching mask. 
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4.6 POLYMER-BASED PHOTONIC CRYSTALS 

Thin film semiconductor materials are commonly utilized as substrates in the fabrication of PhCs for 

sensing platforms due to the large refractive index contrast between these materials and the aqueous 

solution of the target analytes. This large refractive index contrast makes it easier to design a PhC that has 

a complete photonic bandgap. In the previous section, the fabrication processes to produce these nano-

scale features were demonstrated. However, integrating small pieces of solid materials with polymer-

based microfluidic structures is a complex procedure. Microfluidic structures in biosensors are primarily 

fabricated via soft-lithographic techniques in biocompatible materials, which are not readily amenable to 

the inclusion of sections of semiconductor wafer material containing suspended PhC films less than 

500nm thick. In fact, most polymers are considered relief structures to smooth semiconductor surfaces 

and that creates an issue if these semiconductor samples are expected to become stable core structures 

within a channel. It can be accomplished, but this integration step will significantly increase the final cost 

of system that utilizes this type of transducer, making them less attractive from a marketing standpoint 

[72-75].  

PhC lattices fabricated in polymer materials can provide solutions to the previous limitations. 

Polymer materials are relatively cheaper than semiconductor materials and can be mass produced using 

the much simpler soft lithographic micro-scale-based techniques. In chapter 3, partial bandgaps were 

observed for PDMS and Epoxy for two dimensional triangular PhC lattices. The existence of a bandgap 

allows the 2D PDMS- and Epoxy-based PhC structures to be incorporated in biosensors utilizing either 

the active or passive modality. In the passive modality, the PDMS PhC slab can replace the Si slab and 

resonant cavities can be tuned for frequencies that fall within the narrow bandgaps to observe 

fluorescence enhancement. On the other hand, in the active modality, PDMS PhC structures can act as 

narrow transmission or reflection structures that can be tuned to display shifts when target analytes adsorb 

to the surface of a high RI material deposited on them [26] or to walls of the PhC pores [24]. 

Soft lithographic techniques, in general, and replica molding techniques, in specific, have 

successfully achieved sub-micron features in polymers only when the molded structures are about 1 μm 

apart (low density features). Achieving this molding process in the nano-scale to allow for high density 

features to be molded from master mold samples repeatedly is the focus of this and the next two sections. 

Surface treatment and high vacuum are the two main critical steps to achieve this new scale of molding. 

   

 

 

 



108 

 

4.6.1 PDMS-Based Photonic Crystals 

 

Poly (dimethylsiloxane), or PDMS, is an elastomer that is considered a very common relief structure 

in soft lithography [72-75]. It has a unique combination of properties resulting from the presence of an 

inorganic siloxane backbone and organic methyl groups attached to silicon. This allows it to have a very 

low glass transition temperature and it is fluid in room temperature and can be readily converted into solid 

elastomers by cross-linking via heat [72].  

PDMS is desirable for our application since the ultimate goal of this project is to produce a portable 

lab-on-a-chip rapid DNA detection system incorporating microfluidic channels which are mostly 

fabricated in PDMS. Therefore, if the integration step of these channels with PhC lattices can be made in 

a single step that does not involve several microfabrication processes or related instrumentation, then 

from a marketing stand point, this is very desirable. However, the replica molding still requires a master 

mold containing the negative pattern to start with. To achieve this, e-beam lithography was used to create 

only one master mold fabricated in silicon that could be used to produce several molded samples in 

PDMS.  

To produce holes in PDMS, a silicon master containing pillars was first fabricated. The procedure to 

accomplish this first task is explained in section 4.5.2. Transferring the inverse pillars-in-air pattern into a 

PhC structure of air holes in PDMS was accomplished by first mixing PDMS and a curing agent in a 15:1 

ratio, respectively. The mixture was then poured on top of the Si master-mold sample in a plastic Petri 

dish. To degas the PDMS and remove air bubbles and ultimately allow the relatively viscous PDMS to 

flow in-between the pillars, the Petri dish was put inside a desiccator connected to an XD-5 Edwards 

scroll pump to achieve high vacuum for 5 minutes (~ 10
-2

 torr). After 5 minutes, large bubbles can be 

clearly noticed on the top surface of the poured PDMS but a slow venting procedure of the desiccator 

quickly removed these bubbles. At this time, the sample was ready for curing and the Petri dish was 

transferred to an oven set to 60° C for 3 hours. At the end of the curing period, the Petri dish was taken 

out of the oven and left to cool down for 5 minutes before the PDMS was slowly peeled off the master 

mold to obtain the final PhC structure of air holes in PDMS. Figure 4.26 demonstrates this fabrication 

process while Figure 4.27 demonstrates SEM images of the master mold and the final molded structures. 

When the degassing step was done using house vacuum, the molded PDMS PhC structures were not fully 

resolved holes as can be seen in Figure 4.28. That demonstrates how critical the low pressure degassing 

step to the overall success of this method. 

Examining the final PhC lattices in PDMS using SEM was a challenging task due to charging 

effects. Charging is considered a major hurdle in the generation of good SEM images when examining 

dielectric polymer materials. This effect is mainly due to the accumulation of excess electrons on the 
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surface of the sample. In a conductive or semiconductor sample, the electron beam normally goes into the 

sample and out through the electrical grounding of the specimen holder. In the case of polymers, this is 

not the case. Instead, electrons accumulate on the surface and create an electric field that deflects the 

secondary electrons that are critical to produce a high resolution image. Normally, coating the surface 

with a very thin layer (in the Angstrom scale) of metal, such as gold or platinum, fixes this charging 

effect. However, for a bulk polymer material, such as PDMS, this coating step alone must be tweaked to 

achieve decent images. An in-detail explanation of a proposed solution that successfully helped in 

characterizing the molded structures is demonstrated in Appendix C.  

