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ABSTRACT 
Identification and Biosensing Application of Molecular Recognition Elements 

Ka Lok Hong 

 Molecular recognition elements (MREs) are biomolecules such as single-stranded DNA 
(ssDNA), RNA, small peptides and antibody fragments that can bind to user defined targets with 
high affinities and specificities. This binding property allows MREs to have a wide range of 
applications, including therapeutic, diagnostic, and biosensor applications. The identification of 
MREs can be achieved by using the process called Systematic Evolution of Ligands by 
Exponential Enrichment (SELEX). This process begins with a large library of 109 to 1015 
different random molecules, molecules that bind to the user defined target or positive target are 
enriched in the process. Subsequently, this process can be modified and tailored to direct the 
enriched library away from binding to related targets or negative targets, and thus increasing the 
specificity. Single-stranded DNA (ssDNA) MREs are particularly favorable for biosening 
applications due to their relative stability, reusability and low cost in production. This work 
investigated the identification and application of ssDNA MREs to detect different bacterial 
toxins and pesticide.  

In Chapter 1, it begins by reviewing recent discovery and advancement in the SELEX 
technique for the identification and biosensing application of ssDNA MREs specific for bacteria, 
viruses, their related biomolecules, and selected environmental toxins. It is then followed by a 
brief discussion on major biosensing principles based upon ssDNA MREs. In Chapter 2, the pilot 
project of this work, ssDNA MRE specific for Pseudomonas aeruginosa exotoxin A was 
identified. In this chapter, a novel variation of SELEX called Decoy-SELEX, previously 
developed by our laboratory is described in greater detail. Additionally, the development of a 
ssDNA MRE modified enzyme-linked immunosorbent assay (ELISA) for the exotoxin A 
detection is also discussed. In Chapter 3, similar methodology was applied to identify a ssDNA 
MRE specific for the second target, Clostridium difficile toxin B. Subsequently, similar ssDNA 
MRE modified ELISA was developed for target detection in clinically relevant samples. In 
Chapter 4, ssDNA MRE specific for alpha toxin of Staphylococcus aureus was identified, and it 
was applied for sensitive detection of the target in clinically relevant samples.  In Chapter 5, the 
overall conclusion and potential future studies as a result from this work is discussed. Lastly, in 
Appendix, the project of identifying and potential future application of ssDNA MREs specific 
for a pesticide, Fipronil is described. 

Overall, this work has shown the proof-of-principle of using ssDNA MREs in biosensing 
application for target detections in clinically relevant samples. The work will be useful in the 
development of potential point-of-care diagnostic tools for rapid diagnosis of bacterial infections.  
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Chapter 1 

Literature review: Recent Advancement in the Biosensing of 
Pathogens and Toxins Based on Single-Stranded DNA 

Molecular Recognition Elements 
This chapter is adapted from the work that is currently under review for publication in BioMed 
Research International. 

Citation: Hong KL and Sooter LJ. 2015. “Single-stranded DNA Aptamers against Pathogens and 
Toxins: Identification and Biosensing Applications” Under review, BioMed Research 
International  



2 
 

1.1 Introduction 

 Target detection in diagnostics and sensors relies on successful molecular recognitions. 

Traditionally, antibodies have been used in biosening applications due to their target specificities 

and affinities. However, the inherent properties of proteins give rise to many shortcomings of 

antibodies. In 1990, the Gold Laboratory first described a process, termed Systematic Evolution 

of Ligands by Exponential Enrichment (SELEX) [1], which identifies one or few molecular 

recognition elements (MREs) with high affinity and specificity toward their intended targets. 

MREs can be short sequences of single-stranded DNA, RNA, small peptides or antibody 

fragments. All types of MREs are capable of binding to user-defined targets with high affinity 

and specificity, and these targets include proteins, small molecules, viruses, whole bacteria cells 

and mammalian cells [2].  

In order to identify nucleic acid MREs, the SELEX process generally begins from a very 

large random library consisting of 1013 to 1015 different molecules. An individual nucleic acid 

MRE is composed of two constant regions for primer attachment during polymerase chain 

reaction (PCR) amplification flanked by a 20-80 bases random region [3]. The target of interest 

is first incubated with the library under specific ionic and temperature conditions. Library 

molecules that bind to the target are retained and amplified by PCR, while non-binding library 

molecules are discarded. Negative or counter selections are often performed to increase the 

specificity of the library or direct the enrichment process away from binding to negative targets. 

Negative targets are often chosen for their structural similarities or the likelihood to coexist in 

the native environment with the target of interest. In this case, library molecules that bind to 

negative targets are discarded and those that do not bind are retained and amplified, and thus 

completing one round of in vitro selection (Figure 1.1). It is expected that after approximately 12 
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rounds of SELEX, one or few nucleic acid MREs with high specificity and affinity toward their 

targets can be identified.  

 

Figure 1.1: Illustration of the SELEX process. A random library consisting of up to 1015 

single-stranded nucleic acids molecules are incubated with the target of interest. Those that 

bound to the target are retrieved and amplified by polymerase case reaction. It is then followed 

by incubation with negative targets. Those that do not bind to negative targets are retained, 

amplified and subjected to further rounds of in vitro selection. 
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Both DNA and RNA MREs can conform into three dimensional structures, which include  

stem-loop, bulges and/or hairpin regions, give rise to binding pockets for their respective targets 

[4]. There are reports suggesting RNA MREs generally have a higher affinity for their target than 

their DNA counterparts [5]. However, unmodified RNA molecules are more susceptible to 

nuclease degradations than DNA. Modification on the 2’ hydroxyl of RNA molecules can 

increase their stabilities but may have negative impact on their binding affinities [6, 7]. It is also 

more difficult to amplify RNA MREs during selection, as reverse transcription to DNA must be 

performed prior to PCR. For these given reasons, there is a bigger hurdle to successfully identify 

and apply RNA MREs in molecular detection, and thus this review has chosen to focus on the 

discussion of ssDNA MREs in biosening applications. 

Single-stranded DNA MREs have high affinity and specificity toward their targets that is 

comparable to antibodies. In addition, ssDNA MREs have several advantages over antibodies. 

Firstly, ssDNA MREs are more thermostable and can be reversibly denatured. This reusability is 

particularly desired for molecular sensing applications. Secondly, ssDNA MREs can be 

identified for targets that are non-immunogenic or toxic to cells, as the SELEX process can be 

performed completely in vitro and independent of living systems. Lastly, identified ssDNA 

MREs with known sequences can be chemically synthesized at low cost and without batch to 

batch variations [8]. Different modifications such as thiol or amino functional groups can also be 

easily incorporated onto the 3’ and/or 5’ ends of oligonucleotides during synthesis and utilized 

for immobilization on solid platforms. Similarly, labeling molecules such as biotin or FITC can 

also be covalently attached and serve as reporters in sensing applications. The attractive features 

of ssDNA MREs allow researchers to investigate the translational application of biosensors. This 

review focuses on the recent advancements in the identification and biosensing application of 
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ssDNA MREs specific for bacteria, viruses, their associated biomolecules, virulence factors, and 

selected biological and chemical toxins. Detection of these targets has been shown to be 

important in medical diagnosis, food safety and environmental monitoring. Additionally, major 

principles in MRE based biosensors are briefly discussed. 

1.2 In vitro Selection of ssDNA Molecular Recognition Elements 

1.2.1 General Methodology of SELEX 

The general process of in vitro selection of ssDNA MREs starts from design and 

chemical synthesis of a ssDNA library. A ssDNA library consists of two pre-determined constant 

regions for primer attachment during PCR amplification flanking a random region. This random 

region gives rise to the diversity of the library, which can be designated by 4n, where n is the 

number of bases in the random region. Longer random regions result in increased library 

diversity, but also may risk inhibition of PCR amplification due to secondary structure formation. 

Therefore, the overall library lengths are usually designed to be less than 150 bases, including a 

random region of 20 to 80 bases, and are chemically synthesized using phosphoramidite 

chemistry [3].  

The SELEX process begins by incubating up to 1015 different ssDNA molecules with the 

target of interest. One of the key steps in the SELEX process is the separation of bound MREs 

from unbound MREs. The separation process is often achieved by target immobilization. 

Immobolization options include nitrocellulose membranes that can be used to adsorb protein 

targets [9], and histidine tags on recombinant proteins that can be with a metal affinity 

chromatography column [10]. However, ssDNA molecules may non-specifically adsorb to 

immobilizing substrates. A round of negative selection is typically performed prior to the start of 

the first round of positive selection to reduce the non-specific adsorption between the library and 
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immobilizing substrates. Magnetic beads have also been used to immobilize a wide range of 

targets [11-14]. The terminal primary amine or a surface lysine on a protein can be used to 

conjugate onto carboxylic acid coated magnetic beads via EDC/NHS reactions. Small molecule 

targets or target analogs with available functional groups can also be biotinylated and 

immobilized on streptavidin coated magnetic beads based on the strong affinity between biotin 

and streptavidin [14, 15]. Magnets can then be used for the separation of bound and unbound 

molecules. However, this technique runs the risk of selecting MREs bound to magnetic beads 

and/or streptavidin. Sooter and co-workers successfully showed that competitive elution with 

free target can effectively isolate ssDNA MREs specific for the target of interest and not to the 

immobilizing substrates or analog molecules [14-16]. 

Amplification of the ssDNA library is also crucial to the success of the in vitro selection 

process. PCR conditions have to be determined and optimized before the selection process. After 

the retrieval of target bound ssDNA molecules for each round of selection, a small-scale PCR 

can be carried out to determine the cycles of PCR needed to successfully amplify the library. 

Large-scale PCR can subsequently be performed based on the determined number of reaction, 

and thus decreasing the chance of over amplification and the generation of undesired PCR 

amplicons. 

It is necessary to obtain ssDNA from double-stranded PCR product prior to the 

subsequent rounds of selection. Several techniques have been shown to effectively isolate the 

single-stranded binding element from double-stranded DNA, such as asymmetric PCR, biotin-

streptavidin separation, lambda exonuclease digestions and size separation on denaturing urea 

polyacrylamide gel electrophoresis. Asymmetric PCR uses a different ratio of forward and 

reverse primer in the reaction mixture to generate both dsDNA and ssDNA allowing the two 
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types of DNA molecules to be visualized and separated using agarose gel electrophoresis. The 

ssDNA is then excised and purified [17]. Biotin-streptavidin separation uses a biotin tagged 

primer in the PCR amplification process to generate biotinylated dsDNA. The dsDNA can then 

be captured by streptavidin coated beads. The unbound strand of DNA can be retrieved using 

sodium hydroxide [18]. Lambda exonuclease can selectively digest a phophorylated strand of the 

dsDNA in 5’ to 3’ direction. PCR reactions carried out with a phosphorylated reverse primer can 

be selectively digested by lambda exonuclease, leaving only the forward strand [19]. Modified 

primers can be used to create size differences between the forward and reverse strand and be 

detected by using urea denaturing polyacrylamide gel electrophoresis (PAGE), and subsequently 

ssDNA can be excised and purified [20].  

1.2.2 Examples of Modified SELEX 

The general process of SELEX has been modified over the past two decades. These 

modifications mostly focus on increasing the efficiency in separating bound and unbound MREs, 

increasing specificity of the selected MREs, eliminating the need for immobilizing target 

molecules, selecting against live whole cells, and decreasing the overall labor intensiveness of 

the SELEX process. Selected modified SELEX methods pertinent to this review are briefly 

discussed.    

Negative or counter selection is incorporated into the normal SELEX process by 

introducing negative targets that have structural similarity to the target of interest or are likely to 

coexist in the target’s environment. This modification is to increase the overall specificity of the 

library during selection, and thus identify MREs that are highly specific to the target. Sooter and 

co-workers identified a ssDNA MRE target for a herbicide, atrazine, with 2.1–fold higher 

binding affinity to atrazine than to  a closely related herbicide, simazine, by introducing multiple 
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negative selection rounds and increasing stringency during the selection [14]. This stringent 

negative selection scheme was utilized to obtain two other ssDNA MREs that bind to their 

respective targets with high affinity and specificity [15, 16]. 

Capillary electrophoresis can separate molecules based upon their charges. Target bound 

and unbound DNA molecules migrate at different rates due to differences in their overall charges, 

and therefore different species can be separated and collected at different time points. Mendonsa 

and Bowser were the first to demonstrate using capillary electrophoresis to identify a ssDNA 

MRE specific for human IgE. Due to its high efficiency in separating different molecules, MREs 

can generally be identified in 4 to 6 rounds of capillary electrophoresis based SELEX (CE-

SELEX) [21]. CE-SELEX can also select MREs bound to free targets in solution, and without 

the need of immobilization. A variant of CE-SELEX utilizes non-equilibrium capillary 

electrophoresis of equilibrium mixtures (NECEEM) to achieve separation (Non-SELEX) has 

also been developed. In Non-SELEX, repetitive rounds of selection are performed without PCR 

amplification. Berezovski and co-workers were the first to use Non-SELEX to identify a high 

affinity MRE (Kd: 0.3 nM) specific for hRas protein [22]. 

Gu and co-workers developed an immobilization-free SELEX method based upon π-π 

stacking interaction between DNA and graphene oxide (GO-SELEX). In GO-SELEX, ssDNA 

library is adsorbed on graphene oxide and then incubated with the target. In the presence of the 

target, a portion of the ssDNA library is released from graphene oxide and bind preferentially to 

the target, while unbound ssDNA remain adsorbed, and can be separated by centrifugation [23]. 

This method was used to isolate ssDNA MREs specific for bovine viral diarrhea virus type 1 

[24]. A high-throughput modification of GO-SELEX was also developed by Gu and co-workers 

to identify flexible ssDNA MREs that are specific for multiple pesticides with affinities in the 
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nanomolar range [25]. Li and co-workers developed a different target immobilization-free 

SELEX method using a ssDNA library containing a 15-base constant region, sandwiched by two 

random regions and finally encompassed by two constant primer hybridization regions at both 3’ 

and 5’ end [26]. The 15-base constant region can hybridize with biotinylated complementary 

strand and be captured by streptavidin coated beads. Binding of the ssDNA library to target 

molecules induces conformational changes and thus releasing the binding-strand from the 

complementary strand. This method has been adapted to screen for ssDNA MREs specific for 

multiple pesticides [27, 28].  

FluMag-SELEX was developed by Stoltenburg and co-workers by immobilizing targets 

on magnetic beads, and using fluorescently labeled forward primer during PCR amplification 

[29]. Magnetic separation of bound and unbound MREs are performed similarly to traditional 

magnetic bead based SELEX. However, the overall binding capacity of the library can be 

monitor precisely with the presence of fluorescence tag. The selection process can then be 

terminated when the overall library binding affinity toward the target reaches a plateau. A similar 

technique has been incorporated in single microbead SELEX described by Tok and Fischer. In 

their work, only 2 cycles of SELEX were performed to identify multiple ssDNA MREs specific 

for botulinum neurotoxin with low-micro to nanomolar Kd values [30]. The usage of 

fluorescence tag in the library is further investigated by Veedu and co-workers by performing a 

one-step selection against alpha-bugarotoxin [31]. 

Microfluidic chips are also being investigated to facilitate the SELEX process (M-

SELEX). Microfluidic chips are capable of manipulating a very small amount of immobilized 

target on magnetic beads, thus achieving a more efficient separation of bound MREs [32]. Soh 

and co-workers were able to identify ssDNA MREs specific for Botulinum neurotoxin type A 
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with low nanomolar binding affinity after only one round of selection [32, 33]. Recently, MREs 

with nanomolar binding affinity specific for whole influenza A/ H1N1 virus were selected using 

M-SELEX [34]. 

Complex targets such as live mammalian and bacteria whole cells have become popular 

targets for selection. These types of selection are called cell-SELEX or whole cell-SELEX. Early 

works mostly focused on identifying MREs specific for tumor cells [35-38]. The general 

methodology of cell-SELEX is very similar to traditional SELEX, but fluorescence-activated cell 

sorting (FACS) can be utilized to achieve a very high level of separation of MRE bound and 

unbound cell targets. Multiple pathogenic bacteria gennera, such as Salmonella, Pseudomonas, 

Staphylococcus, Listeria and Escherichia have been chosen as selection target. The selection and 

biosening application of ssDNA MREs targeting bacteria, viruses, and associated biomolecules 

are discussed in the following section.   

1.2.3 Single-stranded DNA MREs Targeting Bacteria 

Single-stranded DNA MREs targeting bacteria can be classified into two general 

categories, 1) targeting whole cells with known or unknown molecular targets, and 2) targeting 

pre-defined bacteria cell surface targets or bacteria spores (Table 1.1). 
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Table 1.1: Summary table of ssDNA MREs targeting bacteria and bacteria structural 

components. 

Target SELEX 

Method 

Kd Detection Method LOD Reference 

E. coli K88 Cell-SELEX 15 ± 4 nM 
 

Fluorescence 1100 
CFU/mL 
 

[39] 

E. coli 
 

Cell-SELEX 12.4  to 
25.2 nM 

 

- - [40] 

E. coli NSM59 
 

Cell- SELEX 
 

110 nM 
 

- - [41] 

E.coli K88 
fimbriae protein 
 

Plate 

immobilized 

25 ± 4 nM 
 

- - [42] 
 

E. coli 8739 outer 
membrane protein 

Magnetic 

Beads 

- FRET 30 CFU/ 

mL 

[43] 

E. coli O111:B4 
Lipopolysaccharid
e 
 

Magnetic 
Beads 

- - - [44] 

Salmonella 
Typhimurium 

Cell-SELEX 1.73 ± 0.54 
µM 

Magnetic capture-qPCR 
 

100-1000 
CFU 
 

[45] 

Salmonella 
Typhimurium 

Cell-SELEX 6.33 ± 0.58 
nM 

Fluorescence 25 
CFU/mL 

[46] 

Salmonella 
Typhimurium 

Cell-SELEX - - - [47] 

Salmonella 
Typhimurium 
outer membrane 
protein 

Nitrocellulos

e membrane 

- Magnetic capture-qPCR 
(spike and recovery) 
 

< 10 
CFU/g 

[48] 

Salmonellae 
typhimurium/ 
enteritidis 

Cell-SELEX nanomolar 
to 
micromola
r range 

- - [49] 

Salmonellae 
enteritidis/  

Cell-SELEX 7 nM, 25 
nM 

- - [50] 
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typhimurium  

Salmonella 
Paratyphi A 

Cell-SELEX 47 ± 3 nM Chemoluminescence 
 

1000 
CFU/mL 

[51] 

Salmonella O8 Cell-SELEX 32.04 nM - - [52] 

Vibrio alginolyticus 
 

Cell-SELEX 
 

27.5 ± 9.2 
nM 

PCR 
 

100 
CFU/mL 

[53] 

Vibrio 
parahemolyticus 
 

Cell-SELEX 
 

16.88 ± 
1.92 nM 

- - [54] 

Listeria 
monocytogenes 

Cell-SELEX 
 

Mid 
nanomolar 
range 

- - [55] 

Listeria 
monocytogenes 

Cell-SELEX 35.7 ± 8.02 
uM 

Magnetic capture-qPCR < 60 
CFU/500 
µL 

[56] 

Listeria 
monocytogenes 

Cell-SELEX 
 

60.01 nM 
 

Fluorescence - [57] 

Listeria 
monocytogenes 

Cell-SELEX 48.74 ± 
3.11 nM 

Fluorescence 75 
CFU/mL 

[58] 

Listeria 
monocytogenes 
Internalin A 

Filter plate - Fiber-optic 1000 
CFU/mL 

[59] 

Shigella 
dysenteriae 

Cell-SELEX 23.47 ± 
2.48 nM 
 

Fluorescence 50 
CFU/mL 

[60] 

Streptococcus 
mutans 
 

Cell-SELEX 33 nM 
 

Colorimetric (Flow 
through) 

105-108 

CFU/mL 

[61] 

Streptococcus 
pyogenes 
 

Cell-SELEX 9 , 10 nM - - [62] 

Staphylococcus 
aureus 
 

Cell-SELEX 
 

35, 129 
nM 
 

Optical Light scattering 1 CFU/mL [63] 

Staphylococcus 
aureus 

Cell-SELEX 
 

nanomolar 
range 

- - [64] 

Proteus mirabilis Cell-SELEX 
 

7.7 nM, 
4.1 nM 
 

- - [65] 

Pseudomonas 
aeruginosa 
 

Cell-SELEX 
 

Low 
nanomolar 
range 

Fluorescence - [66] 

Mycobacterium 
tuberculosis 
 

Cell-SELEX 
 

 

Ka 105 – 
106 M 
 

- - [67] 

Francisella 
tularensis 

Cell SELEX 
 

- ALISA 1700 
bacteria/m

[68] 
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subspecies (subsp) 
japonica bacterial 
antigen 
 

L 

Bacillus anthracis 
spores/ anthrose 
sugar 

Magnetic 
beads 

-  30,000 
spores/ml 

[69] 

Bacillus anthracis 
spores 

Magnetic 
beads 

- Magnetic bead-
electrochemiluminescen
ce   

10- 6 x 106 
spores 

[70] 

Bacillus 
thuringiensis 
spores 

Magnetic 
Beads 
 

- Fluorescence 1000 
CFU/mL 

[71] 

Campylobacter 
jejuni 

Cell SELEX 
 

292.8 ± 
53.1 nM 

- - [72] 

Campylobacter 
jejuni (surface 
protein) 

Magnetic 
Beads 
 

- Fluorescence (Magnetic 
bead/ Quantum dot) 

10-250 
CFU in 
food 
matrix, 2.5 
CFU in 
buffer 

[73] 

Campylobacter 
jejuni (killed) 

CE-SELEX - Capillary 
Electrophoresis 

6.4 x106 
cells/mL 

[74] 

Peptidoglycan 
 

Filter 
 

0.415 ± 
0.047 μM /  
1.261 ± 
0.280 μM 

- - [75] 
 

Lipopolysaccharid
e (endotoxin) 

NECEEM 
non-SELEX 

low to high 
nanomolar 
range 

Electrochemical 0.01 - 1 
ng/mL 

[76] 

 

Multiple virulent strains of the gram-negative bacteria, Escherichia coli, have been 

chosen as targets for the selection of specific ssDNA MREs due to their enterotoxigenic effects 

and the potential of contaminating food and water [77]. Peng et al. enriched a ssDNA MRE 

library specific for E.coli K88 whole bacteria [39]. They also developed a sandwich detection 

system, in which biotinylated antibodies targeting the K88 strain were immobilized on magnetic 

beads as the capturing element and the 5’ FITC labeled ssDNA library from Round 13 selection 

served as the reporter in a fluorescent assay. A lower limit of detection (LOD) of 1100 CFU/mL 

was achieved in pure culture. Artificial contaminated fecal samples were also tested with a LOD 
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of 2200 CFU per gram. However, no individual ssDNA MREs were able to achieve the same 

degree of binding affinity as the whole library and a ssDNA MRE with high affinity and 

specificity against K88 fimbriae protein was selected after eleven rounds [42]. A fluorescence 

binding assay was used to obtain the affinity of selected MRE candidates. The reported 

equilibrium dissociation constant (Kd) for the best candidate MRE was 25 ± 4 nM. Kim et al. 

performed ten rounds of selection against a fecal strain of E. coli along with multiple negative 

selections against other species of bacteria. They identified four candidate sequences with high 

affinity for the target strain. All four candidates were highly selective against negative target 

bacteria. However, they all showed cross binding activity with other strains of E.coli. This 

suggested that the selected candidates potentially bound to common antigens expressed in 

multiple strains of E. coli [40]. Savory et al. identified a ssDNA MRE with high specificity and 

affinity (Kd = 110 nM) for an uropathogenic strain of E. coli. Quantitative PCR was used to 

monitor the SELEX process in order to minimize the number of rounds of SELEX required. 

After five rounds of SELEX, a selected ssDNA MRE containing a guanine-quadruplex sequence 

motif showed low cross binding activities toward other strains of E. coli [41]. In addition to 

selecting whole E. coli bacteria as targets, outer membrane protein from E. coli 8739 (Crook’s 

strain), and lipopolysaccharide from O111:B4 strains were also chosen as targets for selection. A 

fluorescence resonance energy transfer (FRET) assay was developed to detect E. coli 8379 with 

a LOD of 30 CFU/mL [43]. The ssDNA MRE targeting lipopolysaccharide showed antibacterial 

effects on both O111:B4 and K12 strains [44]. However, Kd values were not reported in either 

study. 

Several ssDNA MREs have been selected against species of foodborne bacteria including  

Salmonella, Listeria, and Vibrio. Dwivedi et al. identified a ssDNA MRE specific for whole cell 
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Salmonella enterica serovar Typhimurium with a reported Kd of 1.73 ± 0.54 µM after eight 

rounds of selection [45]. Two rounds of negative selection against a mixture of non-target 

bacteria were also performed to enhance the selectivity of the library. A detection application 

was developed using immobilized biotinylated MREs on streptavidin coated magnetic beads as 

the capturing elements, and was coupled with quantitative PCR. The reported LOD of this assay 

was between 100 to 1000 CFU in a 290 µL sample volume. Duan et al. performed a similar 

selection on the same organism with nine rounds of target selection, and two rounds of negative 

selection against mixtures of non-target bacteria [46]. The best candidate ssDNA MRE had a Kd 

value of 6.33 ± 0.58 nM and high specificity based upon flow cytometry analysis. A fluorescence 

bioassay achieved a LOD of 25 CFU/mL. Another similar study performed by Moon et al. 

showed relatively high affinities and specificities of selected candidate sequences after ten 

rounds of target and six rounds of negative selections. However, no Kd values were reported in 

the study [47]. Outer membrane proteins of Salmonella enterica serovar Typhimurium were 

chosen as selection target by Joshi et al. In that study seven rounds of selection were performed 

with three rounds of negative selection against E. coli outer membrane proteins and 

lipopolysaccharides. A magnetic bead based quantitative real-time PCR assay was developed 

using immobilized ssDNA MRE as the capturing element. Food and environmental samples 

were tested to demonstrate the translational usage of the assay. A LOD of less than 10 CFU per 

gram of artificially contaminated bovine feces was reported. Additionally, 10 to 100 of CFU 

were detected in 9 mL of artificially contaminated whole carcass chicken rinse sample solution 

in  a pull-down assay [48]. Two recent studies identified ssDNA MREs specific for two serovars 

of Salmonella, Typhimurium and Enteritidis [49, 50]. Park et al. truncated out the random region 

(29 to 30-mer) of selected candidates and identified three ssDNA MREs with Kd values in 



16 
 

micromolar range toward their respective serovars after ten rounds of mixed target and counter 

target selection. Poly-D-lysine was conjugated to the selected MREs, and achieved an 

approximately 20 to 100-fold enhancement in their binding affinities [49]. Kalovskaya et al. also 

performed a similar selection on the two serovars of Salmonella [50]. After twelve rounds of 

selection, two ssDNA MREs with Kd values ranges in nanomolar were identified (Enteritidis: Kd 

= 7nM; Typhimurium: Kd = 25 nM). Both selected MREs were able to demonstrate a 

bacteriastatic effect in their respective bacterial cultures. An antibiotic-resistant serovar of 

Salmonella enterica, Paratyphi A was chosen as target by Yang et al. A total of thirteen positive 

rounds and four negative rounds of selection were performed to identify a MRE with high 

affinity (Kd = 47 ± 3 nM) and specificity toward Paratyphi A. A LOD of 1000 CFU/mL was 

achieved using chemoluminescence assay based on self-assembled single-walled carbon 

nanotubes and DNAzymes-labeled MRE as detection elements [51]. A MRE with high 

specificity toward Salmonella O8 was identified by Liu et al. after eleven rounds of positive and 

two rounds of negative selection. The selected MRE had a reported Kd value of 32.04 nM. A 

preliminary fluorescent in situ labeling assay was developed with the MRE. However, no LOD 

was reported [52]. 