To demonstrate the reliability and mold robustness of this method, the same Si master mold was used 

several times and the procedure explained above was repeated for at least 5 times to mold 5 different 

PDMS samples with sub-micron PhC lattices of air holes. Figure 4.29 demonstrate SEM images of the Si 

master mold after the 5 molding experiments while Figure 4.30 demonstrates SEM images of the 5 

molded PDMS PhC samples. It is obvious that even after 5 molding experiments, the master mold can 

still be reused and no sign of PDMS traces were identified.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26. Fabrication procedure to achieve a final photonic crystal lattice of air holes in PDMS. (1) 

PMMA spin coating, (2) e-beam lithography, (3) PMMA development, (4) Ni thin mask deposition, (5) Ni 

lift off and dry etch of Si, (5) removal of Ni mask. (6) PDMS molding, (7) final PhC structure in PDMS 
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Figure 4.27. Optical and SEM images of the Si master (left column images) and the molded PDMS sample 

(right column images) containing the sub-micron PhC lattice.  
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Figure 4.28. Un-resolved PhC lattice of air holes due to the use of low vacuum during the degassing step 

Figure 4.29. SEM images of the Si master mold containing pillars with r=150 nm, a=450 nm (spacing of 150 nm), and 

h=460 nm. (1) top view. (2) tilted image of the full block, (3) the tips of the Si pillars, and (4) the full Si pillars  
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Figure 4.30. SEM images of the 5 molded PDMS samples using a single Si master. 

Observed distortions are due to charging effects and cracking of PDMS during the 

sputtering step. For 5th mold, a top view of the full pattern area is shown 



113 

 

Si 
Master

PDMS

Mold # 1 Mold # 2 Mold # 3 Mold # 4 Mold # 5 Average Diameter Percent Deviation

300 nm 177nm 171nm 167nm 174nm 172nm 172.2 nm 42.2% decrease

 As explained earlier, capturing the SEM images shown in Figure 4.30 was a challenging task due 

to charging effects. However, sputtering approximately 40 nm of Platinum using the procedure explained 

in Appendix C helped to significantly reduce this effect. Never the less, some charging effect combined 

with the cracking of the thin Ni layer on top of the flexible PDMS sample when mounting it on the SEM 

holder upon imaging caused the obvious distortion in the shape of the circular holes. The diameter of 

several perfect circular holes in each mold was recorded. These dimensions are tabulated in Table 4.3. 

Approximately for all of the 5 molds, the diameter of the holes was around 170 nm which is 130 nm less 

than the diameter of the pillars in the master mold. This big deviation in the diameter can be attributed to 

the thick layer of Ni that was deposited to properly characterize the PDMS sample using electron-beam 

microscopy. Moreover, shrinkage of the PDMS sample upon its release from the master is also expected 

to play a significant role in affecting the resolution of this soft lithographic technique. 

 

 

 

 

   

 

 

4.6.2 Epoxy-based Photonic Crystals 

 

Another polymer material in which photonic crystal lattices fabricated in the nano-scale would be 

desirable is epoxy. Epoxy has a higher refractive index than PDMS and therefore, its partial bandgap can 

be designed to be wider than that for PDMS. Biocompatible thermally curable epoxy is commercially 

available from Epoxy Technology®. More specifically, the soft lithographic study conducted here is 

mainly done on the EPO-TEK 301-2 Optical Epoxy. It is a two-component biocompatible and non-toxic 

epoxy that is commonly incorporated in the fabrication of Lab-on-a-Chip systems. In this section, the 

ability to produce nano-scale high-density photonic crystal structures that can potentially become core 

biocompatible structure of an ultra-sensitive photonic crystal-based biosensor is demonstrated.  

The ability to resolve bandgaps for epoxy allows their incorporation in biosensors utilizing both the 

active and passive modalities. In the passive modality, the epoxy PhC slab can replace the Si slab and 

resonant cavities can be tuned for frequencies that fall within the bandgaps to observe fluorescence 

enhancement. As for the active modality, epoxy PhC structures can act as narrow transmission or 

reflection structures that can be tuned to display shifts when target analytes adsorb to the surface of a high 

RI material deposited on them [26] or to walls of the PhC pores [24]. 

Table 4.3. The actual dimensions of the diameter of the mater Si pillars and of the holes of the 5 

molded PDMS PhC structures 
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In order to achieve sub-micron features in epoxy, the procedure is a little more complex than that for 

PDMS. The reason is mainly due to the fact that epoxy, once cured, becomes highly adhesive to the Si 

master mold and peeling it off becomes an impossible task. In order to overcome this obstacle, PDMS can 

act as an intermediary master which is easily peeled off the epoxy molded structure. However, this means 

that the PDMS structure should contain the inverse pattern of what is desired to be finally produced in 

epoxy. This also means that the starting Si mold should have the exact same pattern as that of epoxy. For 

example, to produce epoxy pillars, the Si master mold must also contain Si pillars which will in turn 

produce PDMS holes that act as a master when molding the epoxy.   

To produce a final sub-micron PhC lattice of epoxy pillars surrounded by air, the fabrication 

procedure to produce the Si master of pillars surrounded by air is explained in section 4.5.2 and the 

molding procedure of the intermediary PDMS mold is explained in section 4.7.1. Once the PDMS mold 

with air holes was generated, Part A of the EPO-TEK 301-2 Epoxy was mixed with part B in a 100:35 

ratio for two minutes at 2000 rpm. Few droplets of the epoxy solution were then poured on the PDMS 

region that contains the inverse photonic crystal structure. The Petri dish containing the PDMS master 

and the top liquid epoxy were then put inside a desiccator connected to an XD-5 Edwards scroll pump for 

a degassing step for 5 minutes. At the end of this period, to remove the air bubbles that accumulate on the 

surface of the epoxy, slow vacuum release was done. It is important to note that degassing of Epoxy is a 

relatively harder task than that for PDMS. Therefore, it is possible that some air bubbles would still exist 

in the epoxy mold at the end of the degassing period. 