Consumption of uncooked or undercooked seafood contaminated by Vibrio bacteria can 

lead to food poisoning [78]. Two different species, Vibrio parahemolyticus and Vibrio 

alginolyticus were chosen as selection targets. Nine rounds of cell-SELEX using flow cytometry 

were carried out to identify a ssDNA MRE with high affinity and specificity for Vibrio 

parahemolyticus (Kd = 16.88 ± 1.92 nM) [53, 54]. Tang et al. performed fifteen rounds of cell-

SELEX on inactivated Vibrio alginolyticus. Negative selection was performed every third 

positive target round to improve the library specificity. The study did not characterize affinities 



17 
 

and specificities of candidate ssDNA MREs from the last round of selection. Instead, the whole 

library was characterized to have a Kd value of 27.5 ± 9.2 nM and was highly specific toward the 

target. The enriched library was able to detect 100 CFU/mL of the bacteria based on a PCR 

amplification assay [53]. 

Listeria monocytogenes is a foodborne gram-positive bacterium that can cause serious 

illnesses and even death. FDA and European Union both have zero tolerance of L. 

monocytogenes in ready-to-eat food products. Suh et al. conducted two studies to identify 

ssDNA MREs specific for L. monocytogenes [55, 56]. In their earlier study, a MRE with a 

micromolar Kd value was identified after six rounds of positive and two rounds of negative 

selections. The MRE showed low cross binding to negative target bacteria, but had similar 

binding affinity for other members of the Listeria genus. A magnetic bead based capture assay 

coupled with quantitative PCR was developed. The assay was able to detect less than 60 CFU in 

500 µL of binding buffer containing a mixture of non-Listeria bacteria [56]. In their later study, 

the affinities of selected candidate MREs were improved with reported values of Kd in the 

nanomolar range and were specific for the target bacteria at different growth phases [55]. Duan 

et al. performed similar whole cell in vitro selection on L. monocytogenes. The selected MRE 

had high affinity (Kd = 48.74 ± 3.11 nM) and was highly specific toward the target. A 

fluorescent cross binding assay showed significantly lower binding activities toward negative 

bacteria targets and as well as other bacteria species in the Listeria genus. A sandwich 

fluorescent bioassay was developed and demonstrated a LOD of 75 CFU/mL [58]. Most recently, 

Liu et al. performed eight rounds of selection to identify ssDNA MREs specific for L. 

monoceytogenes. The best candidate MRE reported to have a Kd value of 60.01 nM and had high 

specificity. A fluorescent based detection assay was developed to enable the observation of 
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binding between the MRE and target bacteria using fluorescent microscope, but the LOD was 

not reported [57]. 

Ohk et al. selected a ssDNA MRE specific for internalin A of L. monocytogenes. 

Internalin A is a major invasion protein expressed on the cell surface of L. monocytogenes [79]. 

A highly specific sandwich style fiber-optic biosensor was developed by using the selected MRE 

and antibody. A reported LOD of 1000 CFU/mL was achieved. The sensor also successfully 

detected the bacteria in artificially contaminated ready-to-eat meat products. However, affinity 

data was not reported in the study [59]. 

Shigella dysenteriae is a gram negative bacterium that causes severe epidemic diarrhea in 

many countries [80]. Duan et al. used cell-SELEX methodology to identify ssDNA MRE 

specific for S. dysenteriae [46, 54, 58, 60]. The best candidate MRE had a reported Kd value of 

23.47 ± 2.48 nM and low cross binding activities toward negative bacteria targets. A fluorescent 

based detection assay demonstrated a LOD of 50 CFU/mL [60] 

Campylobacter jejuni is a highly infectious gram negative bacterium that is one of the 

leading causes of acute diarrheal sickness worldwide [81]. Bruno et al. performed an in vitro 

selection by extracting surface proteins of C. jejuni and immobilizing them on magnetic beads. 

No values of Kd were reported in the study. However, a fluorescent assay based on magnetic 

beads and quantum dot was developed to detect the bacteria in different food matrices. The assay 

showed low cross binding activities with other species of bacteria, but was not able to distinguish 

between bacteria in the Campylobacter genus. The reported LODs were 2.5 CFU and 10 to 250 

CFU in buffer solution and in different food matrices respectively [73]. CE-SELEX was 

employed by Stratis-Cullum et al. to identify MREs specific for C. jejuni. Killed bacteria were 

used as target in their study. A qualitative capillary electrophoresis immunoassay was developed 
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with a LOD of 6.3x106 cells/mL [74]. Dwivede et al. performed cell-SELEX on live C. jejuni. A 

total of ten positive rounds and two negative rounds were carried out to identify ssDNA MREs 

with high affinity and specificity toward the target bacteria (Kd = 292.8 ± 53.1 nM) [72]. 

Bacteria that are associated with common infectious diseases, such as Streptococcus, 

Staphylococcus and Pseudomonas, are also popular targets for in vitro selection. Identification of 

MREs targeting infectious bacteria could potentially be used to facilitate diagnosis and thus 

decreasing the time between culture collections to specific antibiotic treatment.  

Savory et al. performed cell-SELEX on Proteus mirabilis, a common cause of catheter 

associated urinary tract infections in long-term catheterized patients. MREs specific for two 

different strains of P. mirabilis with low nanomolar range Kd values were identified after 6 

rounds of in vitro selection. Additionally, an in silico maturation (ISM) process was performed to 

increase the specificity of the selected MRE. It was reported that a 36% higher specificity was 

achieved after the ISM process [65]. This same technique was again employed to select MRE 

specific for Streptococcus mutants, the main causative pathogen of dental caries. The affinity of 

the identified MRE was improved up to 16-fold and the specificity was increased 12-fold after 

ISM. A gold colloids based colorimetric flow through assay was developed and demonstrated the 

detection S. mutants in the ranges of 105-108 CFU/mL [61].  

Streptococcus pyogenes (Group A Streptococcus) is often the causative pathogen of a 

wide range of infectious diseases, such as streptococcal pharyngitis, and streptococcal toxic 

shock syndromes [82]. Different M-types of live S. pyogenes were chosen for selection by 

Hamula et al. After 20 rounds of target selection, the two best candidate MREs yielded high 

affinity for Group A Streptococcus (Kd = 9 -10 nM). It was noteworthy that the candidate MREs 

showed good specificities, even though the authors did not perform any negative selections [62].  
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Strapylococcus aureus is a gram-positive bacteria associated with numerous of infections 

in human [83]. Cao et al. selected a panel of ssDNA MREs specific for S. aureus after several 

rounds of target and counter target selection. The reported Kd values of individual candidate 

MREs were in the nanomolar range with high specificity. The study showed that the combination 

of the panel of MREs yielded a better sensitivity in recognizing S. aureus than any single MRE 

[64]. Change et al. selected two ssDNA MREs with high affinities and specific toward S. aureus 

(Kd = 35 and 129 nM). The reported values of Kd improved to 3.03 and 9.9 nM respectively 

after thiol-modification and conjugation to gold nanoparticles. Subsequently, the MRE 

conjugated gold nanoparticles were utilized to capture target bacteria, and a resonance light-

scattering signal demonstrated the detection of single S. aureus cell in 1.5 hours [63]. 

Pseudomonas aeruginosa is a gram-negative bacterium that is commonly associated with 

nosocomial infections [84, 85]. Wang et al. performed fifteen rounds of positive and two rounds 

of counter target selection to identify ssDNA MREs with Kd values in the low nanaomolar range. 

The selected MRE showed negligible binding to counter bacteria cell targets. A fluorescence in 

situ hybridization (FISH) assay was developed to show rapid detection of P. aeruginosa. 

However, the detection ranges were not reported [66]. 

Mycobacterium tuberculosis is the etiologic pathogen for tuberculosis [86]. Chen et al. 

reported a ssDNA MRE with an apparent association constant (Ka) between 105 – 106 M and was 

highly specific. The authors reported an antibacterial effect of the selected MRE with both in 

vitro and in vivo models [67]. 

Highly infectious bacteria and bacteria spores have been considered as potential 

biological warfare agents, and it is important to detect these biological threats rapidly [87]. 

Bruno et al. 1999 performed an in vitro selection of ssDNA MREs targeting Bacillus anthracis 
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spores, the causative agent of anthrax. Autoclaved anthrax spores were used in the selection. A 

MRE-magnetic bead electrochemiluminescence sandwich assay was developed with a reported 

detection range of 10-106 spores [70]. Ikanovic et al. performed a selection of ssDNA MREs 

specific for Bacillus thuringiensis spores, a closely related species to B. anthracis. In this study, 

the methodology was adopted from Bruno et al. 1999. A fluorescent assay based on cadmium 

selenide quantum dots was developed with a reported detection limit at about 1000 CFU/mL [71]. 

Bruno et al. 2012 revisited the selection of Bacillus spores. In this later study, anthrose sugar on 

anthrax spores was chosen as target for selection. A MRE beacon based on fluorescent signals 

was developed and generated strong signal at spore concentrations greater than 30,000 

spores/mL. The authors also compared the MRE sequences pattern to previous studies and 

identified similarities in sequences composed of T/G rich bases. It was also reported that MREs 

specific for whole spores did not generate fluorescent signals in the presence of anthrose sugar, 

suggesting that the selected spore specific MREs possibly bound to a different eptiope and 

warranting further research [69]. 

Francisella tularensisis is an encapsulated, gram-negative coccobacillus that is highly 

infectious. Reports show as few as 25 organisms in aerosol can cause diseases [88]. Vivekananda 

et al. performed ten rounds of selection on Francisella tularensisis subspecies japonica bacterial 

antigen. A cocktail of 25 ssDNA MREs was reported to have high specificity toward the target 

bacteria. A MRE modified enzyme-linked immunosorbent assay was developed, and 

demonstrated binding to the target and other subspecies of F. tularensisis but not to other species 

of bacteria and chicken lysozyme or chicken albumin. In addition, the assay was able to achieve 

better sensitivity then traditional ELISA using anti-tularemia antiserum and anti-tularemia 

polycolonal antibodies. The reported LOD was 1700 bacteria/mL [68]. 
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Peptidoglycan is a macromolecule universally expressed on bacteria outer cell wall [89]. 

Ferreira et al. identified two ssDNA MREs with sub to low micromolar Kd values that can bind 

specifically to both gram-positive and gram-negative bacteria. Neither MRE bounded to human 

fibroblasts or Candida albicans, and could potentially be used as generic detection elements for 

bacteria [75]. 

Lipopolysaccharide (LPS or endotoxin) is expressed in the outer membrane of gram-

negative bacteria, and can illicit strong immune response upon entering into mammalian cells. 

[90, 91] Kim et al. used nonequilibrium capillary electrophoresis of equilibrium mixtures 

(NECEEM) based non-SELEX to identify multiple ssDNA MREs with high affinities toward 

lipopolysaccharide in only three rounds of selection. Selected MREs also demonstrated very low 

cross binding activities to bovine serum albumin, and other intracellular molecules, such as DNA, 

RNA, glucose and sucrose in an electrochemical assay. This assay resulted in a target detection 

ranges of 0.01 to 1 ng/mL [76] 

1.2.4 Single-stranded DNA MREs Targeting Viruses 

There is a wealth of literature describing ssDNA MREs targeting various virus life cycle 

regulator proteins with the purpose of therapeutic application. In contrast, there is a lesser 

amount of research on ssDNA MREs for virus biosensing application (Table 1.2). 

 

Table 1.2: Summary table of ssDNA MREs targeting viruses and virus protein for 

biosensing applications. 

Target SELEX 

Method 

Kd Detection 

Method 

LOD Reference 
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Human 
Noroviruses 

Antibody-bead 
conjugates 

High nanomolar 
range 

RT-qPCR 10 RNA 
copies 

[92] 

Norovirus 
 

Nitrocellulose 
membrane 

Low picomolar 
range 

Electrochemical 180 virus 
particles 
 

[93] 

Norovirus II.4 
capsid protein 
VP1 

Filter 
 

- - - [94] 

Influenza A 
H1N1 

Microfluidic 
SELEX 

55.14 ± 22.40 
nM 

Bead/ Fluorescent 6.4 x 10-3 
HAU 

[34] 

Avian 
influenza 
H5N1 

Nitrocellulose 
membrane 

4.65 nM Dot Blot 1.28 HAU [95] 

Influenza A 
hemagglutinin 
protein 

TALON 
affinity resin 

Low nanomolar 
range 

Sandwich ELAA - [96] 

SARS-CoV N 
protein 

Ni-NTA beads 4.93 ± 0.3 nM 
 

Western Blot - [10] 

Bovine viral 
diarrhea virus 

GO-SELEX 5 x 104 
TCID50/ml 

SPR AuNP 
sandwich 

800 
copies/mL 

[24] 

HCV envelope 
surface 
glycoprotein 
E2 

Cell surface 
SELEX 

1.05 ± 1 nM - - [97] 

Dengue Virus 
Type-2 
envelope 
protein 
domain III 

Ni-NTA 
magnetic beads 

154 ± 40 nM - - [98] 

HIV reverse 
transcriptase 

CE-SELEX 180 ± 70 pM - - [99] 

 

 For the focus of this review, those MREs with therapeutic applications are listed in the 

following table without further detail discussions (Table 1.3).  

 

Table 1.3: Summary table of ssDNA MREs targeting viruses and virus proteins for 

therapeutic applications. 

Virus Target SELEX Method Kd Reference 
HIV Reverse 

transcriptase 
Nitrocellulose Filters - [100] 

HIV Reverse 
transcriptase 

Sephadex columns 660 pM [101] 

HIV Reverse Nitrocellulose Filters 1 nM [102] 
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transcriptase 
HIV Reverse 

transcriptase 
Primer-free SELEX 82 nM [103] 

HIV Integrase Nitrocellulose Filters - [104] 
HIV Integrase - - [105] 
HIV Trans-

activation-
responsive RNA 
element (TAR)  

Magnetic beads 20 nM [106] 

HIV Trans-
activation-
responsive RNA 
element (TAR)  

Magnetic beads 50 nM [107] 

HCV NS5B RNA 
polymerase 

Nitrocellulose Filters 132 nM [108] 

HBV Core Protein - High affinity determined 
by dot blot 

[109] 

SARS 
coronavirus 

Helicase Magnetic beads 5 nM [110] 

Influenza A 
virus 

Hemagglutinin 
from H3N2 

Ni-NTA beads - [111] 

Influenza A 
virus 

Hemagglutinin 
from H5N1 

Ni-NTA beads High affinity determined 
by ELISA 

[112] 

Influenza A 
virus 

Hemagglutinin 
from H3N2 

Ni-NTA magnetic beads 7 nM [113] 

Influenza A 
virus 

Hemagglutinin 
from H9N2 

Nitrocellulose Filters High affinity determined 
by ELISA 

[114] 

Influenza A 
virus 

Non-structural 
protein 1 

Glutathione agarose 
beads 

18.91 ± 3.95 nM [115] 

Rabies Virus Rabies virus 
infected BHK-
21 cells 

Cell SELEX 28 nM [116] 

HPV HPV 
transformed 
HeLa cells 

Cell SELEX 1 nM [117] 

Vaccinia 
Virus 

Whole virus 
particle 

One-step MonoLEX High affinity determined 
by dot blot, SPR, etc 

[118] 

 

In recent years, there has been an increase in the interest in the application of ssDNA 

MREs for virus detection. Human noroviruses are the leading cause of acute gastroenteritis 

worldwide. Current detection methods for the virus are time consuming and labor intensive [119]. 

Giamberardino et al. performed nine rounds of in vitro selection on murine norovirus. The best 

candidate MRE was reported to have affinity in the low picomolar range. It displayed cross 
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binding activity with human norovirus, but not to a structurally similar virus, feline calicivirus. 

An electrochemical sensor using a gold nanoparticle modified screen-printed carbon electrode 

was developed with a reported LOD of 180 virus particles [93]. Escudero-Abarca et al. 

performed selection on multiple strains of human noroviruses, including Snow Mountain virus, 

and Norwalk virus. Candidate MREs showed high binding affinities that were comparable to 

commercially available antibodies. The best MRE was also able to show binding to specific virus 

strains in human fecal samples. A reported LOD of 10 virus RNA copies was achieved in 

artificially contaminated lettuce by using immobilized biotinylated MRE on streptavidin 

magnetic beads coupled with real-time quantitative PCR [92]. The capsid protein VP1 of 

Norovirus genotype II.4 was chosen to be the target for selection by Beier et al. After twelve 

rounds of selection, surface plasmon resonance analysis was used to show the high specificity of 

the selected MRE. Computer simulation was used to characterize the binding interaction between 

VP1 and candidate MREs. However the authors did not report the Kd  value in the study [94].  

Influenza virus is the causative agent for many upper respiratory diseases and can 

potentially cause pandemics with high mobility and mortality [120]. Lai et al. used M-SELEX to 

identify ssDNA MRE target influenza A H1N1 with high affinity (Kd = 55.14 ± 22.40 nM). A 

magnetic bead based florescent assay achieved a reported LOD of 6.4 x 10-3 HAU. When the 

bead capturing method was coupled with RT-PCR, the fluorescent signal remained detectable in 

virus spiked clinically relevant matrices, including throat swab samples, sputum samples, and 

serum samples [34]. Wang et al. performed an in vitro selection specific for influenza virus 

H5N1. Purified hemagglutinin (HA) protein was used as target for the first four rounds, and then 

inactivated whole H5N1 viruses were used from round five to thirteen. The best candidate MRE 

displayed high affinity (Kd = 4.65 nM) with only minimal cross binding activities on other avian 
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influenza virus strains. A dot blot assay was developed with a LOD of 1.28 HAU, which was 

comparable to anti-H5 antibody. The dot blot assay also demonstrated the detection of the target 

virus in spiked chicken and duck swab samples [95]. Shiratori et al. chose recombinant influenza 

A HA protein as target for selection. After ten rounds of target selection, candidate sequences 

showed high binding affinities with reported Kd values in the low nanomolar range. A sandwich 

enzyme linked aptamer assay (ELAA) was developed and showed similar binding responses on 

three strains of influenza A, H5N1, H1N1 and H3N2. However, the LOD was not determined 

[96]. 

A novel coronavirus caused a severe acute respiratory syndrome (SARS) outbreak in 

2002 to 2003 [121]. Cho et al. identified ssDNA MREs specific for the SARS coronavirus 

nucleocapsid protein. After twelve rounds of positive selection, the best candidate MRE had a 

reported Kd value of 4.93 ± 0.3 nM. MRE modified Western blot showed a comparable detection 

level to nucleocapsid antibody based assay. However, the authors did not show cross binding 

reactivity of the selected MREs toward other viral proteins [10]. 

GO-SELEX was utilized to identify ssDNA MREs specific for bovine viral diarrhea virus. 

After five rounds of positive and negative selections, three best candidate MREs had reported Kd 

values of 4.08 x 104, 4.22 x 104 and 5.2 x 104 TCID50/mL respectively by SPR kinetics analysis. 

All candidate MREs showed very high specificity toward the target. A sandwich SPR detection 

assay was developed wherein a biotinylated MRE was immobilized on streptavidin coated gold 

chip as the capturing MRE, and a second different MRE with thiol modification was conjugated 

to gold nanoparticle as the reporting MRE. A LOD of 800 copies of virus/mL was reported with 

this assay [24]. 
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Hepatitis C virus (HCV) envelope surface glycoprotein E2 was chosen as target for 

selection by Chen et al. E2 protein was expressed on a murine colon carcinoma cell line, CT26 

cells, and used as target for positive selection. The native CT26 cells were used as counter target. 

After thirteen rounds of selection, the best candidate MRE showed high affinity and specificity 

toward E2-positive cells. An ELISA virus capture assay was developed by using biotinylated 

MRE as reporter and demonstrated the detection of HCV in clinical human serum samples. In 

addition, the MRE, termed ZE2 also displayed therapeutic effect by inhibiting E2 protein binding 

to CD81 and blocking HCV infection of human hepatocytes in vitro [97]. 

Dengue virus is a member of family Flaviviridae, genus flavivirus. It is a mosquito-borne 

RNA virus that can cause gangue fever, dengue hemorrhagic fever, and dengue shock syndrome 

[122]. Gandham et al. used recombinant dengue virus type-2 envelope protein domain III as 

target of interest to perform an in vitro selection of thiophosphate ester modified ssDNA MREs. 

After five rounds of target selection, the best MRE had a reported Kd value of 154 ± 40 nM, but 

no cross binding experiments were performed [98]. 

CE-SELEX was performed by Mosing et al. to identify ssDNA MREs specific for HIV 

reverse transcriptase. After only four rounds of selection, the best candidate MRE had an ultra-

high affinity with a reported Kd value in the picomolar range. Interestingly, there were no 

identifiable consensus sequence families in the round four ssDNA library. The authors claimed 

that the selected MRE had the highest affinity for the target of interest when compared to MREs 

selected by other methods, and suggested multiple ultra-high affinity MREs might exist in the 

enriched library [99]. 
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1.2.5 Single-stranded DNA MREs Targeting Toxins 

1.2.5.1 Biological Toxins/ Virulence Factors 

Secretory proteins, virulent factors, exotoxins, or small molecule toxins from bacteria, 

fungus and other organisms are important biomarkers in medical diagnosis, environmental 

monitoring and as well as in food safety surveillance. The following section discusses recent 

studies in the identification and biosening application of ssDNA MREs specific for biological 

toxins (Table 1.4). 

Table 1.4: Summary table of ssDNA MRE targeting biological toxins and virulence factors. 

Target SELEX 

Method 

Kd Detection Method LOD Referenc

e 

Enterotoxin B Magnetic 
Beads 

- Electrochemiluminescenc
e 

10 pg [123] 

Enterotoxin B Magnetic 
Beads 

- - - [11] 

Enterotoxin C1 
 

Magnetic 
Beads 

65.14 ± 
11.64 nM 

Fluorescence 6 ng/mL [124] 

Cholera toxin Magnetic 
Beads 

- ELAA/ 
Electrochemiluminescenc
e 

10 ng 
40 ng 

[123] 

C. diff Toxin A/ 
Toxin B/ Binary 
Toxin 

Magnetic 
Beads/ 
SOMAmerTM 

Sub to low 
nanomolar 
range 

Various 
 

1 pmol/L 
 

[125] 

C. diff Binary 
Toxin 

Sandwich 
SELEX/ 
SOMAmerTM 

0.02 - 2.7 
nM 
 

Sandwich assays 
 

Low 
picomolar 
 

[126] 
 

C. diff  Toxin B Magnetic 
Beads 

47.3 ± 13.7 
nM 

Modified ELISA 50 nM [127] 

CFP-10.ESAT-6 
heterodimer 

Nitrocellulos
e 

Low 
nanomolar 
range 
 

Colorimetric (ELONA) 
 

100% 
sensitivity
, 68.75% 
specificity 

[9] 

CFP-10.ESAT-6 
heterodimer 

Microwell 375 nM / 
160 nM 

Colorimetric (ELONA) 
 

89.6 – 
100% 
sensitivity

[128] 



29 
 

Plate  , 94.1% 
specificity 

MPT64 
TB protein 

Microwell 
Plate 

- Sandwich assays - [129] 

Protective Antigen CE-SELEX 112 nM Electrochemical (SWNT) 1 nM [130] 
Protective antigen Membrane 

filtration 
nanomolar 
range 

ELISA - [131] 

Botulinum 
neurotoxin type A 
heavy chain 
peptide/ toxoid 

Single 
micobead 
 

Nano to 
micromola
r range 
 

- - [30] 

Botulinum 
neurotoxin type A 
light chain 

 

Microfluidic-
SELEX 

Low 
nanomolar 
range 

- - [32] 

Botulinum 
neurotoxin type A 
light chain 

Magnetic 
Beads 

- Fluorescence 1 ng/mL [132] 

Microcystin Sepharose gel Ka: 103 M-1 SPR - [133] 
Cylinrospermospi
n 

Sepharose 
Beads 

88.78 nM Electrochemical 100 pM [134] 

Saxitoxin Magnetic 
Beads 

- - - [135] 

Okadaic acid Magnetic 
Beads 

77 nM Electrochemical 70 pg/mL [12] 

Ochratoxin A Agarose resin 200 nM Fluorescence Polarization 5 nM [136, 137] 
Ochratoxin A Magnetic 

Beads 
96-293 nM ELAA 1 ng/mL [138] 

Ochratoxin A Sepharose 
Beads 

High 
nanomolar 
range 

Fluorescence 9 nM [139] 

Fumonisin B1 Magnetic 
beads 

100 nM - - [13] 

Zearalenone Magnetic 
Beads 

41 ± 5 nM Fluorescence 0.785 nM [140] 

T-2 toxin GO-SELEX 20.8 ± 3.1 
nM 

Fluorescence 0.4 µM [141] 

Aflatoxin B1 Magnetic 
Beads 

11.39 ± 
1.27 nM 

Fluorescence 35 ng/L [142] 

Aflatoxin B1/ M1 Magnetic 
Beads 

96-221 nM 
35-1515 
nM 

Colorimetric/ AuNPs 250 - 500 
nM 
(Aflatoxin 
M1) 

[143] 

Alpha 
Bungarotoxin 
 

1 step 
SELEX 
 

7.58 µM 
 

- - [31] 

Alpha Toxin Magnetic 
Beads 

93.7 ± 7 
nM 

Modified ELISA 200 nM [144] 

Alpha Toxin Filter - - - [145] 
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Staphylococcus aureus can secrete a group of thermostable enterotoxins that have been 

shown to contaminate food. Reports suggest that these toxins are a common cause of foodborne 

illnesses [146]. There are many types and subtypes of staphylococcus enterotoxins. Bruno et al. 

first selected ssDNA MREs that bind to enterotoxin B by using magnetic bead immobilized 

target. An electrochemiluminescence assay was developed to demonstrate a detection limit of 

less than 10 pg of enterotoxin B. However, no kinetic data or crossing-binding profiles were 

presented in the study [123]. DeGrasse identified a ssDNA MRE specific for enterotoxin B after 

fourteen rounds of mixed target and negative targets selection. A MRE based precipitation assay 

was used to analyze the selectivity of candidate MREs in cell-free culture supernatant from 

multiple strains of S. aureus.  The high selectivity of candidate MREs was confirmed by 

capturing only the target toxin in the precipitation assay. However, no quantitative binding data 

was presented in the study [11]. Enterotoxin subtype C1 was chosen as target for selection by 

Huang et al. After twelve rounds of selection, the best candidate MRE demonstrated high affinity 

for enterotoxin C1 (Kd = 65.14 ± 11.64 nM). Cross binding experiments showed the selected 

MRE had high specificity and low cross binding activities on staphylococcus enterotoxin A, 

enterotoxin B and other protein molecules. A graphene oxide based fluorescence detection assay 

was developed and achieved a reported LOD of 6 ng/mL in artificially contaminated buffer-

diluted milk samples [124]. 

Bruno et al. 2002 selected a ssDNA MRE against cholera toxin. An enzyme linked 

colorimetric assay showed a detection limit of less than 10 ng of cholera toxin, and a 

electrochemiluminescent assay show a detection limit of less than 40 ng. However, affinity, 

crossing binding data, and MRE sequences were not presented in the study [123]. 
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Toxigenic strains of Clostridium difficile can produce toxin A and toxin B, which are the 

contributing factor of C. difficile induced diarrhea. Rapid diagnosis of the condition is crucial in 

facilitating patient recovery and disease control [147]. Some strains of C. difficile also secret a 

binary toxin that can inhibit actin polymerization [148]. Ochsner et al. selected several slow off-

rate modified ssDNA MREs (SOMAmer™) specific for toxins A, B and binary toxin. Several 

DNA libraries with modifications, such as  5-benzylaminocarbonyl-dU (BndU), 5-

naphthylmethylaminocarbonyl-dU (NapdU), 5-tryptaminocarbonyldU (TrpdU), 5-phenylethyl-1-

aminocarbonyl (PEdU), 5-tyrosylaminocarbonyl-dU (TyrdU), or 5-(2-naphthylmethyl) 

aminocarbonyl (2NapdU) were used in selections. Truncated recombinant toxins were used as 

targets. Equilibrium dissociation constants of selected SOMAmersTM were in pico to nanomolar 

range. The affinities for native toxins were slightly lower, but were remain in the low nanomolar 

range for majority of the candidate sequences. Pull-down capture, dot blots and antibody 

sandwich assays were developed with a reported LOD of 300 pg/mL. Selected SOMAmersTM 

were able to detect all three toxins in cell-free culture supernatants of toxigenic C. difficile [125]. 

Ochsner et al. performed another in vitro selection on C. difficile binary toxin with sandwich 

SELEX. The advantage of sandwich SELEX is to select SOMAmerTM pairs that target different 

epitopes of the target protein. The reported Kd values of selected SOMAmers ranged from 0.02 

to 2.8 nM. A SOMAmer sandwich assay was developed with a reported LOD in the low 

picomolar range. The authors claimed that these studies showed the high potential for the 

development of sensitive and specific diagnostic kits [126].  

Hong et al. performed a selection on C. diff toxin B and developed a proof-of-concept 

ssDNA MRE modified ELISA for sensitive target detection in human fecal matter. This work 

will be discussed in detail in Chapter 3 [127]. 
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Tuberculosis (TB) remains to be a challenging disease in developing countries. Recent 

discovery of multi-drug resistant strains of Mycobacterium tuberculosis has further increased 

public concerns, however, current diagnostic techniques for TB are either time consuming or 

insensitive [149-151]. Rotherham et al. performed a selection on CFP-10.ESAT6 heterodimer, a 

specific biomarker for TB infections.  After six rounds of selection, SPR binding studies showed 

candidate ssDNA MREs had affinities in the nanomolar range. One of the candidate MRE was 

tested in an enzyme linked oligonucleotide assay (ELONA). The authors reported the assay had 

100% sensitivity and 68.75% specificity in clinical sputum samples using Youden’s index. 

However, the time needed for assay completion and crossing binding activities to other antigens 

were major limitations of the assay [9]. Tang et al. performed a selection on the same CFP-

10.ESAT6 heterodimer. After seventeen rounds of selection, Kd values of candidate MREs were 

in the low nanomolar range. Two ssDNA MREs (CE24, CE 15) were used in an ELONA assay. 

The reported sensitivity and specificity of CE24 MRE based ELONA were 100% and 94.1% 

respectively. CE15 MRE based ELONA had a lower sensitivity of 89.6%, but the specificity was 

the same. Assays were tested with both pulmonary and extrapulmonary serum samples from TB 

patients [128]. 

MPT64 is a secreted protein of M. tuberculosis and can be used as biomarker for active 

TB infections [152]. Qin et al. performed twelve rounds of selection on MPT64. Affinities of 

truncated candidate ssDNA MREs, containing only a 35-base central random region, were 

qualitatively observed using streptavidin-horse radish peroxidase (HRP) binding to protein-

bound biotin-tagged MREs. A colorimetric sandwich assay using two different MREs was 

developed to detect the presence of MPT64 in culture filtrates. The sandwich assay achieved 

sensitivity and specificity of 86.3% and 88.5% respectively [129]. 



33 
 

Protective antigen (PA) is a secreted virulence factor of Bacillus anthracis that binds to 

anthrax toxin receptors on mammalian cells and subsequently causes cell dysfunction and death 

[153]. Cella et al. utilized CE-SELEX to identify a ssDNA MRE targeting PA with high affinity 

and specificity. After six rounds of CE-SELEX, the best candidate had a reported Kd value of 

112 nM. An electrochemical biosensor was developed by immobilizing 5’ amino modified MRE 

on 1-pyrenebutanoic acid succinimidyl ester (PASE) modified single wall carbon nanotubes 

(SWNT). The sensor showed low cross binding activity toward human and bovine serum 

albumin at 100 nM concentration. The sensor surface could be regenerated using 1 µL of 6 M 

guanidium hydrochloride for 15 minutes followed by a wash with 10 mM phosphate buffer. A 

reported LOD of 1 nM was achieved [130]. Choi et al. performed an in vitro selection on PA. 

After eight rounds of selection, four candidate sequences had high affinities for PA (Kd in low 

nanomolar range), and two of the four candidates had low cross binding activities toward bovine 

serum albumin and bovine serum [131]. 

Botulinum neurotoxins (BoNT) are produced by Clostridium botulinum. In additional to 

its medical uses, it can also cause serious foodborne illnesses and may potentially be used as a 

biological weapon [154]. Tok et al. used a novel single microbead SELEX to perform selection 

of ssDNA MREs specific to aldehyde-inactivated BoNT type A toxin (BoNT/A-toxoid) and 

BoNT type A heavy chain peptide (BoNT/A Hc-peptiod). Targets were immobilized onto Ni-

NTA agarose or amine-functionalized polystyrene TentaGel beads. A single target-immobilized 

microbead was incubated with the ssDNA library and retrieved for PCR amplification of bound 

ssDNA molecules. After only two rounds of selection, five candidate sequences specific for 

BoNT/A Hc-peptiod had Kd values ranging from 1.09 µM to 4.20 µM. Three candidate 

sequences specific for BoNT/A-toxoid had Kd values ranging from 3 nM to 51 nM. The authors 
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reported that all MREs specific to BoNT/A Hc-peptiod were able to competitively inhibit the 

binding between the toxin peptide and anti-BoNT antibody, and potentially be used as a 

therapeutic agent [30]. 

Lou et al. utilized a novel microfluidic device to facilitate the partitioning of a small 

volume of target coated magnetic beads (M-SELEX). The library achieved a very high overall 

affinity (Kd = 33 ± 8 nM) against BoNT/A light chain after only one round of selection. Four 

candidate sequences had a range of Kd values between 34 to 86 nM. The authors claimed that 

their M-SELEX could be readily adapted to any bead immobilized targets or whole cell target 

[33]. Bruno et al. immobilized BoNT/A light chain on magnetic beads and performed ten rounds 

of selection. The best candidate MRE was fluorescently tagged and used as a reporter for target 

detection. The reported LOD of 1 ng/mL was achieved in buffer. However, the MRE reporter 

also bound to structurally similar targets, BoNT type B, type E holotoxins and heavy or light 

chain components, in a soil dilution. The author compared their MRE sequence to previous 

ssDNA MRE specific for BoNT and found consensus short sequence segments. This suggested 

that the binding between BoNTs and MREs may be conserved within these consensus segments 

[132].  

Microcystin is a hepatotoxin produced by cyanobacteria. Three different analogs of 

microcystin were used in the study performed by Nakamura et al. Microrocystin LR, containing 

a leucine substituent was immobilized and used for twelve rounds of target selection. However, 

surface plasmon resonance binding data indicated a higher binding level between the selected 

MRE and microcystin YR, an analog containing a tyrosine substituent. There was also 

significant binding to microcystin RR, an analog containing an arginine substituent. The reported 

binding affinity (Ka) was low, at approximately 103 M-1. This early work did not demonstrate the 
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high affinity and specificity properties of MREs, however, it did show the possibility of using 

MREs as a binding molecule in a label-free detection system [133]. 

Cylindrospermopsin (CYN) is another water soluble and heat stable alkaloid secreted by 

a large group of fresh water cyanobacteria. It has a variety of toxic effects in human bodies ipon 

exposure to cylindrospermopsin usually through drinking water or food [155]. Elshafey et al. 

recently selected a ssDNA MRE with high affinity and specificity toward CYN, with a reported 

Kd value of 88.78 nM. Circular dichroism measurements showed the MRE had a conformational 

change upon binding to CYN. This property was exploited in a label-free impedimetirc biosensor. 

The reported LOD of the sensor was 100 pM with a linear range of 80 nM. It also showed 

negligible responses toward coexistent cyanobacterial toxins of microcystin-LR and Anatoxin-a. 

CYN was recoverable in a spike test with tap water [134].  

Saxitoxin is a small neurotoxin produced by few dinoflagellates and certain 

cyanobacteria that affect marine organisms [156]. Handy et al. were the first to select a ssDNA 

MRE against target saxitoxin. In their study, saxitoxin was conjugated to keyhole limpet 

hemocyanin (KLH) via a spacer compound, 2,2’-(ethylenedioxy)bis(ethylamine), or Jeffamine, 

then the protein-toxin conjugate immobilized on magnetic beads. Ten rounds of selection were 

performed, and negative selection against KLH-bead was carried out from round four to the 

round ten, in order to decrease non-specific binding to KLH and beads. One candidate sequence 

was analyzed by SPR and demonstrated a concentration-dependent and selective binding to 

saxitoxins. However, the Kd value of the selected MRE was not presented in the study [135]. 

Okadaic acid (OA) is a phycotoxin produced by Dinophysis and Prorocentrum algae. It 

can accumulate in shellfish due to its lipophlic and heat-stable nature. Human consumption of 

OA can lead to a variety of gastrointestinal symptoms [157].  Eissa et al. identified a ssDNA 
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MRE with high affinity and specificity toward OA after eighteen rounds of mixed target and 

negative target selection. The candidate MRE with the highest affinity (Kd = 77nM) was chosen 

for circular dichoism analysis. A conformational change in the MRE was observed upon binding 

of OA. A label-free electrochemical impedimetric biosensor was developed with this MRE and 

achieved a LOD of 70 pg/mL. It demonstrated no cross binding activities toward structurally 

similar toxins, including dinophysis toxins-1 and 2 and microcystin-LR [12].  

Ochratoxin A (OTA) is a mycotoxin produced by members of the Aspergillus and 

Penicillium genera. It is a nephrotoxin and has potential carcinogenic effects in humans. It has 

been shown as a contaminant in many food products, such as grains and wine [158]. However, 

the current detection method for OTA is both expensive and time consuming [159]. Cruz-

Aguado et al. identified a ssDNA MRE specific for OTA after thirteen rounds of selection. The 

best candidate MRE reported had a Kd value of 200 nM. It did not bind non-specifically to 

warfarin, N-acetyl-L-phenylalanine, or ochratoxin B in a fluorescent based cross-binding assay 

[136].  Subsequently, the authors developed a detection system based on a fluorescence 

polarization displacement assay. The author reported the assay was sensitive to OTA, but not to 

warfarin and N-acetyl-L-phenylalanine, with a LOD of 5 nM. However, the detection assay did 

not test ocharatoxin B (OTB) binding activity or sensitivity in food sample [137]. Barthelmebs et 

al. also selected ssDNA MRE specific for OTA. Several candidate MREs were identified after 

fourteen rounds of selection. After binding and cross binding analysis, the best candidate had a 

Kd value of 96 nM with minimal binding to OTB and phenylalanine. It was incorporated into an 

ELISA and ELAA assays for the detection of OTA spiked in pretreated wine samples. Different  

ELAA and ELISA assays were compared, and a direct competitive ELAA had the lowest 

detection limit of 1 ng/mL with the shortest analysis time of 125 minutes [138]. McKeague et al. 
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performed fifteen rounds of in vitro selection to identify ssDNA MREs specific for OTA. Two 

candidate MREs had reported Kd values of 110 ± 50 nM (designated B08) and 290 ± 150 nM 

(designated A08). A08 ssDNA MRE was utilized in a label-free fluorescence detection assay, 

and achieved a LOD of 9 nM. It also had low cross binding activity on OTB and warfarin. The 

authors reported a truncated version of A09 also had similar specificity and binding affinity 

profiles [139].  

Fumonisins are heat-stable mycotoxins present in most corn and are produced by fungi,  

Fusarium verticillioides and Fusarium proliferatum. Fumonisin B1 (FB1) is a nephrotoxin and 

potential carcinogen in humans. As the toxin cannot be inactivated by cooking in high 

temperature, it is crucial to monitor its level during food production [160]. McKeague et al. 

performed eight rounds of selection to identify a ssDNA MRE with high binding affinity toward 

FB1. Unmodified magnetic beads (immobilization substrate), L-homocysteine, L-cysteine, and 

L-methionineL-glutamic acid were used as negative targets in the selection. Six candidate MREs 

were identified, and the best candidate MRE had a reported Kd of 100 nM. However, the authors 

did not test the specificity of the selected MRE on other mycotoxins [13]. 

Zearalenone (ZEN; F-2 toxin) is a nonsteroidal estogenic mycotoxin produced by many 

fungus species in the Fusarium genus. It has been shown to be present in many grains worldwide, 

such as oats, wheat, rice and their derived food products [161]. Chen et al. performed fourteen 

rounds of selection, the best candidate MRE had a reported Kd of 41 ± 5 nM and high specificity. 

Crossing binding assays showed insignificant binding to other mycotoxins, β-zearalenol, 

aflatoxin B1, aflatoxin B2, fumonisin B1 and fumonisin B2. Circular dichroism measurement 

showed a conformational change of the MRE after binding of zearalenone. A detection assay 
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using MRE immobilized magnetic beads and the blue-green florescence property of zearalenone 

was developed. A LOD of 0.785 nM was achieved in pretreated beer samples [140].  

T-2 toxin (T-2) is a trichothecene mycotoxins produced by many species in the Fusarium 

genus and is harmful to humans. It is a very stable small molecule biological toxin that is 

resistant to high temperature and is present in variety of grains, such as oats, barley, wheat and 

more. Currently, it can only be detected by labor intensive and costly instruments, and is thus 

difficult to monitor its level in food [162] . Chen et al. recently utilized ten rounds of GO-

SELEX to identify a ssDNA MRE specific for T-2 with high affinity and specificity. Fluorescent 

binding and cross-binding assay showed that the Kd value of the best candidate MRE was in the 

nanomolar range, with insignificant cross binding activities on FB1, ZEN, OTA and aflatoxin B1.  

There was a conformational change upon MRE-T-2 binding. The authors also developed a 

fluorescent assay to detect spiked T-2 level in beer. A LOD of 0.4 µM was achieved [141]. 

Aflatoxins are highly toxic natural compounds produced by many species of filamentous 

fungi and can contaminate agricultural products. The LD50 can be as low as 0.5 mg/kg, and acute 

toxicity is even higher than many chemical toxins, such as cyanide or arsenic [163, 164]. Ma et 

al. performed an in vitro selection on a subtype of aflatoxins, aflatoxins B1 (AFB1). After ten 

rounds of target and negative target selection, the best candidate MRE had a reported Kd value of 

11.39 ± 1.27 nM and with minimal cross binding activities on aflatoxins B2, G1, G2, OTA and 

FB1. A fluorescent assay similar to the authors’ previous study on ZEN and T-2 specific MRE 

was developed to detect spiked levels of AFB1 in methanol-extracted peanut oil.  The assay 

achieved a LOD of 35 ng/L [142]. Malhotra et al. perform two selections (SELEX1 and SELEX2) 

using slightly different methodologies to identify ssDNA MREs specific for both AFB1 and 

aflatoxins M1 (AFM1). In SELEX1, lambda exonuclease was used to generate ssDNA from 
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amplified dsDNA. AFM1 coated magnetic beads were used as a positive target from round 1 to 

round 10, and AFB1 coated magnetic beads were used as positive target at round 11 (last round) 

only. Free targets were used to competitively elute ssDNA that bound to toxin coated beads in 

round 10 and round 11. In SELEX2, each round started from pre-incubation with counter targets 

(uncoated beads, AFB1 beads) followed by incubation with AFM1 beads. Snap cooling was used 

to obtain ssDNA from dsDNA. In SELEX2, only eight rounds were carried out. Multiple 

candidate MREs were analyzed and their Kd values were in the nano to low microloar range. 

One MRE with the best affinity (Kd = 35.6 ± 2.9 nM), designated AFAS3, was used in 

developing a colorimetric assay based on MRE immobilized gold nanoparticles. This assay had a 

detection range of 250 to 500 nM of AFM1, and only minor interaction with AFB1. However, 

there were no reported cross binding data on other mycotoxins [143].  

Two studies identified ssDNA MREs specific for biological toxins with therapeutic 

intentions. Alpha-Bungarotoxin is a toxic substance in krait snake venom and can bind 

irreversibly to acetylcholine receptors and eventually lead to death in victims [165, 166]. 

Lauridsen et al. performed a rapid one-step SELEX and identified a ssDNA MRE with relatively 

high binding affinity toward Alpha-Bungarotoxin (Kd = 7.58 µM). The authors claimed that 

rapid selection technique could potentially be used with a chemically modified nucleic acid 

library, and generate MREs suitable for diagnostic and therapeutic purposes [31].  

Vivekananda et al. selected a ssDNA MRE specific for alpha toxin of Staphylococcus 

aureus. Several candidate sequences showed cell rescuing effects when co-administrated with 

alpha toxin in multiple in vitro neutralization assays. The authors claimed that it was possible to 

generate MREs against alpha toxin for the treatment of S. aureus infections [145].  
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Hong et al. also performed an in vitro selection on S. aureus alpha toxin and developed a 

proof-of-principle modified ELISA using ssDNA MRE for sensitive target detection in human 

serum. This work will be described in detail in Chapter 4 [144]. 

1.2.5.2 Chemical Toxins 

The detection of chemical toxins is important in both food safety and environmental 

monitoring. Environmental and food contamination by various kinds of chemical toxins have 

been reported, and even at low concentrations can still be detrimental to human health. Currently, 

the majority of small chemical toxins can only be detected by labor intensive and costly 

laboratory equipments such as, liquid and/or gas chromatography coupled with mass 

spectrometry. In order to address these current limitations, there has been an increase in the 

identification and biosensing applications of MREs with high affinity and specificity to capture 

and detect chemical toxins. However, the in vitro selection of ssDNA MREs targeting small 

molecule chemical toxins has several inherent challenges, such as difficulties in efficient 

separation between bound and unbound DNA molecules, limited chemical motifs on target 

surfaces for sufficient binding, lack of chemical functional groups for target immobilization, and 

candidate MREs that may not have sufficient specificities to distinguish molecules with very 

similar chemical structures if selection schemes are not carefully designed. For these reasons, 

there are a limited number of ssDNA MREs specific for chemical toxins currently in the 

literature (Table 1.5). 

 

Table 1.5: Summary table of ssDNA MREs targeting chemical toxins. 

Target SELEX Method Kd Detection LOD Reference 
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Method 

17β-estradiol (E2) 
 

Sepharose 
column 
 

 

0.13 µM 
 

Electrochemical 
 

0.1 nM 
 

[167] 

17β-estradiol (E2) Sepharose 
column 
 

50 nM 
 

Dynamic light 
scattering, 
resistive pulse 
sensing 

5 nM - 100 
nM 
 

[168] 

Bisphenol A Epoxy-activated 
resin 

8.3 nM Fluorescence Nanomolar 
range 

[169] 

Polychlorinated 
biphenyls  
 

FluMag–SELEX 
 

Low 
micromolar 
range 

Fluorescence 0.1 to 100 
ng/mL 
 

[170] 

Polychlorinated 
biphenyls  
 

Magnetic Beads 
 

nanomolar 
range 
 

- - [171] 

Atrazine CE-SELEX 890 nM Fluorescence 
Polarization 

- [172] 

Atrazine Magnetic Beads 0.62 ± 0.21 
nM 

Magnetic beads 
capturing coupled 
with CE 

Nanomolar 
range 

[14] 

Malathion Magnetic Beads 1.14 ± 0.7 
nM 

- - [15] 

Bromacil Magnetic Beads 9.6 ± 7.8 
nM 

- - [16] 

Tebuconazole 
Mefenacet 
Inabenfide 

GO-SELEX 10-100 nM Colorimetric 100 - 400 

nM 

[25] 

4 organophosphorus 
pesticides 
phorate, profenofos, 
isocarbophos, and 
omethoate 

Filtration 
column/ 
Immobilization 
free 

Low 
micromolar 
range 
 

- - [28] 

Acetamiprid 
 

Immobilization 
free 

4.98 µM 
 

- - [27] 

 

Kim et al. identified a 76-mer ssDNA MRE specific for 17-beta-estradiol (E2) with a Kd 

of 0.13 µM after seven rounds of selection. Specificity of the selected MRE was shown by 

square wave voltametry (SWV) measurement, with only minimal binding to structurally similar 
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organic chemicals 2-methoxynaphthalene and 1-aminoanthraquinone. The authors 

initiallyattempted SPR for the detection of E2. However, due to the small molecular weight of 

E2, there were no observable binding events by SPR. An electrochemical platform measured 

under SWV was eventually utilized to detect E2 with a LOD of 0.1 nM in buffer solutions [167]. 

Alsager et al. selected a 75-mer ssDNA MRE specific for E2 with a Kd of 50 nM after eighteen 

rounds of selection. The 5’ amino-modified MRE was covalently conjugated to carboxylated 

nanoparticles, and dynamic light scattering/ resistive pulse sensing was used to observe size 

contraction in particle size upon E2 binding. A detection range of 5 nM to 100 nM was achieved 

with this detection platform. Progesterone, testosterone, Bis (4 hydroxyphenyl) methane (BPF), 

and bisphenol-A (BPA) were also tested for the specificity of the selected MRE. The assay 

showed minimal binding to both BPA and BPF, however, the MRE was not able to distinguish 

the other two steroids [168]. 

Bisphenol A (BPA) is an estrogen mimicking chemical that has been classified as an 

endocrine-disrupting compound. It is used in the manufacture of polycarbonate plastic products, 

such as plastic bottles and containers. It has been shown to be released into food after heating, 

and can accumulate in human [173]. Jo et al. selected a ssDNA MRE specific for Bisophenol A 

with high affinity and specificity. The reported Kd value was 8.3 nM with only minimal binding 

to structurally related chemical molecules, including 6F biophenol A, bisphenol B, and 4, 4’-

bisphenol. A cy-3 labeled MRE pair was immobilized on sol-gel biochip and a sandwich 

detection assay was developed with nanomolar range sensitivity. However, the authors 

acknowledged the assay system can only detect a limited range of BPA concentrations [169].  

Polychlorinated biphenyls (PCB) are a group of chlorinated hydrocarbons that are used in 

varies of industrial settings. PCBs are highly toxic and are reported to be an environmental 
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contaminant affecting water bodies and food sources [174]. Mehta et al. identified PCB binding 

ssDNA MREs with nanomolar range affinity. In their study, two PCB compounds with hydroxyl 

functional group were immobilized on magnetic beads, and used as target for selection. After 

nine rounds of selection, three candidate sequences were chosen for characterization. Two of the 

three candidate sequences (9.1 and 9.3) showed comparable binding affinities to both 

immobilized targets. In subsequent crossing binding analysis, candidate 9.1 showed broad 

substrate binding affinity to other PCB compounds, while candidate 9.2 showed a high 

specificity for the two PCBs with hydroxyl functional groups. The study did not test specificity 

on other hydrocarbons that are structurally similar to PCB [171]. Xu et al. immobilized a primary 

amine modified PCB compound (PCB77-NH2) on epoxy-activated Sepharose agarose as the 

target for in vitro selection. After eleven rounds of selection, four candidate sequences were 

characterized to have affinity in the low micromolar range. Cross binding assays showed only 

minimal binding toward other hydrocarbons and agarose substrate. A fluorescent based detection 

assay was developed using the fluorescence quenching property of gold nanoparticle. Upon 

binding to target, the fluorescent signal was released. A detection range of 0.1-100 ng/mL was 

achieved. This assay detected other PCB compounds with different sensitivities [170].  

The current detection method for herbicides and pesticides environmental contaminants 

in the environment relies on using time consuming and labor intensive laboratory based 

equipments. MREs have been investigated as binding elements in rapid, field deployable 

detection systems. Atrazine is a widely used herbicide worldwide [175]. Sanchez utilized CE-

SELEX to identify a ssDNA MRE specific for atrazine with a Kd of 890 nM. However, the MRE 

did not show specificity in binding between atrazine and structurally closely related simazine at 

concentration below approximately 2 µM in a fluorescence polarization detection assay [172]. 
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Williams et al. also performed an in vitro selection of ssDNA MRE specific for atrazine. 