At this stage, the Petri dish was transferred to an oven set to 60 degrees and left to cure for at least 5 

hours. The Petri dish was left to cool down and then the hard clear epoxy was peeled off the PDMS 

master. Figures 4.31 and 4.32 demonstrate this soft lithography fabrication procedure and descriptive 

SEM images of the initial molded epoxy PhC samples. When the final degassing step was done using 

house vacuum, the molded epoxy PhC structures were not fully resolved as shown in Figure 4.33. The 

process explained above was repeated 5 times using the same PDMS master mold sample. SEM images 

of the successful molding results after each step are demonstrated in Figure 4.34. 

As explained in the previous section, analyzing the molded structures using SEM was a challenging 

task due to charging effects. However, sputtering approximately 20 nm of Platinum using the procedure 

explained in Appendix C helped to significantly reduce this effect. Never the less, some charging effect 

still caused the obvious distortion in the shape of the circular pillars. The diameter of several near-to-

perfect pillars in each mold was recorded. These dimensions are tabulated in Table 4.4. Approximately 

for all of the 5 molds, the diameter of the holes was around 296 nm which is only 4 nm less than the 

original master mold and 20 nm less than the intermediate PDMS master mold. These results are much 

closer to the target diameter due to the fact that the intermediate PDMS mold was not sputtered and 
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Si Master PDMS Master Epoxy

Mold # 1 Mold # 2 Mold # 3 Mold # 4 Mold # 5 Average Diameter Percent Deviation

300 nm 316 nm 295nm 294nm 290nm 310nm 294nm 296.6 nm 1.14%

therefore, the size deviation that was observed in the previous section will not have an effect on the 

molded epoxy samples. However, shrinkage or expansion of the molded structures can still attribute to the 

deviation of the dimensions from their designed targets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.31 (1) PMMA resist spin coating on the first Si mold, (2) E-beam Lithography, (3) Development of the 

PMMA resist, (4) Ni mask deposition using E-beam Evaporation, (5) Ni mask lift off and dry etch of the Si 

substrate, (6) Removal of the Ni mask layer, (7)-(8) molding of the PDMS to create the inverse pattern, (9) 

Pouring Epoxy on the PDMS master and curing it in an oven set to 60C for 5 hours (10) Final PhC structure in 

Epoxy 

Table  4.4. The diameter of the mater master mold features and of the pillars of the 5 molded 

epoxy PhC structures 
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Figure 4.32 (1)-(2) SEM images of the final sub-micron PhC lattice of epoxy pillars surrounded by 

air, (3)-(4) SEM images of the final sub-micron PhC lattice of air holes in epoxy when a Si master 

with holes is used instead of pillars 

Figure 4.33 (1) Un-resolved epoxy pillars due to the use of low vacuum during the degassing step (2) resolved Epoxy 

pillars due to the use of a XD-5 Edwards scroll pump during the degassing step 
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Figure 4.34. SEM images of the 5 molded epoxy samples using a single Si and PDMS master molds. Observed 

distortions are mainly due to charging effects. For the 5th mold, a top view of the final molded PhC area is shown 
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CHAPTER 5: OPTICAL CHARACTERIZATION 

In the previous chapters, the effect of periodic photonic crystal lattices on propagating 

electromagnetic waves has been discussed. The periodically varying dielectric constant of the photonic 

crystal slab prohibits a specific range of wavelengths from propagating through the lattice. Therefore, if a 

labeled molecule becomes trapped within a slab PhC and starts to emit light that falls within the bandgap 

of this lattice, a confinement of this emission is expected to be observed. Without resonant defect cavities, 

this confinement should exist only within the PhC region and decays in the background surrounding the 

lattice. Once a resonant cavity is introduced and the labeled molecules are forced to emit only from inside 

those cavities, then spatial confinement of the emission can be localized in the resonant cavity and larger 

enhancement factors are possible due to the fact that the low modal volume cavities can potentially lead 

to higher emission rates as theorized by the Purcell effect [76,77]. 

An optical characterization experiment was designed in order to prove that slab photonic crystals can 

prohibit in-plane propagation of wavelengths that fall within its bandgap and induce an enhancement of 

this emission. The experiment centers on nano-scale molecules that can emit a specific wavelength or 

range wavelengths that fall within the photonic bandgap, specifically, PbS Quantum Dots obtained from 

Evident Technologies. Characteristics of these quantum dots are summarized in Table 5.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.1. Characteristics of the IR-emitting QDs that were used in the optical 

characterization experiment of the PhCs (Evident Technologies) 
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The 141 nm FWHM indicates that these QDs are not monodispersed (monosized) particles. Their 

size distribution is normally calculated by either modeling a specific approximate size distribution 

surrounding the emission peak and then fitting that modeling result to emission spectra, or simply by 

carrying out Transmission Electron Microscopy measurements. These nanoparticles are very desirable for 

our experiment due to two main reasons:  

 

1) The wide separation between the excitation and emission peaks of tens or hundreds of nanometers 

allows the design of a PhC lattice where the excitation beam can fall outside of the bandgap and 

therefore is not expected to be enhanced while only enhancing the emitted light. Using an 

Applied Nanofluorescence NS1 NanoSpectralyzer, the absorption and emission spectra were 

measured for a clear diluted sample of the Quantum Dot solution. The absorption and emission 

spectra are demonstrated in Figure 5.1.   

  

2) Moreover, the PbS quantum dots are approximately 7 nm in diameter suspended in the low 

viscous toluene solvent. This will allow the suspended QDs to flow through the PhC slab, at least 

through a slab of high dielectric rods as will be discussed later in this chapter.  

 

In Figure 5.1, the peak emission of the IR-emitting QDs is around 1100 nm and therefore, any lattice with 

partial, directional, or complete photonic bandgap must be designed to have this emission to fall within 

the bandgap. When the QDs emit from within the photonic crystal slab, the emission is expected to be 

confined to the boundaries of the slab as long as it falls within the in-plane photonic bandgap. If the PhC 

lattices is made of at least 14 periods, as was discussed in Chapter 3, then leakage of this emission is 

expected to be only in the vertical direction above and below the slab.  