A derivative of atrazine, desethyl atrazine was first biotinylated, and then immobilized on 

streptavidin coated magnetic beads. The selection scheme was designed with increasing selection 

stringency, by incorporating negative selections on streptavidin magnetic beads, simazine, 

metabolites of atrazine and other commonly used pesticides. Competition selection was also 

performed to ensure the library bound only to free atrazine in solution, but not to desethyl 

atrazine. As a result, a ssDNA MRE with subnanamolar affinity and high specificity was 

identified after twelve rounds of selection. A magnetic bead based capture assay coupled with 

capillary electrophoresis was developed to detect atrazine in artificially contaminated river water 

samples. The assay was able to detect atrazine in the nanomolar range [14]. Similar in vitro 

selection methodology was also employed by Williams et al. to identify MREs specific for a 

commonly used organophosphate pesticide, malathion. In their second selection, the selected 

MRE had high nanomolar range affinity, and minimal binding to metabolites of malathion and 

other herbicides. However, the author noted the cross binding activity was high on bovine serum 

albumin possibility due to the large, globular characteristics of the protein [15]. William et al. 

subsequently performed another selection on an herbicide, bromacil. This study further validated 

the methodology the authors employed to identify MREs with high affinity and low cross 

binding activities on structurally similar compounds, and compounds that were likely to coexist 

in the environment. The authors noted that these properties were particularly important for 

incorporating ssDNA MREs as sensing elements in biosensors [16]. 

As noted above, not every chemical toxin can be readily immobilized for portioning 

during selection. In order to circumvent this limitation, Wang et al. utilized an immobilization 

free in vitro SELEX developed by Li and co-workers to select ssDNA MREs specific for four 
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different organophosphorus pesticides, phorate, profenofos, isocarbophos and omethoate [26, 28]. 

After twelve rounds of selection, two candidate sequences reported Kd values in the low 

micromolar range for all four targets. Cross binding assays showed good specificities for the 

selected two MREs, with only minimal observed binding to eight other different pesticides [28]. 

The same group of researchers later developed a fluorescence polarization assay using the 

selected MREs to detect phorate, profenofos, isocarbophos, and omethoate at a LOD of 19.2, 

13.4, 17.2, and 23.4 nM, respectively [176]. 

He et al. employed immobilization-free SELEX to identify a ssDNA MRE specific for 

pesticide, acetamiprid.  After eighteen rounds of selection, the best candidate MRE was reported 

to have a Kd value of 4.96 µM. Specificity of the selected MRE was tested and cross-binding 

data showed no significant change in fluorescent signals in the presence of three other pesticides, 

imidacloprid, nitenpyram, and chlorpyrifos. The authors noted that the affinity of the selected 

MRE was lower than typical antibodies [27]. 

GO-SELEX was used to identify three ssDNA MREs specific to three different pesticides: 

tebuconazole, mefenacet and inabenfide [25]. The reported values of Kd were in the range of 10 

to 100 nM. High specificity of each identified MRE was also determined by isothermal titration 

calorimetric and gold nanoparticle colorimetric assays. A simple, rapid detection method using 

gold nanoparticles was developed with LOD ranges from 100 to 400 nM.  

1.3 General Classes of Detection Methods 

In recent years, a large number of researches have taken place in applying ssDNA MREs 

for the use in biosensors. Major detection methods can be categorized into three classes: 1) 

electrical/ electrochemical, 2) optical, and 3) mass sensitive. The following section highlights the 

basic principles of the general classes of detection methods that have been utilized widely in the 
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development of ssDNA MRE based biosensors. Recent literatures describing the detection of 

pathogens, and toxins using ssDNA MREs biosensors are summarized in tables 1.6, 1.7, and 1.8. 

 

Table 1.6: Summary table of ssDNA MRE based biosensors for the detection of pathogens. 

Target Detection 
Methods 

Enhancers LOD Relevant 
sample 

Reference 

Salmonella enteritidis Fluorescence Graphene Oxide 
 

40 
CFU/mL 
 

Milk [177] 

Salmonella enteritidis Colorimetric 
Lateral flow 

Gold 
Nanoparticles 

10 
CFU/mL 

Milk 
powder 

[178] 

Salmonella 
typhimurium 

Colorimetric Silver staining 
 

7 CFU/mL 
 

Lake 
water 

[179] 

Salmonella 
typhimurium 

Electrochemical 
Impedance 
 

Graphene oxide, 
gold nanoparticles 
 

3 CFU/mL 
 

Pork [180] 

Salmonella 
typhimurium 

Electrochemical 
Impedance 

Gold nanoparticles 600 
CFU/mL 
 

- [181] 

Salmonella 
typhimurium 

Colorimetric 
Enzyme linked 
assay 

Gold nanoparticles 1000 
CFU/mL 

Milk [182] 

Vibrio 
parahaemolyticus/ 
Salmonella 
Typhimurium 

Fluorescence 
Flow cytometry 

Quantum dots 5000 
CFU/mL 
 

Shrimp [183] 

Salmonella 
Typhimurium/ 
Staphylococcus aureus 

Fluorescence 
 

- 5 CFU/mL 
8 CFU/mL 
 

- [184] 
 

Staphylococcus aureus Electrochemical 
Impedance 

Single wall carbon 
nanotubes 

800 
CFU/mL 

Pig skin [185] 

Staphylococcus aureus Electrochemical 
Impedance 

Graphene oxide 1 CFU/mL - [186] 

Staphylococcus aureus Colorimetric Horseradish 
peroxidase 

9 CFU/mL Milk [187] 

Group A Streptococcus Piezoelectric 
quartz crystal 
 

Single wall carbon 
nanotubes 

12 
CFU/mL 
 

Milk [188] 

E. coli Electrochemical/  
Fluorescence 

MRE cocktails 370 
CFU/mL 
 

- [189] 

E. coli O157:H7/ 
Salmonella 
Typhimurium 

Colorimetric - 10000 
CFU/mL 

- [190] 

E. coli O111 Electrochemical 
Redox current 

Alkaline 
phosphatase 

305 
CFU/mL 

Milk [191] 
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E. coli CECT 675 Electrochemical 
Impedance 

Single wall carbon 
nanotubes 

6 CFU/mL 
26 
CFU/mL 

Milk, 
apple 
juice 

[192] 

Pseudomonas 
aeruginosa 
 

Fluorescence 
 

- 5 CFU/mL 
 

Drinking 
water 

[193] 

Staphylococcus aureus/ 
Vibrio 
parahemolyticus/  
Salmonella 
Typhimurium 
 

Luminescence 
 

Lanthanide-doped 
near infrared to 
visible 
upconversion 
nanoparticles 

25 
CFU/mL 
10 
CFU/mL 
15 
CFU/mL 
 

Milk, 
shrimp 

[194] 

Lactobacillus 
acidophilus/ 
Staphylococcus enteric/ 
Staphylococcus aureus 

Fluorescence 
Microfluidic 
biochip 

- 11 
CFU/mL 
 61 
CFU/mL 
800 
CFU/mL 
  

- [195] 

Influenza H5N1 
 

Quartz crystal 
microbalance 

Hydrogel 0.0128 
HAU 
 

- [196] 

Vaccinia virus Electrochemical 
Impedance 

- 60 
virions/µL 

- [197] 

Influenza H5N1 Surface plasmon 
resonance 

- 0.128 
HAU 

Poultry [198] 

 

Table 7: Summary table of ssDNA MRE based biosensors for the detection of biological 

toxins. 

Target Detection Methods Enhancers LOD Relevant 
sample 

Referenc
e 

Prion protein 
 

Resonance light scattering Gold 
nanoparticles  
 

0.01 
nM 
 

Human serum [199] 

Clostridium 
difficile 
Toxin A 

Electrochemical 
Impedance 

Horseradish 
peroxidase 

1 nM - [200] 

Staphylococca
l enterotoxin B 

Electrochemical 
Impedance 

Horseradish 
peroxidase 

0.24 
ng/mL 
 

Human serum [201] 

Staphylococca
l enterotoxin B 

Surface-enhanced Raman 
scattering 

Gold 
nanoparticles  
 

224 
aM 
 

Milk, blood, 
urine 

[202] 

E. coli outer 
membranes 
proteins 

Evanescent wave fiber 
optic 
 

- 0.1 nM 
 

Environmenta
l water 

[203] 
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E. coli outer 
membranes 
proteins 

Electrochemical 
Impedance 
 

- 100 
nM 

Environmenta
l water 

[204] 

Botulinum 
neurotoxin, 
type A 

Electrochemical 
Redox current 

Horseradish 
peroxidase 

40 
pg/mL 
 

- [205] 

Aflatoxin B1 RT-qPCR 
 

- 25 
fg/mL 
 

Chinese wild 
rye hay, infant 
rice cereal 

[206] 

Aflatoxin B1 Fluorescence 
Dipstick 

- 0.3 
ng/g 

Corn [207] 
 

Aflatoxin M1 Electrochemical 
Redox current 

Magnetic 
nanoparticles 

8 ng/L Milk [208] 

Ochratoxin A Colorimetric - 20 nM - [209] 
Ochratoxin A Electrochemical  

Impedance 
 Graphene oxide, 
gold nanoparticles 
 

0.74 
pM 

Red wine [210] 

Ochratoxin A Fluorescence - 1 
ng/mL 

Beer [211] 

Ochratoxin A Electrochemical 
Redox current 

Gold 
nanoparticles 

0.75 
pM 

Red wine [212] 

Ochratoxin A 
 

Electrochemiluminescenc
e 

Loop-mediated 
isothermal 
amplification 

10 fM Red wine [213] 

Ochratoxin A Fluorescence - 2 pg/ 
mL 
 

Wheat [214] 

Ochratoxin A 
 

Localized surface 
plasmon resonance 

- 1 nM Corn powder [215] 

Ochratoxin A RT-qPCR - 1 
fg/mL 

Red wine [216] 

Ochratoxin A Fluorescence - 0.2 
ng/mL 

Red wine [217] 

Ochratoxin A Chemiluminescence Nicking 
endonuclease 

0.3 
pg/mL 

Wheat [218] 

Ochratoxin A Electrochemical 
Impedance 

- 0.25 
ng/mL 

Beer [219] 

Ochratoxin A Electrochemical 
Redox current 

- 0.1 
ng/mL 

Beer [220] 

Ochratoxin A Electrochemical 
Impedance 

- 0.12 
ng/mL 

Beer [221] 

Ochratoxin A Electrochemical 
Differential pulse 
voltametry 

Horseradish 
peroxidase, 
alkaline 
phosphatase, 
superparamagneti
c nanoparticles 

0.15 
ng/mL 

Red wine [222] 

Ochratoxin A Electrochemical 
Flow-based 

- 0.05 
µg/L 
 

Beer [223] 

Ochratoxin A Colorimetric Gold 1 Red wine [224] 
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 Lateral flow nanoparticles ng/mL
, 0.18 
ng/mL 

 

Ochratoxin A 
 

Fluorescence 
Lateral flow 

Quantum dots 1.9 
ng/mL 

Red wine [225] 

Ochratoxin A Electrochemical 
Electric current 

Horseradish 
peroxidase 

0.07 ± 
0.01 
ng/mL 

Wheat [226] 

Ochratoxin A Electrochemical 
Redox current 

Gold 
nanoparticles 

30 
pg/mL 

Red wine [227] 

Ochratoxin A Electrochemical 
Impedance 

Horseradish 
peroxidase 

0.4 
pg/mL 

Wheat [228] 

Ochratoxin A Electrochemical 
Redox current 

- 0.095 
pg/mL 

Red wine [229] 

Ochratoxin A Chemiluminescence Upconversion 
nanoparticles 

0.1 
pg/mL 

Maize [230] 

Ochratoxin A Electrochemical 
Impedance 

Silver 
nanoparticles 

0.05 
nM 

Beer [231] 

Ochratoxin A Electrochemical 
Impedance 

Loop-mediated 
isothermal 

0.3 pM Red wine [232] 

Ochratoxin A Fluorescence - 0.8 
ng/mL 

Corn [233] 

Ochratoxin A Fluorescence Single-stranded 
signal probes 

20 
pg/mL 

Wheat [234] 

Ochratoxin A Fluorescence Terbium 0.08 - 
5.42 
ng/mL 

Wheat [235] 

Ochratoxin A Electrochemical 
Impedance 

Redox probe 0.12- 
0.4 nM 

Coffee, flour, 
wine 

[236] 

Ochratoxin A Fluorescence resonance 
energy transfer 

- 2 
pg/mL 

Maize Flour [237] 

Ochratoxin A Electrochemical 
Redox current 

Exonuclease 
digestion      

1.0 
pg/mL 

Wheat starch [238] 

Ochratoxin A Electrochemical 
Electric current 

Rolling circle 
amplification 

0.2 
pg/mL 

Red wine [239] 

Ochratoxin A Fluorescence - 21.8 
nM 

Red Wine [240] 

Ochratoxin A Electrochemiluminescenc
e 

Gold 
nanoparticles 

0.007 
ng/mL 

Wheat [241] 

Ochratoxin A Colorimetric - 2.5 nM Red wine [242] 
Ochratoxin A Colorimetric - 4 nM Red wine [243] 
Ochratoxin A Fluorescence - 24.1 

nM 
Beer [244] 

Ochratoxin A Electrochemical 
Impedance 

- 0.1 
ng/mL 

- [245] 

Ochratoxin A Fluorescence - 0.01 
ng/mL 

Maize Flour [246] 
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Table 1.8: Summary table of ssDNA MREs based biosensors for the detection of chemical 

toxins. 

Target Detection Methods Enhancers LOD Relevant 
sample 

Reference 

Bisphenol A  
 

Fiber optic 
Fluorescence 

- 1.86 
nM 
 

Wastewater 
 

[247] 

Bisphenol A  
 

Resonance light 
scattering 

Gold 
nanoparticles 

0.012 - 
0.28 
ng/mL 
 

Supermarket 
ticket 

[248] 

Bisphenol A  Electrochemical 
Redox current 

Gold 
nanoparticles 
dotted graphene 

5 nM Milk [249] 

Bisphenol A  Colorimetric/ 
Fluorescent 

- 0.1 
ng/mL 
0.01 
pg/mL 

Water [250] 

Bisphenol A Colorimetric 
 

- 0.1 
ng/mL 

Tap water [251] 

Bisphenol A  Colorimetric 
Lateral Flow 

Gold 
nanoparticles 

76 
pg/mL 

Tap water 
 

[252] 

Bisphenol A  Resonance Rayleigh 
scattering 

Gold 
nanoparticles 

83 
pg/mL 

Tap water [253] 

Bisphenol A  Electrochemcial 
Electric current 

Single walled 
carbon 
nanotubes field 
effect transistor 

10 fM 
to 1pM 

 [254] 

Bisphenol A  Plasmonic chirality - 8 
pg/mL 

Tap water [255] 

17β-estradiol (E2) Photoelectrochemical Titanium oxide 
nanotubes 
arrays 

33 fM Medical waste 
water, lake 
water, tap 
water 

[256] 

17β-estradiol (E2) Electrochemical 
Impedance 

- 2.0 pM Human urine [257] 

17β-estradiol (E2) Fluorescence - 2.1 nM Wastewater [258] 
Acetamiprid Colorimetric - 5 nM Soil [259] 
Acetamiprid Electrochemical 

Impedance 
Gold 
nanoparticles 

1 nM Waste water, 
tomatoes 

[260] 

4 organophosphorus 
pesticides 
phorate, profenofos, 
isocarbophos, and 
omethoate 

Fluorescence 
Polarization 
 

- 19.2, 
13.4, 
17.2, 
23.4 
nM 
 

Chinese 
cabbage 

[176] 
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1.3.1 Electrical/ Electrochemical 

The principle of electrochemical detection is based on measuring changes in electrical 

properties of the sensing platform. In this method, ssDNA MRE is usually immobilized on a gold 

electrode via thiol-gold linkage. A redox label, such as methylene blue can be used to detect 

binding between MRE and the target [261]. In a “signal on” system, the redox label is away from 

the electrode surface, and the binding of target causes a conformational change in the MRE, and 

brings the redox label into close proximity with the electrode, thus causing a measurable change 

in electrical properties (Figure 1.2). A “signal off” system behaves similarly, but the binding of 

target causes the redox label move away from the electrode. This system can also be modified as 

a “label-free” system, in which the redox molecule is intercalated in a hairpin structure of a MRE 

in a target unbound state, and binding of the target causes the release of the redox molecule 

(Figure 1.2). In addition to measuring redox current, the changes in impedance upon binding of 

the target can also be measured. In this case, no labeling of MRE is required and the 

conformational changes in MRE upon target binding causes a measurable change in impedance 

that can be recorded by voltammetry [226].  
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Figure 1.2: Illustration of examples of ssDNA MRE based electrochemical biosensors. (A) 

A representation of an “on-mode” system using a redox label for current transduction. (B) A 

representation of a “label-free” system by intercalating a redox label in a hairpin structure. (C) A 

representation of an “on-mode” system by hybridization with the complementary sequence.  

 

Nanomaterials can also be incorporated into electrochemical sensor to enhance signals. 

Single-walled carbon nanotube field effect transistors (SWCNT-FET) can be used to build 

electrochemical biosensors (Figure 1.3). In this system, MREs are immobilized on SWCNTs and 

SWCNTs are sandwiched between a source and a drain electrode. When the immobilized MREs 

bind to the target, there is a measurable change in the conductance of the system [254]. Gold 

nanoparticles (AuNP) are also widely used as signal enhancers. AuNPs can be coated on 
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electrodes and greatly increase the surface area. As a result, more MREs can be immobilized on 

the electrode, and thus enhancing the system’s sensitivity. AuNPs can also be coated with a 

second MRE and reporting probes in a sandwich assay (Figure 1.3). In this case, the target first 

binds to a primary capturing MRE, followed by the binding a secondary reporting MRE along 

with a redox molecule, which can generate an enhanced signal for sensitive detection [262]. 

 

Figure 1.3: Illustration of examples of signal enhancement methods in ssDNA MRE based 

electrochemical biosensors. (A) A representation of a single-walled carbon nanotubes field 

effect transistors. (B) A representation of gold nanoparticles carrying redox labels in a sandwich 

detection style. 

1.3.2 Optical 

Optical detection methods can be classified into three major categories. 1) Fluorescence 

detection, which require specialized instruments to measure fluorescent signals. 2) Colorimetric 
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detection, which color changes can be observed by the naked eye or measured in terms of optical 

density. 3) Absorbance assay can enhance detection signals, and subsequently be measured by 

instruments as well. 

1.3.2.1 Fluorescence 

The principle of fluorescence detection is based upon the generation or quenching of 

fluorescence signals upon target binding. Various fluorescence molecules and quantum dots can 

be linked to ssDNA MREs. Conformational changes induced by target binding can alter the 

fluorescence signal generated by the fluorophore, and therefore can be measured (Figure 1.4) 

[263]. Quenching molecules can also be linked to the other end of the ssDNA MRE. In this 

system, the quencher completely blocks the fluorescence signal from the fluorophore and target 

binding can move the quencher away from the fluorophore, and have “signal on” detection 

(Figure 1.4) [264]. The same principle can also be applied for a “signal off” system. Carbon 

nanotubes and graphene can also be used as quenchers, which fluorescent labeled ssDNA MREs 

is adsorbed on the carbon quenchers via π-π stacking interactions. Fluorescence resonance 

energy transfer (FRET) can also be utilized as measurements when the distance of the two 

fluorescence molecules linked to MREs is changed upon target binding. 
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Figure 1.4: Illustration of examples of ssDNA MRE based fluorescent biosensors. (A) A 

representation of the changes in fluorescent signal upon target binding to a fluorophore labeled 

MRE. (B) A representation of an “on-mode” system by using a quencher labeled on the 

complementary sequence.  

1.3.2.2 Colorimetric 

Gold nanoparticles (AuNP) have been widely used in various colorimetric assays. AuNPs 

aggregate in salt solution and appear in purple color. When they are dispersed, they are in red 

color. This special absorbance property of AuNPs allows observation of target binding by naked 

eye. MREs in salt solution can bind to AuNPs and dispersing the AuNPs. When targets are 

introduced into the system, MRE preferably bind to the targets, and therefore causing AuNPs to 

aggregate, a red to purple color change is observed (Figure 1.5) [265]. Alternatively, ssDNA 

MREs can be used to link AuNPs that are functionalized with probe strands. In this case, the 

initial state of the MRE/AuNPs solution is aggregated purple. Upon target binding, the linked 

AuNPs are released, and a purple to red color change is observed (Figure 1.5) [266]. Furthermore, 

AuNPs can be used in a sandwich colorimetric assay, in which the secondary reporting MRE 
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linked AuNP can grow in size when the detection system is placed in a growth solution 

containing HAuCl4, and thus enhancing the detection limit [267]. 

 

Figure 1.5: Illustration of examples of ssDNA MRE based colorimetric biosensors. (A) A 

representation of a colorimetric assay using MRE dispersed gold nanoparticles. (B) A 

representation of a colorimetric assay using cross-linked gold nanoparticles aggregates via MRE 

and probe DNA. 
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1.3.2.3 Absorbance 

Nucleic acid MREs have been used in modified enzyme linked immunoassays, usually 

substituting for either the capturing or the reporter antibodies. In a direct oligonucleotide enzyme 

link assay, often the protein target is adsorbed on plate and biotinylated MREs bind to the target, 

and then followed by the addition of streptavidin-horse radish peroxidase (HRP) conjugate and 

enzyme substrate for signal development [138]. In a sandwich assay, biotinylated MREs can be 

immobilized on streptavidin plate, and then followed by the addition of the protein target, HPR 

linked antibody, and enzyme substrate [96]. This detection method however is mostly limited to 

protein targets, and the availability of specific antibodies (Figure 1.6). 

 

Figure 1.6: Illustration of examples of ssDNA MRE modified enzyme linked assays. (A) a 

representation of a direct MREs modified enzyme linked assay with MRE as the reporter. (B) A 
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representation of an indirect MREs modified enzyme linked assay with MRE as the target 

capturing element. 

 

1.3.3 Mass Sensitive 

Mass sensitive detection is a class of label-free detection system that can be sub-divided 

into four major categories: 1) Surface Plasmon Resonance (SPR), 2) Quartz Crystal 

Microbalance (QCM), 3) Surface Acoustic Wave (SAW) and 4) Micromechanical cantilever. 

None of these detection systems require additional labeling. 

Surface plasmon resonance (SPR) sensors measure a change in the refractive index and 

resonance angle when a mass change occurs upon target binding. MREs are often biotin-tagged 

and immobilized on streptavidin coated gold chip. When targets in solution pass through the 

flow cell, the binding between targets and immobilized MREs cause a change in mass on the 

sensor chip surface, and is subsequently translated into a change in the refractive index. This 

change in resonance is proportional to the amount of target bound to the immobilized MREs, and 

therefore providing a real-time detection of the target in solution (Figure 1.7) [198].  
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Figure 1.7: Illustration of ssDNA MRE based surface plasmon resonance biosensors. When 

targets bind to immobilized MREs, a change in the plasmon resonance and plasmon angle will be 

detected and translated into a real-time response unit. 

 

A Quartz crystal microbalance (QCM) is an acoustic wave resonator based on the 

piezoelectric property of quartz crystal. Nucleic acid MREs can be immobilized on gold-coated 

quartz. The binding between target and MRE increases the mass on the surface of the crystal and 

leads to a detectable decrease in the resonance frequency of the crystal (Figure 1.8) [196].  The 

detection principle of surface acoustic wave (SAW) based biosensor is similar to QCM. Nucleic 

acid MREs have been utilized to fabricate a special type of Love-wave sensor that uses shear 
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horizontal waves to enhance the surface sensitivity,  and achieve ultra-sensitive detection of the 

target [268]. 

Micromechanical cantilevers have been investigated for MRE based biosensors. The 

major advantage of this type of sensor is that it can be readily scale up and perform parallel 

analysis for multiple analytes with low background interference [269]. When the target binds to 

the MRE on the surface of the cantilever, a nanometer scale deflection in the cantilever can be 

detected optically (Figure 1.8). 
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Figure 1.8: Illustration of examples of ssDNA MRE based mass sensitive biosensors. (A) A 

representation of a detectable change in resonance frequency upon target binding to immobilized 

MRE on quartz crystal micro balance. (B) Representation of a detectable nanometer scale 

bending upon target binding to immobilized MRE on micromechanical cantilever.  

1.4 Conclusion and Future Perspectives 

Over the last two decades, there has been a continuous increase in the research of 

molecular recognition elements. Single-stranded DNA MREs have several advantages over 

antibodies, in terms of stability, reusability, and production cost. However, ssDNA MREs are not 

without limitations. The binding affinity of MREs is highly dependent on their three dimensional 

structure and is influenced by factors including the ionic condition, temperature, and pH of the 

binding condition [4]. Challenges remain in eliminating cross binding activities to other 

molecules in native environments. These limitations hinder the use of MRE for detection in 

many real world complex samples, such as biological fluids and food matrices. A carefully 

designed selection scheme can greatly improve the specificity of the identified MRE, which can 

better distinguish closely related molecules at low concentrations. Using modified bases in PCR 

amplification or performing base modifications after selection can also help improving resistance 

to nucleases in many biological fluids, such as human serum [270]. The overall attractive 

features of ssDNA MREs prompt researchers continue to investigate and optimize their 

applications in biosensing.  
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Chapter 2 

Selection of Single-Stranded DNA Molecular Recognition 
Elements Against Exotoxin A using A Novel Decoy-SELEX 
Method and Sensitive Detection of Exotoxin A in Human 

Serum 
This chapter is adapted from the work that is currently under revision for publication in PLoS 
One. 

Citation: Hong KL, Yancey K, Battistella L, Williams RM, Hickey KM, Bostick CD, Gannett 
PM and Sooter LJ. 2014. “In vitro selection of single-stranded DNA molecular recognition 
elements against Exotoxin A and sensitive detection in human serum” Under revision, PLoS One 
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2.1 Introduction 

Exotoxin A is a virulence factor secreted by gram negative bacilli bacteria, Pseudomonas 

aeruginosa [1]. P. aeruginosa has been identified as an opportunistic bacterium that is 

commonly associated with wound infections, nosocomial lung infections and respiratory diseases 

in cystic fibrosis patients [2, 3]. Due to increasing antibiotic resistance, infections caused by P. 

aeruginosa have been associated with decreased in the quality of life, increased mortality in 

patients and significant cost burden in health care systems [4, 5]. 

Upon covalent cleavage of the full length protein, the enzymatically active fragment of 

Exotoxin A enters host cells [6]. It causes ADP-ribosylation of elongation factor 2 and thus 

inhibits polypeptide assembly to ribosome and protein translation, causing death of host cells [7, 

8]. Early studies of purified Exotoxin A report  an intravenous lethal dose as low as 3 µg/kg in 

mice or a LD50 of ~10 µg/kg via intraperitoneal injection [9, 10]. Because of this highly toxic 

nature, it is essential to treat P. aeruginosa infection as early as possible.  

However, current diagnosis of P. aeruginosa infection largely relies on traditional 

methods, such as Gram-stain, bacterial culturing, biochemical methods and immunoassays [11]. 

Though those methods are sensitive and reliable, they require a significant amount time to 

confirm infection, prolonging the time between patient clinical presentations and antibiotics 

treatments. This leads to the initial use of non-specific broad spectrum antibiotics and increases 

the selection pressure for antibiotic resistant strains of the bacteria [12].  In recent years, 

molecular diagnostic techniques have been developed to increase the efficiency of diagnosing P. 

aeruginosa infection. A majority of these new techniques use polymerase chain reaction (PCR) 

to identify genes in P. aeruginosa [13-16]. Although PCR based diagnostic methods are proven 

to be sensitive, clinical samples presented may have DNA polymerase inhibitor and other 
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contaminants that increase chances of false positive, which means that a greater amount of  time 

is required to purify samples [17]. Another major limitation of PCR is that it cannot detect and 

monitor levels of virulence factors, such as membrane antigens and toxins, for example gene 

codes for Exotoxin A production is not expressed constitutively, due to different environmental 

factors [17-19]. Previous studies have demonstrated the clinical role of Exotoxin A in the 

pathogenesis of P. aeruginosa infections [20, 21]. Patients with higher amount of antibodies 

against Exotoxin A were correlated to better prognosis [22, 23]. This suggests Exotoxin A is a 

significant virulence factor of the bacteria, and is also an important P. aeruginosa infection 

biomarker. However, there is currently lack of regulatory approved Exotoxin A detection 

methods for diagnosis purpose. Therefore, there is an increasing need to develop new methods to 

rapidly measure Exotoxin A through molecular recognition and detection, and therefore 

facilitating the diagnosis of P. aeruginosa infections.  

Systematic Evolution of Ligand by Exponential Enrichment (SELEX) was first described 

by the Gold laboratory in 1990 [24]. It utilizes an in vitro selection process that identifies 

Molecular Recognitions Elements (MREs) that have very high affinities and specificities to their 

target molecules. The selection process of nucleic acid MREs usually begins with a library of 

1013 to 1015 different single-stranded DNA (ssDNA) or RNA molecules. The library is then 

subjected to repeating cycles of partitioning and enrichment for molecules that bind to positive 

target (target of interest) but not to negative targets. Eventually, one or few MREs are identified 

with high specificities and affinities to the target of interest that will be useful for its detection.  

In this study, a novel variation of SELEX termed Decoy-SELEX has been utilized for the 

identification of a single-stranded DNA MRE that binds to Exotoxin A with high affinity and 

specificity. The advantage of this variation is an increased emphasis on selecting against negative 
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targets. The first negative target, bovine serum albumin (BSA), is selected based on the similarly 

in structure and amino acid sequence to human serum albumin [25], which is an abundant protein 

in blood samples. The second negative target, Cholera toxin, served as example of common 

bacteria virulence factor [26]. The selection scheme is also designed to decrease non-specific 

binding to streptavidin and biotin, substrates used in target immobilization. Surface plasmon 

resonance has been used to characterize the affinity and specificity of the selected MRE. In 

addition, a modified enzyme-linked immunosorbent assay (ELISA) has been developed by using 

the selected MRE as the toxin capturing element in human serum, and demonstrated the potential 

use in clinical diagnosis [27-29].  

2.2 Materials and Methods 

2.2.1 Decoy-SELEX Method for selection of Exotoxin A-specific MREs 

A single-stranded DNA (ssDNA) library consisting of 1015 molecules was used to begin 

the selection of Exotoxin A specific MREs. This library, named, RMWN34, consisted of two 23 

base of constant regions for primer annealing flanked by a 34 base random region. It was 

designed by our laboratory and commercially synthesized (Eurofins MWG Operon; Huntsville, 

AL). A total of 14 rounds of Decoy-SELEX were utilized to enrich Exotoxin A specific MREs 

(Table 2.1), and eliminate MREs that bind to negative targets (Figure 2.1, 2.2). 

 

Table 2.1: Decoy-SELEX scheme for Exotoxin A MRE selection. 

Round Positive Selection (+) Negative Selection (˗) 
1 Immobilized Target (IT) 46 hrs, 50 µL Immobilization Substrate (IS) 18 hrs, 50  µL 
2 IT 24 hrs, 50 µL IS 22 hrs, 50 µL 
3 IT 18 hrs, 50 µL - 
4 IT 12 hrs, 50 µL IS 20 hrs, 50 µL 
5 IT 8 hrs, 50 µL - 
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6 IT 5.5 hrs, 50 µL BSA Immobilized Negative Target (INT) 24 
hrs, 50 µL  

7 IT 1 hrs, 50 µL - 
8 IT 1 hrs, 25 µL Cholera toxin INT 18hrs, 50 µL 
9 IT 1 hrs, 5 µL - 
10 IT 5 min, 5 µL BSA INT 24 hrs, 50 µL 
11 IT 5 sec, 5 µL IS 21hrs, 10 µL 
12 IT 5 sec, 5 µL - 
13 IT 5 sec, 5 µL; Competitive Elution 

with 2 µg free Exotoxin A, 5 sec 
IT 5 sec, 5 µL; Competitive Elution with 1 
mg/mL free BSA, 5 min 

14 IT 5 sec, Competitive Elution with 1 
µg free Exotoxin A, 5 sec 

- 

 

In vitro selection performed for identifying Exotoxin A-specific MRE. Immobilized target (IT) is 

Exotoxin A bound to magnetic beads. Immobilization substrate (IS) is streptavidin-coated 

magnetic beads blocked with biotin regent. BSA is the abbreviation for bovine serum albumin. 

Times listed are incubation times in hours (hrs), minutes (min) or seconds (sec).  
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Figure 2.1: Illustration of the Decoy-SELEX process. In vitro selection begins with incubation 

of target Exotoxin A with a library of 1015 ssDNA molecules. Binding molecules are amplified 

and subjected to incubation with multiple negative targets. Molecules that do not bind to 

negative targets are amplified and carried on to the next round of selection. 

 

 

Figure 2.2: Structures of targets used in the Decoy-SELEX and SPR cross binding assays. 

(A) Ribbon structure of the target of interest, Exotoxin A (PDB 1IKQ, 66kDa) [8]. (B) Ribbon 

structure of streptavidin (PDB 4GJS, 60kDa) used in cross bind assays [30]. (C), (D) Ribbon 

structures of bovine serum albumin (PDB 4F5S, 66.5kDa) and Cholera toxin (PDB 2A5D, 

84kDa) used in negative rounds of selection and crossing binding assays [31, 32]. (E) Chemical 

structure of biotin used in negative rounds of selection and cross binding assays. 
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Exotoxin A in lyophilized powder form (List Biological Laboratories; Campbell, CA) 

was reconstituted in pure water, surface accessible primary amino functional group on Exotoxin 

A was utilized to covalently biotinylated via Sulfo-NHS-LC-Biotinylation (Pierce; Rockford, IL) 

according to manufacturer’s protocol. Biotinylated Exotoxin A was washed with ZEBA Spin 

Desalting Column (Pierce, Rockford, IL) to remove excess unreacted biotin. Subsequently, 

biotinylated Exotoxin A was bound to streptavidin-coated magnetic beads (New England Biolabs, 

Ipswich, MA) and washed to generate immobilized target (IT) for selections.  

In Round 1(+) selection, 50 µL of IT was incubated with 1015 copies of ssDNA from the 

library in a total of 500 µL of selection buffer composed of 100 mM sodium chloride, 20 mM 

Tris-HCl, and 2 mM magnesium chloride (1× selection buffer) at room temperature for 46 hours 

on rotisserie. After the incubation, the selection mixture was subjected to magnetic separation. 

Unbound ssDNA was removed and ssDNA bound to IT was washed with 500 µL of selection 

buffer three times and resuspended in 100 µL of selection buffer. This solution containing IT 

functioned as template for PCR amplification using following reaction conditions: enriched 

ssDNA, 400 nM forward and biotinylated reverse RMW.N34 primers (Eurofins MWG Operon; 

Huntsville, AL) (forward: 5’-TGTACCGTCTGAGCGATTCGTAC-3’, biotinylated reverse: 5’-

Biotin- GCACTCCTTAACACTGACTGGCT-3’), 250 µM deoxynucleotide triphosphates, 1× 

GoTaq Reaction Buffer (Promega; Madison, WI), 3.5 units Taq, and pure water. Thermal cycling 

conditions were as follows: first denatured at 95°C for 5 minutes, cycling at 95°C for 1 minute, 

63°C for 45 seconds, and 72°C for 1 minute; and final extension temperature at 72°C for 7 

minutes. Small-scale PCR (1, 5, 10 µL) was first performed to determine the optimal cycles for 

PCR. This was carried in 2 to 3 cycles step-wise manner in order to avoid over amplification of 



83 
 

the template and unwanted non-specific amplicons. Large-scale PCR (2 to 4 mL) was performed 

after each round of positive and negative selection. 

After PCR amplification, PCR product containing dsDNA was purified with the GFX 

PCR purification kit (GE Healthcare, Piscataway, NJ). Eluted dsDNA containing the biotinylated 

reverse strand was then incubated with streptavidin agarose resin (Pierce; Rockford, IL) for 

single strand separations [33]. This mixture was transferred into a flow-through column and 

washed with 5-volumes of 1× phosphate buffer solution. Five-volumes of 1 M sodium hydroxide 

were then added to the column to elute the forward strand of the dsDNA. Subsequently, 0.1-

volumes of 3 M sodium acetate at pH 5.2, 2.5-volumes of cold 100% ethanol and 10 µg/mL of 

glycogen were added to the eluted ssDNA for ethanol precipitation at -80°C. After the solution 

was frozen, it was then centrifuged at 13,000 × g for 1 hour. Precipitated ssDNA was 

subsequently washed with 70% ethanol and centrifuged at 13,000 × g for 15 minutes to remove 

co-precipitated salt. The ssDNA pellet was dried in a vacuum desiccator and resuspended in 50 

µL of selection buffer. A NanoDrop spectrometer (ThermoScientific; Wilmington, DE) was used 

to confirm the suspension contained at least 1013 copies of ssDNA before proceeding to next 

round of selection. 

Round 1(˗) was performed by incubating enriched ssDNA from the preceding positive 

round with immobilization substrate in a total volume of 100 µL selection buffer at room 

temperature for 18 hours on rotisserie. Immobilization substrate was prepared by incubating 

Sulfo-NHS-LC-Biotin (Pierce; Rockford, IL) with Tris-HCl and streptavidin-coated magnetic 

beads (New England Biolabs, Ipswich, MA). After magnetic separation, unbound ssDNA served 

as the template for PCR amplification as illustrated above.  Positive rounds 1 to 7 and negative 

rounds 1, 2, 4 and 11 were performed as described with decreasing incubation time in positive 
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rounds and increasing incubation time in negative rounds to increase stringency for selection of 

MREs specific for Exotoxin A.  

Starting with round 6(˗) selection, the first negative target, bovine serum albumin (BSA) 

(Rockland Immunochemical; Gilbersville, PA) was introduced to the selection. Immobilized 

negative targets (INT) were prepared identical to IT, substituting Exotoxin A with bovine serum 

albumin. INT, 50 µL, was incubated with enriched ssDNA from the preceding positive selection 

round in a total of 500 µL of selection buffer at room temperature for 24 hours. Unbound ssDNA 

was removed with magnetic separation and served as template for PCR amplification. Round 

10(˗) was performed in the same way. In round 8(˗), the second negative target, Cholera toxin 

(List Biological Laboratories; Campbell, CA), was introduced. Preparation of Cholera toxin INT 

was as described above. Selection conditions were similar to round 6(˗) with the exception of 18 

hours incubation.  This was to ensure the selected MRE was specific to Exotoxin A and not BSA 

or Cholera toxin. 

Starting with Round 8(+) selection, the volume of IT used was decreased in order to 

increase the stringency of the selection. Round 13(+) and 14(+) IT were subjected to competitive 

elution with free Exotoxin A solution. IT and the enriched ssDNA were initially incubated for 5 

seconds in total of 100 µL of selection buffer. IT with bound ssDNA was washed with 500 µL of 

selection buffer three times, and then 2 µg or 1 µg respectively, of Exotoxin A in 100 µL of 

selection buffer was added to the mixture and then incubated for 5 seconds. The supernatant 

obtained from magnetic separation was used as template for PCR amplification.  Round 13(˗) 

was performed in the same way using a free BSA competitive elution. However, ssDNA bound 

to IT was separated and served as PCR template. This was to ensure ssDNA only binds to free 

Exotoxin A and not to free negative targets. 
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2.2.2 Cloning and Sequencing of Exotoxin A-specific MREs 

DNA sequencing was performed following rounds 3(+), 6(˗), 9(+), 12(+), 13(+), and 

14(+) to analyze the ssDNA library for consensus binding sequences. The ssDNA library was 

amplified with non-biotinylated primers. It was then ligated into the pCRII vector (Invitrogen, 

Carlsbad, CA) and transformed into competent E. coli bacteria according to manufacturer’s 

protocol. Inserted plasmid was subsequently extracted and purified with the AxyPrep Plasmid 

Prep Kit (Axygen, Union City, CA). The M13R primer, complementary to a region upstream of 

the PCR insert was sequenced (Eurofins MWG Operon, Huntsville, AL) along with purified 

plasmid. 30-50 randomly selected sequences for each respective round were subjected to analysis 

for consensus sequence families.  

2.2.3 Exotoxin A-specific MRE Binding Assays with Surface Plasmon Resonance 

After analyzing round 14 for its DNA sequences, R14.33 was selected for further 

characterization. The Mfold DNA web server was used to predict the secondary structure with 

the following conditions: 25°C, 100 mM Na+, and 2 mM Mg2+  [34]. Subsequently, R14.33 was 

synthesized by Eurofins MWG Operon with a 5’ amino-C6 modification for use in surface 

plasmon resonance (SPR) binding assays. 

Glass slides (12 mm x 10 mm) were cleaned by sonication in acetone, isopropyl alcohol, 

and doubly deionized water (5 min, each) and then blown dry with nitrogen. Gold was 

evaporated on to the slides using Temescal BJD-2000 system (Edwards Vacuum; Phoenix, AZ) 

with an Inficon XTC/2 deposition controller (Inficon; East Syracuse, NY) (chamber pressures ≤ 

1.0 × 10−6 Torr). Samples were rotated (3 rpm) and monitored during deposition for metal 

thickness (6 MHz quartz piezoelectric crystals, gold-coated) (Kurt J. Lesker Co., Clairton, PA). 
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Rates of 0.3−0.5 Å/s were maintained during the deposition of a titanium adhesion layer (2 nm) 

and a gold layer (50 nm). After that, samples were cooled to room temperature before being 

removed from the chamber. 

The gold slide was then cleaned in 100% ethanol under sonication for 5 minutes, then 

placed in a solution containing 10 mM 11-mercaptoundecanoic acid (11-MUA) (Sigma; St. 

Louis, MO) and 10 mM triethylene glycol mono-11-mercaptoundecylether (PEG3) (Sigma; St. 

Louis, MO) in a 1 to 5 ratio for 24 hours under argon. After the formation of the self-assembled 

monolayer (SAM), the gold slide was rinsed with 100% ethanol, pure water, and blown dry with 

a slow stream of nitrogen. The prepared gold slide was inserted into the carrying cartridge and 

docked into a Biacore X100 (GE Healthcare; Piscataway, NJ). The running buffer for 

immobilization was composed of 100 mM sodium chloride, 20 mM potassium phosphate, and 2 

mM magnesium chloride, pH 7.56 (1× immobilization buffer). Next, 100 mM N-

hydroxysulfonyl succinimide (sulfo-NHS) (Pierce; Rockford, IL) and 400 mM 1-ethyl-3-(3-

dimethylaminopropyl) (EDC) (Pierce; Rockford, IL) was mixed (1:1) and injected into flow cell 

1 and 2 at a flow rate of 5 µL/min for ten minutes for the activation of the carboxyl group of 11-

MUA. Then, 300 µL of 1 µM 5’amino modified ssDNA in immobolization buffer (after 

denaturing at 95°C for 5min and cooling to room temperature) was injected into flow cell 2 at a 

rate of 5 µL/min. At the end of the DNA injection, unreacted carboxyl groups were inactivated 

by injection of  selection buffer twice for a total of twenty minutes, followed by a regeneration 

cycle with 45 mM glycine, 100 mM sodium hydroxide in 5% ethanol (regeneration buffer) for 30 

seconds [35, 36]. 

After immobilization, selection buffer was then used as the running buffer for binding 

assays. The binding affinity of R14.33 was determined by injecting concentrations of 0, 0.5, 1, 
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1.2, 1.4 and 2 µM of Exotoxin A in flow cells 1 and 2 at a flow rate of 5 µL/min at room 

temperature. Each cycle comprised a 180 seconds wait period, 180 seconds contact period, 180 

seconds wait period and 30 seconds regeneration period using regeneration buffer. Assays were 

performed in duplicate. Kinetic data was analyzed using the Scrubber-2 software (BioLogic 

Software; Campbell, Australia) to determine the equilibrium dissociation constant (Kd), 

assuming a one-to-one kinetics model.  

To determine the cross binding activity of R14.33 to negative targets, blank selection 

buffer and 5 µM each of Exotoxin A, BSA, biotin (Sigma; St. Louis, MO), Cholera toxin, and 

streptavidin (Amresco; Solon, OH) were injected into both flow cells with the same conditions as 

described above. Each molecule was tested in triplicate. All data was averaged and standard 

deviations were calculated as previously described [35]. One-way ANOVA and Bonferroni post-

hoc test were performed to determine statistical differences in the means for analytes.  

2.2.4 Exotoxin A-specific MRE modified ELISA assays  

A sandwich ELISA assay modified with ssDNA MRE was developed. R14.33 was 

commercially synthesized with 5’ biotinlylation for the use as the antigen capturing element 

(Eurofins MWG Operon; Huntsville, AL). Streptavidin coated 96-well plate (Pierce; Rockford, 

IL) was washed three times for 5 minutes, with 200 µL of wash buffer (1× selection buffer, 0.1% 

BSA, 0.05% Tween-20 detergent). Subsequently, 100 µL of 40 nM 5’ biotinylated ssDNA in 

selection buffer (after denaturing at 95°C for 5 min and cooling to room temperature) was added 

to sample wells and incubated for 2 hours with shaking at room temperature. Each well was 

washed three times with wash buffer to remove non-immobilized ssDNA.  A negative control for 

each replicate consisted of a blank well without immobilized ssDNA. Then, 100 µL of each 1× 

phosphate buffer solution, selection buffer, 100 nM of Exotoxin A in selection buffer, human 
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serum (Sigma; St. Louis, MO), or 100 nM of Exotoxin A in human serum were added to 

individual sample wells. The plate was incubated for 1 hour with shaking at room temperature.  

Following sample incubation, each well was washed three times with wash buffer to 

remove unbound Exotoxin A.  Next, 100 µL of 1:100 dilution of primary goat anti-Exotoxin A 

antibody (List Biological Laboratories; Campbell, CA) in wash buffer was added to each well 

and followed by 30 minutes of incubation with shaking at room temperature. Following primary 

antibody incubation, each well was washed three times. Subsequently, 100 µL of 1:500 dilution 

of secondary rabbit anti-goat antibody conjugated to horseradish peroxidase (Pierce; Rockford, 

IL) in wash buffer was added to each well and incubated for 30 minutes at room temperature 

with shaking. Lastly, each well was washed five times to remove non-specifically bound 

antibodies. Controls with no antibodies added and with only primary antibodies added were also 

performed. Assays were performed in quadruplicate. 

ABTS substrate (Pierce; Rockford, IL) was added to each well according to the 

manufacturer’s instruction. After ABTS was added, absorbance  was measured in a Synergy 2 

microplate reader with OD reading at 410 nm and 650 nm using Gen5 1.06 software (Biotek US; 

Winooski, VT) in  two-minute increments. All data was averaged and standard deviations were 

calculated. For each Exotoxin A containing sample, a two tailed t-test was performed to 

determine statistical differences respectively to their blank controls (selection buffer or human 

serum). 

2.3 Results and discussions 

2.3.1 Selection of Exotoxin A-specific MREs 

Fourteen rounds of Decoy-SELEX were performed to identify ssDNA MREs specific to 

Exotoxin A. The selection scheme was aimed to direct the ssDNA MREs to bind to free 
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Exotoxin A in solution and reduce enrichment of non-specific binding to immobilization 

substrates, BSA, and Cholera toxin. Initially, 30-50 randomly selected sequences were analyzed 

for consensus sequence family after every 3 rounds of selection (rounds 3, 6, 9, 12). Toward the 

end of the selection, in order to monitor the enrichment of family sequences more frequently, 30-

50 random sequences from both round 13 and 14 were analyzed.  In the round 14 ssDNA library, 

there was a noticeable and significant convergence of sequence families in one sequence, R14.33 

(Table 2.2), which was subsequently chosen for further characterization. The sequence had a 

Gibbs energy value of -9.93 kcal/mol which indicated it would assume a highly stable structure 

according to Mfold prediction (Figure 2.3).   

 

Table 2.2: Sequence families after Round 14 Decoy-SELEX. 

R14.02 
TGTACCGTCTGAGCGATTCGTACTACGCCACACGTGGTGAGGGATTCGATCGCTTGAAGCCAGTCAGTGTTAAGGAGTGC 
R14.20 
TGTACCGTCTGAGCGATTCGTACTGCTATTCATCACCACTCTAGAGCCACTTTTAAAAGCCAGTCAGTGTTAAGGAGTGC 
R14.22 
TGTACCGTCTGAGCGATTCGTACTGGGCGGCGAGCCACCCGGCAATTTAGTACAGGCAGCCAGTCAGTGTTAAGGAGTGC 
R14.33 
TGTACCGTCTGAGCGATTCGTACCATAGGGTGCTTTTCAAGGCCACACGTTAGTGTAAGCCAGTCAGTGTTAAGGAGTGC 
R14.36 
TGTACCGTCTGAGCGATTCGTACAAAGCATCCAGCCGGTATGTGCCAGAGTCTCTGAAGCCAGTCAGTGTTAAGGAGTGC 
R14.38 
TGTACCGTCTGAGCGATTCGTACAAATGTGAGTGGCCAGGCATCAGGTACGTCGGTAAGCCAGTCAGTGTTAAGGAGTGC 
 
 
R14.03 
TGTACCGTCTGAGCGATTCGTACGGATAGGTGCCTCTGCTTCATCATGTTGAACTTAAGCCAGTCAGTGTTAAGGAGTGC 
R14.13 
TGTACCGTCTGAGCGATTCGTACAGTTTCACCAGTCGCCTGTTAGCCGTGATATACGAGCCAGTCAGTGTTAAGGAGTGC 
R14.20 
TGTACCGTCTGAGCGATTCGTACTGCTATTCATCACCACTCTAGAGCCACTTTTAAAAGCCAGTCAGTGTTAAGGAGTGC 
R14.27 
TGTACCGTCTGAGCGATTCGTACTGTCAATATTACGTTGCTCTTAGGTTCACCATCTAGCCAGTCAGTGTTAAGGAGTGC 
R14.28 
TGTACCGTCTGAGCGATTCGTACTTGTGATTCAAATAGGCGTGTTGGTGTGAGACCTAGCCAGTCAGTGTTAAGGAGTGC 
R14.33 
TGTACCGTCTGAGCGATTCGTACCATAGGGTGCTTTTCAAGGCCACACGTTAGTGTAAGCCAGTCAGTGTTAAGGAGTGC 
 
R14.03 
TGTACCGTCTGAGCGATTCGTACGGATAGGTGCCTCTGCTTCATCATGTTGAACTTAAGCCAGTCAGTGTTAAGGAGTGC 
R14.23 
TGTACCGTCTGAGCGATTCGTACCGTGGATCATGCTTCGCGTCGGTTTATAGGTTCCAGCCAGTCAGTGTTAAGGAGTGC 
R14.33 
TGTACCGTCTGAGCGATTCGTACCATAGGGTGCTTTTCAAGGCCACACGTTAGTGTAAGCCAGTCAGTGTTAAGGAGTGC 
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R14.39 
TGTACCGTCTGAGCGATTCGTACAGAAGAGCATCGGTAACTTCCATAGGAGATGGGGAGCCAGTCAGTGTTAAGGAGTGC 
 
R14.02 
TGTACCGTCTGAGCGATTCGTACTACGCCACACGTGGTGAGGGATTCGATCGCTTGAAGCCAGTCAGTGTTAAGGAGTGC 
R14.06 
TGTACCGTCTGAGCGATTCGTACCATCCGAGGGTATTGTATGCGTATATCCTAGTCGAGCCAGTCAGTGTTAAGGAGTGC 
R14.10 
TGTACCGTCTGAGCGATTCGTACCAAGTTCCTCATGGAGGGTGCTCAGAGCTTAGACAGCCAGTCAGTGTTAAGGAGTAA 
R14.33 
TGTACCGTCTGAGCGATTCGTACCATAGGGTGCTTTTCAAGGCCACACGTTAGTGTAAGCCAGTCAGTGTTAAGGAGTGC 
R14.34 
TGTACCGTCTGAGCGATTCGTACAGGGGGATTCCTAGGGCCCGGCCCAACGCTGTTTAGCCAGTCAGTGTTAAGGAGTGC 
R14.42 
TGTACCGTCTGAGCGATTCGTACCAAGACCCTTGAATCACGGGTAGGGTCTCGTAACAGCCAGTCAGTGTTAAGGAGTGC 
 

Representative sequence families following Round 14 of Decoy-SELEX. Families are grouped 

by boxes with common sequences double-underlined and sub-families underlined. 
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Figure 2.3: Secondary structure and sequence of R14.33 ssDNA MRE. (A) ssDNA sequence 

of Exotoxin A MRE R14.33. Gray letters indicates constant regions of the MRE. (B) Mfold 

prediction of R14.33 secondary structure [34]. 

2.3.2 Affinity and Specificity of Exotoxin A-specific MRE 

Affinity of the selected MRE was determined by SPR binding assays. Assays were 

performed with Exotoxin A concentration from high nM to low µM range with at least 2 

duplicate concentrations. The equilibrium dissociation constant (Kd) was between 4.2 to 4.5 µM 

(Figure 2.4). In recent years, there have been a number of MREs have been selected against 

protein targets which utilized SPR for characterization of binding affinity. Reported equilibrium 

dissociation constants in these studies ranged from low-nanomolar to high-nanomolar range [37-

41]. It is to be noted that  these studies relied on different immobilization methods than what was 

used here, including streptavidin/ biotin linkage and thiolated DNA attachment [38-41]. Also, 

several studies utilized a sandwich detection method to amplify signals and thus enhance limit of 

detections [39, 42, 43].  
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Figure 2.4: SPR binding kinetics assays of R14.33 ssDNA MRE. Data represent Kd of R14.33 

from two binding assays evaluated via Scrubber 2 software (Software; Campbell, Australia). (A) 

Representative binding response curve of R14.33. (B) Equilibrium dissociation constants and 

standard error of two binding assays. The average Kd is 4.35 ± 2.12 µM. 