In order to perform the experiment, an Olympus inverted microscope setup was used as shown in 

Figure 5.2. A droplet of the QD solution was placed on a thin glass slab on the microscope and a PhC 

sample was flipped and slowly placed on the droplet. This allowed the PhC lattice on the top surface of 

the SOI or Si sample to become immersed by the toluene solvent where the QDs exist in suspension. The 

inverted optical microscope setup focuses a 250 mW 514 nm excitation beam on the PhC region to excite 

the QDs that are within and above the slab. A dichroic mirror with filter cutoff frequency of 950 nm is 

placed in the path of the emitted light to allow only the desired wavelengths to pass to a Goodrich short-

wave infrared (SWIR) camera  
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Figure 5.1. The absorption (1) and emission spectra (2) of the PbS QDs 

Figure 5.2. Optical setup to observe fluorescence enhancement 
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5.1 CHARACTERIZATION OF A FINITE-THICKNESS SLAB OF A TRIANGULAR LATTICE 

OF TOLUENE-FILLED HOLES IN SILICON 

Fabricating suspended photonic crystal triangular lattices of air holes in Si was performed as 

explained in section 4.5.1. The optical characterization experiment was conducted on a sample with 

radius         and height       . The band diagrams of an infinitely thick representation of this 

lattice as well as a finite-thickness representation are shown in Figure 5.3. In both diagrams of Figure 5.3, 

a bandgap can be observed. In the infinitely thick slab of triangular toluene-filled holes within Si 

demonstrates a complete TE bandgap. TM bandgaps for this lattice do not exist. On the other hand, for a 

finite-thickness slab of toluene-filled holes in Si, only a directional bandgap in the M to K direction can 

be observed. If the toluene holes are replaced with air, then a complete bandgap is observed. However, it 

is important to consider the real setup in which the PhCs are expected to operate, so it makes sense to 

only consider PhC slabs in toluene as the air condition is an ideal case that will not be practical to our 

application.  

The band diagram of a slab photonic crystal with r/a=0.35 and h/a=0.9 shows that the normalized 

frequency 0.25 falls within the bandgap. Designing the lattice parameters for QD emission of 1100 nm to 

be within this bandgap and represent this frequency results in the lattice constant (a) of ~279 nm, lattice 

hole radius (r) of ~98 nm, and slab thickness (h) of ~251 nm. This thickness is very close to the original 

SOI top layer Si thickness of around 260 nm. Once these dimensions were determined, a DesignCAD file 

was created. It is important to distinguish PhC bandgap effect enhancement due to in-plane confinement 

from that of regular QD aggregation inside the PhC. Therefore, a lattice with parameters that fall below 

the desired bandgap and another with no bandgap are all fabricated in close proximity to the one with a 

bandgap. Figure 5.4 demonstrates SEM images of the different fabricated structures. 

 

 

 

 

 

 

 

 

 

 

 Figure 5.3. Band diagrams of (1) an infinitely-thick PhC and (2) finite-thickness slab with r/a=0.35 and h/a=0.9 
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Moreover, the structures of Figure 5.4 are fabricated twice. The first time, these structures are 

fabricated on a SOI wafer to allow for a symmetric material architecture for the PhC lattice, which is very 

critical in setting up complete photonic bandgaps for the guided modes within the slab. The second time, 

these structures are fabricated on a regular Si wafer, creating an asymmetric architecture with the Si 

substrate below the PhC structure and toluene within it and above it. This break of symmetry will cause 

the modes to be couple into the bulk semiconductor region below the slab, and no bandgaps are expected 

to be observed for either lattice.  

When the experiment was conducted while the quantum dots solution is still present, both the 

symmetric and asymmetric lattices appeared dark with no noticeable distinguishing enhancement effect 

for the lattices with a photonic bandgap. Figure 5.5 illustrates the optical measurement results side by side 

for both the SOI and Si samples. It can be observed that all three structures are darker than the 

surrounding background, even when background fluorescence is removed. This is the opposite of what 

was expected to be observed for the SOI PhC lattice with a photonic bandgap that surrounds the 1100 nm 

emission. However, it is important to mention that the SOI PhC lattices are suspended in air. It is possible 

that the trapped air underlying the slab prevents the toluene-suspended QDs from flowing through the 

slab. Moreover, if the QDs do emit from within the slab, then using a high dielectric slab with low 

dielectric holes, the confinement of the emitted light is expected remain within the slab as the suspended 

Figure 5.4. SEM image of the suspended PhC structures. Top rows are identical PhC lattices designed for 

1100 nm to be within their bandgap. Middle row are identical PhC lattices in which the 1100 nm emission 

falls below their bandgap. Bottom row demonstrates a repeated, identical random lattice with no bandgap. 
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PhC lattices with vertical symmetry are normally fabricated as optical waveguides. This again will 

prevent the observation of any enhancement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. Optical characterization results of a (1) suspended and (2) an un-suspended PhC lattices of holes in Si 

fabricated in SOI and Si samples, respectively. (3) The background image of an area close to the PhC lattice. (4) SOI 

after background subtraction. (5) Si (unsuspended) after background substraction 
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5.2 CHARACTERIZATION FINITE-THICKNESS PHOTONIC CRYSTAL SLABS OF A 

TRIANGULAR LATTICE OF SI PILLARS SURROUNDED BY TOLUENE 

 

In order to overcome the obstacle observed in the previous section when characterizing PhC slabs of 

holes, an inverse lattice of pillars surrounded by low dielectric background is advised. This structure is 

expected to be more suitable for wet experiments since the toluene-suspended quantum dots will be able 

to flow easier through the plane of pillars, and there will be no need to force them to flow into small 

volumes as in the case with slabs of air holes. However, to create a PhC lattice with suspended pillars 

surrounded fully by toluene is not possible. There must be something to support the pillars. It has been 

previously theoretically demonstrated that once the PhC structure becomes „extruded‟ to a layer that 

separates it from the bulk material, then photonic bandgaps for the guided modes within this slab can be 

observed [**]. When using a SOI wafer, this extrusion extends from the top Si layer to the underlying 

sacrificial SiO2 layer.   

To achieve this structure, the fabrication process detailed in section 4.5.2 was used to fabricate 

pillars of Si in the top Si layer of an SOI wafer. However, in order to lower the effect of the refractive 

index of the underlying SiO2 layer, the PhC structure is etched for a longer period and therefore a lower 

effective refractive index can be introduced when the whole structure becomes immersed in the toluene-

suspended QDs.  The band diagrams of an infinitely thick structure of Si pillars in toluene and that of a 

finite-thickness slab of Si pillars suspended by an effective refractive index of toluene are shown in 

Figure 5.6.   

 

 

  

 

 

 

 

 

 

 

 

 

 

 
Figure 5.6. (1) The band diagrams of  a finite-thickness slab of Si pillars surrounded by toluene background (2) A two 

dimensional cross-section representation of the PhC structure with the underlying SiO2-Toluene effective dielectric region 
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Once again, in order to distinguish fluorescence enhancement caused by a photonic bandgap effect 

from a possible aggregation within the PhC regions, several structures are fabricated. One of the 

structures possesses a bandgap surrounding the 1100 nm emission with r/a ration of 0.33. A triangular 

lattice of Si pillars with an r/a ratio of 0.2 is placed adjacent to this structure,. This lattice should have no 

bandgap. The other two structures below them contained triangular and rhombus lattices of the exact 

same density as that of the bandgap lattice and a defect region to allow for more quantum dots to be 

present in the lattice to observe the aggregation effect. The same structure is fabricated on another regular 

Si sample. This will serve as an asymmetric „control‟ representation of the SOI lattices which are 

expected lack bandgaps no enhancement effect on the fluorescent emission. Figure 5.7 demonstrates SEM 

images of each of the fabricated lattice within the SOI sample. 

When the optical characterization experiment is carried out with the quantum dots still suspended in 

their toluene solvent (i.e. before evaporation), the PhC regions with directional bandgap appeared to be 

brighter than the surrounding. An image of this enhancement is captured along with a co-located image of 

the fluorescent background was also captured to allow for background noise subtraction. The results are 

demonstrated in Figure 5.8. The final image after the removal of background noise demonstrated no 

enhancement for the lattices for which the 1100 nm emission is not within their bandgaps. By taking 72 

random pixels of the PhC region and another 72 pixels of the background surrounding PhC, the two pixel 

intensity sets were averaged and then divided by the background level to demonstrate at least 27-fold 

emission enhancement. Figure 5.11 illustrates the image analysis to observe this enhancement factor. 

After 10 minutes, the toluene fully evaporated and all PhC lattices were observed to be brighter than 

the surrounding background. This can be attributed to the aggregation of the quantum dots in between the 

PhC rods. An image of this aggregation after background removal is shown in Figure 5.10. On a gray 

scale between 0 and 255, the average pixel intensities of the three different PhC bright lattices were all 

around 120. Therefore, this enhancement cannot be attributed to a photonic bandgap effect but due an 

aggregation effect of having more quantum dots trapped inside the PhC regions compared to flat 

surrounding regions, resulting in an apparent, relative increase in emission. This occurs due to the fact 

that the PhC lattices all contained pillars that increased the surface area of these regions relative to the 

surrounding flat regions. Therefore, when the toluene solvent evaporates and the much smaller quantum 

dots start to adsorb to the Si surface, the PhC regions will have more coverage of the QDs that would 

result with more emission and a brighter observed gray color. 
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Figure 5.7. SEM images of the fabricated PhC lattices fabricated in one field of view for characterization. (Top) SEM image 

showing the four different lattices with boxes numbered 1 through 4. (1) SEM image for the structure of box No. 1 with a 

photonic bandgap surrounding the 1100 nm emission. (2) Triangular lattice with r/a=0.2 and no bandgap surrounding the 1100 

nm. (3) A random square lattice with no bandgap. (4) A random triangular lattice with no bandgap. Insets are zoomed-in 

images of each lattice. 
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Figure 5.8. Cropped optical image of the (1) PhC lattices region as well as the (2) background and 

the (3) final image after background subtraction. Red boxes indicate regions where other PhC are 

fabricated with no bandgaps and hence no enhancement. 
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Figure 5.9. Optical images as captured by a Goodrich IR camera of the region containing the PhC lattices as toluene evaporated. 

(1) After 30 seconds of placing the sample on the toluene droplet. (2) After 1 minute. (3) After 5 minutes. (4) After 10 minutes 

Figure 5.0.10. The different PhC lattice as they appear after the evaporation of 

the QD solution and after the removal of the background removal. All lattices 

appear to be brighter due to the aggregation of the QDs within the pillars 
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Figure 5.11. (Top) Optical image captured using the Goodrich IR camera with the MATLAB line profile 

in yellow. (3) Pixel intensity profile as plotted using MATLAB indicating the average peak height of 61 

while an average background intensity of 2.2. 
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CHAPTER 6: SUMMARY AND FUTURE DIRECTIONS 

In this work, the unique properties of photonic crystals are utilized to prohibit the in-plane 

propagation of emitted light from fluorescent molecules for the purpose of achieving an enhancement of 

this emission by forcing it to propagate outside of the photonic crystal plane where a detector is placed. 

This occurs due to proper design of the photonic crystal dimensions, focused on placing the bandgap 

around the emission wavelength of the fluorophore, thereby prohibiting in-plane propagation of this 

energy.  

MIT Photonic Bands (MPB) and MIT Electromagnetic Equation Propagation (MEEP) simulations 

were performed to gain information regarding bandgap locations and widths, resonant cavity frequencies, 

and enhancement factors. Unit-less dimensions were extracted in the form of critical dimensions used for 

device fabrication. The modeling results of silicon, PDMS, and epoxy lattices indicated that wider partial 

TE or TM bandgaps can observed for triangular photonic crystal lattices of either drilled low-dielectric 

holes in a high-dielectric slab or high-dielectric rods surrounded by low dielectric background. Finite-

thickness bandgaps for PDMS and epoxy were not observed due to the low refractive index of these two 

materials. 

Translating the modeling results into actual nano-scale photonic crystal structures was done by 

following a series of fabrication processes mostly in a cleanroom facility. The fabrication processes of Si-

based PhCs yielded dimensions that deviated from the designed dimensions by very few nanometers. 