 

SPR cross binding assays were performed to test the specificity of the selected Exotoxin 

A MRE. Concentrations of all cross binding analytes were higher than those used in affinity 

assays to ensure R14.33 has no non-specific binding to negative targets. The method of 
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presentation of the current data as relative response unit of R14.33 to all analytes has been 

previously described [35, 43]. Binding responses showed a much higher affinity of R14.33 to 

Exotoxin A in solution than to all negative targets (one-way ANOVA: F2, 12 = 573.4, p < 0.001) 

(Figure 2.5), as well as to streptavidin, a significant component of the immobilization substrate. 

This is noteworthy as streptavidin was present in  all of the selection rounds. It is clear that 

competitive elutions performed in the last two positive rounds gave the ssDNA library selectivity 

for free Exotoxin A in solution over immobilized target and other negative targets, thus 

validating the Decoy-SELEX method.  

 

 

Figure 2.5: SPR cross binding assays of R14.33. Data represent specificity of R14.33 Exotoxin 

A MRE. Error bars represents standard deviations of three runs. Statistical significance levels of 
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p < 0.001 are designated by ‘*’. The observed significance levels are adjusted by Bonferroni 

post-hoc procedure. Exotoxin A has a significantly higher response when compare to blank 

control and all other analytes, indicating low cross-binding activities of R14.33. Blank represents 

1× selection buffer. Concentrations of all analytes are at 5 µM.  

 

The determined equilibrium binding constant of the selected Exotoxin A MRE is higher 

than other studies utilizing SPR binding assays. This difference is likely due to different methods 

of immobilizing the ssDNA MRE as noted above and thus leads to a lower level of 

immobilization and detection responses. The current study utilizes direct covalent conjugation of 

5’ amino modified ssDNA to the SAM on gold surface [36]. One of the major challenges of this 

method is the electrostatic repulsion between negatively charged DNA and deprotonated 

carboxyl groups on the SAM surface during immobilization under neutral to basic running buffer. 

However, covalently attached DNA provides a more stable immobilization as compared to 

streptavidin/biotin and thiolated DNA attachment under a wide range of storage conditions. This 

is a potential advantage in the real application of a ssDNA MREs based biosensor, as the 

longevity of the biological probe is a huge determining factor of its application value [44]. It is 

also important to note that previous study demonstrated a 100-fold higher Kd between SPR 

binding measurements and binding assays relying on free ssDNA in solution [45]. This is likely 

due to the difference in the availability of binding pockets on MREs that are immobilized on 

solid platform as compared to being in solution. The SPR setup in this study is also very similar 

to the potential design of a final sensor. Therefore, this is a very realistic assay and is 

translational as a sensor.  
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2.3.3 Diagnostic application of Exotoxin A-specific MRE 

 The Exotoxin A specific MRE demonstrated high specificity, and minimal cross binding 

activity to BSA. It is reasonable to believe this low binding property may be extrapolated to 

human serum albumin [38]. This allowed the investigation of using the selected MRE as a 

potential diagnostic tool. A sandwich ELISA assay modified with the ssDNA MRE as the toxin 

capturing element was developed. Reproducible and statistically significant detection of 

Exotoxin A at 100 nM in spiked human serum samples were achieved compare to negative 

controls in six independent assays (p < 0.05 to p < 0.001) (Figure 2.6).  

 

 

Figure 2.6: Modified ELISA assays of Exotoxin A. Data represent one modified sandwich 

ELISA with absorbance measured at OD 410 nm. Absorbance levels presented are subtracted 

from background levels of blank well without immobilized DNA. Error bars represents standard 

deviations of 4 sample replicates in one independent assay. (A) Statistical significance levels 

with respect to buffer background of p < 0.001 are designated by ‘*’. (B) Statistical significant 

levels with respect to human serum background of p < 0.001 are designated by ‘*’. Buffer: 1× 

selection buffer; serum: human serum. 
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It has been reported that ssDNA MRE generally has a half-life of 1 hour in human serum 

due the presence of exonuclease [46]. Therefore, toxin incubation time ranged from five minutes 

to one hour was tested during assay development. While a portion of the immobilized MRE is 

likely to be degraded in serum condition, the one-hour toxin incubation period yielded the most 

consistent result and therefore it was utilized in all experimental assays. 

Previous study has attempted to incorporate ssDNA MRE into a system for target 

detection in buffer diluted human serum [47]. Similar ssDNA MRE modified ELISA assay for 

the detection of bacteria toxins have been previously described [48, 49]. However, clinically 

relevant samples were not tested in both studies. It is known that the binding activities of nucleic 

acid MREs are highly dependent on their three dimensional structures, and are influenced by 

factors such as temperature, pH and ionic strength of the binding environment [50]. This leads to 

challenges in applying nucleic acid MREs in targets’ native complex environments, such as 

human serum [51]. This study demonstrated an improvement to these previous reported studies 

by showing the robustness of the selected Exotoxin A specific MRE in undiluted serum without 

any base modifications, and it was able to retain a level of binding activity in an environment 

that was very much different than the selection condition.  

Currently, there are limited studies in quantifying the amount of Exotoxin A in vivo. 

Previous studies showed large differences in the levels of Exotoxin A detected in murine serum 

(averaged 116.0 ng/mL) and in culture media (averaged 1.4 µg/mL) [52, 53]. One study showed 

a significant differences in Exotoxin A detected in different patient sputum samples (0.3 ng/mL 

to 126 ng/mL), and as high as 29.3 µg/mL of Exotoxin A was detected in the culture supernatant 

of sputum isolated P. aeruginosa [54]. It has also been reported that blood isolated P. aeruginosa 

produced the highest amount of Exotoxin A in culture conditions (approximately 0.3 µg/mL) 
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[55]. Overall, these results suggest that in vivo levels of Exotoxin A vary significantly and are 

not well quantified in human patients. 

Historically, an ADP-ribosylation assay has been utilized to quantify the amount of 

Exotoxin A in research studies [20, 55-58]. This assay requires the use of radioactive NAD and 

intensive experimental preparations, and therefore it may not be practical for diagnostic use. 

Although a traditional antibody-based sandwich ELISA assay (MyBioSource; San Diego, CA) is 

commercially available with a reported detection range between 0.156 ng/mL and 10 ng/mL, it 

was designed for research purpose only. Also, given the likelihood of wide ranges of Exotoxin A 

levels in vivo. The relatively narrow detection range of the commercial ELISA kit may limit its 

usage in clinical samples. It is to be noted that in our ssDNA MRE modified ELISA assays, 100 

nM or 6.6 µg/mL of Exotoxin A in human serum was detected. While this is highly reproducible, 

the differences compare to negative controls are small enough to be near the assay’s detection 

limit. Based upon the available clinical data on Exotoxin A level in patients, it is difficult to 

completely rule out the clinical usage of the current ssDNA MRE modified ELISA assay. In 

order to transition the current assay into a final product for clinical use, it will need more 

modification, optimization and possibly with industrial partnership. Nevertheless, ssDNA MRE 

modified assay does offer several advantages when compared to ELISA assays that are based 

solely on antibodies, such as thermostability, and regeneration of assay by a basic buffer wash 

[59].  

  Overall, this study has identified a ssDNA MRE with high affinity and specificity for 

Exotoxin A of P. aeruginosa. To our knowledge, this is the first ssDNA MRE targeting Exotoxin 

A. The successful use of SPR for MRE characterizations showed the potential of it being 

incorporated into a SPR-based biosensor for real time, label-free detection of Exotoxin A in 
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biological matrices [38, 39]. In addition, the ssDNA MRE modified ELISA assay offers a 

potential new way to facilitate the diagnosis of P. aeruginosa infection by rapidly quantifying 

the presence of one of the most significant virulence factors in approximately 2 hours from toxin 

incubation to detection, and with minimal sample manipulations. This method may also 

supplement direct diagnosis methods based on detecting the presence of bacterial cells, such as 

culturing and PCR. 

2.4 Conclusions 

This study utilized a novel variation of the SELEX process, Decoy-SELEX, to obtain a 

ssDNA Molecular Recognition Element specific for Exotoxin A, a virulence factor of 

Pseudomonas aeruginosa. The MRE is characterized to have high affinity and specificity to its 

target, thus validating the Decoy-SELEX methodology. Utilizing surface plasmon resonance 

measurements, the determined equilibrium dissociation constant (Kd) of the MRE is between 4.2 

µM and 4.5 µM, and is highly selective for Exotoxin A over negative targets. A ssDNA MRE 

modified sandwich enzyme-linked immunosorbent assay (ELISA) has been developed and 

achieved a sensitive detection of Exotoxin A at nanomolar concentrations in human serum. This 

study has demonstrated the proof-of-principle of using ssDNA MRE as a potential clinical 

diagnostic tool.  
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Chapter 3 

In Vitro Selection of a Single-Stranded DNA Molecular 
Recognition Element Against Clostridium difficile Toxin B 

and Sensitive Detection in Human Fecal Matter 
This chapter is adapted from the work that has been published in Journal of Nucleic Acids. 

Citation: Hong KL, Maher E, Williams RM, Sooter LJ (2015) In Vitro Selection of a Single-
Stranded DNA Molecular Recognition Element Against Clostridium difficile Toxin B and 
Sensitive Detection in Human Fecal Matter. Journal of Nucleic Acids, vol. 2015, Article ID 
808495, 12 pages. doi:10.1155/2015/808495 
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3.1 Introduction 

Toxin B is a virulence factor secreted by Clostridium difficile, an obligate anaerobic  

spore-forming gram positive bacillus bacterium [1]. Clostridium difficile induced diarrhea 

accounts for more than 300,000 or almost 30% of all cases of diarrhea in acute care settings [2, 

3]. It also causes prolonged hospital stays and therefore increased cost burden in the health care 

system [4]. It has been reported that the cost of C. difficile infections are between $436 million 

and $3.2 billion per year in the US [4, 5]. In addition to economic burdens, the mortality rates of 

C. difficile infections have also increased from 5.7 per million in 1999 to 23.7 per million in 

2004 [6]. 

C. difficile produces two major exotoxins: toxin A and toxin B. Toxin B has been shown 

to be 1000 times more toxic than toxin A. While both toxins are considered to be the cause of C. 

difficile colitis, all toxin-producing strains of C. difficile produce toxin B [7]. Upon colonization 

of toxic strains of C. difficile in the colon, produced toxins deactivate GTPases, such as Rho and 

Rac, disrupt cytoskeleton and signal transductions, and result in cell rounding and  loss of cell 

structures, leading to host inflammatory responses [8].  

Due to the problems associated with C. difficile infection (CDI), early and accurate 

diagnosis is important for disease management and patient survival [9]. Currently, diagnostic 

tests for CDI are stool culturing, cell cytotoxicity neutralization assay, enzyme immunoassay 

(EIA) for toxin A and B, detection of C. difficile glutamate dehydrogenase (GDH) and 

polymerase chain reaction (PCR) detection of C. difficile genes [10]. Culturing diagnosis is  very 

sensitive, but the turnaround time can be up to 3-5 days [11]. GDH testing is very sensitive, but 

is not specific and requires additional EIA for toxin A and/ or toxin B [11, 12]. There are 

multiple commercial EIA kits for toxin A/B detection on the market, but their sensitivities vary 
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and  they may not be available in all countries [13]. PCR test has a rapid turnaround with good 

sensitivity and specificity, but does not detect the presence of virulence factors and the cost 

associated with the test may limit its usage [11, 14]. A confirmed diagnosis of CDI usually 

requires positive results from two or three-step of the available tests [15, 16]. When the results of 

these tests are combined, they are sensitive and specific, but excessive cost and turnaround time 

are major drawbacks. Therefore, it is important to identify new diagnostic techniques that can 

address some of these limitations. 

One potential method of addressing problems associated with toxin B testing is through 

molecular recognition and detection. Molecular recognition elements (MREs) are defined to have 

high specificity and affinity toward user defined targets. Molecules such as single-stranded 

oligoneucleotides, small peptides, antibody fragments and full length antibodies can all 

participate in molecular recognition, and have been studied in different types of biosensors [17-

20]. MREs are identified by an in vitro selection process called, Systematic Evolution of Ligands 

by Exponential Enrichment (SELEX), which was first described by the Gold laboratory in 1990 

[21]. Nucleic acid MREs are usually selected from a large random library consisting of 1013 to 

1015 different single-stranded DNA (ssDNA) or RNA molecules. The library is enriched through 

repeated cycles of incubation with the desired target and subsequently removal of molecules that 

bind to undesired targets. At the end of the selection process, the diversity of the MRE library is 

decreased to the point that one or a few candidate MREs can be identified for affinity and 

specificity screening against the target of interest. 

In this study, we applied a stringent SELEX scheme to obtain a ssDNA MRE that binds 

to toxin B with high affinity and specificity [22-24]. The selection scheme was designed to 

eliminate MREs that bind to negative targets that are likely to co-exist in the target environment. 
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Bovine serum albumin (BSA) was chosen to be the first negative target based on its similarity to 

human serum albumin and it’s prevalence as a blocking agent in assay applications [25]. Alpha 

toxin of Staphylococcus aureus and exotoxin A of Pseudomonas aeruginosa are virulence 

factors of common nosocomial infections, which have the likelihoods to co-infect hospitalized 

patients [26-28]. Cholera toxin of Vibrio cholerae is the causative agent of cholera induced 

watery diarrhea, which symptomatically mimics CDI [29]. In addition to the selection and 

characterization of the toxin B specific ssDNA MRE, a modified enzyme-linked immunoassay 

(ELISA) has been developed which utilizes the identified ssDNA MRE. The assay was able to 

show the detection of toxin B in human fecal samples at nanomolar concentrations. This work 

shows the potential of using ssDNA MREs in diagnostic applications [30-32]. 

3.2 Materials and Methods 

3.2.1 In vitro Selection of Toxin B-specific MREs 

  The selection process began with a single-stranded DNA (ssDNA) library consisting of 

1015 different molecules designed by our laboratory as previously described (Figure 3.1) [22]. In 

brief, the library, termed RMW.N34, consists of two 23-base constant regions for polymerase 

chain reaction (PCR) amplification, flanking a 34-base random region (commercially 

synthesized by Eurofins MWG Operon; Huntsville, AL).  A total of 12 rounds of SELEX were 

performed (Table 3.1) to identify ssDNA molecules that bound specifically to toxin B and not to 

negative targets (Figure 3.2). 
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Figure 3.1: Illustration of the SELEX process. The SELEX process begins with 1015 ssDNA 

molecules and incubation with the target toxin B. Those that bind to toxin B is amplified and 

subsequently incubated with negative targets. Those that do not bind to negative targets are 

retained and amplified, thus completing one round of in vitro selection. 
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Table 3.1: Systematic Evolution of Ligands by Exponential Enrichments (SELEX) scheme 

for Toxin B-specific MRE selection. 

Round Positive Selection  Time Negative Selection Time 
1 Immobilized Target 

(IT)  
24 hrs - - 

2 IT  18 hrs BSA INT  22 hrs 
3 IT  13 hrs BSA INT  26 hrs 
4 IT  7 hrs Exotoxin A INT  22 hrs 
5 IT  3 hrs Exotoxin A INT  26 hrs 
6 IT  30 min BSA INT  24 hrs 
7 IT/ 

Competitive Elution 
with 20 µg/mL free 
toxin B 

5 min/ 
5 min 

IT/  
Competitive Elution 
with 20 µg/mL free 
BSA 

5 min/  
5 min 

8 IT/ 
Competitive Elution 
with 20 µg/mL free 
toxin B 

5 sec/ 
5 sec 

IT/ 
Competitive Elution 
with 20 µg/mL free 
alpha toxin, 1 hour 

5 sec/ 
1 hrs 

9 IT/ 
Competitive Elution 
with 10 µg/mL free 
toxin B 

5 sec/ 
5 sec 

IT/ 
Competitive Elution 
with 20 µg/mL free 
cholera toxin, 1 hour 

5 sec/ 
1 hrs 

10 IT/  
Competitive Elution 
with 5 µg/mL free 
toxin B 

5 sec/ 
5 sec 

IT/ 
Competitive Elution 
with 20 µg/mL free 
exotoxin A, 1 hour 

5 sec/ 
1 hrs 

11 IT/ 
Competitive Elution 
with 2.5 µg/mL free 
toxin B 

5 sec/ 
5 sec 

IT/ 
Competitive Elution 
with 20 µg/mL free 
BSA, 24 hrs 

5 sec/ 
24 hrs 

12 IT/ 
Competitive Elution 
with 1 µg/mL free 
toxin B 

5 sec/ 
5 sec 

-  

 

In vitro selection performed for identifying toxin B-specific MRE. Immobilized target (IT) is 

toxin B conjugated to magnetic beads. Immobilized negative target (INT) is negative targets 

conjugated to magnetic beads. BSA is the abbreviation for bovine serum albumin. Times listed 

are incubation times in hours (hrs), minutes (min) or seconds (sec).  
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Figure 3.2: Structures of targets used in the SELEX scheme and cross binding assays. (A) 

Ribbon structure of the selection target, Clostridium difficile toxin B (PDB 2BVM, 270 kDa) 

[33]. (B), (C), (D), (E) Ribbon structure of Pseudomonas aeruginosa exotoxin A (PDB 1IKQ, 66 

kDa) [34], bovine serum albumin (PDB 4F5S, 66.5 kDa) [35], Vibrio cholerae cholera toxin 

(PDB 2A5D, 84 kDa) [36], and Staphylococcus aureus alpha toxin (PDB 3ANZ, 33 kDa) [37], 

used in negative rounds of selection and cross binding assays. 

 

Lyophilized toxin B (List Biological Laboratories; Campbell, CA) was reconstituted in 

pure water and covalently immobilized to carboxylic acid-coated magnetic beads (Dynabeads M-

270 Carboxylic Acid, Life Technologies; Grand Island, NY) via an amidation reaction using N-
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hydroxysulfonyl succinimide (sulfo-NHS) (Pierce; Rockford, IL) and 1-ethyl-3-(3-

dimethylaminopropyl) (EDC) (Pierce; Rockford, IL) according to manufacturer’s protocol.  

 For positive rounds, 6 µL of immobilized target was incubated with ssDNA library in 200 

µL of selection buffer composed of 100 mM sodium chloride, 20 mM Tris-HCl, and 2mM 

magnesium chloride (1× selection buffer, SB) at room temperature with rotation (8 RPM). After 

incubation, the immobilized target and solution were separated using a magnet. Unbound ssDNA 

in solution was removed. Immobilized target/ DNA complexes were washed three times with 

200 µL of SB and resuspended in 100 µL of SB. This bound DNA served as a template for PCR 

amplification. The PCR conditions were as follows: bound ssDNA, 400 nM forward and 

biotinylated reverse RMW.N34 primers (Eurofins MWG Operon; Huntsville, AL) (forward: 5’-

TGTACCGTCTGAGCGATTCGTAC-3’, biotinylated reverse: 5’-Biotin- 

GCACTCCTTAACACTGACTGGCT-3’), 250 µM deoxynucleotide triphosphates, 1× GoTaq 

Reaction Buffer (Promega; Madison, WI), 3.5 units Taq polymerase, and pure water. Thermal 

cycling conditions were as follows: denature at 95° C for 5 minutes, cycle at 95° C for 1 minute, 

63° C for 45 seconds, and 72° C for 1 minute; and final extension temperature at 72° C for 7 

minutes [22].A large-scale 3mL amplification was carried out after each round of positive and 

negative selection. This selection procedure for the immobilized toxin B target was performed 

for Rounds 1 – 6, each with decreasing incubation time. 

 After PCR amplification, amplified dsDNA was purified with the IBI PCR purification 

kit (IBI Scientific; Peosta, IA) according to the manufacturer’s protocol. Eluted dsDNA 

containing the biotinylated reverse strand was subjected to single strand separation and ethanol 

precipitation of the forward strand as previously described [22]. This procedure was performed 

after each positive and negative round of selection. 
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 For negative rounds, multiple negative targets were covalently immobilized to carboxylic 

acid-coated magnetic beads as described above. Immobilized negative targets were incubated 

with the enriched ssDNA library in the same conditions as positive rounds. However, after 

magnetic separation, unbounded ssDNA in solution was used as template for PCR amplification. 

This selection procedure for immobilized negative targets was performed for Rounds 2 – 6. 

 Competitive elution with free toxin B in solution was performed beginning in Round 7 

positive. The enriched ssDNA library was first incubated with immobilized toxin B as described 

above. After magnetic separation and washes, toxin B at a concentration of 20 µg/ mL in 100 µL 

of 1× SB was added to magnetic beads and incubated for 5 minutes, then subjected to magnetic 

separation. The solution containing ssDNA bound to free toxin B served as PCR template. This 

procedure was performed for Rounds 7 – 12 positive, each with decreasing time of incubation 

and target concentrations.  

 Similarly, competitive elution with negative targets in solution was performed beginning 

in Round 7 negative as outlined above. However, ssDNA molecules bound to the immobilized 

target were resuspended in 100 µL of 1× selection buffer and served as PCR template. This 

procedure was performed for Rounds 7 – 11 negative. 

3.2.2 Cloning and Sequencing of Toxin B-specific MREs 

 In order to analyze the ssDNA library for consensus binding sequences, the library was 

cloned and sequenced following Rounds 3 negative, 6 negative, 9 negative and 12 positive. 

Identical procedures were performed as previously described [22]. In brief, the library was 

amplified with non-biotinylated primers, and the fresh PCR product was ligated into the pCRII 

vector (Invitrogen; Carlsbad, CA) and cloned into competent E. coli according to the 

manufacturer’s protocol. The cloned plasmid was extracted and purified with AxyPrep Plasmid 



112 
 

Miniprep kit (Axygen; Union City, CA), and subsequently sequenced with the M13R primer by 

commercial source (Eurofins MWG Operon; Huntsville, AL). A total of 30-80 randomly selected 

clones were sequenced and analyzed. 

3.2.3 Toxin B-specific MREs Sequence Alignment and Analysis 

Sequences were first grouped into super-families by analyzing common tetranucleotide 

sequence from the variable regions of sequenced clones. The largest super-family was then 

chosen for alignment and divided into smaller subfamilies. All sequences in the subfamilies were 

analyzed for their predicted secondary structures, the predicted Gibbs free energy values of those 

structures, and percent homology. These analyzed parameters were considered in the choice of 

candidate sequences. 

3.2.4 Toxin B-specific MRE Binding Assays with Surface Plasmon Resonance 

One candidate sequence from the round 12 library was chosen for further characterization. 

The candidate sequence was designated as R12.69. The secondary structure was predicted by the 

Mfold DNA web server using the following conditions: 25° C, 100 mM Na+, and 2 mM Mg2+ 

[38]. Commercially synthesized 5’amino-C6 modified R12.69 (5’ amino-C6 indicates  a primary 

amino group attached to the 5’ end of the oligonucleotide with six carbon spacer between the two) 

(Eurofins MWG Operon; Huntsville, AL) was used for surface plasmon resonance (SPR) affinity 

assays. Both in-house produced and commercially purchased CM5 (GE Healthcare; Piscataway, 

NJ) SPR sensor chips were used for binding assays.  

 Home-made gold chips were fabricated from glass slides (12 mm x 10 mm) coated with a 

2 nm titanium adhesion layer and a 45 nm gold layer. Metals were deposited using a Temescal 

BJD-2000 system (Edwards Vacuum; Phoenix, AZ) with an Inficon XTC/2 deposition controller 
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(East Syracuse, NY). The home-made gold chips were first cleaned in 100% ethanol under 

sonication for 5 minutes, then immersed in a solution of 10 mM 11-mercaptoundecanoic acid 

(11-MUA) (Sigma; St. Louis, MO) and 10 mM triethylene glycol mono-11-

mercaptoundecylether (PEG3) (Sigma) in a 1 to 5 ratio overnight under argon for the formation 

of the self-assembled monolayer. Subsequently, gold chips were rinsed in 100% ethanol and pure 

water, blown dry with nitrogen and assembled onto carrying cartridges for SPR binding assays 

using a Biacore X100 (GE Healthcare; Piscataway, NJ). 

Both in-house produced and purchased CM5 SPR sensor chips were activated by 

injecting 100 mM N-hydroxysulfonyl succinimide (sulfo-NHS) (Pierce; Rockford, IL) and 400 

mM 1-ethyl-3-(3-dimethylaminopropyl) (EDC) (Pierce; Rockford, IL) at a 1 to 1 ratio to both 

active (flow cell 2) and reference (flow cell 1) flow cells at a flow rate of 5 µL/min for ten 

minutes. An immobilization buffer composed 100 mM sodium chloride, 20 mM potassium 

phosphate, and 2 mM magnesium chloride, pH 7.4 was used as the running buffer. Then, 300 µL 

of 100 nM 5’ amino-C6modified R12.69 in immobilization buffer was injected into the active 

flow cell at a flow rate of 5 µL/min, followed by 10 minutes injection of 1 M ethanolamine-HCl 

pH 8.5 into both active and reference flow cells in order to inactivate un-reacted sensor surface. 

Maximum levels of immobilization were obtained for affinity analyses.  

Single cycle kinetics assays were performed to determine the affinity of R12.69 to toxin 

B. The 1× selection buffer was used as running buffer during kinetics assays. Toxin B at various 

concentrations (20 nM, 40 nM, 60 nM, 100 nM and 200 nM) in 1× SB were injected into both 

flow cells at a flow rate of 30 µL/min for 120 seconds with a dissociation time of 150 seconds. 

Control and baseline adjusted sensorgram responses were analyzed with the Biacore X100 

evaluation software (GE Healthcare; Piscataway, NJ). A 1:1 kinetics model was used to 
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determine the equilibrium dissociation constant (Kd). This binding assay was performed in 

triplicate.  