However, the complexity of these processes can significantly increase the final cost of the proposed 

detection system. Therefore, soft lithographic techniques were also developed and discussed to achieve 

high-density sub-micron scale photonic crystals in PDMS and epoxy. The molded PDMS PhCs were 130 

nm smaller in diameter than the designed parameters due to possible shrinkage of the molded samples 

after their release. On the other hand, the molded epoxy PhCs deviated by only 1.14% from the target 

dimensions.  Optical characterization was done using IR-emitting quantum dots. A 27- fold fluorescent 

enhancement was observed when characterizing a PhC lattice of silicon pillars surrounded by toluene.  

 

4.1. FUTURE DIRECTIONS FOR FINITE-THICKNESS SEMICONDUCTOR-BASED 

PHOTONIC CRYSTALS 

 

The promising modeling, fabrication, and optical characterization results of finite-thickness slab 

photonic crystals fabricated in silicon motivate the continuation of the work in this field to integrate these 

structures with waveguides and biocompatible microfluidic channels and create a portable lab-on-a-chip-
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based detection system. The focus of the presented work has been to demonstrate the ability of photonic 

crystals to confine and enhance emission that falls within a bandgap. Introducing point defects by altering 

a single lattice location or a range of points within the lattice will allow for even much higher 

enhancement factors than what has been achieved in this work. However, using the low-resolution optical 

setup utilized for this effort can be challenging to characterize such cavities. Instead, Nearfield Scanning 

Optical Microscopy (NSOM) can be used. The NSPM tip is capable of detecting light generated by 

quantum dots when they are within the photonic crystal resonant cavities, providing a more accurate 

characterization of both lattice and defect enhancement.  

While a PhC lattice enhancement has been observed based on theoretical bandgap measurements, 

experimentally characterized photonic bandgaps have not been detected yet. This can be done by first 

fabricating a PhC on a regular SOI sample followed by photolithography and etching procedures to align 

a waveguide surrounding the PhC region. The waveguide can be designed to have a 90°–bend to prevent 

the coupled light through the waveguide from affecting the detected signal on other end. A schematic of 

the structure is shown in Figure 6.1.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. FUTURE DIRECTIONS FOR THE POLYMER-BASED PHOTONIC CRYSTALS 

 

Successful design of photonic crystal lattices with partial photonic bandgaps in PDMS and Epoxy 

and subsequent development novel nanomolding techniques to fabricate high-density nanometer-scale 

structures are considered the beginning of the effort to create co-integrated PhC lattices that are suitable 

for integrated fluorescence spectroscopy components for portable analysis systems (rapid DNA devices, 

Figure 6.1. The integration of waveguides of photonic crystal structures fabricated in an 

SOI wafer. 
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for example). The PDMS and Epoxy materials used in this work are biocompatible and can be easily 

integrated with microfluidic channels. One major challenge still remain in this area is to design a lattice 

that is capable of supporting a complete photonic bandgap in finite-thickness slabs made from these 

materials. This challenge rises from the fact that a slab photonic crystal fabricated in the polymer 

materials examined in this study will be considered a very small perturbation of the background dielectric 

constant, making the formation a complete photonic bandgap for modes guided within this slab 

challenging [49]. A larger study of a wider range biocompatible polymers or mixtures of polymers with 

higher refractive indices (possibly through the use of doping) is a step forward in this field. This will 

allow the fabrication of lattices with complete photonic bandgaps, making this class of materials a more 

viable candidate for PhC transducer structures in portable sensing platforms.  
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APPENDIX A: E-BEAM LITHOGRAPHY CAD FILE PROCESS 

When the lattice constant and the radius of a triangular photonic crystal lattice are known, a 

DesignCAD file can be created. In this section, a generic step by step procedure adapted and modified 

from [43] will be demonstrated to create a simple triangular lattice DesignCAD file that can be used to 

create a run file and therefore fabricate a PhC structure of either holes in PMMA or pillars of ma-N, 

depending on the desired final features and the type of resist that is used. Descriptive images of some the 

steps are explained after the step. 

  

1. Open the NPGS software by double clicking on the NPGS green icon on the Desktop of the central 

computer 

2. Select your project from the „Current Project Directory‟ drop-down menu  

 

 

 

 

 

 

 

3. On the left side of the Custom Commands list, click on „DesignCAD Express‟ to start creating the 

CAD file. Accept the initialization menu when DesignCAD Express tool opens up by hitting any key. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-1. Project selection on NPGS. Red arrow indicating the current project directory. 

Figure A-0.2. A screenshot of the   

DesignCAD software 
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4. To start creating the PhC lattice, a line indicating the lattice constant needs to be drawn first. To do so, 

from the „Draw’ menu in the top, select „Lines’ and then „Ortho Line’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-3. Drawing a horizontal line process 
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5. The cursor shape will then change to a + sign. Click anywhere in the back region of the CAD tool only 

once and then move the mouse to right. On the keyboard, hit “ key (to the left of Enter). „Point Relative„ 

box will show up to allow you to type a lattice constant value in micrometer units. Click OK once a value 

is typed and then hit Enter to allow the value to be applied to the drawn line. 

 

 

 

 

 

 

 

 

 

 

 

 

6. To zoom in, Ctrl + mouse scroll wheel can be used. The line that is just drawn will be simply one side 

of a hexagon which will contain circles at each corner and then replicated in the x and y directions to 

create the complete lattice. To draw the hexagon, click on Draw  Lines  Polygon (Edge) and type 6 

to be the number of sides of the polygon. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-4. Drawing a horizontal line and giving its length which is normally the lattice constant when design PhC 

patterns. 

Figure A-0.5. Drawing a 

polygon procedure 
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7. Right click next to one end of the line and once again next to the other end of the line to place one side 

of the hexagon on the lattice constant line. Click once again on that side and hit delete to remove the 

underlying original lattice constant line.  