3.2.5 Toxin B-specific MRE Fluorescence Cross-Binding Assays 

To determine the cross binding activities of the selected MRE, 5’FAM modified R12.69 

was purchased from Eurofins MWG Operon. The assay was performed as previously described 

with slight modifications [39]. Toxin B, exotoxin A (List Biological Laboratories; Campbell, 

CA), alpha toxin (List Biological Laboratories; Campbell, CA), cholera toxin (List Biological 

Laboratories; Campbell, CA), and BSA at 40 nM in 90 µL of 50 mM carbonate/ bicarbonate 

buffer (pH 9.6) were added into individual wells of a 96 well Nunc C8 Lockwell MaxiSorp 

microplate (Pierce; Rockford, IL). Wells containing 1× SB with 0.05% Tween-20 served as the 

negative background control. The plate was placed on a shaker and incubated at 4 ºC overnight 

for protein coating (500 RPM). Subsequently, wells were blocked with 90 µL of 1× SB with 

0.05% Tween-20 for 1 hour and washed with the same blocking buffer 3 times. Fluorescently 

labeled R12.69 was diluted to 100 nM in 90 µL of 1× SB. It was then added to each well and 

incubated at room temperature for 1 hour. Unbound R12.69 was then aspirated and followed by 

washing with 1× SB 5 times. Finally, 90 µL of 1× SB was added to each well and the 

fluorescence emission was measured by a Synergy 2 microplate reader with excitation at 490 nm 

and emission at 520 nm (Biotek US; Winooski, VT). Fluorescence measurements were 

normalized to 90 µL of 100 nM fluorescent MRE in 1× SB as described previously [22]. Protein 

target sets were performed in triplicate and control well sets in duplicate. All data was averaged 

and standard deviations were calculated. A one-tailed t-test was performed to determine the 

statistical significance in difference of the means (p ≤ 0.05). 
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3.2.6 Toxin B-specific MRE Modified ELISA assays 

Commercially synthesized 5’ amino-C6 modified R12.69 was used as the toxin B 

capturing element in a modified sandwich ELISA assay. First, 40 nM of 5’ amino-C6 modified 

R12.69 in immobilization buffer (100 mM sodium chloride, 20 mM potassium phosphate, and 2 

mM magnesium chloride, pH 7.56) was denatured at 95°C for 5 min and cooled to room 

temperature. Then, 100 µL of the ssDNA was added to individual wells of a maleic anhydride 

activated plate (Pierce; Rockford, IL) and incubated overnight with shaking at room temperature 

(500 RPM). Each well was then blocked with 0.1% BSA in 1× SB for 1 hour, and washed three 

times with wash buffer containing 0.1% BSA, 0.05% Tween-20 in 1× SB at room temperature to 

remove non-immobilized ssDNA.   

Normal human fecal samples (Lee Biosolutions; St Louis, MO) were reconstituted in 1× 

SB at 1 g to 20 mL ratio, then centrifuged at 5000 x g for 10 minutes to collect fecal solution. 

Toxin B was spiked into 100 µL of prepared fecal solution and 100 µL of 1× SB respectively at a 

final concentration of 50 nM and served as active testing samples. Blank wells without 

immobilized ssDNA served as the first negative control, and 100 µL of 1× phosphate buffer 

solution, 100 µL of 1× SB, and 100 µL of fecal solution in wells with immobilized ssDNA 

served as the second negative control.  All samples were added to individual well and incubated 

for 1 hour with shaking at room temperature (500 RPM).  

After sample incubation, wells were washed three times with wash buffer to remove 

unbound toxin B. Then, 100 µL of chicken anti-toxin B primary antibody (List Biological 

Laboratories; Campbell, CA) at a 1 to 400 dilution ratio in wash buffer was added to each well 

and incubated for 30 minutes at room temperature with shaking (500 PRM). The primary 

antibody was then aspirated and each well was washed three times as outlined above. A 
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secondary goat anti-chicken antibody conjugated to horseradish peroxidase (Pierce; Rockford, IL) 

at 1 to 500 dilution ratio was added and incubated for 30 minutes at room temperature with 

shaking (500 RPM). Lastly, all contents were aspirated and washed five times with wash buffer 

to remove non-specifically bound antibodies (Figure 3.3). Additional negative controls were 

wells without antibodies and wells with only primary antibody. Assays were performed in 

duplicate.  

ABTS substrate (Pierce; Rockford, IL) was added to individual well according to the 

manufacturer’s protocol. Absorbance at 410 nm and 650 nm was measured in a Synergy 2 

microplate reader using Gen5 1.06 software (Biotek US; Winooski, VT) in two minute 

increments. All data was averaged and standard deviations were calculated. A two-tailed student 

t-test was used to determined statistical differences at p < 0.05. 
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Figure 3.3: Illustration of the Toxin B-specific MRE modified ELISA assay. The ssDNA 

MRE was used as the capturing element in the modified sandwich ELISA assay and signal is 

amplified by using secondary antibody conjugated to horse radish peroxidase (HRP). 

 

3.3 Results and Discussions 

3.3.1 Identification of Toxin B-specific MRE 

Twelve rounds of SELEX were carried out to identify ssDNA MREs specific to toxin B. 

This SELEX scheme is designed to enrich ssDNA MREs that bind to toxin B in solution and 

exclude ssDNA molecules that bind to BSA, alpha toxin, exotoxin A, and cholera toxin, which 

are likely to co-exist in the target environment. Multiple negative selection rounds were 

performed to enhance the specificity of the ssDNA library. After every three complete rounds of 

selection (rounds 3, 6, 9 and 12), 30 – 80 random sequences were selected and analyzed.  

In the round 12 ssDNA library, 43 sequences were successfully obtained and analyzed. 

The largest super-family contained 17 sequences. All 17 sequences were further aligned based on 

the common tetranucleotide sequence (CTAA), and divided into five smaller subfamilies (Figure 

3.4).  
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Figure 3.4: Sequence families of the round 12 library. Only the variable region is shown in 

the aligned subfamily of the CTAA super-family. MRE sequences are aligned to the CTAA 

tetranucleotide sequence. Highlighted regions represent sequence homology shared in the 

subfamilies. ΔG represents the Gibbs free energy values. Possible structures indicate the number 

of predicted structures from the Mfold web server [38]. Percent homology is calculated from 

highlighted nucleotides divided by the length of the sequenced variable region.  

 

It is to be noted that one sequence R12.62 only contained TAA tri-nucleotide, however it 

shared large homology within the subfamily, and therefore it was also included in the analysis. 

The CTAA tetranucleotide was not found in the constant regions, and therefore the constant 

regions did not participate in the family analysis, and were omitted in the figure presentation. 

However, previous studies showed that the constant regions of the MRE sequence can be 

involved in their functional secondary structures, thus they were not ignored in the overall 
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decisions of choosing candidate sequences [40-44]. Two sequences, R12.12 and R12.27 were 

identical. However, the sequences were not chosen for further characterization based on the 

relatively higher Gibbs free energy value (ΔG) (indicating lower stability) and multiple possible 

secondary structures. Sequence R12.30, R12.66 and R12.78 had the overall lowest ΔG values, 

but their variable regions did not sufficiently participate in the formation of stem-loop structures 

according to the Mfold predictions. Only one sequence, R12.69 had one possible predicted 

structure with a relatively low ΔG value (-8.07 kcal/mol), and sufficient stem-loop structures 

formed from the variable region (Figure 3.5). Therefore, R12.69 was chosen for further 

characterization.  
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Figure 3.5: Secondary structure and sequence of R12.69 ssDNA MRE. (A) ssDNA sequence 

of toxin B MRE R12.69. The red portions indicate the constant regions for primer attachment, 

and the black portion indicates the variable region. (B) Mfold prediction of R12.69 secondary 

structure. Highlighted sequence, CTAA, represents that most common tetranucleotide sequence 

in the variable regions of the 43 sequences obtained from the round 12 library, and it is used as 

the center for sequence alignment in Figure 4 [38].  

 

3.3.2 Affinity and Specificity of Toxin B-specific MRE 

Surface plasmon resonance was used to determine the affinity of R12.69. Single cycle 

kinetics analysis was performed on both in-house produced and commercial CM5 SPR sensor 

chips. This type of assay was chosen instead of multi-cycle kinetics because there was no need to 

predetermine the regeneration condition of the sensor chip. This type of assay has also been used 

in previous studies to determine the binding affinities of nucleic acid MREs [45, 46]. Two assays 

were performed on CM5 sensor chip and one assay was performed on home-made sensor chip. 

There were negligible differences between the equilibrium dissociation constants (Kd) obtained 

from both types of sensor chips. The averaged Kd value from the three assays was determined to 

be 47.3 ± 13.7 nM (Figure 3.6).  
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Figure 3.6: Affinity measurements of R12.69 ssDNA MRE. A representative SPR affinity 

saturation curve of R12.69 with 1:1 binding fit. The averaged equilibrium dissociation constant 

and standard error of three SPR measurements is 47.3 ± 13.7 nM. 

 

It is to be noted that the MRE was immobilized covalently onto the sensor chip surfaces, 

which was different than most of the previous studies [45, 47-49]. The surface of both home-

made and CM5 sensor chips were negatively charged under a neutral to basic running buffer (IM 

buffer), and the electrical repulsion between the negatively charged DNA may lead to variable 

levels of ligand immobilization and different levels of maximum SPR response unit. However, 

analyte and ligand binding was saturated in all three independent assays, thus validating the use 

of covalent linkage for MRE immobilization in SPR analysis. The determined dissociation 

constant (Kd) was comparable to other MREs targeting bacteria toxins [39, 50, 51].  

The cross binding activity of R12.69 was determined by fluorescence plate assay. The 

ssDNA MRE preferably binds to toxin B greater than other negative targets in the selection 

scheme (Table 3.2).  

 

Table 3.2: Cross-binding reactivity of R12.69 ssDNA MRE. 

Target Average 
Fluorescence 
(RFU) 

Standard 
Deviation 

P-value Selectivity Ratio 

Toxin B 0.0176 0.0066 - - 
Cholera Toxin 0.0080 0.0041 0.0497 2.2 
Alpha Toxin 0.0033 0.0022 0.0117 5.4 
Exotoxin A 0.0037 0.0022 0.0130 4.7 
Bovine Serum 
Albumin 

0.0030 0.0018 0.0106 5.8 
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For each protein target, average fluorescence is given with standard deviation. The P-value is 

given from a t-test between toxin B and other negative targets. The selective ratio describe the 

number of times greater binding to toxin B than to other negative targets.  

 

The binding of R12.69 to toxin B is 2.2 times higher than chorea toxin (p = 0.0497), 5.4 

times higher than alpha toxin (p = 0.0117), 4.7 times higher than exotoxin A (p = 0.0130), and 

5.8 times higher than bovine serum albumin (p = 0.0106). It is to be noted that both cholera toxin 

(84 kDa) and alpha toxin (33 kDa) were introduced only once in the negative selection scheme. 

However, the selectivity over alpha toxin is more than double that of cholera toxin. It is likely 

that the ssDNA library was enriched to bind preferably to large globular protein targets (M.W. of 

toxin B = 270 kDa) during early selection rounds. Other negative targets were introduced 

multiple times in the negative selection scheme and therefore their respective cross binding 

activities were sufficiently decreased. This result validates that multiple negative targets and 

competitive elution strategy employed in our stringent SELEX method can greatly enhance the 

specificity of ssDNA MREs. 

3.3.3 Diagnostic Application of Toxin B-specific MRE 

A modified sandwich ELISA assay was developed in this study to investigate the 

translational potential of R12.69. Reproducible detection of 50 nM toxin B spiked in human fecal 

solutions were achieved compared to control in 8 minutes after HRP substrate incubation (p < 

0.05) (Figure 3.7).  
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Figure 3.7: R12.69 ssDNA MRE modified ELISA assays of Toxin B. Data from one modified 

sandwich ELISA assay with absorbance measured at OD 410 nm.  Absorbance levels presented 

are subtracted from background levels of blank wells without immobilized DNA (negative 

control). Error bars represents 2x standard deviations of 2 sample replicates. (A) Statistical 

significance levels with respect to DNA in buffer background (without toxin B) of p < 0.01 are 

designated by **. (B) Statistical significance levels with respect to fecal background (without 

toxin B) of p < 0.05 are designated by *. Buffer: 1× selection buffer; Feces: 1 g/ 20mL 1× 

selection buffer. 
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It is to be noted that fecal matter is a complex matrix, which contains multiple 

macromolecules and ions [52]. Meanwhile, the three dimensional structure of nucleic MREs is 

highly dependent on the temperature, pH and ionic strength of the binding condition and these 

structures are related to their binding abilities [53]. This modified ELISA assay demonstrated the 

robustness of R12.69 in complex biological matrices. Previous studies have identified ssDNA 

MREs specific for bacteria toxins and similar ELISA assays were developed for toxin detection 

[39, 54]. However, both ELISA detections were not tested in clinically relevant samples, which 

is necessary for translation. Recently, slow off-rate modified binding elements (SOMAmerTM by 

SomaLogic, Inc; Boulder, CO) specific for toxins B, A and binary toxin of C. difficile have been 

identified with subnanomolar affinities [55]. The authors also reported sensitive detection of 

toxin B at picomolar concentrations in multiple assays, though fecal preparations were not tested 

in all of the assays. Previous study reported that fecal toxin B levels in patients with CDI ranged 

from approximately 26 ng/ mL to 25 µg/ mL [56]. The current MRE modified ELISA assay can 

detect toxin B level at 50 nM (1.35 µg/ mL), that is within a clinically relevant concentration. 

Currently, multiple commercial toxin B ELISA diagnostic kits are available in the market 

and offer sensitive detection of toxin B at nanograms/ mL concentrations. It is to be noted that 

the current clinical usage of the unmodified ssDNA MRE identified in this study is limited due to 

its lower sensitivity. However, ssDNA MREs have several advantages over antibodies, such as 

inexpensive chemical synthesis and reusability [57]. The use of the toxin B specific MRE in the 

modified sandwich ELISA assay therefore has a cost advantage over other currently available 

diagnostic techniques, and may offer an option for rapid initial screening of CDI. This MRE may 

also be incorporated into a SPR biosensor for real-time, label-free toxin B detection in biological 

matrices [47, 49].  It is also possible to increase the stability of the MRE through chemical 
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modification to bases of DNA and may stabilize its secondary structure in complex matrices [58]. 

Overall, the use of R12.69 demonstrated a proof-of-concept in substituting antibody as the 

antigen capturing element in clinically relevant samples and may have the potential to augment 

current and emerging diagnostic techniques of C. difficile infections.  

3.4 Conclusions 

This study further validated the stringent in vitro selection variation previously developed 

by our laboratory. A ssDNA molecular recognition element specific for toxin B has been 

identified with nanomolar affinity (Kd = 47.3 nM) after twelve rounds of selection. The selected 

MRE demonstrated low cross-binding activities on negatives targets: bovine serum albumin, 

Staphylococcus aureus alpha toxin, Pseudomonas aeruginosa exotoxin A and cholera toxin of 

Vibrio cholera. A modified sandwich ELISA assay was developed utilizing the selected ssDNA 

MRE as the antigen capturing element and achieved a sensitive detection of 50 nM of toxin B in 

human fecal preparations and demonstrated a proof-of-concept of the diagnostic application of 

the ssDNA MRE. 
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4.1 Introduction 

Alpha toxin, also known as alpha-hemolysin is a virulence factor secreted by 

Staphylococcus aureus, a facultative anaerobic Gram positive cocci bacteria [1]. S. aureus can 

cause a wide variety of infections in both healthy and hospitalized individuals, such as skin/soft 

tissue infections, bacteremia, pneumonia, and endocarditis [2]. Recent increases in the 

emergence of methicillin-resistant S. aureus (MRSA) in both health care settings and 

communities have raised global concerns [3, 4]. It was estimated that there were approximately 

300,000 patients in the US hospitalized with S. aureus-induced skin/soft tissues infections in 

2007, with an average hospital stay of 4.5 days [5, 6].  

Most strains of S. aureus produce alpha toxin. It forms pores in target cell membranes, 

causing leakage of ions and cytolysis. [1]. It has been shown that alpha toxin is involved in cell 

and tissue damage at infection sites and in inflammatory responses [7]. Antibodies against alpha 

toxin have been identified in patients with S. aureus infection, indicating the systemic 

involvement of alpha toxin in humans [8]. In addition, the important role of alpha toxin in 

pathogenesis has been reported in multiple previous studies [9-11]. 

Due to the problems associated with S. aureus infection, it is important to correctly 

diagnose these infections in a timely manner. The current diagnosis of S. aureus related 

infections are mostly designed for specific types of infections: echocardiography for patients 

with suspected S. aureus endocarditis and bacteria culturing from samples collected at sites of 

infections [12-14]. These methods are slow, non-specific and require multiple tests. Recently, 

PCR and Western blot/dot ELISA have been investigated to detect the presence of alpha toxin-

coding genes and alpha toxin to facilitate the diagnosis of S. aureus related skin/soft tissue 

infections [15, 16]. These methods are sensitive, but require laboratory equipment that may not 
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be readily accessible in some hospitals. Other traditional ELISA assays have also been reported 

for alpha toxin detection [17, 18]. However, the batch-to-batch variation in antibodies may 

hinder the standardization of these assays [19]. 

Single-stranded DNA molecular recognition elements (MRE) are an alternative to 

antibodies that have the potential to address the current limitations in diagnosing S. aureus 

infections. MREs can be proteins (antibodies or antibody fragments), small peptides or nucleic 

acids (aptamers or SOMAmers). They have high affinities and specificities toward the target of 

interest. The first nucleic acid MRE was described by the Gold laboratory in 1990, and was 

isolated using the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) [20]. 

For single-stranded DNA (ssDNA) MREs, the process begins with incubating a large random 

library of different ssDNA molecules (1013 to 1015) with the target of interest. The library is then 

subject to repeated cycles of partitioning, amplification of bound library molecules, and removal 

of unbound molecules. One or a few MREs with high affinities and specificities toward the target 

of interest can be identified at the end of the in vitro selection process. 

In this study, a rigorous SELEX scheme previously developed by our laboratory was used 

to identify a ssDNA MRE that binds to alpha toxin with high affinity and specificity [21-23]. 

The stringency of this SELEX variant is due to the focus on eliminating library binding to 

negative targets that are either structurally similar or likely to coexist in the same environment 

with the target of interest. These negative targets include bovine serum albumin, toxin B of 

Clostridium difficile, exotoxin A of Pseudomonas aeruginosa and cholera toxin of Vibrio 

cholerae. In addition, the identified alpha toxin-specific MRE has been utilized in a ssDNA 

MRE modified sandwich ELISA assay for the detection of the target in human serum samples at 

nanomolar concentrations.  



133 
 

4.2 Material and Methods 

4.2.1 SELEX for Identification of Alpha Toxin-specific MREs 

The in vitro selection process started from a single-stranded DNA (ssDNA) library 

consisting of 1015 different molecules (Figure 4.1). This library was previously designed by our 

laboratory, termed RMW.N34 [21]. It consisted of two 23 base constant regions for polymerase 

chain reaction (PCR) amplification flanking by a 34 base random region (synthesized by 

Eurofins MWG Operon; Huntsville, AL). Twelve rounds of SELEX were carried out to select 

ssDNA molecules that bound to alpha toxin and those that bound to negative targets were 

eliminated in the process (Table 4.1, Figure 4.2). 

 

 

Figure 4.1: Illustration of the Systematic Evolution of Ligands by EXponential enrichment 

(SELEX) process. A random library consisting of 1015 ssDNA molecules (each with  
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a different nucleotide sequence, indicated by different shapes) were incubated with the target 

alpha toxin. Those DNA that bound to the target were amplified and then incubated with 

negative targets. Those DNA that do not bind to negative targets are amplified and subjected to 

further rounds of in vitro selection. 

 

Table 4.1: Systematic Evolution of Ligands by EXponential Enrichment (SELEX) scheme 

for ssDNA molecular recognition element (MRE) identification against alpha toxin. 

Round Positive Selection (+) PCR 
Cycles 

Negative Selection (-) PCR 
Cycles 

1 Immobilized Target (IT) 24 hrs 9 - - 
2 IT 18 hrs 15 BSA Immobilized Negative 

Target (INT) 22 hrs 
16 

3 IT 13 hrs 13 BSA INT 26 hrs 17 
4 IT 7 hrs 18 Exotoxin A INT 22 hrs 16 
5 IT 3 hrs 11 Exotoxin A INT 26 hrs 15 
6 IT 30 min 17 BSA INT 24 hrs  12 
7 IT 5 min, Competitive Elution 

with 1 mg/mL free alpha toxin, 
5 min 

17 IT 5 min, Competitive Elution 
with 1 mg/mL free BSA, 5 min 

16 

8 IT 5 sec, Competitive Elution 
with 1 mg/mL free alpha toxin, 
5 sec 

15 IT 5 sec, Competitive Elution 
with 20 µg/mL free exotoxin a, 6 
hour 

13 

9 IT 5 sec, Competitive Elution 
with 10 µg/mL free alpha toxin, 
5 sec 

12 IT 5 sec, Competitive Elution 
with 20 µg/mL free cholera 
toxin, 6 hour 

13 

10 IT 5 sec, Competitive Elution 
with 5 µg/mL free alpha toxin, 
5 sec 

12 IT 5 sec, Competitive Elution 
with 20 µg/mL free toxin B, 6 
hour 

13 

11 IT 5 sec, Competitive Elution 
with 2.5 µg/mL free alpha 
toxin, 5 sec 

19 IT 5 sec, Competitive Elution 
with 20 µg/mL free BSA, 24 hrs 

7 

12 IT 5 sec, Competitive Elution 
with 1 µg/mL free alpha toxin, 
5 sec 

10 -  

In vitro selection performed for identifying alpha ttoxin specific MRE. Immobilized target (IT) is 

alpha toxin bound to magnetic beads. Immobilized negative (INT) are negative targets bound to 
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magnetic beads. BSA is the abbreviation for bovine serum albumin. Times listed are incubation 

times in hours (hrs), minutes (min) or seconds (sec). 

 

 

Figure 4.2: Structures of targets used in the SELEX scheme and cross binding assays. 

(A) Ribbon structure of the target of interest, alpha toxin (PDB 3ANZ, 33kDa) [24]. (B), 

(C), (D), (E) Ribbon structure of exotoxin A (PDB 1IKQ, 66 kDa) [25], bovine serum 

albumin (PDB 4F5S, 66.5 kDa) [26], cholera toxin (PDB 2A5D, 84 kDa) [27], and toxin B 

(PDB2BVM, 270 kDa) [28], used in negative rounds of selection and cross binding assays. 

 

Lyophilized alpha toxin (List Biological Laboratories; Campbell, CA) was reconstituted 

in pure water and conjugated to carboxylic acid-coated magnetic beads (Dynabeads M-270 
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Carboxylic Acid, Life Technologies; Grand Island, NY) via a two-step amidation reaction using 

N-hydroxysulfonyl succinimide (sulfo-NHS) (Pierce; Rockford, IL) and 1-ethyl-3-(3-

dimethylaminopropyl) (EDC) (Pierce; Rockford, IL). The reaction was performed according to 

manufacturer’s protocol.  

For positive rounds of immobilized target selection, the ssDNA library was incubated 

with 6 µL of immobilized target in 200 µL of selection buffer (100 mM sodium chloride, 20 mM 

Tris-HCl, and 2mM magnesium chloride; 1× selection buffer, SB) at room temperature with 

rotation. After incubation, the solution was then subjected to magnetic separation. Unbound 

ssDNA in solution was removed and immobilized target with bound ssDNA was washed three 

times with 200 µL of SB and resuspended in 100 µL of SB. This suspension served as template 

for PCR amplification. The PCR conditions were as follows: bound ssDNA, 400 nM forward and 

biotinylated reverse RMW.N34 primers (Eurofins MWG Operon; Huntsville, AL) (forward 

primer sequence: 5’ -TGTACCGTCTGAGCGATTCGTAC-3’, biotinylated  reverse primer 

sequence: 5’ -Biotin-GCACTCCTTAACACTGACTGGCT-3’), 250 µM deoxynucleotide 

triphosphates, 1× GoTaq Reaction Buffer (Promega; Madison, WI), 3.5 units Taq, and pure 

water. Thermal cycling conditions were as follows: denature at 95° C for 5 minutes, cycle at 95° 

C for 1 minute, 63° C for 45 seconds, and 72° C for 1 minute; and final extension temperature at 

72° C for 7 minutes [21-23]. Large-scale 3 mL PCR was performed after each round of positive 

and negative selection. This selection process for immobilized alpha toxin target was carried out 

for Rounds 1–6, each with shortened incubation periods.  

Amplified PCR product containing dsDNA was purified with the IBI PCR purification kit 

(IBI Scientific; Peosta, IA) according to manufacturer’s protocol. Single strand separation and 

ethanol precipitation of the forward strand DNA were performed identically to as previously 
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described [21-23]. This procedure was carried out after each round of positive and negative 

selection. 

For negative rounds of selection, BSA and Exotoxin A (List Biological Laboratories; 

Campbell, CA) were conjugated to carboxylic acid-coated magnetic beads as described above 

and served as immobilized negative targets. Selection procedures were carried out similarly to 

positive Rounds 1–6. However, unbound ssDNA in solution served as template for PCR 

amplification. This procedure was performed for negative Rounds 2–6. 

Free alpha toxin in solution was used to perform competitive elutions beginning in Round 

7 positive. The ssDNA library was first incubated with immobilized target as described for 

positive Rounds 1–6. However, free alpha toxin at a concentration of 1 mg/mL in SB was used to 

resuspend the ssDNA bound magnetic beads. The solution containing ssDNA bound to free 

alpha toxin was retrieved by magnetic separation after 5 minutes of incubation and served as 

template for PCR amplification. This procedure was carried out for positive Rounds 7–12, each 

with shorter incubation times and lower free alpha toxin concentrations. Similar competitive 

elution with free negative targets in SB was performed for negative Rounds 7–11. However, 

beads were retrieved and resuspended in 100 µL of SB and served as template for PCR 

amplification. 

4.2.2 Cloning and Sequencing of Alpha Toxin-specific MREs 

DNA sequencing was performed following Rounds 3 negative, 6 negative, 9 negative and 

12 positive to analyze the enrichment of consensus binding sequences in the ssDNA library. This 

was performed identically to as previously described [21-23]. A total of thirty to fifty randomly 

selected sequences were analyzed for each sequenced round.  
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4.2.3 Alpha Toxin-specific MRE SPR Affinity Binding Assays 

One candidate sequence designated as R12.06 from the analyzed round 12 library was 

chosen for further characterization. Mfold DNA web server was used to predict the secondary 

structure of R12.06 with parameter settings at the ionic conditions of SB and at 25 ºC [29]. 

R12.06 was commercially synthesized with a 5’ amino-C6 modification for the use of surface 

plasmon resonance (SPR) affinity binding assays (Eurofins MWG Operon; Huntsville, AL). The 

5’ end was chosen for the amino modification because in the Mfold predicted secondary 

structure the 5’ end was further away from predicted secondary structures than the 3’ end.  This 

provided distance between the immobilization surface and the MRE structure in addition to the 

C6 linker between the DNA and the amino group. A commercially-purchased CM5 SPR sensor 

chip (GE Healthcare; Piscataway, NJ) and a sensor chip fabricated in house were used in the 

assays. 

Glass slides (12 mm x 10 mm) were coated with a 2 nm titanium adhesion layer and a 45 

nm gold layer using Temescal BJD-2000 system (Edwards Vacuum; Phoenix, AZ) with an 

Inficon XTC/2 deposition controller (Infincon; East Syracuse, NY). In order to assemble the 

home-made sensor chip, the gold coated glass slide was first washed with 100% ethanol under 

sonication for 5 minutes, then immersed in a self-assembled monolayer solution of 10 mM 11-

mercaptoundecanoic acid (11-MUA) (Sigma; St. Louis, MO) and 10 mM triethylene glycol 

mono-11-mercaptoundecylether (PEG3) (Sigma; St. Louis, MO) in a 1 to 5 ratio overnight under 

argon. After overnight incubation in the solution, the gold chip was rinsed with 100% ethanol 

and pure water, blown dry with nitrogen and assembled onto a carrying cartridge. A Biacore 

X100 (GE Healthcare; Piscataway, NJ) was used for binding assays. 
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Both types of sensor chips were first activated by injecting 100 mM N-hydroxysulfonyl 

succinimide (sulfo-NHS) (Pierce; Rockford, IL) and 400 mM 1-ethyl-3-(3-

dimethylaminopropyl) (EDC) (Pierce; Rockford, IL) at a 1 to 1 ratio to control and active flow 

cells at a flow rate of 5 µL/min for ten minutes. Then, 5’amino-C6 modified R12.06 was diluted 

to 100 nM in immobilization buffer (100 mM sodium chloride, 20 mM potassium phosphate, and 

2 mM magnesium chloride, pH 7.4). This buffer was also used as the running buffer for the DNA 

immobilization step. A total of 300 µL of DNA was injected into active flow cell at a flow rate 

of 5µL/min, followed by a 10-minute inactivation step using 1 M ethanolamine-HCl pH 8.5. 

Control flow cell without immobilized DNA was also inactivated by 1M ethanolomine-HCL. 

The selection buffer was then used as running buffer for single cycle kinetic assays. 

Alpha toxin at various concentrations (500 nM, 750 nM, 1000 nM, 1500 nM, 2000 nM and 2500 

nM) in SB were injected into both control and active flow cells at a flow rate of 30 µL/min for 

180 seconds with a dissociation time of 150 seconds. Binding responses after baseline and 

control adjustments were analyzed with Biacore X100 evaluation software (GE Healthcare; 

Piscataway, NJ). A 1:1 binding model was used to determine the equilibrium dissociation 

constant (Kd).   

4.2.4 Alpha Toxin-specific MRE Fluorescence Cross Binding Assays 

Commercially synthesized FAM labeled R12.06 (Eurofins MWG Operon; Huntsville, 

AL) was used in microplate based fluorescence cross binding assays. The assay was slightly 

modified from a previous study [30]. Alpha toxin, exotoxin A, toxin B (List Biological 

Laboratories; Campbell, CA), cholera toxin (List Biological Laboratories; Campbell, CA) and 

BSA were diluted to 40 nM in 50 mM carbonate/ bicarbonate buffer (pH 9.6). A volume of 90 

µL of each diluted toxin, human serum (Sigma; St. Louis, MO) and control blocking buffer (SB 
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with 0.05% Tween-20) were added to individual wells of a 96 well Nunc C8 Lockwell MaxiSorp 

microplate (Pierce; Rockford, IL). The plate was incubated on a shaker at 4 ºC overnight. After 

protein coating, all the wells were blocked for 1 hour and washed 3 times with the blocking 

buffer at room temperature. FAM labeled R12.06 at 100 nM in 90 µL of SB was added to control 

and cross binding target coated wells and incubated for 1 hour at room temperature. 

Subsequently, unbound FAM-R12.06 was removed and each well was washed 5 times with 

selection buffer. Lastly, 90 µL of SB was added to each well and the plate was measured in a 

Synergy 2 micoplate reader with excitation at 490 nm and emission at 520 nm (Biotek US; 

Winooski, VT). Fluorescence measurements were normalized to control and an internal standard 

of 90 µL of 100 nM FAM-R12.06 in SB as previously described [21-23]. All cross binding 

targets and control well sets were in triplicate. Data was averaged and standard deviation was 

calculated. A one-tailed student t-test was used to determine the statistical significance in 

difference of the means (p < 0.05). 

4.2.5 Alpha Toxin-specific MRE Modified ELISA 

A 100 µL sample of commercially synthesized 5’ amino-C6 modified R12.06 was diluted 

to 40 nM in immobilization buffer and added to individual wells of a maleic anhydride activated 

microplate (Pierce; Rockford, IL) and incubated overnight with shaking at room temperature. 

Each well was then blocked with blocking buffer (SB, 0.1% BSA and 0.05% Tween-20) for 1 

hour and washed 3 times with SB/ 0.05% Tween-20 washing buffer at room temperature. Wells 

without DNA added served as blank control. SB, human serum, and alpha toxin diluted to 200 

nM in SB and in human serum were added into individual wells and incubated on a shaker for 1 

hour at room temperature. SB and human serum served as background control.  
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After incubation, all of the contents were aspirated and wells were washed 5 times with 

the same washing buffer. Then, 100 µL of rabbit anti-alpha toxin primary antibody serum 

(Sigma; St. Louis, MO) at 1 to 500 dilution ratios in washing buffer was added and incubated for 

30 minutes with shaking at room temperature. Primary antibody was then aspirated and wells 

were washed for 3 times. A secondary goat anti-rabbit antibody conjugated to horseradish 

peroxidase (Pierce; Rockford, IL) at 1 to 500 dilution ratios in washing buffer was added and 

incubated for 30 minutes with shaking at room temperature. Lastly, all contents were aspirated 

and washed 5 times as outlined above. ABTS substrate (Pierce; Rockford, IL) was then added to 

all wells according to manufacturer’s instruction. Absorbance at 410 nm and 650 nm was 

measured in a Synergy 2 microplate reader using Gen 5 1.06 software (Biotek US; Winooski, 

VT) in two minute increments. Negative controls were wells incubated without antibodies and 

with only primary antibody. Each set was performed in triplicate. Data was averaged and 

standard deviations were determined. A two-tailed student t-test was performed to determined 

statistical differences at p < 0.05. 

4.3 Results and Discussions 

4.3.1 Identification of Alpha Toxin-specific MRE 

Twelve rounds of in vitro selection were performed to identify a ssDNA MREs against 

alpha toxin (Table 4.1). The selection utilized a SELEX scheme previously described by our lab 

[21]. This scheme was designed to enrich the ssDNA library to bind preferentially to alpha toxin 

in solution and to decrease binding to bovine serum albumin (BSA), toxin B, exotoxin A, and 

cholera toxin. Thirty to fifty random sequences were analyzed for the enrichment of consensus 

sequence families after every third round of selection (rounds 3, 6, 9, 12) to monitor the diversity 

of the library. The sequences from round 12 were analyzed for the presence of consensus 
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sequences, but were also screened based on their predicted secondary structures and the stability 

of those structures, as predicted by a Gibbs free energy value. The random region of one 

sequence, R12.06 from the analyzed Round 12 library appeared to be highly conserved among 

several sequence families, and therefore it was chosen for further characterization (Table 4.2).  

 

Table 4.2: Sequence families after 12 rounds of SELEX. 

Designation                                                    Sequence  
R12.26   
TGTACCGTCTGAGCGATTCGTACCCTTGCCGATGCCTTTACGGTCTAGTTTGGATGTAGCCAGTCAGTGTTAAGGAGTGC 
R12.06   
TGTACCGTCTGAGCGATTCGTACGATTACTATAATTTCCTATCGTCCGACCGCCGTCAGCCAGTCAGTGTTAAGGAGTGC 
R12.01   
TGTACCGTCTGAGCGATTCGTACTCGGGCGATGATACTTAGCACGGTCTAGGTCAAAAGCCAGTCAGTGTTAAGGAGTGC 
R12.20   
TGTACCGTCTGAGCGATTCGTACTAGCGGCAGAGTAGCACTCTATAGGTCGATGTTTAGCCAGTCAGTGTTAAGGAGTGC 
 
R12.01   
TGTACCGTCTGAGCGATTCGTACTCGGGCGATGATACTTAGCACGGTCTAGGTCAAAAGCCAGTCAGTGTTAAGGAGTGC 
R12.02   
TGTACCGTCTGAGCGATTCGTACCGTGTCCTATTTTCTTCTCTGTTAACTCTCGTCAGCCAGTCAGTGTTAAGGAGTGC 
R12.06   
TGTACCGTCTGAGCGATTCGTACGATTACTATAATTTCCTATCGTCCGACCGCCGTCAGCCAGTCAGTGTTAAGGAGTGC 
R12.39   
TGTACCGTCTGAGCGATTCGTACTTTGATCTCGTGTGTCTAGTTGCGGCGGATTGTCAGCCAGTCAGTGTTAAGGAGTGC 
R12.10   
TGTACCGTCTGAGCGATTCGTACGGTCAACCTCACCGACTGCCGACCGTTTAATTCGAGCCAGTCAGTGTTAAGGAGTGC 
R12.43   
TGTACCGTCTGAGCGATTCGTACCGTCATTGCCTCGTAGTATTCTTATAGTCGGTAGAGCCAGTCAGTGTTAAGGAGTGC 
R12.44   
TGTACCGTCTGAGCGATTCGTACTCCCGAAAGCGCGTCAGCCTGGGAGGTTATGCGGAGCCAGTCAGTGTTAAGGAGTGC 
 
Representative sequence families from Round 12 ssDNA library. Families are separated by 

difference cells of the table with according to common their consensus sequences (underline)s 

and sequence homologies (double-underlined). 

 

The Mfold predicted secondary structure showed a long stem-loop structure comprised of 

the random region of the MRE and with a Gibbs free energy value of -8.85 kcal/mol (Figure 4.3). 

The entire random region of R12.06 participated in the formation of the long stem-loop 

secondary structure according to the Mfold prediction. The random region of R12.06 also shares 
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approximately 30% and 50% identity with the random regions of R12.26 and R12.02 

respectively. 

 

 

Figure 4.3: Sequence and secondary structure of R12.06 ssDNA MRE. (A) ssDNA 

sequence of alpha toxin MRE R12.06; (B) Mfold prediction of R12.06 secondary structure 

[29]. 
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4.3.2 Affinity and Specificity of Alpha Toxin-specific MRE 

Surface plasmon resonance single cycle kinetics assays were used to determine the 

affinity of R12.06 for alpha toxin. The average equilibrium dissociation constant (Kd) was 93.7 ± 

7.0 nM (Table 4.3).  

Table 4.3: SPR affinity data of R12.06 ssDNA MRE. 

 Kd (nM) χ2 (RU)2 
Assay 1 102 0.493 
Assay 2 88.7 0.691 
Assay 3 90.7 0.164 
Averaged 93.7 ± 7.0 - 
The averaged equilibrium dissociation constant is given with standard deviation from three 

assays. The χ2 described the closeness of fit between the experimental and fitted curve. RU 

represents the response unit generated by the SPR instrument. 

 

Single cycle kinetics has previously been used to determine the binding affinities of 

nucleic acid MREs [31, 32]. This assay is typically used for sensor surfaces that are difficult to 

regenerate and cannot therefore undergo classical multi-cycle kinetic analysis. Single cycle 

kinetics has also been shown to provide equally valid results as multi-cycle assays [33, 34]. 

Ligand (ssDNA MRE) immobilization strategies described in this work differ from many 

previous studies [31, 35-37]. Here, covalent linkage of 5’-amino modified ssDNA MRE was 

performed instead of the more typical biotin-streptavidin capturing. At neutral to slightly basic 

running buffer, the electrical repulsion between the negatively charged DNA and sensor chip 

surface leads to relatively lower level of ligand immobilization by covalent attachment. Both 

sensor chips produced in house and commercial CM5 sensor chips were utilized in the assays. A 

different concentration range (25nM to 500 nM) of alpha toxin was also tested and yielded a 
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comparable result (Kd = 90.7 nM), and thus confirming the validity of the determined 

equilibrium dissociation constant. The Kd of R12.06 is comparable to other previously reported 

Kd values of MREs targeting bacterial toxins [30, 38, 39]. This further validates the SELEX 

variation previously developed by our laboratory [21-23]. 

A fluorescent plate-based assay was used to determine the cross binding activity of 

R12.06. This assay was slightly modified from that which is previously described by using a 

different washing buffer [30]. The data is presented relative to binding between R12.06 and 

alpha toxin as has been previously described [21, 22]. The ssDNA MRE exhibits significant 

binding preference to alpha toxin over all negative targets (p < 0.05) (Table 4.4).  

Table 4.4: Cross-reactivity data of R12.06 ssDNA MRE. 

Target Normalized 
Average 
Fluorescence 

Standard 
Deviation 

p-Value Selective Ratio 

Alpha Toxin 0.047 0.007 - - 
Cholera Toxin 0.031 0.009 0.003 1.5 
Exotoxin A 0.031 0.002 0.004 1.5 
Toxin B 0.009 0.002 0.001 5.0 
Bovine Serum 
Albumin 

0.026 0.001 0.027 1.8 

Human Serum 0.028 0.003 0.017 1.7 
 

The binding of R12.06 to alpha toxin is 1.5 times greater than cholera toxin and exotoxin 

A (p = 0.003 and p = 0.004 respectively), 5.0 times greater than toxin B (p = 0.0005), and 1.8 

times greater than BSA (p = 0.03). It is important to note that components of human serum were 

not included in the negative selection scheme, but R12.06 still shows 1.7 times greater selectivity 

over human serum (p = 0.02). This selectivity is important for downstream application 

development. An interesting phenomenon observed in this study is that the binding selectivity 

over toxin B (270 kDa) is more than triple that of cholera toxin (84 kDa). However, both toxins 
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were only introduced once in the negative selection scheme. A similar phenomenon was also 

observed in another study from the Sooter laboratory that investigated the binding selectivity of a 

C. difficile toxin B specific ssDNA MRE over other toxins, in which the toxin B MRE is two 

times more selective of alpha toxin (33 kDa) over cholera toxin. Based upon these two 

observations, it is likely that the binding selectivity of the ssDNA library is enriched early on in 

the selection process and the target molecular weight and crystal structure may play a role in the 

selectivity of MREs. The overall low cross binding activities in all tested negative targets further 

validates the stringency of our selection process [21-23].     

 

4.3.3 Diagnostic Application of Alpha Toxins-specific MRE 

The high affinity and specificity of the alpha toxin specific ssDNA MRE allowed the 

investigation of its potential application as a diagnostic tool. A modified ELISA using R12.06 as 

the toxin-capturing element was developed (Figure 4.4).  
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Figure 4.4: Illustration of the ssDNA MRE modified ELISA assay. The ssDNA MRE 

was used as the capturing element in the sandwich ELISA assay. 

 

Reproducible and statistically significant detection of 200 nM alpha toxin spiked in 

human serum samples were achieved compared to control in multiple assays (p < 0.01 to p < 

0.001) (Figure 4.5). The significant differences were first detected 20 minutes after the addition 

of horse radish peroxidase substrates. It is important to note that the average half-life of ssDNA 

MREs in serum is about one hour due to the presence of exonucleases [40]. The R12.06 MRE 

demonstrated its robustness in serum without any base modifications. The three dimensional 

structure of nucleic acid MREs are known to be influenced by temperature, pH and ionic strength 

of the binding conditions [41]. The R12.06 MRE was able to retain a level of affinity and 

specificity in undiluted human serum, which is a complex biological matrix with serum proteins, 
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lipids and varied ionic concentrations [42]. The assay completion time from the addition of alpha 

toxin to positive result was less than 4 hours. This demonstrates the potential of R12.06 as a 

clinical diagnostic tool.  

 

 

Figure 4.5: Detection of alpha toxin in modified ELISA assay. Data represent one 

modified sandwich ELISA with absorbance measured at 410 nm. Absorbance levels are 

subtracted from background levels of blank wells without immobilized DNA. (A) 

Statistical significance levels with respect to DNA with buffer background of p < 0.001 are 
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designated by *. (B) Statistical significance levels with respect to human serum 

background of p < 0.001 are designated by *. Buffer: 1× selection buffer. Error bars are 

representative of +/- 1× standard deviations.  

 

A single-stranded DNA MRE was previously incorporated into a system for target 

detection in binding buffer-diluted human serum [43]. Similar ssDNA MRE based ELISA assays 

have also been reported in previous studies for the detection of bacterial toxin targets in binding 

buffer [30, 44]. In comparison, the assay in this study demonstrates a level of superiority by 

detecting target molecules in minimally manipulated and clinically relevant samples. Traditional 

antibody-based ELISA assays for the detection of alpha toxin have been previously reported with 

high sensitivity in bacterial culture media (LOD of 1 ng/mL) [17, 18]. In these experiments 200 

nM, or 6.6 µg/mL, alpha toxin in human serum was detected. While highly reproducible, the 

signal is small enough to be near the limit of detection for the system described. This level is 

within the range of clinical relevance, as previous work has shown levels to be as high as 83 µg/mL 

[45]. The sensitivity of the assay may be improved by making the ssDNA MRE more resistant to 

exonucleases. This stability limitation may be resolved by base modifications [46]. In contrast to 

antibodies, ssDNA MREs also have several advantages, such as thermostability, reversible 

denaturation and inexpensive chemical synthesis [47]. It is to be noted that another ssDNA MRE 

targeting alpha toxin has been reported recently [48]. The authors investigated the potential 

therapeutic application of their selected MRE, however, no binding affinity and specificity data 

were reported in the study. It is unknown if R12.06 will demonstrate neutralizing effect on alpha 

toxin. Based upon the determined high affinity and specificity of R12.06, its translational value 

may not be limited to diagnostic detection and may warrant future studies. In sum, the ability of 



150 
 

R12.06 to detect alpha toxin in undiluted human serum samples has been demonstrated, which 

has the potential to augment current and future diagnostic methods for S. aureus related 

infections. 

4.4 Conclusions 

This study utilized a robust SELEX methodology to identify a molecular recognition 

element specific for alpha toxin of Staphylococcus aureus with high affinity and specificity. The 

MRE binds with a nanomolar equilibrium dissociation constant (Kd) of 93.7 ± 7.0 nM and is 

selective for alpha toxin over all bacteria toxins used in the negative selection scheme and in 

human serum. In addition, a proof-of-concept diagnostic sandwich ELISA utilizing the MRE as 

the toxin capturing element has been developed and successfully demonstrated target detection at 

200 nM in undiluted human serum samples. The results further validate our SELEX process and 

showed the potential of applying ssDNA MREs in diagnostic applications. 
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Chapter 5 

Overall Conclusions and Future Studies 
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5.1 Summary 

In summary, the work that has been presented herein demonstrated several important 

findings in the field of ssDNA MRE isolation and application. 

Firstly, three ssDNA MREs with high affinities and specificities have been identified 

with the Decoy-SELEX method. These properties of the selected ssDNA MREs are important for 

downstream applications. This work is novel in that the first ssDNA MREs were isolated against 

Pseudomonas aeruginosa exotoxin A and Clostridium difficile toxin B. It is also novel that these 

MREs were used in biosensing applications where the toxins were detected in biologically 

relevant samples. Although a previous ssDNA MRE was isolated against Staphylococcus aureus 

alpha toxin [1], the alpha toxin-specific ssDNA MRE isolated in this work was the first to apply 

it to a sensing application.  

Secondly, the method developed for immobilizing amino modified ssDNA MREs on 

customized gold surface in Chapter 2 has an important role in the fabrication of a stable sensory 

surface. This setup is readily translatable into the final design of the recognition component of a 

biosensor.  

Thirdly, the developed modified ELISA assays are applicable in clinical diagnostic 

laboratories. Bacterial toxin targets were detected in clinically relevant samples, and at clinically 

relevant concentrations. This confirmed the selected unmodified ssDNA MREs were robust and 

specific in the targets’ native environments. There were minimal sample manipulations in the 

steps of the modified ELISA assay, which is desirable and practical for real-world situations. 

Lastly, this work established the foundations for future studies in the application of 

ssDNA MREs. These foundations and future studies are briefly described in the following 

sections. 
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5.2 Future Studies 

 The work described in Chapter 2 through 4 established the foundation in the biosensing 

application of ssDNA MRE. Although the presented detection assays are a proof-of-concept at 

the current stage, this work can be further developed into biosensors that are potentially more 

sensitive and sophisticated. The ultimate design for an ideal ssDNA MRE based biosensor will 

be in the form of a point-of-care system.  
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Appendix 

In Vitro Selection of a Single-Stranded DNA Molecular 
Recognition Element Against Pesticide Fipronil 
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A.1 Introduction 

 Fipronil is a widely used phenlpyrazole insecticide in the United States since it was first 

introduced in the late-1990s [1]. Fipronil inhibits gamma-aminobutyric acid (GABA) gated 

chloride channels and causes continuous excitation of the central nervous system [2]. Due to the 

increasing resistance to organophosphate pesticide, fipronil is often used as an alternative in 

many settings, this includes residential, commercial, and agricultural [3]. From 2000 to 2005, the 

sales of fipronil in California have increased by 10-fold [4]. Report indicates that fipronil 

currently accounts for approximately 10% of the global pesticide market [5]. Its widespread use 

has led to a rapid increase in environmental exposure to fipronil. 

 Due the popular use of fipronil, it has become a widespread environmental contaminant. 

During 2002-2011, fipronil was detected in urban streams up to 63% of the time, and about 15 to 

20% of the time in agricultural, and mixed land streams in the United States [3]. Additionally, 

measured concentrations of fipronil exceed the aquatic-life benchmark in 70% of urban streams 

and more than 20% of agricultural, and mixed land streams in the mentioned time period [3]. 

Fipronil detected in surface water had levels up to 6.4 µg/L in selected area [6]. It has been 

shown to contaminate drinking water sources in Vietnam [7]. The worldwide contamination of 

fipronil is clearly interacting with ecosystem and human. 

Recent report confirmed the presence of fipronil in urban streams, and is highly toxic to 

many steam invertebrates, with a mean 96-hour viability inhibition EC50 values as low as 32.5 

ng/L for Chironomus dilutus [8]. Additionally, fipronil is highly toxic to many fish species, with 

reported 96-hour LC50 level as low as 0.246 mg/L for rainbow trout and 0.083 mg/L for bluegill 

sunfish [1]. It also has a tremendous negative impact on non-target insect, such as honey-bee [9]. 

Although fipronil binds more selectively to insect GABA receptors than mammal GABA 
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receptors, long term toxicity study showed it increased thyroid follicular cell tumor in rats [10, 

11]. The U.S. Environmental Protection Agency has therefore classified fipronil as a possible 

human carcinogen [10]. Even though there is an overall increase in the knowledge of how 

fipronil is impacting the environment and human health, large knowledge gap still exist in terms 

of its environmental fate and resides in various media, such as soils and agricultural products 

[12]. Thus, it is important to monitor the exposure level of fipronil in the environment.   

Currently, the detection of fipronil level in environmental and biological samples are 

mostly dependent on chromatographic methods, such as gas and/ or liquid chromatography 

coupled with mass spectrometry [13-16]. These methods are sensitive, but costly, time and labor 

intensive. There have been reported uses of antibody-based enzyme-linked immunosorbent 

assays (ELISA) to detect total fipronil in human blood samples and artificially contaminated tap 

water samples [17, 18]. However, there are inherent limitations in antibody-based assays, such as 

difficult or unable to be reused, expansive in production, and may suffer from batch-to-batch 

variations [19, 20]. It is therefore necessary to develop low-cost, reusable means to detect 

fipronil rapidly. One possible way to achieve this is by identifying a single-stranded DNA 

(ssDNA) Molecular Recognition Element (MRE) that specifically bind to fipronil. 

The process, Systematic Evolution of Ligands by Exponential Enrichment (SLEEX) can 

be utilized to identify such a specific binding element [21]. This in vitro selection process 

involves repeated cycles of incubation and partitioning between the target of interest and a large 

library with up to 1015 different molecules, and amplification of molecules that bind to the target 

under increasing selection pressures.  

This work describes the use of a stringent variation of the SELEX process previously 

developed by our laboratory to select ssDNA MREs specific for fipronil. This SELEX variant 
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emphasizes on introducing multiple, lengthy negative selection rounds to direct the enriched 

library away from binding to structurally similar molecules and molecules that are likely to co-

exist in the same environment [22-24]. In this work, major metabolites of fipronil, commonly 

used herbicides and pesticides, atrazine, malathion and propanil, and a closely related pesticide, 

ethiprole have been used as negative targets to increase the specificity of the enriched library. 

Bovine serum albumin (BSA) is chosen to be one of the negative targets, as it is a common 

blocking agent, and serves as a general protein target. The selection process has been completed, 

and potential candidate ssDNA MRE sequence has been identified. Future works will be the 

determination of its binding affinity and specificity to fipronil, and the development of a 

potential detection assay for fipronil. 

A.2 Materials and Methods 

A.2.1   In vitro selection for Fipronil-specific MREs 

 Twelve rounds of SELEX were carried out to identify fipronil-specific MREs (Figure 

A.1). 
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Figure A.1: Illustration of the in vitro selection process. The in vitro selection process begins 

with up to 1015 different ssDNA molecules and incubation with the target of interest, fipronil. 

Molecules bind to fipronil are amplified and subjected to incubation with negative targets. Those 

that do not bind to negative targets are retrieved and amplified. This completes one round of in 

vitro selection cycle. 

In brief, the selection began with a ssDNA library with up to 1015 different molecules. 

This library was previously designed by our laboratory, and designated RMW.N34 [23]. The 

library consists of two 23-base constant regions for primer attachment during polymerase chain 

reaction (PCR), flanking by a 34-base random region, and it was commercially synthesized 

(Eurofins MWG Operon; Huntsville, AL). The stringent selection scheme was designed to enrich 

molecules that bind to fipronil, but not the negative targets 

A.3 Preliminary Results and Future Work 

A.3.1   Round 12 Potential Fipronil-specific candidate MRE 

 Twelve rounds of SELEX were carried out to identify ssDNA MREs specific to fipronil. 

The post round 12 library was analyzed for consensus sequence families, predicted secondary 

structures and Gibbs free energy values (ΔG) (indicating stability). These steps were performed 

similarly to the method described in Chapters 2-4. One candidate sequence, designated R12.51 

was present in multiple sequence families, with relatively stable predicted secondary structures,  

and low Gibbs free energy (-9.28 kcal/mol).  
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