 

 

 

 

 

 

 

 

 

 

 

 

 

8. To draw a circle on a corner of the hexagon, Click on Draw  Circles  Circle (center, outside) 

 

 

 

 

 

 

 

 

 

 

9. Right click once next to the top left corner of the hexagon to place the center of the circle at that edge 

and drag the mouse outside and click to define the circle. To change the circle radius and the exposure 

type of this circle, hit Ctrl+i to open the „Cir Arc‟ box. Change the radius to the desired value in 

micrometer units. Also change the default line type from „Solid‟ to „Dashed‟. Close the dialog box once 

done 

 

 

Figure A-0.6. The polygon shape at the end of steps 6 and 7 

Figure A-7. Circle drawing steps 
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10. To create an array of the circle, click on the icon „MA‟ and click once below the left bottom edge of 

the circle and again above the top right side of the circle to enclose the whole circle by the selection. 

 

 

 

 

 

 

 

 

 

 

 

Figure A-8. Identifying the circle radius and line type 

Figure A-9. „Make Array‟ procedure. Red arrow indicates where the MA icon can be found. Left image indicates the first click 

below the bottom left corner of the feature and the right image indicates the second click above the top right corner of the feature 
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11. A series of dialog boxes will then pop out. At this step, the first row of the photonic crystal can be 

created. Therefore, in the first box regarding the number of columns, enter the desired number periods in 

the x direction (75 for instance) and then click OK. 

 

 

 

 

 

 

 

12. In the second dialog box, enter the spacing between the columns, which is the lattice constant. Click 

OK and then N if an overlapping warning shows up. 

 

 

 

 

 

 

 

13. Since at this step, we just want to create the first row, type 1 for the number of row. Click on OK.  

14. To start creating the second row circles, repeat steps 6 through 13 but by create a circle on the left 

corner of the hexagon this time.  

15. Once the first two rows are created, the MA command can be used to replicate the rows and create the 

whole lattice by creating copies of these two rows in the y direction.  To do so, use the ? icon to measure 

the distance between top left corner and bottom left corner of the hexagon. This value will be used in the 

next step. 

16. Delete the hexagon and then click on MA and enclose the first two rows. 

 

 

 

 

 

 

 

Figure A-10. Entering the number of columns of the desired array 

Figure A-11. Entering the desired column spacing of the array 



145 

 

 

 

 

 

 

 

 

 

 

 

 

17. To create this array, type 1 for the number of columns and then type a desired number of the periods 

in the Y direction (75 for instance) and the hit N when an overlapping warning shows up. Continue hitting 

Enter until the pattern is replicated in the Y direction. Reject the color or layer assignment dialog boxes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18. In order to replicate the PhC region replicated in the X or Y directions, use the MA method again and 

accept the automatic color assignment upon completion by hitting y. 

 

 

 

 

Figure A-12. Making an array of the first two rows of the triangular lattice of circles. 

Figure A-13. One block of a triangular PhC lattice 
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19. At the end, save the file by clicking on NPGS  Save file and give it a desired name. 

 

 

 

 

 

 

 

 

 

 

 

 

20. Center the pattern to the origin and measure the maximum magnification to write the pattern by 

clicking on NPGS  MaxMag and hit the letter “o” on the keyboard to accept the centering. 

Figure A-14. Making an array of the PhC block for different doses. 

Figure A-15. CAD file saving procedure and dialog box 
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21. Save the changes by clicking on NPGS  Save 

22. To create a Run File, right click on the CAD file that you just created in the CAD file list of your 

project and the select Run File Editor. 

23. Once the file completes loading, in the top right corner, select Yes to allow the pattern to be 

continuously writes especially when an array is select in the next step. 

24. Click in the bottom left corner of the Run File Editor window and start modifying the parameters. If 

an array is desired, select the number of columns and rows for the pattern. Insert an initial XY movement 

to center the beam at a point away from the focusing spot and therefore introduce the pattern write in an 

unexposed region. If several PhC patterns were created in the DesignCAD file of different colors, each 

color can be assigned a different dose by changing the dose to an area dose and a number indicating the 

dose in units of μC/cm
2
 value can be entered. 

25. After all the parameters are entered for the run file, save the file and close the dialog box. The desired 

pattern is now ready to be written by simply clicking on Process Run File once the NPGS software is in 

control of the E-beam Lithography tool. 

 

 

 

 

 

 

 

 

Figure A-16. MaxMag procedure of step 20. Left image indicates the location of the MaxMag command in the NPGS drop down 

menu. The right image indicates the dialog box that appears when the NPGS software finishes the MaxMag calculation of the 

designed pattern 
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APPENDIX B: E-BEAM LITHOGRAPHY PROCESS 

Once a DesignCAD file is created, the E-beam Lithography process can be done to write the pattern. 

The following procedure explains this process: 

 

1. Place the NPGS specimen holder on the SEM base. 

 

  

 

 

 

 

 

 

 

 

2. Once the desired resist is spin-coated and baked on the sample, place the sample on the holder and 

using a diamond scribe, make a scratch near to one of the corners of the sample. 

 

 

 

 

 

 

 

 

 

 

 

 

3. Vent the specimen chamber by clicking on Vent. Wait until the Vent icon turns to solid green. Open 

the main door of the cage, open the latch of the specimen chamber and load the sample by gently pushing 

Figure B-1. The NPGS holder and its base 

Figure B-2. Creating a small scratch in the edge of the sample for 

focusing purposes. 
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it against the two guiding wheels. 4. Insure that the sample is properly placed and then close the door and 

place the latch on it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Begin the pump down procedure by clicking on EVAC. Wait until the EVAC icon turns to solid green 

and then insert the sample by first lifting the loading rod up and then bending it to a horizontal state. 

Gently start pushing the rod inside the column all the way. Once loaded, the „Select Specimen Holder„ 

windows pops up. Select the NPGS holder and type an approximate estimate the sample thickness 

(usually ~0.3mm). 

 

 

 

 

 

 

Figure B-3. Sample loading procedure. Red arrows indicate vent icon, the specimen chamber latch, and the insertion 

process of the sample holder. 
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5. Once the sample is loaded, click on the “HBAJ_Writing_NPGS_Holder” to set the X, Y, Z, Tilt, 

Rotation, Beam Energy, and Probe Current to the proper writing parameters. This recipe will center the 

Faraday cup in the center of the field view.  

6. Wait until the main chamber pressure reaches to 1.9E-04 Pa. During this time, the beam blanker can be 

inserted and the NPGS software can be opened from the central monitor. Once at set point, the beam can 

now be turned by clicking ON in the top left corner of the SEM controller software.  

 

 

 

Figure B-4. Procedure to insert the sample holder into the main column.  
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7. Zoom inside the Faraday Cup and turn the Cursor and the Spot (beam) to allow an accurate measure of 

the absorbed current value. Note this value and type it in the exposure scale box and hit enter to allow the 

NPGS software to automatically adjust the exposure based on the typed current value.  

 

 

 

 

 

 

 

 

 

 

 

 

8. Turn off the spot and the cursor and zoom out to the LM mode. 

9. Move the stage until you find scratch and then try to locate a near-by particle. Zoom in LM until 500x 

and then switch to SEM mode to start focusing on the particle. 

 

 

 

Figure B-5. Turning on the beam blanker by pushing the button indicated in the red arrow of the left image. Right image 

indicates the first image of the Faraday cup once the beam is turned ON in LM mode. 

Figure B-6. Checking the probe current by collecting the beam inside the Faraday cup 
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10. Use the   Z on the specimen stage controller to adjust the Z and therefore bringing the sample within 

the best WD that creates the best image.  

 

 

 

 

 

 

 

 

 

 

 

 

 

11. Keep zooming in until you reach to the 100 nm scale, at that scale, fine focusing is done using the 

focus, stigmatism X and Y knobs, and the wobbling to ensure that the beam is very well aligned. If the 

wobbling results a stretching in either direction, start first by adjusting the stigmatism knob in the 

direction of the image shift and then the orthogonal knob one at a time. Continue the focusing with 

increased zooming until the 10 nm scale. At this scale, seeing a defined edge of the particle is acceptable. 

 

Figure B-7. The scratch area and the particle that will be used for focusing 

Figure B-8. Image of the Specimen Stage Controller indicating the + and – Z buttons 
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12. Move away from the particle by at least 100 um and then zoom in to the full 100 nm scale bar and 

turn the Cursor and the Spot for at least 10 seconds to introduce a continuous exposure of the resist that 

will allow us to observe the beam shape.  

13. Observe the shape of the exposed spot and use the focus, X, and Y knobs to produce the best circular 

shape. You may repeat this several times until a fine well defined circle is observed with a diameter of 

approx. 20 nm. For the second and third burns, reduce the exposure time to 5 and 2 seconds, respectively 

as the beam should be very well aligned at this stage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-9. The particle in SEM mode before and after the initial focusing step using the + or – Z buttons. 

Figure B-10. Spot burning  

procedure to observe the 

beam shape. 
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14. Move to the NPGS software and click on NPGS Mode to allow the NPGS to be in control of the 

write. Note that the Absorbed Current goes to zero if the beam blanker is inserted properly. 

15. Select Process Run File to start the write. 

16. Once the pattern write process is complete, turn off the beam and click on Exchange Position and 

switch to SEM mode in the NPGS software. 

17. When the Exchange Position icon turns green, insert the rod all the way inside the chamber and pull 

the sample out all the way until the rod becomes outside of the guiding pipe. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18. Vent the specimen chamber, unload your sample, close the door, pump down by clicking on EVAC. 

28. Ensure that the system is all under vacuum before leaving. 

 

 

 

 

 

 

 

 

 

 

Figure B-11. A critical step of the unloading procedure in which the rod has to remain in a 

horizontal state when being pulled out until it passes the white arrow marks 
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APPENDIX C: REDUCING CHARGING EFFECTS WHEN IMAGING 

POLYMER-BASED PHOTONIC CRYSTALS 

Imaging PDMS and Epoxy sub-micrometer features using a scanning electron microscope can be a 

challenging task due to the severe charge accumulation on these two bulk polymers. Regular sample 

grounding or sub-10-nm sputtering of a metal mask proved to be useless for this aim when characterizing 

these structures. Therefore, a method of metal deposition is advised.  

In this method, the main purpose is to create a continuous conductive layer that extends from the 

sample to the holder. Here are the steps: 

1. Place a carbon tape on a sputtering metal plate and place a golden cylinder sample base on top of it. 

 

 

 

 

 

 

 

 

 

 

2. Cut the polymer sample to be almost the same size of the golden sample bases. 

 

 

 

 

 

 

 

 

 

 

3. Place another tape on the golden cylinder and then gently mount the sample on the cylinder by very 

gently pressing on the edges surrounding the pattern area.  

Figure C-1. Placing the SEM golden cylinder on a sputter station metal plate 

Figure C-2. Cutting the polymer sample to almost the size of the SEM golden cylinder 
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4. Sputter the sample with platinum for 0.5 minute. 

4. Remove the sample with its underlying golden holder from the sputtering dish slowly to insure that the 

sample is still in contact with the holder. 

5. Place the holder with the sample inside the NPGS base and image using SEM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C-3. Placing the sample on the golden cylinder. 

Figure C-4. The final holder after placing in it the sputtered sample with its underlying golden 

SEM cylinder. 
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APPENDIX D: MANUAL CONTROL OF THE DC BIAS 

To manually control the DC bias when etching a substrate using the Minilock-Phantom III ICP-RIE 

system: 

1) Open the keyboard drawer cover to access the Network Tuning Controller.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

2) Flip the “AUTO/MAN” switch down to the manual mode for the RIE power 

3) Run the process before loading the sample and start monitoring the reflected power and the DC 

bias 

4) Flip the bottom C1 and C2 switches up and down until the desired DC bias is observed  

5) Stop the process, load your sample, and then etch using the Manual Control mode to maintain 

the same conditions. 

     

 

Figure D-1. The Minilock-Phantom III ICP-RIE system and the Network Tuning Controller.  
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